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ABSTRACT 

One of the main welding processes used in the industries for the purpose of 

fabrication of huge sized structures is Submerged Arc Welding process. The 

key features of this process are high deposition rates and long weld runs. 

The important process variables in submerged arc welding are: welding 

current, arc voltage, welding speed, nozzle to plate distance etc. The effects 

of these process variables are determined through their effects on weld bead 

geometry. 

Design of experiment using response surface methodology was used to 

conduct experiment and to develop relationship for predicting weld bead 

geometry, which enables to quantify the direct and interaction effects. The 

response factors, namely penetration, bead width, and bead height, as 

affected by arc voltage, current welding speed and nozzle-to-plate distance 

have been investigated and analysed. The models developed have been 

checked for their adequacy and significance by using the F-test and the t-test, 

respectively. Main and interaction effects of the process variables on weld 

bead geometry are presented in graphical form. The developed models can 

be used for prediction of important weld bead dimensions and control of the 

weld bead quality by selecting appropriate process parameter values. 

Use of artificial neural network to model submerged arc welding process is 

explored in present work. Back–propagation neural networks are used to 

associate the welding process variables with the features of bead geometry. 

These networks have yielded satisfactory generalization. A neural network 

could be effectively implemented for estimating the weld bead geometry. 
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1 

INTRODUCTION 
            

1.1Introduction 

Submerged Arc Welding (SAW) is a versatile metal joining process in 

industry. It is a multi-variable, multi-objective metal fabrication process, 

characterized by the use of granulated fusible flux which covers the molten 

weld pool during operation. This arrangement facilitates slower cooling rate 

prevents, atmospheric contamination into weld pool and improves both 

mechanical properties and metallurgical characteristics of the weld bead as 

well as Heat Affected Zone (HAZ). 

To have better control and knowledge of SAW process, it is essential to 

establish the relationship between process parameters and weld bead 

geometry to predict and control weld bead quality. The Design Of 

Experiments using Responsive Surface Methodology (RSM) technique may 

be used for establishing quantitative relationships between welding process 

parameter and weld bead geometry. 

1.2 Motivation and Objectives 

The motivation was provided by the desire to explore the potential of SAW 

process. For exploiting the potential of the process to great extent possible, 

basic understanding of the process is mandatory. 

The main objective of this project was to study the effects of SAW process 

parameters such as arc voltage, current, travelling speed and nozzle-to-plate 

distance on weld bead geometry, and to develop mathematical model for 

evaluating the effects of welding process parameters on the weld bead 

geometry .Further prediction of bead geometry using Artificial Neural Network 

(ANN).  



 
2 

1.3 Statement of problem. 

  “RSM for analysis of bead geometry of SAW and modelling using ANN.” 

This research work describes the development of mathematical models based 

on practical observations, made during SAW of mild steel by bead-on-plate 

technique to estimate accurately the weld bead dimensions as affected by 

welding process variables and predicting the bead geometry using ANN. 

1.4 Plan of investigation. 

For accomplishment of the desired aim, the research work was planned to be 

carried out in the following steps: 

 Identifying the important process control variables. 

 Selection of the useful limits of the welding parameters,viz. voltage (V), 

current (A), travelling speed (S), and nozzle to plate distance (N). 

 Developing the design matrix. 

 Conducting the experiment as per design matrix. 

 Recording the responses viz. penetration (P), bead width (w) & 

reinforcement height (H). 

 Development of mathematical models. 

 Calculating the co-efficient of polynomial. 

 Checking adequacy of the models developed. 

 Prediction of results using feed forward back propogation neural 

network. 

 Analysis of results and conclusion. 
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2.0 LITERATURE REVIEW 

 

Welding is a fabrication process that joins materials, usually metals or 

thermoplastics, by causing coalescence. This is often done by melting the 

workpieces and adding a filler material to form a pool of molten material that 

cools to become a strong joint, the process is carried out with pressure 

sometimes used in conjunction with heat, or only with heat, to produce the 

weld. Many different energy sources can be used for welding, including a gas 

flame, an electric arc, a laser, an electron beam, friction, and ultrasound. 

While often an industrial process, welding can be done in many different 

environments, including open air, under water and in outer space. Engineers 

became conscious of the quality of the welded joints since about 1950s. Weld 

bead geometric parameters have a large influence on the quality of the 

product is now well understood and accepted. The studies on the effects of 

various welding process parameters on the formation of bead, depth of 

penetration and bead geometry have attracted the attention of many 

researchers to carry out further investigations. Recent developments in the 

evolution of artificial neural networks have been found to be useful in solving 

many engineering problems. In different fields of engineering, back-

propagation neural network has proved to be one of the best algorithms for 

predictive type of work. Design of experiment (DOE) combined with Response 

surface methodology (RSM) is a powerful statistical tool to determine and 

represent the cause and effect relationship between true mean responses and 

input control variables influencing the responses as a two or three 

dimensional hyper surface. 

http://en.wikipedia.org/wiki/Fabrication_(metal)
http://en.wikipedia.org/wiki/Process_(science)
http://en.wikipedia.org/wiki/Metal
http://en.wikipedia.org/wiki/Thermoplastic
http://en.wikipedia.org/wiki/Coalescence_(meteorology)
http://en.wikipedia.org/wiki/Melting
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Energy_source
http://en.wikipedia.org/wiki/Fire
http://en.wikipedia.org/wiki/Electric_arc
http://en.wikipedia.org/wiki/Laser
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Friction_Welding
http://en.wikipedia.org/wiki/Ultrasound
http://en.wikipedia.org/wiki/Submerged_arc_welding
http://en.wikipedia.org/wiki/Outer_space
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The present literature review has been carried out in the areas concerning the 

effects of various welding parameters on bead geometry, application of 

artificial neural network in welding in optimization of process parameters and 

application of RSM to develop mathematical relationship between the welding 

process parameters and the output variables of the welded joint. 

 

2.1 Effects of welding process parameters on bead geometric 

characteristics. 

The bead geometry of the weld bead is the major factors influencing the 

structural adequacy of the weld, such as its strength. Some of the weld bead 

characteristics of significance are bead width, bead height, penetration, etc. 

The properties of the welded joints are affected by a large number of these 

weld bead parameter .The correlation between welding process parameters 

and bead geometry characteristics can provide useful information about the 

quality of the welds. Researchers, to describe the weld bead geometry, have 

identified various welding process parameters affecting the resulting bead 

geometry. The following literature review makes an attempt to provide an 

insight in to the above-mentioned area. 

R.S. Chandel et al.[3] presented theoretical predictions of the effect of 

current, electrode polarity, electrode diameter and electrode extension on the 

melting rate, bead height, bead width and weld penetration, in submerged-arc 

welding. They studied that the melting rate of SAW can be increased by four 

methods: (i) using higher current; (ii) using straight polarity; (iii) using a 

smaller diameter electrode; and (iv) using a longer electrode extension. The 

percentage difference in melting rate, bead height, bead width, and bead 
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penetration is affected by the current level and polarity. When a smaller 

diameter electrode is used, the increase in the current level does not make 

much difference to the percentage change in bead height, bead width, and 

weld penetration. 

Investigation on pulsed tugsten arc welding parameters was done by G. 

Lothongkum et al. [7]. In their study TIG pulse welding parameters of AISI 

316L stainless steel plate of 3 mm thickness at the welding positions of 6±12 

h were investigated. The studied parameters were welding speed, pulse/base 

currents, and pulse frequency. Pure argon and argon with nitrogen contents of 

1±4 vol.% were used as shielding gas. Preliminary welding results at the 6 h 

welding position showed that the appropriate parameters were: base current 

of 61 A, pulse frequency of 5 Hz, and 65% on time. With these constant 

parameters the effects of welding speeds of 2±8 mm/s and nitrogen contents 

of 0±4 vol.% in argon shielding gas on pulse currents were examined to attain 

acceptable weld bead profile corresponding to DIN 8563 class BS with 

complete penetration. The results showed that the lowest pulse currents were 

observed at the 9 h welding position. Increasing nitrogen content in argon gas 

decreases the pulse currents. At the welding positions of 6 and 12 h, the 

maximum welding speed is limited to 6 mm/s, and with a welding speed of 7 

mm/s the formation of slag inclusion at the top of weld metal was observed. 

The depth/width ratios (D/W) are between 0.34 and 0.40. Increasing welding 

speed decreases in the weld width and increases in the D/W ratio. 

Radiography showed acceptable weld beads free of porosity. 

D. Kim et.al. [11] proposed a method for determining the near-optimal 

settings of welding process parameters using a Controlled Random Search 
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(CRS) wherein the near-optimal settings of the welding process parameters 

are determined through experiments. The method suggested in this study is 

used to determine the welding process parameters by which the desired weld 

bead geometry is formed in Gas Metal Arc (GMA) welding. In this method, the 

output variables (front bead height, back bead width, and penetration) are 

determined by the input variables (wire feed rate, welding voltage, and 

welding speed). The number of levels for each input variable and the total 

search points were determined to be 10 and 1000, respectively. 

Erdal Karadeniz et al. [18]  in their study, the effects of various welding 

parameters on welding penetration in Erdemir 6842 steel having 2.5 mm 

thickness welded by robotic gas metal arc welding were investigated. The 

welding current, arc voltage and welding speed were chosen as variable 

parameters. The depths of penetration were measured for each specimen 

after the welding operations and the effects of these parameters on 

penetration were researched. The welding currents were chosen as 95, 105, 

115 A, arc voltages were chosen as 22, 24, and 26 V and the welding speeds 

were chosen as 40, 60 and 80 cm/min for all experiments. As a result of this 

study, it was found that increasing welding current increased the depth of 

penetration. In addition, arc voltage is another parameter in incrimination of 

penetration. However, its effect is not as much as current’s. The highest 

penetration was observed in 60 cm/min welding current. 

Serdar Karaoglu, Abdullah Secgin[23]  studied that selection of process 

parameters has great influence on the quality of a welded connection. 

Mathematical modelling can be utilized in the optimization and control 

procedure of parameters. Rather than the well-known effects of main process 
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parameters, this study focuses on the sensitivity analysis of parameters and 

fine tuning requirements of the parameters for optimum weld bead geometry. 

Changeable process parameters such as welding current, welding voltage 

and welding speed are used as design variables. The objective function is 

formed using width, height and penetration of the weld bead. Experimental 

part of the study is based on three level factorial design of three process 

parameters. In order to investigate the effects of input (process) parameters 

on output parameters, which determine the weld bead geometry, a 

mathematical model is constructed by using multiple curvilinear regression 

analysis. After carrying out a sensitivity analysis using developed empirical 

equations, relative effects of input parameters on output parameters are 

obtained. Effects of all three design parameters on the bead width and bead 

height show that even small changes in these parameters play an important 

role in the quality of welding operation. The results also reveal that the 

penetration is almost non-sensitive to the variations in voltage and speed. 

The influence of the (SAW) process parameters (welding current and welding 

speed) on the microstructure, hardness, and toughness of HSLA steel weld 

joints has been investigated by Keshav Prasad,D.K. Dwivedi[26]. Attempts 

have also been made to analyze the results on the basis of the heat input. 

The SAW process was used for the welding of 16 mm thick HSLA steel 

plates. The weld joints were prepared using comparatively high heat input (3.0 

to 6.3 KJ/mm) by varying welding current (500–700 A) and welding speed 

(200–300 mm/min). Results showed that the increase in heat input coarsens 

the grain structure both in the weld metal and Heat Affected Zone (HAZ). The 

hardness has been found to vary from the weld centre line to base metal and 
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peak hardness was found in the HAZ. The hardness of the weld metal was 

largely uniform. The hardness reduced with the increase in welding current 

and reduction in welding speed (increasing heat input) while the toughness 

showed mixed trend. The increase in welding current from 500 A to 600 A at a 

given welding speed (200 mm/min or 300 mm/min) increased toughness and 

further increase in welding current up to 700 A lowered the toughness. 

Scanning electron microscopy of the fractured surfaces of impact test 

specimen was carried out to study the fracture modes. Electron Probe Micro 

Analysis (EPMA) was carried out to investigate the variation in wt.% of 

different elements in the weld metal and HAZ. 

From the discussion on the above-mentioned literature it is observed that in 

different welding processes the weld bead parameters such as penetration, 

bead width, reinforcement height etc are largely influenced by various welding 

parameters such as arc current, voltage, travelling speed, In pulsed tungsten 

arc welding it is found that by increasing welding speed will increase the pulse 

current and increasing nitrogen contents in argon gas decreases the pulse 

currents, and then the solubility of nitrogen in the weld decreases. Increasing 

welding speed more than 6 mm/s results in the formation of slag inclusion at 

the top of welds. In SAW the melting rate can be increased by four methods: 

(i) using higher current; (ii) using straight polarity; (iii) using a smaller diameter 

electrode; and (iv) using a longer electrode extension. In robotic GMA welding 

applied to Erdemir 6842 steel sheets having 2.5 mm thickness the depth of 

penetration increases linearly with increasing welding current between 95 and 

115 A and the average penetration rise was measured as 0.0225 mm for each 

1 A current increment. It can be concluded from these revelations that bead 
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geometry parameters such as penetration, bead width etc are influenced by 

various parameters under different welding conditions using different welding 

processes. 

 

2.2 Application of artificial neural network in welding in optimization of 

process parameters 

Artificial Neural Networks (ANN) has remarkable ability to derive meaning 

from complicated or imprecise data. They can be used to detect trends that 

are too complex to be noticed by either humans or other computer 

techniques. A trained neural network can act like an expert in the category of 

information it has been given to analyze. It can then be used to provide 

projections given new situations of interest. Their ability to learn by example 

makes them very flexible and powerful. They are very well suited for real time 

systems because of their fast response and computational times, which are 

due to their parallel architecture. ANN are being used by researchers in 

various engineering applications The following literature survey has been 

made to study the application of ANN in welding and other engineering 

problems. 

George E. Cook et al. [1] evaluated artificial neural networks for monitoring 

and control of the Variable Polarity Plasma Arc Welding process. Three areas 

of welding application were investigated: weld process modeling, weld 

process control, and weld bead profile analysis for quality control. 

D.S. Nagesh, G.L. Datta[8]  in their work used artificial neural networks to 

model the shielded metal-arc welding process. Back-propagation neural 

networks are used to associate the welding process variables with the 
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features of the bead geometry and penetration. These networks have 

achieved good agreement with the training data and have yielded satisfactory 

generalization. A neural network could be effectively implemented for 

estimating the weld bead and penetration geometric parameters. The results 

of these experiments show a small error percentage difference between the 

estimated and experimental values.  

I.S. Kim et al. [9] developed an intelligent algorithm to understand 

relationships between process parameters and bead height, and to predict 

process parameters on bead height through a neural network and multiple 

regression methods for robotic multi-pass welding process. In this work a 

series of robotic arc welding, additional multi-pass butt welds were carried out 

in order to verify the performance of the neural network estimator and multiple 

regression methods as well as to select the most suitable model. The results 

indicated that  neural network model proved to be better than the empirical 

models having linear and curvilinear equations. 

Ill-Soo Kim et al. [10] in their research, made an attempt to develop a neural 

network model to predict the weld bead width as a function of key process 

parameters in robotic GMA welding. The neural network model is developed 

using two different training algorithms; the error back-propagation algorithm 

and the Levenberg–Marquardt approximation algorithm. The accuracy of the 

neural network models developed in this study has been tested by comparing 

the simulated data obtained from the neural network model with that obtained 

from the actual robotic welding experiments. The result shows that the 

Levenberg–Marquardt approximation algorithm is the preferred method, as 
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this algorithm reduces the root of the mean sum of squared (RMS) error to a 

significantly small value. 

Veerendra Singh et.al. [17] carried out a detailed statistical analysis on plant 

data to study relationship of raw material and furnace performance. Feed 

forward back propogation neural network with three different learning 

algorithim were tried to improve the prediction accuracy. 

This study of Abdulkadir C`evik et al [24] presents, neural network (NN) for 

the prediction of ultimate capacity of arc spot welding. The proposed NN 

model is based on experimental results. The ultimate capacity of arc spot 

welding is modelled in terms of weld strength, average welding thickness and 

diameter. The results of the proposed NN model are later compared with 

results of existing codes and are found to more accurate. Parametric studies 

are also carried out to analyze the effect of each variable.  

 

The development of a back propagation neural network model for the 

prediction of weld bead geometry in pulsed gas metal arc welding process 

has been studied by K. Manikya Kanti, P. Srinivasa Rao[25]. The model is 

based on experimental data. The thickness of the plate, pulse frequency, wire 

feed rate, wire feed rate/travel speed ratio, and peak current have been 

considered as the input parameters and the bead penetration depth and the 

convexity index of the bead as output parameters to develop the model. The 

developed model is then compared with experimental results and it is found 

that the results obtained from neural network model are accurate in predicting 

the weld bead geometry.  
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In the literature survey, it is found that ANN has been emerging as one of the 

powerful predictive tools for application in engineering applications. It has also 

been used in some of the welding processes, which are in most of the cases 

very complex systems involving large number of parameters leaving scope for 

further work. In the present work artificial neural network approach is being 

used as a predicting tool for submerged arc welding process using 

experimental data.  

 

2.3 Application of Response Surface Methodology (RSM) for modeling 

and optimization of process 

Response surface methodology (RSM) is a technique to determine and 

represent the cause and effect relationship between true mean response and 

input control variables influencing the response as a two or three dimensional 

hyper surface. The steps involved in RSM technique are as follows:  

 Designing of a set of experiment for adequate and reliable 

measurement of the true mean response of interest. 

 Determination of mathematical model with best fits 

 Finding the optimum set of experimental factors that produces 

maximum or minimum value of response  

 Representing the direct and interactive effects of process variables on 

the best parameters through two dimensional and three dimensional 

graphs. 

The accuracy and effectiveness of an experiment depends on careful 

planning and execution of the experimental procedure. A number of 

researchers have applied RSM to manufacturing environment. Some very 
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useful work carried out in the areas concerning has been reported in the 

present literature review. 

Bappa Acherjee et. al.[30] made a study to investigate the effect of process 

parameters ,namely, laser power ,welding speed, size of laser beam and 

clamp pressure, on the lap-shear strength and weld-seam width for laser 

transmission welding of acrylic, using a diode laser system. RSM was 

employed to devlop mathematical relationships between the welding process 

parameters and the output variables of the weld joint to determine the welding 

input parameters that lead to the desired weld quality. In addition, using 

response surface plots, the interaction effects of process parameters on the 

responses were analyzed and discussed. 

An attempt was also made to relate green compression strength to mould 

hardness by M B Parappagoudar et. al. [20] using Design of experiments 

(DOE) with response surface methodology. A Pareto optimal front of solutions 

was developed for strength and permeability, using a multiobjective 

optimization tool called non-dominated sorting genetic algorithm (NSGA). The 

Pareto optimal front contains a number of optimal solutions. One optimal 

solution differs from another on account of the fact that different sets of 

weightages are given to the objective functions. Thus, the user has to select 

one set of optimal solutions 

out of different available sets. 

The main problem faced in the manufacturing of pipes by the SAW process, 

was the selection of the optimum combination of input variables for achieving 

the required qualities of the weld. This problem was solved by V. Gunaraj et. 

al. [5] by developing mathematical models through effective and strategic 
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planning and the execution of experiments by RSM.They used  a four-factor 

five level central composite rotatable design matrix with full replication for 

planning, conduction, execution and development of mathematical model. 

P B Bacchewar et. al. [21] studied the effect of process parameters, namely 

build orientation, laser power, layer thickness, beam speed, and hatch 

spacing, on surface roughness. Central rotatable composite design (CCD) of 

experiments was used to plan the experiments. Analysis of variance (ANOVA) 

was used to study the significance of process variables on surface roughness. 

In the case of upward-facing surfaces, build orientation and layer thickness 

was found to be significant parameters. In downward facing surfaces, other 

than build orientation and layer thickness, laser power had also been found to 

be significant. Empirical models were developed for estimating the surface 

roughness of the parts. A trust-region-based optimization method had been 

employed to obtain a set of process parameters for obtaining the best surface 

finish. A confirmation experiment had been carried out at an optimum set of 

parameters and predicted results were found to be in good agreement with 

experimental findings. 

P Thangavel et. al.[15] evaluated the impact of factors such as cutting 

speed, feed rate, and depth of cut on flank wear of a high speed steel (HSS) 

cutting tool during the turning process of a mild steel component. A 

mathematical model was developed relating flank wear and the main factors 

such as cutting speed V, feed rate F, and depth of cut T. Response surface 

methodology (RSM) was used to 

develop the mathematical model and the model was checked for adequacy by 

regression analysis. Main and interaction effects of the control factors on flank 



 15 
 

wear were presented in graphical form, which helps in selecting quickly the 

process parameters to achieve the desired quality of machining surface by 

way of controlling the wear of the cutting tool. 

A mathematical model was presented by Godfrey C. Onwubolu. Et. al.[16] 

for correlating the interactions of some drilling control parameters such as 

speed, feed rate and drill diameter and their effects on some responses such 

as axial force and torque acting on the cutting tool during drilling by means of 

response surface methodology. For this exercise, a three-level full factorial 

design was chosen for experimentation using a PC-based computer 

numerically controlled drilling machine built in-house. The significance of the 

mathematical model developed was ascertained using Microsoft Excel® 

regression analysis module. The results obtained shows that the 

mathematical model is useful not only for predicting optimum process 

parameters for achieving the desired quality but for process optimization. 

Using the optimal combination of these parameters is useful in minimizing the 

axial force and torque of drilling operations; by extension, other drilling 

parameters such as cutting pressure, material removal rate, and power could 

be optimized since they depend on the combination of drilling parameters 

which affect the axial force and torque. 

The application of response surface methodology was highlighted by V. 

Balasubramanian et. al.[31] to  predict and optimize the percentage of 

dilution of iron-based hardfaced surface produced by the PTA (plasma 

transferred arc welding) process. The experiments were conducted based on 

five-factor five-level central composite rotatable design with full replication 

technique and a mathematical model was developed using response surface 
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methodology. Furthermore, the response surface methodology was also used 

to optimize the process parameters that yielded the lowest percentage of 

dilution. 

A.M.K. Hafiz et. al.[22] developed an effective method to predict surface 

roughness for high speed end milling of AISI H13 tool steel using PCBN 

inserts.The response surface methodology (RSM) has been utilized for the 

postulation of a second order quadratic model in terms of cutting speed, axial 

depth of cut and feed. Sufficient numbers of experiments were run based on 

the Box-Wilson central composite design (CCD) concept of RSM in order to 

generate roughness data. The ANOVA technique has been used to verify the 

adequacy of the model at 95% confidence interval. From the model it was 

found that feed plays the most dominating role on surface finish followed by 

the cutting speed. However, axial depth of cut does not have significant effect 

on roughness value. The roughness tends to decrease with decreasing feed 

and increasing cutting speed. 

 
2.4 Conclusion 

The literature review has brought about an understanding of the effects of 

welding process variables on weld bead geometry, use of RSM technique to 

determine and represent the cause and effect relationship between true mean 

response and input control variables influencing the response as a two or 

three dimensional hyper surface and use of artificial neural networks in the 

prediction of weld bead geometry in various welding process. 

However ,an integrated approach of studying the effects of various welding 

process variables on bead geometric descriptors using response surface 

methodology technique and predicting the weld bead geometry using artificial 
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neural networks is hardly found in literature. Thus on this literature review the 

objective for the present work have been outlined. 

 

Objective of the present investigation includes the following: 

 Identifying the important process control variables. 

 Selection of the useful limits of the welding parameters. 

 Developing the design matrix and conducting the experiment as per 

design matrix. 

 Recording the responses . 

 Development of mathematical models. 

 Calculating the co-efficient of polynomial. 

 Checking adequacy of the models developed. 

 Prediction of results using feed forward back propogation neural 

network. 

 Analysis of results and conclusion. 
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3.1 Submerged Arc Welding (SAW) 

 

3.1.1 Introduction 

Submerged Arc Welding (SAW) is a high quality welding process with a very 

high deposition rate. It is commonly used to join thick sections in the flat 

position. It requires a continuously fed consumable solid or tubular (metal 

cored) electrode. The wire is fed continuously to the arc by a feed unit of 

motor-driven rollers. The flux is fed from a hopper fixed to the welding head 

and a tube from hopper spreads the flux in a continuous manner in front of the 

arc. 

 

Fig.3.1 Sectional view of SAW process 

The molten weld and the arc zone are protected from atmospheric 

contamination by being “submerged” under a blanket of granular fusible flux. 

When molten, the flux becomes conductive, and provides a current path 

between the electrode and the work. Sectional view of SAW process is shown 

in fig 3.1 SAW is usually operated either as fully mechanized or automatically 

processed, however, semi-automatic (hand-held) During SAW process, 

operator cannot observe the weld pool and not directly interfere with the 

welding process. As the automation in the SAW process increases, direct 

effect of the operator decreases and the precise setting of parameters 
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become much more important than manual welding processes.. Currents 

ranging from 200 to 1500 A are commonly used. Currents of up to 5000 A 

have been used (multiple arcs).). DC or AC power can be utilized, and 

combinations of DC and AC are common on multiple electrode systems.  

Constant Voltage welding power supplies are most commonly used, however 

Constant Current systems in combination with a voltage sensing wire-feeder 

are available.  

The potential advantages of mechanized welding, several attempts were 

made to mechanize the arc welding process developing a continuous coated 

electrode as an extension of manual metal arc welding electrode was ruled 

out for the following reason:  

 Since the Coating is non-conducting, arranging electrical contact with 

the electrode is not practicable.  

 The coating is likely to peel off when the electrode is coiled.  

 The coating is also likely to get crushed when fed through the feed 

rolls. 

Since the introduction of SAW in 1935 there has been a continuing interest in 

the increase of productivity without deterioration in weld quality. In submerged 

arc welding the weld deposit quality is determined by following parameters  

 Welding current 

 Arc voltage  

 Grade of wire used 

 Travel speed  

 Electrode stick-out  

 Type of flux 
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 Size of electrode  

 To get optimum result one must know the effect of above parameters 

on bead geometry, how to select them and control then properly.  

 

3.1.2 SAW Equipment 

The basic SAW equipment is shown in fig 3.2 .For a semi automatic system ,it 

consists of a welding power source, a wire feeder and control system, an 

automatic welding head, a flux hopper and a travel mechanism which usually 

consist of a travelling carriage and the rails. 

 

 

 

 

 

 

 

 

 

Fig:3.2 SAW machine in operation, courtesy http://materialteknologi.hig.no 

 

3.1.3 Process 

The submerged arc welding process creates an arc column between the wire 

electrode and the work piece .The electrode stick-out, the arc column and the 

weld pool are all submerged in a blanket of finely divided granulated powder 

that contains appropriate deoxidisers, cleanser and other desired fluxing         
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in gradients. The flux is fed from the hopper which is an integral part of the 

welding head. The flux flows through a tube and spread along joint edges 

ahead of the electrode in the form of a heap of desired height which is 

controlled by the tube to plate distance. The flux layer is of sufficient depth to 

avoid spatter and smoke and it protects the weld pool from the ill effects of 

atmosphere gases. This results in a smooth weld bead. The flux in contact 

with the hot metal melts and provides a protective layer of slag on top of the 

weld bead. The unmelted flux acts as an insulator and is reclaimed for reuse. 

The slag that forms on the weld bead normally peels off on its own or 

alternatively can be detached with the help of a chipping hammer. 

 

3.1.3.1 Process features 

SAW involves formation of an arc between a continuously-fed bare wire 

electrode and the work piece similar to MIG welding. The process uses a flux 

to generate protective gases and slag, and to add alloying elements to the 

weld pool. A shielding gas is not required. Prior to welding, a thin layer of flux 

powder is placed on the work piece surface. Remaining fused slag layers can 

be easily removed after welding. As the arc is completely covered by the flux 

layer, heat loss is extremely low. This produces a thermal efficiency as high 

as 60% (compared with 25% for manual metal arc). There is no visible arc 

light, welding is spatter-free and there is no need for fume extraction.  

 

3.1.3.2 Operating characteristics:  

SAW is usually operated as a fully-mechanized or automatic process, but it 

can be semi-automatic. Welding parameters: current, arc voltage and travel 
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speed all affect bead shape, depth of penetration and chemical composition of 

the deposited weld metal. Because the operator cannot see the weld pool, 

greater reliance must be placed on parameter settings.  

 

3.1.3.3. Nomenclature of Weld Bead: 

 

            Fig :3.3 Nomenclature of Weld bead. 

Nomenclature of weld bead is shown in fig.3.3 .In order to obtain high quality 

welds in automated welding processes, selection of optimum parameters 

should be performed according to engineering facts. Therefore, it is important 

to study stability of welding parameters to achieve high quality welding. 

Weld Bead Geometry - The mechanical properties of the welded joints greatly 

depend on weld bead geometry, which in turn, is influenced by welding 

parameters like arc current, arc voltage, and arc travel speed. The bead 

geometry is specified by weld bead width, reinforcement height, reinforcement 

area, penetration height, penetration area and the contact angle of weld bead 

etc.  

The Weld Bead Width is the maximum width of the weld metal deposited. It 
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increases with arc current, arc voltage; electrode weaving and decreases as 

arc travel speed increases. 

Penetration Height or simply penetration is the distance from base plate top 

surface to the maximum extent of the weld nugget. Penetration determines 

the load carrying capacity of a welded structure.  

Penetration Area is that covered by the fusion line below the base metal level. 

Penetration area affects the weld strength. 

Reinforcement Height is the maximum distance between the base metal level 

and the top point of the deposited metal. 

Reinforcement Area is one included between the contour line of the deposited 

metal above the base metal level. 

3.1.4 Wire 

SAW is normally operated with a single wire on either AC or DC current. 

Common variants are:  

 twin wire  

 triple wire  

 single wire with hot wire addition  

 metal powder addition  

All contribute to improved productivity through a marked increase in weld 

metal deposition rates and/or travel speeds.  

Other factors:  

• Flux depth/width;  

• Flux and electrode classification and type;  

• Electrode wire diameter;  

• Multiple electrode configurations.  



 24 
 

3.1.5 SAW Fluxes [37]. 

Most metals in their molten condition become oxidized by the absorption of 

oxygen from the atmosphere .To make certain that amount of oxidation is kept 

a minimum, that any oxides formed are dissolved or floated off,and that 

welding is made as easy and free from difficulties as possible, fluxes are 

used.Fluxes,therefore are chemical compound used to prevent oxidation and 

other unwanted chemical reactions. They help to make the welding process 

easier and ensure the making of a good, sound weld. 

Fluxes for Submerged arc welding usually consist of metallic oxides such as 

CaO,MgO and FeO and fluorides such as CaF2.The flux is specially 

formulated to be compatible with a given electrode wire type so that the 

combination of flux and wire yields desired mechanical properties. All fluxes 

react with the weld pool to produce the weld metal chemical composition and 

mechanical properties. Like the manual electrode coating the SAW Flux can 

incorporates alloying elements. So that in combination with an unalloyed wire 

it will yield suitably alloyed weld metal. The molten slag also provides 

favourable conditions for very high current densities which, together with the 

insulating properties with the flux, concentrate heat into a relatively small 

welding zone. This results in deeply penetrating arc, which makes narrower 

and shallower welding grooves practicable, thus reducing the amount of weld  

metal required to complete the joint. It also results in higher welding speeds. 

The properties of the flux enables submerged arc welds to be made over a 

wide range of welding currents voltage and speeds, each of which can be 

controlled independently of the other. Thus one can obtain welded joints of 



 25 
 

desired shapes, chemistry and mechanical properties by using an appropriate 

welding procedure.  

The SAW flux should be so formulated so it does not evolve appreciable 

amount of gases under intense heat of welding zone. It should be granular in 

form and should be capable of flowing freely through the flux feeding tubes, 

valves and nozzles of standard welding equipment. Its particle size should be 

controlled. The flux in its solid state is a non-conductor of electricity, but when 

in molten condition it becomes highly conducting medium. It is therefore 

necessary to initiate the arc by special means. Once the arc is stuck and the 

surrounding flux becomes molten, the welding current continues to flow 

across the arc, while the arc provides a conducting path of molten flux as it 

advances. The flux contains elements capable of assisting in the initial striking 

of arc and also of stabilizing it after initiation. It is common practice to refer to 

fluxes as 'active' if they add manganese and silicon to the weld, the amount of 

manganese and silicon added is influenced by the arc voltage and the welding 

current level. 

 

3.1.5.1 Classification of SAW Fluxes: 

SAW fluxes can be classified into two main groups: 

 According to the method of manufacturing. 

 According to the chemical nature. 
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3.1.5.1.1 According to the method of manufacturing: 

SAW can be classified according to the methods by which the are 

manufactured. There are mainly two methods of manufacturing the flux. 

 

3.1.5.1.1.1 Fused Fluxes. The constituents such as quartz, limestone and 

manganese dioxide (MnO2) with small quantities of fluorspar and aluminium 

oxide (Al2O3) are melted in an electric arc furnace where the manganese 

dioxide (MnO2) is reduced to MnO. When the melt attains the state of a glossy 

paste it can be cooled, crushed and then grounded, and suitable grain size 

obtained by sieving, the grains being about 0.2-1.6 mm diameter. This type of 

flux is homogeneous and was the first type of flux used. 

 

3.1.5.1.1.2 Agglomerated Fluxes. These are more easily manufactured than 

the fused type, being made at a lower temperature. They are heterogeneous 

because they include compounds in powder form whose grains join together 

by the agglomeration process and make larger grains, each grain having the 

correct proportion of each component. The dry powder is fed into a rotating 

disc with the addition of water glass (a concentrated and viscous solution of 

sodium and potassium silicate) as a binding agent. The grains are then 

furnace- dried at about 700-800 oC and then sieved to give grain somewhat 

the same as for fused flux, 0.2-1.6 mm. 

 

3.1.5.1.2 According to the chemical nature 

The chemical nature of a welding flux can be expressed as the basicity or 

Basicity index. 
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                                 Cao+ MgO+ CaF2 +Na20+K20+1/2(MnO+FeO)  
          B (Basicity) = --------------------------------------------------------------  

           SiO2+1/2(Al2O3+TiO2+ZrO2)  
 

The formula of basicity or Basicity index is based upon the ratio of basic oxide 

to acidic oxides.  

Welding fluxes can thus be divided as shown in table 3.1. 

Welding Flux    Basicity  Melting Point (oC) 

Acidic     
0.9   1100-1300 

Neutral    = 0.9 – 1.2  1300-1500 

Basic     =1.2 - 2.0  >1500 

High Basic    >2.0   >1500 

Table 3.1 Classification of SAW fluxes 

3.1.6 SAW Process Variables: 

All the variables have a certain effect upon the bead geometry and rate of the 

deposit weld material. It is very essential to set several variables to correct 

range before starting SAW for achieving good quality welds. Following are the 

Process variables in SAW  

 Welding current  

 Arc voltage  

 Travel speed  

 Size of electrode  

 Electrode stick out  

 Heat input rate  
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3.1.6.1 Welding Current:  

It controls the melting rate of the electrode and thereby the weld deposition 

rate. It also controls the depth of penetration. Too high a current causes 

excessive weld reinforcement, which is wasteful, and burn through in case of 

thinner plates or in badly fitted joints, which are not proper backing. Excessive 

current also produces too narrow bead and undercut, excessively low current 

gives an unstable arc and overlapping. SAW control panel is usually provided 

with an ammeter to monitor and control the welding current.  

 

3.1.6.2. Arc Voltage  

The arc voltage varies in direct proportion to the arc length. With the increase 

in arc length the arc voltage increases and thus more heat is available to melt 

the metal and the flux. However, increased arc length means more spread of 

the arc column; this leads to increase in weld width and volume of 

reinforcement while the depth of penetration decreases. The arc voltage 

varies with the welding current and wire diameter. 

 

3.1.6.3 Travel Speed:  

For a given combination of welding current and voltage, increase in welding 

speed results in lesser penetration, lesser weld reinforcement and lower heat 

input rate Excessively high travel speed, decreases fusion between the weld 

deposit and the parent metal, increases the tendencies for undercut , arc 

blow, porosity and irregular bead shape. As the speed decreases, penetration 

and reinforcement increases but too slow a speed result in poor penetration. 

Excessively high welding speed decreases the wetting action and increases 
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the probability of undercutting, arc blow, and weld porosity and uneven bead 

shapes. Excessively low speed also produces a convex hat shape beads that 

are subjected to cracking cause excessively melt through and produces a 

large weld puddle that flows around the arc resulting in rough bead, spatter 

and slag inclusions.  

 

3.1.6.4 Size of Electrode  

For a given welding current, a decrease of wire diameter results in increase in 

current density. This results in a weld with deeper penetration bue somewhat 

reduced width. The submerged arc welding process usually employs wires of 

2 to 5 mm diameter, thus for deeper penetration at low currents a wire 

diameter 2 to 3 mm is best suited. 

 

3.1.6.5 Electrode Stick out:  

It is also termed as electrode extension. It refers to the length of electrode 

between end of contact tube and the arc, which is subjected to resistance 

heating at the high current densities used in the process. The longer the stick 

out, the increase in deposition rate is accompanied by a decrease in 

penetration. Hence longer stick-out is avoided when deep penetration is 

desired.  

 

3.1.6.6. Heat Input Rate:  

The heat input rate is directly proportional to the current and voltage and  

inversely proportional to the travel speed, as the formula is given by  
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     V x A  
HIR=    --------------     

        S  
 

where HIR= heat input rate in j/mm  

V = Arc voltage  

A= welding current (amp)  

S= Arc travel speed in mm/sec  

For a given joint thickness, higher the heat input rate the lower is the cooling 

rate of the weld metal and heat affected zone of parent metal and vice versa. 

Heat input rate has an important bearing on the weld metal microstructure and 

the final microstructure of HAZ and thereby on the toughness.  

 

3.1.7 Submerged Arc Welding Benefits:  

 Extremely high deposition rates possible. 

 Sound welds are readily made (with good process design and control). 

 Deep weld penetration. 

 High speed welding of thin sheet steels at over 100 in/min (2.5 m/min) 

is possible. 

 Easily automated 

 Minimal welding fume or arc light is emitted. 

 Low operator skill required.  

 

3.1.8 Limitations of SAW  

 Limited to ferrous (steel or stainless steels) and some nickel based 

alloys. 

 Normally limited to the 1F, 1G, and 2F positions. 
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 Normally limited to long straight seams or rotated pipes or vessels. 

 Requires relatively troublesome flux handling systems. 

 Flux and slag residue can present a health & safety issue.  

 Requires inter-pass and post weld slag removal.  

 

3.1.9 Applications:  

SAW is ideally suited for longitudinal and circumferential butt and fillet welds. 

However, because of high fluidity of the weld pool, molten slag and loose flux 

layer, welding is generally carried out on butt joints in the flat position and fillet 

joints in both the flat and horizontal-vertical positions. For circumferential 

joints, the work piece is rotated under a fixed welding head with welding 

taking place in the flat position. Depending on material thickness, either 

single-pass, two-pass or multipass weld procedures can be carried out. There 

is virtually no restriction on the material thickness, provided a suitable joint 

preparation is adopted. Most commonly welded materials are carbon-

manganese steels, low alloy steels and stainless steels, although the process 

is capable of welding some non-ferrous materials with judicious choice of 

electrode filler wire and flux combinations.  

Major application in industry:  

 Used in manufacturing of ship and heavy structural parts.  

 Nowadays it is widely used in repairing of machine parts by depositing 

cladding and hard facing.  

 Fabrication of pipes, penstocks, pressure vessels, boiler, railroad, 

structure of railway coaches and locomotive.  

 Automotive, Aviation and nuclear industry.  

 For welding mild steel, medium & high tensile low alloy  
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3.2 ARTIFICIAL NEURAL NETWORK (ANN) 

 

3.2.1 Introduction 

It is often called as "Neural Network" (NN), is a mathematical model or 

computational model based on biological neural networks. It consists of an 

interconnected group of artificial neurons and processes information using a 

connectionist approach to computation. In most cases an ANN is an adaptive 

system that changes its structure based on external or internal information 

that flows through the network during the learning phase. It is used to find 

patterns in data.  

Neural networks are designed to incorporate key features of neurons in the 

brain and to process data in a manner analogous to the human brain. Much of 

the terminology used to describe and explain neural networks is borrowed 

from biology. Neural networks use a series of neurons in what is known as the 

hidden layer that apply nonlinear activation functions to approximate complex 

functions in the data. 

We will now turn to the biological basis for the processing element that is the 

neuron. Neurons, or nerve cells, are the basic units of communication in 

nervous systems. Like processing elements, neurons do not act alone. They 

collectively sense environmental change, integrate sensory inputs, and then 

activate different body parts that carry out responses. These tasks involve 

different classes of neurons, called sensory neurons, interneurons, and motor 

neurons.  

Sensory neurons are receptors that can detect specific stimuli, such as light 

energy, and relay them as signals to the brain and spinal cord. This is where 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Connectionism
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Adaptive_system
http://en.wikipedia.org/wiki/Adaptive_system
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interneurons integrate these signals and then influence other neurons in turn. 

Interneurons in the brain and spinal cord are the "information processors" of 

the nervous system. 

 Motor neurons relay information away from the interneurons to muscle cells 

or gland cells, which carry out responses. The neurons which will be 

discussed here are of the interneuron type. It has been estimated that there 

are about 100 billion interneurons (henceforth called neurons) in the brain. 

 

3.2.2 Basic Structure of Neuron 

 

 

Fig 3.4: Basic structure of a neuron 

A neuron, like any human cell, has a membrane that separates internal 

metabolic events from the environment and allows them to proceed in 

organized, controlled ways. It also has receptors that can alter the cell's 

activities by allowing molecules to go in and/or out of the cell. It also has a 

nucleus, which is contained within another membrane and holds the DNA, 

and other molecules that function in how, and which, instructions are read, 

modified, dispersed into the rest of the cell. The "rest of the cell" is known as 
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the cytoplasm, and is everything enclosed by the membrane, except for the 

nucleus.                              

A neuron contains many short slender extensions, called Dendrites, and a 

long cylindrical extension, called an Axon. Dendrites serve as the "input 

signals" for the neuron, receiving stimuli from other neurons. The number, 

length, branching, and synaptic activity of a neuron's dendrites depends upon 

its location and/or function and contributes to the vast information processing 

capacity of the brain.  

The singular axon serves as the "output signal" of the neuron by which 

messages are sent to other cells This "output signal" is known as a nerve 

impulse. Neurons are not physically connected to each other. They 

communicate via the exchange of the  neurotransmitters. Between an Axon 

terminal of one neuron, called the presynaptic neuron, and a Dendrite of 

another neuron, called the postsynaptic neuron, is a small gap known as a 

Synapse. 

 

3.2.3 The Processing Element of ANN 

A processing element is generally a simple device that receives a number of 

input signals that may or may not generate an output signal based upon those 

signals. For each input (xi) there is a relative weight(wi) associated with it 

such that the effective input to the processing element is the weighted total 

input(I). 
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The output(Y) is computed as a result of a transfer function (f) of the weighted 

input, or Y = f(I). Normally, the transfer function for a given processing 

element is fixed at the time that the network is constructed. So when one 

wants to change the output for a given input, the weights of the inputs are 

changed. This transfer function, also known as an input-output function, 

generally falls into one of three classes: Threshold, Linear, and sigmoidal 

 Threshold Units In threshold type processing elements; the weighted input is 

compared to an arbitrary threshold (T). This threshold value is often 0, which 

assumes that negatively valued inhibitory inputs are used. If the input is less 

than the threshold value, then the processing element does not fire and no 

output signal is generated.  

Linear Units A network that computes real-valued functions needs processing 

elements whose transfer functions produce real-valued outputs. The simplest 

such type is the linear unit whose output signal equals its weighted sum input, 

thus giving a real-valued output, albeit linear in nature.  

Sigmoidal Units the problem with linear type processing elements is that their 

transfer functions are not differentiable. Because of this fact, networks using 

linear type processing elements are difficult to train. To overcome the linear 

behaviour of networks using linear-threshold type transfer functions, smooth 

nonlinear transfer functions, which are continuous and differentiable 

everywhere, are often used. Of these, the sigmoidal type is most popular.  

The output of a sigmoidal unit asymptotically goes to 1 as the weighted sum 

of its inputs approaches positive infinity and to 0 as the weighted sum of its 

inputs approaches negative infinity. This function is defined as: f (x) = 1/(1 + 

e(-x)), where x is the net input to the unit.  
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Fig 3.5 summarizes the three classes of processing elements. The horizontal 

axis for each type represents the net input showing a higher weighted sum as 

you go from left to right. The vertical axis represents the activity of the output 

going from lower to higher as it goes away from the horizontal axis.  

 

Fig 3.5: The three basic classes of transfer functions 

 

3.2.4 Artificial Neural Networks Architectures 

Artificial Neural networks are mathematical entities that are modeled after 

existing biological neurons found in the brain. All the mathematical models are 

based on the basic block known as artificial neuron. A simple neuron is shown 

in fig 3.6 This is a neuron with a single R-element input vector is shown 

below. Here the individual element inputs are multiplied by weights and the 

weighted values are fed to the summing junction. Their sum is simply Wp, the 

dot product of the (single row) matrix W and the vector p.  

 

Fig 3.6. Simple neuron 
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The neuron has a bias b, which is summed with the weighted inputs to form 

the net input n. This sum, n, is the argument of the transfer function f. 

Introducing vector notations, Fig 3.6 can be rewritten in a more compact 

representation as seen in Fig 3.7 

 

Fig. 3.7. Simple neuron in vector notation. 

Here the input vector p is represented by the solid dark vertical bar at the left. 

The dimensions of p are shown below the symbol p in the figure as Rx1. 

Thus, p is a vector of R input elements. These inputs post multiply the single 

row, R column matrix W. As before, a constant 1 enters the neuron as an 

input and is multiplied by a scalar bias b. The net input to the transfer function 

f is n, the sum of the bias b and the product Wp. This sum is passed to the 

transfer function f to get the neuron's output a, which in this case is a scalar. 

Note that if we had more than one neuron, the network output would be a 

vector. A one-layer network with R input elements and S neurons is shown in 

Fig 3.9 In this network, each element of the input vector p is connected to 

each neuron input through the weight matrix W. The ith neuron has a summer 

that gathers its weighted inputs and bias to form its own scalar output n(i). 
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                                                Fig. 3.8. One-layer network. 

The various n (i) taken together form an S-element net input vector n. Finally, 

the neuron layer outputs form a column vector a.  

Note that it is common for the number of inputs to a layer to be different from 

the number of neurons (i.e., R≠S). A layer is not constrained to have the 

number of its inputs equal to the number of its neurons.  

You can create a single (composite) layer of neurons having different transfer 

functions simply by putting two of the networks shown earlier in parallel. Both 

networks would have the same inputs, and each network would create some 

of the outputs.  

The input vector elements enter the network through the weight matrix W. 

 

The S neuron R input one-layer network also can be drawn in abbreviated 

notation.  
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Fig.3.9. One-layer network in vector notation. 

Here p is an R length input vector, W is an S x R matrix, and a and b are S 

length vectors. As defined previously, the neuron layer includes the weight 

matrix, the multiplication operations, the bias vector b, the summer, and the 

transfer function boxes.  

A network can have several layers. Each layer has a weight matrix W, a bias 

vector b, and an output vector a. To distinguish between the weight matrices, 

output vectors, etc., for each of these layers in our figures, we append the 

number of the layer as a superscript to the variable of interest. You can see 

the use of this layer notation in the three-layer network shown below, and in 

the equations at the bottom of the Fig 3.10 
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Fig 3.10. Multi-layer network. 

The network shown above has R
1 

inputs, S
1 

neurons in the first layer, S
2 

neurons in the second layer, etc. It is common for different layers to have 

different numbers of neurons. A constant input 1 is fed to the biases for each 

neuron. Note that the outputs of each intermediate layer are the inputs to the 

following layer. Thus layer 2 can be analyzed as a one-layer network with S
1 

inputs, S
2 

neurons, and an S
2
x S

1 
weight matrix W

2
. The input to layer 2 is a

1
; 

the output is a
2
. Now that we have identified all the vectors and matrices of 

layer 2, we can treat it as a single-layer network on its own. This approach 

can be taken with any layer of the network.  

The layers of a multilayer network play different roles. A layer that produces 

the network output is called an output layer. All other layers are called hidden 

layers. The three-layer network shown earlier has one output layer (layer 3) 

and two hidden layers (layer 1 and layer 2). 
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The same three-layer network discussed previously also can be drawn using 

our abbreviated notation.  

 

Fig.3.11. Multi-layer network in vector notation. 

Multiple-layer networks are quite powerful. For instance, a network of two 

layers, where the first layer is sigmoid and the second layer is linear, can be 

trained to approximate any function (with a finite number of discontinuities) 

arbitrarily well. Here we assume that the output of the third layer, a
3
, is the 

network output of interest, and we have labelled this output as y. We will use 

this notation to specify the output of multilayer networks.  

The previous networks considered are Feed forward in the sense of the flow 

of information through the network.  
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3.3 RESPONSE SURFACE METHODOLOGY (RSM): 

 

3.3.1 Introduction: 

Response surface methodology (RSM) is a collection of statistical and 

mathematical techniques useful for developing, improving, and optimizing 

process. It also has important application in the design, development, and 

formulation of new products, as well as in the improvement of existing product 

designs. The most extensive application of RSM are in the industrial world, 

particularly in situations where several input variables potentially influence 

some performance measure or quality characteristic of the product or 

process. This performance measure or quality characteristic is called 

Response. It is typically measured on a continuous scale, although attribute 

responses, ranks and sensory responses are not unusual. Most of the real 

world  application of RSM will involve more than one response. The input 

variables are sometimes called independent variables and they are subject to 

the control of the engineer or scientist, at least for the purpose of a test or an 

experiment. 

3.3.2 Central Composite Designs (CCD) 

A Box-Wilson Central Composite Design commonly called ‘a central 

composite design,' contains an imbedded factorial or fractional factorial design 

with centre points that is augmented with a group of `star points' that allow 

estimation of curvature. If the distance from the centre of the design space to 

a factorial point is ±1 unit for each factor, the distance from the centre of the 

design space to a star point is ±  with | | > 1. The precise value of  
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depends on certain properties desired for the design and on the number of 

factors involved.  

Similarly, the number of centre point runs the design is to contain also 

depends on certain properties required for the design. 

 

Fig 3.12:- Generation of a Central Composite Design for two factors 

A central composite design always contains twice as many star points as 

there are factors in the design. The star points represent new extreme values 

(low and high) for each factor in the design. Table3.2 summarizes the 

properties of the three varieties of central composite designs. Fig 3.12 

illustrates the relationships among these varieties. 

Central 

Composite  

 Design Type 

Terminology Comments 

Circumscribed CCC 

CCC designs are the original form of the central 

composite design. The star points are at some 

distance from the center based on the 

properties desired for the design and the 
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number of factors in the design. The star points 

establish new extremes for the low and high 

settings for all factors. Figure 5 illustrates a CCC 

design. These designs have circular, spherical, 

or hyper spherical symmetry and require 5 

levels for each factor. Augmenting an existing 

factorial or resolution V fractional factorial 

design with star points can produce this design. 

Inscribed CCI 

For those situations in which the limits specified 

for factor settings are truly limits, the CCI design 

uses the factor settings as the star points and 

creates a factorial or fractional factorial design 

within those limits (in other words, a CCI design 

is a scaled down CCC design with each factor 

level of the CCC design divided by to generate 

the CCI design). This design also requires 5 

levels of each factor.  

Face Centred CCF 

In this design the star points are at the center of 

each face of the factorial space, so = ± 1. This 

variety requires 3 levels of each factor. 

Augmenting an existing factorial or resolution V 

design with appropriate star points can also 

produce this design.  

 

TABLE:3.2   Central Composite Designs 



 45 
 

3.3.2.1 Comparison of the 3 central composite designs: 

The diagrams in fig:-3.13 illustrate the three types of central composite 

designs for two factors. Note that the CCC explores the largest process space 

and the CCI explores the smallest process space. Both the CCC and CCI are 

rotatable designs, but the CCF is not. 

 

 

Fig 3.13 Comparison of the Three Types of Central Composite Designs 

 

http://www.itl.nist.gov/div898/handbook/pri/section7/pri7.htm#Rotatability
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3.3.3 Plan of investigation. 

 For accomplishment of the desired aim, the research work was 

planned to be carried out in the following steps: 

 Identifying the important process control variables. 

 Selection of the useful limits of the welding parameters,viz. open-circuit 

voltage (V), current (A), travelling speed (S), and nozzle to plate 

distance (N). 

 Developing the design matrix. 

 Conducting the experiment as per design matrix. 

 Recording the responses viz. penetration(P),bead width (w) & 

reinforcement height (H). 

 Development of mathematical models. 

 Calculating the co-efficient of polynomial. 

 Checking adequacy of the models developed. 

 Testing the significance of regression co-efficient recalculating the 

value of significant coefficient and arriving at the final mathematical 

models. 

 Presenting the main effects and the significant interaction in 2D and 3D 

(contour) graphical form. 

 Prediction of results using feed forward back propogation. 

 Analysis of results and conclusion. 

 

3.3.3.1 Identifying the important process control variables: 

To predict weld bead dimensions and shape relationships, welding variables 

were identified to develop mathematical models. These included 

independently controllable welding process parameters like arc voltage (V), 

current /wire feed rate (A), travelling speed/welding speed (S) and nozzle-to-

plate distance (N). The weld bead geometry and shape relationship chosen 

for this study were penetration (p), weld bead width (w), reinforcement height 
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(h). Therefore it was decided to take all these parameters in to account to 

design the experiments. Since the number of variables is less, and in order 

to determine more accurate relationships of the input–output variables, a full 

factorial design is chosen as the factorial portion of CCD. In general, a is 

chosen between 1 and K1/2, where K is the number of input parameters. The 

value of a is selected as 1.0 in the present investigation for the following 

reasons: 

1. It makes the CCD possible by setting each input parameter at its three 

levels only. 

2. If the value of a is large, the star points will be too far from the centre point, 

resulting in an improper design of the experiments. 

As a rule of thumb, 3–5 runs are taken at the centre point. As the value of a is 

selected as 1.0 (i.e. the lower value of its range), the number of runs at the 

centre point is chosen as 3, in order to stabilize the prediction variance 

 

3.3.3.2 Selection of the useful limits of the welding parameter: 

Trials runs were carried out by varying one of the process parameters whilst 

keeping the rest of them at constant values. the working range was decided 

upon by inspecting the bead for smooth appearance and the absences of any 

visible defects. The upper limit of a factor was coded as +1 and lower limit as 

 -1.          
 
 

  Xi =   2 [ 2X – ( Xmax + Xmin )] 
       ( Xmax  - Xmin ) 
 
 

Where Xi = required coded value of a variable X 
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            X = any value of the variable from Xmax to Xmin 

            Xmax = upper level of the variable 

           Xmin = lower level of the variable 

  i      = number of parameter   

The selected process parameters with their limits, units and notation are given 

in table3.3 

 

      Level 

S.No. Parameters Units Notation High (+1) Middle( 0 ) Low(-1) 

1 Current  Amp A 450 400 300 

2 Voltage  volts V 28 24 22 

3 Travelling Speed mm/sec S 10 8.2 6 

4 Nozzle to plate distance mm N 35 30 25 
 

Table 3.3 Process control parameters and their Level 
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3.3.3.3 Developing the design matrix: 

Input parameters Weld 
no. 

Trial 
no. V A (F) S N 

1 10 -1 -1 -1 -1 

2 12 .+1 -1 -1 -1 

3 5 -1 .+1 -1 -1 

4 23 .+1 .+1 -1 -1 

5 14 -1 -1 .+1 -1 

6 19 .+1 -1 .+1 -1 

7 11 -1 .+1 .+1 -1 

8 25 .+1 .+1 .+1 -1 

9 2 -1 -1 -1 .+1 

10 24 .+1 -1 -1 .+1 

11 13 -1 .+1 -1 .+1 

12 22 .+1 .+1 -1 .+1 

13 7 -1 -1 .+1 .+1 

14 20 .+1 -1 .+1 .+1 

15 1 -1 .+1 .+1 .+1 
 

16 21 .+1 .+1 .+1 .+1 

17 15 0 0 0 0 

18 6 -1 0 0 0 

19 27 .+1 0 0 0 

20 26 0 -1 0 0 

21 4 0 .+1 0 0 

22 17 0 0 0 0 

23 9 0 0 -1 0 

24 18 0 0 .+1 0 

25 3 0 0 -1 0 

26 16 0 0 0 .+1 

27 8 0 0 0 0 
 

Table 3.4 Design matrix  

The design matrix, shown in table 3.4, is a central composite design 

consisting of 27 sets of coded condition.  

Salient features of Design Matrix table are: 
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Trials indicate the sequence number of run under consideration. The signs +1 

and -1 as already indicated refer to the upper and lower levels of that 

parameter under which they are recorded. 

3.3.3.4 Conducting the experiments as per designed matrix 

3.3.3.4.1 Welding Equipment  

Machine used in Welding Laboratory, Delhi College of Engineering, Delhi.  

Manufacture by: -- Quality Engineer (Baroda Pvt. Ltd.), A/18, Gujarat Estate,  

                                Dharamsingh Desai Marg, Chhani Road Baroda -390002  

Machine Model: -- QSW800  

  

Fig 3.14 Picture of SAW machine used for experimental work courtesy Quality Engineers. 

Supply voltage: -- 380/440     Phase Three  

Frequency: -- 50 Hz                       Operating voltage: -- 26- 60 Volts 

Range of Welding: -- 800 Amp. O.C.V. Of Rectifier: -- 10-52 Volts  

Maximum Welding Current at 100% duty cycle: -- 900 Amp  
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3.3.3.4.2 Base Metal  

For carrying out research work , test specimen were prepared from 12 mm 

thickness Mild steel plate. Dimension of each plate were 254x76x12mm. 

Composition of the base material as supplied by the supplier was as follows:  

    C   S   Mn   S   Cr  Ni 

0.102%  0.179%        0.466%        0.0705%  0.036          0.022 

 

3.3.3.4.3 Consumables:  

3.3.3.4.3.1 Wire:  

3.2 mm diameter copper coated mild steel wire manufactured by (ESAB INDA 

LTD) was used specification of filler wire used was (AWS-A5.17 EL-8).  

The chemical composition of filler wire was:  

C   Mn    Si  

0.10%  0.45%    0.02%  

3.3.3.4.2 Flux 

The study was carried out by using available flux i.e. an agglomerated Flux  

Manufactured by ESAB INDIA LTD.  

The specification of the flux was:  

Automelt Gr.II, Coding - AWS / SFA 5.17  

F7AZ - EL8  

F7PZ - EL8  

The Chemical Composition was:  

C   Mn   Sn  

0.08%  1.00%  0.25% 
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3.3.3.4.3 Experimental Procedure The experiment has been performed on 

constant voltage fully automatic submerged arc welding machine of 800 A, 

380/440/3-phase .50 H z rectifier type power source, 3.2mm copper coated 

mild steel electrode . Welding was carried out in single pass by using bead-

on-plate technique. Weld beads were deposited as per condition dicted by the 

design matrix. In 27 trials, beads were laid on 27 plates. 

Two specimens of 16mm width were cut transverse to the weld bead from 

each welded plates. These specimens were ground, polished and etched with 

2% nital (98% alcohol + 2% of nitric acid). All specimens of first set were 

macro etched for reveal the bead profile and some specimens of second set 

were micro etched for reveal microstructure. 

Weld bead profiles were traced by using an optical profile projector/Image 

analysis and bead dimensions viz., penetration (p), width (w) and 

reinforcement (h) were measured.  The average bead dimensions and shape 

relationships were given in table3.5 

   

 

   

Fig 3.15 Picture of Bead shape from experiments conducted on SAW 
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3.3.3.5 Recording the responses: 

Input parameters Responses Weld 
no. 

Trial 
no. V A (F) S N Bead Height Bead Width Penetration

1 10 -1 -1 -1 -1 1.5 11.1 3.2 

2 12 1 -1 -1 -1 1.9 14.1 5.1 

3 5 -1 1 -1 -1 3.1 11.1 3.7 

4 23 1 1 -1 -1 2.2 13 7.2 

5 14 -1 -1 1 -1 1.2 10.7 2.4 

6 19 1 -1 1 -1 3.1 10.8 2.6 

7 11 -1 1 1 -1 2.8 10.6 3.7 

8 25 1 1 1 -1 1.8 11.4 5.1 

9 2 -1 -1 -1 1 2.8 9.5 2.4 

10 24 1 -1 -1 1 1.8 12.8 3.7 

11 13 -1 1 -1 1 5.7 9.5 3.2 

12 22 1 1 -1 1 3.5 12.8 6.2 

13 7 -1 -1 1 1 2.2 9 3.2 

14 20 1 -1 1 1 2.5 10.1 3 

15 1 -1 1 1 1 4.8 9.2 4 

16 21 1 1 1 1 2.5 9 5.6 

17 15 0 0 0 0 2.8 10.6 4 

18 6 -1 0 0 0 3 8.4 2 

19 27 1 0 0 0 2.2 11.1 3.4 

20 26 0 -1 0 0 1.2 10.6 3.7 

21 4 0 1 0 0 3.8 10.7 7.6 

22 17 0 0 0 0 2.8 10.7 3.7 

23 9 0 0 -1 0 3.1 11.7 5 

24 18 0 0 1 0 1.9 11.3 3.2 

25 3 0 0 -1 0 1.2 10.2 4.8 

26 16 0 0 0 1 4.8 10.7 3.4 

27 8 0 0 0 0 2.6 10.8 3.4 
 

Table 3.5 Observed values of bead parameters 
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4.0 DEVELOPMENT OF MATHEMATICAL MODELS 

     

4.1 Introduction 

Mathematical models can be proposed as the basis for a control system for 

the SAW process to predict particular weld bead geometry and to establish 

the interrelationship between weld process parameters to weld bead 

geometry. The experimental data were used to develop nonlinear models, and 

analysis of the models was carried out through ANOVA and surface plots. 

Minitab15 software was used for this purpose. 

 

4.2 Development of a mathematical model 

The response function representing any of the weld-bead dimensions can be 

expressed as : 

Y. = ƒ(V, A, S, N)    (4.1) 

where,   Y= Weld bead response 

   V= Arc voltage 

   A= Current 

    S= Welding speed 

    N= Nozzle-to-plate distance. 

 The relationship selected being a second-degree response surface 

expressed as follows: 

Y=b0+b1V+b2A+b3S+b4N+b11V2+b22A2+b33S2+b44N2+b12VA+b13VS 

       +b14VN+b23AS+b24AN+b34SN.  (4.2) 

Where b0, is constant and b1, b2, b3, b4, b11, b22, b33, b44,b12, b13, b14,  b23, b24, b34 

are co-efficient of the model. 
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4.3 Evaluation of the co-efficient of the model 

The values of the coefficients of the polynomial of equation (4.1) were 

calculated by the regression method. The Minitab (15.0 version) software 

package was used to calculate the values of these coefficients for different 

responses. 

4.3.1 Response: Bead Height 

Bead height was expressed as a non–linear function of the input process 

parameters (in coded form) as follow as : 

Bead Height = 2.83 - 0.311 V + 0.67 A - 0.11 S + 0.52 N - 0.5 V*A+ 0.16 V*S  

                         - 0.35 V*N - 0.23 A*S + 0.31 A*N - 0.13 S*N - 0.27 V2 

                                     - 0.37A2 - 0.83 S2 + 1.36 N2    (4.3) 

 

4.3.2 Response: Bead Width 

Bead width was expressed as a non–linear function of the input process 

parameters (in coded form) as follow as : 

Bead Width = 10.6 + 0.89 V - 0.08 A  - 0.68 S - 0.69 N - 0.11 V*A 

                      - 0.61 V*S + 0.11 V*N + 0.04 A*S - 0.02 A*N - 0.09 S*N- 0.84 V2 

                      + 0.06 A2 + 0.24 S2 + 0.83 N2      (4.4) 

 

4.3.2 Response: Penetration 

Penetration was expressed as a non–linear function of the input process 

parameters (in coded form) as follow as : 

Penetration = 3.87 + 0.78 V + 0.94 A - 0.4 S - 0.1 N + 0.39 V*A- 0.42 V*S  

-0.08 V*N + 0.08 A*S + 0.02 A*N + 0.36 S*N - 1.26 V2  

+ 1.69  A2 + 0.27 S2 - 0.55 N2    ( 4.5) 
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Estimated value of the coefficients of the model is shown in table 4.1 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1 Estimated value of the coefficients of the model 

 

 

 

 

 

 

 

 

 

 

S.No. Coefficient Reinforcement 
Height (H) 

Width 
(W) 

Penetration 
(P) 

1 b0 2.83 10.63 3.87 
2 b1 -0.31 0.89 0.78 

3 b2 0.67 -0.08 0.94 

4 b3 -0.11 -0.68 -0.40 

5 b4 0.52 -0.69 -0.10 

6 b11 -0.27 -0.84 -1.26 

7 b22 -0.37 0.06 1.69 

8 b33 -0.83 0.24 0.27 

9 b44 1.36 0.83 -0.55 

10 b12 -0.50 -0.11 0.39 

11 b13 0.16 -0.61 -0.42 

12 b14 -0.35 0.11 -0.08 

13 b23 -0.23 0.04 0.08 

14 b24 0.31 -0.02 0.02 

15 b34 -0.13 -0.09 0.36 
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4.4 Checking adequacy of the model  

The analysis of variance (ANOVA) technique was used to check the 

adequacy of the developed models. As per this technique, 

(a) The F-ratio of the developed model is calculated and is compared with the 

standard tabulated value of F-ratio for a specific level of confidence , 

(b) If calculated value of F-ratio does not exceed the tabulated value, then 

with the corresponding confidence probability the model may be 

considered adequate. 

         The F-ratio of the model is defined as the ratio of variation between the 

samples (MSC) to the variation within the samples (MSE). Therefore: 

Fmodel = Variation between the samples / Variation within the samples. 

 

Table 4.2  General ANOVA table. 

where  

SSC = Sum of squares between columns 

  SSR = Sum of squares between rows 

  SSE = Sum of squares due to error 

  SST = Total sum of squares 

  MSC = Mean square between columns 

  MSR = Mean square between rows 

  MSE = Mean square error 

  F = Ratio of MSC to MSE or Ratio of MSC to MSE   

Source of 
variation 

Sum of 
squares 

Degree 
of 

Freedom

Mean squares Variance 
ratio       

(f-ratio) 
Between 
Columns SSC (c-1) MSC = SSC/(r-1) MSC/MSE

Between Rows SSR (r-1) MSR = SSR/(r-1) MSR/MSE
Residual or error SSE (c-1) (r-1) MSE= SSE/(c-1) (r-1)   

Total SST (n-1)     
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4.4.1 ANOVA for Response Surface Quadratic Model  

4.4.1.1. Response: - Bead Height 

Source 
  

Sum of 
Squares 

df 
  

Mean 
Square

F 
Value 

p-value 
Prob > F  

Model 28.82 14 2.06 7.29 0.0007 
  A-V 1.74 1 1.74 6.17 0.0287 
  B-A 8.00 1 8.00 28.34 0.0002 
  C-S 0.21 1 0.21 0.73 0.4087 
  D-N 4.35 1 4.35 15.40 0.002 
  AB 4.00 1 4.00 14.17 0.0027 
  AC 0.42 1 0.42 1.50 0.2447 
  AD 1.96 1 1.96 6.94 0.0218 
  BC 0.81 1 0.81 2.87 0.1161 
  BD 1.56 1 1.56 5.53 0.0365 
  CD 0.25 1 0.25 0.89 0.3653 
  A^2 0.18 1 0.18 0.62 0.4449 
  B^2 0.33 1 0.33 1.17 0.3014 
  C^2 1.98 1 1.98 7.01 0.0213 
  D^2 3.01 1 3.01 10.65 0.0068 

 Significant 
 
  
  
  
  
  
  
  
  
  
  
  
  
  

Residual 3.39 12 0.28       
Lack of 
Fit 1.56 9 0.17 0.28 0.9384 

Not 
Significant 

Pure 
Error 1.83 3 0.61       
 Total 32.21 26        

 

Table 4.3   ANOVA table for Bead height. 

 

The Model F-value of 7.29 implies the model is significant.  There is only a 

0.07% chance that a "Model F-Value" this large could occur due to noise. 

Values of "Prob > F" less than 0.0500 indicate model terms are significant. In 

this case A, B, D, AB, AD, BD, C2, D2 are significant model terms. Values 

greater than 0.1000 indicate the model terms are not significant.The "Lack of 

Fit F-value" of 0.28 implies the Lack of Fit is not significant relative to the pure 

error.Non-significant lack of fit is good -- we want the model to fit. 
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4.4.1.2. Response: - Bead Width 

 

  
Source 

Sum of 
Squares 

  
df 

Mean 
Square

F 
Value 

p-value 
Prob > F  

Model 39.43 14 2.82 6.52 0.0012 Significant 
  A-V 14.22 1 14.22 32.92 < 0.0001 
  B-A 0.11 1 0.11 0.25 0.6247 
  C-S 8.53 1 8.53 19.74 0.0008 
  D-N 7.61 1 7.61 17.62 0.0012 
  AB 0.18 1 0.18 0.42 0.5301 
  AC 5.88 1 5.88 13.61 0.0031 
  AD 0.18 1 0.18 0.42 0.5301 
  BC 0.03 1 0.03 0.07 0.7946 
  BD 0.01 1 0.01 0.01 0.9110 
  CD 0.14 1 0.14 0.33 0.5788 
  A^2 1.68 1 1.68 3.89 0.0722 
  B^2 0.01 1 0.01 0.02 0.8927 
  C^2 0.16 1 0.16 0.38 0.5483 
  D^2 1.12 1 1.12 2.59 0.1336 

 

Residual 5.18 12 0.43       
Lack of Fit 4.04 9 0.45 1.18 0.4994 Not Significant 
Pure Error 1.15 3 0.38       
Total 44.61 26        

 
Table 4.4    ANOVA table for Bead width. 

 

The Model F-value of 6.52 implies the model is significant.  There is only a 

0.12% chance that a "Model F-Value" this large could occur due to noise. 

Values of "Prob > F" less than 0.0500 indicate model terms are significant. In 

this case A, C, D, AC are significant model terms. Values greater than 0.1000 

indicate the model terms are not significant. The "Lack of Fit F-value" of 1.18 

implies the Lack of Fit is not significant relative to the pure error. Non-

significant lack of fit is good -- we want the model to fit 
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4.4.1.3. Response: - Penetration 

  
Source 

Sum of 
Squares 

  
df 

Mean 
Square

F 
Value 

p-value 
Prob > F  

Model 47.35 14 3.38 11.68 < 0.0001 
  A-V 11.05 1 11.05 38.14 < 0.0001 
  B-A 16.06 1 16.06 55.44 < 0.0001 
  C-S 2.96 1 2.96 10.21 0.0077 
  D-N 0.15 1 0.15 0.51 0.4889 
  AB 2.48 1 2.48 8.57 0.0127 
  AC 2.81 1 2.81 9.69 0.0090 
  AD 0.11 1 0.11 0.36 0.5571 
  BC 0.11 1 0.11 0.36 0.5571 
  BD 0.01 1 0.01 0.02 0.8915 
  CD 2.03 1 2.03 7.01 0.0213 
  A^2 3.75 1 3.75 12.96 0.0036 
  B^2 6.79 1 6.79 23.45 0.0004 
  C^2 0.21 1 0.21 0.74 0.4067 
  D^2 0.49 1 0.49 1.68 0.2191 

Significant 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Residual 3.48 12 0.29       

Lack of Fit 3.28 9 0.36 1.04 0.5248 
Not 

Significant 
Pure Error 0.20 3 0.07       
 Total 50.82 26        

 

Table 4.5   ANOVA table for Penetration. 

 

The Model F-value of 11.68 implies the model is significant.  There is only 

a 0.01% chance that a "Model F-Value" this large could occur due to noise. 

Values of "Prob > F" less than 0.0500 indicate model terms are significant.   

In this case A, B, C, AB, AC, CD, A2, B2 are significant model terms.   

Values greater than 0.1000 indicate the model terms are not significant.   

The "Lack of Fit F-value" of 1.04 implies the Lack of Fit is not significant 

relative to the pure error. Non-significant lack of fit is good -- we want the 

model to fit. 
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4.4.2 Calculation of Variance for testing the adequacy of the models : 

 

First-order 
terms 

Second-order 
terms Lack of fit Error term 

Bead 
geometry 

parameters 
(S.S) (df) (S.S) (df) (S.S) (df) (S.S) (df) 

F-ratio Whether the 
model is 
adequate  

Height 16.10 4 12.73 10 1.6 9 1.8 3 0.28 Adequate 

Width 30.20 4 9.22 10 4.04 9 1.1 3 1.18 Adequate 

Penetration 30.53 4 16.82 10 3.27 9 0.2 3 5.46 Adequate 
 

Table 4.6   Results of calculations ANOVA table  

 

Table 4.6 shows the results of the calculation of variance for testing the 

adequacy of the models. The different terms used in table are as follows: The 

term ‘S.S’ stands for the sum of squares. The term ‘df’ indicates degree of 

freedom. F-ratio(10, 3,0.05) = 8.78. 

 

4.5 Development of the final models. 

 The models developed to predict the weld bead geometry relationship 

are as follows: 

 

Bead Height = 2.83 - 0.311 V + 0.67 A + 0.52 N - 0.5 V*A- 0.35 V*N  

  + 0.31 A*N - 0.83 S2 + 1.36 N2.     ( 4.6) 

 

Bead Width  = 10.6 + 0.89 V - 0.68 S - 0.69N - 0.61 V*S.  ( 4.7) 

 

Penetration  = 3.87 + 0.78 V + 0.94 A - 0.4 S + 0.39 V*A- 0.42 V*S + 0.36 S*N  

     - 1.26 V2 + 1.69  A2 .     ( 4.8) 
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4.6 Testing of the models 

The models were also tested for some test cases (table 4.6). Seven cases 

were generated, at random, by considering different combinations of the input 

variables (lying within their respective ranges), and for each combination the 

outputs were determined experimentally. The results are shown in table 4.7 . 

The model-predicted permeability values were compared with their respective 

experimental values (Fig. 4.1(a, b & c)).The best –fit line of these points was 

found to be close to the ideal y=x line. This indicate that the model is able to 

make the predictions accurately. 

 

Table 4.7   Input – output data of the test cases. 

 

 

Weld 
No. 

V 
(volts) 

A 
(amp) 

S 
(mm/sec)

N 
(mm)   

Bead 
Height 

Bead 
Width Penetration

Actual 3.2 11.1 3.8 
Predicted 3.7 10.7 4.0 

3 
  
  

22 
  
  

450 
  
  

6 
  
  

25 
  
  Error % 14.41 3.60 5.26 

Actual 3.2 10.8 2.7 
Predicted 3.0 10.9 2.5 

6 
  
  

28 
  
  

300 
  
  

10.7 
  
  

25 
  
  Error % 5.66 -0.79 7.41 

Actual 2.7 9.5 2.5 
Predicted 3.1 9.1 2.8 

9 
  
  

22 
  
  

300 
  
  

6 
  
  

35 
  
  Error % 13.37 4.26 12.00 

Actual 2.7 10.6 4.5 
Predicted 2.8 10.6 4.1 

17 
  
  

24 
  
  

400 
  
  

8.3 
  
  

30 
  
  Error % 4.81 0.00 8.89 

Actual 3.7 10.7 7.4 
Predicted 3.5 10.6 7.1 

21 
  
  

24 
  
  

450 
  
  

8.3 
  
  

30 
  
  Error % 5.41 0.93 4.05 

Actual 2.7 10.7 3.8 
Predicted 2.8 10.6 3.9 

22 
  
  

24 
  
  

400 
  
  

8.3 
  
  

30 
  
  Error % 4.81 0.93 1.84 

Actual 4.7 10.2 3.5 
Predicted 4.7 9.9 3.8 

26 
  
  

24 
  
  

400 
  
  

8.3 
  
  

35 
  
  Error % 0.21 2.84 8.57 
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Fig 4.1 (a) 
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Fig 4.1 (c) 

Fig 4.1 Comparison of Actual vs. Predicted values of  test cases 
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5.0 RESULTS AND DISCUSSIONS 

 

5.1 Direct effects of process parameters 

It is observed from fig. 5.1 indicates that penetration (P) and bead width (W) 

increase, but bead height  (H) decreases with increase in voltage (V). These 

effects are due to the following reason: the increase in voltage (V) results in 

increase in the arc length, arc voltage and heat input, but it has little influence 

on the wire fusion speed. The increase in the heat input results in increase in 

penetration (P). The increase in the arc length results in the spreading of arc 

cone at its base which leads to an increase in bead width (W). The marginal 

increase in the heat input and the metal deposition rate are utilized for 

increasing the value of P and so the bead height H decreases with increase in 

voltage (V). 
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Fig. 5.1 Effect of voltage on Bead parameters. 
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Fig. 5.2 indicates that penetration (P) and bead height (H) increases with 

increases in current (A). The value of bead width (W) remains unaltered by 

the increase of current (A). These effects are due to the following reason: with 

increase in current (A), heat input per unit time and the weight of wire fused 

and deposited per unit time increases. Therefore the size of the weld pool 

increases. Hence penetration (P) and bead height (H) increases. However 

there is no change in the cross-section of the arc cone and so the value of 

bead height (H) is unaltered by current (A).  
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Fig. 5.2  Effect of Current on Bead parameters. 

 

From fig. 5.3 it is noted that all the factors viz. penetration (P), bead width (W) 

and bead height (H) decreases with increase in welding speed (S). These 

effects are due to the welding torch travelling at high speed over the base 

metal when S is increased. This increase in torch speed leads to lesser metal 

deposition rate on the bead. Also the increase in welding speed (S) reduces 
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the heat input and hence the weight of base metal melted. Because of less 

heat input and a lesser metal deposition rate, the size of weld pool reduces 

and hence all of the bead factors reduce with increase in welding speed (S). 
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Fig 5.3 Effect of Travelling sped on Bead parameters. 

 

From fig. 5.4, it is evident that as the nozzle-to-plate distance (N) increases, 

penetration (P) and bead width (W) reduce but bead height (H) increases. 

These effects are due to the following: the welding current and heat input 

decrease with increase in N. Because of the reduced heat input the value of P 

and W reduce but the metal fusion rate increases at higher value of N 

because of the Joule heating effect. Hence H increases with increase in N. As 

both P and W decrease with increase in N, the area of penetration. 
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Fig 5.4 Effect of Nozzle to plate distance on Bead parameters. 

 

5.2 Interaction effects of process parameters. 

 

5.2.1. Interaction effect of Voltage and Current on Penetration. 
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Fig 5.5 Interaction effect of Voltage and Current on Penetration. 
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Fig. 5.5 indicates that the penetration (P) increases with increase in current 

(A). It also increases with increase in voltage (V). This is because both V and 

F have positive effects on P. Hence the increasing trend of P with increase 
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Fig 5.6 Surface & contour plot showing interaction effect of V and C on P. 

in V gradually decreases with decrease in A. These effects are more clear 

from fig. 5.6, which shows the contour graph of P. From this graph it is noted 

that P is maximum when A is at 450 amps. Whilst V is between the 25 v and 

27 v but increases further with further increase in V.  

 

5.2.2. Interaction effect of Voltage and Welding speed on Penetration. 

 It is evident from fig. 5.7 that penetration P increases with increase in voltage 

V, whereas it decreases with increase in welding speed S. These effects are 

due to V having a positive effect but S having a negative effect on P. Hence 

the increasing trend of P decreases with increase in S. These effects are  
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Fig 5.7 Interaction effect of Voltage and Welding speed on Penetration 

further seen from fig. 5.8, which is the contour graph of P. From this graph, it 

is clear that P is maximum when S is at 6mm/sec with V is at 28v. 
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Fig 5.8 Surface & contour plot showing interaction effect of V and S on P. 
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5.2.3. Interaction effect of Voltage and Welding speed on Bead width.  

Fig. 5.9 shows that the bead width (W) increases with increase in V. This 

increasing trend of W with increase in V gradually decreases with increase in 

S. This is because V has a positive effect whereas S has a negative effect on 

W and so the increasing trend of W with increase in V decreases with 

increase in S.  
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Fig 5.9 Interaction effect of Voltage and Welding speed on Bead width 

 

These effects are further clarified in Fig. 5.10, which shows the contour graph 

of W. From this graph, it is noted that W is high when V is at 28 v with S is at 

6 mm/sec. 
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Fig 5.10 Surface & contour plot showing interaction effect of V and S on W. 

 

5.2.4. Interaction effect of Current and Welding speed on Bead height. 

It is apparent from fig. 5.11 that the bead height H increases with increase in 

the current A, but it decreases with increase in the welding speed S. These 

effects are due to A having a positive effect but S having a negative effect on 

H. Thus the increasing trend of H with increase in A decreases with increase 

in S. The contour graph of H shown in Fig. 5.12 also shows the same trend in 

which maximum value of R is obtained when A is at 450 amps with S at 6 

mm/sec. 
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Fig 5.11 Interaction effect of Current and Welding speed on Bead height. 
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Fig 5.12 Surface & contour plot showing interaction effect of A and S on H. 
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5.2.5. Interaction effect of Current and Nozzle-to-plate distance on Bead 

height. 

Fig. 5.13 indicates that the bead height (H) generally increases with increase 

in the current (A). It also increases with increase in the nozzle-to-plate 

distance N. The positive effects of both A and N are the reasons for the above 

effects on H.  
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Fig. 513 Interaction effect of Current and Nozzle-to-plate distance on Bead height. 

The contour graph of H shown in fig. 5.14 shows the same trend in which 

maximum value of H is obtained when A is at 450 amps and N is at 35mm. 
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Fig 5.14 Surface & contour plot showing interaction effect of A and N on H. 
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6.0 MODELLING USING ARTIFICIAL NEURAL NETWORK (ANN). 

 

6.1  Artificial Neural Network (ANN) 

A neural network is an adaptable system that can learn relationships through 

repeated presentation of data and is capable of generalising to new, 

previously unseen data. If a network is to be of any use, there must be inputs 

(which carry the values of variables of interest in the outside world) and 

outputs (which form predictions, or control signals). Inputs and outputs 

correspond to sensory and motor nerves such as those coming from the eyes 

and leading to the hands. However, there may also be hidden neurones, 

which play an internal role in the network. The input, hidden and output 

neurones need to be connected together. To capture the essence of biological 

neural systems, an artificial neurone is used. It receives a number of inputs 

(either from original data, or from the output of other neurones in the neural 

network). Each input comes via a connection, which has a strength (or 

weight); these weights correspond to synaptic efficacy in a biological neurone. 

Each neurone also has a single threshold value. The weighted sum of the 

inputs is formed, and the threshold subtracted, to compose the activation of 

the neurone (also known as the post-synaptic potential, or PSP, of the 

neurone).  

The activation signal is passed through an activation function (also known as 

a transfer function) to produce the output of the neurone. For our application, 

this function is a sigmoid function, which is the same for all neurones. 

f (x) = {1 + exp(-x)}-1 
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The best-known example of a neural network training algorithm is back-

propagation. In back propagation, the gradient vector of the error surface is 

calculated. This vector points in the direction of steepest descent from the 

current point, so we know that if we move along it a ‘‘short’’ distance, we will 

decrease the error. A sequence of such moves (slowing as we near the 

bottom) will eventually find a minimum of some sort. Large steps may 

converge more quickly, but may also overstep the solution or (if the error 

surface is very eccentric) go off in the wrong direction. A classic example of 

this in neural network training is where the algorithm progresses very slowly 

along a steep, narrow, valley, bouncing from one side across to the other. In 

contrast, very small steps may go in the correct direction, but they also require 

a large number of iterations. In practice, the step size is proportional to the 

slope (so that the algorithms settle down to a minimum) and to a special 

constant, the learning rate. The correct setting for the learning rate is 

application-dependent, and is typically chosen by experiment; it may also be 

time-varying, getting smaller as the algorithm progresses. 

The algorithm progresses iteratively through a number of epochs. On each 

epoch, the training cases are each submitted in turn to the network, and target 

and actual outputs compared and the error calculated. This error, together 

with the error surface gradient, is used to adjust the weights, and then the 

process repeats. The initial network configuration is random, and training 

stops when a given number of epochs elapse, or when the error reaches an 

acceptable level, or when the error stops improving. We can select which of 

these stopping conditions to use.  
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A typical back-propagation network is shown in Fig. 6.1. Neurones are 

arranged in a distinct layered topology. The input layer is not really neural at 

all: these units simply serve to introduce the values of the input variables. 
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Fig 6.1 Back-propogation neural network used for predicting bead geometry. 

 

6.2 Computational work  

Several computational experiments were conducted, in the Software (Matlab), 

following are some of the observation: 
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6.2.1 Computational Experiment No. 1 

Network Name: Ex-17     

No. of Hidden Layers: 3 

Network Type: Feed Forward Back Propogation   

Training Function: Gradient descent with momentum back propagation 

No. of Neurons in First Hidden Layer: 10  

No. of Neurons in Second Hidden Layer: 24 

Adaptation Learning Function: Gradient descent with momentum weight and 

bias learning function 

No. of Neurons in Input Layer: 4 

Performance Function: MSE     

Transfer Function: Log sigmoid transfer function 

Epochs  : 10000       

Goal   : 0.001   

Learning Rate : 0.5                  

Epochs made : 9733      

Network of Ex-17 

 

Fig 6.2 Network Architecture of Ex-17 

In Fig 13 Input layer is comprising of 4 neurons representing: 1) Voltage 2) 

Current 3) Travelling speed 4) Nozzle to plate distance and here we had 

selected the two hidden layers. In first hidden layer we had selected 10 

neurons and in the second hidden layer we had selected 24 neurons .Output 
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layer is comprising of 3 neuron representing Bead height Bead width and 

Penetration. 

While selecting the number of neurons in hidden layers it has to be with trial 

and error method as there is no hard based rule for selection of neurons so 

that is why several computational experiments is required to arrive at a 

solution and we had performed several computational experiments ,some of 

them has been shown here. 

Training with Gradient descent with momentum back propagation 
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Fig 6.3 Plot  Epochs v/s MSE for Ex-17. 

This architecture was trained with neural network parameters i.e. Feed 

forward Back Propogation, we selected mean square error concept, goal was 

set at 0.001 and learning rate was set at 0.5. The result has been shown in 

the Fig 14, as this is a plot of No. of Epoch versus Mean square error. In this 

case it was able to converge after 9733 Epochs. After converging we will get 

the predicted value by the network. 
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6.2.2 Computational Experiment No. 2 

Network Name: Ex-2.1     

No. of Hidden Layers: 3 

Network Type: Feed Forward Back Propogation   

Training Function: Gradient descent with momentum back propagation 

No. of Neurons in First Hidden Layer: 12 

No. of Neurons in Second Hidden Layer: 16 

Adaptation Learning Function: Gradient descent with momentum weight and 

bias learning function 

No. of Neurons in Input Layer: 4 

Performance Function: MSE     

Transfer Function: Log sigmoid transfer function 

Epochs  : 10000       

Goal   : 0.001   

Learning Rate : 0.5                  

Epochs made : 8964      

Network of Ex-21. 

 

Fig 6.4 Network Architecture of Ex-21 

In Fig 13 Input layer is comprising of 4 neurons representing: 1) Voltage 2) 

Current 3) Travelling speed 4) Nozzle to plate distance and here we had 

selected the two hidden layers. In first hidden layer we had selected 

12neurons and in the second hidden layer we had selected 16 neurons 
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.Output layer is comprising of 3 neuron representing Bead height Bead width 

and Penetration.While selecting the number of neurons in hidden layers it has 

to be with trial and error method as there is no hard based rule for selection of 

neurons so that is why several computational experiments is required to arrive 

at a solution and we had performed several computational experiments ,some 

of them has been shown here. 

Training with Gradient descent with momentum back propagation 

   

Fig 6.5 Plot  Epochs v/s MSE for Ex-21. 

This architecture was trained with neural network parameters i.e. Feed 

forward Back Propogation, we selected mean square error concept, goal was 

set at 0.001 and learning rate was set at 0.5. The result has been shown in 

the Fig 14, as this is a plot of No. of Epoch versus Mean square error. In this 

case it was able to converge after 8964 Epochs. After converging we will get 

the predicted value by the network. 
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6.2.3 Computational Experiment No. 3 

Network Name: Ex-34.     

No. of Hidden Layers: 3 

Network Type: Feed Forward Back Propogation   

Training Function: Gradient descent with momentum back propagation 

No. of Neurons in First Hidden Layer: 10  

No. of Neurons in Second Hidden Layer: 24 

Adaptation Learning Function: Gradient descent with momentum weight and 

bias learning function 

No. of Neurons in Input Layer: 4 

Performance Function: MSE     

Transfer Function: Log sigmoid transfer function 

Epochs  : 10000       

Goal   : 0.001   

Learning Rate : 0.5                  

Epochs made : 5103     

Network of Ex-34 

 

Fig 6.6 Network Architecture of Ex-34 

In Fig 13 Input layer is comprising of 4 neurons representing: 1) Voltage 2) 

Current 3) Travelling speed 4) Nozzle to plate distance and here we had 

selected the two hidden layers. In first hidden layer we had selected 10 

neurons and in the second hidden layer we had selected 24 neurons .Output 



 83 
 

layer is comprising of 3 neuron representing Bead height Bead width and 

Penetration. 

While selecting the number of neurons in hidden layers it has to be with trial 

and error method as there is no hard based rule for selection of neurons so 

that is why several computational experiments is required to arrive at a 

solution and we had performed several computational experiments ,some of 

them has been shown here. 

Training with Gradient descent with momentum back propagation 

   

Fig 6.7 Plot  Epochs v/s MSE for Ex-34. 

This architecture was trained with neural network parameters i.e. Feed 

forward Back Propogation, we selected mean square error concept, goal was 

set at 0.001 and learning rate was set at 0.5. The result has been shown in 

the Fig 14, as this is a plot of No. of Epoch versus Mean square error. In this 

case it was able to converge after 5103 Epochs. After converging we will get 

the predicted value by the network. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10-4

10-3

10-2

10-1

100

5103 Epochs

Tr
ai

ni
ng

-B
lu

e 
 G

oa
l-B

la
ck

Performance is 0.000999915, Goal is 0.001



 84 
 

 The predicted values are shown in table:-2 for different set of computational 

experiments. 

The performance of the neural network depends on the number of hidden 

layers, the number of neurones in the hidden layer and other learning 

parameters. Therefore many computational experiments were conducted with 

several combinations to find an optimal structure for the neural network. The 

performance of different ANN architectures with different learning rate which 

were able to converge out of various computational experiments conducted 

has been shown in table 6.1 

Experiment 
No. 

ANN 
structure 

Training 
Function 

Learning 
Rate 

Momentum 
Coefficient 

Epochs 
made 

Ex-17 4-10-24-3 trainGDM 0.5 0.5 9733 

Ex-21 4-12-16-3 trainGDM 0.5 0.5 8964 

Ex-23 4-12-20-3 trainGDM 0.5 0.5 9466 

Ex-27 4-14-12-3 trainGDM 0.5 0.5 9934 

Ex-32 4-14-20-3 trainGDM 0.5 0.5 9602 

Ex-33 4-14-22-3 trainGDM 0.5 0.5 7451 

Ex-34 4-14-24-3 trainGDM 0.5 0.5 5103 

 Ex-41 4-14-12-3   trainGDA  0.5 0.5 2068  

 Ex-42 4-14-12-3  trainGDM 0.5 0.5 8532 

 Ex-45 4-11-17-3  trainGDM 0.5 0.9 7615 

 Ex-47 4-14-22-3  trainGDM 0.7 0.5 8678 

 Ex-49 4-16-16-3  trainGDM 0.3 0.9 9920 

 Ex-50 4-20-21-3  trainGDM 0.2 0.9 8766 

 Ex-51 4-12-15-3  trainGDM 0.3 0.9 6543 

 Ex-55 4-14-17-3  trainGDM 0.3 0.9 8.741 
 

Table  6.1 Performance of different ANN architectures 

The appropriate neural network structure for predicting bead geometry was 

chosen by trial and error method.In this work, the structure of neural network 

was 4-11-17-3 (11 neurons in 1st hidden layer ,17 neurons in 2nd hidden layer 

and 3 neurons in the output layer).The network was trained for 7615 
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iterations. The result of the test are summarised in table 6.2.The test data are 

boldface in the table and these sets of data were not used for training the 

network. .The scatter diagram of trained and tested dataset is shown in fig  

(a,b & c).Thus the network was able to predict with significant accuracy. 

Experimental result   Neural Network result 
Weld 
No. H W P   H W P 

1 1.5 11.1 3.2   1.8 11.2 3.1 

2 1.9 14.1 5.1   1.8 13.8 4.8 

3 3.1 11.1 3.7   3.9 10.4 4.5 

4 2.2 13.0 7.2   2.2 12.6 7.1 

5 1.2 10.7 2.4   1.0 10.5 2.9 

6 3.1 10.8 2.6   2.7 10.3 2.9 

7 2.8 10.6 3.7   2.5 11.1 3.9 

8 1.8 11.4 5.1   1.9 11.4 4.8 

9 2.8 9.5 2.4   3.0 10.0 2.8 

10 1.8 12.8 3.7   1.7 12.6 3.3 

11 5.7 9.5 3.2   5.8 10.1 3.6 

12 3.5 12.8 6.2   2.9 13.2 5.9 

13 2.2 9.0 3.2   2.3 9.1 3.6 

14 2.5 10.1 3.0   2.3 9.9 2.8 

15 4.8 9.2 4.0   4.7 9.2 3.9 

16 2.5 9.0 5.6   2.4 9.1 5.4 

17 2.8 10.6 4.0   2.7 10.6 3.6 

18 3.0 8.4 2.0   3.9 8.7 2.2 

19 2.2 11.1 3.4   2.4 11.5 3.4 

20 1.2 10.6 3.7   1.4 10.7 2.9 

21 3.8 10.7 7.6   4.1 10.5 7.1 

22 2.8 10.7 3.7   2.7 10.6 3.6 

23 3.1 11.7 5.0   2.9 11.9 5.0 

24 1.9 11.3 3.2   1.8 11.1 3.7 

25 1.2 10.2 4.8   1.5 11.3 5.0 

26 4.8 10.7 3.4   4.3 9.7 3.4 

27 2.6 10.8 3.4   2.7 10.6 3.6 
 

Table 6.2 Comparision of experimental and neural network results. 
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Fig 6.8 (a)  Scatter Plot of ANN prediction vs. Actual Bead Height. 
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 Fig 6.8 (b) Scatter Plot of ANN prediction vs. Actual Bead Width. 
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Fig 6.8 (c ) Scatter Plot of ANN prediction vs. Actual Bead Penetration. 

 

 

6.3 Results and Discussions: 

We tried with different architecture of artificial neural network in computational 

experiments by changing learning rate, error goal, neurons in different layer. 

The network was able to converge in many of the computational experiments 

and when tested with test data the network was exhibiting reasonably good 

predictive capability.  
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7.0 CONCLUSION AND FUTURE SCOPE     

  

7.1 Conclusion  

The following conclusion were arrived at from the study of the effects of 

welding process parameters on weld bead geometry when bead-on-plate 

welds are deposited using SAW process. 

 

 The Fractional Factorial technique can be employed easily for 

developing mathematical model for predicting weld-bead geometry 

within the workable region of control parameters in the SAW. 

 RSM can be used effectively in analysing the cause and the effect of 

process parameters on response. The RSM is also used to draw 

contour graphs for various responses to show the interaction effects of 

different process parameters. 

 The values of weld bead penetration, weld bead width and weld bead 

height decrease with the increase in welding speed.  

 As the nozzle-to-plate distance increases, penetration and bead width 

decrease, but bead height increases. 

 Back – propagation neural network used for modelling the weld bead 

geometry and the analysis carried out for this confirms that artificial 

neural networks are powerful tools for analysis and modelling .The 

results indicate that neural network can yield fairly accurate results. 
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7.2 Scope for future work 

 Process parameters used in this study were arc voltage, current, 

welding speed and nozzle-to-plate distance. Study can be done by 

selecting more parameters such as multiple wire electrode, electrode 

wire size, flux type etc.  

 RSM can be used for making analysis of HAZ and other responses of 

SAW process. 



 90 
 

REFERENCES: 

[1] George E. Cook, Robert J. Barnett, Kristinn Andersen, Alvin M. Straw, 

“Weld Modelling and   Control Using Artificial Neural Networks,” IEEE, 

(1993) 2181-2189. 

[2] N.Murgan, R.S. Parmar, “Effect of Process Parameters on the 

geometry of the bead in the automatic surfacing of stainless steel”, 

Journal of Materials Processing Technology.41 (1994) 381 – 398. 

[3] R.S. Chandel, H.P. Seow, F.L. Cheong, “Effect of increasing deposition 

rate on the bead geometry of submerged arc welds” ,Journal of 

Materials Processing Technology.72 (1997)124 – 128. 

[4] Ping Li, M.T.C. Fang, J. Lucas, “Modelling of submerged arc weld 

beads using self –adaptive offset neural networks”, Journal of Materials 

Processing Technology.71(1997)288-298. 

[5]  V. Gunaraj, N. Murugan, “Application of response surface methodology 

for predicting weld bead quality in submerged arc welding of pipes ”, 

Journal of Materials Processing Technology 88 (1999) 266-275.  

[6] J.I. Lee, K.W. Um, “A prediction of welding process parameters by 

prediction of back-bead geometry” , Journal of Materials Processing 

Technology.108 (2000)106-113. 

[7] G. Lothongkum, E. Viyanit, P. Bhandhubanyoung, “Study on the effects 

of pulsed TIG welding parameters on delta-ferrite content, shape factor 

and bead quality in orbital welding of AISI316L stainless steel plate”, 

Journal of Materials Processing Technology.110 (2001)233 – 238. 



 91 
 

[8] D.S. Nagesh, G.L. Datta, “Prediction of weld bead geometry and 

penetration in shielded metal-arc welding using artificial neural 

networks”, Journal of Materials Processing Technology.28 Jan 2002. 

[9] I.S. Kim, J.S. Son, C.E. Park, C.W. Lee, Yarlagadda K.D.V. Prasad, “ A 

study on prediction of bead height in robotic arc welding using a neural 

network” Journal of Materials Processing Technology.130-131 

(2002)229– 234. 

[10] Ill-Soo Kim, Joon-Sik Son, Sang-Heon Lee, Prasad K.D.V. Yarlagadda, 

“Optimal design of neural networks for control in robotic arc welding”, 

Robotics and Computer-Integrated Manufacturing 20 (2004) 57–63. 

[11] D. Kim, M. Kang, and S. Rhee, “Determination of Optimal Welding 

Conditions with a Controlled Random Search Procedure”, Welding 

Journal,(2005) 125-s – 130-s. 

[12] N. Murugan, V. Gunuraj, “Prediction and control of weld bead geometry 

and shape relationships in submerged arc welding of pipes.” , Journal 

of Materials Processing Technology 168 (2005) 478-487 

[13] Z. Sterjovski, D. Nolan. K.R. Carpenter, D.P. Dunne, J. Norrish, 

“Artificial neural networks for modelling the mechanical properties of 

steels in various applications.” ,Journal of Materials Processing 

Technology 170 (2005) 536-544.  

[14] Z Win, R P Gakkhar, S C Jain, and M Bhattacharya, “ Parameter 

optimization of a diesel engine to reduce noise, fuel consumption, and 

exhaust emissions using response surface methodology.” , IMechE 

Vol.219 Part D , 2005. 



 92 
 

[15]  P Thangavel, V Selladurai, and R Shanmugam, “Application of 

response surface methodology for predicting flank wear in turning 

operation.”, IMechE Vol.220 Part B , 2006. 

[16] Godfrey C. Onwubolu, Shivendra Kumar.” Response surface 

methodology-based approach o CNC drilling operations.”, Journal of 

Materials Processing Technology 171 (2006) 41-47. 

[17] Veerendra Singh, Vilas Tathavadkar, S. Mohan Rao, K.S. Raju, 

“Predicting the performance  of submerged arc furnace with varied raw 

material combinations using artificial neural network”, Journal of 

Materials Processing Technology, 183(2007) 111-116.  

[18] Erdal Karadeniz , Ugur Ozsarac, Ceyhan Yildiz, “The effect of process 

parameters on penetration in gas metal arc welding processes” 

Materials and Design 28 (2007) 649–656. 

[19] Parikshit Dutta, Dilip Kumar Pratihar, “Modeling of TIG welding process 

using conventional regression analysis and neural network based 

approaches” , Journal of Materials Processing Technology 184 (2007) 

56-68. 

[20]  M B Parappagoudar, D K Pratihar, G L Datta, “ Non-linear modelling 

using central composite design to predict green sand mould 

properties”, IMechE Vol.221 Part B , 2007. 

[21] P B Bacchewar, S K Singhal, and P M Pandey, “ Statistical modelling 

and optimization of surface roughness in selective laser sintering 

process”, IMechE Vol.221 Part B , 2007. 

 



 93 
 

[22] A.M.K. Hafiz, A.K.M.N. Amin, A.N.M. Karim, M.A. Lajis, “ Development 

of surface roughness prediction model using response surface 

methodology in high speed end milling of AISI H13 tool steel.”, IEEE, 

2007. 

[23] Serdar Karaoglu, Abdullah Secgin , “Sensitivity analysis of submerged 

arc welding process parameters”, Journal of Materials Processing 

Technology.202 (2008)500-507. 

[24] Abdulkadir Cevik, ,M. Akif Kutuk,Ahmet Erklig,Ibrahim H. Guzelbey, 

“Neural network modeling of arc spot welding”, Journal of Materials 

Processing Technology 202 ( 2008 ) 137– 144. 

[25] K. Manikya Kanti, P. Srinivasa Rao, “Prediction of bead geometry in 

pulsed GMA welding using back propagation neural network”, journal 

of materials processing technology 200 (2008) 300–305. 

[26] Keshav Prasad & D. K. Dwivedi,“Some investigations on microstructure 

and mechanical properties of submerged arc welded HSLA steel 

joints”, Journal of Advance Manufacturing Technology (2008) 36:475–

483. 

[27] Kishor P. Kolhe, C.K. Datta, “Prediction of microstructure and 

mechanical properties of multipass SAW”, Journal of Materials 

Processing Technology 197 (2008) 241-249. 

[28] Sukhomay Pal, Surjya K. Pal, Arun K. Samantaray, “ Artificial neural 

network modeling of weld joint strength prediction of a pulsed metal 

inert gas welding process using arc signals”, Journal of Material 

Processing Technology 202 (2008) 464-474. 



 94 
 

[29] N. Aslan, “Application of response surface methodology and central 

composite rotatable design for modelling and optimization of a multi-

gravity separator for chromite concentration.” , Power Technology 185 

(2008) 80-86. 

[30] Bappa Acherjee, Dipten Misra, Dipankar Bose, K. Venkadeshwaran, 

“Prediction of weld strength and seam width for laser transmission 

welding of thermoplastic using response surface methodology”, Optics 

and Laser Technology 41(2009) 956-967. 

[31] V Balasubramanian, A K Lakshminarayanan, R Varahamoorthy, S 

Babu, “ Application of response surface methodology to prediction of 

dilution in plasma transferred arc hardfacing of stainless steel on 

carbon steel.”, Journal of Iron and Steel Research, International, 2009, 

16(1), 44-53.  

[32] http://www.welding-technology-machines.info/physics-of-welding/weld-

bead-geometry.htm. 

[33] http://en.wikipedia.org/wiki/Artificial_neural_network. 

[34]   http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html# 

     Introduction to neural networks 

[35] Neural Network by Christos Stergiou and Dimitrios Siganos 

[36] Stefano Nolfi Domenico Parisi, Evolution of Artificial Neural Networks, I

 nstitute of Psychology, National Research Council, Rome. 

[37] A.C. Davies, Welding Science and technology,Vol-1,Ninth Edition 

Cambridge university press. 

[38] R.S. Parmar, Welding Process and Technology, Second edition, 

Khanna Publication. 

http://www.welding-technology-machines.info/physics-of-welding/weld-bead-geometry.htm
http://www.welding-technology-machines.info/physics-of-welding/weld-bead-geometry.htm
http://en.wikipedia.org/wiki/Artificial_neural_network


 95 
 

[39] Rudra pratap, Getting started with Matlab7,Indian edition ,Oxford 

university press. 

[40] Douglas C. Montgomery, Design and Analysis of Experiments.5th 

edition, John Wiley & Sons (Asia). 

[41] D.N. Elhance, Veena Elhance, B.M. Agarwal, Fundamental of 

Statistics,Liind Rep. Edition, Kitab Mahal Publications. 

[42] Raymond H. Myers, Douglas C. Montgomery, Response Surface 

Methodology Process and Product Optimization using Designed 

Experiments, Second Edition, John Wiley & Sons, INC. 

[43] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying ye, 

Probability & Statistics for Engineers & Scientists, Seventh Edition, 

Dorling Kindersley (India) Pvt. Ltd. 

 

 


