CHAPTER-01
INTRODUCTION

1.1 3D POINT RECONSTRUCTION
During the image formation process of the camera, explicit 3D information about the scene or objects in the scene is lost. Therefore, 3D structure or depth information has to be inferred implicitly from the 2D intensity images. This problem is commonly referred to as 3D reconstruction.

Computer vision is a young discipline. Its implementations used to be regarded as costly, complex solutions to simple problems. After all, the human visual system and the human brain are tremendous scene understanding machines! It is amazing how easily a human being can infer 3D information from a single, noisy image. Anyone who has experience in programming vision-related software has been stunned by this simple fact: it is so easy to perform with your own eyes and so hard to tell a computer to do it. Nevertheless, hard work is rewarded, for there are countless situations for which a computer vision  algorithm will perform better than a human operator.
It is well said that:

“Computer vision is a subfield of Artificial intelligence, whose purpose is


      to program a computer to ‘understand’ a scene or features in an image."
The roots of machine “understanding" of images can be found in the sixties, as the United States Postal Service implemented an optical character recognition system to sort mail.  As its name suggests, the first recognition devices were optical. With the advent of video cameras, frame grabbers and digital cameras, computers had an increasing role in vision tasks. Since then, computer vision has become a subject of intensive research around the world. Using cameras for measurements, recognition, and navigation has become more and more interesting as the camera quality increases and the camera price decreases. The computer capacity also grows, which makes the possibilities of using a camera as a measurement and navigation instrument even better.
Extracting information from a camera image is however a complex problem. Calibrating such camera networks, which relates the 2D image coordinates to directions in the 3D space, is challenging in computer vision and photogrammetry. Once such a relationship is established, 3D structure of the world scene can be inferred from the 2D images, and vice versa. Thus camera network calibration is a prerequisite for any application where the relation between 2D images and the 3D world is needed.
The onset of computers marked the beginning of modern 3D reconstruction techniques. These  methods are largely analytical, which harnessed the speed of computers to compute solutions which would have otherwise been too tedious. Today, these techniques are largely used in computer vision research, which joined the gap between the photogrammetry and computer vision communities. These methods do not use any instruments to make measurements. Instead, they utilize mathematical models, analytical solutions and computer algorithms.
1.2   REQUIREMENTS OF RECONSTRUCTION
With the advances of digital camera and imaging technology, computer vision is playing an increasingly important role in automating tasks that involve visual sensory input. Some examples include industrial assembly and inspection, robot obstacle detection and path planning, autonomous vehicle navigation of unfamiliar environments, image based object modeling, medical image analysis, and human-computer interaction through gesture and face recognition.
Nowadays, there is an ever-increasing demand for surveillance and security applications of computer vision. Biometrics, for instance, aims at identifying individuals from images of their face, fingertips or iris. Face identification is an example of an application that could benefit from a combined use of pattern recognition and stereo vision.

As we live in an age of information and space exploration, the demand for satellite and other space related technology has led to a rapid growth of the aerospace industry, in which computer vision has also found its place. Some examples include autonomous precision landing, surveying, loading and unloading equipment, and satellite servicing and repair. One application of interest is the use of computer vision to guide the retrieval and docking of micro-satellites or other space modules with spacecrafts. Cameras board on the spacecraft provides the necessary visual feedback. The use of computer vision may assist human operators in this task and improve precision control. Once the airplane was invented though, the application of aerial surveying became clear, which was a stimulus for research in developing models and calibration methods. In aerial photography, a plane is equipped with a camera mounted on the underside, which takes several images as the plane is in motion. The process of making scaled maps and measurements from these images is aerial photogrammetry.
In many of the aforementioned applications, one of the necessary computer vision tasks is the recovery of three-dimensional structure from two-dimensional digital camera images.

1.3   METHODS OF RECONSTRUCTION

The goal of computing realistic 3-D models from image sequences is still a challenging problem. In this dissertation, I have presented two approaches for 3D point reconstruction.

1.3.1   DLT METHOD:
DLT method is one of the classical procedures which apply space points calculation from image coordinates. The method is based on the space coordinates and their corresponding area coordinates which are visible from two or more cameras .We can calculate coefficients of transformation by these area coordinates, using at least 6 known points in terms of object coordinates and corresponding image coordinates (i.e. control points). The coefficients of transformation are called DLT coefficients (Direct Linear Transformation) and are calculated using ‘least squares methods’. Thus, calibration is the first step of the procedure. We have to register area coordinates of calibrating points from every camera view. These values are the input parameters for the DLT coefficients calculation. 
 By using these transformation coefficients we can calculate space coordinates of the arbitrary point which is visible in the calibrated space. We can calculate the space coordinates [X, Y, Z] of every visible point by the registration of the area coordinates of this point and by help of DLT transformation coefficients.
1.3.2   TRIANGULATION METHOD:

The second method known as Triangulation method is based on stereo vision. The word stereo comes from the Greek stereos, which means solid. Stereo vision is the acquisition and analysis of 3D information, through the capture of scene images from different points of view.

In this method, the two cameras (whose intrinsic and extrinsic parameters are not known) are mounted such that their optical axes (the z-axes) are coplanar and aligned in parallel. The separation between the optical centers of the left and right cameras is called the baseline, and it is usually created by a translation between the cameras’ optical centers along their common z-axis. The left and right cameras in the stereo system capture a pair of images, simultaneously or separately when no changes have occurred in the scene between the acquisitions of the two images. This process requires the intersection of two known rays in space. It finds the 3D point that minimizes its 3D distance with two non-crossing lines in space. In order words, it returns the middle of the segment perpendicular to both lines. In the absence of noise, this problem is trivial. When noise is present, the two rays will not generally meet, in which case it is necessary to find the best point of intersection. This problem is especially critical in affine and projective reconstruction in which there is no meaningful metric information about the object space. 

One of the advantages of the structure-from-stereo approach to 3D reconstruction is that the geometrical relationship between left and right images is already known due to the fixed configuration of most stereo systems. If both the intrinsic and extrinsic parameters of the cameras are predetermined by camera calibration the problem of structure estimation can be solved using this method. Usually, an object in the scene may be represented with respect to a fixed WCS or with respect to a CCS, in which case the representation would differ from one camera to another if they have different positions and/or orientations. The choice largely depends on the application. For this dissertation, the left camera coordinate system will be used consistently, because an object representation relative to the camera is desired for our specific application (see Chapter 3). Therefore we first define the relationship between 3D points expressed in the left CCS and those expressed in the right CCS.
1.4   OUTLINE OF THE DISSERTATION
1.4.1 OBJECTIVES:

The principal aims of this dissertation are:
· To derive the transform that relates a camera image and the scene in space that is projected to the image.
· To find a method for estimation of this transform by the use of a set of corresponding points between the image and the scene in space.
· To determine 3D coordinate of a point from corresponding image plane coordinates.
The dissertation is organized as follows:
Chapter 1 provides a general introduction, requirements of reconstruction and the methods used for reconstruction of 3D point.

Chapter 2 describes the state of art i.e. the comparison of the classical work with that of current work.

Chapter 3 provides a literature review of existing research that expounded the essential knowledge of the 3D reconstruction problem using DLT Method and Triangulation Method. It also introduces some of the mathematical notation that are utilized to define an approach and foundation to implementation.

Simulation results based on DLT Method and triangulation method are presented in Chapter 4, showing the application of the theory described in Chapter 3.

Chapter 5 concludes the study and highlights the future work. The overall strengths and weaknesses of established methods are also identified.

CHAPTER-02
STATE OF ART

Reconstruction of 3D segments is a well known problem and has received much attention for years from the scientific community. The classical approaches used for building such models are laser scanner, structured light methods [11], infrared light scanner [12] and multi-image photogrammetry. Laser scanners are quite standard in human body modeling because of their simplicity in the use and the related market of modeling software. Structured light methods [11] are well known and used for industrial measurement to capture the shape of parts of objects with high accuracy. These approaches are quite expensive and various software are needed to model the required 3D structure. New methods based on photogrammetry and computer vision [3] require low cost acquisition systems using only photo and video cameras.

For 3D reconstruction to be possible, the location and orientation of the cameras at the instant of capture must be accurately known [10]. This can be achieved through bundle adjustment. Bundle adjustment [13] is the problem of refining a visual reconstruction to produce jointly optimal 3D structure and viewing parameters (cameras’ pose and/or calibration) estimates. Optimal means that the parameter estimates are found by minimizing some cost function and jointly that the solution is simultaneously optimal with respect to both structure and camera variations. But the main drawback of bundle adjustment is its instability because one has to make an initial assumption of the various parameters. This method relies on a human operator who has to supply the matches since there is typically a small number of widely separated view. Secondly in many situations, such as when the estimates are very far from the actual solution, this algorithm fails to converge to an accurate solution. Thirdly, the problem is amplified when one wants to automate the whole process.

The DLT Method [1] in this dissertation overcomes these drawbacks and shows a new approach for the reconstruction of 3D segments from uncalibrated images. This method is very stable as one need not to make any initial assumption of the desired parameters. Secondly, this method is completely automated. The Triangulation Method [10], on the other hand, is also completely automated and is useful  for reconstruction of 3-D point from calibrated images.

3D POINT RECONSTRUCTION
In this dissertation, I have presented two approaches for 3D point reconstruction.
3.1  DLT METHOD

The method of Direct Linear Transformation (DLT) was developed to solve the collinearity condition. The principle of DLT is to establish the relation between 3D object coordinates and 2D image coordinates using simpler equations. This method is suitable when the values of interior orientation (principal point and camera constant) and parameters of exterior orientation (object space coordinates of camera perspective center and elements of the rotation matrix, R) are not available.

The explanation of this method is as follows:

There are two reference frames:

1. Object Space Reference Frame (XYZ System).

2. Image Plane Reference Frame (xy System).


 



The optical system of the camera maps point P(X,Y,Z) in object space to image I(x,y) in image plane. If the position of the projection center N in object space reference frame is [X0,Y0,Z0] then, by using collinearity condition , point I, N and P are collinear. Vector A drawn from N to P becomes [(X-X0),(Y-Y0),(Z-Z0)].


[image: image1]
If we add axis z to image plane reference frame as third axis to make the image plane reference frame 3-dimensional, the z coordinate of the points on image plane is always o and 3D position of point I becomes [x,y,0].

                             [image: image2.png]



The line drawn from projection center N to image plane, parallel to z-axis is perpendicular to image plane and is called as principal axis and the resulting point of intersection is principal point whose image plane coordinates are PP[x0,y0,0].If d is the principal distance i.e. the distance between points PP and N, then position of point N in the image plan reference frame becomes [x0,y0,d]. Vector B drawn from point N to I becomes [(x-x0),(y-y0),(-d)].

Due to collinearity condition, vector A and B form a straight line.





B = c A
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where 

c= scaling factor.
Vector A and B are originally described in object-space reference frame and image-plane reference frame, respectively. In order to directly relate the coordinates, they must be in a common reference frame. This can be done by using a Transformation Matrix which transforms vector A into image plane reference frame.
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 where A(I) =  vector A described in the image plane reference frame


A(O) = vector A described in the object space reference frame


TI/O = the transformation matrix from the object space reference frame to the 

           image plane reference frame.

Applying Eq.(3.2) in Eq.(3.1):
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or




x-x0 = c[r11(X-X0) + r12(Y-Y0) + r13(Z-Z0)]




y-y0 = c[r21(X-X0) + r22(Y-Y0) + r23(Z-Z0)] 
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    -d = c[r31(X-X0) + r32(Y-Y0) + r33(Z-Z0)]

From Eq.(3.4), we obtain
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Substitute Eq.(3.5) for c in Eq.(3.4):
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Here, x,x0,y and y0 are the image plane coordinates in the real life length unit, such as cm. But in reality, the digitization system may use different units of length such as pixels and must accommodate this:






u-u0 = λu(x-x0)






v-v0 = λv(y-y0)
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where [λu, λv] are the unit conversion factors for the u and v axis respectively.

Now, rearrange (3.7) for X, Y, Z
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where 
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Coefficients L1 to L11 are the DLT Parameters that reflect the relationships between the object space reference frame and the image plane reference frame.

3.1.1   CAMERA CALIBRATION:

Rearranging  (3.8):




uL9 X + uL10 Y + uL11 Z + u = L1X + L2Y + L3Z + L4




vL9 X + vL10 Y + vL11 Z + v = L5X + L6Y + L7Z + L8
or




u = L1X + L2Y + L3Z + L4 - uL9 X - uL10 Y - uL11 Z




v = L5X + L6Y + L7Z + L8 - vL9 X - vL10 Y - vL11 Z

In Matrix form:
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Expanding for 6 known control points in terms of object space coordinates and corresponding image coordinates. These control points must not be coplanar.
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(3.11) is basically in the form of





Q = P.L 
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The DLT parameters can be obtained using the Least Square Method:





Q = P.L 





P’.Q = (P’.P).L





(P’.P)-1.(P’.Q) = (P’.P)-1.(P’.P).L





(P’.P)-1.(P’.Q) = L
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3.1.2 CAMERA POSITION AND PRINCIPAL POINT:

From (3.9), we can obtain:
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Similarly, from (3.9) and using Orthogonal property of Transformation matrix (Refer Appendix B for details of Orthogonal property of Transformation Matrix):
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and
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3.1.3 TRANSFORMATION MATRIX:

From (3.2) and (3.9):
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du and dv are computed using orthogonal property of Transformation Matrix:
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It is safe to assume d​u and dv > 0. However, D can be either positive or negative. Using the positive value of D first, compute the determinant of the transformation matrix. If the determinant is positive, D must be positive and the current matrix is all right. If the determinant is negative, D must be negative and the current matrix is obtained by multiplying the previous matrix with -1.

3.1.4 COMPUTATION OF ORIENTATION ANGLES
To compute the orientation angles, we can compare the transformation matrix assumed in eq.(3.2)  with successive rotation matrix (Refer Appendix C for details).


[image: image22.wmf]111213

212223

313233

rrr

rrr

rrr

æö

ç÷

=

ç÷

ç÷

èø



 EMBED Equation.DSMT4  [image: image23.wmf]()()()()()()()()()()()()

()()()()()()()()()()()()

()()()()()

ccssccscscss

csssscccsssc

ssccc

fgcfgcgcfgcg

fgcfgcgcfgcg

fcfcf

+-+

æö

ç÷

--++

ç÷

ç÷

-

èø

       MACROBUTTON MTPlaceRef \* MERGEFORMAT (3.20)

On solving, we get
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And if          
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But if 
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The successive rotation matrix becomes:
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Thus, on comparing with eq.(3.2), we get
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Thus, one cannot compute 
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3.1.5 RECONSTRUCTION OF 3D POINT:

Rearranging (3.8) for X, Y and Z




(uL9 –L1) X + (uL10 –L2) Y + (uL11 –L3) Z = L4 – u




(vL9 –L5) X + (vL10 –L6) Y + (vL11 –L7) Z = L8 – v
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For reconstruction, a minimum of 2 cameras are required, so expanding for 2 cameras:
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(3.27) can be solved by least square method for X, Y and Z.

3.1.6 CALIBRATION AND RECONSTRUCTION ERROR:

The accuracy of camera calibration and reconstruction can be assessed by computing the calibration error and/or reconstruction error. 

The calibration error of a given camera is defined as:
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The Root Mean Square Error (RMSE) is:
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The reconstruction error is the deviation of the reconstructed coordinates from the original coordinates.
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The Root Mean Square Error (RMSE) is:
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where (Xn, Yn, Zn) are  reconstructed coordinates and



(Xi, Yi, Zi) are  original coordinates.

3.2 TRIANGULATION  METHOD

In this method, the two cameras (whose intrinsic and extrinsic parameters are not known) are mounted such that their optical axes (the z-axes) are coplanar and aligned in parallel. The left and right cameras in the stereo system capture a pair of images, simultaneously or separately when no changes have occurred in the scene between the acquisitions of the two images. This process requires the intersection of two known rays in space.
3.2.1 TRANSFORMATION OF RIGHT CCS TO LEFT CCS:

Usually, an object in the scene may be represented with respect to a fixed coordinate system (WCS) or with respect to a camera coordinate system (CCS). The representation would be different from one camera to another if they have different positions and orientations. In this dissertation, the left camera coordinate system will be used consistently because an object representation relative to camera is desired for our specific application. Therefore, we must first define the relationship between 3D points expressed in left CCS and those expressed in right CCS.

Let pl and pr be the left and right camera coordinate of the same point P.

Let (lRw, lTw) and (rRw, rTw) be the extrinsic parameters of left and right cameras, respectively, such that:
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where pl and pr are expressed in homogeneous coordinates.(Refer Appendix D for Homogeneous coordinates).

Now, in order to express pr in terms of pl:





pr’ = lRr pr + lTr 
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where   lRr = Rotation Matrix of right camera with respect to left camera.


  lTr = Translation Matrix of right camera with respect to left camera.
The lRr and lTr  matrices are determined as below:
The extrinsic parameter matrix of left camera with respect to world is:
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The extrinsic parameter matrix of right camera with respect to world is:
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Now, the extrinsic parameter matrix of right camera with respect to left camera is obtained as:





lMr = (lMw * wMr)




  MACROBUTTON MTPlaceRef \* MERGEFORMAT (3.36)


where


wMr = (rMw)-1





  MACROBUTTON MTPlaceRef \* MERGEFORMAT (3.37)

To extract lRr and  lTr, lMr is decomposed as:
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Thus, using (3.24), any coordinate of right CCS can be changed to those in left CCS and vice-versa.

3.2.2 EXPLANATION OF METHOD:

Let us assume that pl and pr be the estimated projections of point P.

Let pll and prr be the three-dimensional vectors expressing the direction of pl and pr with respect to the optical centers of the two cameras. As shown in Fig. (3.4), the objective of triangulation is to find the intersection between the two vectors extrapolated from pll and prr.


[image: image46.png]





Due to errors in feature extraction and camera calibration, the extrapolated vectors may not intersect exactly. So, a segment S is formed that joins the rays through pll and prr. The segment S is perpendicular to both the rays (pll and prr). Thus, its direction is along the cross product unit vector of pll and prr. Consequently, a common and simple method is to estimate P’ as the midpoint of segment orthogonal to both pll and prr.

Let a, b, c be the scalar variables. Then, using (3.24), (for transformation of right CCS to left CCS), we can reach from apll  to lRr b prr + lTr by adding a certain quantity in it along the perpendicular of apll.
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a, b, c are determined by solving the linear system (3.30).

P’, an estimate of P, is simply the midpoint of  apll  and lRr b prr + lTr. Thus, it is calculated as:
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This coordinate is obtained in left camera coordinate system. To convert this coordinate into world coordinate system, we multiply this equation with inverse of external parameter matrix of left camera.
CHAPTER-04
RESULTS AND DISCUSSION
4.1 DLT METHOD
An image of a cube (of side 20 cm each) is acquired from two cameras placed at two different locations (as shown in Fig. 4.1). The 20 cm unit is assumed as single unit i.e. in this case, 1 unit = 20 cm. Thus, I have assumed the vertices of cube as (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). The corresponding image coordinates of these vertices are measured manually (Refer Appendix C for details). Then, calibration is done for both the cameras using DLT Method. Using method of least squares (Eq.(3.13)), we get 11 DLT coefficients for both the cameras (L1-L11). Now, using Eq.(3.15), the principal point for both the cameras is calculated. Then, the Transformation Matrix is found for pair of cameras. Then the calibration error for each camera is computed. At this stage, it is possible to reconstruct all the vertices of cube described above. I have shown two cubes: one with original coordinates and other with the reconstructed coordinates. Finally an accuracy analysis is conducted to find the root mean square error of x, y and z components.

The output of the code is shown below:

The DLT Parameters for Camera 1 and Camera 2 are

           

Camera 1            Camera 2 

L1          -845.97352724          388.10873929

L2          -152.08441082        -140.19532297

L3             51.41697333          943.48931931

L4          1235.99355855         442.00000000

L5            -51.45014508        -422.92170161

L6          -529.35881372        -492.33494569

L7          -212.96242953            45.73525180

L8          971.75574203         1117.67902601

L9             -0.32703152               0.47278351

L10           -0.16479841               0.03357766

L11            0.18932458                0.16037631
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         Fig. 4.1  Images of cube taken from two cameras at two different locations.

Principal Point for Camera 1:

( 0.935727, 2.384453, -1.590040 )

Transformation Matrix for Camera 1:

TM1 =

    0.5971   -0.3629    0.7154

   -0.1291    0.8476    0.5148

   -0.7933   -0.3998    0.4592

Calibration Error for Camera 1:

C1 =

   29.5361

The orientation angles for Camera 1:

Phi1 =  -.9146 radian

Set1 = .7457 radian

Gam1 = .2145 radian

Principal Point for Camera 2:

( -2.973875, 4.963387, 1.492365 )

Transformation Matrix for Camera 2:

TM2 =

    0.2975    0.2333   -0.9258

    0.0561    0.9311   -0.3604

    0.9449    0.0671    0.3205

Calibration Error for Camera 2:

C2 =

   13.4022

The orientation angles for Camera 2:

Phi2 =  1.2373 radian

Set2 = -.2063 radian

Gam2 = -.1864 radian

Original Coordinate and Reconstructed Coordinate:

     0     1     1

   -0.0284    1.0136    1.0067

     1     1     1

    1.0115    0.9858    0.9927

     1     1     0

    0.9823    1.0247    0.0149

     0     1     0

    0.0409    0.9785   -0.0228

     0     0     0

   -0.0142    0.0051    0.0071

Reconstruction Error:

RE =

    0.0308

>>
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Finally, the accuracy of the DLT Method is discussed. For this, two graphs are plotted:

4.1.1 Graph 1:

This is a graph between change in area coordinates (u) and the corresponding change in the reconstructed coordinates (Z). To the basic value of area coordinate (u), I added 10 area units in one direction and I subtracted 10 area units in second direction. In every step of change of area coordinate, I counted new position of space coordinate and I compared this result with the original space position. I find that the change of space distance is linear on both sides (Fig. 4.3). This relation is symmetrical but the minimum is not in zero value, which represents the exact value of calibrated coordinate. 

4.1.2 Graph 2:

Another graph is drawn between change in area coordinate (u) [on Y axis] and difference between space distance (difference between original and reconstructed point) and total reconstruction error [on X axis] for all the three components (X, Y, Z). All components cross the zero value of space coordinate, but in different value of input area coordinate. Thus, the error in reconstructed coordinate is minimum for different value of u. 
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Fig. 4.3  The changes of space distance(z) in reference to change of area 






coordinates.
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Fig. 4.4   The changes of space points components to change of area coordinates.

4.2 TRIANGULATION METHOD

In this method also, an image of a unit cube is acquired from two cameras, whose intrinsic and extrinsic parameters are known beforehand. These cameras are placed opposite to each other. I provided the value of intrinsic and extrinsic parameters for both the cameras and their projection matrices is computed. Then, the rotation and translation matrices of right camera in terms of left camera coordinate system are computed. Now, it is possible to reconstruct all the vertices of the cube. Finally, the reconstruction error is calculated.  

The output of code is shown below:

Projection Matrix for left camera

P1 =

  1.0e+003 *

   -0.6394   -0.6394    0.3618    3.7986

    0.6435   -0.6435    0.2487    1.2011

         0         0    
0.0010    0.0030

Projection Matrix for right camera

P2 =

  1.0e+003 *

   -0.7832    0.4522    0.3618    3.7986

   -0.4551   -0.7882    0.2487    1.2011

         0         0             0.0010    0.0030

Rotation matrix of right camera w.r.t left

lRr =

    0.2588    0.9658         0

   -0.9658    0.2588         0

         0         0    
1.0000

Translation matrix of right camera w.r.t left

lTr =

   -1.7408

   -3.2680

         0

Original Coordinates and Reconstructed coordinates are:

     0     1     1

   -0.0021    0.9603    0.9208

     1     1     1

    1.1096    1.0911    0.8284

     1     1     0

    1.0504    1.0446   -0.0616

     0     1     0

    0.0028    1.0006   -0.0017

     0     0     0

    0.0908   -0.0256   -0.0691

Reconstruction Error:

RE =

    0.0904

>>
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CHAPTER-05

CONCLUSION AND FUTURE WORK
5.1  THESIS ACHIEVEMENT
Nowadays, the interest in 3D Reconstruction is one of the most challenging problems and a topic of great interest. In this dissertation, I have described two low cost systems to reconstruct a 3D point from its corresponding image coordinates. 

Firstly, in DLT Method, the relation between 3D object coordinates and 2D image coordinates is established using simpler equations. This method is suitable when the values of interior orientation (principal point and camera constant) and parameters of exterior orientation (object space coordinates of camera perspective center and elements of the rotation matrix, R) are not available.

Secondly, Triangulation Method is suitable when camera interior and exterior orientation parameters are known beforehand. In this method, the position of the desired 3D point is taken in two images from cameras. The required 3D point is reconstructed by the intersection of two known rays in space.

The results are quite convincing and suggest that the concepts prescribed so far are feasible and are worthwhile for investigation.

5.2  LIMITATIONS AND FUTURE WORK

Not too surprisingly, the work in this dissertation has by no means addressed all the issues nor does it provide an ideal solution to the 3D reconstruction problem. Many details have been considered but are intentionally omitted in this dissertation because they require more extensive research that is not feasible given the time constraints on this dissertation.

The first problem is best explained in an example. For instance, a physical 3D point is projected onto Image A as point 1 and Image B as point 2. Points 1 and 2 are said to be correspondences. Hence, the feature correspondence or feature matching problem is to find where point 2 is on image B given the location of point 1 on image A. Human vision is superb in solving this problem, but the automation of this process by computers is rather difficult. In this dissertation the space resection step is not fully automated as the control points have been manually identified in the images. To be fully automated, it essentially requires a search on the whole image B. Applying proper constraints can narrow down the search, but without sufficient constraints, the problem becomes ill-posed and ambiguities arise.

Secondly, the motion is not taken into account. There can be two types of motion present in image sequences: Camera Motion and Movement of scene. In case of stationary images, for 3D point reconstruction, images are to be taken from different viewpoints but in case of motion, images are to be taken at different time frames. This specific problem is not discussed in this dissertation.

The algorithms and methods have been implemented in Mat lab in this dissertation. If these should be used in future projects they probably need to be improved and coded in another faster language and with a specific hardware that handles the calculations.

APPENDIX-A
MATLAB CODE
A.1  %/ PROGRAM TO CALCULATE THE CAMERA PARAMETERS USING DLT METHOD AND 
3D POINT %RECONSTRUCTION /%
clc
clear all;
close all;
%Considering a cube whose space co-ordinates are given by:
P1=[0 1 1];P2=[1 1 1];P3=[1 1 0];P4=[0 1 0];P5=[0 0 0];P6=[1 0 0];
P7=[0 0 1];
%x contains the x-coordinates of all the vertices of cube.
%y contains the y-coordinates of all the vertices of cube.
%z contains the z-coordinates of all the vertices of cube.
x=[P1(1) P2(1) P3(1) P4(1) P5(1) P6(1)];
y=[P1(2) P2(2) P3(2) P4(2) P5(2) P6(2)];
z=[P1(3) P2(3) P3(3) P4(3) P5(3) P6(3)];
xx=[P1(1) P2(1) P3(1) P4(1) P5(1) P7(1)];
yy=[P1(2) P2(2) P3(2) P4(2) P5(2) P7(2)];
zz=[P1(3) P2(3) P3(3) P4(3) P5(3) P7(3)];
%The corresponding image co-ordinates of the cube with reference to the 
%camera 1 are given by:                    
Q1=[1106 205];;Q2=[418 283];Q3=[458 708];Q4=[1304 567];
Q5=[1233 960];Q6=[584 1385];
u1=[Q1(1) Q2(1) Q3(1) Q4(1) Q5(1) Q6(1)];
v1=[Q1(2) Q2(2) Q3(2) Q4(2) Q5(2) Q6(2)];
%The corresponding image co-ordinates of the cube with reference to the 
%camera 2 are given by: 
R1=[1043 582];R2=[980 142];R3=[458 142];R4=[292 582];
R5=[442 1130];R7=[1194 992];
u2=[R1(1) R2(1) R3(1) R4(1) R5(1) R7(1)];
v2=[R1(2) R2(2) R3(2) R4(2) R5(2) R7(2)];
%Camera Calibration using DLT Method
    %For Calibration of camera 1:
        %Y1 matrix consist of the first six image co-ordinates with
        %reference to camera 1.
Y1=[Q1'; Q2'; Q3'; Q4'; Q5'; Q6'];
%Matrix O is used for simplification.
O=[0 0 0 0];
%Variable j is used for manipulation
 j=1;
        %X1 is a matrix of form [ x y z 1 0 0 0 0 -ux -uy -uz
        %                        0 0 0 0 x y z 1 -vx -vy -vz ]
        %for 6 control points.
for i=1:6
    m1=[x(i) y(i) z(i) 1 O -u1(i)*x(i) -u1(i)*y(i) -u1(i)*z(i);
        O x(i) y(i) z(i) 1 -v1(i)*x(i) -v1(i)*y(i) -v1(i)*z(i)];
  X1(j:j+1,:)=m1;
  j=j+2;
end
% The DLT parameters are now calculated using method of least squares
L1=inv(X1'*X1)*(X1'*Y1);
%The camera 1 principal point is now calculated:
L11=[L1(1) L1(2) L1(3);L1(5) L1(6) L1(7);L1(9) L1(10) L1(11)];
L12=[-L1(4);-L1(8);-1];
PP1=L11\L12;
u10=(L1(1)*L1(9)+L1(2)*L1(10)+L1(3)*L1(11))/(L1(9)^2+L1(10)^2+L1(11)^2);
v10=(L1(5)*L1(9)+L1(6)*L1(10)+L1(7)*L1(11))/(L1(9)^2+L1(10)^2+L1(11)^2);
du1=(((u10*L1(9)-L1(1))^2+(u10*L1(10)-L1(2))^2+(u10*L1(11)-L1(3))^2)/...
    (L1(9)^2+L1(10)^2+L1(11)^2))^.5;
dv1=(((v10*L1(9)-L1(5))^2+(v10*L1(10)-L1(6))^2+(v10*L1(11)-L1(7))^2)/...
    (L1(9)^2+L1(10)^2+L1(11)^2))^.5;
D1=(1/(L1(9)^2+L1(10)^2+L1(11)^2))^.5;
TM1=D1*[(u10*L1(9)-L1(1))/du1 (u10*L1(10)-L1(2))/du1 (u10*L1(11)-L1(3))/du1;...
    (v10*L1(9)-L1(5))/dv1 (v10*L1(10)-L1(6))/dv1 (v10*L1(11)-L1(7))/dv1 ;...
    L1(9) L1(10) L1(11)];
%Calibration Error:
DD1=0;
for i=1:6
Cu1(i)=u1(i)-((L1(1)*x(i)+L1(2)*y(i)+L1(3)*z(i)+L1(4))...
    /(L1(9)*x(i)+L1(10)*y(i)+L1(11)*z(i)+1));
Cv1(i)=v1(i)-((L1(5)*x(i)+L1(6)*y(i)+L1(7)*z(i)+L1(8))...
    /(L1(9)*x(i)+L1(10)*y(i)+L1(11)*z(i)+1));
DD1=DD1+power((Cu1(i)^2+Cv1(i)^2),.5);
end
C1=DD1/6;
    %For Calibration of camera 2:
        %Y2 matrix consist of the first six image co-ordinates with
        %reference to camera 2.
Y2=[R1'; R2'; R3'; R4'; R5'; R7'];
j=1;
for i=1:6
    m2=[xx(i) yy(i) zz(i) 1 O -u2(i)*xx(i) -u2(i)*yy(i) -u2(i)*zz(i);
        O xx(i) yy(i) zz(i) 1 -v2(i)*xx(i) -v2(i)*yy(i) -v2(i)*zz(i)];
  X2(j:j+1,:)=m2;
  j=j+2;
end
% The DLT parameters are now calculated using method of least squares
L2=inv(X2'*X2)*(X2'*Y2);
%The camera 2 principal point is now calculated:
L21=[L2(1) L2(2) L2(3);L2(5) L2(6) L2(7);L2(9) L2(10) L2(11)];
L22=[-L2(4);-L2(8);-1];
PP2=L21\L22;
u20=(L2(1)*L2(9)+L2(2)*L2(10)+L2(3)*L2(11))/(L2(9)^2+L2(10)^2+L2(11)^2);
v20=(L2(5)*L2(9)+L2(6)*L2(10)+L2(7)*L2(11))/(L2(9)^2+L2(10)^2+L2(11)^2);
du2=(((u20*L2(9)-L2(1))^2+(u20*L2(10)-L2(2))^2+(u20*L2(11)-L2(3))^2)/...
    (L2(9)^2+L2(10)^2+L2(11)^2))^.5;
dv2=(((v20*L2(9)-L2(5))^2+(v20*L2(10)-L2(6))^2+(v20*L2(11)-L2(7))^2)/...
    (L2(9)^2+L2(10)^2+L2(11)^2))^.5;
D2=(1/(L2(9)^2+L2(10)^2+L2(11)^2))^.5;
TM2=D2*[(u20*L2(9)-L2(1))/du2 (u20*L2(10)-L2(2))/du2 (u20*L2(11)-L2(3))/du2;...
    (v20*L2(9)-L2(5))/dv2 (v20*L2(10)-L2(6))/dv2 (v20*L2(11)-L2(7))/dv2 ;...
    L2(9) L2(10) L2(11)];
label = char('L1','L2','L3','L4','L5','L6','L7','L8','L9','L10','L11');
fprintf('\nThe DLT Parameters for Camera 1 and Camera 2 are\n\n');
fprintf('           Camera 1            Camera 2 \n');
for i=1:length(L1)
fprintf('%s         %4.8f          %4.8f\n',label(i,:),L1(i),L2(i))
end
fprintf('\n\n');
disp('Principal Point for Camera 1:')
fprintf('\n(%f,%f,%f)\n\n',PP1(1),PP1(2),PP1(3))
disp('Transformation Matrix for Camera 1:')
TM1
disp('Calibration Error for Camera 1:')
C1
fprintf('\n');
disp('Principal Point for Camera 2:')
fprintf('\n(%f,%f,%f)\n\n',PP2(1),PP2(2),PP2(3))
disp('Transformation Matrix for Camera 2:')
TM2
%Calibration Error:
DD2=0;
for i=1:6
Cu2(i)=u2(i)-((L2(1)*xx(i)+L2(2)*yy(i)+L2(3)*zz(i)+L2(4))...
    /(L2(9)*xx(i)+L2(10)*yy(i)+L2(11)*zz(i)+1));
Cv2(i)=v2(i)-((L2(5)*xx(i)+L2(6)*yy(i)+L2(7)*zz(i)+L2(8))...
    /(L2(9)*xx(i)+L2(10)*yy(i)+L2(11)*zz(i)+1));
DD2=DD2+power((Cu2(i)^2+Cv2(i)^2),.5);
end
disp('Calibration Error for Camera 2:')
C2=DD2/6
%Reconstruction of 3-D points:
for k=1:5
    A=[u1(k)*L1(9)-L1(1) u1(k)*L1(10)-L1(2) u1(k)*L1(11)-L1(3);
       v1(k)*L1(9)-L1(5) v1(k)*L1(10)-L1(6) v1(k)*L1(11)-L1(7);
       u2(k)*L2(9)-L2(1) u2(k)*L2(10)-L2(2) u2(k)*L2(11)-L2(3);
       v2(k)*L2(9)-L2(5) v2(k)*L2(10)-L2(6) v2(k)*L2(11)-L2(7)];
    B=[L1(4)-u1(k);L1(8)-v1(k);L2(4)-u2(k);L2(8)-v2(k)];
%The reconstructed point is:
    RP(:,k:k)=A\B;
end
disp('Original Coordinate and Reconstructed Coordinate:')
for k=1:5
        OC=[x(k) y(k) z(k)];
        RCC=RP(:,k:k);
        RC=[RCC(1) RCC(2) RCC(3)];
        disp(OC)
        disp(RC)
        sprintf('\n');
end
%Reconstruction Error:
S=0;
for k=1:5
    Rx(k)=abs(x(k)-RP(1,k));
    Ry(k)=abs(y(k)-RP(2,k));
    Rz(k)=abs(z(k)-RP(3,k));
    S=S+power(Rx(k)^2+Ry(k)^2+Rz(k)^2,.5);
end
disp('Reconstruction Error:')
RE=S/5
A.2  %/ PROGRAM TO DETERMINE THE ACCURACY OF DLT METHOD /%
clc
clear all;
close all;
P1=[0 1 1];P2=[1 1 1];P3=[1 1 0];P4=[0 1 0];P5=[0 0 0];P6=[1 0 0];
P7=[0 0 1];
%x contains the x-coordinates of all the vertices of cube.
%y contains the y-coordinates of all the vertices of cube.
%z contains the z-coordinates of all the vertices of cube.
x=[P1(1) P2(1) P3(1) P4(1) P5(1) P6(1) P7(1)];
y=[P1(2) P2(2) P3(2) P4(2) P5(2) P6(2) P7(2)];
z=[P1(3) P2(3) P3(3) P4(3) P5(3) P6(3) P7(3)];
%The corresponding image co-ordinates of the cube with reference to the 
%camera 1 are given by:                    
Q1=[522 -54];;Q2=[362 106];Q3=[482 144];Q4=[695 -69];
Q5=[909 143];Q6=[695 357];
u1=[Q1(1) Q2(1) Q3(1) Q4(1) Q5(1) Q6(1)];
v1=[Q1(2) Q2(2) Q3(2) Q4(2) Q5(2) Q6(2)];
%The corresponding image co-ordinates of the cube with reference to the 
%camera 2 are given by: 
R1=[796 -89];R2=[600 -202];R3=[798 -268];R4=[1060 -117];
R5=[909 143];R7=[682 106];
u2=[R1(1) R2(1) R3(1) R4(1) R5(1) R7(1)];
v2=[R1(2) R2(2) R3(2) R4(2) R5(2) R7(2)];
step=-10:10;
%The DLT parameters of camera 1:
S=0;
h=u1(1);
for l=step(1):step(21)
    u1(1)=h+l;
    u11(l+11)=abs(u1(1));
    Q1(1)=u1(1);
Y1=[Q1'; Q2'; Q3'; Q4'; Q5'; Q6'];
O=[0 0 0 0];
j=1;
for i=1:6
    m1=[x(i) y(i) z(i) 1 O -u1(i)*x(i) -u1(i)*y(i) -u1(i)*z(i);
        O x(i) y(i) z(i) 1 -v1(i)*x(i) -v1(i)*y(i) -v1(i)*z(i)];
  X1(j:j+1,:)=m1;
  j=j+2;
end
L1=inv(X1'*X1)*(X1'*Y1);
 %The DLT parameters of camera 2:
Y2=[R1'; R2'; R3'; R4'; R5'; R6'];
j=1;
for i=1:6
    m2=[x(i) y(i) z(i) 1 O -u2(i)*x(i) -u2(i)*y(i) -u2(i)*z(i);
        O x(i) y(i) z(i) 1 -v2(i)*x(i) -v2(i)*y(i) -v2(i)*z(i)];
  X2(j:j+1,:)=m2;
  j=j+2;
end
L2=inv(X2'*X2)*(X2'*Y2);
%Reconstruction of 3-D points:
    A=[u1(1)*L1(9)-L1(1) u1(1)*L1(10)-L1(2) u1(1)*L1(11)-L1(3);
       v1(1)*L1(9)-L1(5) v1(1)*L1(10)-L1(6) v1(1)*L1(11)-L1(7);
       u2(1)*L2(9)-L2(1) u2(1)*L2(10)-L2(2) u2(1)*L2(11)-L2(3);
       v2(1)*L2(9)-L2(5) v2(1)*L2(10)-L2(6) v2(1)*L2(11)-L2(7)];
    B=[L1(4)-u1(1);L1(8)-v1(1);L2(4)-u2(1);L2(8)-v2(1)];
%The reconstructed point is:
    RP(:,1:1)=A\B;
%Reconstruction Error:
    S=0;
    Rx1(l+11)=abs((x(1)-RP(1)));
    Ry1(l+11)=abs((y(1)-RP(2)));
    Rz1(l+11)=abs((z(1)-RP(3)));
    Rx(l+11)=(x(1)-RP(1));
    Ry(l+11)=(y(1)-RP(2));
    Rz(l+11)=(z(1)-RP(3));
    S=S+power(Rx(l+11)^2+Ry(l+11)^2+Rz(l+11)^2,.5);
    RE(l+11)=S/8;
    Rxx(l+11)=Rx(l+11)-RE(l+11);
    Ryy(l+11)=Ry(l+11)-RE(l+11);
    Rzz(l+11)=Rz(l+11)-RE(l+11);
end
Rx1=Rx1*10^3;
Ry1=Ry1*10^3;
Rz1=Rz1*10^3;
Rxx=Rxx*10^3;
Ryy=Ryy*10^3;
Rzz=Rzz*10^3;
plot(step,Rz1,'r*');
axis([-10 10 0 3]);
xlabel('Change of area coordinate u[area units]');
ylabel('Space Dist. i.e. diff. b/w original and reconstructed z [space units]');
figure
plot(Rxx,u11,'mo');
hold on;
plot(Ryy,u11,'r*');hold on;
plot(Rzz,u11,'g+');
axis([-4 4 660 690]);
xlabel('Change of Space points[space units]');
ylabel('area coordinate u[area units]');
legend('x','y','z');
A.3  %/ PROGRAM FOR 3D POINT RECONSTRUCTION USING TRIANGULATION METHOD /%
clc
clear all
close all;
%Considering a cube whose space co-ordinates are given by:
P1=[0 1 1];P2=[1 1 1];P3=[1 1 0];P4=[0 1 0];P5=[0 0 0];P6=[1 0 0];
P7=[0 0 1];
%x contains the x-coordinates of all the vertices of cube.
%y contains the y-coordinates of all the vertices of cube.
%z contains the z-coordinates of all the vertices of cube.
x=[P1(1) P2(1) P3(1) P4(1) P5(1) P6(1) P7(1)];
y=[P1(2) P2(2) P3(2) P4(2) P5(2) P6(2) P7(2)];
z=[P1(3) P2(3) P3(3) P4(3) P5(3) P6(3) P7(3)];
%The corresponding image co-ordinates of the cube with reference to the 
%camera 1 are given by:                    
Q1=[522 -54];;Q2=[362 106];Q3=[482 144];Q4=[695 -69];
Q5=[909 143];Q6=[695 357];
u1=[Q1(1) Q2(1) Q3(1) Q4(1) Q5(1) Q6(1)];
v1=[Q1(2) Q2(2) Q3(2) Q4(2) Q5(2) Q6(2)];
%The corresponding image co-ordinates of the cube with reference to the 
%camera 2 are given by: 
R1=[796 -89];R2=[600 -202];R3=[798 -268];R4=[1060 -117];
R5=[909 143];R7=[682 106];
u2=[R1(1) R2(1) R3(1) R4(1) R5(1) R7(1)];
v2=[R1(2) R2(2) R3(2) R4(2) R5(2) R7(2)];
%The intrinsic camera matrix for left camera is:
fx=-904.367920;fy=-910.183167;
u0=361.843964;v0=248.681458;
c1=[fx 0 u0;0 fy v0;0 0 1];
%The extrinsic camera matrix for left camera is: 
M1=[.707 .707 0 -3;-.707 .707 0 -.5;0 0 1 3];
%Camera Projection Matrix for left camera is:
disp('Projection Matrix for left camera');
P1=c1*M1
%The extrinsic camera matrix for right camera is: 
M2=[.866 -.5 0 -3;.5 .866 0 -.5;0 0 1 3];
%Camera Projection Matrix for right camera is:
disp('Projection Matrix for right camera');
P2=c1*M2
%Extrinsic Camera matrix of left camera w.r.t world is calculated by
%appending [0 0 0 1] in last row of extrinsic camera matrix.
M1(4,1:4)=[0 0 0 1];
lMw=M1;
%Extrinsic matrix of right camera w.r.t world
M2(4,1:4)=[0 0 0 1];
rMw=M2;
%Calculating extrinsic matrix of world w.r.t. right camera:
wMr=inv(rMw);
%Extrinsic Matrix of left camera w.r.t. right camera is:
lMr=lMw*wMr;
disp('Rotation matrix of right camera w.r.t left');
lRr=lMr(1:3,1:3)
disp('Translation matrix of right camera w.r.t left');
lTr=lMr(1:3,4)
%pl is image coordinate from left camera whose world coordinates are to be
%determined and pr is corresponding image coordinate fron right camera.
%disp('Original Coordinates and Reconstructed coordinates are:');
for i=1:8
    pl=[u1(i);v1(i)];
    pr=[u2(i);v2(i)];
%Define pll as 3D vector from origin of left camera to pl and prr as 3D
%vector from orifin of right of right camera to pr.
pll=[pl;fx];
prr=[pr;fx];
%Define segment S that joins rays through pll and prr and is perpendicular
%to both pll and prr.So, it is in direction of unit vector along the cross
%product of pll prr.
%First define prr in coordinate system of left camera:
lprr=lRr*prr;
q=cross(pll,lprr);
mod_q=((q(1)^2+q(2)^2+q(3)^2)^.5);
unit_q=q/mod_q;
%Fron a*pll,we can reach to b*prr bty adding certain quantity along the
%direction of segment i.e. a*pll +c*(unit_q)=lRr*b*prr+lTr;
%Writing all this in Matrix form:
D=-(lRr*prr);
A=[pll D unit_q];
B=lTr;
X=A\B;
a=X(1);
b=X(2);
c=X(3);
%We can calculate the required 3D point w.r.t. left camera as 
%PL=a*pll+C/2*(unit_q) 
PL=a*pll+(c/2)*(unit_q);
%To convert this coordinates back into world coordinate system pre-multiply
%with inverse of left camera extrinsic matrix.
PL(4,:)=[1];
Inv_lMw=inv(lMw);
P=Inv_lMw*PL;
OC=[x(i) y(i) z(i)];
%disp(OC);
RP(:,i:i)=[P(1)/P(4) P(2)/P(4) P(3)/P(4)];
RCC=RP(:,i:i);
RC=[RCC(1) RCC(2) RCC(3)];
%disp(RC);
end
%Reconstruction Error:
S=0;
for k=1:8
    Rx(k)=abs(x(k)-RP(1,k));
    Ry(k)=abs(y(k)-RP(2,k));
    Rz(k)=abs(z(k)-RP(3,k));
    S=S+power(Rx(k)^2+Ry(k)^2+Rz(k)^2,.5);
end
disp('Reconstruction Error:')
RE=S/8
APPENDIX B
ORTHOGONAL PROPERTY OF TRANSFORMATION MATRIX
To transform a vector from one reference frame to another is equivalent to changing the perspective of describing the vector from one to another.



A transformation does not alter the vectors but it alters the components of vectors.

Let i, j, k = unit vectors in global (G) reference frame (i.e. XYZ System).

      i’, j’, k’ = unit vectors in local (L) reference frame (i.e. X’Y’Z’ System).

Let vector v = (vxi +vyj +vzk) is transformed from global reference frame to local reference frame. Then,

                          vx’ = v.i’ = (vxi.i’ +vyj.i’ +vzk.i’)

                          vy’ = v.j’ = (vxi.j’ +vyj.j’ +vzk.j’)
[image: image55.wmf]
                          vz’ = v.k’= (vxi.k’ +vyj.k’ +vzk.k’)
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Thus, the transformation matrix from the global reference frame (G) to a particular reference frame (L) can be written as:

                                         TL/G = 
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Similarly,

                                         TG/L = 
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From (B.2) and (B.3) 

                                          TG/L = (TL/G)t = TL/G-1 
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In [B.2], the dot products of the unit vectors of the two reference frames are in fact the same to the components of i', j' and k' described in frame G. Therefore, the first row of the transformation matrix becomes the same to i' described in frame G, while the second and third rows are the same to unit vectors j' and k' described in frame G, respectively. Let the unit vectors of frame L described in frame G  be:



      i’ = r11 i + r12 j + r13 k




      j’ = r21 i + r22 j + r23 k
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      k’ = r31 i + r32 j + r33 k

From (B.2) and (B.5),

                    TL/G = 
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     TL/G = 
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Using (B.6), one can easily form the transformation matrices from the global frame to the local frames.

Since the rows in (B.6) are the three unit vectors of frame L described in frame G and the columns are the three unit vectors of frame G described in frame L , the following orthogonality conditions hold:
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Where         
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CAMERA MODEL
To recover the imaging process parameters, the first and most natural information one needs is the camera location with respect to a fixed coordinate frame. The origin of the camera reference frame is positioned at the center of projection of the line. So, the camera looks from this point to the outside world. The z-axis of the camera frame corresponds to the optical axis. This is an imaginary axis passing through the middle of lens. The x-axis is parallel to the horizontal axis of the image from left to right and y-axis is parallel to the vertical axis in the upward direction.

The world and cameras’ coordinate system are related through a set of parameters, such as the focal length of the lens, the position and orientation of the camera, and the position of the principal point. The camera parameters are divided into two groups: the extrinsic and intrinsic parameters. The extrinsic parameters can change with time and describes the position and orientation of the camera, and the intrinsic parameters are permanent in the camera and do not change with time, such as the focal length and the position of the principal point.
C.1  EXTRINSIC PARAMETERS:

The extrinsic parameters describe the external conditions of the camera, which are its position and attitude. To describe the position of the camera, the translation T and the rotation R of an absolute coordinate system fixed on calibration target is expressed in the camera coordinate system. With the use of homogenous coordinates (see Appendix D for a detailed explanation of homogenous coordinates) it is possible to express the rotation and translation in the same transformation matrix as it is now apparent that only six extrinsic parameters are needed to express the external condition of the camera. These are the three parameters that define the attitude of the camera and the three coordinates of the translation vector. 

The attitude of the camera is often expressed with the Euler angles: roll (γ), pitch (χ), and yaw (Φ). The attitude (or rotation matrix) of the camera can be computed by considering rotation around each axis. The direction of rotation is assumed to be in clockwise direction around the axis when looking down axis from the origin as shown in Fig.(C.1).

The three rotation matrices corresponding to three axis are constructed as:
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A series of rotation can be performed through successive multiplication of the transformation matrices from right to left. For e.g. For composing three elementary rotations: x-roll followed by y-roll and then a z-roll, the overall rotation is given by:





   R = RZ. RY. RX


 
       
On putting the values from (C.1), we get
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where  c = cos and s = sin
C.2  INTRINSIC PARAMETERS:

A camera transforms the real 3D space into a 2D image plane. The focal length in pixels (αx , αy), coordinate of image center in pixels (u0, v0) and skew parameter (s) forms the intrinsic parameters of a camera. They form a 3*3 upper triangular matrix called as calibration matrix.
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C.3   THE CAMERA PROJECTION MATRIX:




By combining the camera extrinsic and intrinsic parameters, a camera projection matrix P (of order 3*4) is formed as:





P = K [R | T] 
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C.4  PTZ CAMERAS
PTZ Cameras are cameras that can be moved via a computer, DVR, or PTZ joystick. PTZ stands for Pan, Tilt, and Zoom. These cameras can be controlled to move left to right, up and down, and zoom in and out. All of this is done through the controller. These types of cameras are often found at gas stations and large retail stores. Typically the dome-type cameras we see either hanging from the ceiling or attached to the ceiling at a store is a PTZ camera. They can easily be used to follow an event or person as they move about. One distinct advantage PTZ cameras have is the ability to zoom. One can zoom in on someone's face, a license plate, a cash register, or virtually anything else.

All PTZ cameras are color. IP PTZ cameras are connected to a local network via a CAT5 connection. One can view and control the camera from anywhere else on the internet. Usernames and passwords can be set if desired to prevent unauthorized usage.

To determine the 2D coordinates of the image, we must know the resolution of the image and the output size of the image in cm. Suppose the resolution of the camera is 1280*960, the corresponding output size of image is 16.2 cm * 12.2 cm. So, we can measure the image coordinate by measuring its distance from the origin of the image (i.e. top-left) and then applying unitary method.  

APPENDIX-D
HOMOGENEOUS COORDINATES

D.1   INTRODUCTION

In computer graphics, homogeneous coordinates are generally used to represent 3d and 2D coordinates. To convert a point from ordinary coordinate to homogeneous coordinates, a 1 is appended in the end i.e. P = (Px, Py, Pz) has the representation (Px, Py, Pz,1) in homogeneous coordinates and to convert a point from homogeneous coordinates back to ordinary coordinates, divide all of the components by the last component and discard the last component. 

D.2  USAGE OF HOMOGENEOUS REPRESENTATION

1.  An advantage of the homogeneous representation is that a general change of coordinate systems can be written in one transformation matrix. This is because both a rotation and a translation can act at the same time on a homogeneous vector. Without homogeneous representation, a rotation R followed by a translation T of a vector D = (X Y Z)T is written as:
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If D is expressed in homogeneous coordinates, it becomes D = (X Y Z 1)T and the transform can be written more compact like:
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The resulting vector of this transformation is a homogeneous vector where the image coordinates are obtained by dividing the first two coordinates with the third one.

2.  Perspective transformation also work fine when homogeneous coordinates are used.       Whenever 3D points of an object are mapped into 2D plane, we lose information about how far is the point from the origin i.e. projection discards information on depth. The actual distance of a point P from origin, in camera coordinates, is 
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, which would be cumbersome and slow to compute for each point of interest. Fig (D.1) shows points P1 and P2, which both lie on a line from the origin and therefore project to the same point. One must be able to test whether P1 obscures P2 or vice-versa.
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So, for each point P that is projected, a value called as pseudo depth is calculated which provides an adequate measure of depth for P. This pseudo depth can be calculated if homogeneous coordinates are used for calculation of projected point coordinates.
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Thus, 
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where (x*,y*) is the projected point coordinates and z* is the pseudo depth of P. Thus, if two points project to same point, the farther one always has a more negative value of PZ, so both points will have different projected point coordinates.
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Fig. 3.1 Used reference System and Collinearity Condition
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		Fig. 3.2 Vector drawn from N to P.
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Fig. 3.3 Adding Third axis to image coordinate system
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Fig. 3.4    3D Reconstruction by Triangulation
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Fig. 4.5  Original and Reconstructed Cube using Triangulation








XY





(1, 0, 1)





(0, 0, 1)





(0, 0, 0)





Z





(0, 1, 1)





(1, 1, 1)





(1.0504, 1.0446, -.0616)





(0, 1, 1)





(1, 1, 0)





Y





Fig. 4.2  Original and Reconstructed Cube using DLT Method
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      Fig. B.1 Global and Local Reference Frame





Fig. C.2  Parameter that relate the world, camera and image 			coordinate system
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Fig. C.1 Diagram of Pitch, Yaw and Roll
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Fig. D.1   Perspective Transformation
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