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Machine Learning Based Prediction of Interleukin-2 Inducing Potential of Peptides 

 

Anshita (23/MSCBIO/57) 

ABSTRACT 

Interleukins are pivotal cytokines that orchestrate immune regulation, with their dysregulation 

contributing to a spectrum of diseases ranging from autoimmunity to cancer. Among them, Interleukin-2 

(IL-2) plays a crucial role in T-cell proliferation, immune tolerance, and the efficacy of immunotherapies. 

The precise identification of IL-2-inducing peptides (IIPs) is fundamental for the rational design of 

vaccines and immunotherapeutic agents. However, experimental discovery of IIPs is inherently laborious, 

costly, and limited in throughput, underscoring the urgent need for robust computational approaches. 

Recent advances in machine learning (ML) have revolutionized peptide immunoinformatics, enabling the 

high-throughput, accurate, and reproducible prediction of cytokine-inducing peptides directly from 

sequence data. This thesis provides a comprehensive review and critical assessment of ML methodologies 

developed for predicting the interleukin-inducing potential of peptides, with a particular emphasis on IL-

2. The work begins by contextualizing the immunological significance of interleukins and the central role 

of IL-2 in immune modulation and therapy. It then systematically addresses the challenges and limitations 

associated with experimental identification of IIPs, motivating the transition to computational strategies. 

A detailed methodology is presented for the extraction, preprocessing, and curation of high-quality 

peptide datasets from the Immune Epitope Database (IEDB), focusing on experimentally validated IL-2 

inducers and non-inducers. Rigorous data cleaning, feature engineering, and exploratory data analysis are 

performed to uncover sequence-level and physicochemical patterns distinguishing IL-2 inducers. The 

thesis explores a broad spectrum of ML algorithms, feature selection techniques, and validation strategies, 

providing insights into model interpretability and performance. Comparative analyses highlight the 

strengths and limitations of current computational tools for IL-2 prediction, identifying key gaps and 

opportunities for further innovation. 

The review concludes with a forward-looking discussion on the integration of novel ML architectures, 

multi-omics data, and explainable AI to enhance the predictive power and biological interpretability of IIP 

models. The findings underscore the transformative potential of ML-driven approaches in immunological 

research, facilitating the rapid discovery of therapeutic peptides and advancing the frontiers of 

translational medicine. This thesis not only serves as an authoritative resource on the state-of-the-art in 

IL-2 peptide prediction but also provides a reproducible framework and actionable recommendations for 

future computational immunology studies. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Background on the Immune System and Cytokines 

The human immune system is a highly sophisticated network of organs, cells, proteins, and signaling 

molecules that collectively defend the body against infections and maintain tissue homeostasis [1]. It 

operates through two principal arms: innate and adaptive immunity. Innate immunity represents the body’s 

first line of defense, providing immediate, non-specific responses to invading pathogens through barriers 

such as skin, mucous membranes, and a variety of immune cells including phagocytes and natural killer cells 

[2]. This system acts rapidly but lacks the ability to remember specific pathogens. In contrast, adaptive 

immunity develops over time and is characterized by specificity and memory. It is mediated primarily by 

lymphocytes—T cells and B cells—which recognize specific antigens and mount tailored responses. Upon 

re-exposure to the same pathogen, adaptive immunity responds more rapidly and robustly due to 

immunological memory [3]. 

Central to the coordination and regulation of these immune responses are cytokines—a diverse group of 

small, secreted proteins that facilitate intercellular communication [4]. Cytokines orchestrate immune cell 

proliferation, differentiation, migration, and effector functions, acting in complex networks or cascades. 

Among the various cytokine families, interleukins (ILs) play particularly pivotal roles in modulating both 

innate and adaptive immunity. Interleukins regulate inflammation, hematopoiesis, and the activation or 

suppression of specific immune cell subsets, with each interleukin exhibiting pleiotropic and sometimes 

overlapping biological activities. Their precise regulation is essential for effective immune defense and the 

prevention of pathological conditions such as chronic inflammation, autoimmunity, or immunodeficiency 

[5]. 

1.2 Role of IL-2 in Immunity 

Interleukin-2 (IL-2) is a prototypical member of the interleukin family and a critical regulator of immune 

system function [6]. Produced primarily by activated CD4+ and CD8+ T cells, IL-2 exerts its effects through 

a heterotrimeric receptor complex composed of α (CD25), β (CD122), and γ (CD132) chains [7]. The 

binding of IL-2 to its high-affinity receptor initiates a cascade of intracellular signaling events—most 

notably via the JAK-STAT, PI3K/Akt/mTOR, and MAPK/ERK pathways—leading to the transcription of 

genes involved in cell proliferation, survival, and differentiation [8]. 

IL-2 is indispensable for T-cell proliferation, particularly during the clonal expansion phase following 

antigen recognition. It promotes the growth and differentiation of both helper and cytotoxic T cells, as well 

as the maintenance and function of regulatory T cells (Tregs), which are essential for self-tolerance and 

immune homeostasis [9]. Notably, IL-2’s dual role in stimulating effector T cells and expanding Tregs 

positions it as a master regulator—capable of amplifying immune responses against infections and tumors, 

while also preventing autoimmunity by restraining excessive or misdirected immune activity. The 

therapeutic relevance of IL-2 is underscored by its clinical applications. High-dose IL-2 therapy was among 

the first immunotherapies approved for metastatic renal cell carcinoma and melanoma, achieving durable 

responses in a subset of patients. More recently, low-dose IL-2 regimens have shown promise in selectively 

expanding Tregs to treat autoimmune diseases such as type 1 diabetes and systemic lupus erythematosus 

[10]. However, the clinical use of IL-2 is complicated by its pleiotropic effects, narrow therapeutic window, 

and potential for severe toxicities, necessitating more precise approaches for harnessing its 

immunomodulatory potential. 
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1.3 Need for Computational Prediction 

Despite the central importance of IL-2 in immunology and therapy, the experimental identification of IL-2-

inducing peptides remains a significant challenge [11]. Traditional wet-lab approaches—including peptide 

synthesis, in vitro assays, and animal models—are labor-intensive, costly, and often limited in throughput. 

These constraints hinder the rapid discovery and optimization of peptide-based immunotherapies or vaccines 

targeting IL-2 pathways [12]. In recent years, the rise of machine learning (ML) and artificial intelligence 

has revolutionized peptide immunoinformatics, enabling the prediction of cytokine-inducing peptides 

directly from sequence data [13]. ML models can learn complex relationships between peptide features and 

biological activity, facilitating the in silico screening of vast peptide libraries and prioritizing candidates for 

experimental validation. While robust computational tools exist for predicting peptides that induce other 

interleukins—such as IL-4, IL-5, and IL-10—there remains a notable gap in resources specifically tailored 

for IL-2 [14]. This gap is particularly striking given IL-2’s therapeutic significance and the growing interest 

in personalized immunotherapies. The development of accurate, interpretable, and user-friendly ML models 

for IL-2-inducing peptide prediction would accelerate discovery pipelines, reduce experimental burden, and 

deepen our understanding of the sequence and structural determinants underlying IL-2-mediated immune 

responses. Such advances are critical for translating basic immunological insights into novel diagnostics, 

vaccines, and immunotherapies [15]. 

In short, the immune system’s complexity and the central role of cytokines like IL-2 in orchestrating 

immune responses highlight the need for advanced computational tools. By leveraging machine learning, 

researchers can bridge the gap between experimental limitations and the growing demand for precision 

immunomodulation, ultimately enabling more effective and safer therapeutic strategies. This thesis is 

dedicated to addressing this unmet need by providing a comprehensive review and data-driven framework 

for the computational prediction of IL-2-inducing peptides. 
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CHAPTER 2. REVIEW OF LITERATURE 

 

2.1 Introduction 

Interleukins (ILs) are central cytokines controlling innate and adaptive immunity through complex signaling 

cascades that modulate immune cell activation, differentiation, and effector responses [16]. As an 

illustration, IL-1 signaling turns on NF-κB and AP-1 transcription factors, activating dendritic cells and 

macrophages, and enabling T cell-dependent antibody responses—testifying to the importance of ILs within 

host defense mechanisms [17]. The precise identification of interleukin-inducing peptides (IIPs) is therefore 

pivotal for the development of immunotherapeutic methods, vaccine design, and diagnostics [18]. Although 

classical assays like cytokine release and ELISpot are axiomatic, they are labor-intensive and low-

throughput in nature, which makes the use of computational alternatives a necessity [19]. Advances in 

machine learning in recent times have made it possible to extract sophisticated sequence features and build 

accurate predictive models, as evidenced by methods such as IL2pred and IL6Pred, which apply large-scale 

immunological data to predict IL-2 and IL-6 inducing peptides, respectively [18], [20]. Models like 

enhanced iIL13Pred demonstrates that the accuracy and generalizability of IIP prediction  can be increased 

by using combination of multi-classifiers and advanced feature selection which facilitates quick in silico 

screening and logical immunomodulator design [21]. Moreover, the development of comprehensive 

databases and web servers dedicated to interleukin-inducing peptides has made it simpler for the scientific 

community to benchmark and access predictive models. Even though all these developments have been 

made, there is still room for improvement regarding data imbalance, sparse experimental validation, and the 

interpretable models.  

2.2 Biological Significance of Interleukins 

 
Innate immunity acts as the first line of defense in our body. B and T lymphocytes play a very pivotal role in 

innate immunity. The foreign antigens expressed by MHC II stimulate the release of various cytokines by T 

helper cells. Interleukins are one of the extensive group of cytokines which are secreted by Th2 helper cells 

and promotes proliferation of lymphocytes, natural killer cells and macrophages. Chemically interleukins are 

glycoproteins having a length range of 99 to 1332 amino acids [22]. They were first discovered in 1970s and 

till now scientists have characterized almost 40 different interleukins. They play pivotal role in immune cell 

system like cell proliferation, differentiation, maturation, chemotaxis, phagocytosis adhesion and migration 

to the affected region. The action mechanism of interleukins involved binding to high affinity receptors 

expressed on cell surfaces and the inducing cascade of responses [23]. This action mechanism can be 

achieved by three different ways which are autocrine, paracrine and endocrine release of interleukins and 

this helps them to act throughout the body like metabolic, neuroendocrine and cardiovascular systems 

ultimately contributing to homeostasis of body. They are able to perform so many functions because of some 

key properties they possess like redundancy, pleiotropy, synergism and antagonism [24]. Based on their 

function, Interleukins can be divided into three categories which includes i) inflammatory mediators, largest 

category including interleukins like IL-1, IL-4, IL5, IL-6 etc. and they act by initiating immune reactions 

against pathogens by activating and attracting immune cells ii) anti-inflammatory biomarkers like IL-10, IL-

30, IL-37  which act to contain immune reactions and avoid excessive tissue destruction, thus ensuring 

immune balance and iii) the last category includes IL-2,IL-11, IL-12 which can act as both and result in 

inflammation and anti-inflammation depending upon the situation [22]. Pathological conditions like 

persistent inflammation, autoimmune conditions, allergies, and even cancer can result from a distortion of 

the delicate balance between these two opposing interleukins. Moreover, interleukins are also responsible for 

the management of disease by creating a favorable microenvironment and boosting cytotoxic T cells and 

natural killer (NK) cells [25]. Interleukins can also provide anti-tumor immunity in cancer Targeted 

therapies, such as recombinant IL-2 in cancer immunotherapy and monoclonal antibodies that act against IL-

6 in rheumatoid arthritis, have been developed as a result of this dualism, highlighting their therapeutic use 

[26]. Additionally, activity of non-immune cells like endothelial and epithelial cells can be controlled by 

interleukins by promoting tissue repair and regeneration after damage [27]. 
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By influencing insulin sensitivity and the breakdown of lipids, interleukins also contribute to metabolic 

regulation, and provide us a link between immune function to metabolic homeostasis [28]. The intricacy of 

interleukin's signaling pathways and pleiotropic effects points out both their importance as therapeutic 

targets in a variety of diseases and their vital role in sustaining health. 

 

 

 
 

Figure 1: Functions of Interleukins 
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2.3 Interleukins and Peptide Immunogenecity 
 

The communication and behavior of immune cells depend extensively on interleukins such as IL-2, IL-4, IL-

6, IL-10, IL-12, and IL-17. For instance, T-cell proliferation necessitate IL-2, Th2 differentiation calls for 

IL-4, acute phase response involves IL-6, immune suppression demands IL-10, and pro-inflammatory 

response demands IL-17.The immunogenicity of peptides—that is, their capacity to elicit a cytokine 

response—is determined by their primary sequence, conformational structure, and physicochemical 

characteristics. Physical and structural features such as specific amino acid motifs, hydrophobicity, charge, 

and secondary structure tendency can determine immune receptor recognition of peptides and cytokine 

induction. Experimental discovery of IIPs is normally achieved by in vitro immune cell stimulation followed 

by ELISA, flow cytometry, or multiplex bead assay for cytokine quantification. All of these wet-lab methods 

are, however, impaired by limited scalability, variability in biological samples, and the intricate nature of 

immune signaling networks. Consequently, computational prediction has also become an essential adjunct to 

experimental discovery, facilitating efficient hypothesis generation and selection of candidate peptides for 

confirmation [29]. 

 

2.4 Biological Datasets and Features 

The root of ML-based IIP prediction stems from the presence of high-quality, annotated datasets [21], [30]. 

Databases like the Immune Epitope Database (IEDB) contain experimentally confirmed interleukin-inducing 

and non-inducing peptides for different cytokines like IL-2, IL-4, IL-6, IL-10, IL-13, and IL-17. Dedicated 

resources and webservers like IL13Pred and iIL13Pred for IL-13, and IL17eScan for IL-17, offer pre-curated 

datasets and predictive tools [21], [16]. Peptide information are usually provided in formats like FASTA for 

sequence data and PDB for structural information. Feature extraction involves a variety of sequence-derived 

and physicochemical descriptors such as amino acid composition (AAC), dipeptide composition (DPC), 

position-specific scoring matrices (PSSM), and motifs of higher-order [18], [20], [25], [30]. Sophisticated 

feature engineering strategies, including the application of physicochemical property indices, secondary 

structure prediction, and pre-trained model-based structural embeddings (e.g., ESM-1b), also add more 

richness to the feature set and enhance the performance of the model [30]. Apart from the applications of 

extensive repositories and sophisticated feature extraction, recent works have also stressed the significance 

of curating non-redundant sets to limit bias and overfitting in the ML models for IIP prediction. For instance, 

the IL2pred tool contains modules that not only enable prediction of IL-2-inducing peptides but also 

scanning proteins for IL-2-inducing peptides and peptide analog ranking according to predicted activity, thus 

facilitating rational peptide design [27]. Likewise, iIL13Pred has shown that incorporating multivariate 

feature selection techniques, for instance, minimum redundancy maximum relevance (mRMR), can 

substantially improve model performance by determining the most informative and least redundant features 

from high-dimensional peptide data. Multimodal modeling approaches combining alignment-based strategies 

(e.g., BLAST), motif discovery tools (e.g., MERCI), and machine learning classifiers have also shown to 

improve IIP prediction accuracy and robustness, as evident in recent IL-17 research [30]. These combined 

methods, coupled with easy-to-use web servers, have become available to the wider scientific community 

due to ML-based IIP prediction, allowing for rapid and high-throughput in silico screening of candidate 

immunomodulatory peptides. 

2.5 Data Preprocessing Strategies 

Strong data pre-processing is essential for developing trustworthy ML models. Removal of redundancy, 

usually carried out through means such as CD-HIT, eliminates redundant datasets through clustering similar 

sequences and keeping representatives [30]. Balancing class imbalance—frequent in biological datasets—is 

obtained with methods like Synthetic Minority Over-sampling Technique (SMOTE) and random under-

sampling, equating the number of positive (inducing) and negative (non-inducing) instances [31]. Feature 

scaling and normalization, i.e., min-max scaling and z-score standardization, are used to standardize feature 

distributions and ensure model convergence. Encoding techniques like one-hot encoding, BLOSUM 

matrices, and learned embeddings are used to encode peptide sequences in compatible formats with ML 

algorithms [32].  
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Moreover, aggressive cross-validation techniques, including k-fold and stratified cross-validation, are 

applied systematically to validate model generalizability and avoid overfitting, particularly for the case of 

small or unbalanced datasets. Utilization of external independent test sets, derived from recent experimental 

findings or withheld during training, also confirms model robustness and real-world validity.  Recent 

research has also emphasized the strength of ensemble learning techniques, where predictions from several 

models are combined to increase overall accuracy and minimize variance. Interpretability methods—e.g., 

feature importance ranking and SHAP (SHapley Additive exPlanations) analysis—are increasingly used to 

clarify the biological significance of important features and to build confidence in ML-generated predictions.  

These robust pre-processing and validation approaches are the foundations of leading-edge ML pipelines for 

the prediction of interleukin-inducing peptides [33]. 

Figure 2: Steps of Data Preprocessing 

 

2.6 Feature Extraction and Selection 

In IIP prediction, feature extraction takes both manual and computational forms. Domain Expertise is used to 

calculate features like AAC, DPC, and physicochemical descriptors in conventional manual methods [21], 

[30], [31], [34]. While newer computational developments have incorporated embedding methods based on 

pre-trained language models (e.g., ESM-1b, ProtBert) that is based on the principle of learning context and 

structure from peptide sequences. Feature extraction plays a pivotal role to further enhance model 

explainability and reduce dimensionality [35]. Methods such as LASSO regression, analysis of variance 

(ANOVA), and minimum redundancy maximum relevance (mRMR) are also used frequently to get the 

features containing best information. Principal component analysis (PCA) and t-distributed stochastic 

neighbor embedding (t-SNE) are two dimensionality reduction techniques that helps in visualization and 

lower the likelihood of overfitting [34], [35]. Moreover, because hybrid feature sets provide better 

performance than descriptor or embedding alone because they can capture both global sequence features and 

subtle contextual information. Scientists have proved in their research that combining different feature 

selection techniques, such as mRMR with ANOVA or LASSO, can improve feature space refinement and 

produce more stable predictive models. Estimating class separability and identifying probable outliers or 

mislabeled samples received assistance from the visualization of high-dimensional embeddings using t-SNE 

and PCA In addition to improving classification accuracy, deep learning-based feature extraction from ESM-

1b and ProtBert makes it easier to find novel sequence motifs relevant to interleukin induction. When 

building state-of-the-art IIP prediction models, these advancements emphasize the necessity of an integrated 

and iterative approach for feature engineering along with selection [36]. 
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Figure 3: Worlflow for Developing AIML Model 

 

 

2.7 Machine Learning Models for IIP Prediction 

A wide variety of supervised learning models has been used to predict IIP [21], [37]. SVM, RF, k-NN, and 

logistic regression are commonly used because they are strong and easy to interpret [30], [37]. Ensemble 

learning methods, such as gradient boosting, XGBoost, and LightGBM, provide better predictive accuracy 

through the combination of multiple base learners [26], [34]. Deep learning algorithms have come to the 

forefront, where convolutional neural networks (CNNs) are outstanding at identifying local sequence motifs 

and recurrent neural networks (RNNs, LSTMs) at modeling sequential relationships [33], [38]. Transformer-

based systems, including  ProtBert, make use of attention mechanisms to represent long-range interactions 

and have been useful in peptide classification problems [34], [38]. Interestingly, the latest research has also 

investigated graph neural networks (GNNs) with three-dimensional (3D) structural information, as in the 

case of DGIL-6 for IL-6-inducing peptide prediction, which considers sequence-based and structure-based 

features for improved accuracy [38]. Recent comparative studies have shown that hybrid models, which 

combine both traditional machine learning and deep learning methods, tend to perform better than single-

model strategies in terms of precision and transferability. For example, DGIL-6 amalgamates graph neural 

networks with deep embeddings to efficiently leverage both sequence and structural data, leading to better 

performance in independent test sets. In addition, architectures based on GNN have also demonstrated 

specific potential in representing spatial relationships between amino acids, which are of utmost importance 

for the functional activity of interleukin-inducing peptides.  Transfer learning has also been put forward 

through studies by using pre-trained transformer models such as ProtBert, which is fine-tuned against IIP 

datasets, and which allows for quick adaptation across novel cytokine targets under minimal labeled data. 

Ensemble stacking techniques, which combine the predictions of various base learners, have been utilized to 

enhance predictive reliability even further as well as to overcome the shortcomings of single algorithms. 

These methodological improvements highlight the dynamic and changing nature of computational IIP 

prediction, opening the door to increasingly precise and biologically driven models [34], [39]. 

2.8 Performance Matrices and Validation Techniques 

The assessment of ML models for IIP prediction uses conventional classification measures, such as 

accuracy, precision, recall, and F1 score, which together measure the balance between true positive and false 

positive rates [40]. Receiver Operating Characteristic Area under the Curve (ROC-AUC) and Precision-

Recall AUC (PR-AUC) offer threshold-independent estimations of model discrimination, especially useful 

in imbalanced data [41].  
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Cross-validation techniques, including k-fold and stratified cross-validation, are commonly applied to 

estimate model generalizability and prevent overfitting. Independent test of a dataset by the use of external, 

unseen data is the gold standard for the evaluation of real-world predictive accuracy [42]. Apart from these 

baseline metrics, Matthews Correlation Coefficient (MCC) is also commonly suggested for imbalanced 

datasets since it offers balanced assessment even when class distributions are imbalanced.  Brier scores and 

calibration plots are also used to measure the reliability of predicted probabilities so that the model's 

confidence is consistent with actual cases. Current guidelines prefer the reporting of multiple measures—

over accuracy alone—to present a complete performance profile, particularly in biomedical contexts where 

false positives or false negatives may result in serious consequences.  In addition, testing protocols that are 

independent recommend the application of temporally or experimentally separated datasets to critically 

assess model robustness and avoid the potential for data leakage [43]. These best practices, in conjunction 

with transparent reporting and extensive validation, are essential for establishing the credibility and 

translational value of ML-based IIP prediction tools. 

 

. Table 1: A comparative summary of recent ML-based tools for IIP prediction 

Tool/Server Interleukin 

Target 

Interleukin 

Target 

Features 

Used 

Performance 

(AUC/Accuracy) 

Reference 

iIL13Pred IL-13 IL-13 mRMR-

selected, 

DPC, AAC 

AUC: 0.83, MCC: 

0.33 [44] 

IL13Pred IL-13 IL-13 DPC, AAC Lower than 

iIL13Pred [45] 

DGIL-6 IL-6 IL-6 Structural + 

sequence 

Noted improved 

accuracy [46] 

IL17eScan/iIL17Pred IL-17 IL-17 DPC, 

BLAST, 

MERCI 

AUC: 0.88, MCC: 

0.68 [47] 

IL10Pred IL-10 IL-10 DPC, AAC Accuracy: 81.24%, 

MCC: 0.59 [48] 

ILeukin10Pred IL-10 IL-10 Sequence-

based, hybrid 

features 

Accuracy: 87.5%, 

MCC: 0.755 [49] 

StackIL10 IL-10 IL-10 AAC, TPC, 

APAAC, 

DPC, etc. 

Accuracy: 81.24%, 

MCC: 0.59 [50] 

IL2pred IL-2 IL-2 Dipeptide 

composition, 

peptide length 

AUC: 0.84 

(ensemble), MCC: 

0.51 

[51] 

IL4Pred2 IL-4 IL-4 Sequence-

derived, 

similarity, 

motifs 

AUC: 0.80, MCC: 

0.45 

(human/mouse) 

[52] 

 

2.9 Challenges and Limitations 

Even with considerable advancements, a number of issues still hinder ML-based IIP prediction. Relatively 

low access to experimentally verified data limits model training and external validation, especially for less-

well-studied interleukins. Biases in training sets, e.g., an overabundance of some peptide motifs or 

experimental error, can reduce model generalizability. Immune response complexity as well as peptide 

immunogenicity's multifactorial nature pre sent further challenges.  
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In addition, interpretability of deep models is still limited, hampering biological insight and translation to the 

clinic. Overcoming such limitations calls for sustained efforts in data curation, model explainability and 

fusion of multi-modal information. 

2.10 Future Research Directions 

Future IIP prediction research stands to gain from the combination of multi-omics data, including genomics, 

transcriptomics, and proteomics, to capture a comprehensive picture of immune regulation [53]. Host genetic 

variability like HLA alleles need to be accounted for in personalized prediction models for precision 

immunotherapy and vaccine design [54]. The advancement of explainable AI (XAI) methods has the 

potential to improve the interpretability of ML models, supporting biological discovery as well as hypothesis 

generation. Moreover, automated integration of IIP prediction pipelines with vaccine design software will 

expedite the translation of computational insights into clinic-approved applications [55]. 

2.11 Conclusion 

Machine learning has revolutionized the field of interleukin-inducing peptide prediction as it provides 

scalable, accurate, and stable alternatives to experimental approaches. Innovation in feature engineering, 

model design, and validation techniques has led to the creation of cutting-edge tools for various interleukins, 

with potential applications in immunotherapy and vaccine development. Future advancements in this field 

will depend on increasing high-quality data, enhancing model explainability, and multi-disciplinary 

collaboration. Finally, ML- and immunology convergence promises a new era of translational research, with 

important implications for human health and disease control. 



10 
 

 

 

 

CHAPTER 3. METHEDOLOGY 

 

3.1 Data Extraction from IEDB 

i. Protein Epitope Type Selection: Linear peptide was chosen, ensuring that only continuous amino 

acid sequences are included in the dataset. Discontinuous and non- peptidic epitopes are excluded, 

focusing the analysis on linear peptide antigens. 

ii. Assay Type and Outcome: T Cell and B Cell assays, as well as MHC Ligand data, were selected. 

This comprehensive approach allows collection of peptides tested in various immune contexts. The 

assay filter specifically includes "IL-2 release" or "biological assay," ensuring that only peptides 

evaluated for their ability to induce IL-2 production are retrieved. 

Both Positive and Negative outcomes were selected, allowing for the creation of datasets of IL-2 

inducers and non-inducers, which is essential for supervised machine learning model development. 

iii. MHC Restriction: The Any option is selected for MHC restriction, meaning peptides restricted by 

any MHC class (I, II, or non-classical) are included. This broadens the dataset and allows later 

filtering by specific MHC types if required for downstream analysis. 

iv. Epitope Source: No specific organism, antigen, or host was pre-selected, but the interface allows 

for further filtering by organism (e.g., Homo sapiens) or antigen if needed.  

v. Host and Disease: All host and Any disease state were selected, capturing peptides tested in all 

available host organisms and disease contexts. This maximizes dataset size and diversity, with the 

option to restrict to human data or specific disease states during preprocessing. 

 

3.2 Data Preprocessing 

i. Removal of Amino Acids After ‘+’ Sign and the ‘+’ itself: For any peptide containing a ‘+’ 

character, both the ‘+’ and the amino acid immediately following it were removed. This step 

addresses potential post-translational modification annotations or concatenated peptide artifacts. 

ii. Exclusion of Peptides with Unnatural Amino Acids: Peptides containing non-standard or 

ambiguous amino acids (B, J, O, U, X, and Z) were filtered out. This ensures only naturally 

occurring amino acid sequences remain for analysis. 

iii. Removal of Redundancy: Duplicate peptide sequences were eliminated from each dataset, 

resulting in a non-redundant list of unique peptides. 

iv. Length Filtering: Only peptides with lengths of 8 to 30 amino acids were retained. Sequences 

shorter than 8 or longer than 30 residues were excluded, focusing the dataset on peptides most 

relevant for MHC binding and immunogenicity studies. 

v. Frequency Calculation: The frequency (occurrence count) of each unique peptide was determined, 

although after deduplication, each peptide appears only once in the filtered dataset. 

vi. Saving Results: The final lists of filtered peptides for both positive and negative datasets were saved as 

new files for further analysis. 

vii. Removal of Overlapping Peptides: After preprocessing, peptides present in both the positive and 

negative datasets were identified as common. These overlapping sequences were removed from both 

datasets, ensuring that each peptide is exclusive to either the positive or negative set, eliminating class 

ambiguity. 
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3.3 Exploratory Data Analysis and Visualization 

 
i. Peptide Length Distribution Analysis: The peptide length distribution was analyzed for both 

positive and negative datasets. Histograms and boxplots were generated to visualize the range and 

central tendency of peptide lengths. 

 

ii. Amino Acid Composition (AAC) Analysis : The relative frequency of each amino acid was 

calculated for both classes. Bar plots were created to compare the enrichment or depletion of specific 

residues.  

 

iii. Dipeptide Composition (DPC) Analysis: The occurrence of all 400 possible dipeptide pairs was 

computed, normalized by the total number of dipeptides in each class. Heatmaps were generated to 

visualize the most and least frequent dipeptides, highlighting sequence motifs potentially relevant for 

IL-2 induction. 

 

iv. Sequence Logo Generation: To assess positional preferences, sequence logos were generated for 

both N- and C-terminal residues using R’s ggseqlogo package or Python’s WebLogo. This approach 

revealed enrichment of certain residues (e.g., hydrophobic or positively charged) at specific positions 

in IL-2 inducers, and depletion of others (e.g., hydrophilic or acidic residues). 

 

v. Motif Discovery: Motif analysis was performed using MERCI software, identifying short sequence 

patterns unique to either IL-2 inducers or non-inducers. Motifs were reported in tabular format, 

including their frequency and exclusivity, and visualized as motif logos for interpretability 

 

vi. Physicochemical Property Analysis: Using Python packages such as peptides.py and modlAMP, a 

suite of physicochemical descriptors was computed for each peptide, including: 

a. Hydrophobicity (Kyte-Doolittle scale) 

b. Isoelectric point 

c. Molecular weight 
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3.4 Software and Tools used 

 
 

Table 2.  Overview of software tools used in this study, including their primary functions and official 

access links. 

 

 

Purpose Tool/Package Language Reference/Functionality Reference (Link) 

Data 

handling and 

statistics 

pandas Python Data import, cleaning, 

descriptive statistics, 

plotting 

pandas.pydata.org  
[56] 

Sequence 

feature 

extraction 

modlAMP, 

peptides.py 

Python Compute AAC, DPC, and 

physicochemical 

descriptors 

modlAMP, 

peptides.py [57] 

Visualization matplotlib, 

seaborn 

Python Generate histograms, 

boxplots, bar charts, and 

heatmaps 

matplotlib.org, 

seaborn.pydata.org 

[58] 

Sequence 

logo 

generation 

ggseqlogo, 

RWebLogo 

R Create sequence logos for 

positional amino acid 

analysis 

ggseqlogo CRAN, 

RWebLogo [59] 

Motif 

discovery 

MERCI Standalone Discover conserved 

motifs exclusive to IL-2 

inducing peptides 

MERCI Tool [60] 

Machine 

learning 

(optional) 

scikit-learn Python Feature selection and 

modeling (not used in this 

study) 

scikit-learn.org 

[61] 

Notebook 

environment 

Jupyter 

Notebooks 

Python Reproducible interactive 

workflow for data 

exploration and analysis 

jupyter.org  [62] 

Data 

management 

Microsoft 

Excel 

- Manual curation and 

summary table creation 

Microsoft Excel 

[63] 

https://pandas.pydata.org/
https://modlamp.org/
https://github.com/jensengroup/peptides.py
https://matplotlib.org/
https://seaborn.pydata.org/
https://cran.r-project.org/package=ggseqlogo
http://weblogo.berkeley.edu/logo.cgi
https://webs.iiitd.edu.in/raghava/merci/
https://scikit-learn.org/
https://jupyter.org/
https://www.microsoft.com/en-us/microsoft-365/excel
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CHAPTER 4. RESULT AND DISCUSSION 

4. 1 Peptide length analysis 

 

 

 
 

Figure 4: Positive and Negative Peptide Length Distribution before and after filtering  

 

 

Before filtering, both positive and negative datasets show a pronounced peak at 15 amino acids, with 

additional smaller peaks at 9, 17, and 20 residues. This reflects the experimental design and biological 

relevance, as peptides of these lengths are commonly tested in immunological assays. While, after filtering, 

the overall shape of the distribution is preserved, but the total counts decrease, especially for the most 

frequent lengths (e.g., 15-mers). This reduction indicates that many redundant or overlapping sequences 

have been removed, resulting in a cleaner, non-redundant dataset. The negative class consistently shows a 

higher count of 15-mer peptides compared to the positive class, both before and after filtering. This suggests 

that 15-mers are more frequently tested but not necessarily more likely to induce IL-2, highlighting a 

potential experimental bias. The positive class maintains a broader distribution across multiple lengths, 

indicating that IL-2 inducers are not confined to a single peptide length.  
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Filtering for uniqueness and removing overlaps ensures that the dataset used for model training is free from 

bias caused by repeated or ambiguous sequences. This step is crucial to prevent overfitting and to ensure that 

the model learns generalizable features rather than memorizing redundant examples. The persistence of 

length distribution patterns after filtering suggests that peptide length remains a relevant feature for 

distinguishing between IL-2 inducers and non-inducers, though it should be used in conjunction with other 

sequence-based features. The dominance of 15-mers likely reflects their use in overlapping peptide libraries 

for T-cell epitope mapping, particularly for MHC class II studies. The presence of unique peptides across a 

range of lengths in the positive set supports the biological diversity of IL-2 inducing sequences and suggests 

that models should not be restricted to a narrow length window. 

 

 

Figure 5: Peptide Length Distribution of positive and negative  unique dataset 

 

Both positive and negative peptides exhibit a broad range of lengths, but the majority cluster between 8 and 

20 amino acids, with a pronounced peak around 15 residues. The boxplot shows that positive peptides have a 

slightly wider length distribution, including more outliers at both shorter and longer lengths, while negative 

peptides are more tightly clustered around the median. The overlap in length distributions suggests that 

length alone may not be a strong predictor of IL-2 induction. However, the presence of subtle differences—

such as a higher median and greater variability in the positive class—indicates that peptide length could still 

contribute as a supportive feature in machine learning models. Including peptide length as a feature may help 

models capture sequence characteristics associated with IL-2 induction, especially when combined with 

other sequence-derived descriptors. The enrichment of peptides around 15 amino acids aligns with the 

optimal length for MHC class II binding, which is relevant for T-cell mediated IL-2 responses. The presence 

of longer and shorter peptides among inducers may reflect biological diversity in antigen processing or 

presentation pathways. These findings support the inclusion of peptide length as a basic feature in predictive 

modeling, but also highlight the need for more complex features (e.g., sequence composition, motif 

presence) to improve classification performance. The visualization also justifies preprocessing steps that 

filter out extreme lengths, focusing the dataset on biologically relevant peptides. 
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4.2 Amino Acid Composition (AAC) Analysis 

 

 

Figure 6: Amino Acid Composition of positive and negative dataset 

 

Certain amino acids, such as alanine (A) and leucine (L), are more abundant in IL-2 inducing peptides 

compared to non-inducers. For example, leucine shows the highest enrichment in the positive class, 

suggesting a potential role in IL-2 induction. Conversely, some residues like serine (S) and glutamine (Q) 

display similar or slightly higher frequencies in the negative class, indicating they may not be as strongly 

associated with IL-2 induction. The observed differences in amino acid frequencies between the two classes 

highlight the potential of amino acid composition as a discriminative feature for machine learning models. 

Amino acids with the largest frequency differences (e.g., L, A, I) can serve as important input variables, 

helping models distinguish between IL-2 inducers and non-inducers. These compositional biases may reflect 

underlying structural or functional motifs relevant to T-cell activation and cytokine release, further justifying 

their inclusion as features. The enrichment of hydrophobic residues (e.g., L, I, A) in IL-2 inducers could 

indicate a preference for certain physicochemical properties that facilitate MHC binding or T-cell receptor 

recognition, both critical for cytokine induction. The relatively uniform distribution of other residues 

suggests that while some amino acids are important, IL-2 induction is likely influenced by a combination of 

sequence features rather than a single dominant residue. These findings support the use of amino acid 

composition (AAC) as a baseline feature set in predictive modeling. Additionally, the plot suggests that 

further exploration of position-specific composition or higher-order features (e.g., dipeptide composition, 

motif analysis) may yield even greater discriminative power. 
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4.3 Dipeptide Composition (DPC) Analysis 

 

 

 
Figure 7: Dipeptide Composition of positive dataset 

 

 

 
Figure 8: Dipeptide Composition of negative dataset 
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The dipeptide composition heatmaps for IL-2 inducing (positive) and non-inducing (negative) peptides 

reveal distinct patterns in the frequency of dipeptide pairs across the two classes. In the positive dataset, the 

distribution of dipeptide frequencies appears more uniform, with a few specific dipeptides showing higher 

enrichment, as indicated by darker blue shades. This suggests that certain dipeptide motifs may be 

preferentially associated with IL-2 induction, potentially reflecting sequence patterns important for T-cell 

activation and cytokine release. In contrast, the negative dataset exhibits a more heterogeneous distribution, 

with several dipeptides showing relatively higher frequencies (darker red), indicating that non-inducing 

peptides may be characterized by different or more repetitive dipeptide patterns. These compositional 

differences are significant for machine learning model development, as they highlight the potential of 

dipeptide composition features to discriminate between IL-2 inducers and non-inducers. Incorporating 

dipeptide frequencies as input variables can enhance the model’s ability to capture subtle sequence motifs 

and dependencies that are not apparent from amino acid composition alone. Biologically, the enrichment of 

specific dipeptides in the positive class may point to underlying structural or functional motifs required for 

effective immune signaling. Overall, this analysis underscores the value of dipeptide composition as an 

informative feature set, supporting both the interpretability and predictive power of computational models 

for IL-2 inducing peptide identification. 

 

 

4.4 Sequence Logo Generation 

 

 
 

Figure 9: N-terminal sequence logo for positive peptides 

 

 

 

 
 

Figure 10: N-terminal sequence logo for negative peptides 
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Figure 11: C-terminal sequence logo for negative peptides 

 

 

Figure 12: C-terminal sequence logo for negative peptides 

The sequence logo analysis of both N-terminal and C-terminal regions for IL-2 inducing (positive) and non-

inducing (negative) peptides provides valuable insights into position-specific amino acid preferences that can 

influence peptide function and immunogenicity. In the sequence logos for positive peptides, certain amino 

acids such as glycine (G), alanine (A), and leucine (L) are prominently enriched at specific positions, as 

indicated by their larger letter heights, suggesting a strong positional conservation and potential importance 

in IL-2 induction. In contrast, the logos for negative peptides display a more diverse and less conserved 

pattern, with no single amino acid dominating at most positions, reflecting higher sequence variability. This 

contrast implies that IL-2 inducing peptides may rely on specific sequence motifs or structural features at 

their termini, which could be critical for MHC binding or T-cell receptor recognition. The observed 

conservation in positive peptides, especially at the N-terminus, supports the hypothesis that certain residue 

arrangements are favored for biological activity, while the lack of such patterns in negatives may contribute 

to their non-inducing nature. From a machine learning perspective, these position-specific enrichment 

patterns provide a rationale for incorporating positional encoding or motif-based features into predictive 

models, as they capture information beyond global amino acid composition. Overall, the sequence logo 

analysis highlights the functional relevance of terminal motifs in IL-2 induction and underscores the 

potential of using such positional features to enhance the interpretability and accuracy of computational 

models for peptide immunogenicity prediction. 
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4.5 Motif Detection 

 

 

Figure 13: Top 5 Motif logo for positive peptides 

 

 

Figure 14: Top 5 Motif logo for negative peptides 

 

The motif logo plots for the top five exclusive motifs in IL-2 inducing (positive) and non-inducing (negative) 

peptides provide important insights into the sequence patterns that distinguish these two classes. In the 

positive motif logo, certain amino acids—such as W, Y, and Q—are highly conserved at specific motif 

positions, as indicated by their larger letter heights. This strong positional conservation suggests that these 

residues may be critical for the biological activity associated with IL-2 induction, potentially facilitating 

specific interactions with MHC molecules or T-cell receptors. In contrast, the negative motif logo displays a 

different pattern, with residues like W, Y, and G appearing prominently but at different positions or with less 

conservation, reflecting alternative sequence motifs that may lack the capacity to trigger IL-2 release. The 

presence of distinct, highly conserved motifs in the positive set underscores the functional importance of 

particular short sequence patterns in driving immunogenicity. For machine learning applications, these 

motifs serve as highly informative features: their presence or absence can be encoded as binary or frequency-

based variables, enhancing the model’s ability to discriminate between inducers and non-inducers. 

Furthermore, the exclusivity of these motifs to either the positive or negative class reduces ambiguity and 

improves the interpretability of predictive models. Overall, the motif detection results highlight the 

biological and computational relevance of short, conserved sequence patterns in peptide immunogenicity, 

supporting their integration into feature engineering pipelines for robust IL-2 induction prediction. 
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4.6 Physiochemical Property Analysis 

 

 
Figure 15: Hydrophobicity distribution of positive and negative peptides 

 

 
Figure 16:  Hydrophobicity distribution of positive and negative peptides 
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The hydrophobicity distribution and violin plots reveal that both IL-2 inducing (positive) and non-inducing 

(negative) peptides exhibit a broadly similar, approximately normal distribution of hydrophobicity values, 

centered near zero. However, positive peptides show a slightly higher frequency of values around the mean 

and a marginally broader spread, indicating greater variability in hydrophobicity among inducers. The violin 

plot further suggests that while the central tendency is comparable between the two classes, positive peptides 

may include more extreme hydrophobic and hydrophilic sequences. These subtle differences imply that 

hydrophobicity, while not a sole distinguishing factor, could contribute as a supportive feature in machine 

learning models, potentially capturing nuanced physicochemical patterns relevant to IL-2 induction. 

 

 
Figure 17: Molecular weight distribution of positive and negative peptides 
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Figure 18: Molecular weight distribution of positive and negative peptides 

 

The molecular weight distribution plots show that both IL-2 inducing (positive) and non-inducing (negative) 

peptides span a similar range, but positive peptides display a broader and more variable distribution, with 

multiple peaks and a higher frequency of both lower and higher molecular weights. In contrast, negative 

peptides are more tightly clustered around the central peak. The violin plot further confirms this greater 

diversity in molecular weight among inducers. These differences suggest that molecular weight, while not a 

sole discriminator, may contribute as a useful feature in machine learning models by capturing underlying 

sequence diversity relevant to IL-2 induction12. 
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Figure 19: Isoelectric Point distribution of positive and negative peptides 

 

 

 
Figure 20: Isoelectric Point distribution of positive and negative peptides 

 

The isoelectric point distribution and violin plots show that both IL-2 inducing and non-inducing peptides 

span a wide range of pI values, with multiple peaks observed in both classes. While the overall distribution 

patterns are similar, positive peptides display slightly higher frequencies at certain pI ranges and a 

marginally broader spread, suggesting greater diversity in their isoelectric points. These subtle differences 

indicate that isoelectric point could serve as a supportive feature for machine learning models, potentially 

capturing physicochemical nuances relevant to IL-2 induction. 
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Figure 21: Scatter Matric of different Physiochemical properties of positive and negative peptides 

 

The scatter matrix of physicochemical properties illustrates the relationships among hydrophobicity, 

molecular weight, and isoelectric point for IL-2 inducing (positive) and non-inducing (negative) peptides. 

The diagonal plots show that both classes have broadly overlapping distributions for each property, but 

subtle differences are evident: positive peptides display slightly greater variability in molecular weight and a 

marginally broader spread in isoelectric point. The scatter plots reveal no strong linear separation between 

classes based on any single property, yet the positive peptides appear more dispersed, particularly along the 

molecular weight and isoelectric point axes. These observations suggest that while individual 

physicochemical features may not be sufficient for robust discrimination, their combined use could enhance 

the performance of machine learning models by capturing nuanced, multidimensional patterns associated 

with IL-2 induction. This supports the inclusion of multiple physicochemical descriptors as part of a 

comprehensive feature set for predictive modeling. 
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CHAPTER 5. CONCLUSION 

This study presents a systematic and comprehensive review of machine learning approaches for predicting 

the interleukin-2 (IL-2) inducing potential of peptides, underpinned by rigorous data extraction, 

preprocessing, and exploratory data analysis (EDA) using curated datasets from the Immune Epitope 

Database (IEDB). The work addresses a critical need in immunoinformatics: the ability to accurately identify 

peptide sequences capable of eliciting IL-2 responses, which are fundamental to vaccine development, 

immunotherapy, and understanding host immune mechanisms. 

The data extraction methodology was meticulously designed to ensure high-quality, experimentally validated 

datasets. By applying stringent filters—such as selecting only linear peptides, restricting to Homo sapiens, 

focusing on relevant T-cell assays, and carefully defining positive (inducing) and negative (non-inducing) 

classes—the resulting datasets were both biologically relevant and suitable for computational modeling. 

Preprocessing steps, including the removal of ambiguous amino acids, deduplication, length filtering, and 

exclusion of overlapping peptides, further enhanced the integrity and uniqueness of the data, minimizing bias 

and redundancy. 

Exploratory data analysis revealed several key insights. Amino acid composition analysis demonstrated 

distinct enrichment patterns, with certain residues like leucine and alanine more prevalent in IL-2 inducers, 

suggesting their potential role in immunogenicity. Dipeptide composition heatmaps highlighted specific 

dipeptide motifs that were more frequent in positive peptides, indicating that short sequence patterns may be 

critical determinants of IL-2 induction. Sequence logo analysis provided evidence of position-specific 

conservation, particularly at the N-terminus of positive peptides, supporting the hypothesis that terminal 

motifs contribute to functional activity. Motif detection further identified exclusive, highly conserved short 

patterns in inducers, reinforcing the biological importance of these motifs and their value as discriminative 

features. 

Physicochemical property analyses, including hydrophobicity, isoelectric point, and molecular weight, 

revealed subtle but meaningful differences between classes. While no single property provided absolute 

discrimination, the combined analysis suggested that IL-2 inducers exhibit greater diversity and variability, 

especially in molecular weight and isoelectric point. Scatter matrix plots confirmed that multidimensional 

integration of these features could enhance model performance, as the relationships among properties 

capture nuanced patterns not evident from individual descriptors alone. 

Throughout this study, the application of robust data science and bioinformatics tools—such as Python 

(pandas, matplotlib, seaborn), R (ggseqlogo), and specialized motif discovery software—enabled high-

quality visualization and interpretation of results. The careful selection and engineering of features, informed 

by biological understanding and EDA, provide a strong foundation for the development of accurate and 

interpretable machine learning models. 

In summary, this thesis establishes a reproducible and scientifically rigorous pipeline for the prediction of 

IL-2 inducing peptides. The findings underscore the importance of comprehensive data curation, thoughtful 

feature engineering, and multidimensional analysis in immunoinformatics research. The insights generated 

here not only facilitate the construction of robust predictive models but also contribute to a deeper 

understanding of the sequence and structural determinants underlying IL-2 induction. Future work may 

extend this framework to other cytokines and leverage advanced machine learning algorithms, further 

advancing the field of computational immunology and its translational applications. 

. 
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