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ABSTRACT 
 

Breast cancer is a major global health concern due to the potential for early detection to 

dramatically improve patient prognosis. Recent advances in screening methods and 

technologies have boosted the precision and efficacy of detecting and characterizing breast 

cancer. This study provides a thorough examination of reliable screening methods such as 

ultrasound, mammography, MRI, and thermography for the detection and classification of 

breast cancer.  

Numerous artificial intelligence (AI) and computational techniques are investigated to 

improve the efficiency of screening procedures. Convolutional neural networks (CNNs), a 

type of deep learning algorithm, have shown remarkable promise for automatically 

classifying and detecting breast cancer in medical images. Combining AI with screening 

methods can decrease human error, increase diagnostic precision, and speed up the detection 

of malignant cases. 

The development of new strategies for detecting and classifying breast cancer is highlighted 

in this work, along with the significance of ongoing research and collaboration between the 

medical and technical communities to enhance existing screening methods. It also highlights 

the importance of stringent validation and regulatory compliance to ensure the safe and 

efficient implementation of these technologies into clinical practice. This emphasizes how 

important it is to create an efficient preprocessing and enhancement strategy. Here, synthetic 

images are generated using a multimodal medical dataset-based method. 

To better detect cancer, researchers are exploring multimodal image fusion. It offers a wide 

range of visual qualities for precise medical diagnosis. However, this method necessitates 

precise registration of all image modalities involved. To solve this problem, a new method 

is proposed for building synthetic mammograms. The image quality is improved using an 
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image enhancement technique. The thermal image segment is converted into a mammogram 

using a mapping function based on dual-modality structural features (DMSF). This study 

also proposes a modified Differentiable ARchiTecture Search (DARTS) called (U-DARTS) 

to further aid in the detection and classification of breast lesions. U-DARTS makes use of a 

stochastic gradient descent optimizer. The proposed method is evaluated using both DMR 

and INbreast datasets. Based on the obtained data, the proposed model outperforms the 

currently used methods by a wide margin. Accuracy levels of 98% in validation and 91% in 

testing are attained. The proposed approach is unrivaled for creating mammograms and 

subsequently detecting lesions. 

The concept of fusing two different modality datasets is inspired by the results of synthetic 

mammograms created using a mammography-thermography multi-modal dataset.  By 

combining the images, more specific information about the tumor's location can be gleaned. 

However, the output image may have spectral variations, making it challenging to use in the 

medical field when fusing two images from different modalities. 

Multimodal image fusion is a crucial topic of research since it has been demonstrated to be 

effective in producing high-quality results for healthcare diagnostics and treatment. In 

medicine, however, fusing images from different modalities has always been difficult due 

to the resulting image's distorted spectral information. In this work, Super-Pixel 

Segmentation (SPS-AWT) is proposed using an advanced wavelet transformation method 

to combine breast cancer images taken in different settings and at different times. Discrete 

wavelet transformation (DWT) is used to combine spectral and spatial information from 

both mammographic and thermal images in order to make the evaluation. The obtained 

coefficients are divided into spherical patches using super-pixel segmentation to generate 

pixels with similar visual characteristics. The effectiveness of the proposed fusion method 
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is measured using a standard data set. Images fused using the proposed method are of high 

quality. 

However, image enhancement using the ultrasonic modality is a challenging task. 

Ultrasound images contain noise that is visible in the form of dots, and shadows are 

noticeable as tissue-related textures. This makes it hard to understand. To make the breast 

ultrasound image more informative, a method is proposed to combine Active Contour and 

Texture Feature Vectors for finding the discriminative patterns. A comprehensive set of 

discriminative features for cancer detection in ultrasound images is created by combining 

the two learning models. Breast Ultrasound Images dataset is used to evaluate the suggested 

method and compare it to the recently developed algorithms. Experimental results reveal 

that the proposed approach outperforms the existing algorithms in terms of accuracy, recall, 

precision, Jaccard index, and F1 score. 

Next, a deep-learning model with a modified transformer is proposed for breast lesions 

detection in order to classify the pre-processed and enhanced medical images efficiently. A 

deep learning model with a tweaked transformer is proposed to identify breast lesions based 

on the benefits of residual convolutional networks and the multiple-layer perceptron (MLP)-

based transformer. The support residual deep learning network generates the deep features, 

and the transformer classifies breast cancer using self- and cross-attention mechanisms. The 

proposed model is effective at detecting breast cancer across both the basic (3-stage) and 

multi-classification (5-stage) settings. Data collection, preprocessing, patch creation, and the 

creating stage for identifying breast lesions all adhere to the same framework. Positive 

evaluation results are obtained using the INbreast mammograms, with the basic and multi-

class approaches achieving accuracies of 98.17% and 96.74%, respectively. The 

experimental results demonstrate the proposed model can differentiate between cancerous, 
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noncancerous, and benign breast tissues. In addition, the modified transformer showed 

promising results in evaluating multiple classes of cancer.  

In the next step, deep neural networks and thermographic images are used to create a real-

time solution for diagnosing breast cancer. For this, two different experiments are 

performed. Firstly, thermal imaging is used as a method of breast cancer detection in this 

study. The model first applies a memory-efficient network to the entire image to determine 

where the most relevant information is likely to be found. The dataset of thermal images is 

then passed through a relatively deep CNN to extract relevant information. The model 

achieved an accuracy of 92.52%.  

When it comes to modeling dependencies, particularly long-range ones like those required 

for accurately determining or recognizing corresponding breast lesion features, CNNs 

typically perform poorly due to the inherent locality of the convolution operation. Due to 

this, the Vision Transformer block is used in conjunction with VGG19. In addition, this 

work introduces a powerful model that integrates global and local features. Finally, the 

model is trained separately using the Database for Mastology Research and INbreast. The 

model is then trained with 80% training data and 20% test data from both datasets using 

transfer learning. To train the network, a learning rate of 0.01, a batch size of 50, and 100 

epochs are used. Test accuracy of 98% and 89.9% are achieved for the INbreast and DMR 

datasets, respectively.  
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1. CHAPTER 1 

Introduction and Motivation 
 

Breast cancer is a serious health issue that affects millions of people worldwide. 

Uncontrolled cell growth and division in the breast tissue are hallmarks of a group of 

diseases known as breast cancer. Though significant progress has been made in the 

diagnosis and treatment of breast cancer, it still carries a high mortality rate [1], especially 

when diagnosed at an advanced stage or when it has spread to other parts of the body. 

According to the World Health Organization (WHO), breast cancer was first discovered in 

Egypt in approximately 1600 BC and is one of the most well-known kinds of cancer [2,3]. 

Breast cancer is responsible for about 15% of all female deaths [4]. It affects both men and 

women, as well as transgender people. In fact, the breast cancer can strike anyone, but the 

incidence of cancer is indeed much higher in women than in men or transgender. It is mostly 

associated with women because of the fact that breast tissue develops more rapidly in 

women due to hormonal factors. The presence of estrogen and progesterone in women's 

bodies may lead to the development and spread of cancer. Women also have a higher 

proportion of glandular tissue in their breasts, which is more susceptible to cancerous 

changes. 

There have been cases of transgender men and women acquiring breast cancer [5,6]. 

According to the studies, transgender women receiving long-term estrogen therapy may be 

slightly more likely to develop breast cancer than cisgender men. However, compared to 

cisgender women, this risk seemed to be lower. Transgender men seemed to have a similar 

risk of developing breast cancer. According to the WHO, the number of instances of breast 

cancer would rise to 2.7 million by 2040 [7].  
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Most breast cancers develop in the mammary glands or the networks that link the glands to 

the nipple [4]. This is an extremely sensitive area, and detection is only feasible if someone 

is vigilant. However, once diagnosed, breast cancer needs significant medical treatment and 

regular check-ups. 

The current medical environment in many developing countries is still recuperating from 

the effects of the epidemic. This is causing emerging economies to be concerned [5]. 

According to statistics from the “National Centre for Disease Informatics and Research” 

(NCDIR), breast cancer is one of the top five most often discovered malignancies in India. 

In the year 2020, India had a total female population of 662,903,415, and it was estimated 

that there would be 178,361 new cases of breast cancer, constituting approximately 26% of 

all cancer cases. 

Breast cancer detection must be quick and precise to combat its fast development. This will 

increase the likelihood of survival. However, the task of early identification may not be so 

easy. Hence efforts are underway to develop methods that detect cancer as early as possible. 

Another challenge is predicting the progression of breast cancer and then designing a 

treatment plan as per the suitability and comfort of the patient.  

A breast cancer patient is often subjected to a battery of tests, including Mammography, 

Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and B-

ultrasonography [8]. Mammography is the most commonly used approach for detection of 

breast cancer [9]. It is well known for its potential to reduce breast cancer mortality by 

detecting tumors when these are small and easier to treat [10–12]. It has a sensitivity range 

of 77% to 95% and a specificity range of 92% to 95% [13]. However, because of the thick 

tissue in the breast, mammography findings may be unsatisfactory [14]. 

Today’s technology enables researchers to gain a deeper comprehension of a patient's 

tumor type and to modify treatment strategies accordingly. According to a viewpoint [14], 
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this strategy has "made excellent progress in perception" with the aid of machine learning 

(ML). In addition to mammography and other sophisticated imaging modalities, 

researchers have investigated machine learning (ML) tactics to increase illness diagnosis 

accuracy. 

Breast cancer is a common health issue that affects women, with a one-in-eight mortality 

rate. Unfortunately, many women, because of safety concerns, disregard the significance 

of breast cancer screening which involves radiation exposure. Existing screening 

techniques have limitations such as invasiveness, unsafe radiation, and difficulty in 

accurately diagnosing breast tumors. Deep learning techniques are becoming increasingly 

popular in medical imaging. This chapter covers a comprehensive survey of breast cancer 

screening techniques, including their benefits and drawbacks. This chapter talks about the 

use of deep learning techniques in the detection of breast cancer. The performance metrics 

and datasets used in breast cancer research are also investigated. The primary goal is to 

provide an in-depth investigation in this field.  

Breast cancer is categorized among the most frequently reported cancers in the World. It 

has been reported in both males and females. However, its frequency in females is far 

beyond the comparison. In 2018, as many as 6,27,000 women died due to breast cancer, 

which was approximately 15% of all cancer deaths among women [15,16]. The early 

detection of breast cancer may help the patient to recover in time. However, it is advisable 

not to go for frequent breast cancer screening due to the lack of convenience and discomfort 

with traditional examinations such as mammograms.  

The frequency of breast cancer in transgender individuals, as well as the impact of gender-

affirming hormonal treatment (GAHT) on the risk of breast cancer, remains largely 

unexplored. It is less clear, however, what risk breast cancer poses to the transgender 

individual and how, if at all, physicians should screen these patients. Reports of transgender 
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men's breast cancer have been mentioned in the medical literature [17]. The number of 

incidences of breast cancer in trans women receiving GAHT remains vague. As of 2018, 

two population-based studies assessed the breast cancer risk attributable to GAHT. Both 

studies were limited by a small number of breast cancer cases and a lack of genetic risk 

stratification [18,19]. Considering trans-male case, ductal carcinoma in situ (DCIS) was 

diagnosed during chest reconstruction surgery. To maintain masculinization, low-dose 

transdermal application of testosterone may be used as these doses may minimize the 

amount of circulating testosterone and thus avoid  unnecessary aromatization to estradiol 

[20]. In [19], authors suggested the risk of breast cancer in transgender people is lower than 

in cisgender women, however, it is comparable to the risk in cisgender men. They also 

concluded that the overall risk of breast cancer in transgender people remains low. 

Therefore, it seems sufficient for transgender people using hormone treatment to follow 

screening guidelines as for cisgender people. Table 2.1 shows the cancer data statistics for 

2020 for India. This data is obtained from the National Centre for Disease Informatics and 

Research (NCDIR). According to the data, Breast Cancer is among the top 5 most frequent 

cancers in India. 

Normally, patients with breast tumors undergo multiple different examinations including 

B-ultrasonography, Mammography, Computed Tomography (CT), and Nuclear Magnetic 

Resonance Imaging (MRI) [21]. Mammography is most common method used for 

screening breast cancer [8,10,22]. It does not prevent cancer. However, the early detection 

of cancer can be possible through mammography [11]. The sensitivity of mammography is 

estimated between the range of 77% and 95%. The specificity estimated through 

mammography lies in the range of  92% to 97% [23]. However, mammography is 

suboptimal in breasts with dense tissue [9]. Due to this, approximately  38% of tumors are 

missed or misdiagnosed [13]. Another drawback of mammography is patients’ discomfort 
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and radiation exposure. The interpretation of mammograms is a time-consuming and error-

prone task [14]. 

Table 1.1  Statistics of Cancer Data in India during 2020 Statistics of Cancer Data in India 

during 2020. 

 
Male Female Total 

Population 717100976 662903415 1380004378 

Number of Cancer Cases 646030 678383 1324413 

Number of Cancer Deaths 438297 413381 851678 

Age-standardized incidence rate (World) 95.7 99.3 97.1 

Age-standardized mortality rate (World) 65.4 61 63.1 

5-year prevalent cases 1208835 1511416 2720251 

Top 5 most frequent cancers excluding 

non-melanoma skin cancer (ranked by 

cases) 

Lip, oral cavity          

Lung                 

Stomach, 

Colorectum, 

Oesophagus 

Breast                        

Cervix uteri                 

Ovary                         

Lip, oral cavity                              

Colorectum 

Breast                        

Lip, oral cavity                    

Cervix uteri                 

Lung                                                      

Colorectum 

1.1. Motivation 

Despite tremendous improvements, cancer prevalence appears to be increasing, as per the 

literature. Breast cancer is the most common cancer among women across the world. It 

affects one out of every eight women today [24,1]. As a co-morbidity of breast cancer, 

aging-related transcriptome changes can promote breast cancer growth [25,26]. More so, 

the average age for diagnosing a female with cancer is decreasing, from more than 50 to 

less than 40 years [27]. 

According to the WHO, early detection of breast cancer improves prognosis [28]. As the 

literature reports, mammography is the most often used method for detecting breast cancer. 
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As breast thickness increases, mammography's sensitivity decreases [40,98,107]. 

Understanding breast cancer detection methods is essential for improving the accuracy of 

diagnosis. The following considerations prompted me to perform this study: 

• In order to propose some better breast cancer detection approach/system, it becomes 

imperative to examine the distinctive characteristics of various breast cancer 

screening techniques. Understanding the strengths and limitations of each screening 

method is essential for choosing the most suitable and efficient method. Researchers 

and healthcare professionals can tailor the screening process based on patient 

characteristics like age, breast density, and risk factors by understanding the 

benefits and drawbacks of each method. This individualized screening strategy may 

enable early diagnosis and better patient outcomes by improving breast cancer 

detection. Additionally, ongoing studies and evaluations of these methods are 

necessary to stay at the forefront of breast cancer detection because ongoing 

research and technological developments are continuously evolving breast cancer 

screening methods. 

• The application of machine and deep learning methods is a key component of breast 

cancer screening. The use of machine and deep learning in medical research, 

including breast cancer detection systems, has increased significantly. Due to the 

potential for developing cutting-edge optimization methods and techniques, 

researchers are motivated to study and analyze these systems. Medical experts can 

develop more advanced and precise screening models by utilizing machine and deep 

learning algorithms. To find patterns and risk factors related to breast cancer, these 

algorithms can analyze a large amount of patient data, including medical histories, 

imaging results, and genetic data. By customizing the screening process to the needs 
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and characteristics of each patient, personalized screening approaches can be 

developed. 

• Using various evaluation parameters, which can produce a range of results, is 

necessary for the validation of breast cancer detection techniques. Each evaluation 

metric evaluates a particular aspect of the screening method, so a new technique 

may perform exceptionally well in some areas while falling short in others. The 

variability in performance traits raises doubts about the overall efficacy of breast 

cancer screening methods and technology. Researchers and medical professionals 

must consider a variety of evaluation criteria when comparing various screening 

methods, including sensitivity, specificity, accuracy, positive predictive value 

(PPV), negative predictive value (NPV), and area under the curve (AUC) of the 

receiver operating characteristic (ROC) curve.  

The ability of the screening method to accurately identify positive cases (true 

positives) is measured by sensitivity, and the ability to accurately identify negative 

cases (true negatives) is measured by specificity. On the other hand, accuracy 

reflects how accurate the screening results were overall. In the end, this ongoing 

research and evaluation process helps to improve the effectiveness of breast cancer 

detection techniques, ensuring that patients get the best care possible. 

1.2. Organization of Thesis 

The whole thesis is organized into eight chapters. Chapter 1 discusses the basic concepts 

of breast cancer and the motivation to work on this topic. Chapter 2 implicitly deals with 

obtaining the necessary insights and the required background on breast cancer detection. 

Chapter 3 is the literature survey of previous research done on breast cancer detection. 

Multimodal image fusion is a new area of study for the diagnosis of cancer. Proper 

registration of all image modalities is essential for this procedure to yield useful results. 
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Chapter 4 proposes a novel model for the construction of synthetic mammograms, which 

can help with the aforementioned problem. The goal of this Chapter is to provide a 

multimodal approach to breast cancer detection, which may improve the screening 

technique's efficacy. Chapter 5 proposes an Advanced Wavelet Transformation (AWT) 

method called Super-Pixel Segmentation to combine breast cancer images taken in different 

settings and at different times. 

Ultrasound of the breast is commonly used for screening for breast cancer. Current 

geodesic-based methods rely on manually applied filters. Most ultrasound images have 

noise and acoustic shadowing, which reduces the precision of tumor detection. To locate 

comprehensive and distinguishable patterns, Chapter 6 suggests combining Active Contour 

and Texture Feature (ACTF) Vectors. By fusing (a) the Active Contour Feature Vector 

(ACFV) model and (b) the Texture Feature Vector (TFV) model, a rich set of discriminative 

features is generated for cancer detection in ultrasound images.   

Chapter 7 uses residual convolutional networks, and the multiple-layer perceptron (MLP) 

based transformer to advocate for a deep learning model that employs a tweaked version of 

the transformer in the detection of breast lesions. The proposed model is capable of 

detecting breast cancer at both the Basic and Multi-classification (Stage 3) levels.  

CNN has been widely used in a variety of medical imaging tasks. However, CNNs perform 

poorly when modeling dependencies, especially long-range dependencies, which are 

necessary for accurately determining or recognizing corresponding breast lesion features. 

To overcome the above-mentioned problem, Chapter 8 shows the use of VGG19 and the 

Vision Transformer block to integrate both global and local factors for efficient breast 

cancer detection. 

Chapter 9 talks about the most important parts, the contributions that were made, the main 

findings, and future directions about where this field of study might go in the future. 
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1.3. Research Objectives 

• To investigate existing enhancement and classification techniques for medical 

images. 

• To develop a pre-processing technique for medical images. 

• To develop a novel image enhancement technique for multimodal medical 

datasets. 

• To efficiently classify the pre-processed and enhanced medical images. 

Fig 1.1 shows the relationship between the chapters and contribution to the overall aim of 

the research. 

. 

Fig. 1.1 Relationship between chapters and objectives of the research. 

 

1.4. Contribution 

This work focuses on the study of breast cancer screening techniques with their pros and 

cons. This study discusses mainly: 

• Theoretical aspects of breast cancer for females, males, and transgenders including 

deep learning implementations for its detection. 

• The different breast cancer screening approaches/techniques, risk factors, target 

connection, and common datasets.  

• The mathematical representations of performance evaluation measures. 
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• Multimodal image fusion for the diagnosis of cancer. 

• The comparative analysis of deep learning-based breast cancer prediction 

techniques in terms of performance measures. 

• The possible future research directions for breast cancer detection.  
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2. CHAPTER 2 

Background 
 

2.1. Types of Breast Cancer 

Breast cancer is categorized as Non-invasive (benign) and Invasive (malignant). Benign 

tumors develop slowly and do not invade neighboring tissues or migrate to other parts of 

the body [1]. Malignant tumors are potentially fatal. Fig. 2.1 depicts the different types of 

breast cancers for simplicity of comprehension. Non-invasive cancer does not spread 

beyond the lobules where they initially developed. Therefore, they do not endanger the 

patient’s life [13].  

 

Fig. 2.1 Types of Breast Cancer 

Mucinous, Paget, and mixed tumors, on the other hand, are malignant. Mucinous breast 

cancer, also known as colloid breast cancer, is a rare kind of invasive ductal breast 

cancer that affects fewer than 2% of all women. A mixed tumor has both ductal and 

lobular cells, both of which are cancerous in nature. A rare form of breast cancer known 

as Paget cancer gathers tumor cells in or near the nipple [32].  

Normal DCIS IDC 

Normal LCIS ILC 
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2.1.1. Non-Invasive Breast Cancer 

(a) Ductal carcinoma in situ (DCIS) 

DCIS is a non-invasive type of breast cancer in which cancer cells are contained within the 

milk ducts of the breast and are not spread to the surrounding healthy breast tissues. DCIS 

has a high cure rate and is considered highly treatable with a very high chance of success. 

(b)  Lobular carcinoma in situ (LCIS) 

LCIS is the presence of cell changes in the lining of the milk-producing glands (lobules) in 

the breast. These changes have been linked to an increased risk of developing breast cancer 

in the future. While lobular neoplasia does not always progress to breast cancer, it does 

necessitate regular check-ups and monitoring. 

2.1.2. Invasive Breast Cancer 

(a)  Invasive ductal carcinoma (IDC) 

IDC are breast cancer cells that spread from the ducts and invade the surrounding breast 

tissue. IDC accounts for roughly 80% of all breast cancer cases, making it the most common 

type of breast cancer [33]. 

(b)  Invasive lobular carcinomas (ILC) 

ILC is characterized by breast cancer cells that spread beyond the lobules and invade the 

surrounding breast tissue. ILC accounts for approximately 10%-15% of all breast cancer 

cases [34].  

2.2. Risks Involved in Breast Cancer 

Breast cancer is a disease that affects women of all ages. Only 5-10% of all the women 

suffering from breast cancer have a mutant gene in recognized breast cancer (e.g., BRCA1 

(BReast CAncer gene) and BRCA2). These hereditary mutations are not commonly 

reported in breast cancer patients.  
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Fig. 2.2 Risk factors associated with breast cancer. 

Fig. 2.2 depicts the different risk factors that may be responsible for breast cancer. Personal 

risk variables include  age, family history, reproductive characteristics, previous treatments, 

and lifestyle [35]. Gender also has an impact on the likelihood of developing breast cancer. 

Being a woman is one of the most important risk factors for breast cancer development. As 

a woman gets older, her chances of developing breast cancer rise. Women who start 

menstruation late or early in menopause are at a slightly increased risk of developing breast 

cancer. A sedentary lifestyle, which is associated with alcohol intake and poor dietary 

habits can also cause breast cancer growth. This causes cellular stress, hormonal changes, 

and immune system dysregulation.  
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2.2.1. Risk Factors Associated with Breast Cancer 

 

Fig. 2.3 Risk factors associated with breast cancer. 

According to the American Cancer Society, many factors are responsible for enhancing the 

likelihood of breast cancer [19]. Fig. 2.3 depicts the risk factor associated with breast 

cancer. The well-known risk factors are age, family history, reproductive factors, earlier 

therapies, and lifestyle. A detailed description of these factors is mentioned in Table 2.3. 

Table 2.1 Description of risk factors related to breast cancer. 

Risk Factor Factor Explanation 

Generalized 

Gender 

Being a female is perhaps the most critical risk factor for breast 

cancer growth. 

Age The risk of breast cancer rises as the woman grows older. 

Race 

Pretty much across the globe, white women tend to get breast cancer 

marginally more often than African American women. 

Body 

Menstrual 

history 

The risk of breast cancer is marginally higher among women who 

start menstruation early (before age 12) and/or menopause early 

(after age 55). This rise in risk may have been caused by the 

progesterone and estrogen hormones being released longer in life. 
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High breast 

density 

Dense breast tissue means more tissue and less tissue is contained in 

the gland. The risk of breast cancer is higher for women with denser 

breast tissue. 

Not having 

offspring 

Females who do not have babies or who were later pregnant might 

be more likely to develop breast cancer. Breastfeeding may 

contribute to reducing your risk of breast cancer. 

Weight 

Fat tissue can increase estrogen after menopause, and high estrogen 

levels can increase the risk of breast cancer. Adult weight gain and 

excess corporeal fat may also be significant around the waist. 

Lifestyle 

Inactive 

Lifestyle 

Breast cancer risk reduction is helped by physical activity. 

Alcohol 

An increased risk of breast cancer is associated with consumption of 

alcohol. With alcohol consumed, the risk increases. 

Earlier 

therapies 

Therapy with 

DES 

The risk of breast cancer is marginally higher for women who have 

been given DES (diethylstilbestrol) in the course of pregnancy. 

Hormone 

treatment after 

menopause 

The risk of breast cancer is raised by the use of estrogen and 

progesterone during menopause. 

 

Biological 

Vulnerabilit

y 

 

Family 

Background 

A mother, sister, or daughter who experiences breast cancer may 

increase the risk. 

Ancestral Factor 

Hereditary modifications (genetic changes) may increase risk in 

certain genes, such as the BReast CAncer gene (BRCA) 1 and 2. 
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2.3. Challenges of Breast Cancer Detection Techniques 

Breast cancer is a group of diseases in which the cells of the breast tissue change and break 

uncontrollably, resulting in a tumor or lump. Breast cancer screening techniques help with 

its detection. Breast cancer screening techniques aim to identify the position, size, and 

characteristics of the affected area and have proved to be excellent tools for extracting 

valuable information from vast amounts of data. Due to the discomfort involved, many 

women put off getting a diagnosis done for breast cancer. Most of the screening methods 

are invasive. Breast cancer screening without piercing the skin requires an alternative 

technique. The following are some of the significant issues that arise when applying breast 

cancer screening techniques:  

• Uncomfortable screening methods 

Direct body exposure to radioactive or ionizing radiation raises serious safety concerns. 

Many screening techniques use harmful waves that may cause allergic reactions or 

contraindications in some patients. So, it becomes important to develop systems that can 

use non-ionizing radiation and still provide accurate results. 

• Need for a multimodal approach 

Different imaging modalities have their strengths and weaknesses in detecting various types 

of tumors. By combining multiple imaging modalities, the overall sensitivity and 

specificity of the screening process can be significantly improved. This reduces the 

likelihood of false negatives and false positives, leading to more accurate diagnoses. 

• Continuous change in model 

In recent years, significant progress has been made in the detection of breast cancer using 

machine and deep learning techniques. However, the performance of these models can vary 

from applications to applications like preprocessing, segmentation, feature extraction and 
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classification. To address this, developing a generalized model for breast cancer detection 

is an important goal. 

2.4. Breast Cancer Datasets 

A variety of datasets is required to develop computational methods for breast cancer 

detection. Some datasets have a small number of features and tuples. Whereas others have 

many features and tuples. Researchers use a variety of breast cancer databases for the 

development and evaluation of computational methods. Some datasets are open to the 

public and some are limited to specific categories. Table 2.1 shows the detailed description 

of breast cancer datasets. Table 2.2 depicts the dataset used by researchers in recent years. 

Table 2.2 Detail description of breast cancer datasets 

Datasets Ref. Description Resource Comment 

Mammographic 

Image Analysis 

Society 

(MIAS) 

[36] 

The database is available on 

2.3GB   8mm ( Exabyte) tape 

and contains 322 digitized films. 

The database has been padded/ 

clipped and reduced to a 200-

micron pixel edge, resulting in 

images that are all 1024x1024. 

Available at the Pilot 

European Image 

Processing Archive 

(PEIPA) at the University 

of Essex 

Improves logistical 

practice, allows for the 

use of computer-aided 

detection programs, and 

has a cancer detection 

rate comparable to that 

of the screen- lm 

mammography. It's 

unclear how this will 

affect recall rates. 

 

Digital 

Database for 

Screening 

Mammography 

(DDSM) 

 

 

[37] 

The database is now fully 

functional, with 2620 cases. This 

is a mix of benign without a 

callback, benign, normal, and 

cancer volumes that were 

specially selected and digitized 

for DDSM. 

The research community 

has made extensive use 

of the DDSM. It is kept 

at the   University of 

South Florida so that it 

can be accessed via the 

Internet. 

 

IN breast 

[38] 

The images were taken at the 

Breast Centre in CHSJ, Porto, 

IN Breast dataset can be 

requested online at 
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between      2008     and 2010, 

with approval from both the 

Hospital's Ethics Committee and 

the National Committee for Data 

Protection. 

http://medicalresearch.ine

scporto.pt/breastresearch/

index.php/GetINbreast 

Database. 

 

US1 

[39] 

The data came from an expert 

didactic media le for-breast 

screening specialists in 2001. 

The dataset contains 306 images 

with a mean image size of 

377x396 pixels from various 

cases. 

To acquire this dataset, 

the user must purchase it 

from Prapavesis et al. 

 

Requires a skilled 

operator, the examination 

technique is not 

standardized, the 

interpretation criteria are 

variable, and 

microcalcifications are 

not detected. 

US2 [40] 

This data was gathered in 2012 

from the Parc Taul Corporation's 

UDIAT Diagnostic Centre in 

Sabadell (Spain). The database 

contains 163 images from 

various women, with an average 

image size of 760x570 pixels. 

The breast lesions dataset 

is available   on the 

internet (goo. gl/SJmoti) 

for research purposes. 

 

 

 

Breast     

Ultrasound 

Dataset 

 

 

 

[41] 

Breast ultrasound images from 

women aged 25 to 75 years old 

were collected at the start of the 

study. This information was 

gathered at Baheya Hospital in 

2018. The total number of 

female patients is 600. There are 

780 images in the database, with 

an ordinary image size of 

500x500 pixels. 

https://cholar.cu.edu.eg/?

q=afahmy/pages/dataset 

[42] 

http://medicalresear/
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Reference Image 

Database to 

Evaluate Therapy 

Response 

(RIDER) 

[43] 

Data was gathered to reach an 

initial agreement on how to 

harmonize the collection of data 

and analyze quantitative imaging 

techniques for assessing drug or 

radiation therapy response. 

https://wiki.cancerimagei

ngarchive.net/display/Pu

blic/RIDER+Breast+ 

MRI 

In women at increased 

risk, it is more sensitive 

and marginally less 

specific than 

mammography. No 

radiation necessitates 

intravenous contrast, 

which is time-consuming 

and inconvenient for 

some women, such as 

those who have a 

pacemaker, aneurysm 

clips, or claustrophobia. 

QIN Breast 

DCE-MRI 
[44] 

The b r e a s t  DCE- MRI data 

set used for the study was 

collected provisionally under a 

HIPAA (Health Insurance 

Portability and Accountability 

Act of 1996)-compliant, Approval 

From the institutional Board with 

the exemption of consent. 

https://wiki.canceri 

magingarchive.net/displa

y/Public/QIN+ 

Breast+DCE-MRI 

 

 

DBT-TU-JU 

[45] 

There are 1100 breast 

thermograms of 100 subjects in 

the        DBT-TU-JU database. 

This research reflects the 

generation of ground truth 

images of the hotspot areas, 

whose presence in breast 

thermograms indicates the 

presence of breast abnormality, 

due to the necessity of evaluating 

any breast abnormality detection 

system. 

Only patients and their 

physicians have access to 

private databases that are 

only accessible for 

internal purposes.  

 

 

 

 

 

 

 

 

 

 

 

Not harmful, non-

invasive, time-

consuming, 

 

DMR: 

Database For 

Mastology 

 

[46] 

Thermal and mammography 

images obtained by our research 

group are among the images 

available in this database. For a   

DMR-IR is accessible 

on the website 

http://visual.ic.u .br/dmi 
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Research sample of 64 breasts, the 

accuracy was 100% (composed 

of 32     healthy and 32 unhealthy). 

Requires more work to 

be done, still in practice 

 

Table 2.3 Breast cancer datasets used by researchers 

Ref Year 

Dataset 

MIAS DDSM INbreast US1 US2 BUSI ABUS 

DCE-

MRI 

DBT-

TU-JU 
DMR 

[47] 2015        ✓   

[48] 2016 ✓          

[46] 2017      ✓     

[49] 2018          ✓ 

[40] 2018    ✓ ✓      

[50] 2019          ✓ 

[51] 2019         ✓  

[52] 2020  ✓ ✓        

[53] 2020       ✓    

[54] 2020  ✓ ✓        

 

2.5. Breast Cancer Screening Techniques 

Breast cancer awareness provides help to the affected people so that they can take better 

decisions about their health. Hormonal changes, genetics, breast density, and lifestyle have 

greatly affected the appearance of breasts. Understanding the morphology and physiology 

of usual breast tissue is essential for predicting any development of breast cancer and may 
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aid in the early diagnosis of abnormal lesions. Fig. 2.4 shows breast cancer detection in 

asymptomatic females. 

 

Fig. 2.4 Breast Cancer detection for asymptomatic women. 

Breast cancer diagnosis entails a variety of screening techniques to improve the accuracy 

of diagnosis. The well-known breast cancer screening techniques are X-ray mammography, 

breast ultrasound, Magnetic Resonance Imaging (MRI), and Positron Emission 

Mammography (PEM) [20]. X-ray mammography is the most effective technique. Breast 

Ultrasound uses sound waves to create a picture of tissues inside the breast. However, this 

technique suffers from low specificity, high cost, and a lack of availability [30]. The 

accuracy of breast ultrasound is approximately 67.8%. MRI is another technique for breast 

cancer detection. It creates detailed images of organs by combining a large magnet, radio 

waves, and a computer. This technique has a higher sensitivity, however, high cost and low 
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specificity that can lead to overdiagnosis [30,55,56]. The accuracy obtained from MRI may 

lie in the range of 70% to 72%. PEM is an alternate method for breast cancer screening 

[55]. It has high specificity as compared to the other techniques. However, it suffers from 

low sensitivity and high radiation exposure. Breast cancer screening techniques are broadly 

categorized into three main groups such as physical, electrical, and mechanical (see Fig. 

2.5).  

 

Fig. 2.5 Breast cancer screening techniques 

 

2.5.1. Physical Screening Techniques 

The well-known physical screening techniques are mammography, ultrasound, and MRI. 

A detailed description of these techniques is given in the succeeding subsections.  

  

Mammography 

Breast self-examination (BSE), Clinical breast examination (CBE), and mammography are 

commonly used screening techniques for breast cancer detection [57,58]. Nowadays, 

digital mammograms are widely used for breast cancer detection. In digital mammograms, 

X-rays are replaced with solid-state detectors that translate X-rays into electrical signals. It 

is also known as full-field digital mammography (FFDM). The detectors in digital cameras 
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are identical. Electrical impulses are used to create breast images and displayed on a 

computer screen [59]. Computer-aided detection (CAD) solutions are created to read 

mammographs. CAD systems usually interpret a mammogram and identify questionable 

places, which are investigated by the radiologist [60].  

Ribli et al. [49] proposed a CAD program focused on Faster R-CNN. This program was 

able to classify malignant or benign tumors in a mammogram without user intervention. 

Wang et al. [52] proposed an end-to-end method for mammographic diagnosis. This 

approach eliminated manual preprocessing. The treatment of mammograms was introduced 

in one situation with a different approach focused on the Multiscale (MS) system and Multi-

Instance (MI) system. MS module selects the basic features of mammograms, and the MI 

module took the general situation into account in one event. The output of these modules 

is combined to get better results. Heidari et al. [61] introduced a new computer-aided 

diagnosis (CADx) scheme based on the analysis of global mammographic image features. 

This research demonstrates the possibility to build a modern CADx mammogram high-

performance global picture processing scheme. This technique is more effective and 

reliable than the previous techniques. Ekici et al. [50] utilized a convolution neural network 

(CNN) for thermographic breast cancer screening. They used five different processes 

namely, data acquisition, image processing, segmentation, extraction, and classification. 

CNN provides better results than the other techniques in terms of prediction results.  

Ultrasound 

Breast ultrasound is a common way to test for breast cancer as it allows the screening 

sensitivity can be increased in thick breasts [62–64]. Various deep-learning models have 

been used in the last two decades. Muñoz-Meza and Gómez [65] used ultrasound pictures 

to classify breast tumors using 3 M- dimensional sets of characteristics and principal 

component analysis with shared information. They addressed the segmentation process in 
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breast ultrasound images using a watershed transformation mechanism. The feature 

extraction method was used for the classification of breast cancer.  

Qin et al. [66] proposed a computer-aided diagnosis method to detect cancer tumors and 

segmented the tumor region from ultrasound images automatically. But this method 

excludes normal images before segmentation. The probability of a case where a benign 

tumor may be considered a normal case cannot be ruled out and can be excluded. Tanaka 

et al. [67] developed a diagnostic system for detecting lesions in ultrasound pictures using 

deep learning approaches. They used a hybrid strategy for data preprocessing and achieved 

an accuracy of 75%. Wang et al. [68] suggested a breast cancer classification system based 

on CNNs. The system used InceptionV3 pre-trained model to facilitate feature extraction 

in ABUS imaging. The model demonstrated a method for obtaining multi-view features. 

The approach produced a 0.9468 area under the curve (AUC).  

Lotfollahi et al. [69], present an effective and semi-automated segmentation approach for 

BUS images. This method has been applied to 36 breast ultrasound images. It generates 

true-positive and false-positive results, and similarity of 95%, 6%, and 90%, respectively. 

Liang et al. [70], propose an image augmentation method named super-pixel elastic 

deformation and employ a semantic segmentation convolutional neural network called 

mask region-based convolutional neural network (Mask R-CNN) to automatically segment 

breast lesions from ultrasound images and make the classification simultaneously. 

However, their performance may degrade due to a vanishing gradient. The limitation of 

this research work leaves the scope for further improvement. 

Nyayapathi et al. [71] introduced a new photoacoustic tomography device that displays 

angiographic features with mammogram-like images of the breast. The mechanism 

portrays a highly compact breast of two flat, 2.25 MHz transceiver clusters of 128 

components, and line optical fiber bundles from top to bottom. The soft compression is 
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done using silicone prints, which allows the woman more relaxed than the hard metal plate 

used with conventional mammograms. Dual Scan Mammoscope (DSM), is the technology 

that utilizes the properties of both ultrasound and photoacoustic tomography for breast 

cancer detection.  

Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) plays a significant role in the medical field. The scan 

in this method is used to produce detailed images of the inner body utilizing intense 

magnetic fields and radio waves [72]. MRI scans are being used to investigate nearly any 

area of the body including the brain, bones, breasts, heart, and even internal organs. MRI 

is widely used in breast cancer imaging. Sun et al. [73] identified glioma classification 

methods for the prediction of radio mics features. MRI extracted quantitative features from 

tumor areas. The modality of extraction by radio mics was greater than the other 

combinations of the tumor area. Whereas, Li et al. [74] used ultra-wideband microwave 

imaging for early breast cancer detection. They also used an ensemble empirical mode 

decomposition (EEMD) for direct extraction of tumors. Only isolated signals from as-

detected waveforms are required for the reconstruction of the picture for tumor detection. 

They used MRI to create more precise models for electromagnetic analysis. Here, a tumor 

of 4 mm in diameter within the glandular or at the interface between fat and the gland has 

been shown by the proposed procedure. In case the glandular tissue has a bigger dielectric 

constant of 35, tumor reaction may also be identified. Their research showed that the 

solution presented could serve as an important alternative to direct tumor response 

extraction. Mahrooghy et al. [75] suggested the spatiotemporal dynamic properties of 

wavelets from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to 

quantify breast cancer intra-tumor heterogeneity. 
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Table 2.4 Classification of breast cancer detection using physical screening methods. 

Ref. Input Classification model Performance measures Challenges Advantages 

[49] mammography 

Pre-processing+ Faster R-CNN+ Regional 

proposal network 

AUC= 0.85                                                                                  

lesion detection sensitivity = 

90% 

The detection performance 

could only be evaluated on the 

small INbreast dataset 

The model reaches high 

sensitivity with very few 

false positive marks 

[52] mammography 

Pre-processing and image cropping+ CNN 

for feature selection+ multi-instance 

module+ final diagnosis of the whole case 

AUC= 0.865 

In the future author could assist 

other advanced applications, 

such as size measurement, 

lesion characterization 

Their method learned the 

unique features of lesions 

via the multiscale 

module. 

. [76] mammography 

Pre-processing + CS-LBP features from 

each 2 × 2 blocks in Wavelet Domain + 

SVM-RFE based feature selection + 

Random Forest classification 

Acc: 97.25%, P: 97.3%, Rc: 

97.2%, F1: 97.2% MCC: 94.1% 

ROC Area: 97.61% 

The author can further classify 

the type of tumor 

Fast feature extraction, 

small feature dimension, 

fast modeling, and 

prediction 

[54] mammography 

Image enhancement and segmentation + 

DenseNet169 for feature extraction + 

Region-based Group-max Pooling+ 

Prediction 

(INbreast)RGP: AUC= 0.934 

and GGP: AUC= 0.924                                                                       

(CBIS-DDSM) RGP: AUC= 

0.838 and GGP:AUC=0.823 

The results of the visualization 

show that the proposed model 

can roughly locate suspicious 

regions. 

The ability to learn lesion 

location information 
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[77] mammography 

Pre-processing + feature extraction + deep 

multi-view Classifier 

AUC=0.895 AUC could be increased 

Their model could 

improve radiologist 

sensitivity for breast 

cancer detection 

[53] Ultrasound 

Pre-processing + pre-trained UNet + DDS 

feature extraction + TM 

Sn = 95% with 0.84 false 

positives per volume. 

In the future author could assist 

other advanced applications, 

such as size measurement, 

lesion characterization 

High sensitivity and low 

false positives 

[61] Mammogram 

Image segmentation + SSIM feature 

extraction + DCT feature extraction + FFT 

feature extraction + SVM classifier 

AUC= 0.85-0.91(from one of 

the three sub categories)                                                 

AUC= 0.96±0.01(in three sub 

categories) 

Its clinical utility or impact on 

radiologists' performance in the 

diagnosis of breast cancer using 

mammograms has not been 

tested. 

significantly higher 

performance with AUC 

[8] 

X-ray + MRI + 

CT + 

Ultrasound 

HA-BiRNNs 

AUC: 0.8854                                                  

RC: 0.8771                                                           

F1score of prediction:0.9070 

The author wishes to develop 

methods to interpret the 

representation learned by the 

Knowledge-powered Deep 

The method achieves 

higher performance 



28 

 

Breast Tumor Classification 

model to classify malignant and 

benign tumor pattern 

[74] MRI 

Pre-processing + canny edge detection 

technique for boundary selection + Antenna 

Arrangement and Simulation Process + 

Extraction of tumor response signals + 

Result 

N/A 

Their method offers efficient 

detection even for a tumor of 4 

mm diameter located within the 

glandular or at the interface 

between the gland and fat. 

They state that their 

approach can be an 

effective alternative to 

direct extraction of the 

tumor response 

[47] MRI 

Pre-processing + DCE-MRI (wavelet 

transform) + Heatwave feature extraction + 

classification 

(AUC=0.88 HetWave vs. 0.70 

standard features).                            

The combination of HetWave 

and standard features further 

increase classifier performance 

(AUCs 0.94) 

HetWave could assist other 

advanced applications such as 

the feature extraction approach 

for characterizing tumor 

heterogeneity, providing 

valuable prognostic information. 

Superior ROC AUC 



29 

 

[78] MRI 

Data Acquisition + Image Preprocessing + 

Co-Occurrence Analysis Computing 

Framework + Neural Network Classifier + 

Hypothesis Testing 

TPF= 0.90 

FPF= 0.09 

The author could help with 

more advanced applications in 

the future, such as size 

measurement and lesion 

characterization. 

It investigates 

heterogeneous tumors by 

separately distinguishing 

the benign and necrotic 

tissues within a lesion 

having malignancy 

[79] Mammogram 

Pre-Processing + Fuzzy C-means 

thresholding-based image segmentation + 

Hybrid Feature Extraction + Feature 

Selection + Classification 

SVM-MLP classifier: 87% Acc, 

95% Sn, and 75% Sp                                                                    

SFS-KNN: 87.50% Acc, 

95.83% Sn, and 62.50% Sp 

Some SVM classifiers are not 

capable of classifying the 

negative sample 

GA-MI-based feature 

selection of the SVM 

classifiers for MLP, 

linear, and quadratic 

classifiers are performing 

better 

[30] Ultrasound 

Pre-Processing + Construction of 

biomechanical model + Image registration + 

Image fusion + Analysis of USCT images + 

Result 

- 

The current limitation of their 

method is that overall accuracy 

is not improved with 

heterogeneous stiffness 

distribution models. 

Smaller training and test 

error rates. 
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The receiver operating characteristic (ROC) and area under the curve (AUC) were 

computed to assess the performance of the classifier using leave-one-out (LOO) cross-

validation. The combination of a heatwave and standard features can further enhance the 

performance of the classifier [80]. Table 2.4 summarizes the physical screening techniques 

for breast cancer.  

2.5.2. Electrical screening techniques 

Impedance spectroscopy, thermography, transillumination, microwave imaging, and 

tomography are well-known electrical screening techniques. A detailed description of these 

techniques is given in the succeeding subsections.   

Impedance Spectroscopy  

Researchers are using this technique to improve breast cancer detection techniques. Haeri 

et al. [81] introduced two experimental breast cancer screening instruments namely, the 

electrical impedance spectroscopy (EIS)-Probe and the EIS-Hand-Breast (EIS-HB). EIS-

Probe and EISHB systems were able to assess the electrical properties of breast tissue. 

Cancerous tissues were identified by determining the change in parameters of healthy 

tissues. Huerta-Nuñez et al. [82] utilized bioimpedance spectroscopy to investigate the 

cancer cells in an aqueous media. Experimental results revealed that impedance 

spectroscopy has sufficient sensitivity for the identification of extraordinarily low cancer 

cell composition in an aqueous solution. Lederman et al. [83]. Improving breast cancer risk 

stratification using resonance-frequency electrical impedance spectroscopy through the 

fusion of multiple classifiers designed a seven-probe resonance-frequency-based electrical 

impedance spectroscopy (REIS) system and used the data of 174 females. Artificial neural 

network (ANN), support vector machine (SVM), and Gaussian mixture model (GMM) 

were used. The results revealed that ANN attained the maximum values of ROC and AUC 

as compared to the other classifiers. REIS examinations provide the relevant information to 



31 

 

build a classifier for the stratification of breast cancer risk. Ward et al. [84] evaluated the 

inter-arm impedance ratio range for evaluating the value of threshold as a standard for 

detecting lymphedema associated with breast cancer. When an impedance of 1,106 is 

surpassed by a danger to the neuronal limb and 1,134 when the dominant limb is in danger, 

relative to those currently in use of 1,066 and 1,139, the existence of lymphedema is 

recorded. The variation in these values can be considered as a minor significance towards 

the clinical practice.  

Thermography 

A special camera is used to measure skin temperature on the surface of the breast and is 

known as thermography. It is a non-invasive and radiation-free research [85]. Ekici et al. 

[50] developed an automatic breast cancer detection technique. They used image 

processing and analytics techniques to analyze the thermal images of the breast. The feature 

extraction algorithm was proposed to extract the features for the identification of breast 

images as regular or suspicious. Their technique attained an accuracy of 98.95% for the 

thermal images of 140 females. Jose-Luis et al. [86] proposed a technique to solve the 

inverse thermal transfer problem in the Levenberg Marquardt algorithm. This technique 

was used to identify and locate malignant tumors within the breast using a patient-specific 

digital breast model and clinical infrared imaging (IRI) images. Digital heat amplification 

systems were used to tackle the challenges that occurred during the identification of the 

size and position of malignant tumors within the breast. This technique can be combined 

with mammography to detect breast cancer, especially in the case of dense breasts. In [87], 

advancements in thermography-based techniques were investigated for breast cancer 

detection. It is observed from breast thermograms that breast cancer signs can be detected 

through the asymmetrical thermal spreads between breasts. Their study showed that the 

neural network systems enhanced the prediction accuracy of breast cancer thermograms. 
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Mambou et al. [88]  explored infrared digital imaging techniques for breast cancer. The 

basic assumption in this technique is the increase in thermal activity in the precancerous 

tissues and the areas surrounding developing breast cancer. They concluded that infrared 

image processing techniques require a CAD system for detection. Roslida et al.  [54] 

studied the three convolutional neural network (CNN) models namely, ResNet101, 

DenseNet201, MobileNetV2, and ShuffleNetV2 for breast cancer detection. Database for 

Mastology Research (DMR) was used to evaluate the performance of the above-mentioned 

models. DenseNet201 was capable of classifying both static and dynamic images.  

Transillumination  

Transillumination is a procedure used in an organ or part of the body to detect anomalies. 

The examination is conducted in a dark room with a light-reflecting on a particular body 

segment to look under the skin [89]. It is an invasive method and is not being used much 

nowadays. 

Microwave imaging  

Microwave imaging is a promising method for detecting early-stage breast cancer [90]. Li 

et al. [91] proposed a direct tumor response extraction technique based on the ensemble 

empirical mode decomposition for early breast cancer detection. The extracted signals were 

used to reconstruct the image for tumor detection. M. diFlorio [92] designed some 

enhancements in both hardware and software for microwave breast imaging. The hardware 

monitors the signals down to sub-centimeter screen resolution compatible with a test time 

of less than 2 minutes. The software resolves the huge time workload and produces accurate 

images in less than 20 minutes.  They were able to produce the first microwave 

tomographic images. Klemm et al. [90] studied the imaging of inhomogeneous breast 

phantoms for microwave breast cancer. They introduced an image enhancement algorithm, 
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which utilizes the concepts of the delay and sum algorithm (DAS) and coherence factor. 

Their proposed approach was able to reduce clutter and provide better images as compared 

to the previous techniques.  Tuncay et al. [93] presented an effective way to design 3D 

microwave models. Yin et al. [94] suggested ultrawideband radar imaging for breast cancer 

detection. A robust and Artifact Resistant (RAR) algorithm was developed to overcome the 

negative effects of both artifact and glandular tissues. RAR enhanced the identification 

capacity, robust artifact resistance, and high detection range.  

Tomography 

Tomography is a technique that creates images of single planes of tissue. Kao et al. [95] 

studied Electrical Impedance Spectroscopy (EIS) to locate and differentiate cancer from 

normal tissues and benign tumors. The tumors are different from the normal tissue in terms 

of their conductivity and permittivity. The high contrast tissue, which occurs between 

several kHz and several MHz, can be able to distinguish malignant from benign. In a 

silicone phantom breast, the system can detect a 10 mm tumor. Baran et al. [96] investigated 

the potential clinical usability of phase-contrast micro-computed tomography (micro-CT) 

with high spatial Resolutions. SYRMEP beamline of the Elettra Synchrotron was scanned 

with 10 breast tissue specimens of 2 mm in diameter using the phase-contrast micro-

tomography propagation method. The high-resolution images were able to provide detailed 

tissue design assessment at a close-to-histological level. Table 2.5 summarizes the electrical 

screening techniques in terms of performance measures and datasets. 
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Table 2.5 Classification of breast cancer detection using electrical screening techniques 

Ref. 

Technique 

Used 

Classification model Performance measures Challenges Advantages 

[97] Tomography 

Image-Based 3-D Surface Reconstruction 

+ Model-Based Segmentation of Breast + 

Data Collection and accuracy evaluation + 

Result 

The system can detect a 10 mm 

tumor in a silicone phantom 

breast 

A limitation of these dense 

optical flow techniques is 

their sensitivity to the 

lighting variation 

Their system can reconstruct 

the breast surface with 

average errors of less than 1 

mm 

[81] Tomography 

Two innovative instruments setups for the 

early detection of breast cancer were used 

Method exposes promising 

validity in comparison to other 

breast cancer detection tools 

The LSM error function has 

not been used due to its 

higher sensitivity 

Promising validity 

[50] Thermography 

Data acquisition + preprocessing + 

segmentation + feature extraction + CNN 

classifier 

98.95 % Testing Accuracy 

The author can further 

classify the type and size of 

the tumor 

Obtained good accuracy rate 

was obtained for the thermal 

images 

[86] Thermography 

Breast imaging + Patient-specific digital 

breast model + extract temperature of a 

region of interest + levenverg-marquardt 

algorithm 

The screening technique is 

found to be more accurate and 

harmful radiation-free 

Requires more computation 

time 

The technique has the 

potential to be an accurate 

adjunct to mammography 



35 

 

[92] 

Microwave 

imaging 

combination of hardware and software to 

create 3-D microwave tomographic images 

of the breast 

The hardware used in this work 

has the capability of gathering 

data up to 3 GHz 

The results can be improved 

by operating at higher 

frequencies and/or using a 

multi-frequency approach 

over an ultra-wideband. 

Its advantage is its specificity 

driven by the wide range of 

dielectric properties 

[93] 

Microwave 

imaging 

Preprocessing of MRI data + Bias Field 

Correction + Segmentation of Two Main 

Tissues + Electromagnetic Properties 

Mapping +Building the 3-D Structure 

The test conducted was 

successful 

Work could be done to 

improve the correlation 

between mammographic 

density and the MRI density 

More consistent to classify 

ARN-MBPs with BTI score 

rather than ACR 

classification. 

[83] 

Impedance 

Spectroscopy 

Breast REIS + mirror matched feature 

extraction + ANN/SVM/GMM + fusion 

ANN classifier was found to be 

the best single classifier among 

the three tested classifiers, with 

an AUC of 0.81 and sensitivity 

of 75% at 80% specificity. 

The main limitation of their 

work is a smaller sample 

size. 

The REIS-based 

classification decisions are 

consistent with biopsy 

recommendations 
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2.5.3. Mechanical Screening Techniques 

MR elastrography is a well-known mechanical screening technique. A detailed description 

of this technique is mentioned in the succeeding subsection.   

MR Elastrography  

In [98], electromechanical operators vibrate the breast in MR electrography and produce 

acoustic sound waves. An algorithm was used to produce quantitative images from these 

waves. This technique was evaluated on six healthy people and six patients.  then described 

by MRI. Goddi et al. [99] presented a review on breast elastography. They discussed future 

techniques, which are not yet in clinical practice. Table 2.6 depicts the classification of 

breast cancer detection using MS Elastography. 

Table 2.6 Classification of breast cancer detection using MS Elastography 

 

Ref. 

Screening 

Technique 

Classification model 

Performance 

measures 

Challenges Advantages 

[98] 

MR 

Elastography 

Acoustic shear waves 

generating device + 

elasticity imaging + an 

algorithm for 

processing the wave 

images to generate 

quantitative images 

depicting tissue 

stiffness + prototypic 

breast MR elastography 

technique + results 

The results confirm 

the hypothesis that 

the prototypic breast 

MR elastographic 

technique can 

quantitatively depict 

the elastic properties 

of breast tissues in 

vivo and reveal high 

shear elasticity in 

known breast 

tumors 

Considerable scope 

exists for technical 

improvement to 

determine the possible 

performance of an 

optimized MR 

elastographic 

technique in terms of 

resolution and 

quantitative accuracy 

Their work 

shows that it is 

feasible to use a 

technique 

combining MR 

imaging and 

acoustic 

technologies 
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2.6. Performance Evaluation Measures 

Different performance measures are used to evaluate the performance of breast cancer 

prediction models. The performance measures are generally classified into two main 

categories namely, prediction and classification measures [100]. Fig. 2.6 shows the 

classification of performance measures.  

 

Fig. 2.6 Classification of performance measures. 

2.6.1. Prediction Measures 

Mean, standard deviation, mean square error (MSE), root mean square error (RMSE), and 

peak signal-to-noise ratio (PSNR) are well-known prediction measures. The mathematical 

formulation of these measures is given in succeeding subsections. 

Mean (µ) 

Mean represents the average brightness of an image. If the average intensity of a breast 

cancer image is much high, then the density of tissue is also high. The mathematical 

formulation of the mean  (𝜇) is defined as [101]: 

µ =  
1

𝑚𝑛
 ∑ ∑ 𝑝𝐴(𝑎, 𝑏)𝑛

𝑏=1
𝑚
𝑎=1                                                                                      (2.1) 

Where 𝑚 and 𝑛 signify the number of rows and columns in an image.  𝑝𝐴 is the coefficient 

of approximation. The value of the mean should be high for better results [101]. 
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Standard Deviation (σ) 

Standard deviation (σ) can be described as a measure of how much the contrast intensity 

increases when the texture irregularity increases [102]. It is defined as:  

𝜎 =  √
1

𝑚𝑛
 ∑ ∑ (𝑝𝐴(𝑎, 𝑏) −  µ)2𝑛

𝑏=1
𝑚
𝑎=1                 (2.2) 

Mean Square Error  

The differential between observed and predicted values is measured using the mean square 

error (MSE) [103]. The mathematical formulation of MSE is given below:  

𝑀𝑆𝐸 =
1

𝑚𝑛
 ∑ ∑ (𝐼𝑜 − 𝐼𝑝)

2𝑛
𝑏=1

𝑚
𝑎=1                             (2.3) 

Where  𝐼𝑜 and 𝐼𝑝 denote the observed and predicted values, respectively.  

Root Mean Square Error 

The square root of the second moment of difference between the observed and predicted 

values is known as root mean square error (RMSE) [104]. It can be defined as the standard 

deviation of prediction errors. 

𝑅𝑀𝑆𝐸 = √
1

𝑚𝑛
 ∑ ∑ (𝐼𝑜 − 𝐼𝑝)

2𝑛
𝑏=1

𝑚
𝑎=1                             (2.4) 

RMSE is a reliable indicator of the accuracy obtained from the prediction model. RMSE has 

a non-negative value at all times. It is proportional to the scale. It is sensitive toward the 

outliers. 

Peak Signal-to-Noise Ratio 

Peak signal-to-noise ratio (PSNR) is the ratio of an image's maximum achievable power to 

the power of degrading noise that influences its representation quality [105]. 

𝑃𝑆𝑁𝑅 = 10log10
(𝑙−1)2

𝑀𝑆𝐸
                 (2.5) 
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Here, l is the number of highest allowable intensity levels in an image. 

2.6.2. Classification Measures 

The performance of the breast cancer prediction model is evaluated by using classification 

measures. These measures are positive predictive value, sensitivity, accuracy, specificity, 

and area under receiver operating characteristics. The mathematical formulation of these 

measures is mentioned in the succeeding subsections. 

Positive Predictive Value (PPV) 

Positive predictive value (PPV) is the fraction of suitable instances among the recovered 

instances [106]. It is also known as Precision and is defined as: 

𝑃𝑃𝑉 = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                (2.6) 

Here, TP is the number of true positives and FP is the number of false positives, 

respectively. The true positives are the positive tuples that the prediction model accurately 

predicts. The false positives are the negative tuples that the model predicts incorrectly. The 

value of PPV lies in the range of [0, 1]. 

 Sensitivity 

Sensitivity (𝑆𝑛) is a metric for assessing the efficacy of breast cancer detection prediction 

models. 𝑆𝑛 is also known as the rate of recognition [106]. It specifies the percentage of 

positive tuples that the prediction model successfully predicts. 

𝑆𝑛 = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                    (2.7) 

Here, FN shows the number of false negatives. The false negatives are the positive tuples 

that the prediction model predicts incorrectly. 

Accuracy 
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The percentage difference of projected synergy scores from observed results within the 

allowable error range is called accuracy [106]. It is defined as: 

𝐴𝑐𝑐 = 
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃)
 × 100                  (2.8) 

Here, TN represents the number of true negatives. The term "true negative" refers to 

negative tuples that the prediction model accurately predicts. 

Specificity 

The true negative rate is used to describe the specificity. It refers to the percentage of 

negative tuples properly predicted by the prediction model [107]. 

𝑆𝑝 = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                    (2.9) 

Area Under Receiver Operating Characteristics Curve 

Receiver Operating Characteristic (ROC) represents the tradeoff between the true positive 

rate (𝑇𝑃𝑟) and the false positive rate (𝐹𝑃𝑟) [107]. The false positive rate and true positive 

rate are represented by the x-axis and y-axis of the ROC curve, respectively. The area under 

the ROC curve (AUC-ROC) is a metric for computing the model accuracy. The value of 

AUC-ROC lies in the ranges of [0.5, 1]. 

𝑇𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (2.10) 

𝐹𝑃𝑟 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                    (2.11) 

2.7. Summary 

This chapter considers the general perspectives and background of one of the world’s most 

significant threats – breast cancer, focusing on the challenges of offering early diagnosis 

and qualified treatment. From here it is quite clear that breast cancer is a disease that affects 

women, but men and transgenders are also at high risk; this makes breast cancer a disease 
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with social, economic, political, cultural and even religious impacts. This chapter 

deliberates on how the accuracy rate of the diagnosis could be boosted. These technologies 

because of the capacity to handle large volumes of data can detect such patterns and 

anomalies which may not be apparent if the conventional method of analysis is used, thus 

making the identification of mammary carcinoma less intrusive. The chapter also 

underlines the need for improving many current screening methods and also for one topic 

advocating the need to tailor treatment according to tumor characteristics.  
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3. CHAPTER 3 

Literature Review 
 

3.1. Survey Methodology 

This section presents the survey papers related to breast cancer detection techniques. 

3.1.1.  Existing Surveys 

In the recent past, several research papers were published to summarize breast cancer 

detection techniques. The relevant survey papers are discussed below: 

Yassin et al. [108] presented the findings of a systematic review (SR) aimed at determining 

the current state-of-the-art computer-aided diagnosis and detection (CAD) systems for 

breast cancer. They provided a broad assessment of CAD systems for image modalities and 

machine learning-based classifiers. Prospective research studies to develop more objective 

and efficient CAD systems have been discussed. A brief review of various reported 

methods and systems for early breast cancer detection was presented by Gupta et al. [109]. 

A variety of microwave imaging approaches such as microwave tomography and radar-

based imaging were investigated. Lu et al. [110] presented some diagnostic imaging 

methods for breast cancer diagnosis. Breast cancer detection using computer vision and 

machine learning techniques was investigated. The performance of various methods was 

analyzed on mammographic images. Huppe et al. [111] presented a comprehensive review 

of molecular breast imaging. Their research covered the current literature, indications, 

clinical application, screening techniques, integration into medical practice. Oyelade et al. 

[112] analyzed various deep-learning methods for the detection of architectural distortion 

from digital mammography. The focus of their study was the detection of abnormalities 

such as masses and micro-calcification, which are indicators of the disease's advanced 
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stage. Husaini et al. [113] studied the use of thermography and artificial intelligence 

techniques for breast cancer detection. Various deep learning models such as Radial Basis 

Function Networks (RBFN), K-Nearest Neighbors (KNN), Probability Neural Networks 

(PNN), Support Vector Machine (SVM), ResNet50, SeResNet50, V Net, Bayes Net, 

Convolutional Neural Networks (CNN), Convolutional and De-Convolutional Neural 

Networks (C-DCNN), VGG-16, Hybrid (ResNet-50 and V-Net), ResNet101, DenseNet, 

and InceptionV3 were analyzed to process thermographic images of breast cancer. Some 

research works discussed breast cancer in transgender patients [17–20,114]. The qualitative 

analysis was performed on patient demographics, breast cancer characteristics, breast 

cancer presentation, and management. According to their study, breast cancer present in 

transgender men mainly depends upon the top surgery.   

Due to advancements in deep learning techniques for medical imaging, a need was felt to 

prepare a survey of research articles summarizing the applications of deep learning 

techniques for breast cancer detection. Our survey presents computational studies on breast 

cancer detection over the last decade, i.e., from the year 2000 to 2023. 

3.1.2. Survey Methodology 

This study on breast cancer detection is conducted through PRISMA [109–111,115–117]. 

The reason behind the use of PRISMA is that it covers a list of recommendations designed 

to increase the quality of publications of systematic review and meta-analysis. It involves 

a structured four-phase process: identification, screening process, and criterion respectively 

for the selection and inclusion. At this phase, the focus is directed to search for as many 

articles as possible that are related to the field of study in the various databases and sources. 

The first step in this procedure is to wave off the replicate studies, and the other studies that 

do not meet the defined parameters made for consideration based on title and abstracts. 

During the eligibility phase, certain subsequent articles are assessed and if not in 
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compliance with the goals of the review they are excluded. The process of finally choosing 

the studies is called the inclusion phase in which the researcher picks up all the studies that 

meet all the specifications for the general analysis. Like most other guidelines, PRISMA 

also has a checklist where the process of including the studies is described by a flowchart. 

This approach makes it possible to have a standard way of tackling systematic reviews and 

hence increases the reliability and the reproducibility of the research hence improving the 

results attained. 

Four different databases namely Google Scholar, Scopus, PubMed, and Preprint platforms 

have been used for this study. Four preprint platforms namely ArXiv, TechRxiv, MedRxiv, 

and ChemRxiv have been used to search for appropriate papers. The search string consisted 

of "breast cancer" or "cancer" or "((deep learning) AND (breast cancer))" or "((machine 

learning) AND (breast cancer))" or "((Artificial Intelligence) AND (breast cancer) AND 

(detection techniques))" or "breast cancer detection techniques".  Fig. 3.1 shows the search 

string used for searching. A manual search was also conducted to find out the relevant 

research papers. In the identification phase, a total of 1600 research publications were 

chosen.  

 

Fig. 3.1 Search string for searching the research articles. 

In the screening phase, 900 research articles were selected after the removal of unsuitable, 

duplicate, and irrelevant research articles. 750 research articles were excluded after reading 

the title, abstract, and introduction. The remaining 150 research articles were analyzed 
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through removal criteria and 90 research articles were excluded. Thereafter, 60 research 

articles were moved to the next phase. In the eligibility phase, 30 research articles were 

eliminated after the evaluation of all the papers. Ultra-wideband radar imaging [118], 

ensemble empirical mode decomposition by the ultra-wideband [74], flexible 16 antenna 

array for microwave [15], and Ion-Sensitive Field-Effect Transistor based CMOS 

integrated Lab-on-Chip system [119] are a few related schemes other than deep learning, 

used for detection of breast cancer. The research articles on these techniques were also 

eliminated. 30 research articles were designated for review of breast cancer detection 

techniques. The selection and removal criteria for research articles are mentioned in Table 

3.1. Fig. 3.2 depicts the different phases of PRISMA for this review.  

 

Fig. 3.2 PRISMA flow diagram on breast cancer review strategy. 
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Table 3.1 Selection and removal criteria for Selection of research articles. 

S. No. Parameter Selection Criteria Removal Criteria 

1 

Time 

duration 

Research articles published from 2010-

2021 

Research articles published before 

2010 

2 Analysis 

Research articles including breast cancer 

detection 

Research articles including different 

cancer detection 

3 Comparison 

The research article focuses on deep-

learning techniques used for breast 

cancer detection 

The research article focuses on other 

techniques used for breast cancer 

detection 

4 
Study 

Research involving mathematical 

foundation and experimental results 

Research involving case studies and 

articles in different languages other 

than English 

 

3.1.3. Research Question Asked by Researchers 

The work in this chapter addresses several breast cancer detection-related questionnaires, 

some of which are listed in Table 3.2.  

Table 3.2 Research questions related to breast cancer detection. 

Questions Research Questions 

Q1 What is breast cancer? 

Q2 

Explain breast cancer in females, males, trans males, and trans females, along with detection 

techniques. 

Q3 What are the risk factors associated with breast cancer? 

Q4 What are the different types of screening methods involved in breast cancer detection? 

Q5 What are the different types of deep learning techniques in breast cancer detection? 
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Q6 

What are the performance evaluation measures for validating deep learning-based breast 

cancer detection techniques? 

Q7 What are the challenges of breast cancer detection using deep learning? 

Q8 What are the future research directions for breast cancer detection using deep learning? 

Q9 What is the role of deep learning in breast cancer detection? 

Q10 How breast cancer detection using deep learning is different from the other approaches? 

Table 3.3 summarizes the comparison between the existing surveys and the proposed one 

in terms of research questions. In this table, ✓ denotes that the survey has answered the 

respective research question, while  indicates otherwise. 

Table 3.3 Comparative analysis of survey papers on breast cancer detection in terms of research 

questions. 

Survey Review Year 

Research Questions 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 

Yassin et al. [108] 2018 ✓   ✓ ✓   ✓   

Gupta et al. [109] 2020 ✓   ✓    ✓   

Lu et al. [110] 2018 ✓   ✓ ✓ ✓     

Huppe et al. [111] 2017 ✓    ✓       

Oyelade et al. [112] 2020 ✓    ✓ ✓ ✓ ✓   

Husaini et al. [113] 2020 ✓   ✓ ✓  ✓ ✓  ✓ 

Hartley et al. [114] 2018 ✓ ✓         

Stone et al. [17] 2018 ✓ ✓         

Proposed study 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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3.2. Deep Learning Techniques for Breast Cancer 

This section presents the importance of deep learning in the field of breast cancer followed 

by the classification of deep learning-based breast cancer detection techniques.  

3.2.1. Importance of deep learning in breast cancer  

The literature reports that machine learning is a widely used technique for breast cancer 

research. K-Nearest Neighbor (KNN), support vector machines (SVM), and naive Bayes 

classifier perform better in their respective fields. However, the tracking and detection 

processes in machine learning are done manually. For efficient cancer detection, the system 

needs to process 200 to 300 cells per frame, which is not possible through manual tracking. 

Hence, there is a need to develop efficient methods for breast cancer detection. Whereas 

deep learning can identify complex patterns in raw data. Nowadays, deep learning is widely 

used to identify breast cancer. According to a study published in Nature Medicine, deep 

learning models are capable of detecting breast cancer one to two years earlier than those 

with the standard clinical methods [120] would have. Deep learning models can learn the 

most relevant features to solve the problem optimally. Due to this, deep learning models 

can serve as the best hierarchical feature extractors [121]. The above-mentioned facts 

motivate the researchers to use learn and hence apply deep learning techniques for breast 

cancer detection.  

3.2.2. Deep learning-based breast cancer detection techniques 

Deep learning architectures are successfully used in the detection of breast cancer. Fig. 3.3 

shows the general framework for breast cancer detection using deep learning techniques. 
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Fig. 3.3 General framework for breast cancer detection using deep learning. 

Breast cancer detection techniques are broadly categorized into four classes such as image 

enhancement, lesion segmentation, feature extraction, and classification techniques (see 

Fig. 3.4). Deep learning techniques are used in the fourth category, i.e., classification.  

 

Fig. 3.4 Classification of Breast Cancer Detection Techniques. 

Fig. 3.5 shows the connection of authors with the deep learning techniques that have been 

used for breast cancer detection for the last 5 years.  
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Fig. 3.5 Chord chart showing the connection of the author with deep learning and machine learning 

techniques from the last 5 years. 

Wang et al. [52] used ResNet-50 to detect breast lesion regions. They used a self-created 

dataset with the help of West China Hospital. Wang et al. [53] created a dataset using the 

Invenia ABUS system at Sun Yat-Sen University Cancer Center. They used Unet and DDS 

pooling to enhance the detection sensitivity for breast cancer. The sensitivity obtained from 

their model was 0.95. Shu et al. [54] used the INbreast dataset and CBIS dataset for breast 

cancer detection. Pre-trained CNNs and deep machine learning models were used for the 

classification of breast lesion regions. Heidari et al. [122] used an SVM classifier for breast 

images. Fu et al. [123] proposed a model to predict Invasive Disease-Free Survival (iDFS) 
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for the early-stage breast cancer patients. They used XGBoosting and attained an AUC of 

0.845. The dataset was self-created with the help of CRCB in West China Hospital of 

Sichuan University. Nyayapathi et al.[71] shown the fusion of ultrasound images with 

photoacoustic images for the early detection of breast cancer. Experimental results revealed 

an improvement in probability, speed, and also the patient's comfort zone. Ekici et al. [50] 

used CNN classifier on the DMR dataset and obtained an accuracy of 98.95%. 

Yin et al. [118] proposed a new scheme for early detection using the UWCEM database. 

They created 3-D anatomically accurate FDTD-based breast models, which resulted in 

improved identification capability, robust artifact resistance, and high detectability of 

tumors. Srivastava et al. [79] used different SVM classifiers (i.e., MLP, Quadratic, linear, 

and RBF) to achieve good accuracy. SVM-RBF performed better than the others. SVM-

RBF attained an accuracy of 87.5%. Dheeba et al. [124] worked on the detection of tumors 

from breast tissue structure using a mammogram. MIAS dataset and ANN classifier were 

used. The recognition score obtained from this method was 97.8%. Wang et al. [52] used 

the SoftMax classifier on the DDSM dataset to detect the size of breast lesions. The value 

of AUC obtained from this method was 0.865. However, there is a need to develop more 

advanced automatic breast cancer detection techniques to improve the diagnosis of breast 

cancer. Table 3.4 shows the advancement in breast cancer detection techniques.



52 

 

Table 3.4 Advancement in breast cancer detection techniques. 

Ref. 

Proposed 

Approach 

Targeted Problem Models Classifier Measures Challenges Advantages 

[52] 

Create dataset + 

Multiscale module 

(screening of unique 

features) + multi-

instance module 

Detection of the 

breast lesion 

regions 

CNN 

(ResNet-50) 

- 

AUC: ResNet-

50 MSMI = 

0.901 

 

In the future author could 

assist other advanced 

applications, such as size 

measurement, lesion 

characterization 

Their method learned the 

unique features of lesions via 

the multiscale module. 

[53] 

Pre-processing + 

pre-trained UNet + 

DDS feature 

extraction + TM 

Enhance the 

detection 

sensitivity for 

breast cancer 

3D CNN 

(U-net + DDS 

Pool) 

- 

Sn = 95% with 

0.84 FP 

per/volume 

The author could help with 

more advanced applications 

in the future, such as size 

measurement and lesion 

characterization. 

High sensitivity and low 

false positives 

[54] 

Edge detection and 

segmentation + 

feature extraction + 

RGP/GGP 

Classification 

based on breast 

lesion region 

CNN 

(DenseNet169 + 

max pooling) 

Pretrained 

CNNs and 

deep MIL 

models 

Acc: 

INbreast 

dataset= 0.934 

± 0.0003(RGP) 

The results of visualization 

show that the proposed 

model can roughly locate 

suspicious regions 

The ability to learn lesion 

location information 
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0.922 ± 

0.0002(GGP) 

CBIS dataset= 

0.838 ± 

0.0001(RGP) 

0.767 ± 

0.0002(GGP) 

[61] 

Data Preprocessing 

+ Image feature 

extraction + 

Classification 

Classification 

based on image 

feature extraction 

CNN (SVM) 

SVM (FFDM 

image, DCT 

maps, FFT 

maps, fusion of 

features) 

FFT: 66-77% 

DCT: 64-83% 

SSIM: 63-71% 

Fusion: 67-

89% 

Its clinical utility or impact 

on radiologists' performance 

in the diagnosis of breast 

cancer using mammograms 

has not been tested. 

significantly higher 

performance with AUC 

[123] 

Statistical Feature 

Selection + 

Ensemble Feature 

Selection + 

Predict the relapse 

or metastasis of 

breast cancer 

ANN 

(XGBoost) 

PREDICT and 

Adjuvant 

Online 

AUC: 0.8451 

In future works, additional 

clinical data can be collected 

for improving the accuracy 

XGBoost algorithm 

performance improved by 

3% 
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XGBoost algorithm 

+ PREDICT and 

Adjuvant Online 

of the 5-year iDFS prediction 

algorithm 

[71] 

System Design + 

Breast Coupling + 

Imaging Procedure 

+ Reconstruction 

and Alignment 

Early detection of 

tumor 

- 

Fusion of 

ultrasound 

images with 

photoacoustic 

images 

benefits of 

portability, 

speedy 

scanning, and 

patient comfort 

Patients with different tumor 

characteristics and breast 

sizes should be imaged to 

identify the photoacoustic 

features of different tumor 

grades and types 

Their system possesses the 

benefits of portability, 

speedy scanning, and patient 

comfort 

[50] 

Data acquisition + 

Pre-processing + 

Segmentation + 

Feature Extraction + 

Classification 

Classification 

based on image 

feature extraction 

CNN 

CNN (Bayes 

algorithm) 

Acc: 98.95% 

The author can further 

classify the type and size of 

the tumor 

Obtained good accuracy rate 

was obtained for the thermal 

images 

[86] 
Digital breast model 

+ Parameter 

Detect and localize 

the tumor 

 iCAD - 

Requires more computation 

time 

The technique has the 

potential to be an accurate 

adjunct to mammography 
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estimation for 

thermal images 

[125] 

Data acquisition + 

designed deep 

model + cross-

domain SVM 

learning deep 

features from large-

scale X-ray images 

CNN 

CNN (multi-

class SVM) 

 

The author could help with 

other advanced applications 

in the future, such as size 

measurement and lesion 

characterization. 

Good effectiveness and 

efficiency of the proposed 

recognition system 

[97] 

Create dataset + 

Model-Based 

Segmentation + 

Compute optical 

flow 

Accurately 

measuring 3-D 

surface motion. 

- DIET machine 

The system can 

detect a 10 mm 

tumor in a 

silicone 

phantom breast 

A limitation of these dense 

optical flow techniques is 

their sensitivity to the 

lighting variation 

Their system can reconstruct 

the breast surface with 

average errors of less than 1 

mm 

[47] 

Heterogeneity 

Wavelet Kinetic 

Features + 

Classification 

Quantify intra-

tumor 

heterogeneity in 

breast cancer 

- 

dynamic 

contrast-

enhanced 

magnetic 

AUCs:  0.94 

HetWave could assist other 

advanced applications such 

as feature extraction 

approach for characterizing 

tumor heterogeneity, 

Superior ROC AUC 
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resonance 

imaging 

providing valuable 

prognostic information 

[94] 

3-D anatomically 

accurate FDTD-

based breast models 

+ Preprocessing for 

Artifact Removal + 

RAR algorithm 

Early-stage 

detection 

Robust and 

Artifact 

Resistant 

DAS, DMAS, 

MWDAS, and 

FDAS 

Improved 

identification 

capability, 

robust artifact 

resistance, and 

high 

detectability 

The investigation of RAR’s 

performance for further 

enhancement of tumor 

detection in severely dense 

breasts is missing 

Their results show the high 

potential of RAR for early-

stage cancer detection in low 

to medium-density breasts. 

[126] 

Breast-Body 

Segmentation 

Automatically 

compute breast 

density in breast 

MRI 

-   Complex analysis 

Their proposed method is 

good at investigating the 

correlation between breast 

density measurements 

obtained from MRI and 

mammograms. 

[16] 
Input raw pixels of 

training patches + 

The appearance of 

breast cancer nuclei 

SSAE 

Softmax 

Classifier 

SSAE + SMC: 

P= 88.84% 

Stacked Sparse Autoencoder 

could be integrated with 

Their framework can provide 

accurate seed points or 
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Feature 

representation 

(SSAE) + SoftMax 

classifier 

in histopathological 

images 

F1= 84.49% 

AveP= 78.83% 

feature extraction methods to 

characterize cancer better 

vertices for developing cell-

by-cell graph features that 

can enable the 

characterization of cellular 

topology features on tumor 

histology 

[79] 

Data Acquisition + 

Segmentation + 

Feature extraction 

and selection + 

Classifier 

Feature extraction ANN (GA-MI) 

SVM (MLP, 

Quadratic, 

linear, RBF) 

SVM-MLP: 

Acc 84.3750% 

SVM-linear: 

Acc 81.25% 

SVM-

quadratic: Acc 

84.3750% 

SVM-RBF: 

Acc 87.5% 

Some SVM classifiers are 

not capable of classifying the 

negative sample 

GA-MI-based feature 

selection of the SVM 

classifiers for MLP, linear, 

and quadratic classifiers are 

performing better 
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[124] 

Data acquisition + 

ROI Selection + 

Feature extraction + 

classification 

Detection of 

tumors from breast 

tissue structure 

using a 

mammogram 

ANN 

ANN 

(Modified 

Genetic 

Algorithm) 

Recognition 

score of 97.8% 

The results are not 

comparatively good on other 

mammogram datasets. 

The classifier is good at 

recognition 

[127] 

Data acquisition + 

slide level 

preprocessing + 

ResNet Classifier 

cancer metastases 

in lymph nodes 

CNN ResNet 

The best 

results were 

obtained with 

pre-trained 

architectures 

such as 

ResNet. 

At the slide level, the best-

ranked team misclassified 67 

of the 500 slides in the test 

set. 

The submitted algorithms 

were not only able to detect 

the presence of metastases 

but also measure their extent 

to derive the metastasis 

category, including ITC, and 

to determine the pN-stage 

that is used in clinical 

practice 
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3.3. Comparative analysis 

The effectiveness of deep learning-based breast cancer detection techniques is assessed using 

the performance measures mentioned in Section 1.7. Table 3.5 shows the comparative analysis 

of deep learning and machine learning techniques in terms of performance measures. In this 

table, ✓ denotes that the approach has used the associated performance measures, while  

indicates otherwise. The quantitative analysis of different deep learning and machine learning 

techniques is illustrated in Table 3.6. 

Table 3.5 Comparative analysis of breast cancer detection techniques in terms of performance measures. 

Ref. Technique Prediction Measure Classification Measure 

  µ σ MSE RMSE PSNR PPV 𝐒𝐧 𝐀𝐜𝐜 𝐒𝒑 
AUC-

ROC 

[128] 

Resnet-34, 

VGG16 

       ✓  ✓ 

[129] 

Resnet50, 

VGG16 

      ✓  ✓ ✓ 

[49] VGG16       ✓  ✓ ✓ 

[130] 

Linear 

Regression 

      ✓ ✓   

[53] 3D-Unet      ✓ ✓    

[54] DenseNet169        ✓  ✓ 

[131] MVPNet       ✓ ✓ ✓ ✓ 

[132] EfficientNet      ✓ ✓ ✓ ✓ 
✓ 
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[133] AFExNet ✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓ 

[134] 

GoogLeNet, 

AlexNet 

✓      ✓ ✓  ✓ 

[135] 

Random 

forest 

       ✓  ✓ 

[136] 

 

DTree, RF, 

XGBoost 

      ✓ ✓ ✓  

 

Table 3.6 Quantitative assessment of breast cancer prediction technique on classification measures. 

Ref Technique 

Classification Measures 

PPV 𝑺𝒏 𝑨𝒄𝒄 𝑺𝒑 AUC-ROC 

[128] 

Resnet-34, 

VGG16 

- - 89.0% - 0.950 

[129] 

Resnet50, 

VGG16 

- 86.7% - 96.1% 0.98 

[49] 

VGG16 

 

- 0.9 - - 085 

[130] 

Linear 

Regression 

- - 92.43 ± 0.657 - - 

[53] 

3D-Unet 

 

0.84 95% - - - 
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[54] 

DenseNet169 

 

-  

0.923 ± 

0.0003 

0.762 ± 

0.0002 

 

0.762 ± 

0.0002 

0.838 ± 

0.0001 

[131] 

MVPNet 

 

- 94.2 ± 2.2% 92.2% 92.3 ± 2.4% 0.91=/-0.05 

[132] 

EfficientNet 

 

0.819 0.74 90.2% 95% 0.93 

[133] 

AlexNet 

 

98.57 98.58 98.57 98.57 - 

[134] 

GoogLeNet, 

AlexNet 

0.7051 - - - 0.925 

[135] 

Random forest 

 

- - 84% - 0.84-0.86 

[136] 

 

DTree, RF, 

XGBoost 

- 0.8429 86.96% 0.8964 - 

 

3.4. Discussion 

To assist in cancer treatment, diagnostic imaging modalities are important for tumor 

classification. Over the last few years, imaging has been considered an important tool for the 

diagnosis of tumors. Various screening techniques are used to detect and characterize tumors. 

Screening techniques do not prevent cancer; however, they make early detection possible to 
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make the patient alert for their treatment. Every screening technique has its advantages and 

disadvantages. The most common screening method for breast cancer detection is an X-ray 

mammogram. Breast Ultrasound creates an image of tissues inside the breast using sound 

waves. The advantages involve non-invasive, quick visualization of breast tissue, the area 

closest to the chest wall, which is difficult to study with a mammogram, can be seen with 

ultrasound. Breast ultrasound has a low specificity and is more expensive. MRIs use a large 

magnet and radio waves to produce excellent tissue differentiation and sensitivity for breast 

cancer detection. CT scan images are made up of X-rays taken from various angles. Patients 

look for non-invasive and non-contact screening techniques as all the above-mentioned 

techniques involve contact. Thermography is one such technique. It uses infrared sensors to 

detect heat and increased vascularity as the result of biochemical reactions. Table 3.7 depicts 

the comparison of different breast tumor screening techniques in terms of pros and cons.  

Table 3.7 Comparison of different breast tumor screening techniques for the diagnosis of tumor. 

Screening 

Technique 

Spatial 

Resolution 

Advantages Disadvantages Image 

Mammogram 

Lower 

Spatial 

resolution 

Time efficient 

requires a lower 

average 

radiation dosage. 

Lower spatial 

resolution uses X-

rays, costly. 
 

CT scan 

High 

Spatial 

resolution 

Precise, High 

spatial 

resolution, 

Uses X-rays, 

which can cause 

an allergic 

reaction  
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MRI 

High 

Spatial 

resolution 

No-ionizing 

radiation, high 

sensitivity, good 

tissue 

differentiation 

A costly, invasive 

procedure, low 

specificity 

 

Ultrasound 

Moderate 

spatial 

resolution 

Less expensive, 

uses 

soundwaves 

Low specificity, 

not able to detect 

all types of 

tumors.  

Thermography 

Low spatial 

resolution 

Non-invasive 

does not involve 

exposure to 

radiation 

It can only alert a 

person to changes 

that may need 

further 

investigation 

 

 

The performance of a system can be judged by its accuracy, sensitivity, and specificity. The 

value of these measures should be high to achieve good results. When the likelihood of 

malignancy is established using a system, lively observation or biopsy can be recommended 

to evade inadequate and further invasive treatment. The focus of this study is to provide a 

multi-modal approach to improve the performance of breast cancer diagnosis.  

3.5. Research Gaps 

Breast cancer is an important health issue for everyone, and developing effective screening 

methods and alternative therapies is critical to improving outcomes. It is important to recognize 
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gaps or limitations, if any, in the research on deep learning techniques for breast cancer 

detection. The possible gaps are as follows: 

A.  Ensure Safe Engagement  

Safety is a major issue when radioactive rays or ionizing radiation are directly exposed to one's 

body. Many screening techniques use harmful waves that may cause allergic reactions or 

contraindicate in some patients. A system should be designed in such a way that it uses non-

ionizing radiation and provides accurate results. 

B. Multimodal Approaches  

Different imaging modalities reveal different aspects of the anatomy and physiology of the 

human body. It is possible that a single imaging modality cannot provide sufficient 

visualization for certain medical conditions.  

Multimodality-based approach should be considered for the detection of breast cancer at an 

early stage. Screening tools for breast cancer need to expand their expertise by providing 

multimodal methods to enhance precision by improving the outcome of screening techniques. 

C. Model Generalization 

A variety of deep-learning models are used in breast cancer research. Deep learning models 

provide different results for different applications. Hence, there is a necessity to develop a 

generalized model for breast cancer detection.  

D. Clinical Implementation 

Deep learning-based breast cancer detection models proved their significance in medical 

research. However, the practical implementation of these models in clinics is still not done. 

The implementation of these models in clinics will be beneficial for doctors.   
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The aforementioned gaps provide valuable insights that motivated the present dissertation to 

contribute towards the development of more effective strategies for breast cancer detection and 

treatment.  

3.6. Summary 

Chapter 3 surveys existing literature on breast cancer detection techniques, with major focus 

on survey approaches to detection and recent developments in deep learning algorithms. It 

includes systematic reviews of the imaging procedures, deep learning, and machine learning 

solutions and explains the most relevant articles focusing on the main research questions’ 

comparison. The challenges faced in this field are shown as research gaps and are addressed 

in the chapters ahead. Chapters 4 and 5 responded to the first and second research gaps while 

chapters 6, 7, and 8 responded to the third research gap. However, the potential of using deep 

learning-based breast cancer detection models has been proved in many medical studies 

However, these models are not widely used in clinical practice mainly because there is lack of 

large number of datasets and cooperation with the clinical settings. These chapters describe 

these issues and ways to overcome them so that there can be improved translation of research 

findings to clinical practice.  
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4. CHAPTER 4 

Dual - Modality Synthetic Mammogram 

Construction for Breast Lesion Detection 

using U-DARTS 
 

4.1. Preamble  

This chapter introduces a novel model for constructing synthetic mammograms to overcome 

the challenges of accurate registration of different imaging modalities in multimodal image 

fusion for cancer detection. The model aims to enhance the visual quality of medical images, 

enabling more precise and efficient cancer diagnosis. A dual-modality structural feature 

(DMSF) based mapping function is developed to transform mammograms obtained from 

thermal image segments.  

Additionally, the chapter presents a modified version of Differentiable Architecture Search 

(DARTS), called U-DARTS, which incorporates a stochastic gradient descent optimizer for 

improved breast lesion detection and classification.  

To ensure accurate construction, the resultant synthetic mammograms are compared to the 

INbreast dataset to unbiasedly evaluate proposed approach’s success. This comparison aims to 

evaluate the effectiveness of the DMSF-based mapping function in producing synthetic 

mammograms that closely resemble real mammograms, thus validating the accuracy and 

reliability of the proposed method. The flow of the proposed method is illustrated in Fig. 4.1.  
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4.2. Proposed Methodology 

In pre-processing, the histogram is decomposed into subparts. A logarithmic transform 

between sub-histograms is used, which is shown in Fig. 4.2. 

 

Fig. 4.1 Proposed synthetic mammogram construction model. 

There are four sub-steps in the pre-processing phase. 

• Apply CLAHE to both the input images. 

• Applying logarithmic transform (LT) to CLAHE output of mammogram and thermal 

images. 

• Contrast stretching method (CSM) followed by Otsu multilevel thresholding (OST) for 

the histogram splitting process. 

• Output is obtained as an equalized histogram. 
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Fig. 4.2 Block diagram of the proposed preprocessing method. 

CLAHE has proved to be beneficial in medical images. Adaptive Histogram Equalization 

(AHE) determines the mapping for a given pixel by computing the histogram of a local window 

centered at that pixel. This results in the enhancement of local contrast [137]. For CLAHE, the 

given image is decomposed into multiple non-overlapping areas of nearly equal size. Thereafter, 

the histogram of each area is computed. The clipping histogram computes the clip limit using 

the favored contrast expansion limit. 

𝑘𝐶𝐿_𝑜𝑢𝑡 = [𝑘𝑖𝐶𝐿_𝑖𝑛𝐶𝐿_𝑚𝑖𝑛
𝐶𝐿_𝑚𝑖𝑛𝐶𝐿_𝑚𝑎𝑥       (4.1) 

Here max_CLk and min_CLk are the maximum and minimum permissible intensity levels and it 

also sets the threshold to an optimal value. )( _ inCLi kE  shows the function for cumulative 

distribution where inCLk _  is the input and outCLk _  is the contextual output. The CLAHE output 

sends for logarithmic transformation and contrasts the stretching method as well.  

In contrast stretching, the intensity value of the pixel 𝐼 can be obtained as follows: 

𝐼𝑜 = (𝐼𝑖 − 𝑟)(
𝑞−𝑝

𝑠−𝑟
) + 𝑝         (4.2) 
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Here s  and r  are the minimum and maximum pixel intensity values. The top pixel intensity 

value limit q  and bottom pixel intensity value limit p  over which the image will be 

normalized.  

The output of CSM is further processed using OMT because different images require different 

stages of smoothing and detaining, the Otsu multilevel thresholding is designed to 

provide image intensity exposure. As an outcome, the threshold ( u ) is calculated as follows: 

𝑢 =
1

𝑀

∑ 𝑘(𝑚)𝑚𝑀−1
𝑚=1

∑ 𝑘(𝑚)𝑀−1
𝑚=1

         (4.3) 

Where, the input intensity level of the input image ( k ) is denoted by ( m ), and the range is 0  

to 1−M . 

Further, logarithmic transformation can be performed using Eq. (3.4).  

𝑘" = 𝑐 𝑙𝑜𝑔( 1 + 𝑗)         (4.4) 

 Here, "k  is the output modified histogram obtained through logarithmic transformation, j  

stands for the intensity value in the image's original histogram, and c  is the constant set to 0.5. 

The output generated from OSM and LT are then merged to obtain a single modified histogram.  

4.3. Feature Extraction and Mapping 

To ensure that the tissues or structures in the input and synthetic images have the same 

anatomy, they are mapped into a shared architectural feature space using Dual-

Modality Structural Features (DMSF). Further, U-Net is used to test the consistency of the 

shared architecture. DMSF is obtained by using a patch (not neighbor) based self-similarity 

method that relies on the structure of input images rather than intensity levels. Yang et al. [138] 

proposed MIND, a similarity metric to classify MR/CT images. 
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Fig. 4.3 Overall architecture of the proposed DMSF model. 

To create a mapping function that translates a thermal image segment into its corresponding 

mammogram image, a deep CNN model with U-Net is employed. By gathering all thermal 

patches and corresponding mammogram patches for each patient, the model is trained using 

the thermal/mammogram pairings. The final mammogram is then generated by combining the 

data. The proposed mapping model's architecture, which is separated into two sections—an 

encoding section and a decoding section—is shown in Figure 4.3. 

The encoding section functions similarly to a conventional CNN, learning to extract a 

hierarchy of increasingly complex features from a thermal image input. This involves several 

layers of convolutional operations that capture different levels of abstraction, starting from 

simple edges and textures to more intricate patterns and structures present in the thermal image. 

In the decoding section, these extracted features are then transformed and used to reconstruct 

the synthetic mammogram projection. This reconstruction process progresses from low to high 

resolution, gradually refining the image details through successive layers. The final output 
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from the network is designed to match the dimensions of the original thermal image, ensuring 

that the synthetic mammogram retains the same spatial resolution and anatomical context. 

A key aspect of this model is the use of high-resolution features from the encoder as 

supplementary inputs for the convolutional layers in the decoder. These high-resolution 

characteristics help in preserving fine details and enhancing the quality of the reconstructed 

mammogram. 

Ultimately, the network's performance is evaluated based on Mean Absolute Error (MAE) 

against validation data. The model iterates over the data, continuously adjusting and improving 

its outputs. The best image, which is the one with the lowest MAE, is retained as the final 

synthetic mammogram. This method ensures that the generated mammogram is as accurate 

and detailed as possible, providing a reliable representation for further analysis or clinical use. 

Mean Absolute Error (MAE) is used as a loss function. 

𝑀𝐴𝐸 =
1

𝑁
∑ ||𝐴𝑛 − 𝐺(𝐵𝑛; 𝜑)||
𝑁
𝑛=1        (4.5) 

  is the network parameter, which can be achieved by minimizing the loss between the 

synthetic image );( nBG  and the original mammogram image ( nA ). N is the number of 

images used. When MAE is used as the loss function, the learning becomes more resistant to 

outliers, such as many artifacts as well as improper alignment between thermal and 

mammogram images. 

It is worth noting that the two different modality images used for mapping are of the same 

patient, to ensure that the comparison is unbiased. Due to the inadequate training data in this 

study, it was not possible to train the model directly. Consequently, the data was trained and 

tested using zero-shot learning. The model was tested on the INbreast dataset. Zero-shot 
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learning makes it easier to transfer knowledge from the training domain to the testing domain 

for effective learning because the information in the training and testing instances is different. 

 

Fig. 4.4 DARTS classifier for the proposed technique. 

DARTS is utilized in this section since it blends the searching and evaluating steps into one. 

During the search step, the proposed network is optimized using a stochastic gradient descent 

optimizer, whereupon the best features are retained and trained again [139]. The architecture 

of the proposed DARTS is shown in Fig. 4.4.  

The search space is specified to find the network model. The directed acyclic graph is a search 

space with E nodes },...,,{ 10 Eeee , as shown in Fig. 4.4. Each component, of the pre-defined 

space of operations denoted by C  is a defined operation performed at a layer of the network. 

Within a cell, the goal is to choose one operation from C  to connect each pair of nodes ),( nm

. There are m  directed input edges ),...,,( ,1,0, mmmm xxx  for each node mx , with each edge nmx ,  

transforming mT  with certain operation ),( nmz . The attribute of each node is the sum of its 

preceding nodes' operations, as expressed below. 

𝑇𝑚 = ∑ 𝑧𝑚,𝑛(𝑇𝑚)𝑛<𝑚          (4.6) 
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were, 

𝑧𝑚,𝑛(𝑇𝑚) = ∑
𝑒𝑥𝑝(𝛼𝑚,𝑛

𝑂 )

∑ 𝑒𝑥𝑝(𝛼𝑚,𝑛
𝑂′

)
𝑂′∈𝐶

𝑂𝑂∈𝐶 (𝑇𝑚)      (4.7) 

In this work, two different datasets for training and testing were used. U-DART is a modified 

classifier that is trained on a digital mammogram dataset i.e., INbreast. Edge normalization 

preserves the boundary condition of the lesion in the breast and concatenation helps in 

producing a result of the model. Finally, the synthetic mammogram results are tested for 

DARTS processed dataset. 

Algorithm 1: Preprocessing for Synthetic Mammogram Construction Model 

1: Input: 𝑇𝑂𝑅𝐼  (m𝗑n); Original thermal image with m = no. of  rows and n = no. of column 

               𝑀𝑂𝑅𝐼  (m𝗑n); Original mammo image with m = no. of                           rows and n = no. of column 

2: Preprocessing: Initialize the image 𝑇𝑂𝑅𝐼   and 𝑀𝑂𝑅𝐼 for preprocessing 

3: Apply CLAHE of 𝑇𝑂𝑅𝐼   and 𝑀𝑂𝑅𝐼 to get kCL_out 

                Fed kCL_out as input to logarithmic and CSM block and get k” as output. 

                k” ←  kCL_out 

              LT block 

                               u  ←  Io  ←  kCL_out 

4: return:  output = u + k” 

 

Algorithm 2: Feature extraction for Synthetic Mammogram Construction Model 

1: Input: u + k” 

2: Output: 𝑀𝑆𝑌𝑁; Synthetic Mammogram 

3: Feature Descriptor- Apply DMSF to create a mapping function 

4: Take 𝑀𝑂𝑅𝐼 as a reference image to create 𝑀𝑆𝑌𝑁 from 𝑇𝑂𝑅𝐼  
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5: Set z = 1 

6: while (z < SCMiterations) {termination condition}do # SCM is the synthetic construction 

model 

7: for each patch do 

8: Calculate Dual-modality structural features 

Get the best model for 𝑀𝑆𝑌𝑁 with the help of MAE 

9: Update the best model based on the loss function obtained through eq (5) 

10: end for 

11: end while 

12: return 𝑀𝑆𝑌𝑁 

# Create a test set from the output of the Feature Descriptor 

 

Algorithm 3: Classifier for Synthetic Mammogram Construction Model 

1: Input: 𝑀𝑆𝑌𝑁  

2: Create training set 𝑀𝑇𝑅𝐴𝐼𝑁 with INbreast dataset 

Feature maps ←        𝑀𝑇𝑅𝐴𝐼𝑁 

edge normalization 

Output feature map ←  Feature maps 

SGD 

3: Apply stochastic gradient descent (SGD) optimizer to obtain the best feature map 

4: Utilize the obtained image sequences to train/test the proposed U-DART model for    

estimation and detection 

 

4.4. Computational Complexity 

This section describes the computational complexity of the proposed synthetic mammogram 

construction model (SMCM). The space and time complexities are explained further below. 



75 

 

4.4.1. Time Complexity 

• The initialization of SMCM needs 𝛰(𝑇𝑂𝑅𝐼(𝑚 × 𝑛)) + 𝛰(𝑀𝑂𝑅𝐼(𝑚 × 𝑛)) time 

where m represents number of rows and n represents   number of columns in each image. 

• The CLAHE calculation requires 𝛰(𝑇𝑂𝑅𝐼(𝑘𝐶𝐿_𝑜𝑢𝑡)) + 𝛰(𝑀𝑂𝑅𝐼(𝑘𝐶𝐿_𝑜𝑢𝑡)) time. 

• The time required for calculating preprocessing block Ο(𝑇𝑂𝑅𝐼(𝑘𝐶𝐿_𝑜𝑢𝑡 × 𝐼𝑜 × 𝑢 ×

𝑘”)) +  Ο (𝑀𝑂𝑅𝐼(𝑘𝐶𝐿_𝑜𝑢𝑡 × 𝐼𝑜 × 𝑢 × 𝑘”)) 

Where, 𝑘𝐶𝐿_𝑜𝑢𝑡, 𝐼𝑜, 𝑢 and 𝑘”are the outputs obtained from CLAHE, CSM, OTM and LT 

block respectively. 

• Mapping DMSF algorithm requires Ο(𝑀𝑂𝑅𝐼) = Ο (𝑀𝑀𝐴𝑃𝑃 (𝑇𝑂𝑅𝐼(𝑘𝐶𝐿𝑜𝑢𝑡 × 𝐼𝑜 × 𝑢 ×

𝑘”))) + Ο (𝑀𝑀𝐴𝑃𝑃 (𝑀𝑂𝑅𝐼(𝑘𝐶𝐿𝑜𝑢𝑡 × 𝐼𝑜 × 𝑢 × 𝑘”))) 

Where, 𝑀𝑀𝐴𝑃𝑃 indicates the mapping function to ensure that the tissues or structures in the 

input and synthetic images have the same anatomy. 

• Time taken by training and testing of U-DART model is 𝛰TT = 𝛰((𝑀TRAIN)(EN +

SGD) + 𝛰(𝑀TEST) 

Therefore, the overall time complexity of the proposed model is as follows: 

Ο(𝑀𝑀𝐴𝑃𝑃 (𝑇𝑂𝑅𝐼(𝑘𝐶𝐿𝑜𝑢𝑡 × 𝐼𝑜 × 𝑢 × 𝑘"))) + Ο(𝑀𝑀𝐴𝑃𝑃 (𝑀𝑂𝑅𝐼(𝑘𝐶𝐿𝑜𝑢𝑡 × 𝐼𝑜 × 𝑢 × 𝑘"))) +

ΟTT  

4.4.2. Space Complexity 

The proposed synthetic mammogram construction model space complexity considers its 

initialization stage, which necessitates space at any given time. As a result, the overall space 

complexity is: 
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𝛰(𝑇ORI(𝑚 × 𝑛)) + 𝛰(𝑀ORI(𝑚 × 𝑛)) + 𝛰(𝑀TRAIN(𝑚 × 𝑛)) 

4.5. Results and Discussions 

4.5.1. Datasets used 

The work is carried out with a FLIR SC-620 IR sensor, having dimensions of 640 x 480 pixels, 

from the Database for Mastology Research (DMR). DMR includes thermogram as well as 

mammogram images in jpeg format from frontal images [87]. It has horizontal and vertical 

resolution of 96 dpi each. It consists of images of 287 patients aged between 29 to 85.  

INbreast database is publicly available and can be obtained from [38]. There are 410 FFDM 

mammograms from 115 patients in this collection. For healthy and unhealthy cases, the 

INbreast includes both Craniocaudal (CC) and Mediolateral Oblique (MLO) views. Every 

mammogram has a DICOM file with an XML document, some case-specific information as 

well as ground truth descriptions of any lesion found in unhealthy mammograms.  

To objectively assess the quality of the synthetic mammogram output in comparison to the 

original image, the values of MAE, Peak Signal Noise Ratio (PSNR), and Structural Similarity 

measure (SSIM) are computed. These metrics have given quantitative information about how 

well the synthesis process captures image fidelity, enabling you to make well-informed 

decisions about algorithmic enhancements and guaranteeing that the quality standards for the 

output synthetic mammogram have been met. 

4.5.2. Performance Evaluation 

The outcomes of the suggested methodology are assessed both qualitatively and quantitatively 

in order to confirm its validity. For this assessment, twenty sets of mammography/thermal 

images from the same patients in the DMR dataset are used.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 4.5 Results obtained from the proposed DMSF method (a) source mammogram, (b) source thermal 

image, (c) heat map obtained from mammogram image, (d) heat map obtained from thermal image, (e) 

difference image, and (f) final output synthetic image . 

The images are first pre-processed and then mapped into a shared architectural feature space 

using DMSF to ensure that the tissues or structures in the input and synthetic images have the 

same anatomy. The visual results obtained can be seen in Fig. 4.5. The proposed model’s 

efficiency and effectiveness are demonstrated using metrics such as Mean Absolute Error 

(MAE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) as 

mentioned above. Additionally, a comparative analysis with various existing multi-modal 
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approaches is presented in Table 4.1. This table provides a comparison of PSNR, MAE, and 

SSIM values between the proposed model and several synthetic models used in medical 

imaging. To ensure impartiality, all values were obtained by testing on the same fused images. 

Some unsupervised deep learning-based methods [138,140–143] have recently been 

implemented for MR-to-CT synthesis.  

Table 4.1 Comparison of PSNR, MAE, and SSIM values obtained from the proposed Model and various 

synthetic models. 

Model 

 

MAE 

 

PSNR 

 

SSIM 

 

cycleGAN 140.22 23.74 0.751 

gc-cycleGAN 139.77 23.79 0.751 

sc-cycle GAN 124.8 24.5 0.782 

Proposed 30.92 21.99 0.88 

 

Figs. 4.6 and 4.7 show MAE, PSNR, and SSIM values of various synthesized models such as 

cycleGAN, gc-cycleGAN, sc-cycle GAN, and the proposed one. The proposed method has 

successfully attained the lowest MAE of 30.92 and PSNR value of 21.99. The value of SSIM 

is 0.88 which shows the superiority of the proposed method over the existing ones. 

 

Fig. 4.6 Comparison between PSNR and MAE values for various synthetic models. 



79 

 

 

Fig. 4.7 Comparison between SSIM for various synthetic models. 

Table 4.2. shows the comparison of the proposed Model to Latest Breast Cancer Detection and 

Classification Techniques for Mammogram Screening. To ensure accurate construction, the 

resultant synthetic mammograms are compared to the INbreast (mammogram) dataset to 

unbiasedly evaluate proposed approach’s success. 

However, original mammograms inherently contain detailed structural information optimized 

for breast cancer detection, while thermal images capture different data types, requiring 

complex transformations that may not fully replicate mammogram details. Despite these 

challenges, the proposed approach's performance remains commendable.  

Table 4.2 Comparison of the proposed Model to Latest Breast Cancer Detection and Classification 

Techniques for Mammogram Screening. 

 

0.751 0.751
0.782

0.88

cycleGAN gc-cycleGAN sc-cycleGAN Proposed

SSIM

Ref Year Special characteristic 
Classification 

method 
Acc 

[144] 2018 YOLO-V1 & FrCN CNN 95.64% 

[145] 2021 YOLOV3 Inception V3 89.5% 

[146] 2021 
2 paths detection based on 

YOLOV4 InceptionV3 91% 

[147] 2021 Multi-fractal dimension CNN 99% 

Proposed 2022 
Synthetic mammo construction 

model U-DARTS 98% 



80 

 

The performance analysis of the proposed synthetic construction model is verified using the 

INbreast dataset. Figs. 4.8 and 4.9 show the accuracy and loss of the proposed model 

respectively. The proposed model yielded 98% training accuracy value and the loss obtained 

is 0.12.  

 

Fig. 4.8 Classification training and validation Accuracy for the proposed model with INbreast dataset. 

 

Fig. 4.9 Classification training and validation loss for the proposed model with the INbreast dataset. 

4.6. Summary 

In this chapter, the U-DARTS method combined with a stochastic gradient descent optimizer 

is used to detect and classify the breast lesion in synthetic mammogram images created from 

the proposed model. To verify the efficiency and effectiveness in terms of MAE, PSNR, and 
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SSIM, extensive experiments are conducted on DMR and INbreast datasets. In addition, on the 

INbreast dataset, the proposed model achieves a precision of 98%.  

When the proposed technique was compared with other methods using the same dataset, 

INbreast, it was discovered that the proposed technique produced good results both visually 

and statistically. However, original mammograms inherently contain detailed structural 

information optimized for breast cancer detection, while thermal images capture different types 

of data, necessitating complex transformations that may not fully replicate the details of 

mammograms. Additionally, limited training data and the use of zero-shot learning can affect 

the model's generalization ability, potentially degrading the fine structural details of the 

synthetic mammograms. Despite these challenges, the performance of the proposed approach 

is commendable.  

Future work will focus on enhanced data augmentation, advanced mapping techniques, 

hybrid models, incremental learning, and the development of multi-modal datasets to 

bridge the accuracy gap and fully harness the potential of safer, radiation-free diagnostic 

methods. 
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5. CHAPTER 5 

Bimodal Image Fusion using AWT SPS for 

Breast Cancer Detection 
 

5.1. Preamble 

Fusing different modalities of medical images, such as X-ray mammograms and thermal 

images, presents unique challenges due to variations in imaging environments, angles, and the 

distinct types of information each modality captures. The proposed Super-Pixel Segmentation-

based Advanced Wavelet Transformation (SPS-AWT) technique effectively addresses these 

challenges, ensuring high-quality image fusion. By utilizing advanced image registration 

techniques and geometric transformations, the method corrects for environmental and angular 

differences, while Discrete Wavelet Transformation (DWT) and super-pixel segmentation 

preserve spectral and spatial information. This fusion process combines structural details from 

mammograms with functional data from thermal images, enhancing diagnostic capabilities 

through improved contrast, clarity, and comprehensive visualization. 

The effectiveness of the SPS-AWT technique was validated on a well-known dataset, using 

performance metrics such as structural similarity index (SSIM), peak signal-to-noise ratio 

(PSNR), and mutual information (MI). These evaluations confirm that the technique maintains 

critical details and enhances image quality, significantly improving diagnostic accuracy and 

visualization for breast cancer management. The resulting fused images provide a richer data 

set, aiding in the detection and monitoring of abnormalities and leading to better diagnostic 

and therapeutic outcomes. 
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5.2. Proposed Methodology 

Breast cancer has affected both men and women, but the prevalence in women is unimaginably 

high. Almost one out of eight females are diagnosed with breast cancer and early diagnosis can 

save their lives. Though single-modal images are in use for the diagnosis of cancer, however, 

the information so obtained is limited. To help medical practitioners with better clinical 

diagnosis, we may need more information, which can be achieved by exploring the 

multimodality-based approach.  

5.3. Proposed Technique 

The proposed AWT-SPS technique is developed for medical images that have different 

modalities. When two different sensors are used for diagnosis in medical imaging, an enhanced 

fusion process is used to preserve spectral information and enhance spatial information. Fig. 

5.1 shows the block diagram for the proposed fusion technique. The main steps of the proposed 

technique are as follows: 

 

Fig. 5.1 Proposed AWT-SPS image Fusion technique. 

Step 1: The study uses two different imaging modalities, infrared and x-ray (mammogram), of 

the same patient, sourced from the same dataset (DMR). This approach considers the inherent 

spectral differences between the two types of images. Typically, spectral variations arise when 
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images are captured at different times and in varying visual environments. By addressing these 

spectral variations, the method ensures that the fused images maintain critical information from 

both modalities, thereby enhancing the quality and reliability of the diagnostic data. 

To compute the detailed and approximation coefficients, both thermal (𝐼𝑇𝐻) and mammogram 

(𝐼𝑀𝑀) modalities are applied to DWT separately. The row 𝑓𝑟 and column 𝑓𝑐 frequencies are 

calculated as follows: 

𝑓𝑟 = √
1
𝑚𝑛∑ ∑ (𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 − 1))𝑛−1

𝑦=0
𝑚−1
𝑥=0

2⁄      (5.1) 

𝑓𝑐 = √
1
𝑚𝑛∑ ∑ (𝑓(𝑥, 𝑦) − 𝑓(𝑥 − 1, 𝑦))𝑛−1

𝑦=0
𝑚−1
𝑥=0

2⁄      (5.2) 

The image (𝑓) with grey scale 𝑓(𝑥, 𝑦) at pixel coordinates (𝑥, 𝑦) is of size 𝑚× 𝑛.  

 

(a) X1* 

 

(b) X1 

 

(c) X2* 

 

(d) X2 
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(e) X3* 

 

(f) X3 

 

(g) X4* 

 

(h) X4 

Fig. 5.2 Frequency coefficients obtained for a mammogram and thermal images, where (a) to (f) are the 

detailed coefficients, (g) and (h) are the approximation coefficients. 

Further, the aim is to select an image with the largest contrast among the three detailed 

coefficient images. Two sets are generated, each with three images (X1, X2, X3 and X1*, X2*, 

X3*, respectively) corresponding to the three detailed coefficients (H, V, and D), (see Fig. 

5.2). Following at the two images with the highest detail coefficient values, are chosen for 

further processing one from each other. The approximate coefficients for mammogram and 

thermal imaging are X4* and X4, respectively. 

Step 2: Both images (as obtained from Step 1) are partitioned into irregular patches using the 

super-pixel segmentation (SPS) approach [148]. A reference image (𝐴𝑟) for SPS is selected 

using input images from multiple exposures. The reference image for the study is the one with 

the fewest under or overexposed pixels among all the input images.[149]. 𝐴𝑟 reference image 

is divided into 'z' number of image patches using simple linear iterative clustering, which is 

denoted as 𝑝1, 𝑝2, ……… . 𝑝𝑧 using super-pixel segmentation process as shown in Fig. 5.3. 
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𝑆𝑃𝑆𝑆𝑙𝑖𝑐(𝐴𝑟) = {𝑝1, 𝑝2, ……… . 𝑝𝑧}       (5.3) 

The following is a representation of the segmented image patches: 

({𝐴𝑦(𝑝𝑧)}𝑦=1…,𝑌,𝑧=1…,n)        (5.4) 

Here, {𝐴𝑦(𝑛𝑧)} represents the 𝑧𝑡ℎ patch of the 𝑦𝑡ℎ image. 

 

(a) Reference image 

 

(b) Mask 

 

(c) Segmented Image 

Fig. 5.3 Super-pixel segmentation. 

To ensure consistency all other input images are segmented in the same way as the reference 

image. 

Step 3: The patient's segmented thermal and mammogram images are combined using 

Advanced Wavelet Transformation (AWT). The spatial frequency of the intensity value 

corresponding to thermal (𝑓𝑇𝐻
𝑁 ) and mammogram (𝑓𝑀𝑀

𝑁 ) images is normalized using detail 

coefficient as given below: 

𝑓𝑇𝐻
𝑁 = 

𝑓𝑇𝐻

(𝑓𝑇𝐻+ 𝑓𝑀𝑀)
         (5.5) 

𝑓𝑀𝑀
𝑁 = 

𝑓𝑀𝑀

(𝑓𝑇𝐻+ 𝑓𝑀𝑀)
         (5.6) 

where, 𝑓𝑀𝑀 and 𝑓𝑇𝐻 represent the spatial frequencies of mammogram and thermal images, 

respectively. 

The fused detail coefficients (𝑓𝑓𝑢𝑠𝑒𝑑) are computed as: 

𝑓𝑓𝑢𝑠𝑒𝑑 = 𝐶𝑇𝐻  × 𝑓𝑇𝐻
𝑁  + 𝐶𝑀𝑀 × 𝑓𝑀𝑀

𝑁        (5.7) 
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where 𝐶𝑀𝑀 and 𝐶𝑇𝐻  represent the spatial frequencies of mammogram and thermal images, 

respectively. 

Step 4: The fused image is formed by applying an inverse DWT on the thermal image 

approximation coefficients. 

Fig. 5.4 shows the visual comparison of standard wavelet-based fusion technique and the 

proposed technique. In the past, feature fusion techniques such as Discrete wavelets transform 

(DWT), Shape adaptive DWT (SA-DWT), and Spatial frequency DWT (SF-DWT) were used. 

DWT gives frequency and spatial domain information of the image, simultaneously.  Mismatch 

in image registration is one of the main issues with DWT [104]. SA-DWT and SF-DWT have 

already been proposed to address this issue. Notably, the difference between SA-DWT and 

general DWT is the stage-based boundary extension strategy that extends the boundary locally 

in every lifting stage [150]. SF-DWT, on the other hand, quantifies the amount of frequency 

content in the image. In other words, it improves the sharpness or clarity of the image [151].  

Fig. 5.4 (a) and Fig. 5.4 (b) show thermal and mammography images, respectively. The fusion 

results obtained using DWT, SA-DWT, SF-DWT, and the proposed method are shown in Fig. 

5.4 (c) to (f), respectively. Green arrows illustrate the mismatch between two images created 

using the traditional fusion techniques. As seen in the figure, the fusion results obtained using 

the proposed methodology retain the structures of both images.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 5.4 Visual Comparison of the proposed fusion technique to the traditional wavelet transformation 

fusion techniques. Results of (a) Thermal, (b) Mammogram, (c) DWT, (d) SA-DWT, (e) SF-DWT, and (f) 

AWT-SPS. 

Algorithm: - Proposed Breast cancer detection approach 

Input: ITH(m𝗑n); Thermal image with m=no. of rows and n= no. of column 

IMM(m𝗑n); Mammogram image with m=no. of rows and n= no. of column 

Output: IFUS; Fused image 

Procedure SFDWT-SPS 

Initialize the image ITH(m𝗑n) and IMM(m𝗑n) 

Apply DWT on ITH and IMM to determine the detailed and accurate representation of coefficients. 

 ITH−DWT     
DWT
←     ITH 

IMM−DWT     
DWT
←     IMM 

Apply super-pixel segmentation (SPS) on ITH and IMM images simultaneously. 

Find reference image Ar for SPS based on multi-exposure input images. 

while (x < SPSiterations) do 

for each patch do 
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Update the image patches obtained through segmentation using Eq (4.5) 

end for 

end while 

Update ITH and IMM  

for i = 1 to n (n= no. of the column in the image) 

S(ITH) = SPS(ITH−DWT)        

S(IMM) = SPS(IMM−DWT) 

Where S(ITH) and S(IMM) are the superpixel segmented image of the respective thermal image and 

mammogram image. 

end for 

Calculate the detailed coefficients and approximation coefficients for each image. 

Calculate fused coefficients.  

for i = 1 to n (n= no. of the column in the image) 

S_f(Ifus) = fusion_rule(S(ITH), S(IMM)) 

where fusionrule is spatial frequency DWT. 

end for 

Fused image Ifus is reconstructed from pixel segmentation components. 

Ifus = IDWT{Sf(Ifus)} 

return archive. 

end procedure 

 

5.4. Complexity 

The computational complexity of the recommended algorithm (AWT-SPS) is described in this 

subsection.  
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5.4.1. Time Complexity 

• The implementation of the AWT-SPS algorithm desires 𝑂(𝐼𝑇𝐻(𝑚𝑛)) +

𝑂(𝐼𝑀𝑀(𝑚𝑛)) time. Where 𝑚 and n represent the number of rows and columns in 

each image, respectively. 

• The time required for DWT calculation of each pixel is 𝑂(𝐼𝑇𝐻(𝐷𝑊𝑇𝑚𝑛)) +

𝑂(𝐼𝑀𝑀(𝐷𝑊𝑇𝑚𝑛)) 

• The time required for super pixel calculations is 

𝑂(𝐼𝑇𝐻(𝑆𝑃𝑆𝑖𝑡𝑒𝑟𝐷𝑊𝑇𝑚𝑛)) + 𝑂(𝐼𝑀𝑀(𝑆𝑃𝑆𝑖𝑡𝑒𝑟 𝐷𝑊𝑇𝑚  𝑛)) 

where 𝑆𝑃𝑆𝑖𝑡𝑒𝑟 is the maximum number of iterations to simulate superpixel 

segmentation.  

• The algorithm requires 𝑂(𝑓𝑢𝑠𝑒𝑑) =  𝑂(𝐼𝑇𝐻(𝑀)) + 𝑂(𝐼𝑀𝑀(𝑀)) time to calculate the 

detailed coefficients and approximation coefficients. Here, 𝑀 indicates the number of 

fused coefficient values.  

• Repeat Steps 2 to 4 until the image is reconstructed. 

As a result, the SFDWT-SPS algorithm has the overall time complexity of 

𝑂(𝐼𝑇𝐻(𝑆𝑃𝑆𝑖𝑡𝑒𝑟 𝐷𝑊𝑇𝑚𝑛𝑂(𝑓𝑢𝑠𝑒)) + 𝑂(𝐼𝑀𝑀(𝑆𝑃𝑆𝑖𝑡𝑒𝑟 𝐷𝑊𝑇 𝑚 𝑛 𝑂(𝑓𝑢𝑠𝑒)) 

 

5.4.2. Space Complexity 

AWT-SPS algorithm's space complexity is determined at the initial stage, which at any given 

time requires space. Due to this, AWT-SPS algorithm's overall space complexity is 

𝑂(𝐼𝑇𝐻(𝑚𝑛)) + 𝑂(𝐼𝑀𝑀(𝑚𝑛)). 
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5.5. Results and Discussions 

The effectiveness of the proposed scheme is evaluated using both objective and texture features 

on the DMR dataset of breast thermal images. 

5.5.1. Dataset Used 

The study utilized the FLIR SC-620 IR sensor, featuring dimensions of 640 x 480 pixels, to 

capture infrared images from the Database for Mastology Research (DMR) [152]. This 

comprehensive dataset includes both thermogram and mammogram images in JPEG format, 

with a resolution of 96 dpi on both vertical and horizontal axes. The DMR dataset comprises 

images from 287 patients, ranging in age from 29 to 85 years. Table 5.1 provides a detailed 

description of the DMR dataset, highlighting its diverse patient demographics and the high-

quality imaging parameters employed. 

Table 5.1 Categorization of patients in the dataset. 

Total number of individuals 235 

Number of healthy individuals 184 

Number of sick individuals 47 

Number of unknown individuals 04 

 

5.5.2. Texture Features 

Both the image’s local spatial intensity variations and its homogeneity are described by the 

textual features [153]. These are quite useful for selecting features and analyzing textures. 

• Mean: The mean is used to calculate the average brightness of a fused image. Its value should 

be high in order for effective improvement. 

𝑚𝑒𝑎𝑛 =  
1

𝑚𝑛
 ∑ ∑ 𝑝𝐴(𝑎, 𝑏)𝑛

𝑏=1
𝑚
𝑎=1        (5.8) 

Here, 𝑚 and 𝑛 signify the number of rows and columns in a fused image. 𝑝𝐴 is the coefficient 
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of approximation.  

• Standard Deviation: It is used for contrast measurement. A high value of standard deviation 

indicates that the pixels are scattered and are far from the mean. It can be calculated as [153]: 

StD =  √∑ ∑ (𝑝𝐴(𝑎, 𝑏) − 𝑚𝑒𝑎𝑛)2𝑛
𝑏=1

𝑚
𝑎=1       (5.9) 

where StD denotes the standard deviation. 𝑚 and 𝑛 are the number of rows and columns, 

respectively.  

• Energy (En): The energy is a measure of the image's regional homogeneity. The 

mathematical formula for energy is given as: 

𝐸𝑛 =  ∑(𝑝(𝑥𝑖))
2

𝑦−1

𝑎=0

 (5.10) 

Here, 𝑝(𝑥𝑖) denotes the probability distribution in each level. y indicates the total number of 

grey levels. 

• Entropy (EnT): It is used to estimate data in the fused image. To get better results, the value 

of entropy should be high. The entropy is given below [154]: 

𝐸𝑛𝑇 =  − ∑ 𝑚(𝑏) log𝑚(𝑏)𝑧−1
𝑏=1         (5.11) 

where 𝑧 represents the total number of grey levels. 𝑚(𝑏) denotes the probability density 

distribution of grey levels. 

• Dissimilarity: Dissimilarity is a measure of distance between pairs of objects in the region of 

interest [104]. 

𝐷𝑖𝑠𝑠 = |x − y|      (5.12) 

𝑥 and 𝑦 are the attribute values of two data objects. 
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Structural similarity measure (SSIM), peak signal-to-noise ratio (PSNR), mean square error 

(MSE), and signal-to-noise ratio (SNR) are well-known performance measures. 

As many as nine parameters serve as the basis for comparing the proposed and the existing 

techniques. The images used are from the same patient and dataset, guaranteeing an unbiased 

comparison. 

5.6. Performance Evaluation 

This section presents the proposed technique’s results as well as a comparison with other fusion 

schemes. The results for fused images are obtained by combining thermal and mammogram 

images from the same patient who has malignant breast tumor. Texture and objective traits are 

measured to show the effectiveness of the proposed technique. 

(a) Texture Analysis 

The proposed SPS-AWT method yielded fused images with excellent geometric content and 

high radiometric quality. A comprehensive texture analysis was conducted to evaluate the 

performance of the fusion technique compared to existing approaches. Several key texture 

features were computed and compared, including mean, standard deviation, energy, entropy, 

and dissimilarity. Table 5.2 shows the comparative analysis of the proposed approach with the 

existing techniques in terms of texture features.   

The mean value represents the average luminosity of the fused image, with higher values 

indicating better spectral density. The proposed SPS-AWT method outperformed other 

techniques, achieving a mean of 1.925 compared to 1.324 for DWT, 0.919 for SA-DWT, and 

1.736 for SF-DWT fused images. This significant improvement in mean value demonstrates 

SPS-AWT's ability to enhance the spectral information content. Standard deviation measures 

the contrast and dispersion of pixel values from the mean. While SA-DWT yielded the lowest 
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standard deviation of 54.827, the proposed method's value of 55.351 was comparable, differing 

by only around 1%. This indicates that SPS-AWT preserves contrast effectively. 

Energy quantifies the homogeneity of the image region, where higher values are desirable. The 

proposed fusion method achieved an energy of 23.876, slightly lower than DWT (24.171) but 

higher than SA-DWT (23.895) and SF-DWT (23.848), suggesting maintained homogeneity. 

Entropy estimates the richness of information content in the fused image. SPS-AWT attained 

the highest entropy of 8.26 among all techniques evaluated, indicating superior information 

preservation and detail retention. The dissimilarity metric measures the variance between pixel 

pairs in the region of interest. With a dissimilarity of 0.6279, the proposed approach 

outperformed DWT (0.4222), SA-DWT (0.598), and SF-DWT (0.6221), signifying its ability 

to minimize distortions and artifacts. 

Overall, the texture analysis validates the effectiveness of the SPS-AWT fusion framework in 

generating high-quality fused images with enhanced spectral characteristics, preserved contrast 

and details, reduced artifacts, and high information content compared to conventional wavelet-

based fusion methods. 

Table 5.2 Comparative analysis of the proposed approach with existing techniques in terms of textural 

features analysis. 

                        Values 

 

Techniques 

Texture Analysis Values 

Mean StD Diss En EnT 

DWT 1.324 80.572 0.6279 24.171 8.146 

SA-DWT 0.919 54.827 0.6221 23.895 8.177 

SF-DWT 1.736 104.32 0.598 23.848 8.176 

Proposed 1.925 55.351 0.4222 23.873 8.26 
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(b) Objective Analysis   

In addition to texture characteristics, several objective metrics were employed to quantitatively 

assess the performance of the proposed SPS-AWT fusion technique against existing methods. 

These include the mean squared error (MSE), peak signal-to-noise ratio (PSNR), signal-to-

noise ratio (SNR), and structural similarity index (SSIM). These metrics provide an objective 

evaluation of the fused image quality and the effectiveness of the fusion process. Table 5.3 

depicts the results obtained from the proposed approach and other techniques in terms of the 

objective feature analysis. 

The mean squared error quantifies the average squared difference between the fused and 

reference images. A lower MSE value indicates a smaller error and better fusion quality. The 

proposed SPS-AWT method achieved the lowest MSE of 31.367 among all techniques 

compared, outperforming DWT (108.567), SA-DWT (32.323), and SF-DWT (105.573). This 

low MSE demonstrates SPS-AWT's ability to effectively minimize distortions and artifacts in 

the fused output. 

The peak signal-to-noise ratio is a measure of the maximum possible signal power relative to 

the noise power, with higher PSNR values implying better image quality. SPS-AWT attained 

the highest PSNR of 33.166 dB, surpassing DWT (27.77 dB), SA-DWT (33.04 dB), and SF-

DWT (27.89 dB). This significant PSNR improvement indicates that the proposed method can 

effectively suppress noise and preserve signal integrity during the fusion process. The signal-

to-noise ratio quantifies the desired signal level relative to background noise and unwanted 

distortions. While the proposed technique had a marginally lower SNR of 0.21 compared to 

DWT (1.643) and SF-DWT (1.553), it outperformed SA-DWT (0.728), suggesting maintained 

signal fidelity. 
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The structural similarity index measures the perceived quality of the fused image compared to 

the reference, considering aspects like luminance, contrast, and structure. With an SSIM of 

0.915, SPS-AWT achieved the highest structural similarity among all evaluated methods, 

indicating superior preservation of structural details and visual quality in the fused output. 

Overall, the objective analysis substantiates the effectiveness of the proposed SPS-AWT 

framework in generating high-quality fused images with minimized distortions, noise 

suppression, maintained signal integrity, and superior structural similarity compared to 

conventional wavelet-based fusion techniques. 

Table 5.3 Comparative analysis of the proposed approach with existing techniques in terms of objective 

features analysis. 

                           Values 

 

Techniques 

Objective Analysis Values 

MSE SNR PSNR SSIM 

DWT 108.567 1.643 27.77 0.613 

SA-DWT 32.323 0.728 33.04 0.914 

SF-DWT 105.573 1.553 27.89 0.491 

Proposed 31.367 0.21 33.16 0.915 

 

(c) Subjective Analysis 

To demonstrate the effectiveness of the suggested fusion method, 30 pairs of mammogram and 

thermal images with respect to the same patient, designated P-1 to P-30, are chosen. The size 

of each one is  256 × 256. The classification outcomes obtained with the suggested model are 

shown in Figure 5.5. The ResNet-18 model was used in the classification process. Using 

thermal images from the DMR dataset, the training accuracy—represented by the red line—

reached 95%. The green and blue lines show the test accuracy values for thermal images and 
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fused images from the DMR dataset. The fused images' test accuracy is about the same as the 

thermal images. The visual comparison revealed that the SPS-AWT fused images successfully 

preserved both input modalities' structural integrity and complementary information. In 

contrast, the conventional methods suffered from issues like image mismatch, color 

asymmetry, and loss of salient details, as indicated by green arrows in the results. The proposed 

approach effectively addressed these challenges, generating fused images with consistent 

colors, improved contrast, and clear visualization of diagnostic details from the mammograms 

and thermal data. This comprehensive representation enhances the ability to detect and localize 

breast abnormalities accurately. 

 

Fig. 5.5 Accuracy comparison of fused images on DMR dataset. 

Overall, the subjective evaluation validated the superior performance of SPS-AWT in 

producing visually interpretable and informationally rich fused images compared to existing 

techniques, highlighting its potential for reliable multimodal medical image analysis. 

(d) Comparative Analysis 

Table 5.4 compares the performance of the proposed multimodal breast cancer detection 

method with several recent works that employ fusion techniques. The comparison is made in 
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terms of the fusion method used, the classification approach, the dataset employed, and several 

evaluation metrics like accuracy, Recall, and Precision. 

Table 5.4 A comparison of the suggested model with work done on breast cancer detection using fusion 

technique. 

The proposed approach utilizes a bimodal image fusion of infrared thermograms and 

mammograms, followed by classification using a ResNet-18 model. On the INbreast dataset, 

it achieves competitive performance with a test accuracy of 92.5% for thermal images and 

91.8% for the fused images. Li et al. (2021) and Irfan et al. (2021) employ a multi-scale or 

parallel fusion of deep learning models on the BUSI dataset, attaining accuracies of 90.37% 

and 91.87%, respectively. Liu et al. (2022) fused gene expression and image data from the 

TCGA-BRCA dataset using a multimodal CNN, reporting 88.07% accuracy. 

Despite using a smaller dataset of 30 fused test images, the proposed method demonstrates 

promising results, with its Recall of 0.9839 and Precision of 0.9712 being comparable to the 

state-of-the-art fusion-based approaches. This highlights the efficacy of the novel SPS-AWT 

fusion framework for multimodal breast cancer detection. 

Ref Year Fusion Technique Purpose Acc RC P 

[155] 2021 Multi-scale fusion CNN Feature fusion 90.37% 0.9421 0.9345 

[156] 2021 

Fusion of DenseNet 201- and 

24-layer CNN 
CNN Fusion of two models 91.87% 0.9642 0.9533 

[157] 2022 Multimodal fusion CNN 

Fusion of gene and image 

modality 

88.07% 0.9388 0.9218 

Proposed - Bimodal Image Fusion ResNet-18 

Fusion of two different 

image modalities 

91.8% 0.9712 0.9839 
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5.7. Summary 

The proposed chapter discusses the fusion of images from different modalities, aiming to 

leverage the complementary information provided by each imaging technique. Combining 

thermal images with mammograms enhances the diagnostic process by capturing physiological 

changes and detailed structural information of breast tissue, respectively. By fusing these 

modalities, a more comprehensive image can be created, potentially improving the accuracy 

and reliability of breast cancer detection. Multimodal approaches are crucial in identifying 

malignancies that might be missed when using a single imaging modality alone. Still, the 

fusion of images with different modalities has always been challenging in the medical field 

because of distorted spectral information in the resulting image. 

To address this challenge, a novel technique called AWT-SPS was developed for the fusion of 

breast cancer images. Comparative analysis with standard DWT methods revealed that the 

proposed technique yielded better results both visually and statistically. The proposed 

approach aims to efficiently remove redundant information and ambiguities while enhancing 

image clarity, leading to clear, precise, and comprehensive target predictions. 

This advancement holds promise for the accurate early detection of breast cancer without 

posing any risk to women. By improving the accuracy of breast cancer screening techniques 

and addressing the issue of multimodal image mismatch, the proposed fusion technique could 

significantly enhance the effectiveness of breast cancer diagnosis and treatment.  
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6. CHAPTER 6 

Hybrid Model for Breast Cancer Detection 

from Ultrasonic Images 
 

6.1. Preamble  

Breast ultrasound is commonly used for the early detection of breast cancer. The existing 

geodesic-based methods use pre-defined filters that necessitate extensive prior knowledge to 

achieve the region of interest in the input image. Furthermore, the majority of ultrasound 

images suffer from noise and acoustic shadowing, which reduce the accuracy of tumor 

detection. To make the breast ultrasound image more informative, the discriminative features 

can also be extracted to improve detection accuracy. This work proposes a method to combine 

Active Contour and Texture Feature Vectors to find discriminative patterns. A comprehensive 

set of discriminative features for cancer detection in ultrasound images is created by combining 

the two learning models. Breast ultrasound images dataset is used to evaluate the suggested 

method and compare it to the recently developed algorithms.  

In this work, the main concern is the application of the active contour model to medical image 

segmentation. Here, two types of active contour models namely, the parametric models, such 

as Snake and PIG, and the geometric models, like geodesic are used. 

6.2. Proposed Approach 

The proposed model exploits two feature vectors viz., Active Contour Feature Vector (ACFV) 

and Texture Feature Vector (TFV) (see Fig. 6.1). ACFV is used to separate the pixel values of 

interest from the image to further analyze and process these values. On the other hand, TFV is 
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used for pattern recognition of cancerous images. This may be attributed to the fact that the 

majority of elements on the surface of cancerous organs are irregular.  

 

Fig. 6.1 Training and testing model for our proposed model. 

6.3. Active Contour Feature Vector 

Active Contour Feature Vector (ACFV), is defined in terms of the length and area of the input 

image, based on the idea of active contour model construction. Kass et al. [158] were the first 

to propose an active contour model, which transforms problems of image segmentation into 

energy minimization problems where the active contour energy is optimized towards the 

boundaries of the object. In respect of cancerous tumors, different active contours may be used 

to segment tumor images with precise boundary lines, as these lines are critical for the 

diagnosis and detection of any abnormalities. Three types of active contours are used in this 

work, i.e., snake, geodesic, and Poisson inverse gradient (PIG). The snake contour identifies 
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and outlines the target object [159]. To define the contour flow, geodesic contour uses a 

gradient vector flow field as an energy constraint [160]. Whereas PIG estimates the energy 

field from the force field.  

6.3.1. Texture Feature Vector 

Distinguishing cancerous tissues from non-cancerous ones can be challenging, even though 

each tissue type has distinct characteristics. Textures can be characterized by the spatial 

distribution of intensity levels in the neighborhood. In this work, Local Binary Pattern (LBP) 

and Gray Level Co-Occurrence Matrix (GLCM) are used for the detection of structural and 

statistical textures features, by analyzing grey-level spatial correlation and defining the 

allocation of pixels within the image space [161], respectively. LBP is used to extract the 

position and structure of local features [160]. However, GLCM describes the texture.   

6.3.2. Proposed Model 

This work proposes a technique comprising two models for the identification of breast cancer 

lesions. Fig. 6.1 depicts the framework for the proposed model. The Active Contour Feature 

Vector (ACFV) and Texture Feature Vector (TFV) are extracted from the input image, 

followed by the fusion of these two vectors to yield a single feature vector. This information 

helps us discriminate the cancerous from non-cancerous images. The single feature vector thus 

obtained, provides us with a discriminative feature ( K ) about shape, size, and texture for breast 

cancer detection, it is computed as: 

𝐾 = 𝐾1 + 𝐾2          (6.1) 

where + denotes the addition of two vectors. 1K  and 2K  represent the features that are output 

from the proposed models. Finally, K  is fed to ResNet-18 for classification.  
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6.3.3. Optimization 

Model I (ACFV model) 

Active Contour Feature Vector (ACFV) model (see Fig. 6.2.) is used to extract features related 

to the shape and size of the cancerous area(s) involving every pixel in the input image of the 

breast. Based upon the idea proposed in [162], the active contour features are extracted.  

 

Fig. 6.2 Proposed Active Contour Feature Vector model. 

For accurate interpretation of cancer detection, the foreground and background are separated 

using the active contour technique. The segmented region of interest is subjected to further 

image analysis. The output vector of active contour features ( 1K ) is the fused output has 

features of length, area, and energy related to the input image. Hence, it is expressed as: 

𝐾1 = Length + C*(Area) + 𝛦AC       (6.2) 

Snake AC 

PIG AC 

Geodesic 

AC 
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Output 
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Here, C is constant for balancing regularization and the area curve. C  is usually set to 1. Area  

represents “region in + region out” of the input image (white portion of Figs. 6.3. (b) and 6.3 

(c). AC is the energy for contour formation. The length is defined as:  

Length = ∫
CUR

|𝛻𝑧|ds         (6.3) 

where CUR denotes the length of the curve. 𝑧 is the characteristic function valued between 0 

and 1. 

Let 1CUR and 2CUR  represent the energy of the curve value of the foreground and background 

regions, respectively. 

The mathematical formulation of Area is given below: 

Area = ∫𝛹((CUR1 − 𝑦)2 − (CUR2 − 𝑦)2)zdx     (6.4) 

Where   represents the domain of an image with pixel positions indicated by x and y  

AC  can be defined as: 

𝛦𝐴𝐶 = 𝛦𝐼𝑁 + 𝛦𝐸𝑋 + 𝛦𝐼𝑀        (6.5) 

Where IN  represents the internal energy that imposes piecewise smoothness limitations in the 

contour.  The internal energy ( IN ) can be mathematically formulated as: 

𝛦𝐼𝑁 = 𝛾 |
𝜕𝑚

𝜕𝑤
|
2

+ 𝜂 |
𝜕2𝑚

𝜕𝑤2|        (6.6) 

γ defines how far the snake may be stretched and how much flexibility it has. Snake's stiffness 

level is denoted by  . m  is a spline parameter with a range of [0,1]. w  is a linear parameter 

with a value of 0 or 1. 
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Fig. 6.3 Active contour region constraints for image segmentation. 

EXΕ  denotes the external force that propels a snake toward the image's focal point. EXΕ can be 

defined by high-level perception and interaction.  

𝛦EX = ∫𝑓(𝜕𝑚)𝜕𝑤         (6.7) 

The contour of the object ( IM ) is defined as: 

𝛦IM = 𝛼1𝑖(x,y) + 𝛼2|𝛻𝑖(x,y)|
2       (6.8) 

Here, 1  and 2  are the line and edge coefficients, respectively. In case of positive values, the 

snake will align itself to darker pixel regions, whereas in case of negative values, it will 

progress towards bright pixels. The Active Contour Feature Vector (ACFV) can approximate 

the entire geodesic features of a breast ultrasound image. 

Model II (TFV model) 

The texture feature vector is then calculated by concatenating both GLCM and M-LBP features 

(see Fig. 6.4). GLCM has 28 features to characterize spatial patterns [163]. It extracts textures 

and outperforms the other extraction methods in terms of accuracy and computation time. The 

distance and angle of an image are determined by its gray level. Smoothness, stiffness, and 
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irregularity are the texture properties. A term is used to describe tone color variations or gray 

scale levels in an image. 

 

Fig. 6.4 Proposed Texture Feature Vector Model. 

GLCM measures the frequency of appearance of pairs of pixels with different grey-level 

intensities and distances from each other. The averages of the directions 0, 45, 90, and 135 

were then calculated. Meanwhile, the distance value ( l ) is 1. X  and Y represent the distance 

in two directions, respectively. 

𝑙 = (𝑙𝑋 , 𝑙𝑌)          (6.9) 

GLCM is calculated by first calculating the direction and distance, which is used to determine 

the image value.  Estimating the formed paired pixel, and lastly producing a GLCM matrix, 

that is then normalized using Eq. (6.10): 

Matrix

Matrix

YXK GLCM
GLCM

GLCM


=
1

_ ),(2      (6.10) 

𝑮𝑳𝑪𝑴 𝑰𝒏𝒅𝒊𝒄𝒂𝒕𝒐𝒓 (𝒍 = 𝟏) 
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𝜎 
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𝑴− 𝑳𝑩𝑷𝟏 𝑴− 𝑳𝑩𝑷𝟐 𝑴− 𝑳𝑩𝑷𝒌 

𝑯𝒊𝒔𝒕𝒐𝒈𝒓𝒂𝒎𝟏 𝑯𝒊𝒔𝒕𝒐𝒈𝒓𝒂𝒎𝟐 𝑯𝒊𝒔𝒕𝒐𝒈𝒓𝒂𝒎𝒌 
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• σ = Standard Deviation 
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Where, 

𝐺𝐿𝐶𝑀_𝐾2 = 𝐺𝐿𝐶𝑀_(𝑑𝐼,𝑑𝐽)(𝑋,𝑌) 

  =∑∑{
1,       𝑖𝑓      𝑖(𝐼, 𝐽) = 𝑋
      𝑎𝑛𝑑       𝑖(𝐼 + 𝑑𝐼, 𝐽 + 𝑑𝐽) = 𝑌
0,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

𝐽=1

𝑀

𝐼=1

 

  

(6.11) 

Where, i is the input image of size NM  . 

The GLCM matrix is formed using four directions and distances for each of the directions and 

distances considered. The matrices were all normalized. 

The simplest way to group them is to recursively apply modified-LBP operators and compute 

final encoding histograms. In the proposed model, M-LBP computing blocks are connected in 

a series manner (see Fig. 6.4). The texture of a single texture is described by LBP encoding, 

while the texture of multiple textures is described by a second batch of LBP encoding. 

The basic operations that support LBP are analyzed first, and then, recursive extractors of LBP 

features are put together using the binarization function )A,L(A kref  [164]. The binarization 

function is useful since it is unaffected by scaling and translation. 

𝐿(𝑝1𝐴ref + 𝑝2,p1𝐴𝑘 + 𝑝2) = 𝐿(𝐴ref,A𝑘)      (6.12) 

Where 𝑝1 =
𝐴𝑙−𝐴ref

𝐴𝑙−𝐴ref
, and 𝑝2 = 𝐴ref

𝐴𝑙−𝐴𝑘

𝐴𝑙−𝐴ref
      (6.13) 

The control parameters of active contour-based segmentation are tabulated in Table 6.1. 
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Table 6.1 Initial parameters of Active Contour Based Segmentation. 

Parameter Snake PIG GVF 

Initial Iteration 50 45 50 

Membrane energy - - 0.1 

Thin plate energy - - 0.1 

Learning rate 1 e-5 1 e-5 1 e-5 

Step size 0.5 0.5 0.5 

mu - - 0.2f 

α 1 0.3 1 

β 1 1 1 

𝜎1 - - 0.8f 

𝜎2 - - 1f 

No. Neighbors 9 9 9 

 

Algorithm: Active Contour and Texture Feature Vector Model 

Input: )( hgKULT  ; Original ultrasound image with g=no. of rows and h= no. of column  

Procedure 

Preprocessing: Initialize the image )( hgKULT   for preprocessing 

Apply image segmentation bazy  ]1,0[,  

                                         where  ;,....,1,0 na =  

                                                     ;,....,1,0 nb =  
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Feature Descriptor: Apply Active Contour Feature Vector (ACFV) to calculate 1K ; 

ACAreaCLengthK ++= )(1
 

Calculate 2K using Texture Feature Vector (TFV); 

1)(2 KLBPMGLCMK −+=  

 








=++

=

=
= =

M

I

N

J
YXdJdI

Otherwise

YdJJdIIi

andXJIiif

GLCM
1 1

),)(,(

,0

),(

),(,1

_  

Output: K ; Feature Vector 

21)( KKKFV ==  

Utilize the obtained image sequences to train/test the proposed ACTFV model for estimation and 

detection 

 

6.4. Computational Complexity 

The time and space complexities of the proposed approach are mentioned in the preceding 

subsections. 

6.4.1. Time Complexity 

The initialization of ACTFV needs 𝛰(𝐾𝑈𝐿𝑇(𝑔 × ℎ))time. Where ULTK is the ultrasound image. 

g and h are the number of rows and columns, respectively. 

ACTFV is divided into two parts such as ACFV and TFV. The time taken by ACFV is 

𝛰(𝐴𝐶𝑆𝑁𝐴𝐾𝐸(𝑔 × ℎ)) + 𝛰(𝐴𝐶𝑃𝐼𝐺(𝑔 × ℎ)) + 𝛰 ⥂ (𝐴𝐶𝐺𝐸𝑂(𝑔 × ℎ)) 

Here, SNAKEAC , PIGAC  and GEOAC  are the outputs obtained from snake active contour, Poisson 

inverse gradient, and geodesic active contour, respectively.   

The time taken by TFV is 𝛰((𝑇𝐺𝐿𝐶𝑀(𝑔 × ℎ))𝐾1) + 𝛰((𝑇𝑀−𝐿𝐵𝑃(𝑔 × ℎ))𝐾1).  
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Here, 1K is the output obtained from the ACFV block. GLCMT and LBPMT −  are the features 

obtained from GLCM and modified-LBP block, respectively. 

Time taken by training and testing of the proposed model is𝛰𝑇𝑇 = 𝛰(𝐾𝑈𝐿𝑇(𝑇𝑟𝑎𝑖𝑛)) +

𝛰(𝐾𝑈𝐿𝑇(𝑇𝑒𝑠𝑡)).  

ULTK represents ultrasound image features.   

Therefore, the overall time complexity of the proposed model is 𝛰 ((𝐴𝐶𝑆𝑁𝐴𝐾𝐸(𝑔 × ℎ)) +

(𝐴𝐶𝑃𝐼𝐺(𝑔 × ℎ)) + (𝐴𝐶𝐺𝐸𝑂(𝑔 × ℎ)) ⊕ 𝛰 ((𝑇𝐺𝐿𝐶𝑀(𝑔 × ℎ))𝐾1 + (𝑇𝑀−𝐿𝐵𝑃(𝑔 × ℎ))𝐾1)) 

6.4.2. Space Complexity 

The feature extraction model's space complexity is considered during the initialization. The 

overall space complexity of the proposed approach is 𝛰(𝐾𝑈𝐿𝑇(𝑔 × ℎ)) + 𝛰(𝐾𝑈𝐿𝑇(𝑇𝑟𝑎𝑖𝑛)(𝑔 ×

ℎ)). 

6.5. Performance Evaluation 

In order to ensure efficacy and reliability, it is essential to assess the performance of the 

proposed model for breast cancer detection. The performance of the proposed model was tested 

on the Breast Ultrasound Images (BUSI) dataset [165].  

6.5.1. Dataset Used 

The images in BUSI dataset are taken from women aged 25 to 75 years old [166]. The dataset 

includes 780 PNG images of 600 patients with an image of 500x500 pixels. Table 6.2 depicts 

the characterization of the BUSI dataset. 

Table 6.2 Characterization of BUSI Dataset. 

Total no. of individuals 600 

Total no. of images 780 
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No. of normal images 133 

No. of benign images 487 

No. of malignant images 133 

 

6.5.2. Performance Measures  

The effectiveness of the proposed approach is measured by using mean, standard deviation, 

and energy. The other well-known performance metrics namely accuracy, precision, recall, 

and Jaccard are used to evaluate the proposed model. The accuracy value assesses the 

proportion of patients who are correctly classified as malignant and benign. The recall value 

determines the proportion of malignant instances classified as malignant cases by the model. 

The Jaccard Index is used to compare the similarity of two sample sets. The Jaccard index has 

a value between 0 and 1. The resemblance is considered to be strong as the value approaches 

1. 

6.6. Results and Discussion   

The proposed methodology is evaluated both qualitatively and quantitatively. Here, 80% of 

the dataset is used for training, while the remaining 20% is used as test data. The images are 

first preprocessed and then fed to ACTFV. The inside and outside tumor zones of the breast 

must be segmented, yet their shapes will occasionally be noisy, crowded, and ambiguous. 

Poisson inverse gradient is used to highlight the contour. Fig. 6.5. shows the steps of tumor 

mapping using the active contour method. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6.5 Results obtained from Poisson inverse gradient (PIG) active contour, (a) original image, (b) 1st 

stage of mapping, (c) 2nd stage of mapping, and (d) the fully mapped tumor shape . 

Fig. 6.6. shows the results of the geodesic active contour, with the edge map and gradient field 

in the direction of 𝑥 and 𝑦 axis, respectively. 

Fig. 6.6 Results of geodesic active contour, (a) gray scale original image, (b) edge map of the original 

image, (c) gradient field in x axes, (d) gradient field in y axes, (e) the gradient vector flow in x, (f) gradient 

vector flow in y directions, (g) overall gradient field and (h) total gradient vector, flow around the edge of 

the tumor. 

Table 6.3 illustrates a comparative analysis of the proposed approach with the existing 

techniques in terms of performance measures. The feature fusion method used in the proposed 

 

(a) Original 

 

(b) Edge 

 

(c) fx 

 

(d) fy 

 

(e) GVFx 

 

(f) GVFy 

 

(g) f 

 

(h) GVF 
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work produces the best results for ultrasound images. The accuracy (Acc), recall (RC), 

precision (P), Jaccard index (JI), and F1 score obtained from the proposed approach are 99.4%, 

94.8%, 94.3 %, 94.9.76 %, and 93.3%, respectively. Ultrasound characteristics such as acoustic 

enhancement and shadowing can occasionally be predictive of lesion characteristics in the area 

surrounding the lesion. This could be one of the reasons for the positive results produced with 

features taken from the lesion's adjacent region as input. The features extracted from lesion 

area are more meaningful and preserve more information than the texture features. It is 

observed from Table 6.3 that the proposed method outperforms the other existing methods.  

Table 6.3 Quantitative results on BUSI dataset, as well as the number of parameters for all networks 

built using our suggested model. 

 

This study proposes an automated model for detecting tumors using snake active contour and 

analyzes a wide range of features for breast ultrasound (BUS) classification. The features of 

the lesion include its size, shape, geodesic, and texture. While the study yielded promising 

results, it only focuses on unimodal systems; future computer-aided diagnosis (CAD) systems 

should consider incorporating multimodal systems for improved accuracy.  

Ref. 
Feature Extraction Parameters 

ACF TF Acc RC P F1 

[167] ✓ ✓ 96.25 88.79 80.39 86.25 

[69] ✓  95.4 89.9 94.05 91.4 

[168]  ✓ 87.58 91.44 88.29 89.87 

[169]  ✓ 88.37 86.36 62.38 63.18 

[170]   93.70 94.62 88.62 92.66 

Proposed ✓ ✓ 99.4 94.8 94.9 93.3 
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6.6.1. Ablation Study 

To explore the effect of features extracted from the proposed model for the detection of breast 

cancer, an ablation study was carried out in terms of DICE score (D), Jaccard index (JI), and 

Hausdorff Distance (H). Model 1 uses a very basic design that employs snake and PIG active 

counters at the segmentation part. The results are shown in Table 6.4 Next, the base model is 

extended as model 2, by replacing PIG with the GVF active contours. Model 2 provides a more 

refined description of segmented images, with respect to Model 1. In model 3, PIG and GVF 

active contours are used for the segmentation part. The results are almost the same as those of 

model 1.  

Finally, in the proposed model, the results of PIG, Snake, and GVF active contours are fused 

for proper segmentation. There is a significant improvement in terms of DICE score, Jaccard 

index (JI), and Hausdorff Distance (H). Table 6.4 shows the comparison of different variants 

along with the proposed one.   

Table 6.4 Comparison of Segmentation Results. 

Model D H JI 

Model 1 0.911 7.24 70.42 

Model 2 0.956 5.982 78.44 

Model 3 0.921 6.73 72.98 

Proposed 0.981 5.5 81.76 

6.7. Summary 

This work discusses the potential of using active contour and texture patterns with the hope of 

eventually developing an efficient breast cancer recognition system that aids therapists in the 

diagnosis and monitoring of malignant tissue. The proposed model has been constructed by 
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fusing the most active contour and texture features to find complete and discriminative 

patterns. A simple yet effective feature extraction algorithm including geodesic and texture 

features, for the classification of breast lesions in ultrasound images with the aid of Resnet-18 

was proposed. Accuracy obtained from the proposed scheme was 99.4%, which was 3.15% 

more than the existing model [167]. 

is also observed that torque ripples are less when IHC is employed as speed controller instead 

of the conventional PI controller.  
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7. CHAPTER 7 

Modified Transformer based Pixel 

Segmentation for Breast Tumor Detection 
 

7.1. Preamble 

Transformer-based models have outperformed traditional models in a variety of tasks, meeting 

advanced benchmarks. Transformer-based models, in particular, excel at completing diverse 

tasks to meet the desired standards in Natural Language Processing (NLP) [171]. Transformers' 

self-attention mechanism enables dynamic highlighting of key features within word sequences. 

Transformers have exceptional capabilities in modelling long-term dependencies and capturing 

extensive contextual information, according to existing literature. As a result, they are useful 

as backbone encoders in computer vision tasks detecting breast lesions by combining the 

benefits of residual convolutional networks and transformers. For breast cancer classification, 

the model employs a support residual deep learning network to generate meaningful features, 

while the transformer component makes use of self and cross-attention mechanisms. The 

proposed model demonstrates the ability to identify breast cancer in both simple (3-stage) and 

complex (5-stage) classification scenarios. The methodology used in this study is consistent 

throughout the stages of data collection, preprocessing, patch creation, and breast lesion 

identification.  

7.2. Proposed Approach 

In this work, deep feature extraction is achieved using a new segmentation method along with 

deep learning techniques, and multi classification is achieved using a transformer-based model. 
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To increase the precision of breast cancer detection in mammogram images, the proposed deep 

learning model requires that a few requirements be met, as shown in Fig. 7.1. Firstly, the 

collected medical images were in PNG format. Preprocessing was then used to get rid of 

unwanted objects and improve the border of the segmented breast images. Then, augmentation, 

patching, and labelling processes were carried out. Finally, the proposed model was trained 

and tested using the generated patch images.  

 

Fig. 7.1 Proposed Model for breast cancer classification in mammogram images. 

(i) Data Acquisition and Image Collection 

In this study, the proposed model is developed and tested using breast image data from the 

publicly available dataset INBreast. This database is publicly available and can be obtained 

from [38]. There are 410 FFDM mammograms from 115 patients in this collection. For 

healthy and unhealthy cases, the INbreast includes both Craniocaudal (CC) and Mediolateral 

Oblique (MLO) views. Every mammogram has a DICOM file with an XML document, some 

case-specific information as well as ground truth descriptions of any lesions found in 
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unhealthy mammograms. Similar to previous studies, the domain researchers assigned the 

tumor class of the original annotated breast image to its extracted patch ROIs from that image 

[172–174]. Therefore, the label of an image is taken from the dataset's metadata and kept for 

the created patches. For example, if an original image has a malignant label, the extracted patch 

images will have the same malignant label, and so forth. Furthermore, the dataset  contains 

information for each patient that include breast density, left or right breast, the image view, the 

type and distribution of their abnormalities, their assessments, their pathology, and their 

subtlety [38]. 

(ii) Data Preprocessing 

The mammogram images of the dataset are in PNG format. During the pre-processing step, 

unwanted artifacts features were removed first, and then the boundary of the breast image was 

smoothed. The image thresholding technique was used for removing unwanted artifacts from 

each mammogram [175]. The same threshold value is used for every pixel. A maximum value 

is set if the pixel value is greater than the threshold; otherwise, it is set to 0.  

The first argument is the source image, which must be grayscale. The second input is the 

threshold value, which is used to categorize the pixel values. The third input is the maximum 

value allocated to pixel values greater than the threshold. The procedure produces two outputs. 

The threshold used is the first output, and the thresholded image is the second. This process 

was used to convert the grayscale image into a binary format so that different parts of 

mammogram could be easily distinguished. The thresholding technique has different operation 

types such as binary, trunc, and tozero, as shown in Fig. 7.2.  

Fig 7.2 (a) shows the original image, Fig 7.2 (b) is the generated image using binary 

thresholding. It is of simple thresholding technique that uses a defined adaptive threshold to 

segment the image. Fig. 7.2 (c) shows the generated image using binary inversion operation. 
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Fig. 7.2 (d) shows the image using the Trunc operation. Here, values greater than the threshold 

are reduced to the threshold value. Every other pixel remains the same. Fig (e) and Fig (f) show 

the generated image using Tozero and Tozero Inversion operations, respectively. In the Tozero 

operation, pixels have an intensity value less than the threshold value and set to 0.  

 

(a)  Original 

Image 

 

(b) Binary 

 

(c) Binary 

Inversion 

 

(d) Trunc 

 

(e) Tozero 

 

(f) Tozero 

Inversion 

Fig. 7.2 Different operations of thresholding techniques: (a) Original Mammogram, (b) the generated 

image using Binary operation, (c) the generated image using Binary Inversion operation, (d) the 

generated image using Trunc operation, (e) the generated image using Tozero operation, and (f) the 

generated image using Tozero Inversion operation 

(iii) Pixel-based patch creation  

Pixel segmentation is used to improve learning accuracy. The features extracted from the 

threshold operation are used to decide whether a pixel belongs to the tumor class or non-tumor 

class. This objective is obtained by employing pre-processed images. When compared to 

previous pixel segmentation methods, the proposed pixel-based segmentation produces high-

quality boundary coherence. For segmentation, it is possible to extract many characteristics 

from pixels, including color, texture, appearance, and location. However, in filamentary 

images, texture is the fundamental distinction between the background and foreground regions 

[176]. According to [177], the Gabor feature is suited particularly well for texture 

representation and discrimination. As a result, in this work, Gabor features from each 

input image are extracted. Gabor features analyze whether a image contains any specific 

frequency content in a specific direction in a localized region around the point of analysis. 

Each pixel in the input image has seven features. The first six features give the normalized 
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maximum Gabor filter response among 18 directions in the green channel of an image, whereas 

the 7th feature gives the normalized intensity of the green channel. 18 directions are being 

10°, 20°, 30°, 40°, ……100°, … . .180°. Gabor filter is used to create an 𝑎 by 𝑏 cell array whose 

elements are 𝑦 by 𝑧 matrices. a and 𝑏 the number of scales and orientations for the Gabor filter 

here, respectively 𝑦 and 𝑧 are the number of rows and columns, respectively. A Gaussian filter 

gives the function modulated by a complex sinusoidal plane wave. 

𝐺(𝑚,𝑛) =
𝑓𝑢

𝜋𝛾𝜂
 exp (−(𝛼2𝑚′2 + 𝛽2𝑛′2) exp(2𝜋𝑓𝑢𝑚

′))    (7.1) 

Where 

𝑚′ = (𝑚 −
𝑦+1

2
)𝐶𝑜𝑠𝜃𝑏 + (𝑛 −

𝑧+1

2
) 𝑆𝑖𝑛𝜃𝑏      (7.2) 

𝑛′ = −(𝑚 −
𝑦+1

2
) 𝑆𝑖𝑛𝜃𝑏 + (𝑛 −

𝑧+1

2
) 𝐶𝑜𝑠𝜃𝑏     (7.3) 

Here, 𝛼  and β are the spread of the function in two dimensions, respectively. 𝛾 and 𝜂 are the 

spatial aspect ratio. 𝑓𝑢 is the frequency. The values obtained are the pixel feature that gives the 

region of interest. Fig. 7.3. shows the result obtained after pixel segmentation. 

 

(a)  

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 7.3 Results obtained from pixel segmentation: (a) original image, (b) 1st stage of patch creation, (c) 

2nd stage of patch creation (d) 3rd stage of patch creation, and (e) fully mapped tumor shape . 

After applying the two procedures, a total of 1230 patch images were created including 185 

normal patches and 1045 patches, 600 of which were malignant, and 445 were benign. All 
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normal patches were stored in a folder, whereas abnormal patches were stored in two different 

folders: one for benign and the second for malignant.  

Further, DWT is also applied to calculate the approximation and detailed coefficients of the 

patches created using pixel segmentation. 

The row 𝑓𝑟 and column 𝑓𝑐 frequencies are calculated as follows: 

𝑓𝑟 == √
1
𝑚𝑛∑ ∑ (𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 − 1))𝑛−1

𝑦=0
𝑚−1
𝑥=0

2⁄     (7.4) 

𝑓𝑐 = √
1
𝑚𝑛∑ ∑ (𝑓(𝑥, 𝑦) − 𝑓(𝑥 − 1, 𝑦))𝑛−1

𝑦=0
𝑚−1
𝑥=0

2⁄      (7.5) 

The patch 𝑓 with grey scale 𝑓(𝑥, 𝑦) at location (𝑥, 𝑦) is of size 𝑚 × 𝑛.  

Area, intensity, and other helpful image characteristics have been determined using these. 

Algorithm for patch creation 

Input: 𝑀𝑂𝑅𝐼(𝑚 × 𝑛), original mammogram image with 

𝑚 = no. of rows and 𝑛 = no. of columns 

Preprocessing: Initialize the input image for preprocessing 

Apply thresholding. 

Begin 

Read 𝑀𝑂𝑅𝐼  

Threshold value, 𝑇𝑖𝑛𝑖 = 0 

Maximum value, 𝑇𝑚𝑎𝑥= 255 

Thresh = CV2.threshold (𝑀𝑂𝑅𝐼) 

Return image 𝑀𝑛𝑒𝑤 

Apply pixel segmentation on 𝑀𝑛𝑒𝑤(𝑚 × 𝑛) 

Create a patch based on multi-exposure images 
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While (x < 𝑃𝑖𝑥𝑒𝑙𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) do 

For each patch do 

Update the image patches obtained through segmentation 

End for 

End while 

Update 𝑀𝑛𝑒𝑤 

For i = 1 to n 

End for 

Calculate the detailed coefficient (𝐷𝐶) and approximation coefficients (𝐴𝐶) for each image 

Calculate fused coefficients 

For i = 1 to n 

𝑓(𝑀𝑛𝑒𝑤) = 𝑓𝑢𝑠𝑖𝑜𝑛_𝑟𝑢𝑙𝑒(𝐹(𝑀𝐷𝐶)), 𝐹(𝑀𝐴𝐶)) 

End for 

End Procedure 

 

(iv) Data Augmentation and Splitting 

After patch creation, we proposed changes to the benign and malignant categories according 

to their texture and size. Table 7.1 shows the description of proposed changes for multi-

classification.  

Table 7.1 Proposed multi-classification description. 

Name Category Explanation 

N Normal No tumor 

B1 

Benign 

Tumor < 3cm, no features 

B2 

Tumor >3 but <7, Does not spread 

beyond the milk ducts 
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M1 

Malignant 

Tumor >7, cancer cells have invaded 

the surrounding normal tissues 

M2 Metaplastic, aggressive 

 

Two datasets are created in this procedure, by employing generated patches based on the 

texture features and size of the tumor. (i) Original dataset classification (3 classes); and (ii) 

multiclass classification (5 classes). Both datasets were generated as reported in Table 7.2. The 

first dataset has three generated folders called ('N', 'B', and 'M') that hold all 410 patches. The 

patch dataset was augmented to create a balanced dataset. There are a total of 410 original 

images in total (including all three classes). Augmenting is the process of using original patches 

to create new ones that are identical to those in the benign, normal, and malignant folders. This 

step was repeated several times until the total number of files in the folder get balanced. In this 

paper, augmentation was applied only to the training set following data splitting to avoid 

overlapping. 

Table 7.2 Datasets splitting training, and testing description. 

Basic Classification 

Data Splitting Normal (N) Benign (B) Malignant (M) 

Training (80%) 148 356 480 

Testing (20%) 37 89 120 

Total Patches 185 445 600 

Multiclass Classification 
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Data 

Splitting 

Normal 

Benign 

(B1) 

Benign 

(B2) 

Malignant 

(M1) 

Malignant 

(M2) 

Training 

(80%) 

148 320 36 285 195 

Testing 

(20%) 

37 80 9 71 49 

Total 

Patches 

185 400 45 356 244 

 

(v) Proposed Transformer 

A transformer is a deep learning technique that employs the self-attention process to apply 

different weights for determining the importance of each input data in an encoder-decoder 

structure. In this paper, we introduce a modified Transformer that completely forgoes 

recurrence in favor of two different attention methods (self and cross) to identify global 

interdependence between input and output. The function of queries must be understood to 

modulate the cross-attention in the Transformer decoder and encoder with the help of this 

formulation. 
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Fig. 7.4 Comparison of self-attention in encoders and cross-attention in encoders and decoders. The 

queries are the main difference between them because they share the same key and value components. 

Self and cross attention are applied in the encoder and cross attention in the decoder to find the 

key difference between their inputs that come from the queries, as shown in Fig. 7.4. Each 

query in an encoder is composed of an image feature (content information) and a positional 

embedding (positional information), whereas each query in a decoder is composed of a decoder 

embedding (content information) and a learnable query (positional information). Self-attention 

uses scaled dot-product attention to determine how each patch in a single input sequence 

connects to the other patches, which can be computed as by: 

𝑆𝐴𝑡(𝐾, 𝑉, 𝑄) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑘
𝑡

𝛿𝑘
) 𝑐       (7.6) 

where 𝑉, 𝐾, and 𝑄 represent value, key, and query, respectively. The input consists of queries 

and keys of dimension 𝛿𝑘, and values of dimension 𝛿𝑐. We compute the dot products of the 

query with all keys and divide each by √𝛿𝑘,  a softmax function to obtain the weights before 

applying. Whereas cross-attention can be computed as: 

𝐶𝐴𝑡(𝐾, 𝑉, 𝑄) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾
𝑡

√
𝐶

𝐻

)       (7.7) 

The embedding dimension is denoted as 𝐶 and the number of heads is denoted as 𝐻. The 

SoftMax function converts the scaled dot product into an Attention Score. This mechanism is 
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an important module of the transformer for giving concurrent attention to the overall content 

of the input at the same time. The model can respond to input from numerous representation 

subspaces at various locations simultaneously with the support of multi-head attention. 𝑉, 𝐾, 

and 𝑄 of the multi-head attention are linearly extended by 𝑠 times using a variety of learned 

linear projections and can be expressed as: 
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Fig. 7.5 Proposed modified Transformer model. 
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𝑀𝐻𝑒𝑎𝑑(𝐾, 𝑉, 𝑄) = 𝐶𝑜𝑛(𝐻1, 𝐻2, … . . , 𝐻𝑠)𝑊
𝑜       (7.8) 

Here, 

𝐻𝑖 = 𝐴𝑡(𝐾𝑊𝑖
𝐾, 𝑄𝑊𝑖

𝑄 , 𝑉𝑊𝑖
𝑉)        (7.9) 

where the projections are matrices of parameters 

𝑊𝑖
𝐾 ∈ 𝑍𝛿𝑚𝑜𝑑𝑒𝑙 𝑥 𝛿𝑘 , 

𝑊𝑖
𝑄 ∈ 𝑍𝛿𝑚𝑜𝑑𝑒𝑙 𝑥 𝛿𝑘 , 

𝑊𝑖
𝑉 ∈ 𝑍𝛿𝑚𝑜𝑑𝑒𝑙 𝑥 𝛿𝑘 , and   𝑊𝑜 ∈ 𝑍𝑠 𝛿𝑐 𝑥 𝛿𝑚𝑜𝑑𝑒𝑙  

Multilayer Perceptron Layer (MLP), on the other hand, is made up of three separate blocks, 

each of which has a linear layer with Gaussian Error Linear Units (GELU), 734 neurons, Batch 

Normalization, and dropout layers with a 50% dropping rate across all dropout layers. The 

proposed modified transformer is given in Fig. 7.5. 

7.3. Results and Discussion 

The detection and classification stages were assessed using common evaluation metrics 

employed by many researchers such as accuracy, F1-score, Receiver Operating Characteristics 

(ROC) Curve metrics, recall/sensitivity, Cohen’s kappa coefficient (𝐶𝐾), Matthews correlation 

coefficient (𝑀𝐶𝐶), and precision [178]. Five cross-validation trails were used to track all 

evaluation metrics. The accuracy (𝐴𝑐𝑐) of machine learning model can be expressed as a 

percentage or as a value between 0 and 1. The sensitivity (𝑆𝑛) of a test is a number that 

represents how accurately it can identify patients with breast cancer. The precision of method 

(𝑃) shows how well it correctly classifies cases. Whereas F1-score consolidates sensitivity and 

precision into a single measurement. The following are the mathematical interpretations of 

each of these metrics: 

𝐴𝑐𝑐 = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (7.10) 
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𝑆𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (7.11) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (7.12) 

𝐹1 =
2 ×𝑃𝑅×𝑆𝑁

𝑃𝑅+𝑆𝑁
          (7.13) 

𝑀𝐶𝐶 =
𝑇𝑃𝑇𝑁+𝐹𝑁𝐹𝑃

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
      (7.14) 

𝐶𝐴 =
𝑞0−𝑞𝑒

1−𝑞𝑒
          (7.15) 

Where 

𝑞0 = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
= 𝐴𝑐𝑐        (7.16) 

𝑞𝑒 =
(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)2
       (7.17) 

The parameters of true negative (𝑇𝑁), false negative (𝐹𝑁), true positive (𝑇𝑃), and false positive 

𝐹𝑃 are derived using classification confusion metrics. Meanwhile the ability of a classifier to 

differentiate between classes was assessed using the Receiver Operating Characteristics (ROC) 

Curve metrics, Cohen’s kappa coefficient (𝐶𝐾), and Matthews correlation coefficient (𝑀𝐶𝐶).  

(A) Experimental Setup 

The experiment is done using a ThinkPad laptop with the following requirements: Intel core 

i7 (11th generation) processor with integrated AMD Radeon Graphics, clock speeds ranging 

from 1.90 GHz to 4.40 GHz, and 16 GB of RAM. This study's experiments were carried out 

on Windows 11 using Jupyter Notebook, Python 3.8.0, and the Keras and TensorFlow backend 

libraries. Table 7.3 shows the parameters used for training and testing for the proposed 

methodology. 
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Table 7.3 Proposed methodology parameters. 

Parameters Value 

Patch size 128 x 128 x 3 

Augmentation 

360o rotations (X-Y), 

(0.8 – 1.1) re-scaling 

Alpha deformation (0, 1500) 

Sigma deformation (30, 50) 

Data-train split 80% 

Data-test split 20% 

Optimizer Adam 

Epochs 100 

 

(B) Basic Classification: Normal, Benign, and Malignant 

The first dataset is based on the original dataset folder. It has three folders namely, Normal (N), 

Benign (B), and Malignant (M) with 185, 445, and 600 patches, respectively. 80% of the 

dataset is used for training and 20% for testing the patches that are developed. Here, different 

fully connected layers are used to integrate the CNN model for classification. After extracting 

the features one at a time, all of the networks use Global Average Pooling 2D to flatten all of 

the layers into a vector by computing the mean value for each of the source channels 

simultaneously. The concatenate layer is then used to combine all the individual vectors into a 

single vector. Then, six layers are used to fine-tune the integrated features for classification, 

followed by SoftMax. We use four batch normalization layers in our classification model, each 
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of which is crucial. The batch normalization layer will rescale all of the data so that we can 

normalize it. The rescaled data will aid in the training phase and also reduce network 

initialization sensitivity. The gradient descent's loss and optimizer function are two key 

hyperparameters for training a model. We used Adam as an optimizer function because it 

combines the key features of RMSProp and AdaGrad, allowing it to handle sparse gradients 

on large amounts of data. A dense layer is densely connected to all the neurons in the previous 

and current layers. These layers process the data and produce a result. In this case, four dense 

layers are used, with the last dense layer performing the classification task, followed by the 

activation function.  This layer will make a prediction based on the length of prediction class. 

The activation function takes the outcome probability and determines which features are most 

closely related to the predicted class. In the SoftMax activation function, the outcome value is 

between 0 and 1, causing the neuron to fire. It is defined as: 


=

=
n

m

m

i
i

s

s
sSoft

1

)exp(

)exp(
)max(         (7.18) 

This model is evaluated using a confusion matrix, training and validation accuracy, and training 

and validation loss. The classification results using the confusion matrix are presented in Fig. 

7.6.  Normal, Benign, and Malignant are represented by Classes A, B, and C, respectively.  
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Fig. 7.6 Confusion matrix for Dataset I. 

Figs. 7.7. (a) and (b) show the results of pixel segmentation with the training-testing accuracy 

and training-testing loss for 100 epochs.  The maximum overall test/validation accuracy and 

the minimum test/validation loss reported on this dataset are 0.9817 and 0.004, respectively. 

 

(a) 

 

(b) 

 

Fig. 7.7 (a) Training-Testing accuracy curve for Dataset I, (b) Training-Testing loss curve for Dataset I. 
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(C) Multi-class Classification 

 

Fig. 7.8 Confusion matrix for Dataset II. 

In this scenario, the experiment was to check the performance using the modified transformer 

to distinguish more difficult features (i.e., normal (N), benign (B1 and B2), and malignant 

cases (M1 and M2) based on dataset 2. In this assessment, the dataset was divided into train 

and test sets, where each tumor patch appeared in either train or test set. The classification 

results using the confusion matrix are presented in Fig. 7.8. Classes A, B, C, D, and E show 

Normal (N), Benign tumor (B1), Benign tumor (B2), Malignant (M1), and Malignant (M2) 

classes, respectively. 

Figs. 7.9. (a) and (b) show the results of pixel segmentation with the training-testing accuracy 

and training-testing loss for 100 epochs.  The maximum overall test/validation accuracy and 

the minimum test/validation loss reported on this dataset are 0.9674 and 0.06, respectively. 
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(a) 

 

(b) 

Fig. 7.9 (a) Training-Testing accuracy curve for Dataset II, (b) Training-Testing loss curve for Dataset II. 

 

Table 7.4 Summarizes the final accuracy of both models, for all classes of dataset I and II. 

Dataset Classes 

No. of 

Samples 

Performance Measure 

𝑨𝒄𝒄 𝑺𝒏 P F1 

Dataset I 

 

Normal 148 100% 100 100 100 

Benign 356 98.57% 99.60  98.80 98.60 

Malignant 480 99.15% 99.60 97.56 98.29 

Dataset II Normal 148 100% 100 100 100 

B1 320 97.16% 93.11 85.12 89.02 

B2 36 97.14% 90.11 93.55 89.96 

M1 285 98.19% 91.12 89.00 94.00  

M2 195 99.47% 94.63 99.25 98.34 
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The summarization of accuracy, sensitivity, precision, and F1-score for the normal class are all 

100 in both datasets, as shown in Table 7.4. Dataset I achieved marginally better results than 

Dataset II.  

Table 7.5 Comparison with related studies’ results based on the DL techniques used for breast cancer 

detection using INbreast dataset 

 

Finally, Table 7.5 summarizes the results of the related studies based on the DL techniques 

used for breast cancer detection using mammogram datasets by comparing them with the 

outcomes of the proposed model. that the proposed method could produce competitive and 

encouraging evaluation results on real-world datasets. For this study, we summarize the related 

studies that used the INbreast dataset for indirect comparisons. Such indirect comparison lacks 

Ref 

Predicted 

Classes 

Technique 𝑨𝒄𝒄 𝑺𝒏 P F1 𝑴𝑪𝑪 𝑪𝑲 

[179] 

Normal, 

Malignant 

CNN 90.34% 75.2 97.6 85.1 79.1 90.8 

[146] 

Malignant, 

Benign 

YOLOV4 95% 86.76 88.0 0.94 89.2 82.6 

[180] 

Malignant, 

Benign 

YOLOV2 95.32% 95.32 93.52 95.32 89.2 84.7 

[181] 

Normal, 

Abnormal 

CNN(GoogleNet, 

VGG and 

AlexNet) 

98.50% 98.06 98.98 98.52 92.7 90.8 

Proposed 

Malignant, 

Benign, 

Normal 

CNN and 

Modified 

Transformer 

98.17% 98.24 97.56 98.89 94.3 94.3 
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fair comparison with other studies in the literature research domain due to different dataset 

distribution, different data splitting settings, different models used, or even different execution 

environments to perform the CNN models training and evaluation. Any deep learning model 

should be fine-tuned again for each modality because medical images always have shared 

common traits that contain contextual similarities. As a result, we believe the suggested model 

may be useful for other tumor types, such as liver, lung, skin, and other cancers, in addition to 

assisting with the diagnosis of breast cancer. 

7.4. Summary 

This work discusses the potential of using proposed models to create a framework for different 

stages of breast cancer. To improve breast cancer prediction using digital X-ray mammograms, 

we design and construct the proposed model by fusing the most emerging new techniques of 

deep learning and Transformer. Preprocessing, segmentation, patch creation, and testing and 

training procedures, were the foundational steps for the proposed model. In the preprocessing 

stage, unwanted artifacts were eliminated, and the border of the breast image was smoothed. 

Following the selection of the ROI, patches are made using pixel segmentation. The evaluation 

was based on two types of datasets created from publicly available INbreast datasets. The 

generated datasets were divided into two groups for training and testing data for basic and 

multiclass classification. Applying a random augmentation allowed us to overcome the 

overfitting and small amount of data size. The proposed CNN model outperformed the existing 

techniques in terms of accuracy, achieving 98.17%. 
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8. CHAPTER 8  

Deep Learning Techniques for Detection of 

Breast tumors 
 

8.1. Preamble 

Convolutional neural networks have been widely used in a variety of medical imaging tasks. 

Neural network designs that perform well for natural images may not be relevant to medical 

image processing due to these differences. First, an approach for detecting breast cancer based 

on thermal imaging is adopted in this work. To select the most informative areas, the model 

first applies a memory-efficient network to the entire image. It then uses a relatively deep CNN 

to collect information from certain locations from the thermal image dataset. Due to the 

inherent locality of convolution operation, CNNs typically perform poorly when modeling 

dependencies, specifically long-range, which are necessary for accurately determining or 

recognizing corresponding breast lesion features. This motivated me to employ the Vision 

Transformer block along with VGG19 for the detection of breast cancer. A powerful model 

that effectively combines global and local features is also introduced in this work. Lastly, the 

model is trained independently using Database for Mastology Research and INbreast, two 

distinct modalities of datasets.  

8.2. An Interpretable Network to Thermal Images for Breast Cancer 

Detection 

Diagnostic systems that use an infrared camera and deep convolutional neural networks help 

to enhance diagnostic accuracy and consistency [182]. The capability of a Convolutional 

Neural Network (CNN) may be utilized to extract attributes from medical images and help in 

the classification of benign and malignant lesions. While looking at the research in the 
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literature, it is clear that different classification and feature extraction methods are utilized for 

the diagnosis of breast cancer. In a 2015 study, Conci et al. [183] used the KNN (K-Nearest 

Neighbors) algorithm as a classifier. The diagnosis of breast cancer using thermography was 

accomplished by employing statical representations as features. Future research should 

evaluate other categorization methods, such as NN and SVM to enhance the dependability of 

performance. Madhavi et al. [184] used URLBP and KPCA methods to extract features from 

thermal breast images for the diagnosis of breast cancer. These feature vectors were used to 

train the SVM. Shahari et al. [185] investigated a successful image segmentation method based 

on color properties of pictures by utilizing the K-means clustering methodology. They also 

advised that the Fuzzy C-Means and Level Set methods to improve the proposed strategy and 

get better outcomes. Obtaining a database that can be investigated is one of the most essential 

aspects of the research. The majority of the investigations in the literature made use of thermal 

imaging obtained from local hospitals [186]. The Database for Mastology Research dataset 

commonly known as DMR, produced by researcher at University of Federal Fluminense, was 

found to provide the required parameters for this study [113] [187]. Detection of breast cancer 

was carried out in this study using a Gabor filter and a Convolutional Neural Network (CNN).  

8.3. Methodology 

The major goal of this implementation is to identify breast cancer using thermal pictures. To 

accomplish this, we created a deep learning model that can extract characteristics from a given 

dataset, while also providing on-the-fly prediction.  
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Fig. 8.1 Network architectures for ResNet18. 

To achieve optimal output, images from the dataset are pre-processed. We used contrasting, 

resizing, equalization, and cutting to process the raw thermal images. We rotated and reversed 
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the thermal images in the augmentation to enhance training data. Deep Learning was used 

when a large quantity of data needed to be taught with a Graphical Processing Unit. It was 

utilized in feature extraction because it allowed for a greater number of epochs and iterations 

during the training of deep CNN like ResNet 18. 

Fig. 8.1 shows the network architecture for ResNet 18 created for the proposed work. In ResNet 

18, a parameter layer contains 4 sub-layers. Convolutional Neural Network (CNN) is the first 

layer and is in charge of identifying the form and size of the impacted region. Batch 

normalization is the second layer (BN). BN is in charge of normalizing picture quality in order 

to obtain the most optimal weights. Max pool is the third tier. The Rectified Linear Unit is the 

final layer and serves as an activation function as well as an update function for bias and 

weights. The result will be sent to the parameter layer with the starting inputs after each 

parameter layer computation, and the cycle will continue until the last parameter layer. 

8.4.  Results and Discussion 

Trials were performed using the DMR-IR dataset of breast thermography. In addition, the 

dataset was configured to 80% of training and 20% of testing. Figs. 8.2 (a) and 8.2 (b) displays 

the output accuracy and loss of the model with ResNet 18. It can be evident from figures that 

the loss at the last epoch is minimum and test accuracy using the proposed model is 92.52%. 

Table 8.1 compares the best results achieved from experimental investigations using various 

Deep Neural Networks for Breast Cancer Detection using Thermography. The proposed 

ResNet18 is the most effective network in fixing this issue. 
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(a) (b) 

Fig. 8.2 Model accuracy and loss. 

Table 8.1 Comparison of the performance assessment of latest work done on thermal imaging dataset for 

breast cancer detection. 

Ref. No. of Images 

Feature 

Extraction 

Test Acc 

[184] 16 URLBP, KPCA 86% 

[188] 22 pixel avg. 90.9% 

[186] 144 CNN 88.89% 

Proposed 144 CNN 92.52% 

 

8.5. Detection and Localization of Breast Lesion with VGG19 Optimized 

Vision Transformer 

When the authors of [189] proposed the Vision Transformer architecture for image 

categorization, they were inspired by the growth of self-attention centered deep neural 

networks. The general training procedure for those models is based on treating each embedded 

patch in the input image as a word in natural language processing. These models employ self-

attention modules to learn the relationship between these embedded patches [190]. 

Hence, this work employs Transformers in medical image analysis and investigates the usage 

of self-attention-based architectures to categorize breast cancer images. A model based on 
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VGG19 optimized vision transformer is used for automatic and precise breast tumor. The 

proposed model uses transformer and convolution blocks to gather local and global input, 

respectively, and then combine them using a cross-attention fusion mechanism with both local 

and global feature processes. 

(a) Methodology 

This section would help to highlight the overall framework of our strategy as shown in Fig. 8.3. 

The proposed model is the parallel module based on VGG19 and vision transformer. The 

information is extracted from a dataset with an input size of  4 DWH  and down-sample 

using the convolution Block. The extracted information is sent to two models, namely VGG19 

and vision transformer. Both the models extract the important features to distinguish cancerous 

and non-cancerous data from breast cancer datasets. The information obtained from both the 

datasets is fused together to make the classification better. 

 

Fig. 8.3 Basic architecture of proposed model. 

A parallel module is created from the vision transformer and VGG19 to extract global and 

local features, respectively. Additionally, cross-attention is used for fusion to combine local and 

global features with significant semantic variations. 

(B) Local feature extraction via VGG19 

VGG19 is an improved version of VGG16 that was first created in [191]. VGG19 also known 

as deep CNN, is made up of max pooling and convolutional layers, which are also known as 

Input 

Data 

Fused 

Feature 

Vision 

Transformer 

VGG19 
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feature extractors. Following these layers is at least one FC (fully connected) layer, which works 

as the classifier. Fig. 8.4 shows the basic architecture of VGG19. A SoftMax takes over the 

output layer. This activation function defines the type of cancer, with the input layer's size set 

to 64x64. Without spending all that time manually inspecting them, it is simple to find the 

features that can differentiate different cancer type thanks to the feature extraction capability of 

VGG19. 

 

Fig. 8.4 Architecture of VGG19. 

(C) Global feature extraction via Vision Transformer 

Vision Transformer [189] is an innovative work for using transformers directly on images. The 

main factor contributing to the high computational cost of the transformer is the multi-head self-

attention (MSA), as seen in Fig. 8.5. The complexity of the computation is inversely 

proportional to the number of tokens in this case. Unlike conventional transformers, the one 

being proposed uses window based MSA to reduce computation. 

Block 1 

Conv 3x3 

Block 4 
Conv 3x3 
K = 512 

Block 2 
Conv 3x3 
K = 128 

Block 5 
Conv 3x3 
K = 512 

Block 3 
Conv 3x3 
K = 256 

Flatten 
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Fig. 8.5 Block diagram of Vision Transformer. 

With MLP and multi head attention approach, Vision Transformer layers can be written as: 

𝑉𝑇
′ = 𝑀𝐻𝐴(𝐿𝑁(𝑉𝑇

𝑛−1) + 𝑉𝑇
𝑛−1       (8.1) 

 𝑉𝑇 = 𝑀𝐿𝑃(𝐿𝑁(𝑉𝑇
′ 𝑛−1) + 𝑉𝑇

′ 𝑛−1       (8.2) 

In the proposed vision transformer, 
'

TV  and TV  represent the output global features of MHA and 

MLP module, respectively. Layer normalization and the multilayer perceptron module are 

abbreviated as MLP and LN, respectively [189,192,193]. The masked self-attention in 

MHA can be expressed as follows using the masked attention map ( maskM ): 

𝑀𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝐾𝑄𝑇

√𝑟
+𝑀𝑚𝑎𝑠𝑘)      (8.3) 

Where attentionM  stands for the masking attention matrix. Query, key, and value matrices are 

denoted as 𝑄, 𝐾, and 𝑉. 𝑇 stands for transpose and 
𝑄
𝐾⁄  dimension is 𝑟. 

(D) Fusion of local and global features 

A fusion with local and global features with semantic differences is proposed, which is inspired 

by many literatures on multimodal feature fusion with the help of attention mechanism 
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[194][193][195][196]. Auxiliary ( 1I ) and master input ( 2I ) are features of the fusion, that can 

be expressed as follows: 

𝑀𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑧1(𝐼1)𝑧2(𝐼2)

√𝑟
)       (8.4) 

 𝐹𝑓𝑢𝑠𝑒 = 𝑀𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑧3)(𝐼2)        (8.5) 

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑧4(𝐹𝑓𝑢𝑠𝑒) + (𝐼2)       (8.6) 

Here, 1z , 2z , 3z  and 4z  are depth-wise convolution. The attention matrix ( attentionM ) reflects 

how important the master features are in comparison to the auxiliary features, and then by using 

Eq. (8.5) fused features are obtained. Finally, Output is obtained by adding 2I  and fuseF , which 

enables effective backpropagation during training. 

8.6.  Result and Discussion 

The model is trained and tested on two different datasets, INbreast and DMR. The model is 

trained using 80% of the data from both datasets and tested using the remaining 20% using 

transfer learning. The network was trained using a batch size of 50 and a learning rate of 0.01 

over the course of 100 epochs. Adam has been chosen as the optimization function for this 

network.  The model parameters with the best performance were selected and applied to the 

testing images after 100 epochs in order to assess the network's overall performance. 
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Fig. 8.6 Accuracy obtained for INbreast and DMR Dataset. 

Following network training, images from the respective dataset are tested, and performance is 

assessed using overall accuracy. Fig. 8.6 shows the overall accuracy obtained for the proposed 

model for both the datasets. Dataset1 is the INbreast dataset and Dataset2 is the DMR dataset. 

The accuracy during training and testing of Dataset1 was 0.988 and 0.98, respectively. While 

the accuracy during training and testing for Dataset 2 was 0.949 and 0.899, respectively. 

Table 8.2 Summary of Obtained Accuracy for both the Datasets. 

 Epoch 

Acc 

Dataset1 Dataset2 

Train 

25 0.953 0.942 

50 0.975 0.933 

100 0.988 0.949 

Test 

25 0.887 0.878 

50 0.941 0.90 

100 0.98 0.899 
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Table 8.2 summarizes the train and test results for both the datasets.  As can be seen, there is 

little difference between train and test results, indicating that the proposed model is not 

overfitting. The results revealed that the model worked best for INbreast dataset and slightly 

less for DMR dataset. 

Table 8.3 Comparison with recent works on breast cancer detection using INbreast Dataset. 

Ref Year Acc Sn P 

[179] 2022 90.34 75.2 97.6 

[146] 2021 95 86.76 88.0 

[180] 2020 95.32 95.32 93.52 

Proposed 2022 98 96.2 97.9 

 

Table 8.3 compares the proposed work to the recent work on breast cancer detection with 

respect to INbreast dataset. It shows that the model works good on mammogram data.  

8.7.  Summary 

A deep neural network was used to identify breast cancer using thermographic images in this 

work. The highest accuracy of 92.52% is obtained from the tests. The network discovered a 

cancer feature that allowed it to detect breast cancer in real-time basis. The model was created 

with a light-weight design, allowing the entire architecture to be saved on a mobile device. 

This made such a solution more accessible to the general population. In future research, it will 

be attempted to improve the overall system performance by increasing the number of pictures 

utilized in the network's training and by experimenting with alternative segmentation 

techniques. 
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A parallel model is made up of vision transformer and VGG19 is proposed here for the aim of 

identifying breast cancer. Additionally, an efficient model is used to fuse global and local 

features, which was motivated by numerous studies of multimodal feature fusion. The 

experimental result on Dataset1 and 2 show that the proposed model achieved good accuracy 

score on Dataset1 and a marginally low for Dataset2. It proves that transformer-based networks 

may achieve good performance for any medical image modality.  

The biggest disadvantage of a medical image is a lack of datasets. In the future, experiments 

using some self-supervised new learning techniques, in addition to transformers, will be 

conducted for detection of cancer at an early stage. 
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9. CHAPTER 9  

Conclusions and Future Scope 
 

This thesis investigates efficient screening procedures for identifying and categorizing breast 

tumors. In this last chapter, we highlight the most important contributions made, summarize 

our main findings, and speculate on future directions for this area of study. 

9.1. Conclusion 

This research endeavor started with the aim of investigating the existing enhancement and 

classification techniques for medical images. Mammography, computed tomography (CT), 

breast ultrasound, magnetic resonance imaging (MRI), and thermography are some of the 

diagnostic and planning tools that are available for initial screening and diagnosis of breast 

cancer. The outcomes of these screening methods enable medical professionals to better assist 

in the process of choosing treatments or monitoring a patient's recuperation. The objective of 

this work is to share valuable information that aids in the identification and categorization of 

breast tumors. This, in turn, facilitates the early detection of the illness, leading to life-saving 

outcomes. In such cases, producing a proper preprocessing and enhancement method is 

important. Here, a multimodal medical dataset-based approach is used to create synthetic 

images.  

An innovative model for synthetic construction is proposed for the purpose of producing 

synthetic mammogram images (Fulfils objectives II, III, and IV). In addition to this, a 

stochastic gradient descent optimizer is used in conjunction with the U-DARTS technique in 

order to locate and categorize the breast lesion(s). Experimentations are evaluated over both 

INbreast and DMR datasets to validate the efficiency and efficacy with regard to MAE, PSNR, 
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and SSIM. The proposed model produced an MAE value of 30.92, which is significantly lower 

than that of its competitors, whereas the PSNR value produced an outcome that is somewhat 

lower than that of its competitors. On the other hand, the proposed model generated an SSIM 

value of 0.88, which is the highest of any of them. In addition, an accuracy of 98% is achieved 

during validation and 91% during training, with losses of 0.12 and 0.23, respectively, when 

applied to the INbreast dataset. Regarding the DMR dataset, the validation accuracy and loss 

are 85% and 0.25, respectively. The lack of availability of complete data is the root cause of 

the low value of accuracy for the DMR dataset. 

The results obtained from mammography-thermography multi-modal breast cancer detection 

using deep learning technique gave the idea of fusing two different modality datasets.  The 

additional information obtained from the combined images can be used to narrow down the 

tumor's exact location. But the fusion of two images from different modalities continues to be 

difficult in the medical field because the output image may have spectral variations. To resolve 

this issue, a novel technique namely, AWT-SPS is developed for the fusion of two different 

modality breast cancer images (Fulfils objectives II, and III). It was discovered that the 

proposed method produced superior results visually as well as statistically when compared to 

the standard DWT methods. This is discovered by comparing the results produced by the 

proposed method with those produced by the standard methods. The approach that has been 

proposed will unquestionably be of assistance in the effective removal of redundant 

information and ambiguities, providing improvements in image clarity, and resulting in a clear, 

precise, and comprehensive target prediction. This will prove to be helpful for detecting breast 

cancer at an early stage without leaving any room for ambiguity while not putting women at 

risk in any way.  
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The active contour and texture pattern-based hybrid model was proposed for breast cancer 

detection from ultrasonic images (Fulfils objective II). An effective breast cancer 

recognition system is developed that assists therapists in the diagnosis and monitoring of 

malignant tissue. This allows the model to find more complete and accurate patterns. To 

get rid of the problem of noise and acoustic shadowing in ultrasound images, the active 

contour and texture features are taken into consideration as potential solutions. It is evident 

from the results that the features extracted from the proposed scheme are significant and 

preserve more information when compared to the schemes that are already in use. The 

proposed scheme acquires the highest and most robust parameter among the various 

existing systems used here, with an accuracy of 99.4%, an increase of 3.15% over the 

previous model. 

To efficiently classify the pre-processed and enhanced medical images, a deep-learning 

model with a modified transformer is proposed to detect the breast lesions (Fulfils objective 

IV). The model is developed by combining the cutting-edge methods of deep learning and 

Transformer to improve the accuracy using digital X-ray mammograms. The image of the 

breast had its edges softened and artifacts eliminated during the preprocessing phase. After 

the ROI is chosen, pixel segmentation is used to create the patches. Two different datasets 

derived from the freely available INBreast dataset are used in the analysis. The generated 

datasets are divided into a training set and a test set for both simple and complex 

classification tasks. The proposed CNN model outperformed the state-of-the-art research, 

with 98.17% accuracy across all primary classification metrics (normal, benign, and 

malignant). The transformer had the highest multiclass accuracy, with a value of 96.74%. 
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The proposed model can perform detection tasks with a high degree of accuracy when 

compared to other models. 

A real-time solution to determine breast cancer for the general population is developed 

using DNN with the aid of thermographic images. The model is developed with a light-

weight design that gives inimitable accuracy (Fulfils objectives II, and IV). In order to 

achieve such eminent accuracies, another model is introduced for multimodal feature 

fusion using global and local parameters. A parallel model is created that utilizes the 

advancements of vision transformer and VGG19. 

9.2. Future Scope of The Work 

Recognizing any limitations related to deep learning techniques for breast cancer detection is 

crucial. Here are some of the potential future scopes: 

i. The primary limitation of medical images is inadequate datasets. For this reason, 

developing a new database for breast cancer images based on a non-radioactive 

modality (such as thermograms) should be a priority moving forward. 

ii. When a person is exposed to radioactive rays or other forms of ionizing radiation, safety 

becomes a major concern. Some patients may be sensitive to or should avoid screenings 

that employ the use of harmful waves. A system's design should prioritize the use of 

nonionizing radiation and the precision of its results. 

iii. Most of the ultrasound images suffer from noise and acoustic shadowing, which 

reduces the accuracy of tumor detection. To make the breast ultrasound image more 

informative, a technique should be developed to improve detection accuracy. 

iv. Detecting breast cancer at an early stage requires a multimodality-based approach. 

Breast cancer screening tools must broaden their knowledge base by incorporating a 
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multimodal approach to improve the accuracy of their results. This will help in 

eliminating radioactive modality.  

v. The significance of breast cancer detection models based on deep learning in the 

medical field has been demonstrated. The clinical application of these models is yet to 

be done. Clinicians will benefit from incorporating these models into their work. 
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