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ABSTRACT 

 

Breast carcinoma is the premier category of deadliest cancer reported in females. 

Breast cancer cases are rising dramatically both in India and around the world, 

especially in individuals between the ages of 30 and 40. Automatic diagnosis of breast 

cancer is necessary because manual diagnosis is laborious and time-consuming. Our 

current healthcare systems are prone to failure. Late detection is the main cause of low 

breast carcinoma survival rates in the country. Consequently, computer-aided 

diagnosis (CAD) for medical imaging has become a useful gadget for physicians to 

categorize clinical images into several groups, facilitating early diagnosis and 

treatment. Machine Learning (ML) and Deep Learning (DL) have developed various 

techniques/algorithms for diagnosing and classifying breast cancer early. Multiple 

strategies have been employed by experts to anticipate health issues before they 

manifest symptoms. Consequently, in the medical and healthcare communities, getting 

a precise diagnosis and prognosis of tumors is considered a difficult endeavour for 

doctors. 

This research thus addresses the need for medical image analysis using CAD for early 

diagnosis and prognosis in the healthcare domain. The literature survey communicated 

cutting-edge research disseminated in breast malignancy using ML and DL 

approaches. Although malignancy can't be proven without biopsy, early carcinoma 

detection using imaging modalities is an hour of need. Mammography is employed as 

the "benchmark" for breast carcinoma examination, owing to its widespread 

availability and cost-effectiveness compared to others. Current research limitations 

suggest that technical and practical investigation is desperately needed to boost 

healthcare over the long term.  

 ‘Transnet’ is the first CAD model proposed in this research to diagnose and classify 

breast carcinoma with enhanced performance. Two experiments were performed on 

the Curated Breast Imaging Subset-Digital Database of Screening Mammography 

(CBIS-DDSM) dataset. The following Deep Neural Networks(DNN) were utilized- 

VGG-16, VGG-19, Mobile Net, ResNet-50, ResNet-152, and DenseNet-169. In the 

first experiment, namely Deep feature fusion with ML Classifier, pre-trained networks 
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were deployed as feature extractors, and afterward, the acquired attributes were 

provided to machine learning classifiers for classification. The second experiment, 

called Deep feature fusion with Neural Net classifiers, fine-tuned these networks for 

feature extraction and categorization.  The findings revealed that the proposed 

approach performed remarkably well than the other cutting-edge methodologies. The 

second approach performed better than the first, thus, improving all the evaluation 

metrics.  

Another CAD framework proposed to enhance performance through smaller datasets 

is the Multi Stage Transfer Learning Approach (MSTLA). Three mammography 

datasets were utilized: Mammography Image Analysis Society (MIAS), In-Breast, and 

CBIS-DDSM. The model was fine-tuned in three stages on separate datasets, and the 

optimized DCNN was carried forward at the next stage. Two DNNs were deployed for 

training the model – DenseNet-169 and ResNet-152. The results have shown that Stage 

3 performs best compared to the other two stages, with DenseNet-169 having accuracy 

and AUC values of 100 and 1.0. Thus, the proposed approach could be employed for 

early-stage breast carcinoma diagnosis.  

DNNs can memorize the training information owing to their huge learning capacity. 

In the medical domain, there is an urgent need to assess the generalizability of deep 

neural networks.  Generalization is an approach to analyze how the model behaves on 

unseen data. Generalization Error(GE) measures the difference between training and 

testing errors. Thus to address this gap, we have proposed another framework for 

evaluating the generalization error in DNN. Gaussian, Salt and pepper, and Speckle 

noise were added to the CBIS-DDSM dataset. Generalizability was evaluated for three 

DCNNs - InceptionNet v3, DenseNet-201, and EfficientNet-B4. Results have shown 

that the proposed framework with DenseNet-201 has minimum generalization error 

and thus exhibits high generalizability on the unseen i.e. noisy data.  

This research work successfully provides a more reliable, efficient, and optimal 

approach for early-stage breast cancer diagnosis and thus could be deployed in 

laboratories. Future perspectives of the proposed methodology include its 

implementation on various imaging modes such as Ultrasound, MRI, CT, etc.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Breast Cancer 

The body of an individual comprises billions of cells. These cells keep on growing and 

multiplying during their lifetime. The irregular growth of these cells forms a lump. 

This lump appears in the form of a tumor[1]. The tumor can be classified as non-

cancerous called Benign tumors or cancerous called Malignant tumors. Benign tumors 

do not metastasize to other bodily regions and are confined to the organ in which they 

originated. Conversely, malignant tumors spread to further bodily organs and affect 

those organs as well[2]. Tumors can become deadly if they proliferate across the body 

and remain untreated. 

The carcinoma that initiates in the tissues of the breast and spreads impulsively is 

referred to as breast carcinoma. The strongest threat for breast malignancy is in 

females. Approximately 99% of occurrences of breast malignancy originate in 

females, and 0.5–1% of cases occur in men [3]. Figure 1.1 shows the structure of a 

woman’s breast. Breast carcinoma can develop in multiple locations on the breast. The 

three core elements of a breast are lobules, ducts, and connective tissue. Lobules are 

responsible for generating milk. The streams that transport milk to the nipple are 

referred to as ducts. Connective tissue encompasses and contains everything together. 

Majority of the breast malignancies initiates in the ducts or lobules[4]. The unbounded 

evolution of tumor cells can disperse to other robust breast tissue and transit to the 

arms' lymph glands. The lymphatic nodes move the tumor cells to further body parts. 
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1.1.1 Symptoms 

 

Physical evidence of breast malignancy includes breast tenderness, lump in the breast 

area, irritation, nipple discharge besides breast milk, inverted nipple, modifications in 

breast size, inflammation, or blister under your arm. Warning signs associated with 

breast malignancy include overweight, low physical activity, excessive alcohol 

consumption, dense breasts, genes, early menstruation, and advanced maternal age[5]. 

Researchers concluded that the factors that are considered relevant for cancer at an 

initial stage might not contribute equally to predicting patients' survivability over the 

long term. For example, age is regarded as an essential factor for forecasting 

survivability, but its potentiality drops with time, maybe due to the empowerment of 

other factors such as grade, lymph nodes positive, etc. Therefore, the importance of all 

such elements must be considered when developing an architecture for predicting 

breast carcinoma survivability in the future. 

  

 

Fig.1.1:  Anatomy of a Women’s Breast[6] 

(Source: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/breast) 

 

 

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/breast
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1.1.2 Categorization 

 

Breast carcinoma is investigated by distinguishing tumors as malignant and benign. 

Benign tumors do not metastasize to additional bodily regions and are confined to the 

organ in which they originated. On the contrary, malignant tumors disperse to different 

bodily regions and affect those organs as well. Figure 1.2 shows the two categories of 

tumors. With the naked eye both the mammogram images look identical. But the 

picture on the left-hand portion is of a benign tumor where whereas one on the right-

hand side is of a malignant tumor. Thus, medical practitioners and pathologists need a 

reliable diagnostic process to differentiate these two classes of tumors[7]. 

The tumor can be further classified into two categories: Invasive Carcinoma and Non-

Invasive/ In- Situ Carcinoma[7]: 

 

(i) Invasive cancer: This carcinoma starts in the milk tubes(canals) and can 

disperse to the adjacent cells and different body parts as well. 

 

(ii) Non-Invasive/In-situ cancer: This category of cancer cannot escalate 

within or to other body parts and remains confined in the tissues of the 

breast. 

 

Fig.1.2: Categories of Tumor: (a.) Benign and (b.) Malignant  
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Invasive and non-invasive breast carcinomas are further categorized as follows[7]: 

 

(a.) Ductal carcinoma in situ: In this category, cancer muscles have not been 

transmitted in the neighbouring tissue and are limited to the breast ducts. 

 

(b.) Lobular carcinoma in situ: In this carcinoma also, cancer cells have not 

infected nearby tissues, but cells spread in the breast's milk-producing glands.  

 

(c.) Invasive ductal carcinoma: It initiates in the tubes and can then propagate to 

neighbouring cells of the breast. This might extend to adjacent tissues in the 

body once it starts spreading beyond the breast ducts. 

 

(d.) Invasive lobular carcinoma: This carcinoma starts in lobules and then infects 

adjacent tissues.  

 

Some less frequent categories of breast cancer are as follows: 

 

 Phyllodes tumor: This category of breast cancer is infrequent and mostly 

benign but can be malignant too. It can grow in the connected tissues of the 

breast. 

 

 Angiosarcoma: Blood vessels or lymph vessels are the primary sources where 

this carcinoma grows in the breast. 

 

 Inflammatory breast carcinoma: It is the rarest of a rare case and accounts 

for 1 to 5% of all cases. Having this carcinoma causes the breast to expand, 

feel boiling, and become red. 

 

 Triple-negative breast carcinoma: This type of carcinoma occurs when a 

tumor does not have extra human epidermal growth factor receptor (HER2) 

proteins on its surface and lacks estrogen and progesterone receptors. 

Hormonal therapy for breast cancer is not sufficient, so this type of carcinoma 

is difficult to treat. 
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1.1.3 Evolution Stages 

 

Breast Cancer evolves in stages with time. The stages of breast carcinoma can be 

separated depending on the tumor size and how much it has grown in the nearby 

tissues. The Cancer evolves in five main stages: 

(i) Stage 0 

(ii) Stage 1(In-situ) 

(iii) Stage 2(Localized) 

(iv) Stage 3(Regional) 

(v) Stage 4(Distant) 

Figure 1.3 shows the details of breast cancer categorization[8]:  

 

Fig.1.3: Evolution Stages of Breast Cancer 

 

 

•During the first phase, aberrant cells are present but have not yet sprread to
nearby tissues.

Stage 0

•Stage 1 also called In-situ stage.

•Here, the carcinoma cells are enclosed only in the lobules and ducts.

Stage 1: In-situ

• In stage 2, few lymph nodes are involved. 

• Tumor dimensions are limited to 20-50mm. 

Stage 2: Localized

• Regional Stage has tumor size is greater than 50 mm.

• In this stage more lymph nodes are involved and the cancer develops in skin
or chest wall.

Stage 3: Regional

•Stage 4 called Distant Summary stage is the last phase of cancer.

•Here, the tumor can spread further to any part of the body and can be of any
size.

Stage 4: Distant
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1.1.4 Breast Carcinoma Statistics 

 

Mortality cases due to cancer are increasing at an alarming rate and are particularly 

affecting younger age groups.  Compared to the 20 million cases in 2022, almost 35 

million additional cancer cases are anticipated in 2050[9]. Figures 1.4 and 1.5 exhibit 

the cancer cases Worldwide and in India for the year 2022. As we can see, breast 

carcinoma is the most prevalent malignancy, accounting for 23.8% and 26.6% of all 

cases globally and in India, respectively[10].  

 A new Global Breast Cancer Initiative Framework has been suggested by World 

Health Organization, to save the lives of 2.5 million women from breast carcinoma by 

2040[10]. A 2.5% yearly decline in breast carcinoma mortality will avert 25% of 

deaths by 2030 and 40% of fatalities by 2040 among females under the age of 70. To 

achieve these objectives, three essential elements are required: quick diagnosis, 

holistic management, and healthcare awareness for early detection.  

 

 

Fig.1.4:  Cancer Statistics(World-Wide)-2022[10] 
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Fig.1.5: Cancer Statistics(India)-2022[10] 

 

1.1.5 Breast Carcinoma Screening: Imaging Modalities 

 

Breast Carcinoma screening could be done using various imaging modalities which 

are discussed as follows[11]–[13]:   

(i) Screen Film Mammography(SFM) 

 

SFM is the x-ray picture of the breast that is stored on a hard file on a phosphorous-

coated film. Here, the contrast resolution is very poor and sensitivity in detecting 

cancer with dense breast is limited. This was considered the standard modality 

some years back, but now has replaced by digital mammography.  

 

(ii) Full-field Digital Mammography/ Digital Mammography(DM) 

In this imaging modality, digital detectors convert x-ray films into mammographic 

photographs of the breast (digital images). Mammography detects cancer at an 

early stage and is considered to be an effective and standard modality for early-

stage breast cancer diagnosis by reducing the cancer rate by 15%. 
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(iii) Digital Breast Tomosynthesis(DBT) 

It is also referred to as 3-D mammography. Breast images are acquired at multiple 

angles and thus create 2D and 3D pictures of the breasts. DBT detects cancer in 

women with dense breasts. But it is very expensive and the average radiation dose 

is 1 to 2 times higher than DM. Still, research is underway to determine whether 

3-D mammography is better than 2-D mammography.  

(iv) Ultrasound(US) 

Ultrasound images are also called sonograms. It uses high-frequency sound waves 

and thus no radiation is involved. It can be used for pregnant women. It is the best 

way to figure out whether the anomaly is solid or fluid-filled. Ultrasound is still 

not considered as an early-stage screening modality as it may miss some solid 

mass during diagnosis. 

(v) Magnetic Resonance Imaging(MRI) 

MRI employs potent powerful magnetization and radio signals to generate high-

quality pictures of the breast.  MRI is mostly utilized for highly-risky individuals 

and it identifies incredulous areas that can further be used for biopsy. Secondly, it 

is very expensive when compared with ultrasound and digital mammography. 

(vi) Histopathological Images 

These are Hematoxylin & Eosin-stained images. In this, samples are taken from 

unusual breast regions (called a biopsy) and are observed under the microscope. 

This is used for diagnosing different breeds of cancer instead of detecting only 

malignancy because of multi-color images as it provides a comprehensive study 

of tissues. However high proficiency is required as the manual analysis is tedious 

and time-consuming. 
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1.2 Medical Image Processing using Computer-Aided Diagnosis(CAD) 

 

Medical Images are very complex. Manual examination of medical images is quite 

difficult. Earlier, medical image processing was done manually. Still, it faces three 

main issues—firstly, lack of availability of multiple pathologists at one location. In 

addition, the process of manually analyzing images is arduous and unpleasant. Lastly, 

the diagnosis of breast carcinoma heavily depends on the pathologists' expertise and 

domain knowledge. Thus, to overcome misdiagnosis in the initial stages, Computer-

Aided Diagnosis(CAD) acts as a “second notion” for solving breast cancer multi-

classification problems[11]. Classifying medical images into distinct categories 

through CAD has become a useful tool for clinicians to aid in early diagnosis and 

therapy[14]–[16].    

CAD systems require the processing of medical images; thus, extensive computational 

algorithms must be developed to process those images. CAD is reasonably good at 

detecting invasive breast cancers in their early stages but increases the peril of false 

positive results. Figure 1.6 depicts the CAD as an interface or a mediator connecting 

the medical science branch with computer science. Thus, accuracy and workflow 

efficiency must be considered before implementing CAD in clinical practice, and 

secondly, to avoid improper use, user education is crucial to grasp the features and 

constraints of CAD systems [17]. There are two types of CAD systems [18]: 

 

(i) Computer-aided detection (CADe) systems: These systems provide 

automated anomaly identification and localization in medical imaging data. 

 

(ii) Computer-aided diagnosis (CADx) systems: These frameworks are utilized 

as an extension of the detection model, offering more data and facilitating 

decision-making. They can be used to categorize whether an abnormality is 

benign or malignant. 
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Fig.1.6: CAD serves as a bridge between computer science and medicine. 

 

1.3  Machine Learning & Deep Learning in Medical Image Processing 

 

In the previous few decades, there has been significant growth in creating sophisticated 

algorithms and effective preprocessing approaches in Machine Learning (ML) and 

Deep Learning(DL). Among these improvements is the evolution of artificial neural 

networks (ANNs) into more sophisticated designs known as deep neural networks 

(DNNs)[19]. 

In this context, ML and DL have created methods that can diagnose the illness more 

precisely at the initial stages thus diminishing the number of readmissions in hospitals 

and clinics. Deep learning tackles a broad range of issues in healthcare, such as 

personalized therapy recommendations, infection monitoring, and cancer 

detection[20]. Thus, the adoption of artificial intelligence (AI) tools can facilitate the 

acquisition of new fidelity procedures and lower the expense of healthcare resulting 

from inaccurate diagnoses [21]. 

In the field of medical imaging, DL has achieved tremendous progress, attaining 

remarkable outcomes in several tasks. There is still an obstacle in the form of the 

restricted availability of training information, especially in the healthcare domain 

where obtaining data can be expensive and governed by privacy laws[22]. Image 

mining, computer vision, and pattern recognition have all become more important 

aspects of medical image processing[20]. 
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1.3.1. Machine Learning-Based CAD System 

 

CAD system implementing machine learning comprises the following steps[23], [24]: 

 

(i) Image pre-processing: This step includes eradicating the noise, clearing the 

picture, and getting it ready for the next step 

 

(ii) Image segmentation: It includes partitioning the picture into several parts, 

and focusing only on the specific regions called regions of interest (ROI). 

 

(iii) Feature extraction and selection: It comprises identifying and retrieving 

valuable characteristics from the previously processed pictures. Among the 

many benefits of feature selection include lower costs, shorter training 

periods, and higher accuracy. 

 

(iv) Classification: This step assigns labels or classes to distinct groups through 

the use of different classifiers 

 

1.3.2. Deep Learning-Based CAD System 

 

DL falls within the category of the representation learning approach[25]. With multiple 

non-linear processing layers, deep learning extracts features directly from the data[15]. 

Contemporary research communicated that “Convolutional Neural Network (CNN)” 

attains remarkable performance in cancer detection and diagnosis[26]. Layers 

adjoining the input layer learn low-level features and are more generic. In contrast, 

layers adjoining the output layer learn distinctive features of the input image and, thus, 

are more specific[27].  

Steps followed for DL based CAD system are discussed below[23]: 

 

(i) Image pre-processing: This is the same step followed in ML-based CAD 

systems i.e. processing the image for noise removal and preparing it for the 

subsequent stage. 
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(ii) Convolutional layers: This is also called the feature extraction step. It 

includes convolution operations to instinctively extract high and low-level 

characteristics from the image. 

 

(iii) Pooling layers: These are added to reduce the spatial dimensionality of 

attributes. 

 

(iv) Fully connected and Softmax layer: These layers perform categorization in 

CNN. 

 

The specific aspects of these layers are covered in Chapter 3. When inadequate data is 

available to train a generalizable framework, data expansion is executed to enlarge the 

statistics of data points. Using artificial synthesis, data augmentation can provide more 

samples, thereby expanding the training set. In situations when rich training sets are 

not available, this deeply ingrained method in computer vision has proven 

indispensable[28]. Operations performed for augmentation involve rotation, noise 

inclusion, image cropping, and other geometrical activities[29]. Figure 1.7 shows the 

ML and DL-based CAD systems.  

 

 

Fig.1.7: ML and DL based CAD system 
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1.4  Research Gaps & Challenges 

 

Globally, breast carcinoma is climbing at a frightening pace. In contrast to developed 

countries, fatality estimates are comparably high in low-wage and middle-wage 

countries[5], [30]. The significance of early diagnosis and detection is critical in 

improving long-term survivability[11]. The following research gaps are identified 

while doing the literature survey.  

The challenges and gaps identified in the literature are discussed as follows:  

(i)  Accuracy of Deep Neural Networks on Medical Datasets 

In the literature, research is performed for diagnosing malignancy using ML and DL 

strategies. Still, the researchers cannot attain a remarkable performance with ML and 

DL models.  There is a lack of Models trained on mammography images with Cranio-

Caudal (CC) and Medio Lateral Oblique(MLO) with good accuracy values.  

Thus a need arises to develop a competent architecture with deep neural networks to 

attain remarkable performance for diagnosing & classifying breast cancer using ML 

and Neural Net classifiers. 

(ii) Utilization of smaller datasets in the medical domain 

Deep Neural Networks require abundant data during training phases. Due to this, 

training DNNs with smaller medical datasets is still a challenge. Transfer learning has 

been deployed in many research studies. However, training deep models in multiple 

stages on smaller datasets has not yet been explored. 

Thus, a need arises to develop a framework to train DNNs on smaller and different 

datasets with multiple stages and evaluate their performance. 

(iii) Generalizability of Deep Neural Networks(DNNs)  

DNNs can memorize the training data and are prone to overfitting. Generalizability 

defines the execution of the model on unknown data. Very less work has been focused 

on the generalizability & generalization error of DNNs. However, analyzing the exact 

generalization error is practically impossible as models behave separately in every 

scenario.  
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Still, there is a need to approximate these errors and thus develop an approach for 

assessing the generalizability of DNN on previously unknown data. 

 

1.5  Motivation for Study 
 

As we discussed the Breast Cancer Statistics in section 1.1.3, we observed that breast 

carcinoma is the most prevalent malignancy in the country which has 

surpassed cervical cancer. Figure 1.8 reveals the startling rise of breast carcinoma.  In 

India, the late diagnosis of the disease results in low survival rates [30], [31]. The 

people usually don’t go for screening until any symptom appears. Age-specific breast 

cancer occurrences are shown in Figure 1.9. Younger age groups are more impacted 

by this fatal disease, as we can see from the comparison between the situation 25 years 

ago and the present. Research Gaps discussed in Section 1.4 ascertain that researchers 

are still competing to attain remarkable performance using ML & DL. Thus, there is 

an urgent need to propose robust models that attain outstanding performance and thus 

could be deployed for early-stage diagnosis. These models could assist doctors and 

help patients who are diagnosed with the disease and are looking for a second opinion. 

Thus, could be useful in providing timely diagnosis thus leading to increased 

survivability in patients. 

Fig.1.8: Alarming Statistics 

(Source: https://cancerconsultindia.com/blog/breast-cancer-statistics-rise-of-breast-

cancer-in-india) 

https://cancerconsultindia.com/blog/breast-cancer-statistics-rise-of-breast-cancer-in-india
https://cancerconsultindia.com/blog/breast-cancer-statistics-rise-of-breast-cancer-in-india
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Fig.1.9: Incidences of Breast Cancer as per age-group in India[32] 

 

1.6 Problem Statement 
 

Breast Carcinoma is increasing at an exponential pace. Section 1.1.4 and 1.5 illustrate 

the alarming statistics. As compared to 20 million cases in 2022, there is an 

anticipation of 77% rise of breast malignancy cases by 2050[9]. Research Gaps 

discussed in section 1.4 depict that there is an urgent need to propose robust models 

that attain commendable performance and thus could be deployed for early-stage 

diagnosis. Additionally, there is a need to propose efficient frameworks that utilize 

smaller datasets in the medical domain and attain remarkable outcomes. These CAD 

systems could assist doctors and help patients who are diagnosed with the disease and 

are looking for a second opinion. Further, there is necessity to evaluate the 

generalizability of deep neural networks. 

Thus, the problem statement for this study can be stated as: Developing efficient 

models for early stage breast cancer diagnosis using deep learning strategies and 

evaluating generalization error in deep neural networks to assess their generalizability 

to unseen data. 
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1.7 Research Objectives 

 

We aim to propose a framework for the diagnosis and classification of breast 

carcinoma using DL. Following are the objectives of the research that fulfills the stated 

aim:  

(i) To conduct a Systematic Literature survey on the diagnosis & classification 

of Breast Cancer using existing Machine Learning and Deep Learning 

approaches. 

(ii) To propose a model for classifying Breast Cancer using pre-trained 

networks and examine various evaluation parameters.  

(iii) To propose a framework for implementing Multi-Stage Transfer Learning 

for classifying Breast Cancer and evaluate the results. 

(iv) To develop an approach for the estimation of generalization error for Deep 

Convolutional Neural Networks. 

(v) Comparison of the findings obtained from the proposed methodology to 

other current approaches 

 

1.8  Organization of Thesis 

 

The dissertation comprises six chapters discussing the research work in a concise & 

understandable way. A summary for each chapter is outlined below: 

 

Chapter 1 presents an overview to Breast cancer and Medical Image Processing using 

computer-aided diagnosis (CAD). This chapter throws light on breast carcinoma 

categorization, stages, and screening modalities.  It discusses the significance of early-

stage tumor diagnosis using ML and DL strategies. Research Gaps and Research 

Objectives are also mentioned. 
  

Chapter 2 describes the survey in the domain of Breast Carcinoma Diagnosis using 

ML and DL. Instances of breast malignancy are rising at a frightening rate. Mortality 

count could be reduced if diagnosis takes place on time. Extensive research has been 

covered in the literature for diagnosing breast malignancy in the early stages. But still, 

there is a gap to boost the performance of early-stage diagnosis through DL strategies. 
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This chapter explores the strategies adopted by the researchers along with their merits 

and de-merits for diagnosing & classifying breast carcinoma using several ML and DL 

strategies. It also describes the datasets and deep neural networks available for training 

on medical image datasets. 

 

The following paper has been published from this work: 

 

• G. Chugh, S. Kumar, and N. Singh, “Survey on Machine Learning and Deep 

Learning Applications in Breast Cancer Diagnosis,” Cognitive Computation. 

2021, doi: 10.1007/s12559-020-09813-6. (SCIE Indexed, IF=4.3) 

 

Chapter 3 proposes a dual framework called Transnet for diagnosing breast carcinoma 

using Machine Learning and Deep Learning paradigms. Two separate experiments 

were performed. The research was carried out on the CBIS-DDSM dataset. In the first 

approach, i.e., Deep feature extraction with ML classifier, Deep Convolutional Neural 

Network(DCNN) models like VGG-16, VGG-19, ResNet-50, and ResNet-152 are 

deployed as feature extractors, and the obtained features are utilized for training 

conventional machine learning classifiers. The second approach, called Deep Learning 

feature extraction with a neural network classifier, exploits MobileNet, VGG-16, 

VGG-19, ResNet-50, ResNet-152, and, DenseNet-169 for feature extraction and 

categorization. The merits and demerits of both approaches are discussed along with 

the futuristic suggestions. The chapter contrasts the stated framework with other 

cutting-edge strategies and highlights the significance of the proposed strategy. 

 

The following paper has been published from this work: 

• G. Chugh, S. Kumar, and N. Singh, “TransNet: a comparative study on breast 

carcinoma diagnosis with classical machine learning and transfer learning 

paradigm,” Multimed. Tools Appl., no. 0123456789, 2023, doi: 

10.1007/s11042-023-16938-x. (SCIE Indexed, IF=3.0) 
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Chapter 4 illustrates another proposed architecture for the early diagnosis and 

categorization of breast malignancy using the Multi-Stage Transfer Learning 

Approach(MSTLA). Utilizing smaller datasets and achieving remarkable performance 

is still a challenge. To achieve this, we are utilizing the concept of transfer learning 

with multiple stages. This approach is generally followed when the data required for 

training a model is unavailable in abundance. Experiments were carried out on three 

mammography datasets- Mammography Image Analysis Society (MIAS), In-Breast, 

and CBIS-DDSM. Results demonstrate the deployment of the framework in real-life 

scenarios. The chapter portrays the analysis of the stated framework with other cutting-

edge approaches. 

  

The following paper has been published from this work: 

• G. Chugh, S. Kumar, and N. Singh, “MSTLA: Multi-Stage Transfer Learning 

Approach for Breast Carcinoma Diagnosis,” 2023 Int. Conf. Adv. Comput. 

Comput. Technol. InCACCT 2023, pp. 509–514, 2023, doi:  

10.1109/InCACCT57535.2023.10141697. 

 

Chapter 5 focuses on the generalizability and generalization error in deep neural 

networks. Generalization is an approach to analyze how the model behaves on unseen 

data. Generalization Error(GE) measures the difference between training and testing 

errors. Leading causes of GE include memorization of training data, overfitting, a 

model with too many parameters, etc. We have presented a model for assessing the 

generalizability of Deep Convolutional Neural Networks through various noises. 

Gaussian, Salt and pepper, and Speckle noise were added to the CBIS-DDSM dataset. 

Generalizability and Generalization Error were evaluated for three DCNNs - Inception 

Net v3, DenseNet-201, and EfficientNet B4.  

 

The following paper has been published from this work: 

• G. Chugh, S. Kumar and N. Singh, "A Framework for Generalization Error 

Evaluation in Deep Convolutional Neural Networks," 2023 IEEE Engineering 

Informatics, Melbourne, Australia, 2023, pp. 1-7, doi:  
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10.1109/IEEECONF58110.2023.10520375. 

 

Chapter 6 concludes the research findings along with prospects & social impact. The 

chapter specifies the impact of the proposed research work on society and throws light 

on the application areas for future researchers in this field. 

 

1.9 Chapter Summary 

 

The chapter discusses the basic concepts of breast cancer along with the categorization 

and evolution stages. Breast Cancer could be screened using various imaging 

modalities. Statistics have shown that breast malignancy is the primary reason of 

demise in females. Thus, an appropriate strategy needs to be developed to diagnose 

the deadly disease at an initial stage. CAD using ML and DL is an hour of need. The 

chapter also discusses the research gaps followed by research objectives formulated to 

fill the gap. The chapter concludes with the thesis organization throwing light on the 

summary of the chapters drafted in the dissertation. 
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CHAPTER  2 

 

METHODOLOGICAL LITERATURE SURVEY 

 

 

2.1 Overview 

 

This Chapter covers the systematic literature survey in the field of breast carcinoma 

diagnosis. Section 2.2 highlights the strategies for utilizing Deep Convolutional Neural 

Networks. Survey Analysis is presented in Section 2.3. Sections 2.4 and 2.5 discuss 

the related work in the domain using ML and DL strategies. Generalization approaches 

are elaborated in Section 2.5. 

 

2.2 Deep Convolutional Neural Networks(DCNN) 

 

2.2.1 Introduction 

 

Artificial Intelligence(AI) has emerged as the most promising field for various types 

of research in the current industries. Deep Learning and Machine learning, the 

subfields of AI, are giving tremendous results in each & every sector. We also use 

these applications in our daily lives, like scrolling the search engines, taking to digital 

assistants, playing innovative games, and using social media apps. Etc. In recent years 

DL and ML are also been widely used in the medical sector. These advanced 

technologies are helping doctors in the treatment, reducing the diagnosis time and thus 

saving the lives of patients. 

In Cancer Detection and Diagnosis, Convolutional Neural Network(CNN) has 

performed remarkably. These networks consist of multilayer neurons capable of 

recognizing valuable features and thus aiding detection and classification. ‘Deep CNN 

i.e. DCNN’ refers to the layers in the network[33]. Initial layers learn generalized 
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characteristics from the pictures, and the deeper layers learn more specific attributes. 

A generalized model for CNN is illustrated in Figure 2.1. 

 

Fig. 2.1:CNN Architecture[34] 

(Source: https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-

network-an-overview/) 

 

Layers used in CNN are discussed as follows[35], [36]: 

 

(a.) Convolutional Layer: The convolutional layer holds primary importance in 

CNN design. It consists of several convolutional filters, sometimes referred to 

as kernels. The convolution step yields the essential characteristics that are 

derived from the pictures. 

  

(b.)  Pooling Layer: These layers lower the spatial dimensions of the image by 

down-sampling the convolved features. This approach reduces the size of 

large-scale feature maps to produce smaller feature maps. Thus it accomplishes 

the two goals i.e. enhancing the feature abstraction and lowering the 

computational capacity required for processing the information. Two popular 

poling techniques are Average Pooling and Max Pooling. The result of average 

pooling is the aggregate of all the data points from the image area the kernel 
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covers. In contrast, in Max-Pooling, a pixel's maximum value is chosen from a 

region of the picture that the kernel covers. 

 

(c.) Activation function Layer: Layers of non-linear activation are applied after all 

weighted layers. These layers facilitate non- linear input to output mapping and 

thus helps the CNN to learn more challenging tasks. Several activation 

functions are used in CNN which as discussed as follows: 

 

 Sigmoid: Upon receiving real numbers as input, this activation function 

only produces values ranging from 0 to 1. The sigmoid function curve 

can be expressed mathematically as: 

sig(x) =  
1

 1+𝑒−𝑥    (2.1) 

 Tanh: This activation's output is limited to −1 and 1. It is represented 

as: 

tan(x)=
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥    (2.2) 

 ReLU: This is most frequently utilized within the CNN as it is 

computationally efficient. It changes all of the supplied values to 

positive integers. ReLU's primary advantage over the others is its lower 

computational burden. The following is an illustration of its 

mathematical representation: 

rel(x)={
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

                   (2.3) 

 Softmax: To normalize a neural network's output to a probability 

distribution over anticipated output classes, the Softmax function is 

frequently employed as the final activation function. It translates raw 

output values (logits) into probabilities. It is represented as:  

soft(pi̅) =
𝑒𝑝𝑖

∑ 𝑒
𝑝𝑗𝑘

𝑗=1

        (2.4) 

Here,   𝑝𝑖̅ – input vector 

𝑒𝑝𝑖  –exponential function for an input vector 

𝑒𝑝𝑗 - exponential function for output vector  

k- number of classes 
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(d.) Batch Normalization Layer: Convolutional neural networks frequently employ the 

Batch Normalization (BN) layer to normalize each neuron's input so that its mean 

and variance are both zero. This aids in stabilizing the learning process and guards 

against internal covariate shift (A problem arises when a layer's input distribution 

varies because of weight updation during training). Since it has little effect on 

regularisation, it avoids the vanishing gradient problem and lowers the chance of 

over-fitting. 

 

(e.)  Classification Layer: The main objective is to perform classification and produce 

the final class as output. Also named the Fully Connected(FC) layer which links 

every neuron to all neurons in the preceding layer. After the flattening operation, 

FC layers receive a vector as input from the final pooling or convolutional layer in 

the network.  

 

2.2.2 Methods to Implement Deep Convolutional Neural Networks 

 

DCNNs can be implemented through the following two mechanisms: 

 

(i) Training from scratch: When training a CNN in this approach, a significant 

amount of training sample is fed to the network so that the network can 

understand the attributes right from the beginning. This process requires 

selecting suitable layers, hyper-parameters, optimizers, etc. It is a time-

consuming process and involves processing on powerful GPUs. 

 

(ii) Transfer Learning: This strategy of training a CNN is used when there are 

fewer training instances in the target class. Various pre-trained networks could 

be utilized for training the model. These networks are already trained on 

massive datasets; thus, the network has learned the generic features. Therefore, 

the knowledge learned from the base domain is transferred or used for training 

the destination domain where training samples are less. As a result, this 

approach requires less time and thus could be used on CPUs. 
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Figure 2.2 visualize CNN Implementation Techniques.  

 

Fig. 2.2: CNN Implementation[37] 

 

2.2.3 Strategies to Utilize Pre-Trained DCNN 

 

Section 2.2.2 discusses the various methods to utilize DCNNs. The Transfer 

Learning approach can be further implemented in the following three ways [13]: 

 

(i) Baseline Model: In this category, the complete model is trained from 

beginning to end, and only the structure of the pre-trained network is exploited 

(Fig 2.3(a)). 
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(ii) Fine-tuning: This includes transferring weights from a pre-trained network to 

the destined model and could be accomplished in two methods: Layer by Layer 

and Partial fine-tuning of the model. Layer-level tuning initiates with the 

outermost layer. Then additional layers are trained in chronological order 

whereas, in partial training, the weights of the initial layers are left unchanged, 

and the upper layer’s weights are modified to train the unfamiliar dataset (Fig 

2.3(b)). 

 

(iii)Feature extractor: This approach utilizes a pre-trained network's 

convolutional base in its original form, with no changes to its specified weights. 

Traditional classifiers substitute the dense layers of the pre-trained network. 

The convolutional base outcomes are passed directly to the train classifiers.             

(Fig 2.3(c)) 

 

Fig. 2.3: Strategies for Transfer Learning Implementation[38] 
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2.2.4 Performance Measures 

 

Various measures have been defined to assess the efficiency of any ML/DL system. 

The Confusion matrix indicates the relationship between predicted and actual values 

(Table 2.1).  

Table 2.1: Confusion Matrix 

 Predicted Positive Predicted Negative 

Actual 

Positive 
True Positive False Negative 

Actual  

Negative 
False Positive True Negative 

 

In the above table,  

True Positive (TP) – a person diagnosed as positive and is genuinely positive. 

True Negative (TN)- a person diagnosed negative and is actually negative. 

False-positive (FP)- a person diagnosed positive but is truly negative. 

False Negative (FN)- a person diagnosed as negative but is genuinely positive. 

 

Following is an overview of the measures [13]: 

(i) Accuracy: It is the proportion of correctly categorized instances to the overall 

samples and is interpreted as: 

Accuracy =  
TP+TN

TP+TN+FP+FN
   (2.5) 

 

(ii) Sensitivity/Recall/True Positive Rate (TPR): It evaluates what percentage of 

patients are correctly identified to have a particular disease (+ve instances) and 

illustrated as:    

Sensitivity (Recall) =  
TP

TP+FN
   (2.6) 

 

(iii) Specificity/True Negative Rate (TNR): Determines what proportion of persons 

are correctly identified not to have a particular illness (-ve instances) and elucidated 

as: 
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Specificity = 
TN

TN+FP
    (2.7) 

 

(iv) Precision/Positive Predicted Value (PPV): Specifies what percentage of patients 

are actually relevant(+ve) and described as: 

Precision =  
TP

TP+FP
   (2.8) 

(v) F-Measure: Interpreted as the harmonic average of precision and recall and is 

illustrated as: 

F-Measure =  
2∗Precision∗Recall

Precision+Recall
  (2.9) 

 

(vi) False Positive Rate (FPR): It anticipates a favourable outcome when the finding 

is actually negative. FPR is given as:  

FPR =
FP

TN+FP
     (2.10) 

 

(vii) Area Under the Receiver Operating Characteristic Curve (AUC-ROC): It 

defines a network’s capability to distinguish between different categories. It is drawn 

by coordinating TPR on the y-axis and FPR on the x-axis. Thus, the network’s 

performance is examined by determining the area under this curve, whose value lies 

from 0 to 1. The higher the value, the more powerful and reliable the network is at 

distinguishing positive individuals as positive and negative individuals as negative.  

 

2.2.5 Loss Function  

 

One of the most crucial components of neural networks is the loss function, which 

works directly with optimization functions to adapt the network to the provided 

training information. The efficiency of a DNN can be assessed by its loss function. 

The loss function in DL tasks typically quantifies the degree of precision, or fit 

between the ground-truth value and the predicted value. The goal of training is to 

reduce this loss between the desired outcome and anticipated outputs. To minimize the 

average loss, the hyper-parameters are accordingly adjusted[39].  
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For classification problems two loss functions are used which are discussed as 

follows[39]: 

(a.) Binary-Cross Entropy(BCE)/ Log Loss 

 

This function is applied in two-class categorization scenarios, where the model must 

classify the input into one of two predetermined categories. The loss function is given 

as: 

BCE Loss = 
1

𝑛
∑ −𝑛

𝑖=1 [𝑦𝑖  .  𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) .  𝑙𝑜𝑔(1 − 𝑝𝑖)]  (2.11) 

 

Here, n is the count of data points, yi signifies the actual category value (i.e. 0 or 1) 

and pi depicts the Softmax probability of any instance in that particular class (i.e. 0 or 

1). 

 

(b.) Categorical-Cross Entropy(CCE) Loss 

 

This loss is utilized in multi-class categorizations. The functionality is similar to binary 

cross-entropy loss and is stated as: 

 

CCE Loss = −
1

𝑛
∑ ∑ [[𝑦𝑖,𝑗 . log(𝑝𝑖,𝑗)]𝑐

𝑗=1  𝑛
𝑖=1 ]  (2.12) 

 

In the above equation, n is the count of data points, c represents the number of classes, 

yi signifies the actual category values and pi depicts the predicted probability of any 

instance in that particular class. Thus, in CCE Loss evaluation, the loss for each class 

is evaluated independently and then combined to get the overall loss.  

 

. 2.3 Survey Analysis 

 

This section discusses the papers reviewed and the electronic repositories explored 

during the literature survey. It also covers the database repositories utilized by the 

researchers. 
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2.3.1 Papers Explored/Reviewed 

 

Breast Cancer particularly affects younger people, and there is a crucial need to 

diagnose it early. In this research, more than 288 papers were peer-reviewed. 50-60 

articles diagnose breast carcinoma using machine learning classification algorithms 

while the rest implement deep learning approaches. Figure 2.4 shows the statistical 

distribution of ML and DL articles referred to in this research.  

 

 

Fig. 2.4: ML and DL publications examined in the survey 

 

2.3.2 Electronic Repositories 

 

This research analyses several studies on ML and DL strategies to diagnose and 

classify breast carcinoma. Searching criteria for inclusion and exclusion of the peer-

reviewed journal paper is based on the following keywords: breast carcinoma, 

computer-aided diagnosis, machine learning, deep learning, classification, detection, 

computer-assisted diagnosis, and computer-aided detection. The researchers’ 

electronic databases used in the survey include Elsevier, Springer, IEEE, Wiley, 
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Oxford, PLOS One, Hindawi, Taylor & Francis etc. The articles not meeting the 

required criteria were excluded and the rest were considered during the survey.  

 

2.3.3 Database Repositories 

 

The datasets utilized by the researchers in the survey are illustrated in Table 2.2. 

Table 2.2: Database repositories 

Digital Repository Dataset Name Dataset Description 

UCIMLR/ University 

of California Irvine 

Machine Learning 

Repository[40]  

 WBCD/Wisconsin 

Breast Cancer Dataset 

WBCD is a widely used 

dataset among experts 

working on machine learning 

research. It contains 569 

instances with 32 attributes 

BCDR/Breast Cancer 

Digital Repository[41] 

a.) BCDR-FM/ 

Film Based Digital 

Repository  

b.) BCDR–DM/ 

Full Field Digital 

Mammography 

It comprises mammography 

and ultrasound images of 1734 

patients (1010 –BCDR-FM 

and 724 – BCDR-DM) along 

with their clinical history.  

MIAS / 

Mammography Image 

Analysis Society[42] 

MIAS / Mammography 

Image Analysis Society 

It has 322 digitized 

mammography breast images 

at 50-micron resolution  

The University of 

South Florida[43]  

DDSM / Digital 

Database for Screening 

Mammography 

It comprises 2620 cases which 

are annotated in 3 categories- 

normal, benign, malignant 

BreakHis[44] BreakHis / Breast 

Cancer 

Histopathological 

Database 

It comprises 7909 

microscopic pictures. 7909 

cases are divided into 2480 

benign samples and 5429 

malignant samples 
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SEER[45] SEER / Surveillance 

Epidemiology and  End 

Result 

SEER dataset provides stage-

wise survivability statistics of 

breast cancer data 

InBreast[46] InBreast This database consists of 115 

cases with 410 images. 

IRMA[47] IRMA/ Image Retrieval 

in Medical Applications 

It consists of 10,509 reference 

breast images 

 

 

2.4 Methodological Survey on Breast Tumor Diagnosis Using Machine Learning 

Classifiers 

 

This section covers an analysis of research conducted by multiple authors using 

different machine-learning classifiers to diagnose breast carcinoma [13].  

Gene Microarray datasets were used by Osareh and Shadgar[48] to classify benign and 

malignant lesions. The researchers extracted attributes using Principal Component 

Analysis (PCA), ranked features using Signal Noise Ratio (SNR), and feature selection 

was implemented using a wrapper-based approach, i.e., Sequential Forward Selection 

(SFS). The authors concluded that the best results could be obtained by appropriate 

selection of kernels and classifiers. SVM with the RBF kernel attains an accuracy of 

96.33%. Their work suggested that SVM models with Radial Basis Function (RBF) 

kernel could be further explored as a diagnostic aid for breast carcinoma diagnosis. 

Feature Selection and Reduction are very crucial parameters that affect classifier 

performance. The finest classifier will perform worse if features are not chosen wisely. 

Karabatak and Ince [49] used Association rules (AR) on WBCD and reduced feature 

dimensions from nine to four. The authors obtained 95.6% and 97.4% accuracy with 

4 and 8 inputs by performing classification using Neural Network (NN). K. Goyal et 

al. [50] implemented seven different algorithms - Bagging, Ada Boost, LR, SVM, RF, 

NB, and DT on WBCD. The authors compared classifiers' results by implementing 

various feature selection techniques. Ada Boost and LR classifier attained significant 

performance using PCA with an accuracy of 97.92% for the reduced dataset.  
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Similarly, [51] utilized WBCD and BCDR to evaluate four classifiers: NB, KNN, J48, 

and SVM. The Weka tool's "WrapperSubsetEval" wrapper feature selection method 

was employed on both datasets. Findings showed that the superior results were given 

by SVM with an accuracy of 97.91% and 95.10% on WBCD and BCDR. Some of the 

well-known research on breast carcinoma diagnosis is summarized in Table 2.3. 

In certain situations, an ensemble model is created by merging multiple classifiers with 

various techniques to improve the results from individual classifiers. The researchers 

in [52] presented an ensemble approach with 97.8% accuracy that used SVM, DT, and 

LR as classifiers. Weights were assigned to each classifier using the Sequential Least 

Square Programming (SLSQP) technique. The outcomes show that the ensemble 

framework outperforms a standalone ML classifier. Kashif et al. [53] implemented 

several ML models -SVM, Ada Boost, DT, LR, RF, Gradient Boost, and KNN on the 

MIAS dataset. Results proved that SVM performs best with an accuracy of 90%. In 

contrast, the Gradient Boost classifier gave the worst efficiency with an accuracy of 

52%. Another work on the MIAS dataset was proposed in [54], where authors applied 

discrete wavelet transform (DWT), PCA & SVM approach and attained an accuracy 

of 82.85+-2.21%. The proposed work could be continued in the future by applying 

other variants of wavelength transform, such as stationary wavelet or wavelet package 

transform. The authors also suggested using deep learning methods on large datasets 

in the future to obtain high accuracy and precision for prediction and classification. 

Cancer prognosis refers to the probability of success of treatment leading to recovery. 

A lot of work on cancer prognosis has been conducted in the past few years. Similar 

work was proposed in [55] by evaluating eight different classifiers, firstly, by 

comparing their AUC value for the prognosis time of 2, 5, 8, and 11 years, and 

secondly, based on the importance of different variables. The authors concluded that, 

on average, a 5-year prognosis period shows the overall best performance. Out of eight 

models, overall RF, Boosted Trees, partial least square, and generalized linear model 

(GLM Net) classifiers provided the best results with an AUC value of approximately 

0.75. In contrast, the KNN model performed worst with an AUC value of 0.67. In the 

future, their work could be extended by including bagging, boosting, and other 

ensemble techniques. The experts in [56] used data-driven knowledge for predicting 

5-year breast cancer survival on the SEER database on all the BC instances in 1988–
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2009. The authors compared stage-specific (in situ, localized, regional, distant) and 

joint predictive models for three distinct algorithms—NB, LR, and DT. The authors 

concluded that summary stage predictive models achieve superior results compared 

with the joint model; secondly, it is essential to collaborate all the information attained 

from various stages with its validity time. 

Many times, oncologists face difficulties in the identification of the disease through 

the naked eye. Under such circumstances, the field of medicine called radiomics is 

utilized to examine radiological pictures and derive radiomic features, which reveal 

health abnormalities. Using machine learning and radiomic characteristics, the experts 

[57] categorized tumors on DBT pictures. Seventy radiomic characteristics were 

retrieved. The authors selected six features using the least absolute shrinkage and a 

selection operator (LASSO) because of lesser training data. In the case of 70 radiomic 

features, SVM shows the best results with a 55% recognition rate for a non-cancerous 

tumor and 84% for cancerous tumors with an AUC of 0.798. Feature extraction could 

be automated in the future by implementing deep learning techniques. 

 

Table 2.3: Summarization of distinguished work on breast carcinoma diagnosis using 

Machine Learning Classifiers 

Data Set 

Used 
Method Adopted Performance Analysis Reference 

2301 

Patients 

(Private 

Dataset) 

Support vector 

regression(SVR) 

with RBF, Linear 

and Poly kernel, 

Decision Tree 

Regression 

(DTR) model, 

Stochastic 

Gradient Descent 

model 

The best 

accuracy is 

given by 

SVR with 

Linear kernel 

and DTR model 

 SVR linear 

model and DTR 

model best 

suited for 

survival time 

prediction. 

 Tumor-

integrated 

clinical feature 

(TICF) 

performs better 

than the 

Nottingham 

prognostic 

index (NPI). 

 

[7] 
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SEER 

[45] 

NB, LR, DT 

Survivability 

prediction on all 

stages together 

can cause 

overestimation 

of performance 

 Distant 

summary stage 

shows the worst 

performance 

due to lesser 

instances of 

training data 

 Compared to 

the joint model, 

the stage-

specific model 

yields superior 

results. 

 

[8] 

WBCD 

[40] 

Hybrid of K- 

means 

with SVM 

(K-SVM) 

97.38% 

 

 Reduces 

training time by 

reducing input 

features from 

thirty-two to six 

 Feature 

selection during 

training and 

validation phase 

not required 

[58] 

SVM, Decision 

Tree-C4.5, Naive 

Bayes,  KNN 

97.13 % 

 SVM is 

manifested to be 

the finest 

classifier with 

the least error 

rate and highest 

correctly 

classified 

instances on 

WBCD 

[59] 

UCI 

machine 

learning 

repository 

SVM, DT-J48,  

NB, LR 

Dermatology- 
NB+LR (97%) 

Breast Cancer-

SVM-PCA 

(97%) 

Chronic 

Kidney 

Disease- 

J48 (99%) 

 High accuracy 

 Accuracy could 

be improved by 

considering 

more data and 

parameters such 

as age, sex, 

locality 

 CNN could be 

used in the 

future to 

automate 

[60] 
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feature 

extraction. 

 

2.5 Methodological Work On Breast Carcinoma Diagnosis Using Deep Learning 

Strategies 

 

This section outlines the contributions of researchers in recent years for diagnosing 

breast carcinoma through deep-learning techniques[13]. 

Al-antari et al. [61] drafted a CAD model on the In-Breast database and implemented 

the "You Look Only Once (YOLO)" model for detection. The authors proposed a "full 

resolution convolutional network (Fr-CN)" and a DCNN for segmentation & 

categorization, respectively. Compared to other CAD models, the presented method 

attains significant performance with a testing time per image of only 12.23s. The 

network attained an accuracy of 95.64% after the detection, segmentation, and 

classification of masses with an AUC of 0.94. In [62], the experts utilized YOLO on 

the DDSM dataset. The outcomes demonstrate that YOLO performs exceptionally 

well when it comes to mass identification over dense tissues and pectoral muscle. A 

one-stage object detector, called Retina Net, is the foundation of another mass 

detection model put forth by experts in [63] is based on one-stage object detector, i.e., 

Retina Net. The algorithm provided a greater sensitivity value concerning false 

positives per image (FPPI). The model was implemented on a publicly available 

dataset, i.e., In breast, and an in-house dataset, i.e., GURO. The authors concluded that 

performance could be improved by integrating large datasets using transfer learning. 

Ting et al. [64] utilized an "Interactive detection-based lesion locator (IDBLL)" and 

proposed an improved CNN model for diagnosing breast malignancy. The authors 

attained an accuracy value of 90.50% on the MIAS dataset. 

In [65], the authors presented an efficient approach for classifying mass lesions on 

BCDR-FM using a CNN. The stated framework attains an AUC value of 0.826 and 

outperforms other cutting-edge strategies by combining learned and hand-crafted 

features. Their work could be continued in the future with high-resolution images 

provided by BCDR-DM. In [66], the researchers implemented Convolutional Neural 

Network Discrete Wavelet (CNN-DW) and Convolutional Neural Network Curvelet 
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Transform (CNN-CT) on the IRMA dataset.  Results have shown that using SVM 

instead of the Softmax layer can improve classifier performance. CNN-CT 

outperforms CNN-DW with an accuracy value of 83.74, 83.11, and 81.49 using the 

SVM layer, SVM layer with 10-fold cross-validation, and Softmax layer. Their 

performance can be enhanced by applying different CNN architectures and various 

deep learning techniques in the future. H. Li et al. [67]  proposed DenseNet II 

architecture for classifying mammograms. The authors substituted the first 

convolutional layer with the inception framework. The proposed model shows 

significant performance when analyzed with other pre-trained networks and attains an 

accuracy of 94.55% and an AUC of 0.91. Therefore, this design improves speed and 

efficiency and solves pre-trained models' gradient descent by reducing parameters and 

enhancing feature reuse. In [68], the authors proposed a supervised approach for 

evaluating percentage density (PD) and compared the DCNN approach with the 

statistical learning approach. PD is referred to as the proportion of dense area to the 

breast region on digital mammograms. They concluded that, for PD evaluation, the 

DCNN method is superior and powerful to a feature-based learning approach. In the 

future, their system can be extended by including mammograms from different 

vendors, using various imaging modalities, and implementing transfer learning.  

Pectoral Muscles hinder the detection process and should be removed before diagnosis. 

Mughal et al. [69] proposed a hybrid technique to eliminate pectoral muscle using a 

curve stitching technique. The adaptive hysteresis thresholding segmentation 

technique identifies the ROI and segments the breast region of a digital mammogram. 

Results have shown that this method obtains the loftiest recall of 96.6% on MIAS and 

96.4% on the DDSM dataset when contrasted with other revolutionary approaches. 

FFDM offers low detection sensitivity, and MRI, on the other hand, provides high 

costs with longer scanning time. "Contrast-Enhanced Digital Mammography 

(CEDM)" combines the advantages of both, offers four times faster scanning, and is 

only 1/6 the price. CEDM generates low-energy images similar to FFDM and 

recombined images comparable to breast MRI [70]. For improving the diagnosis of 

breast carcinoma, "SD-CNN (Shallow-deep CNN)" was proposed by authors in [70] 

by utilizing CEDM. The authors used deep CNN to compare the results obtained 

through low energy(LE) images and by the blend of LE and recombined images. 
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Secondly, due to the restricted availability of CEDM, the authors applied shallow CNN 

(S-CNN) and obtained a 'virtual' recombined image from FFDM images. After 

evaluation, with virtual recombined imaging features, results show an increase in the 

model's performance.  

Breast calcifications are minute deposits of calcium on the breasts. They commonly 

appear as white specks or dots on the mammograms. Calcifications are generally non-

cancerous, but micro-calcification clusters could indicate a warning sign of 

malignancy. The authors in [71], utilized hand-crafted and deep learning features from 

digital mammograms to perform breast micro-calcification diagnosis using DCNN. 

Using filtered deep features, 86.89% recall and 89.32% precision was obtained. 

Researchers concluded that although deep features surpass hand-crafted 

(morphological) features, on the other hand, hand-crafted features could guide CNN 

to attain higher accuracy by providing additional information. 

On the other hand, authors in [27] classify multi-view mammograms and segmentation 

maps using pre-trained deep learning models. As opposed to classifying individual 

lesions, this holistic approach classifies the whole mammogram comprising 

"Craniocaudal (CC)" and "Mediolateral oblique (MLO)" views. The findings reveal 

that this method produces good results on the In-Breast and DDSM datasets, with an 

AUC of 0.9. Arefan et al.[72] examined the results using CC and MLO views on 

mammography patients and estimated that the CC perspective shows superior 

performance than the MLO view. The authors also observed an increase in AUC value 

when the two views are used in combination for heavy breasts. 

In medical imaging, Multiple instance learning (MIL) provides room for weakly 

labelled data and reduces the effort and cost of marking all the dataset images. Instead 

of taking a group of labelled instances, it considers the set of labelled bags comprising 

multiple instances. P.J. Sudharshan [73] used MIL  and implemented several methods 

on the Break His database. The authors proposed two ways to implement the process. 

The first method considers patients as bags and instances are the patches extracted 

from images, and the second assumes images as bags and instances are the patches. 

Non-parametric MIL and Multiple Instance Learning Convolutional Neural 

Network(MILCNN) attain significant results with 92.1% accuracy. The authors 
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concluded that MIL outperforms other methods for classifying cancer on 

histopathology images. 

Similarly, Samala et al. [74] concluded that when training samples from one modality 

are inadequate, multi-task learning is a competent technique for implementing deep 

networks in medical image processing. Another work on MIL was proposed in [75] 

for mass detection in DBT images. The researchers developed a framework based on 

deep CNN(DCNN)) with multiple instances learning random forest 

approach(MILRF), i.e., DCNN-MILRF and compared the presented structure with two 

other proposals- first based on hand-crafted features, i.e., MIL-CAD and second based 

on Deep Cardinality Restricted Boltzmann Machine (Deep CaRBM). Findings 

indicate that the DCNN-MILRF performs superior than the other two approaches with 

86.8% accuracy. In the future, their work could be explored with a larger DBT dataset 

by combining 3-D imaging information with 2-D information. 

In [76], the authors proposed a model for lesion detection on ultrasound images on two 

datasets, A&B with 306 and 163 images. The authors used three DL approaches, patch-

based Le-Net & U-Net, and transfer learning-based Fully Convolutional Network-

Alex Net (FCN-Alex Net). Results show that FCN-Alex Net gave the best performance 

on Dataset A and patch-based Le-Net on Dataset B in terms of F-measure and false-

positive/image but at the expense of longer training sessions. Their work could be 

extended by increasing training data and implementing segmentation and classification 

on ultrasound lesions. Another similar work on ultra-sonographic images was 

proposed in [77]. The experts utilized a deep CNN and developed two architectures 

called "Mt-Net" and "Sn-Net" to categorize tumors in the breast lesions. Results reveal 

that the presented approach surpasses other revolutionary methods and can be 

elaborated in the future by combining several imaging modalities. Table 2.4 

summarizes research on breast carcinoma diagnosis using deep learning models. 

For training CAD models using deep learning techniques, training information is 

needed in bulk. However, the collection of the labelled dataset is a challenging job in 

the health sector. Different augmentation strategies can be applied to increase dataset 

size. Due to the extensive availability of a huge amount of images, numerous 

researchers have utilized the Break-His dataset in recent years to classify 

histopathology images. By analyzing the outcomes independently for patch-wise and 
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image-wise classification, the authors of [78], [79] have achieved remarkable success 

in employing histopathological pictures to classify breast carcinoma. Using multiple 

pre-trained networks, including Res-Net50, Alex-Net, and VGG-16, [80], [81] 

explored histological image classification and achieved excellent outcomes. In another 

work, Brancati et al. [82] utilized residual Convolutional Auto-Encoder (CAE) i.e. 

Fusion-Net, to multi-classify lymphoma in histology pictures. Supervised Encoder 

Fusion-Net (SEF) is an acronym of the supervised classification method that the 

authors employed in addition to the first method, classification by reconstruction, 

which involves training CAE in an unsupervised way. The authors compared results 

obtained using SEF with other existing deep learning networks (Fusion-Net, U-Net, 

Res-Net) under the same conditions and on the same datasets. They deduced that SEF 

offers excellent outcomes for the situations in which it was employed and can be tested 

for other histopathological image assessments in the future. 

A novel framework was proposed in [83]. The Squeeze and Excitation Residual 

network (SE-Res Net) module was designed to lower training parameters and guard 

against overfitting of the model. The stated methodology attained an accuracy of 90.66 

to 93.81%. Their work can be elaborated to study cell duplication and irregular 

distribution of color in pathological images in the future. Three models were presented 

in [84]  for the histopathological image classification: CNN, Long-Short-Term-

Memory (LSTM), and a CNN/LSTM hybrid. Using K-Means and Mean shift, the 

scientists were able to extract statistical and unobserved structural information from 

the data. With a 91% accuracy rate, CNN with Softmax classifier performs better than 

the other two approaches. Through the combination of pathological pictures and 

structured information from the Electronic Medical Record (EMR), the researchers in 

[85] developed a hybrid DL model. The fusion of both high and low-dimensional 

information resulted in a substantial improvement in diagnostic accuracy. 

Another paradigm on the Break His dataset was proposed by Sharma and Mehra [86]. 

Firstly, the authors used conventional classifiers to carry out classification using 

manually created features. Secondly, pre-trained networks were employed as feature 

extractors. Findings demonstrate that the pre-trained model-based strategy performs 

better than the hand-crafted and baseline approaches. The finest accuracy was 

accomplished by the VGG-16. Their work could be elaborated further to perform 
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layer-wise fine-tuning of the model and implement an ensemble model with a pre-

trained network.  

 Bevilacqua et al. [87] perform a supervised classification of breast tomosynthesis 

images by comparing shallow and deeper neural networks. The authors proposed two 

frameworks: the first framework was based on hand-crafted (morphological/textual) 

features, i.e., classification by ANN, and the second was a non-neural classifier (i.e., 

automatic feature extraction by CNN) in which different CNN models (GoogleNet, 

ResNet, AlexNet, and VGGNet) were evaluated. Results evinced that the CNN-based 

model outperforms the ANN approach. In [88], the authors classify mammograms and 

DBT images on an in-house dataset by evaluating ten different models using pre-

trained Alex Net. In their research, 2-D mammography outperforms 3-D 

tomosynthesis models in classifying cancer. However, 3-D tomosynthesis has proven 

to be robust in manual cancer detection. The variation in result might be due to memory 

limitations; as a result of which the authors considered the only subset of 3-D frames, 

and thus, significant information loss might have occurred in 3-D pictures. For 

achieving optimal performance, their research could be extended in the future for 

developing an ensemble classifier integrating 2-D mammography with 3-D 

tomosynthesis images. [89] stated a framework for mass detection in DBT images and 

showed a comparison between DCNN and feature-based CAD. Unlike other research, 

where pictures of natural scenes were utilized for pre-training a DCNN, the authors 

first used mammography images for training a DCNN, and then this pre-trained model 

was used for mass detection in DBT pictures using transfer learning. Results have 

shown that the AUC value increases from 0.81 to 0.90 after transfer learning with 

DBT. Secondly, DCNN-based CAD surpasses feature-based CAD and thus improves 

sensitivity from 83% to 91%. By applying pruning, the number of neurons and 

parameters were lowered by 87.2% and 34.4%, respectively. Another work on mass 

detection on DBT images was proposed in  [90] using a "Faster Region-Based 

Convolutional Neural Network(Faster-RCNN)." The authors modified the DCNN 

proposed in [76] and compared it with the RCNN. Results show that RCNN 

outperforms DCNN with an AUC value of 0.96. The false-positive rate is diminished, 

but for the sake of cost and speed, i.e., RCNN is sluggish and costly as compared to 

DCNN.  
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In [91], the experts utilized gene expression datasets to anticipate clinical outcomes of 

breast carcinoma. The classification task consists of 2 phases- Unsupervised feature 

learning, i.e., combining PCA and auto-encoder, and, second, supervised classifier 

learning, i.e., constructing an ensemble classifier based on the Ada-Boost algorithm. 

Based on experimental findings, the suggested strategy, i.e., PCA-AE-Ada-Boost, 

gave an AUC of 0.714 and an accuracy of 0.85. Despite its advantages, the authors 

highlighted some limitations- firstly, difficulty identifying essential features for 

prediction tasks; secondly, increasing the generalization capability of the proposed 

method by including more publicly available datasets. Deep learning methods can also 

be utilized for extracting extensive clinical information for breast carcinoma from 

multiple categories of clinical notes in Chinese [92]. In [92], the authors proposed a 

system with two constituents- Named Entity Recognition (NER) and Relation 

recognition component. The bi-directional Encoder Representations from 

Transformers (BERT) was fine-tuned for extracting the notion and features from 

clinical breast cancer documents. Results have shown that fine-tuned BERT 

outperforms traditional Bi-directional long-short-memory-conditional random fields 

(Bi-LSTM-CRF) algorithms. The approach yielded precision, recall, and f-measure of 

0.927, 0.939, and 0.935 for NER and 0.976, 0.959, and 0.967 for relation extraction, 

respectively. For information extraction, the proposed approach considered only 100 

patients; therefore, additional data annotation could be done to increase dataset size in 

the future. Secondly, the proposed model could be enhanced to integrate data from 

alternative imaging techniques like computed tomography (CT), MRI, and 

pathological microscopic scans.  

In [67], the authors presented an improved and effective neural network model called 

DenseNet II for diagnosing and classifying breast carcinoma. The model yields 

94.55% accuracy and 0.91 AUC. Another research[87] compared two approaches, i.e. 

ANN and CNN for the categorization of breast tomosynthesis images. The research 

concluded that the CNN-based approach gives higher accuracy and AUC value than 

other approaches. The authors in [93] utilized the Break His Dataset and performed 

breast cancer classification on histopathology images using VGG-16, VGG-19, 

Mobile Net, and ResNet-50. VGG-16 outperforms the other models with the greatest 

accuracy of 94.67%.  [94] presents a systematic literature survey on ML and DL 
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approaches for diagnosing breast carcinoma using mammograms. The study discusses 

the imaging modalities, datasets, and, techniques used, for the breast cancer CAD 

system. Performance measures, potential limitations, and future challenges are also 

outlined. In [95], the researchers have proposed a two-stage transfer learning approach 

for diagnosis on ultrasound pictures. In the first stage, cancer cell line images were 

utilized, and the features learned from this stage were transferred to categorize benign 

and malignant carcinoma in the ultrasound pictures. The authors attained 97.8% 

accuracy on the MT-Small (Private) Dataset. [96] provides an in-depth study on 

analyzing medical images using ML and DL techniques. The authors observed that DL 

outperforms ML models when it comes to evaluating enormous quantities of data. This 

study focuses on the detection & diagnosis of various medical illnesses such as Breast 

tumors, Brain disease, Diabetes, etc. 

The researchers in [97] presented a multi-activation deep neural network for diagnosis 

on the WBCD dataset. The authors concluded that the multi-activation proposed deep 

neural network model performs better than other single-activation networks. In the 

future, researchers can use different combinations of activation functions for deep 

neural networks. Senan et al. [98] used Alex Net on the Breast cancer digital repository 

(BCDR) dataset to categorize malignancy on histopathology images. The proposed 

approach gave superior results to previous models, with an accuracy of 95% at the 

magnification factor of 40x and 400x. 
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Table 2.4: Summarization of distinguished work on breast malignancy using Deep 

Learning Strategies 

 

Imaging 

Modality/ 

Dataset Used 

Method 

Adopted 
Performance Analysis Reference 

Mammograms 

(Labeled and 

Unlabeled) 

CNN with 

Semi-

Supervised 

Learning 

(SSL) 

algorithm 

Accuracy: 

82.4 

AUC: 0.88 

 

 

 Best result 

obtained using 

mixed labelled 

and unlabelled 

data 

 Useful when the 

labelled data is 

not available in 

bulk 

 Performance of 

the system  

 increases using 

unlabeled data  

[99] 

 

Histopatho-

logical images 

Inception 

network, 

DCNN, 

Gradient 

Boosting 

Tree 

classifier 

 

Accuracy: 

96.4 

 

 Gradient 

Boosting tree 

algorithm 

performs well 

even in 

imbalanced 

training data and 

limited samples, 

thus avoiding 

over-fitting. 

 Improves 

performance  

when DCNN is 

fused with 

gradient boosting 

tree  

[100] 

 

Pretrained 

Xception 

Network 

Pre-eminent 

performance 

 Multi-task CNN 

outperforms 

single task CNN. 

 Fine-tuned CNN 

outperforms 

CNN trained 

from scratch 

 Inclusion of prior 

knowledge in 

feature extraction 

step overcomes 

[101] 
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intra-class 

variance problem 

in pathological 

images. 

SFM, DM, and  

DBT 

Two-stage 

transfer 

learning 

ROI-based & 

View-Based 

AUC 

Single-stage: 

0.84 and 0.85 

 

Two-stage: 

0.90 and 0.91 

 

 A supplementary 

phase of transfer 

learning from a 

similar related 

domain provides 

an improvement 

in learning. 

 Hyper-parameters 

were not 

optimized due to 

smaller datasets 

and less 

computational 

cost.  

 Did not compare 

performance with 

conventional 

feature 

engineering 

methods 

 

[102] 

FFDM, 

US, 

Dynamic 

Contrast-

Enhanced 

MRI(DCE-

MRI) 

VGG-19 

model 

AUC (Max 

pooled 

features): 

FFDM: 0.81 

US: 0.87 

MRI: 0.87 

AUC (Fusion 

classifier): 

FFDM: 0.86, 

US: 0.90, 

MRI: 0.89 

 Max-pooled 

features 

performed better 

as compared to 

fully connected 

features with or 

without pre-

processing 

 Fusion classifier 

outperforms CNN 

and convolutional 

CAD classifier 

[103] 
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2.6 Related work on the Generalization of Deep Convolutional Neural Networks 

 

Generalization error is another critical parameter that needs to be considered when using 

transfer learning with limited training data. DCNN can memorize the training data due 

to millions of parameters and trainable weights[104]. Thus, memorization, over-fitting, 

and a classifier model with enormous specifications may result in generalization errors 

[105].  

Samala et al. [105] considered the impact of learning capacity and transfer learning on 

the generalization error by plotting ROC curves as an evaluation parameter. The noise 

was introduced by corrupting image labels and the input image. The authors evaluated 

the correspondence between learning and memorization of deep networks by freezing 

convolutional layers of Alex-Net and Google-Net. Findings show that generalization 

error increases when training is done with noisy data. The authors also concluded that a 

proper strategy should be chosen based on available training data to minimize 

overfitting and improve the network’s generalizability when implementing transfer 

learning. [106] presents Domain Generalization for deep learning. Using several Deep 

Learning architectures, a Single Source Domain Generalization(SSDG) approach is 

presented for breast carcinoma diagnosis in mammograms. The authors concluded that 

models based on transformers were more resistant to domain changes and SSDG 

techniques minimize the domain shifts and thus enhance the model’s efficiency in 

unknown clinical contexts. Authors in [107], show the comparative view of several 

types of noises in digital image processing. They have proposed noise models and 

summarized that noise affects produce artifacts such as faulty edges, invisible lines, 

corners, and fuzzy objects. Various filtering techniques could be applied for noise 

removal. Deep Neural models should be trained on these images to find the model’s 

generalizability. 

[108] provides a review of Generalization errors in Deep Learning. The authors 

summarized that Regularization techniques lower the model’s complexity and thus 

reduce generalization error. The authors in [109] proposed a framework for Impulse 

Noise Detection using a Modified Robust Outlyingness Ratio (mROR) on mammogram 

images. This study could be modified further for the deployment of real-time clinical 

images. In [110], the authors determine the vulnerability of deep learning models on 
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medical images through three attacks i.e.  Fast Gradient Sign Method(FGSM), Projected 

Gradient Descent(PGD), and Basic Iterative method(BIM) with different perturbation 

levels. Medical DL models are more vulnerable to adversarial assaults resulting in 

decreased accuracy values. Thus, it was concluded that Adversarial Training increases 

the model’s robustness for different attacks. Another approach to domain generalization 

is proposed in [111], based on a multi-view contrastive learning technique. The 

outcomes show the model’s efficiency in both seen and unseen domains. Thus the 

method could be used for diagnosing lesions in mammograms. 

 

 

2.7 Chapter Summary 
 

In this chapter, an overview of recently developed, peer-reviewed CAD systems that 

employ ML and DL techniques for the diagnosis of breast malignancy is presented. 

These systems are compared with formerly authorized approaches. Technical 

specifications along with the benefits and drawbacks of each framework are explained. 

Different strategies for implementing Deep Convolutional Neural Networks are also 

discussed. AI has expanded over the last ten years, and AI-based applications in the 

medical field have demonstrated positive results at lower expenses and with greater 

effectiveness. 

Previous research findings elucidated that when the dataset is broad, DL performs better 

for diagnosing breast cancer than traditional ML. To improve healthcare over the long 

term, practical and scientific investigation is desperately needed. Consequently, to 

improve survivability and lower mortality rates over time, early diagnosis and prognosis 

have become essential. By aiding radiologists in their examination of medical images, 

new artificial intelligence tools are improving the prognosis of cancer patients. 

 

. 
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CHAPTER 3 
 

 

TRANSNET FRAMEWORK: A DUAL APPROACH FOR 

BREAST CARCINOMA DIAGNOSIS 

 

 

3.1 Overview 

 

Breast Carcinoma is a deadly disease; therefore, timely diagnosis is one of the most 

critical concerns that must be addressed globally since it can significantly enhance 

overall survival rates. Currently, Medical Imaging relies on ML and DL for accurate 

and early recognition of sickness. In this chapter, an architecture is stated for 

diagnosing & classifying breast tumors using deep learning approaches. Two 

experiments were performed on the CBIS-DDSM dataset. In the first approach, i.e., 

Deep feature extraction with ML classifier head, DCNN models such as VGG-16, 

VGG-19, ResNet-50, and ResNet-152 are deployed as feature extractors, and the 

obtained features are utilized for training conventional machine learning classifiers. 

The second approach, called Deep Learning feature extraction with a neural network 

classifier, exploits Mobile Net, VGG-16, VGG-19, ResNet-50, ResNet-152, and, 

DenseNet-169 for feature extraction and categorization. 

 

3.2 Data Set Utilized 

 

In Chapter 1, we discussed several imaging techniques for diagnosing breast 

carcinoma such as Mammography, MRI, Ultrasound, DBT, Histopathological 

pictures, etc. The details, along with the pros and cons for each modality, could be 

referred to in [13]. Breast cancer diagnosis via mammography is still recognized as a 

benchmark, as it detects tumors at initial stages and is associated with low radiation 

compared to other modalities. In this research, we have used a mammography dataset 

i.e., CBIS-DDSM [112], which contains 9648 mammography images for 2412 
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patients. 695 cases are Normal, 867 are malignant(Positive), and 850 are 

benign(Negative). After applying data augmentation (Discussed in Section 3.4.2), the 

dataset comprises 55,885 images which include: 16,103 Normal, 20,088 

Malignant(Positive), and 19,694 Benign(Negative) samples. We have utilized the data 

maintained as a tfrecords file for TensorFlow. 

 

 

Fig. 3.1: CBIS-DDSM Data Set [112] 

 

3.3 Deep Convolutional Neural Networks(DCNN) & Machine Learning(ML) 

Classifiers 

 

The proposed Transnet Framework is a dual approach for diagnosing breast cancer. 

The framework utilizes various DCNNs and ML Classifiers.  

 

3.3.1 Deep Convolutional Neural Networks(DCNNs) 

 

The specific details of DCNN architectures implemented in the proposed framework 

are discussed as follows[113]:  

 

(i) VGG Net [114]: VGG Net is a very popular and efficient DCNN that has shown 

promising results in image classification. In VGG Net, 11 x 11 and 5 x 5 filters 

35%

36%

29%

Benign Malignant Normal
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are substituted with a stack of 3 x 3 filters. The simultaneous deployment of a 3 x 

3 filter might induce the impact of a large filter size (7 x 7, 5 x 5). VGG Net places 

1x 1 convolution in between the convolution layers. Owing to the abundance of 

parameters, VGG Net is computationally expensive and requires longer training 

time on the system with less computational power.  In this framework, we have 

utilized VGG-16 and VGG-19 with 16 layers and 19 layers of depth. The original 

layered VGG-16 and VGG-19 structure is depicted in Figure 3.2. 

 

 

Fig. 3.2: VGG Structure[114], [115] (a.) VGG-16  (b.) VGG-19 

 

(ii) Res Net [116]: This is a renowned deep-learning pre-trained network, also called 

as Residual Network. As layers increase in a network, a problem known as a 
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vanishing gradient usually occurs. To overcome this, Res Net introduced the 

concept of residual learning. Here, we use Skip Connections, i.e., it bypasses a 

few stages of training and connects immediately to the output. Res Net comes in 

different versions with 50/101/152 layers’ depth with an input image size of 224 

x 224. We have utilized two versions of ResNet i.e. ResNet-50 which has 

24,649,953 trainable parameters and ResNet-152 which has 59,303,265 trainable 

parameters. The original layered architecture of both is shown in Figures 3.3 and 

3.4. 

 

Fig. 3.3: ResNet-50 Architecture[117] 
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Fig. 3.4: ResNet-152 Architecture[118] 

 

(iii) Mobile Net [119]: This model is developed specifically for mobile applications. 

Mobile Net reduces the computational complexity, i.e., the number of parameters, 

by using depth-wise separable convolutions. It has 3,521,569 trainable 

parameters. These low-powered small models are suitable for applications where 

resources are limited. Figure 3.5 depicts the Mobile Net architecture. 
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Fig. 3.5: Mobile Net architecture[119], [120] 

 

(iv) DenseNet [121]: Also called Dense Convolutional Network. Dense Nets provide 

numerous benefits, such as solving vanishing-gradient problems, enhancing 

feature propagation, reusing features, and reducing parameter count. Dense Net 

models are easy to train because they provide enhanced information flow across 

the network. Dense Nets usually have hundreds of layers and provide no 

optimization problems. These networks have several versions- DenseNet-121, 

DenseNet-169, DenseNet-201, etc. In this research, we have utilized the 

DenseNet-169 model which possesses a large number of trainable parameters i.e. 

12,994,913, and thus could be deployed as feature extractors in various computer 

vision tasks. The last layers of the network are modified as per the requirement. 

Figure 3.6 depicts 169 layers’ architecture of DenseNet-169 with 4 dense blocks 

and 3 Transition Layers. 
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Fig. 3.6: DenseNet-169 architecture[122] 

 

3.3.2 Machine Learning Classifiers 

 

Following ML classifiers have been deployed in the proposed framework: 

 

(a.) k-Nearest Neighbour(kNN)[123]: This is a classification method that is 

widely used for disease prediction. One variable parameter in the algorithm 

is called k, and it represents the number of "nearest neighbours".  Data points 

closest to the query point are determined based on their closest distances. To 

determine which class appears the most, it locates the k nearest data points 
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and then uses a majority voting process. Because of its simplicity, the KNN 

algorithm is one of the most used machine learning algorithms for 

classification problems.   

 

(b.) Support Vector Machine (SVM)[124]: SVM establishes a decision 

boundary between two classes so that one or more feature vectors can be used 

to forecast labels. The hyperplane, which represents this decision boundary, 

is oriented to be as far away as feasible from the nearest data points for each 

class. Support vectors are the locations that are closest together. Regarding 

identifying minute patterns in complicated datasets, SVM is far more 

effective than other ML techniques. A function called the SVM kernel 

converts low-dimensional input space into higher-dimensional space. Thus, 

the kernel function could speed up some computations that would otherwise 

need high-dimensional space calculations. Different kernel functions could 

be utilized- Linear, Polynomial, Gaussian, and Sigmoid Kernels. 

 

(c.) Random Forest (RF)[125]:  This method employs ensemble learning i.e. it 

merges the outcomes of multiple classifiers and determines the average. 

Ensemble classification yields better results using many classifiers than 

individual classifiers alone. A voting procedure is then implemented to select 

the class tag for instances without labels. To ascertain the category name of 

an unlabelled instance, each ensemble tree functions as a base classifier. 

Majority voting is employed in which each classifier casts one vote. The 

instance is then categorized by selecting the class tag with the maximum vote 

count. 

 

(d.) Adaptive Boosting (Ada Boost)[126], [127]: This is an ensemble learning 

method, useful for a range of classification and regression applications. By 

merging various weak learners (such as decision trees) into a powerful 

learner, this supervised learning system can classify data. In Ada Boost, the 

training dataset's occurrences are weighted according to how accurately they 

were previously classified. This algorithm is adaptive because it adjusts 



56 
 

weaker learners thereafter to prioritize cases that earlier classifiers 

misclassified. Being sensitive to outliers, Ada Boost is not appropriate for 

noisy data. 

 

(e.) Extreme Gradient Boosting(XGB)[128], [129]: The approach of enhancing 

a particular weak model by integrating it with several other inadequate 

models to produce a final strong model is known as "gradient boosting". XG 

Boost is a flexible and extremely precise gradient-boosting model. XG Boost 

builds trees in parallel. It employs a level-by-level strategy for examining 

gradient values and then assessing the split quality at each potential split point 

in the training data. This algorithm applies regularization methods to lessen 

overfitting and enhance the generalization of the model. 

 

3.4 Proposed Transnet Framework 
 

 

 

We have presented a CAD framework, i.e., Transnet for diagnosing and classifying 

breast carcinoma using Deep Neural Networks. Transnet presents a dual approach for 

breast carcinoma diagnosis. It involves deep feature extraction using Deep 

Convolution Neural Network (DCNN) Models and then their classification using 

Machine learning classifiers and Neural Net classifiers respectively. Pre-processing 

and augmentation of the CBIS–DDSM dataset were performed to optimize the 

proposed strategy and to reduce overfitting. Several measures, including Accuracy, 

AUC, Precision, Recall, and Loss, are utilized and plotted on graphs to estimate the 

models’ efficiency.  

 

3.4.1 Pre-Processing 

 

An important factor affecting Deep Convolutional Neural Networks' performance is 

Pre-Processing. The steps followed for pre-processing and augmentation are 

discussed as follows[113] and shown in Figure 3.7. 
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(i)  Min-Max Normalize 

Normalization is scaling your data within a specified range. Prediction of Deep Neural 

Networks could be further enhanced through intensity normalization as it reduces data 

variability[130]. Thus, the intensity value of the pixels in the pictures is scaled down 

in the range (0,1). This process also reduces the unwanted noise in the image. 

(ii) CLAHE 

To boost the contrast of greyscale pictures, Contrast Limited Adaptive Histogram 

Equalization(CLAHE)  is applied. It works in two steps: firstly, enhancing the contrast 

of pictures and secondly, limiting the contrast within a range to prevent the image's 

noise from being amplified. This strengthens the network’s potential to acquire minute 

details, textures, and characteristics from the mammogram [131] 

(iii) Padding  

The process of adding more data to the image borders is known as padding. Thus, to 

change a convolutional layer's output size, padding is a commonly used technique in 

CNNs. Without padding, the output size will be smaller since convolutional filters 

won't process the input borders. Padding allows for the preservation of the input size; 

before the convolution, we add a border to allow for the processing of the original 

border[132]. The majority of computer vision tasks accept square images as input. In 

this step, images are padded into squares to feed them into the model. 

(iv) Centre-Crop 

This operation crops the core area of the image. This will allow the DCNN model to 

identify the irregularity with fine details. Every image in the dataset was scaled down 

to 299 X 299. 

 

3.4.2 Data Augmentation 

 

DNNs need substantial amounts of training information. Medical Images are not 

accessible in abundance, and thus problems such as overfitting might occur. 

Augmentation involves enlarging the dataset, i.e., the creation of supplementary data 

from the existing through several operations such as translation, rotation, scaling, etc. 
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[119]. In the proposed approach, we applied the following two operations on the 

dataset:  

(a.) Random Flipping 

The images are randomly flipped both horizontally and vertically. 

(b.) Random Rotation 

In this case, images are randomly rotated at different angles.  

 

After applying data augmentation, the dataset comprises 55,885 images which are 

then split into three ratios i.e., 80:10:10 for the training, validation, and test sets.  

 

 

Fig. 3.7: Pre-Processing Pipeline 

 

 

3.5 Model 1: Deep Feature Extraction with Machine Learning Classifier 

 

 3.5.1 Proposed Architecture 

 

This strategy employs the following DCNNs i.e. VGG-16, VGG-19, ResNet-50, and 

ResNet-152 as feature extractors. Extracted features are utilized for training the 

Machine Learning classifiers. This strategy deploys the following classifiers: KNN 
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with a K value of 8, SVM with RBF (Radial Basis Function) kernel, RF, Ada Boost, 

and XGB model. Figure 3.8 shows the proposed architecture for Model 1[113]. 

 

Fig. 3.8: Deep Feature Extraction with ML classifier  

 

3.5.2 Evaluation Metrics  

 

In this approach, Deep feature Extraction with ML classifier three performance 

measures have been evaluated: Accuracy, Precision, and Recall. Tables 3.1 to 3.3 show 

the corresponding evaluation metrics[113]. These results are analyzed in section 3.7. 

 

Table 3.1: Performance metrics on the Training dataset (Model 1) 

S No. 
DCNN 

Model 
Classifier Accuracy Precision 

Recall 

(Sensitivity) 

  

  

1 
  
  

  

  

VGG-16 
  
  

KNN 0.90 0.90 0.90 

SVM 0.94 0.94 0.94 

RF 1.00 1.00 1.00 

Ada Boost 0.90 0.88 0.89 

XGB 1.00 1.00 1.00 

  

  

2 
  
  

  

  

VGG-19 
  
  

KNN 0.89 0.9 0.89 

SVM 0.93 0.93 0.93 

RF 1.00 1.00 1.00 

Ada Boost 0.90 0.89 0.9 

XGB 1.00 1.00 1.00 

  

  

3 

  

  

ResNet-50 

KNN 0.91 0.9 0.91 

SVM 0.95 0.95 0.95 

RF 1.00 1.00 1.00 
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Ada Boost 0.91 0.9 0.91 

XGB 1.00 1.00 1.00 

  

  

4 
  
  

  

  

ResNet-

152 
  
  

KNN 0.91 0.9 0.91 

SVM 0.98 0.97 0.97 

RF 1.00 1.00 1.00 

Ada Boost 0.92 0.94 0.93 

XGB 0.98 0.98 0.98 

 

Table 3.2: Performance measures on the Validation dataset (Model 1) 

S No. 
DCNN 

Model 
Classifier Accuracy Precision 

Recall 

(Sensitivity) 

  

  

1 
  
  

  

  

VGG-16 
  
  

KNN 0.88 0.86 0.88 

SVM 0.91 0.91 0.91 

RF 0.89 0.88 0.89 

Ada Boost 0.89 0.87 0.89 

XGB 0.91 0.90 0.91 

  

  

2 
  
  

  

  

VGG-19 
  
  

KNN 0.88 0.87 0.88 

SVM 0.89 0.89 0.89 

RF 0.88 0.88 0.88 

Ada Boost 0.88 0.86 0.88 

XGB 0.90 0.89 0.90 

  

  

3 
  
  

  

  

ResNet-50 
  
  

KNN 0.89 0.87 0.89 

SVM 0.93 0.92 0.93 

RF 0.90 0.89 0.89 

Ada Boost 0.90 0.89 0.9 

XGB 0.92 0.92 0.91 

  

  

4 
  
  

  

  

ResNet-152 
  
  

KNN 0.88 0.86 0.88 

SVM 0.93 0.92 0.91 

RF 0.98 0.97 0.98 

Ada Boost 0.90 0.90 0.91 

XGB 0.95 0.94 0.94 
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Table 3.3: Evaluation Measures on the Test dataset (Model 1) 

SNo. 
DCNN 

Model 
Classifier Accuracy Precision 

Recall 

(Sensitivity) 

  

  

1 
  
  

  

  

VGG-16 
  
  

KNN 0.88 0.87 0.88 

SVM 0.91 0.90 0.91 

RF 0.89 0.88 0.89 

Ada Boost 0.88 0.87 0.88 

XGB 0.91 0.91 0.9 

  

  

2 
  
  

  

  

VGG-19 
  
  

KNN 0.88 0.86 0.88 

SVM 0.90 0.89 0.9 

RF 0.88 0.87 0.88 

Ada Boost 0.89 0.87 0.89 

XGB 0.90 0.89 0.9 

  

  

3 
  
  

  

  

ResNet-50 
  
  

KNN 0.88 0.86 0.88 

SVM 0.93 0.93 0.93 

RF 0.90 0.89 0.89 

Ada Boost 0.90 0.89 0.9 

XGB 0.92 0.92 0.92 

  

  

4 
  
  

  

  

ResNet-152 
  
  

KNN 0.88 0.86 0.88 

SVM 0.93 0.92 0.91 

RF 0.98 0.97 0.98 

Ada Boost 0.90 0.90 0.91 

XGB 0.95 0.94 0.94 

 

 

3.6 Model 2: Deep Feature Extraction with Neural Net Classifier 

 

3.6.1 Proposed Architecture 

 

In this approach, the DCNNs are deployed to extract features as well as for their further 

categorization. We utilized the following DCNNs: Mobile Net, VGG-16, VGG-19, 

Res-Net 50, Res-Net 152, and Dense-Net 169. The details of these DNNs are discussed 

in section 3.4. Figure 3.9 shows the design for the presented Model 2[113]. 
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Fig. 3.9: Deep Feature Extraction with Neural Net Classifier 

 

3.6.2 Evaluation Metrics  

 

This segment discusses the performance measure for Model 2 i.e. Deep feature 

Extraction with Neural Net classifier.  The following metrics have been assessed: 

Accuracy, AUC, Precision Recall, and Loss. Tables 3.4 to 3.7 show the corresponding 

measures on the Training, Validation, and Test dataset. These outcomes are analyzed 

in section 3.7. 

 

Table 3.4: Training Metrics(Model 2) 

S No. DCNN Model Accuracy AUC Precision Recall Loss 

1 Mobile Net 0.99 0.99 0.96 0.95 0.03 

2 ResNet-50 0.98 0.99 0.94 0.92 0.06 

3 VGG-16 0.94 0.96 0.92 0.91 0.14 

4 VGG-19 0.93 0.95 0.92 0.93 0.16 

5 DenseNet-169 0.97 0.99 0.94 0.92 0.07 

6 ResNet-152 0.96 0.98 0.92 0.90 0.08 
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Table 3.5: Validation Metrics(Model 2) 

S No. DCNN Model Accuracy AUC Precision Recall Loss 

1 Mobile Net 0.97 0.98 0.94 0.95 0.04 

2 ResNet-50 0.95 0.96 0.94 0.95 0.07 

3 VGG-16 0.92 0.93 0.90 0.91 0.08 

4 VGG-19 0.90 0.92 0.89 0.90 0.06 

5 DenseNet-169 0.92 0.94 0.92 0.91 0.06 

6 ResNet-152 0.93 0.93 0.93 0.92 0.08 

 

 

Table 3.6: Test Metrics(Model 2) 

S No. DCNN Model Accuracy AUC Precision Recall Loss 

1 Mobile Net 0.98 0.98 0.97 0.96 0.10 

2 ResNet-50 0.96 0.95 0.95 0.93 0.16 

3 VGG-16 0.92 0.95 0.91 0.92 0.17 

4 VGG-19 0.91 0.94 0.90 0.89 0.19 

5 DenseNet-169 0.93 0.95 0.93 0.91 0.17 

6 ResNet-152 0.92 0.95 0.94 0.92 0.23 

 

3.7 Experimental Evaluation & Performance Analysis 

 

Considering the two suggested models, this section examines the visualizations and 

analysis of the Transnet framework. While the analysis of both models is covered in 

Section 3.7.2, the plots are shown in Section 3.7.1.  
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3.7.1 Plots of DCNN concerning Model 1 and Model 2 

 

Figures 3.10 to 3.12 exhibit the visualizations of the Training, Validation, and Test 

dataset for Model 1(Deep Feature Extraction with ML Classifier). 

 

 

Fig. 3.10: Plots of DCNN models with various ML classifiers on the Training 

Dataset (Model 1) 
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Fig. 3.11: Plots of DCNN models with different ML classifiers on the Validation 

Dataset (Model 1) 

 

 

Fig. 3.12: Plots of DCNN models with several ML classifiers on the Testing 

Dataset(Model 1) 
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Figures 3.13 to 3.15 exhibits the Accuracy, AUC and Loss plots on the Training and 

Validation datasets for the proposed Model 2(Deep Feature Extraction with Neural Net 

Classifier). 

 

Fig. 3.13: Plots for Training and Validation Accuracies (Model 2) 

 

 

Fig. 3.14: Plots for Training and Validation AUC (Model 2) 
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Fig. 3.15: Plots for Training and Validation Loss (Model 2) 

 

3.7.2 Analysis: Model 1 and Model 2 

 

The implementation was completed on the NVIDIA Tesla GPU system with 32 GB 

RAM. The framework utilized early stopping criteria and was initially trained for 20 

epochs, which was set to minimize the validation loss with an interval of 5 epochs. 

The best weights during the training were restored at the end. The model underwent 

its initial training with a learning rate and batch size of .01 & 64, but the results were 

unsatisfactory.  Thus, some hyper-parameters were optimized, and finally, the learning 

rate of .0001 and batch size of 128 were adopted. Both approaches utilize DNNs such 

as VGG-16, VGG-19, ResNet-50, ResNet-152, DenseNet-169, and Mobile Net v2. In 

the second approach (NN classifier), fine-tuning was performed for each model 

whereas in the first approach (ML Classifier), no fine-tuning was performed, and the 

raw outputs without any activation functions were captured as the features.  

We compare the two proposed methods by evaluating the dataset on an 80:10:10 

stratified split ratio for training, validation, and testing. 5 fold stratified cross-

validation was executed and the mean of all observations across the folds was taken. 

The first approach, i.e., Deep Learning feature extraction with ML classifier uses pre-

trained models with ImageNet weights. No training or fine-tuning was performed on 

these models, and the raw outputs without any activation functions were captured as 

the attributes. The derived attributes were supplied to the ML classifiers for binary 
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categorization. The ML classifiers varied from simplistic models like k-Nearest-

Neighbour to sophisticated gradient-boosting models like XG-Boost. As evident 

from Table 3.1, during the training phase, Random Forest and XG-Boost exhibited 

100% accuracy, precision, and recall rate on all pre-trained models, whereas simpler 

models like KNN could achieve an average of 90% (+- 2%) accuracy, precision and 

recall with a margin of 10% lower than other ML Classifiers. Support Vector Machine 

Classifier achieved intermediate results of 95% (+- 2%) accuracy, precision, and recall 

rate. These results closely matched the testing data, as demonstrated by Table 3.3. 

Thus, it was concluded that the deeper pre-trained networks like ResNet-152 

outperform shallower models like ResNet-50, VGG-19, and VGG-16 by a margin of 

6% increase in accuracy, precision, and recall rates. Additionally, Random Forest and 

SVM outperformed the other models by a margin of 5% in all observable metrics. This 

approach is less computationally complex as the pre-trained networks were not 

retrained.  

The second approach, i.e., Deep Learning feature extraction with Neural Network 

Classifier, uses these models to execute feature extraction and classification. As a 

result, the computational complexity increased several fold. Dedicated GPU rigs were 

required to fine-tune the models. For the training phase, Mobile Net, ResNet-50, and 

DenseNet-169 performed better than older models like VGG-16 and VGG-19. The 

same metrics were observed during the test phase as well. The other models, however, 

closely matched the best-performing models. Their less complex nature may also be 

preferred during the deployment phase for faster predictions and lower memory 

footprint. Comparing the second approach against the first one, DCNN with Neural 

Net Classifier highlighted a 4% increase in performance by the classical machine 

learning models when paired with deep feature extraction techniques. This is because 

in this approach DCNNs were utilized for feature extraction and classification 

compared to ML classifiers in the first approach. In the first approach, no fine-tuning 

was performed whereas this approach fine-tuned the pertained networks as per the 

requirement of the target domain and thus increased the model’s efficiency with high 

accuracy values. Hyper-parameter optimization was also performed which further 

contributes to enhancement in accuracy in the second approach. 

 



69 
 

3.8 Comparison of the Developed Model with Revolutionary Approaches 

 

In this section, the proposed CAD model i.e. Transnet is compared with other reference 

techniques in the domain. The articles were compared from 2018 to 2023. As observed 

from Table 3.7, the Transnet model outperforms other cutting-edge techniques for 

Breast Carcinoma Classification. 

 

Table 3.7: Comparative Analysis of Transnet Framework with Recent Approaches 

for Breast Carcinoma Diagnosis  

Year Reference 
Imaging 

Modality 

Feature 

extraction/ 

DNN Model 

Adopted 

Dataset Accuracy  AUC 

2018 [133] Mammography CNN MIAS 85.85 -- 

2018 

 
[84] 

Histopathology 

Images 

CNN, LSTM 

Classification: 

SVM, Softmax 

 

Break-

His 

 

 

91.00 

 

2018 [134] Mammography 

Generative 

Adversarial 

Network 

(GAN) +Res-

Net 

DDSM -- 0.89 

2019 [135] Mammography 

DCNN: Alex 

Net 

Classification: 

SVM 

CBIS-

DDSM 
87.2 0.94 

2019 [136] Mammography 

Deep feature 

fusion of 

VGG-16, 

VGG-19, 

Google Net, 

and Res Net 50 

CBIS-

DDSM 
96.6 0.93 

2020 [137] Mammography 

Google Net 

Classification: 

XG Boost 

DDSM 92.8 -- 
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2020 [138] Mammography 

Feature fusion 

of several  

Models 

Classification: 

SVM, XG- 

Boost, Naïve  

Bayes, KNN, 

DT,  

Ada Boosting 

CBIS-

DDSM 
90.91 -- 

2021 [38] Mammography 

Deep feature 

fusion of Alex 

Net, Google 

Net, ResNet- 

18, ResNet -

50, ResNet101 

 

Classification: 

SVM 

MIAS 97.4 1.00 

2021 [139] Histopathology 

VGG-19, 

ResNet-34, 

ResNet-50 

along with 

Structural 

Pruning 

Break-

His 

92.07: 

ResNet-50 
-- 

2022 [140] Mammography 

ResNet-50, 

NasNet-

Mobile 

Network 

MIAS 

89.5: 

ResNet-50 

& NasNet 

-- 

2022 [141] Mammography 

CoroNet 

(Based on the 

Xception Net 

Model) 

CBIS-

DDSM 

94.92  

(4-class) 

88.67 

(2-class) 

 

2022 [142] 
Histopathology 

Images 

VGG-16, 

VGG-19, 

Inception-

ReNetv2, 

DenseNet-

121, and 

 DenseNet-

201 

Private 

Dataset 

92.64: 

DenseNet-

121 

-- 

2023 [143] Mammography 

ResNet-50 

Classification: 

KNN, RF, 

SVM 

Private 

Dataset 

85:          

KNN 
0.89 

2023 [144] Histopathology 

K-Means for 

Segmentation 

and ResNet-18 

for feature 

extraction, 

SVM for 

classification 

 

Break 

His 
92.6 -- 
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3.9 Chapter Summary  

 

The Chapter presents Transnet framework for diagnosing and classifying breast 

carcinoma on the CBIS-DDSM dataset. VGG-16, VGG-19, Mobile Net, ResNet-50, 

ResNet-152, and DenseNet-169 pre-trained networks were utilized during training. 

Two experiments were performed: In the first approach, namely Deep feature fusion 

with ML Classifier, pre-trained networks are deployed as feature extractors, and 

afterwards the derived attributes are provided to ML classifiers for categorization. The 

second approach, called Deep feature fusion with Neural Net classifiers, fine-tune 

these networks for feature extraction and categorization. The chapter concludes with a 

comparative analysis of the presented approach with cutting-edge techniques. The 

findings reveal that the stated system performs superior to other cutting-edge 

2023 [145] Histopathology 
3D U Net 

Model 

Private 

Dataset 
97 -- 

2023 

Proposed 

CAD 

Model 

TransNet 

Mammography 

First 

Approach: 

VGG-16, 

VGG-19, Res  

Net50, Res  

Net 152 

 

ML 

Classifiers: 

KNN, SVM, 

Random 

Forest, Ada  

Boost, XGB 

CBIS-

DDSM 

Best 

Result: 
Train Set:  

100 

(Random 

Forest &  

XGB) 

Test Set:  

98 

(ResNet-

152  with 

Random 

Forest 

Classifier) 

 -- 

Second 

Approach: 

Mobile-Net, 

VGG-16, 

VGG-19, Res  

Net-50, Res 

Net-152, 

DenseNet-

169. 

 

The same  

Models were 

used for the 

Classification 

CBIS-

DDSM 

Best 

Result:   

Train Set: 

99 

Test Set: 

98    

(Mobile 

Net) 

Best 

Result:   
Train & 

Test Set: 

0.99 &  

0.98 

(Mobile 

Net) 
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approaches. In the future, this framework could be developed on other imaging 

modalities. 
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CHAPTER 4 
 

 

A MULTI-STAGE TRANSFER LEARNING PARADIGM FOR 

BREAST CARCINOMA DIAGNOSIS 

 

 

4.1 Overview 

 

DCNNs are among the optimal learning algorithms for analyzing pictures and have 

demonstrated outstanding performance in diagnosis. As discussed in Chapter 2, 

DCNN could be trained either from the beginning or by a transfer learning approach. 

DCNNs trained from scratch don’t utilize any pre-trained architecture and consume 

many resources during training. They require high computing GPUs in the training 

stages. The transfer learning approach is employed when the training data from the 

target destination is significantly less; thus, the expertise acquired from the original 

discipline is transferred to the target discipline. The Fine-Tuning strategy is adopted, 

and therefore the network is fine-tuned layer-wise. Fine-tuning involves adapting the 

last layers of the network as per requirements. This chapter proposes the Multi Stage 

Transfer Learning Approach(MSTLA) for diagnosing and categorizing breast 

malignancy. DenseNet-169 and ResNet-152 are utilized with a three-stage transfer 

learning strategy. The results show that both DenseNet-169 and ResNet-152 have 

outstanding performance in the third stage of transfer learning. 
 

4.2 Dataset Utilized 

 

In this approach, we have utilized three mammogram datasets - MIAS, In-Breast, and 

DDSM. The detailed description of the mammogram scanners and machines used 

could be referred to in[42], [46], [112]. A brief overview of these datasets is discussed 

below: 
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(i) CBIS-DDSM[112]: It is the largest dataset for mammograms, comprises of 

2620 cases with 10,480 images. It contains both CC and MLO views of 

mammograms. The patient’s age, family history, and Breast Imaging 

Reporting and Database System (BI-RADS) score are also incorporated in the 

dataset directory. 

 

(ii) In-Breast[46]: In-Breast is another popular dataset of mammograms. It 

comprises 115 cases with 410 images. Data related to the patient’s age, family 

history, and the BI-RADS score is provided in the dataset.  

 

(iii) MIAS[42]: Mammography Image Analysis Society(MIAS) is another dataset 

for mammograms. It comprises 161 cases having 322 mammogram images 

with a Medio lateral Oblique (MLO) view. The instances are classified into 

normal, benign, and malignant.  

 

4.3 Deep Neural Networks (DNNs) 

 

In the proposed MSTLA framework two DNNs i.e. DenseNet-169 and ResNet-152, 

are fine-tuned. The detailed architecture of both networks is discussed in Chapter 3. 

An overview of both networks are discussed below: 

 

(a.) DenseNet[121]: Dense Nets are densely connected convolution neural 

networks. Dense Net joins the outcome of the former layer with the 

succeeding layer. It was designed to enhance the loss in accuracy produced 

by the vanishing gradient in deep neural networks. It also reduces feature 

count and permits feature reuse. The proposed work fine-tunes the Dense -

Net-169 model with 169 layers of depth. To obtain the optimized results, the 

model has been fine-tuned layer-wise in three stages which is further 

elaborated in Section 4.4.2.  

 

(b.) ResNet[116]: Res-Net, also called Residual Network proposed the notion of 

Residual Blocks to overcome the issues caused by vanishing gradients. These 
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networks use a strategy called Skip Connection that allows layers to connect 

and skips some layers in between. ResNet-152 architecture with 152 layers 

of depth has been utilized in the work and has been fine-tuned layer-wise 

separately in three stages. Epochs defined at the first stage were carried 

forward to the consecutive stages. Section 4.4.2 elucidates the proposed 

architecture with further details of the proposed stage-wise fine-tuning.   

 

4.4 Formulated Model for Multistage Transfer Learning 

 

4.4.1 Pre-Processing & Data Augmentation 

 

Pre-processing of images is a process of cleaning and enhancing the images to convert 

them into the form fed to a DNN. The steps we have followed to pre-process the 

datasets include Min-Max Normalization, CLAHE (Contrast Limited Adaptive 

Histogram Equalization), and Padding. These steps are discussed in detail in Chapter 

3. 

During the training stage, DCNN requires a substantial volume of data. Insufficient 

training data may result in issues like overfitting, where the network works effectively 

with training data but performance worsens on testing data. The images in medical 

datasets are not available in abundance. The technique of "data augmentation" involves 

increasing the dataset's size. Thus, a series of operations, including Image Rotation 

and flipping, are performed to enhance the dataset size. Following data augmentation 

on the three datasets, the MIAS dataset contains 3,816 images (Benign-2376 & 

Malignant-1440), the In-Breast dataset has 7,632 images (Benign-2520 &Malignant-

5112) and the CBIS-DDSM dataset encompasses 13,128 images (Benign-5970 & 

Malignant-7158). 

A brief description of Pre-Processing and Augmentation is depicted in Figure 4.1. 
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4.4.2 Proposed Architecture 

 

In this chapter, we are utilizing the concept of MSTLA wherein multiple stages are 

used for training the model through a transfer learning approach[146]. The steps taken 

in the procedure are listed below: 

 

(i) Stage 1: Training on the MIAS dataset 

This is the first step in MSTLA. In Stage 1, pre-processed mammograms 

from the MIAS dataset were trained on DenseNet-169 and ResNet-152 

models. Initial layers were kept frozen, and the first fine-tuning was applied 

at the 100th layer. 

 

(ii)  Stage 2: Training on In-Breast dataset 

In this stage, the resultant DCNN obtained from stage 1 is further trained 

on the pre-processed images from the In-Breast dataset. Fine Tuning was 

performed at the 350th layer, and the subsequent DCNN obtained is 

forwarded to the next stage. 

   

(iii) Stage 3: Training on the DDSM dataset 

This is the last stage, here we utilized pre-processed images from the CBIS-

DDSM dataset for the training of DCNN obtained from Stage 2. The last 

fine-tuning was applied at the 450th layer. The results obtained from each 

stage were evaluated and compared.  

 

The architectural diagram for the stated framework is illustrated in Figure 4.1. 
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Fig. 4.1: Proposed MSTLA Methodology 

 

4.4.3 Evaluation Metrics 

 

The stated framework has been assessed with the following metrics: Accuracy, AUC, 

Precision, Recall, and Loss. Cross Entropy Loss i.e. Log Loss has been examined here 

(Discussed in Chapter 2).  Tables 4.1 and 4.2 show the corresponding Results on 

Training and Validation datasets[146]. 
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Table 4.1: Training Set Evaluation Metrics 

 

Training 

Set 
Models Accuracy AUC Precision Recall Loss 

Stage 1 

DenseNet-169 0.98 0.99 0.98 0.98 0.12 

ResNet-152 0.95 0.98 0.95 0.95 0.23 

Stage 2 

DenseNet-169 0.99 0.99 0.99 0.99 0.08 

ResNet-152 0.97 0.99 0.97 0.97 0.11 

Stage 3 

DenseNet-169 0.99 0.99 0.99 0.99 0.002 

ResNet-152 0.99 0.99 0.99 0.99 0.005 

 

 

 

Table 4.2: Validation Set Evaluation Metrics  

 

Validation 

Set 
Models Accuracy AUC Precision Recall Loss 

Stage 1 

DenseNet-169 0.65 0.73 0.65 0.65 0.32 

ResNet-152 0.63 0.67 0.63 0.63 0.45 

Stage 2 

DenseNet-169 0.77 0.79 0.77 0.77 0.20 

ResNet-152 0.70 0.74 0.70 0.70 0.33 

Stage 3 

 

DenseNet-169 

 

1.00 1.00 1.00 1.00 0.00008 
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ResNet-152 0.99 0.99 0.99 0.99 0.01 

 

4.5 Experimental Evaluation & Performance Analysis 

 

This section examines the implementation details, visualizations, and analysis of the 

MSTLA framework. The charts are depicted in Section 4.5.1 and the implementation 

details along with the results analysis are discussed in Section 4.5.2.  

 

4.5.1 Visualizations 

 

This section explores the Accuracy, AUC, and Loss Plots on the Training and 

Validation Data Sets. The visualizations are shown stage-wise. We can observe from 

Figures 4.2 and 4.3, the Loss plots are not visible for Stage 3 as this stage depicts 

minimum loss. 

  

 

Fig. 4.2: Accuracy, AUC, and Loss Plots on Training Data Set 
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Fig. 4.3: Accuracy, AUC, and Loss Plots on Validation Data Set 

 

4.5.2 Performance Analysis 

 

We have designed a framework with a three-stage transfer learning approach and 

utilized three datasets- MIAS, In-Breast, and DDSM. Two popular DCNNs, i.e., 

DenseNet-169 and ResNet-152, were employed during training. The experiments were 

performed on the NVIDIA Tesla system with 32 GB RAM GPU.  The epochs were 

defined at each stage, and the epochs from the previous stage were carried further in 

the next stage. Stage 1 began the training with ten epochs, followed by Stage 2 with 

25 epochs, and subsequently followed by Stage 3 with 25 epochs. The early stopping 

criteria were initialized for each stage to optimize the validation loss with a patient 

interval of 5 epochs. Adam optimizer was utilized during the network’s training with 

a learning rate and batch size of .0001 and 32, respectively. 

Tables 4.1 & 4.2 show the performance metrics obtained after applying the stated 

approach on DenseNet-169 and ResNet-152. Both the networks performed 

exceptionally well in the proposed method and have shown remarkable performance 

for breast carcinoma diagnosis. During the training phase, DenseNet-169 and ResNet-

152 performed very well with accuracy and an AUC value of 97% +-2 and 0.97+-0.2 

in all three stages. The loss was a little high in Stage 1, started declining from Stage 1, 

and was minimal in the third stage, as apparent from Table 4.1.  
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During the validation phase, when the network was first trained with MIAS 

mammograms with fine-tuning at the specified layer, the accuracy and other 

parameters were relatively low. Table 4.2 shows that during Stage 1, the values of all 

the parameters were in the range of 0.65+- 0.2, and the loss was high. When the 

optimized DNN was further fine-tuned with the In-Breast data set during Stage 2, the 

values improved, and Stage 2 exhibited values in the range of 0.77 +-0.3. The loss 

started declining, but the decline was low. The last stage, i.e., Stage 3, fine-tuned the 

model further, and as a result, the model showed remarkable performance at this stage. 

DenseNet-169 has shown 100% accuracy and AUC with a minimum loss of 0.08e-3, 

whereas ResNet-152 exhibited 99.6% accuracy and AUC with a loss of .01.  

 

4.6 Comparative Analysis of Developed Framework with Cutting-Edge 

Techniques  

 

Table 4.3 compares the presented approach with other contemporary strategies 

employing the transfer learning technique. As evident from Table 4.3, the proposed 

model has shown remarkable performance for breast cancer diagnosis and outperforms 

the other cutting-edge technologies in the domain. 

 

Table 4.3: Comparative Evaluation of MSTLA Framework with Cutting-Edge 

Techniques 

 

Reference 

 

Image Dataset 

 

Approach 

 

Model 

 

Accuracy 

 

AUC 

[102] 

Mammograms 

and Digital 

Breast 

Tomosynthesis 

Images 

(Private 

Dataset) 

Transfer 

learning 

(Two- 

Stage) 

Deep 

CNN 

Not 

Evaluated 
0.91 

[62] 
Mammograms     

(DDSM ) 

Transfer 

learning 

(One-Stage) 

ROI-

based 

CNN-You 

Look 

Only 

Once(YO

LO) 

97.0 0.96 
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[135] 
Mammography 

(DDSM) 

Transfer 

learning 

(One-Stage) 

Alex Net 87.2 0.94 

Proposed 

Approach 

Mammogram

(MIAS, IN-

BREAST, 

DDSM) 

Multi-Stage 

Transfer 

Learning    

(Three 

Stage 

Approach) 

Dense 

Net-169 

and  Res 

Net-152 

Dense 

Net-169:  

100  

                        

Res      

Net-152: 

   99.6 

Dense 

Net-169: 

1.00  

                  

Res  

Net- 

152: 

0.99 
 

 

 

4.7 Chapter Summary 

 

In this chapter, we have designed a model for diagnosing breast carcinoma using a 

Multi-Stage Transfer Learning Approach (MSTLA). We have used three datasets: 

MIAS, In-Breast, and DDSM. The model is fine-tuned in three stages on separate 

datasets, and the optimized DCNN is carried forward at the next stage. Two DCNNs 

are deployed for training the model – DenseNet-169 and ResNet-152. The results have 

shown that, in the training phase, both the DCNNs performed exceptionally well in all 

three stages; however, the results were quite different in the case of the validation 

dataset. In the validation phase, Stage 3 performs best compared to the other two 

stages, with DenseNet-169 having accuracy and AUC values of 100 and 1.0. On the 

other hand, ResNet-152 exhibits accuracy and AUC of 99% and 0.99. The results have 

shown that the proposed methodology could be employed for early-stage breast 

carcinoma diagnosis. In the future, the proposed methodology could be expanded to 

other modalities.  
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CHAPTER 5 
 

 

GENERALIZATION ERROR IN DEEP CONVOLUTIONAL 

NEURAL NETWORKS 

 

5.1 Overview 

 

Deep learning has introduced various paradigms in the healthcare industry. Deep 

Convolutional Neural Networks assist doctors in diagnosis, surgery, and other areas. 

Thus, it is necessary to diagnose it so that the mortality count can be decreased. 

Generalizability defines the effectiveness of the network on the unseen data. When 

capturing mammograms different types of noise get added to the images. Noise may 

significantly diminish classification ability and make class separation more difficult.  

Thus, analyzing the model’s generalization on noisy or unseen data is very crucial. This 

chapter proposes an approach for analyzing generalization errors in Deep Convolutional 

Neural Networks by inducting noises such as Gaussian, Salt and pepper, and Speckle. 

We have utilized the CBIS-DDSM dataset. Three prominent deep neural network 

models- Inception v3, DenseNet-201, and EfficientNet-B4- were fine-tuned to assess 

the model’s efficiency on noisy data and thus Generalization error was evaluated.  

 

5.2 Data Set Employed 

 

We have utilized the CBIS-DDSM dataset[112]. This consists of 2620 instances with 

10,480 images and is one of the largest databases for mammography. Several 

augmentation approaches, such as rotations, flipping etc. are utilized to avoid overfitting 

and to increase dataset size[140]. After implementing these techniques, our dataset size 

increased to 13,128 images.  
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5.3 Deep Convolutional Neural Networks  

 

The following DCNNs have been utilized to evaluate the generalization capability and 

thus evaluate Generalization error: 

 

(i) Inception v3[147]: Inception Networks reduces the overall computational cost 

that was incurred in traditional networks by introducing the concept of 

networks within networks. It comprises inception blocks with varying levels of 

convolutional filters. 1x1 convolution layer reduces the input data dimensions 

and assists in recognizing the depth details of the network across all of the 

image's channels. Convolutions of 3 x 3 and 5 x 5 dimensions are used to learn 

spatial characteristics at various scales. Several variations in Inception modules 

were proposed that include: Inception v1, Inception v2, and Inception v3. In 

this work, we have utilized Inception v3 architecture. Figures 5.1, 5.2, and 5.3 

visualize the layered diagram of Inception v3. 

 

Fig. 5.1: Inception v3 Architecture[147], [148] 
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Fig. 5.2: Inception v3 Elements: (a.) Inception A (b.) Inception B (c.) Inception 

C[147], [148] 
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Fig. 5.3 Inception v3 Sections: (a.) Reduction A (b.) Reduction B[147], [148] 

 

(ii) DenseNet-201[121]: Densely Populated Convolutional Networks have dense 

connectivity patterns and thus ensure maximum information flow. These 

networks connect each layer to all the succeeding layers and overcome the 

challenge of vanishing gradients in traditional networks. Dense Net reduces 

feature count and allows feature reuse. Feature maps learned from several 

layers are concatenated and thus efficiency could be improved. These networks 

come with varying levels of depths- DenseNet-121, DenseNet-161, DenseNet- 

169, DenseNet-201, etc. This work explores the DenseNet-201 model. The 

architecture of DenseNet-201 with 201 layers’ depth is shown in Figure 5.4. 
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Fig. 5.4: DenseNet-201 Architecture[121] 

 

(iii)EfficientNet-B4[149]: Convolutional Neural Networks are scaled up in 

various dimensions to achieve better accuracy and efficiency. The Efficient Net 

model utilizes the compound scaling method with fixed scaling coefficients for 

depth, width, and resolution. Mobile inverted bottleneck convolution (MB 

Conv) with squeeze and excitation optimisation is the fundamental building 

component of the Efficient Net architecture[150]. By varying several 

parameters, different versions of the model are obtained: EfficientNet- B0, 

EfficientNet-B1, EfficientNet-B2, EfficientNet-B3, EfficientNet-B4, Efficient 
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Net-B5, EfficientNet-B6, EfficientNet-B7. These scaled models efficiently 

reduce parameter count and Floating Point Operations per second (FLOPS). 

The efficient Net B4 version is exploited to assess the generalization error 

(Figure 5.5). 

 

 

Fig. 5.5: EfficientNet-B4 Architecture[149]–[151]: (a) Layered Diagram (b.) 

Building Block: MB Conv  
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5.4 Formulated Model for Generalization Error Estimation 

 

This section explores the basics of generalizability and generalization error in deep 

convolutional neural networks.  

 

5.4.1 Introduction 

 

Significant research has been performed on diagnosing breast carcinoma using machine 

learning and deep learning strategies [38], [113], [144]–[146]. These studies have 

proposed several methodologies for early diagnosis of Breast Carcinoma and have 

attained pretty good accuracies. Very little research in the survey emphasizes on the 

generalizability of DNNs. The inability of DNNs to generalize across domains is a 

significant barrier to their use in improving medical scenarios [106]. 

Due to their large learning capacity, Deep Convolutional Neural Networks(DCNN) can 

memorize the training data. Generalization is an approach to analyze how the model 

behaves on unseen data. Generalization Error(GE) measures the difference between 

training and testing errors. Leading causes of GE include memorization of training data, 

overfitting, a model with too many parameters, etc. When Deep Neural Networks are 

trained on medical imaging datasets, it is essential to analyze the effect of generalization 

error on transfer learning networks[105]. The performance of any model depends upon 

the generalization ability. Regularization approaches for example data augmentation, 

and dropout reduce the model complexity and thus improve the generalization capability 

of DNN by preventing overfitting and thus leading to low GE.  

Further, the robustness of any DNN can also be examined through various   Adversarial 

Attacks. Adversarial attacks represent any perturbations being added to the dataset to 

befool a deep learning model. In contrast to non-medical DL models, medical DL 

networks are more susceptible to adversarial attacks [152]. Thus, there is an urgent need 

to study and analyze the impact of these attacks on our models. 

This chapter presents a novel technique to assess the Generalization error through 

various Noise samples. The noise affecting Mammogram images includes Gaussian, 

Salt & Pepper, and Speckle. We have analyzed and plotted the model behaviour 



91 
 

concerning the various perturbations added to the dataset to analyze the generalization 

capability of the DCNN. 

 

5.4.2 Noise Categorization 

 

Noise represents undesired information in digital images. During mammogram 

acquisition, a small perturbation can corrupt the entire image, and thus it’s very crucial 

to examine the impact of noise to study the generalizability of models. The following 

categories of noise could be embedded in mammograms: 

 

(i) Gaussian Noise  

This is also referred to as Additive/Amplifier noise. It is additive in nature and corrupts 

the grey values in the images[153]. It utilizes standard Gaussian distribution and is given 

as:  

 

𝑃𝐷(𝑧) =
1

√2𝜋𝜎
𝑒

−(𝑧−𝑢)2

2𝜎2        (5.1) 

 

Here, PD(z)= Probability Density Function for Gaussian Noise ; z=Grey Level; u=Mean 

of the average of z ; 𝜎=Standard deviation;  𝜎2=Variance 

 

(ii) Salt and Pepper Noise  

This is referred to as Impulse noise and it worsens the overall quality of the image. The 

image shows it as a series of black and white dots. i.e. we see dark dots in bright areas 

and bright dots in dark places[153]. The probability density function is given as:   

 

𝑃𝐷(𝑧) = {
𝑃ₘ    𝑓𝑜𝑟 𝑧 = 𝑚

   𝑃ₙ      𝑓𝑜𝑟 𝑧 = 𝑛    
   0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

        (5.2) 

 

Here, PD(z)= Probability Density function for Impulse Noise; z= Pixel Value; m, n = 

grey level values;  

if n>m= level m will appear as a darker spot and  
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if n<m= level m will appear as a lighter spot 

if 𝑃ₘ= 𝑃ₙ=0, it is called Unipolar noise 

 

(iii) Speckle Noise  

Speckle noise comes under the category of multiplicative noise. This is also called 

granular noise. It diminishes the fine details and edge sharpness, leading to deterioration 

in image quality in a way similar to Gaussian noise. Speckle noise might have an impact 

on the segmentation and classification processes in the biomedical processing of 

images[154]. Speckle Noise can be represented as: 

Inoisy(m, n) = Ioriginal (m, n)  ∗  Nspeckle(m, n)  (5.3) 

 

 Nspeckle(m, n) = 1 + ƞ(m, n)      (5.4) 

In the above equations, (𝑚, 𝑛) represents a particular pixel; 𝐼𝑛𝑜𝑖𝑠𝑦(𝑚, 𝑛) represents the 

intensity of the noisy image;  𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (𝑚, 𝑛) represents the intensity of the  original 

image; 𝑁𝑠𝑝𝑒𝑐𝑘𝑙𝑒(𝑚, 𝑛) represents speckle noise; ƞ(𝑚, 𝑛) represents  Gaussian noise 

with zero mean and  variance σ2 

 

5.4.3 Proposed Architecture 

 

The framework to estimate generalization error in DCNNs is divided into the following 

two phases[104]:  

 

(i) In Phase 1, we fine-tune tune the following DCNNs i.e. Inceptionv3, DenseNet- 

201, and EfficientNet-B4 on the CBIS-DDSM dataset. The metrics are evaluated 

on the trained and validated model.  

(ii) In Phase 2, we analyze the generalizability of DCNNs by corrupting the dataset 

through the insertion of three types of noises. At the next step, we again fine-

tune the following DCNNs i.e. Inceptionv3, DenseNet-201, and EfficientNet- 

B4 on the corrupted dataset. The results are computed on the corrupted dataset.  
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Generalization error is thus computed by calculating the difference in loss rates on the 

corrupted and validation datasets. The proposed structure to estimate generalization 

error is shown in Figure 5.2. 

 

Fig. 5.6: Proposed Architecture for Generalization Error Evaluation 

 

5.4.4 Evaluation Metrics  
 

In this work we have evaluated following metrics: Accuracy, AUC, Precision, Recall 

and Loss on the validation and Corrupted dataset. The loss rates of corrupted and 
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validated dataset are compared and thus generalization error is evaluated. Tables 5.1 

and 5.2 depict these metrics and Table 5.3 shows the computed Generalization error 

for the three DCNNs. 

 
 

Table 5.1: Performance Measures on the Validation Dataset 

S No. DCNNs Accuracy AUC Precision Recall Loss 

1 Inception v3 0.98 0.99 0.98 0.98 0.07 

2 DenseNet-201 0.99 1.00 0.99 0.99 0.005 

3 
EfficientNet- 

B4 
0.93 0.96 0.93 0.93 0.37 

 
 

 

Table 5.2: Performance Measures on the Corrupted Dataset 

S 

No. 
DCNNs Noise Accuracy AUC Precision Recall Loss 

1 
Inception

v3 

Gaussian 0.97 0.99 0.97 0.97 0.09 

Salt & 

Pepper 
0.99 0.99 0.99 0.99 0.002 

Speckle 0.54 0.64 0.54 0.54 1.95 

2 
DenseNet

-201 

Gaussian 0.99 0.99 0.99 0.99 0.0007 

Salt & 

Pepper 
0.99 0.99 0.99 0.99 0.004 

Speckle 0.83 0.91 0.83 0.83 0.39 

3 
Efficient

Net-B4 

Gaussian 0.77 0.85 0.77 0.77 1.02 

Salt & 

Pepper 
1.00 1.00 1.00 1.00 0.0002 
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Speckle 0.54 0.56 0.54 0.54 1.75 

 
 

 

Table 5.3: Generalization Error 

    S No. DCNN 

 

A: Average 

Loss 

(Corrupted 

Dataset) 

 

B: Average 

Loss 

(Validation 

Dataset) 

Generalization 

Error(A-B) 

1 Inception v3 0.68 0.07 0.61 

2 
DenseNet- 

201 
0.13 0.005 0.12 

3 
Efficient  

Net-B4 
0.92 0.37 0.55 

 

5.5 Experimental Evaluation & Performance Analysis 

 

This section highlights the visualizations of the observed results and also discusses the 

analysis of the proposed architecture. 

5.5.1 Visualizations 

 

Figures 5.7 and 5.8 depict the results of DCNNs on the validation and corrupted 

datasets. The generalization Error plot is visualized in Figure 5.9. 
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Fig. 5.7:  Plots on Validation Data Set 

 

 

 

 
Fig. 5.8:  Plots on Corrupted Dataset 
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Fig. 5.9: Generalization Error 

 

5.5.2 Analysis 

 

This chapter proposed a framework for the estimation of Generation Error (GE) 

through noise induction on the CBIS-DDSM dataset. The Google Colaboratory 

functioned as the platform for the research findings. The dataset was spilt into training 

and validation in the proportion of 80:20. The model was trained in small batches of 

size 32 with Adam Optimizer. A learning rate of .0001 was adopted. Hidden layers of 

the model were trained with the ReLU activation whereas Softmax activation was 

applied in the final layer. Performance measures used for assessing the model’s 

performance could be referred to in [13]. Tables 5.1, 5.2, and 5.3 show the outcomes 

of the proposed approach.  

DenseNet-201 has shown superior performance with 99% accuracy on the Validation 

Dataset (Table 5.1). Validation Loss was also minimum for the DenseNet-201 model 

with a value of 0.005. On the other hand, Inception v3 and EfficientNet-B4 exhibit 

accuracies of 98% and 93% respectively with slightly high losses.  

When the performance was evaluated on the Corrupted dataset, the outcomes are 

outlined in Table 5.2 and illustrated in Figure 5.2. The highest resistance to the 

Gaussian noise is shown by the DenseNet-201 model with a loss value of 0.0007.  
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EfficientNet-B4 has shown the highest tolerance to the Salt and pepper noise with a 

minimum loss of 0.0002. The distortion caused by Speckle noise is highest in 

Inceptionv3 and EfficientNet-B4 leading to lower accuracy and higher loss. Due to 

this deterioration, there is a significant decline in accuracy. Figures 5.7, 5.8, and 5.9 

visualize performance measures graphically.  

We calculated GE by estimating the difference in loss values on the Corrupted and 

Validation datasets (Table 5.3). DenseNet-201 exhibited a minimum GE of 0.12, on 

the other hand, Inception v3 and Efficient Net B4 have shown very high GE i.e. 0.61 

and 0.55 respectively (Figure 5.5). From Table 5.2, we concluded that the 

generalizability shown by each DCNN on noisy data is different and it varies based on 

the category of noise being added to the dataset. The highest generalizability on the 

noisy data was depicted by DenseNet-201 with the least generalization error.  

 

5.6 Chapter Summary 

 

This chapter presents a design for assessing the generalizability of DCNNs. Gaussian, 

Salt and pepper, and Speckle noise were added to the CBIS-DDSM dataset. 

Generalizability was evaluated for three DCNNs - Inception Net v3, DenseNet-201, 

and EfficientNet-B4. The results were evaluated on the corrupted and validation data 

sets and then compared to evaluate the generalization error.  Various performance 

measures were plotted to visualize the model’s efficiency. The maximum distortion in 

the mammograms were caused by Speckle Noise with very high loss rates leading to 

low generalizability. Thus, it could be concluded that the proposed framework with 

DenseNet-201 has minimum generalization error and thus exhibits high 

generalizability on the noisy data.  
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CHAPTER 6 

 

CONCLUSION, FUTURE PROSPECTIVE & SOCIAL IMPACT 

 

 

6.1 Conclusion 

 

Breast carcinoma is the premier category of deadliest cancer reported in females. There 

arises an urgency for early diagnosis and prognosis to lower the mortality rate. Medical 

image analysis using CAD has cropped up as an essential field for early diagnosis and 

prognosis in the healthcare domain. Although malignancy can't be proven without 

biopsy, early carcinoma detection using imaging modalities is an hour of need. 

Mammography continues to be used as the "gold standard" for breast carcinoma 

diagnosis owing to its widespread availability compared to others. Current research 

challenges suggest that technical and practical investigation is desperately needed to 

boost healthcare over the long term.  

The first framework proposed for diagnosing and classifying breast carcinoma is named 

Transnet. In this dual model approach, two experiments were performed on the CBIS-

DDSM dataset. The following deep neural networks were utilized- VGG-16, VGG-19, 

Mobile Net, ResNet-50, ResNet-152, and DenseNet-169. In the first experiment, namely 

Deep feature fusion with ML Classifier, pre-trained networks were deployed as feature 

extractors, and then the obtained attributes were provided to ML classifiers for 

classification. The second experiment, called Deep feature fusion with Neural Net 

classifiers, fine-tuned these networks for feature extraction and categorization.  KNN 

and XGB classifiers perform best in the first approach yielding an accuracy of 100% on 

all the networks in the training phase. Conversely, ResNet-152 outperforms the other 

pre-trained networks by producing a 6% increase in accuracy on the test dataset. In the 

second experiment, Mobile Net, ResNet-50, and DenseNet-169 performed best in the 

training and testing phase with Accuracy and AUC of 97%(+-2%) and 0.97(+-0.02). 

The minimum loss, however, was exhibited by Mobile Net in both the train and test 

phases. The second approach performed better than the first, thus, improving all the 
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evaluation metrics. The results revealed that the proposed architecture performed 

remarkably well than the other revolutionary techniques. 

Another framework proposed to enhance performance and utilize smaller datasets in the 

health domain is founded on the Multi Stage Transfer Learning Approach(MSTLA). 

Three mammography datasets were utilized: MIAS, In-Breast, and DDSM. The model 

is fine-tuned in three stages on separate datasets, and the optimized DCNN obtained in 

each stage is carried forward at the next stage. Two DCNNs are deployed for training 

the model – DenseNet-169 and ResNet-152. The results have shown that Stage 3 

performs best compared to the other two stages, with DenseNet-169 having accuracy 

and AUC values of 100 and 1.0. The proposed approach could be employed for early-

stage breast carcinoma diagnosis.  

Another model proposed in this research is on the Generalizability of DNNs. 

Generalization is an approach to analyze how the model behaves on unseen data. 

Generalization Error(GE) measures the difference between training and testing errors. 

Gaussian, Salt and pepper, and Speckle noise were added to the CBIS-DDSM dataset. 

Generalizability was evaluated for three DCNNs - Inception Net v3, DenseNet-201, and 

EfficientNet-B4. DenseNet-201 performed remarkably well on Gaussian and Salt and 

pepper noise with a minimum loss rate i.e. .0007 for Gaussian noise. EfficientNet-B4 

and Inception v3 have given the best results for Salt and Pepper noise with a minimum 

loss rate of .0002 and 0.002 respectively. The largest distortion in the mammograms 

was caused by Speckle Noise in Inception v3 and EfficientNet-B4 with very high loss 

rates leading to low generalizability. Generalization Error for Inception v3, DenseNet- 

201, and EfficientNet-B4 were 0.61, 0.12, and 0.55 respectively. Results have shown 

that the proposed framework with DenseNet-201 has minimum generalization error and 

thus exhibits high generalizability on the unseen i.e. noisy data.  

Thus, the research presents efficient and optimal approaches for early-stage breast 

cancer diagnosis. The proposed strategies could be deployed in laboratories to assist 

doctors and pathologists in timely and precise diagnosis. Future perspectives of the 

proposed methodology include its implementation on several imaging techniques such 

as Ultrasound, MRI, CT, etc. The researchers can also evaluate the generalizability 

through various adversarial attacks on deep neural networks. 
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6.2 Applications & Future Prospects of the Proposed Research 

 

Breast malignancy is climbing at a frightening pace globally. In contrast to developed 

nations, fatality counts are comparably high in low-wage and middle-wage nations[23]. 

Early diagnosis using CAD has become crucial in improving long-term survivability 

[27]. The symptomatic potentialities of training methods are impending the degree of 

personal competence using deep learning. Thus, the CAD paradigm of the “second 

opinion” tool is now being shifted to a more collaborative utility[29]. 

In the past few years, artificial intelligence has come up with advanced methods for the 

examination of medical pictures to aid radiologists at varying diagnosis stages[17]. DL  

is beneficial for handling intricate, heterogeneous, unorganized, and poorly annotated 

data [155]. Since DL eliminates the requirement for feature engineering, particularly 

when processing redundant data, the researchers extensively employ it in the majority 

of their investigations. Second, it's simple to adapt or modify current deep learning 

systems for use in new applications[26]. However, its real-time execution and 

deployment to clinics and hospitals is limited due to its computational and storage costs. 

The following are some crucial issues that require consideration when adopting deep 

learning for breast carcinoma diagnosis: 

 

 Using distinct imaging techniques and multiple modalities for breast 

malignancy 

In this study, we have used mammography, and the prospects include implementing 

the frameworks on other modalities such as Ultrasound, MRI, DBT, etc.  As a result, 

to improve the models' capacity for classification and boost efficiency and reliability, 

the same patient might be diagnosed using various modalities.  

 

 Unsupervised approaches for breast tumor diagnosis 

The proposed research implemented supervised deep learning, i.e., CNN, that requires 

a large annotated dataset for breast carcinoma diagnosis. But in the health domain, the 

collection of labelled datasets is challenging, and most of the available datasets are 

unlabelled. Consequently, more research is needed to produce CAD systems that 

employ these unlabelled pictures, which are an essential data source. 
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• Less availability of dependable, comprehensive data sets from experienced 

physicians for breast malignancy 

DL models need considerable training data. The unavailability of large datasets from 

experienced doctors is another issue that requires consideration. The generalizability 

of deep neural networks could be improved if they are tested on these datasets.  Thus, 

the health industry could be improved if substantial annotated datasets from 

experienced physicians are made available to researchers[11]. 

 

• Integrating non-imaging information with imaging data 

Till now, there are very few CAD systems that combine radiomic attributes with 

imaging data. Geras et al.[25] discussed that it is necessary to produce models that can 

incorporate image data with non-imaging characteristics, to diagnose malignancy in 

the initial stages. 

 

• Imbalanced dataset 

Another challenge for deep neural networks is class imbalance. Many available 

datasets are still imbalanced. A bias towards the more prevalent class could exist when 

models are trained on an imbalanced dataset and have a pessimistic effect on the 

classifier’s behaviour [86]. Thus, the unavailability of balanced datasets is another 

issue that needs to be addressed. 

 

• Generalizability and Generalization error of deeply convolutional neural 

networks 

The word "generalization error" concerning DCNN is vague and unclear. Generally, 

we define generalizability as the network’s behaviour on unfamiliar data. This study 

proposes a strategy for evaluating generalizability and generalization error by 

corrupting the trained dataset through different noise. We have utilized the 

mammography dataset.  In the future, the researchers can also extend the proposed 

generalization error approach to other modalities. The generalization could also be 

assessed through different parameters such as various adversarial attacks. The authors 

could propose defense mechanisms for these attacks on deep neural networks.  
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• Less availability of models pre-trained on medical images 

The existing pre-trained networks are trained on non-medical data. In recent years, 

very few researchers have focused on training a network on medical images and, thus, 

utilizing these networks further for transfer learning. If the dataset is too narrow, i.e., 

less than 1000 images, pre-trained networks experience overfitting issues. Thus, there 

arises a demand for domain-specific networks that are specially trained on large 

amounts of clinical pictures that when utilized would require less time, fewer 

resources, and are cost-effective. 

 

6.3 Social Impact 

 

Breast carcinoma is the deadliest malignancy in women, having surpassed cervical and 

lung cancers. Mortality cases due to cancer are increasing at an alarming rate and are 

particularly affecting younger age groups. Therefore, timely diagnosis is one of the 

most critical concerns that must be addressed globally since it can significantly 

enhance overall survival rates. Due to the complexity of medical images, manual 

examination is quite difficult. Manual processing of medical images faces three main 

issues - firstly, lack of availability of multiple pathologists at one location. In addition, 

the process of manually analyzing images is arduous and unpleasant. Lastly, the 

diagnosis of breast carcinoma heavily depends on the pathologists' expertise and 

domain knowledge.  

CAD-formatted medical image processing has become a beneficial gadget that helps 

physicians label clinical images, thus enabling early diagnosis and treatment [8–10].  

CAD systems require the processing of medical images; thus, extensive computational 

algorithms must be developed to process those images. Artificial Intelligence(AI) has 

emerged as the most promising field for various types of research in the current 

industries. Deep Learning and Machine learning, the subfields of AI, are giving 

tremendous results in each & every sector. We also use these applications in our daily 

lives, like scrolling the search engines, taking to digital assistants, playing innovative 

games, and using social media apps. Etc. In recent years DL and ML are also been 

widely used in the medical sector. These advanced technologies are helping doctors in 

the treatment, reducing the diagnosis time and thus saving patients' lives. 
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This study offers a useful paradigm for diagnosing and categorizing breast carcinoma 

at the initial stages. The condition must be diagnosed as soon as possible to lower the 

death toll. The proposed frameworks could be utilized to assist doctors and radiologists 

in providing timely diagnosis. Due to the memorization capability of deep neural 

networks, generalizability must also be addressed, which signifies how the model 

behaves on unseen data. This research also proposes a strategy to evaluate 

generalization error and thus compute the generalizability in DNNs. Deep learning has 

driven major advances in the analysis of medical pictures, achieving remarkable 

outcomes in several tasks. There is still a substantial barrier in the form of restricted 

accessibility to training data, especially in the healthcare field where obtaining data 

can be expensive and governed by privacy laws.  

Thus, accuracy and workflow efficiency must be considered before implementing 

CAD systems in clinical practice, and secondly, to avoid improper use, user education 

is crucial to grasp the features and constraints of CAD systems.  
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