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ABSTRACT

The thesis aims to develop new methods for object recognition in low-light and

hazy environment. The performance of existing object recognition methods degrades

while dealing with low-light/hazy environments due to poor visibility of details and

other issues in the captured images. There are two approaches to deal with low-

light/hazy environment: one approach to deal with low-light/hazy environment is to

use enhancement/dehazing before object recognition, and the other approach focuses

on direct object detection from the low-light/hazy images. The work attempted to

improve object recognition using both approaches. Based on the first approach for

low-light, this thesis presents two low-light image enhancement methods. The first

method estimates structure-aware initial illumination from the input images based on

the proposed multi-scale guided image filter. A multi-objective optimization function

is formulated and solved to refine the illumination. The adaptive illumination adjust-

ment is developed to improve the overall lightness of the low-light images leveraging

the estimated illumination. The second method develops a deep-network for simul-

taneous estimation of illumination and reflectance from a single image. A branched

encoder-decoder architecture is developed for the decomposition task. The estimated

illumination is adjusted using the deep network to improve the overall lightness. The

image refinement module is developed to improve the color, contrast and other details

in the enhanced images. Similarly for hazy environment, We developed a variational

optimization based method for image dehazing. It is difficult to estimate depth of a

scene from RGB image. We introduced a notion that the objects with same structure

at a depth contains similar transmission. Thus, we developed a new method for es-

timation of structure-aware initial transmission leveraging the scale-adaptive bilateral

filter. We formulated a new variational optimization problem with regularization terms

to preserve the structural details in the final transmission. The atmospheric light is not

dependent on the color; thus, we developed a uniform atmospheric light estimation

method.

The performance of the developed methods is compared with the various contem-

porary methods on a large set of images using visual and quantitative assessments.

The analysis shows the superiority of the proposed methods over the existing meth-

ods in the enhancement/dehazing task. Furthermore, we analyzed the performance

of object recognition using various enhancement methods. The enhancement method

requires additional time for processing and the performance of object recognition de-

pends greatly on the performance of enhancement methods. Thus, we aimed to develop
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a direct object recognition methods for low-light and hazy environment that do not re-

quire explicit enhancement to be performed before object recognition.

This thesis present a new Multi-exposure refinement network for low-light object

detection (MRN-LOD) to avoid the need for enhancement before recognition. The

MRN-LOD contains: multi-exposure feature extractor, adaptive refinement network,

and detection head. We introduced the notion of feature extraction from multi-exposure

images for object recognition in low light. In addition, we proposed an adaptive re-

finement network to refine the features of low-light images for better recognition per-

formance. The detection head uses the refined features to perform object recognition.

Extensive experimentation on existing real-world and synthetic datasets shows the su-

periority of the proposed MRN-LOD. Furthermore, The performance of the object de-

tection methods degrades in a hazy environment. To overcome this issue, we propose

a Bi-stream feature fusion (BFF) network for object detection in a hazy environment.

The BFF network consists of three modules: hybrid input, Bi-stream feature extractor

(BFE), and multi-level feature fusion. We present the notion of hybrid input to extract

features from the hazy images in an effective manner. The proposed BFE network

extracts multi-level features from the hazy image and hybrid input. The multi-level

feature fusion (MFF) network performs the convolution-based adaptive feature fusion

and processes the extracted features. The proposed BFF model outperforms other state-

of-the-art methods in hazy environments. Another challenge in hazy object detection

is the unavailability of a dataset with sufficient samples and classes. In this work, we

developed a synthetic object detection dataset for a hazy environment (DHOD).
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Chapter 1

Introduction

The pervasive integration of computer vision across various applications and domains

has intensified the requirement for robust and reliable algorithms. Object recognition

is one of the essential and primary task in the field of computer vision. The perfor-

mance of traditional object recognition methods is limited due to various reasons like,

hand-crafted features, inadequate handling of occlusions, and limited contextual un-

derstanding. The integration of deep learning has improved the performance of object

recognition systems. The ability of existing object recognition systems to identify and

localize objects is inherently dependent on the quality of input images. The existing

object detection systems effectively detects objects in the images captured in normal

environment with clearly visible details. However, the efficacy of these systems is of-

ten compromised in challenging environment conditions, such as low-light, and hazy

scenarios, which significantly hinders the image quality and hence, the performance of

existing object recognition algorithms. The ability to identify and localize objects in

images captured under these challenging circumstances is of paramount importance for

various real-world applications, ranging from surveillance and autonomous vehicles to

search and rescue operations.

The chapter includes the discussion related to object recognition, low-light image

enhancement, and image dehazing. Further, This chapter discusses the challenges of

object recognition in low-light and hazy environment, the significance of this research,

and overview of the thesis.
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1.1. Object Recognition

1.1 Object Recognition

Object recognition is a fundamental task in computer vision that involves localization

and classification of the objects within an image. Unlike image classification, where

the goal is to assign a single label to an entire image, object recognition aims to iden-

tify the presence of multiple objects within the image and provide bounding boxes

around them. Object recognition have widespread applications in fields such as image

understanding, video analysis, and autonomous systems.

Traditional object recognition systems rely on feature extraction and pattern recog-

nition. They often use techniques like edge detection, shape analysis, and texture anal-

ysis to distinguish objects. With the advancement of deep learning, convolution neural

networks (CNNs) have become the cornerstone of modern object recognition. These

networks automatically learns feature representation from the input images, making

them highly effective in recognizing and classifying a wide variety of objects.

In a typical CNN-based object recognition system, an image is processed through

multiple layers of convolution filters, pooling layers, and fully-connected layers. Each

layer extracts and refine features, enabling the network to make informed decisions

about the objects present in the image. These systems are often trained on a large

datasets with annotated examples, allowing them to learn a wide range of object ap-

pearances and variations. Numerous object recognition methods have been proposed in

the literature with remarkable performance as compared to the traditional object recog-

nition methods. State-of-the-art object recognition methods such as Faster R-CNN

(Region-based Convolutional Neural Network) and YOLO (You Only Look Once),

have demonstrated impressive accuracy and efficiency. These methods typically lever-

age deep learning architectures, utilizing convolution neural networks (CNNs) to ex-

tract features from the images. Region proposal networks and anchor-based mecha-

nisms are commonly employed for precise localization, while classification networks

discern the object classes.

1.1.1 Object Recognition in challenging environment

The existing object recognition methods performs adequately for images with appro-

priate quality. However, these methods face considerable challenges when confronted

with challenging environments characterized by low-light and haze. In this thesis, we

focused on two challenging environments: low-light and hazy. One of the majorly

used solution to deal with low-light and haze in the images is to use enhancement as

a pre-processing step. We aim to develop enhancement algorithms to deal with the
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problems related to the low-light environment and hazy environment. To develop a

methods for better image quality, we explored various low-light image enhancement

methods and image dehazing methods which are discusses in the following sections.

In the solution based on enhancement before recognition, the performance of object

recognition methods relies greatly on the performance of enhancement algorithms and

requires additional processing time. Thus, we also developed direct object detection

methods from hazy and low-light images to achieve better performance and detection

speed.

1.1.2 Enhancement-based object recognition in low-light

Many times the environment is not conducive to capture an image with good illumina-

tion and results in a low-light image, which severely impact the performance of object

recognition algorithms. The other cause of low-light images may be variable lightness

in a scene, night-time imaging, improper camera setting, bad lighting sources, etc. The

recapturing of the image is not feasible in many situations. Thus, low-light image

enhancement plays a vital role in improving the details of an image suffering from

poor lightness. Low-light image enhancement involves augmenting the brightness and

contrast, reducing noise, and preserving the natural color and texture of the image.

In literature, many researchers have attempted to develop algorithms for low-light

image enhancement. Low-light images contain most of the pixels with low inten-

sity and can be loosely considered as low contrast images. To this end, one of the

simplest and fundamental approaches is Histogram Equalization (HE) [9]. HE based

approaches focus on performing intensity transformation using frequencies of pixel

intensities. However, HE based methods may introduce saturation effect, over or un-

der enhancement, halo effects, loss of local details, etc. The above algorithms give

reasonably good performance in properly illuminated regions. However, these algo-

rithms focus on contrast enhancement rather than improving the illumination of the

image, thus sometimes fail to improve the low-light images and introduce artifacts like

saturation effect, halo effect, etc.

It has been found that Retinex [10] based enhancement algorithms work reasonably

well for low-light images. In the Retinex theory, an image is considered as the prod-

uct of illumination and reflectance. In early Retinex based approaches [11, 12, 13],

lightness is considered as the ratio of a pixel value to the average value of surrounding

pixels and term it as center/surround operation. Jobson et al. [14] explored the prop-

erties of center/surround operation and used a Gaussian filter to develop Single Scale

Retinex (SSR) for image enhancement. SSR has a major drawback that it provides
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either dynamic range compression or color constancy but fails to provide both simul-

taneously. To overcome these limitations, Jobson et al. [15] used multiple scales of

Gaussian and developed Multi-Scale Retinex (MSR). MSR works well for grayscale

images, but for color images, it may lead to unnatural color appearance. The problem

of color restoration is attempted in another work by Jobson et al. [16]. In these algo-

rithms [14, 15, 16] reflectance is considered as the final enhanced image, which may

look unnatural at times.

Another set of algorithms [1, 17] estimate the illumination component and use it

to find the reflectance component. The final enhanced image is obtained as the prod-

uct of refined illumination and reflectance. Wang et al. [1] proposed an algorithm

Naturalness Preserved Enhancement Algorithm (NPEA) to deal with non-uniform il-

lumination images. NPEA estimates illumination using a bright pass filter to find the

reflectance component of the image. NPEA preserves naturalness at the cost of illumi-

nation improvement. Thus, darker regions may not enhance adequately. Fu et al. [17]

proposed a fusion-based method to deal with weakly illuminated images. The algo-

rithm uses a multi-fusion of Gaussian and Laplacian at multiple scales. The algorithm

performs well in normal dark images but fails to provide significant lightness for a

darker region. Guo et al. [3] proposed a low-light image enhancement algorithm using

illumination map estimation (LIME). Similar to many other approaches, [1, 17] LIME

estimates initial illumination by taking a pixel-wise maximum of all color channels

of the low-light image. The algorithm computes refined illumination by optimizing

a multi-objective problem based on initial illumination and its gradient. The perfor-

mance of LIME is significantly good, however over enhancement occurs in properly

illuminated regions of low-light images. Moreover, LIME sometimes fails to retain

color constancy. An inferior enhancement algorithm may result in the loss of crucial

details and introduce undesirable artifacts. Thus, designing an effective algorithm for

the enhancement of low-light images is a challenging task.

A low-light image enhancement algorithm attempts to improve the illumination of

an image to enhance the lightness in the final image. However, various challenges are

faced while designing such algorithms. A major problem is inadequate enhancement

of the non-uniformly illuminated images i.e. over-enhancement in the bright regions

or under-enhancement in the dark regions. In practical scenarios, the low-light images

may contain few regions with adequate lightness and other regions with inadequate

lightness. Such images are termed as non-uniformly illuminated images. Few algo-

rithms focuses on enhancement of low-light regions, which sometimes lead to the over-

enhancement of the region with sufficient lightness. The algorithms which focus on

maintaining the overall lightness or avoid over-enhancement sometimes fail to enhance
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the details of the low-light regions. It is difficult to manage both over-enhancement and

under-enhancement, simultaneously. Few algorithms fails to preserve the natural color

in the enhanced image. The enhancement using few methods do not consider the color

balance and hence lead to enhancement with unnatural colors. Similarly, the genera-

tion of undesired artifacts in the enhanced image is also a major challenge in low-light

image enhancement. Sometimes algorithms attempt to reduce noise in the enhanced

images. In attempt to avoid the noise, the algorithms fail to preserve the fine details in

the enhanced images. Furthermore, the algorithms sometimes fail to restrict the disper-

sion effect in light dominant regions of the low-light images with varying illumination.

The simplest approach for object recognition in low-light is to apply low-light im-

age enhancement (pre-processing) before object recognition. However, such an ap-

proach requires additional time and computation to enhance the image. Furthermore,

the performance of recognition approach depends greatly on the performance of the

enhancement method. The design of direct object recognition approach is challeng-

ing due to limited visiblity of details in the low-light images. The performance of

existing methods degrade while dealing with low-light images. In many cases, the

enhacement-before-recognition increases the time drastically. However, these methods

provides only limited enhancement in the recognition performance. In addition to this,

the availability of low-light object recognition dataset with sufficient number of sam-

ples is also another important challenge. The performance of deep learning methods

is largly governed by the quality and quantity of samples. There is no dataset openly

available for low-light object detection with a sufficient number of object classes and

annotated RGB images.

1.1.3 Dehazing-based object recognition in hazy environment

The outdoor image acquisition may result in hazy images due to poor weather con-

ditions. Due to the presence of suspended particles in the atmosphere, the reflected

and incident light rays get scattered. The scattered light rays leads to the effects like

blurring and contrast degradation. The acquisition of haze-free image in presence of

haze/smoke/fog is quite difficult if not infeasible. The primary focus of image dehazing

is to improve the visual quality of an image and recover haze-free image.

Image dehazing is particularly challenging due to numerous factors like the unclear

distinction between the hazy pixels, natural scene, and even the camera error [18]. Fur-

thermore, the lack of real ground truth and corresponding foggy images makes it diffi-

cult to generalize the techniques to real world data. To solve the problem researchers

analyzed distinct haze relevant properties leveraging synthetic datasets and proposed
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various image dehazing algorithms. A superior image dehazing algorithm requires ap-

propriate haze relevant properties which implies the need for an analysis of the existing

image dehazing algorithms. Wang and Yuan [18] classified a number of haze removal

approaches and in provided a subjective review of output images from a number of

traditional dehazing methods [19, 20, 21, 22] for analysis.

The primary challenge in dehazing is to estimate the depth of the scene and the

amount of light scattering, which varies with the distance of objects from the camera.

It can be inferred from physical image formation model that one of the methods for de-

hazing is by estimating global atmospheric light and depth information. Researchers

[19, 20, 21, 22] proposed some assumptions or priors in order to facilitate the estima-

tions and subsequently obtain haze free image. All these methods have inherent limi-

tations to the assumptions with respect to specific scenes. He et al. [20] proposed Dark

Channel Prior, which states that there is one color channel with pixel values nearing

zero. Despite being able to produce fine results it should be noted that the assumption

stands to be violated in multiple situations leading to an incorrect representation of

the transmission map, hence the hazy image. Other methods tend to exploit multiple

images from the same scene for haze free image restoration [23, 24, 25].

The significance of image dehazing is beyond mere aesthetic improvement of im-

ages. The feature extraction from haze-free image is comparably easier than hazy

image. Thus, effective dehazing may help in performance improvement of various

computer vision methods including object detection. However, the existing approaches

suffer from various limitations, which may have an adverse effect on the performance

of object recognition methods in hazy environment. Thus, the development of an ef-

fective algorithm for image dehazing is a challenging task.

The deep learning based image dehazing methods use specific datasets to learn haze

relevant features. These methods perform well on the images which have distribution

similar to the images of dataset. However, these methods fail to provide adequate

dehazing for other images. The generalization capability of these methods is limited,

which makes these methods less useful for real-world applications. Another major

challenge is over-enhancement and under-enhancement. Few algorithms appropriately

enhances the hazy images, and fail to deal with images with less haze density. On

the other side, few algorithm are capable of performing dehazing with images that

contains limited haze. Image dehazing algorithms attempts to reduce the haze density

and generate the haze-free sample. However, algorithms sometimes fails to maintain

the colors in the enhanced images. This distortion of color in the enhaced images is

not desirable. In attempt to perform effective dehazing, sometimes algorithms loss the

finer details in the dehazed images.
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The pre-processing based object recognition approaches require additional time

and computation to perform image dehazing. The dehazing algorithms sometimes

fail to improve the recognition performance of the systems. Furthermore, the exist-

ing methods uses specific dataset for learning the haze-relevant characteristics. These

methods performs well on the sample from the similar data. However, the perfor-

mance of these methods degrade while dealing with samples from other datasets. The

availability of supervised dataset is another important challenge in object recognition

in hazy environment. There is no dataset available with sufficient number of object

classes and annotated RGB images.

1.2 Image Formation Models

The concept of image formation models is fundamental in computer vision. The image

formation models focus on describing how the observed image is formed through the

interaction of light with objects and the environment. The models typically encompass

the physical and geometric aspects of the scene illumination, object reflection proper-

ties, camera characteristics, and atmospheric conditions. These models are crucial for

developing algorithms that can effectively process, enhance, and analyze images under

various conditions.

Low-light image enhancement methods based on Retinex model performs impres-

sively as it considers image as a composition of reflectance and illumination. Further-

more, the estimation and treatment of illumination helps in enhancement of low-light

images. On the other side, the physical image formation model considers atmospheric

light and scene depth. Researchers leveraged physical image formation model in many

image dehazing algorithms. In this section, we discuss two image formation models,

which are as follows:

• Retinex model: The model focuses on estimation of reflectance and illumi-

antion, which can help in enhancement of low-light images.

• Physical image formation model: It focuses on estimation of transmission map

and atmospheric light. The model uses the estimated components to perform

image dehazing.

These are the widely used models for in various papers. The detailed discussion is

given below.
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1.2.1 Retinex Model

Retinex [12] image formation model, which can be defined as:

I = R ◦ L (1.1)

where I is an image, R is reflectance of the image, L is illumination, and symbol ‘◦’

represents element-wise multiplication. The reflectance component depends on the ob-

jects in images and their colors. The illumination component depends on the source of

light present at the time of image acquisition. The source of light might be sunlight,

moonlight, an artificial light source like LED, CFL, camera flashlight, etc. Change in

the source of light may lead to a change in the properties of illumination. Illumination

properties of low-light images are different from day-light images. It is mainly because

sunlight provides uniform illumination except in shaded regions. Generally, illumina-

tion in low-light images is non-uniform due to the dominance of light sources in some

regions of the scene. In many algorithms [1, 17, 3], illumination estimation is obtained

from the image, and reflectance is computed using relation in (1.1). Thus, illumination

estimation is a crucial step in the low-light image enhancement algorithm. Improper

estimation of illumination leads to a degraded image and may produce artifacts.

1.2.2 Physical Image Formation Model

Haze formation occurs due to suspended particles like aerosol, water-vapor, dust or

smoke in the air causing the light to scatter. This fundamental scattering based physical

phenomenon is formulated mathematically by [26] and [27]. This has been used as the

basis for dehazing by [19] and [28] wherein the origins, sizes and distributions of haze

are also taken into account. The formulation is given by:

I(x) = A∞ρ(x) exp−βd(x) +A∞(1− exp−βd(x)) (1.2)

Where x is a pixel on a 2D coordinate plane, I is the input image intensity, A∞ is

the atmospheric light, d is the distance between object and lens, ρ is the reflectance of

the object in frame, and β is the atmospheric attenuation constant.

I is the result of medium of transmission and light reflected from the object(s) in

the frame, essentially representing the hazy image or the direct attenuation. And the

transmission exp−βd(x) is represented by t(x). Hence, reflectance times atmospheric

light; L∞ρ(x), is the actual haze free image given by J(x). Simplifying the equation
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Fig. 1.1: The physical phenomenon of scattering and the process of imaging in hazy

weather. The suspended particles lead to decrease in intensity of the reflected light

causing the formation of hazy image on the camera sensor.

and replacing atmospheric light with A, the obtained expression is given as:

I(x) = J(x)t(x) + A(1− t(x)) (1.3)

From equations (4.1) and (4.2), we can infer that despite a physical model to rep-

resent image haze it is hard to estimate both unknowns, A and t(x). However, if depth

information or d(x) is known, we can estimate J , A and t from I . This has primarily

been done to solve the dehazing problem in recent years. It is ill-posed problem and

effective estimation of the components is crucial.

1.3 Problem Statement

The performance of object recognition models degrades while dealing with images

which are captured under the influence of low-light environment and hazy environ-

ment. The simplest approach is to use image enhancement/dehazing before performing

object recognition. The enhancement algorithms for low-light image enhancement suf-

fers from over enhancement and fails to preserve natural colors in images with varying

illumination. Thus, nature preserving illumination estimation and deep-simultaneous

estimation methods are proposed. Similarly, the image dehazing algorithms provide

limited haze removal. We proposed a variational optimization method for transmis-
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sion map estimation which focuses on structural details. The structural details are

based on the notion that the objects at same depth level will have similar transmission

map. Our developed algorithms improved the performance of existing object recog-

nition methods. However, these methods require additional time for pre-processing

step (enhancement or dehazing). To deal with this issue, we proposed direct detec-

tion algorithms for object recognition in low-light environment and hazy environment.

The developed methods perform direct detection from the image without using the

above-mentioned pre-processing step (enhancement or dehazing). Hence, the pro-

posed recognition methods require comparably lesser time and are useful for real-time

applications.

1.4 Main Contributions of the Thesis

The main contributions of this research are the development of new algorithms for

low-light image enhancement, single image dehazing, object recognition in low-light,

and object recognition in hazy environment.

1.4.1 Low-light Image Enhancement

In low-light image enhancement, the major challenge is to preserve the natural charac-

teristics of the input image while avoiding the over-enhancement. In this research, we

developed two new low-light image enhancement algorithms.

• First algorithm is based on the optimization approach for illumination estima-

tion. In this work, a new structure-aware initial illumination estimation method

is proposed leveraging the proposed multi-scale guided filter. We formulated

and solved a new multi-objective optimization problem with a new regulariza-

tion term to effectively preserve the structural details. Furthermore, a new adap-

tive illumination-adjustment is proposed to improve the overall lightness of the

low-light image using the estimated illumination.

• The second algorithm is based on a deep learning architecture for image decom-

position and enhancement. In this work, a novel branched encoder-decoder net-

work is developed for simultaneous estimation of reflectance and illumination.

The loss function is proposed, which considers the illumination and reflectance

characteristics. Moreover, an image refinement module is developed to improve

the color, contrast, and other details in the enhanced images.
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1.4. Main Contributions of the Thesis

1.4.2 Image Dehazing

In literature, various algorithms for single image dehazing are available. However,

effective dehazing for distinct haze conditions remains a challenging task. A new

algorithm is developed to perform dehazing using structural details based on the notion

that the objects at same depth level will have similar transmission map.

• We developed a new method for the estimation of structure-aware initial trans-

mission. We leverage the concept of adaptive bilateral filtering for the structure-

aware smoothing. we present the notion that the structural details are same for

the objects at same level of depth.

• We formulated a new variational optimization problem with regularization terms

to preserve the structural details in the final transmission while smoothing the

textural details. We used alternative direction minimization method to solve the

variational optimization.

• We developed a technique for uniform atmospheric light estimation leveraging

the dark channel.

1.4.3 Object Recognition in Low-light Environment

Low-light conditions present a myriad of intricacies for object recognition. Many ap-

proaches focus on enhancement before recognition, which requires additional time. In

this research, we developed two direct object recognition methods.

• In the first approach, we developed a multi-exposure feature extractor. The

multi-exposure images are generated using a single low-light image with dis-

tint exposure parameters. An adaptive refinement network is developed refine

and combinedly process the features extracted from multi-exposure images. Fi-

nally, a new object recognition method is developed to directly recognize the

objects from low-light images without using enhancement algorithms.

• In the second approach, we developed a dual-branch method for object detection

in low-light conditions. We developed the notion of derived image to reinforce

the low-light feature extraction. Furthermore, a feature adaptation network is

developed to improve the relevant features from low-light images.
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1.4.4 Object Recognition in Hazy Environment

The performance of object recognition methods degrades in hazy environment. Many

approaches uses either dehazing before detection or domain adaptation, which have

their own limitations. A new method is developed to perform object recognition in

hazy environment.

• A new Bi-stream feature extractor network is developed to extract features at

multiple-level from the hazy image and hybrid input. The notion of hybrid input

is presented to facilitate the feature extraction of haze-relevant features.

• Th multi-level adaptive feature fusion network is developed to perform fusion of

adequate features.

• A new dataset is developed to train object recognition models with annotated

hazy images based on the Pascal-VOC dataset.

The developed methods are validated using the standard databased with other con-

temporary methods. The exhaustive experimentation and results demonstrates the su-

periority of the developed method with other contemporary algorithms.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows: In chapter 2, the discussion related to the

existing approaches for low-light image enhancement, image dehazing, object recog-

nition, object recognition in low-light and object recognition in hazy environment. It

also finds the research objectives. In chapter 3, nature preserving illumination estima-

tion, and deep-simultaneous estimation network for low-light image enhancement are

described. Chapter 4 contains the discussion related to the variational optimization

based single image dehazing. In chapter 5, the multi-exposure refinement network for

object recognition in low-light environment is explained. In chapter 6, a bi-stream fea-

ture fusion method for object recognition in hazy environment is described. In chapter

7, the important conclusions are drawn from the proposed algorithms and it also gives

the details of future works/applications.
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Chapter 2
Literature Review

In this chapter earlier well-established and state-of-the-art algorithms related to object

recognition in low-light and hazy environment are discussed. The majorly used strat-

egy for object recognition in low-light and hazy environment uses enhancement/dehazing

before object recognition. Thus, the literature covers Object recognition, Low-light

image enhancement, Object recognition in low-light environment, Single image de-

hazing, and Object recognition in hazy environments. The chapter includes discussion

of merits and demerits of existing algorithms, research objectives and brief of the pro-

posed solutions.

2.1 Previous Works in Object Recognition

Object recognition involves indentifying and localizing objects within an image or a

video. This field has evolved rapidly, particularly with the advent of deep learning. The

methods can be broadly categorized as: traditional methods and deep learning based

methods.

2.1.1 Traditional Object Recognition Methods

Sliding-window mechanisms, hand-crafted features, and classifiers are the base of

most traditional object recognition methods. Viola and Jones [29] presented the cas-

caded classifier based on Haar features from an image. Agarwal and Roth [30] devel-

oped a sparse representation from side-views of cars for object recognition. Torralba et

al. [31] proposed a mechanism for sharing common features using multitask learning

among the classes to reduce the time complexity. Butko and Movellan [32] proposed

a method to reduce the run-time of object detectors while dealing with images hav-
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2.1. Previous Works in Object Recognition

ing higher resolution. Felzenszwalb et al. [33] proposed a method to represent object

classes that are highly variable using a combination of multi-scale deformable part

models.

2.1.2 Deep learning based Object Recognition Methods

Deep learning based classifiers and detectors dominate recent object recognition meth-

ods. The DL-based object recognition methods are divided into two classes: two-stage

methods (or region proposal based approaches) and one-stage methods (or single shot

approaches).

2.1.2.1 Two-stage methods

Two stage methods are also known as region proposal based methods. The first stage in

two-stage methods is responsible for generation of a sparse proposal set (e.g., Selective

Search [34], EdgeBoxes [35], Deep-Mask [36, 37]). In contrast, the second stage is

responsible for the classification and better object regions with improved bounding

boxes. The two-stage detectors (like R-CNNs [38, 39, 40], and SPPnet [41]) achieve

better accuracy than the one-stage detectors.

R-CNN (Region-based Convolutional Neural Network) [38] blended the poten-

tial of CNNs with the region proposal methods to enhance the performance of object

recognition methods in an image. R-CNN identifies the potential object regions in an

image ny region proposals and then use a CNN to extract features from each proposed

region independently. These features are fed into classifier typically a Support Vector

Machine (SVM) to determine the presence and class of the object. R-CNN requires

high computational cost due to significant redundancy and not suitable for real-time

applications. Fast R-CNN addressed several inefficiencies of the R-CNN, specifically

in terms of speed and training process. Fast R-CNN leverages a shared convolutional

feature map for the entire image. The region proposal are mapped to the feature maps

rather than on input image. The feature are extracted using Region of Interest (RoI)

pooling layer. These features are fed to the fully connected layers for object classifi-

cation and localization. Faster R-CNN incorporated Region Proposal Network (RPN)

into the architecture. The RPN is a fully convolutional network that predicts object

bounds and obejtness scores at each position of the feature map. The RPN also in-

troduces anchor boxes, predefined bounding boxes of various scales and aspect ratios,

which aid in recognizing objects with different sized and shapes.

Further, many researchers attempted to enhance the performance of two-stage de-

tectors by multi-layer exploitation [42, 43, 44, 45], contextual reasoning [46, 47, 48,
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2.1. Previous Works in Object Recognition

49], training strategies [50, 51, 52, 53], and architectural designs [54, 55, 56, 57, 58].

Two-stage methods are still less efficient than one-stage methods.

2.1.2.2 One-stage methods

One-stage object recognition methods provided a significant advancement in the field

of computer vision, have revolutionized the approach to detecting objects within im-

ages. Unlike the two-stage methods that first generate region proposals and then clas-

sify them, one-stage methods streamline the process by simultaneously performing

detection and classification in a single pass through the network. This approach dra-

matically enhances the computational efficiency, making it particularly suitable for

real-time applications. One-stage recognition methods gained popularity due to their

high efficiency.

You Only Look Once (YOLO) [59] is a pioneering architecture, which divides the

input image into a grid, with each grid cell responsible for detecting objects within its

bounds. YOLO model predicts both the bounding boxes and class probabilities in one

evaluation, drastically reducing the processing time while maintaining considerable

accuracy. YOLO improved detection speed by contemplating detection as a regres-

sion task and developing an end-to-end trainable method. Following YOLO, several

iterations and improvements [60, 61, 62] have emerged, each enhancing aspects like

detection accuracy, speed, and the ability to handle small objects. OverFeat [63] uses

end-to-end trained CNN to detect and localize the objects. Single Shot MultiBox De-

tector (SSD) [64], which operates on multiple feature maps at different scales to im-

prove the detection of objects of various sizes. SSD’s ability to handle scale and aspect

ratio variations makes it robust and versatile for diverse object sizes and shapes in an

image.

RON [65] presented objectness-prior and reverse connection to reduce the search

space, and detect objects using multiple levels of CNN. Based on SSD, various funda-

mentals [66, 67] are developed for training an object detection method from scratch.

Object detection datasets [68, 69] contain samples of multiple classes; however, the

unequal number of samples for each class creates a class imbalance. To deal with

class imbalance, RetinaNet [70] proposed focal loss that reduces the weightage of easy

negatives while increasing the weightage of hard examples. STOD [71] developed a

scale-transfer layer that works on multiple scales for explicit exploration of consistency

between the scales. SSDES [72] proposed a location-agnostic module and a semantic

segmentation module for feature enrichment in the object detection method. DFPR

[73] reconfigures the feature pyramid by developing presented global attention and lo-
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2.2. Low-Light Image Enhancement

cal reconfigurations. RFBN [74] proposed a receptive field block for enhancing the

ability of feature discrimination and robustness. PFPN [75] developed a wide-width

network for parallel feature pyramids to improve the detection process.

The above-discussed methods (one-stage, and two-stage) are developed and trained

for object detection on images with normal light (where object-related details are

clearly visible). The performance of the above-discussed methods (one-stage and two-

stage) degrades while dealing with low-light images.

2.2 Low-Light Image Enhancement

In literature, many approaches for low-light image enhancement is developed to solve

the issues related to low-light images. These methods can be broadly categorized as:

traditional algorithms, retinex-based algorithms, deep learning based algorithms and

other recent algorithms.

2.2.1 Traditional Algorithms

Many researchers have attempted to develop algorithms for image enhancement [76,

77, 78]. Low-light images contain most of the low-intensity pixels, and they are loosely

considered low-contrast images. Histogram equalization-based approaches [79, 80] are

the most straight-forward approaches. Several modifications of HE are developed to

overcome these drawbacks. Abdullah et al. [81] proposed a dynamic HE (DHE) algo-

rithm by dividing a histogram at local minima and keeping the dynamic range of each

sub-histogram in proportion to the original image. Parihar and Verma [79] developed

an entropy-based DHE and proposed an optimal division of histogram using entropy.

Many algorithms [82, 83, 84] use a 2D histogram to incorporate local characteristics

of the image to retain its natural characteristics. Parihar et al. [80] proposed an algo-

rithm Fuzzy Contextual Contrast Enhancement (FCCE). FCCE uses fuzzy properties

of the images to develop a fuzzy difference histogram (FDH). The authors further pro-

posed a new intensity transfer function based on the intensity and local characteristics

of the image to achieve natural-looking enhanced images. These algorithms focus on

contrast enhancement rather than improving the illumination of the image. Thus, they

sometimes fail to improve the contrast of low-light images. Contrast limited adaptive

HE [85] deals with the saturation of bright regions and contrast enhancement. Another

technique is gamma correction [86] which performs the mapping using a non-linear

function. Chiu et al. [87] attempted to utilize the probability distribution of lumi-

nance pixels and adjust the contrast using modified gamma correction. These methods
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2.2. Low-Light Image Enhancement

consider the whole image to improve the lightness, which leads to artifacts and halo

effects.

2.2.2 Retinex based Algorithms

Retinex [10, 13] based enhancement algorithms work reasonably well for low-light

images. Many authors [2, 4, 88, 6, 89, 90] have attempted simultaneous estimation

of illumination and reflectance. It is an ill-posed problem to estimate reflectance and

illumination from a single image. Fu et al. [2] proposed a method for computing both

components simultaneously with probabilistic-based prior (PIRE). The authors framed

priors for both illuminance and reflectance to formulate maximum a posteriori (MAP).

Fu et al. [91] proposed another approach for finding both components (i.e., illuminance

and reflectance) from a single image based on the log of the Retinex model. These al-

gorithm [2] works well for objects with proper illumination in a low-light image, but

the enhancement is limited in darker regions. Li et al. [4] proposed SRLIME for si-

multaneous estimation of reflectance, illumination, and noise from an image. Hao et

al. proposed semi-decoupled decomposition (LSDD) [6] for low-light image enhance-

ment. These algorithms consider the inherent noise in the reflectance. SRLIME and

LSDD algorithms provide good colour constancy. However, the algorithms [4, 6] re-

sult in degraded images due to over-smoothening in many images. Wang et al. [89]

proposed a method for image decomposition using total generalizaed variation regu-

larization and H1 decomposition. In general, the complexity of algorithms estimating

both illumination and reflectance is high. Thus, these algorithms may not be useful for

real-time applications.

Another set of algorithms [1, 3, 17] estimate the illumination and use it to find the

reflectance. The final enhanced image is obtained as the product of adjusted illumi-

nation and reflectance. Wang et al. [1] proposed Naturalness Preserved Enhancement

Algorithm (NPEA) to deal with non-uniform illumination. NPEA preserves natural-

ness at the cost of illumination improvement. Thus, darker regions may not enhance

adequately. Fu et al. [17] proposed a method that uses multi-fusion to deal with weak

illumination .The algorithm uses a multi-fusion of Gaussian and Laplacian at multi-

ple scales. The algorithm performs well in normal dark images but fails to provide

significant lightness for a darker region. Guo et al. [3] proposed a low-light image

enhancement algorithm using illumination map estimation (LIME). The performance

of LIME is significantly good. However, over enhancement occurs in properly illumi-

nated regions of low-light images. Moreover, LIME fails to retain color constancy.
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2.2.3 Deep-learning based Algorithms

Researchers endeavored data-driven approaches in image dehazing, image deraining,

underwater image enhancement and low-light image enhancement. To this end, Shen et

al. [92] proposed MSR-net, a neural network-based approach to implement MSR and

learn the mapping between low-light and ground-truth images in a supervised manner.

LLNet [93] uses stacked sparse denoising auto-encoders to learn the signal features

and then brightens the image in an adaptive technique. However, both MSR-net and

LLNet generate the low-light training data synthetically using gamma correction and

the addition of noise. Hence, they fail to characterize the natural low-light images and

produce unnatural results ultimately. GLADNet [94] proposes a technique for global

illumination estimation and then reconstructs the details to obtain the enhanced re-

sult. The detail reconstruction helps in the significant restoration of hidden details.

However, GLADNet often leads to the introduction of artifacts and the loss of col-

ors. Wei et al. [95] proposed Retinex-Net, for image decomposition and illumination

mapping. Retinex-Net performs denoising of reflectance component. Though it works

well, it employs an off-the-shelf denoising module for reflectance adjustment and ig-

nores the color distortions. Zhang et al. [96] proposed kindling in darkness (KinD) for

the decomposition of images. KinD [96] works on the limitations of Retinex-Net and

flexibly adjusts the light levels while removing the visual defects. However, KinD is

incapable of restoring the details hidden in extremely dark regions and smooths out the

natural details as well while denoising. In contrast to other approaches, Zero-DCE [7]

formulates the low-light image enhancement task as the problem of estimating image-

specific curves and learns the curve parameters through a deep network. However, it

ignores the inherent noise in the image. EnlightenGAN [97] is a generative adversarial

network-based method that works without paired training data. It uses a global-local

discriminator structure capable of handling varying lighting conditions. CSDGAN

[8] is another technique that takes retinex theory as its basis. However, GAN-based

methods generally amplify the noise and introduce various artifacts. Yu et al. [98]

developed a modular low-light enhancement network using feature aggregation and

attention. Li et al. [99] proposed a low-light image enhancement network based on

attention method, and stacking method. Yu et al. [100] presented a low-light image

enhancement method using two-stage decomposition and regulator method. Song et

al. [101] proposed a spatial feature pyramid network for enhancement of low-light

images. The method [101] uses three convolution kernels on spatial pyramid network

to obtain features of distinct scales. The learning-based methods require a huge set of

low-light and enhanced images. Moreover, the learning-based methods work well for
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data similar to the test images. However, these methods may provide limited enhance-

ment while dealing with significantly different images.

2.2.4 Other Recent Algorithms

Yu and Zhu [102] proposed a physical model-based algorithm, which considers the

environmental light and scattering attenuation rate. Ren et al. [5] proposed LECARM,

which uses a camera response model for the enhancement of low-light images. Ghosh

et al. [103] proposed an adaptive bilateral filter-based textural smoothing. Wang et al.

[52] proposed a fast method based on exposure fusion to enhance the details in multi-

ple regions in the image using local laplacian filters. Rahman et al. [104] developed

a wavelet transform based multi-scale decomposition and denoising method. Parihar

et al. [88] proposed fusion-based [90] simultaneous estimation of reflectance and il-

lumination. Tsai et al. [105] developed a multi-exposure fusion framework that fuses

contrast limited histogram equalization, homomorphic filtering, and detail extraction

for image enhancement. Xu et al. presented STAR [106] for simultaneous estimation

of reflectance and illumination. It exploits the local derivatives to enhance the images.

The methods show limited enhancement while dealing with variations in the lightness

condition in an image.

2.3 Object Recognition in Low-light

Object recognition in low light environment is a challenging task, due to limited vis-

ibility of details in the images. Few techniques are developed to solve the issue of

low-light environment for the object recognition methods.

Researchers [107, 108] attempted various approaches to detect objects from low-

light images using enhancement or domain adaptation. Wu et al. [109] developed

a method which uses cloud servers to perform enhancement of low-light images and

detection using the edge computing mechanism. Huang et al. [110] presented a U-net-

based image restoration for object recognition in low light. Sasagawa and Nagahara

[108] developed the YOLO-in-the-dark method for the adaptation of Yolo-v3 [61] on

RAW images to perform effectively under low light conditions. YOLO-in-the-dark

method uses an existing enhancement method before detection using Yolo-v3. Hong

et al. [111] synthesized a RAW image dataset using the MSCOCO and developed

an enhancement method to improve visibility based on image quality. The detection

is performed on the enhanced image for low-light images. The synthesis of RAW

images for random RGB images is extremely difficult. LiteCortexNet [107] devel-
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oped a decomposition method on a small synthetic dataset and then used the image

reflectance for the detection process. Ren et al. [112] developed a U-net for enhance-

ment and depthwise separable pyramid on an embedded platform for detection in low-

light. Yuan et al. [113] developed a CLAHE-based enhancement method to improve

low-light detection in transmission systems.

2.4 Single Image Dehazing

Researchers proposed various algorithms [114, 115, 116, 117] to perform image de-

hazing. Image dehazing algorithms can be broadly categorized as: traditional methods,

prior-based methods, fusion-based methods, and learning-based methods.

2.4.1 Traditional Methods

Researchers [118, 119, 23, 120] developed multiple-input images based image dehaz-

ing algorithms. Nayar and Narasimhan [118, 119] proposed a binary scattering model

for image dehazing. The authors analyse the scattering of atmospheric light to develop

a method for recovering true scene radiance. Schechner et al. proposed a polarization-

based multi-image algorithm [23] for image dehazing. This algorithm uses a polar-

ization filter to estimate the range map, which helps in the estimation of true scene

radiance. Shwartz et al. proposed a blind method [120] that separates airlight and

recovers contrast. It estimates the degree of polarization using a probabilistic model to

estimate the transmission map. These algorithms require multiple images to estimate

true scene radiance. However, sometimes it is challenging to collect multiple images

as per the requirement, which restricts the performance of these algorithms.

Another set of Researchers attempted single image dehazing. Tan [19] used Markov

random field to develop a cost function. The cost function focuses on the contrast of

the images and the smoothness of the airlight. Tan performed maximization of local

contrast for image dehazing using the cost function. Fattal [121] proposed a mathemat-

ical model for image dehazing. It uses contrast and gradient of an image to estimate

the enhanced image. Further, Fattal proposed color lines model [122] and automatic

optical vector calculation [123]. Fattal used the property of pixels in small patches to

develop color lines and estimate the atmospheric light. All of these algorithms result

in the over-saturation of colors and the generation of halo effects.
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2.4.2 Prior-based Methods

He et al. [20] proposed Dark channel prior (DCP) for single image dehazing. DCP es-

timates atmospheric light and transmission map from the dark channel. DCP uses the

image matte of dark channel as refined transmission map. Image matte uses fine de-

tails to estimate the refined transmission map. The algorithm generates artifacts while

dealing with the object having the same color as the airlight. Gibson and Nguyen

[124] presented a new dark channel prior. The algorithm uses minimum volume ellip-

soid approximation, which is inaccurate with pixels corresponding to bright objects.

Zhu et al. [125] proposed color attenuation prior that focuses on depth map based

estimation of transmission map. The estimation of the depth map from an image is

ill-posed, which also affects the performance of CAP. Singh et al. proposed gradient

channel prior [126, 127] that uses gradient for estimation of transmission map from

a hazy image. Nair and Sankaran proposed an algorithm [128] that estimates trans-

mission using surround filter and DCP. It is computationally simple; however, it fails

to provide adequate lightness in dehazed images. The estimation of transmission map

and atmospheric light is ill-posed problem. These algorithms sometimes lead to im-

proper estimation of the transmission map, which causes the generation of artifacts and

low-visible results.

2.4.3 Fusion-based Methods

Ancuti et al. [129, 130] proposed an algorithm that achieves image dehazing by fusing

multiple versions of the input image. However, estimation of multiple versions from an

input image for fusion is challenging task. Zhu et al. [131] proposed a multi-exposure

image fusion method for image dehazing. It uses gamma correction to estimate multi-

ple components of an image for fusion. Sometimes, multiple gamma-corrected images

fail to capture the haze properties. Thus, these algorithm achieves limited enhancement

while dealing with dense haze. Galdran et al. [132] presented a method that combines

fusion and variational optimization for image dehazing. The algorithm estimates two

components using variational optimization and then performs fusion to combine them

for image dehazing.

2.4.4 Learning-based Methods

The application of deep learning provided significant improvement in image dehazing.

Cai et al. [133] developed DehazeNet, a learning-based approach that estimates trans-

mission map. DehazeNet works on the assumption that global airlight is constant, due
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to which it fails to deal with both real outdoor and indoor images. Li et al. [134] pro-

posed All-in-One Dehazing Network, a lightweight image dehazing network capable

of producing haze-free image directly from the hazy image. Li et al. reformulated the

atmospheric scattering model (4.2) to accommodate a K-estimation module. AOD-Net

provides results with low brightness while dealing with images that are not from the

dataset and fails to eradicate haze in some cases. Chen et al. [135] makes use of multi-

scale dilated convolutions along with a encoder-decoder architecture and residual fea-

ture aggregation [136] from different levels. To address the problem of information

loss during the convolution operation, [137] suggests the use of dilated convolutional

blocks. GCANet fails to remove haze from object edges making the haze-free images

look unnatural. Its performance on indoor images is much better than outdoor images

which is indicated instances of abnormally contrasted patches. Liu et al. [138] pro-

posed GridDehazeNet, an end-to-end multi scale framework for image dehazing which

does not use the optical atmospheric scattering model (4.2) for predicting the haze-free

image. The results produced contain significant number of patches with haze. GridDe-

hazeNet performs significantly better on low haze indoor images compared to outdoor

images, since the patchy output makes scene images look unnatural. Qin et al. [139]

developed FFA-Net that treats different pixels and channels unequally by combining

pixel attention and channel attention into a Feature Attention module. Dong et al.

[140] attempts to restructure the well known denoising SOS (Strength Operate Sub-

tract) [141] with a U-Net [142] for image-dehazing. Cycle-Dehaze [143] is an end to

end pipeline which enhances the CycleGAN [144] architecture for for single image

dehazing. This method does not employ any parameters of the classical optical atmo-

spheric scattering model (4.1). Furthermore, it only requires the hazy input images

and not the pristine ground truth images like most other pipelines do. The CycleGAN

technique involves unsupervised training without paired examples, but requires two

sets of images one hazed other clear although the images may not be paired. GCA

[135], and DHS [145] methods uses genrative adversarial network (GAN) for image

dehazing. GAN [135] based methods are difficult to optimize and have high chances of

yielding an over-enhanced or under-enhanced image. Although learning-based strate-

gies are effective, a bias can be observed with images similar to the training dataset.

These techniques sometimes fail to deal with images that are distinct from the training

images.
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2.5 Object Recognition in Hazy Environment

Hazy environment generates various problems for a object recognition method. The

performance of object recognition methods trained for normal images degrades while

dealing with hazy images. Thus, few researchers attempted to overcome this issue by

developing some specific solution for this problem. A very limited work has been done

to solve this issue.

Object recognition in a hazy environment is less explored as compared to gen-

eral object recognition. The existing methods for object recognition in hazy condi-

tions focus on image dehazing [20, 76, 146] before detection. Another set of methods

attempted to solve object recognition tasks in hazy environments by using domain

adaptation. Sindagi et al. [147] developed domain adaptive object recognition using

transmission map as the domain prior. Kumar et al. [148] presented the object detec-

tion after dehazing the image using dark channel prior [20] for autonomous vehicles.

Kalwar et al. [149] presented a domain agnostic network by gated differentiable image

processing to plug it into existing object recognition models. Liu et al. [150] devel-

oped image enhancement guided object recognition to refine the detection model with

an enhancement branch. Li et al. [151] presented enhancement to dehaze image before

detection. Tanwar et al. [152] presented an image dehazing model for object recogni-

tion. Qin et al. [153] proposed a detection-driven enhancement network which com-

bines low-frequency and high-frequency components for multi-scale features. Li et

al. [154] combined the dehazing and detection networks to propose detection-friendly

dehazing.
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2.6 Research Objectives and Proposed Solutions

Based on the analysis of the existing algorithms for low-light image enhancement,

single image dehazing, object recognition for low-light, and object recognition for hazy

environment, we have formulated the following objectives and proposed the solutions:

• Most of the low-light image enhancement techniques suffer from over-enhancement

in the images with varying illumination. Thus, the algorithm for low-light image

enhancement which does not over-enhance images with varying illumination is

required. To overcome these issues, nature preserving illumination estimation

algorithm and deep-simultaneous estimation network for low-light image en-

hancement are proposed. These methods are capable in dealing with the images

with varying illumination.

• Existing image dehazing algorithms sometimes provide results with less details

and halo artifacts. Thus, image dehazing method which can handle the effect

of depth and atmospheric light simultaneously is required. To overcome the

issues, we developed a variational optimization method for the estimation of

transmission map. We presented the notion that objects at the same depth level

have similar transmission characteristics. Furthermore, we develop a technique

for uniform atmospheric light estimation leveraging the dark channel.

• Existing methods for object recognition in low-light uses image enhancement to

deal with low-light conditions. Such type of methods involves two-steps: image

enhancement and object recognition. The overall pipeline is bottlenecked by the

performance and computation time of the enhancement algorithms. Thus, the al-

gorithm for single-step object recognition in a low-light environment is required.

To overcome these issues, a multi-exposure refinement network is developed for

effective feature extraction and object recognition in low-light images.

• The challenge of object recognition for hazy images is relatively underexplored.

The existing works for hazy object recognition focus on image dehazing task.

Moreover, The computational cost of the algorithms to deal with hazy images

is high. Thus, the algorithm for object recognition in a hazy environment is

required. To address the problems of hazy object recognition, we developed a

bi-stream feature fusion network for object recognition in hazy environment.

24



Chapter 3
Low-light Image Enhancement

This chapter presents a two methods for low-light image enhancement based on the

Retinex theory. The chapter contains the discussion for Illumination estimation for Na-

ture Preserving Low-light Image Enhancement (NPLIE) and Deep simultaneous esti-

mation network (DSE-Net). The chapter includes the experimental results and analysis

for both the methods and summary of the chapter.

3.1 Introduction

Images with good illumination are always desirable in the design of an effective ob-

ject recognition system. However, many times the environment is not conducive to

capture an image with good illumination and results in a low-light image. The other

cause of low-light images may be variable lightness in a scene, night-time imaging,

improper camera setting, bad lighting sources, etc. Sometimes an image may con-

tain two types of regions: regions with properly illuminated objects and regions with

poorly illuminated objects (i.e. the image with varying illumination). Low-light im-

ages pose challenges in object and feature detection and may degrade the performance

of a object recognition system. low-light image enhancement may improve the visual

quality of an image, and is the simplest solution to improve the effectiveness of an ob-

ject recognition system. However, an inferior enhancement algorithm may result in the

loss of crucial details and introduce undesirable artefacts. Thus, designing an effective

algorithm for the enhancement of low-light images is a challenging task.

In literature, researchers have proposed low-light enhancement algorithms based

on contrast enhancement [155, 156], retinex theory [10, 11, 12], deep learning [157,

158, 159, 160], and other approaches [5, 161, 162]. However, most of the low-light

image enhancement algorithms suffer from one or more of the following limitations:
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3.2. Nature Preserving Low-light Image Enhancement (NPLIE)

• Algorithms [2, 3, 4, 6] provide inadequate enhancement of non-uniformly illumi-

nated images i.e. over-enhancement in the bright regions or under-enhancement

in dark regions.

• Algorithms [2, 3, 4, 5] provide enhanced images with unnatural colors, i.e. fail

to preserve natural colors.

• Algorithms [1, 3, 5] provide undesired artifacts in the enhanced images.

• Algorithms [3, 4, 6] are unable to restrict the dispersion effect in light dominant

regions of the low-light image with varying illumination.

• Algorithms [3, 4, 6] result in loss of finer details.

In general, there is a trade-off between lightness enhancement and naturalness

preservation, i.e. if an algorithm preserves naturalness, then the overall lightness is

low and vice versa. To deal with the above-mentioned issues and improve the perfor-

mance of object recognition, we developed two methods which are as follows:

• Illumination estimation for Nature Preserving Low-light Image Enhancement

(NPLIE)

• Deep simultaneous estimation network for low-light image enhancement (DSE-

Net)

The details related to the developed methods are discussed in the following sections.

3.2 Nature Preserving Low-light Image Enhancement

(NPLIE)

In this section, we proposed a new low-light image enhancement based on the retinex

model. In the retinex model, an image contains two components: illumination and

reflectance. The estimation of illumination and reflectance from an image is ill-posed.

The proposed algorithm estimates illumination of an image and leverages the retinex

model to obtain reflectance component. We estimate the structure-aware initial illu-

mination using the proposed multiple box (window) sizes in the guided filters [163].

We refine the initial illumination by formulating and solving a new multi-objective

optimization function. The proposed objective function involves fidelity between the

initial illumination and refined illumination. Thus, initial illumination plays a defin-

ing role in obtaining the refined illumination. At last, we apply the proposed adaptive
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3.2. Nature Preserving Low-light Image Enhancement (NPLIE)

illumination adjustment to improve the lightness of the image based on the estimated

illumination.

The importance of proposed NPLIE can be demonstrated using an image with vary-

ing illumination shown in Fig. 3.1, where bird is illuminated but other details are

darker. It may be noticed that most algorithms are struggling to give natural enhance-

ment. Some of the algorithms [5, 1, 3] try to enhance darker regions; however, already

illuminated regions get over-enhanced in the process. The other algorithms [2, 6, 7, 8]

try to maintain a natural look by avoiding over-enhancement but fail to enhance sig-

nificant lightness in darker regions. On the other hand, the proposed NPLIE enhances

darker regions of the image without over-enhancing already illuminated regions. The

detailed analysis is shown in section 3.2.2.1.

The major contributions of this work are as follows:

• Proposed a new approach to estimate initial illumination leveraging the proposed

multi-scale guided filter. The guided filter uses single box size due to which it

is unable to achieve textural smoothening and structural preservation simulta-

neously. Thus, we propose multi-scale guided filter using multiple box sizes to

achieve adequate textural smoothening while preserving the structural details.

• Formulated and proposed a new multi-objective optimization problem with a

new regularization term to effectively preserve structural details in the refined

illumination while smoothening the textural details. We solved the above opti-

mization problem using Alternative Direction Minimization (ADM) algorithm

[164].

• Proposed a new approach for adaptive illumination adjustment to improve the

overall lightness of the low-light image using the estimated illumination. The

proposed adaptive illumination adjustment increases the lightness in darker re-

gion, while maintaining the lightness of the bright regions by using the proposed

illumination estimation to manage the lightness. Thus, it results in the natural

enhancement of low light images.

• We performed an exhaustive analysis of the proposed approach on various datasets

[95, 5, 1, 165, 166, 167] using qualitative and qualitative analysis and compared

with state-of-the-art algorithms.
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Fig. 3.1: Results of different algorithms on image birds. (a) Input image; (b) Patch of (a); (c) NPEA [1]; (d) Patch of (c); (e) PIRE [2]; (f)

Patch of (e); (g) LIME [3]; (h) Patch of (g); (i) SRLIME [4]; (j) Patch of (i); (k) LECARM [5]; (l) Patch of (k); (m) LSDD [6]; (n) Patch

of (m); (o) Zero-DCE [7]; (p) Patch of (o); (q) CSDGAN [8]; (r) Patch of (q); (s) Proposed method; (t) Patch of (s).

2
8



3.2. Nature Preserving Low-light Image Enhancement (NPLIE)

(a) (b) (c) (d) (e)

Fig. 3.2: Results of House. (a) Original Image; (b) Illumination of LIME; (c) Illumi-

nation of Proposed method; (d) LIME[3]; (e) Proposed Method.

3.2.1 The Proposed NPLIE

The algorithm uses three major modules for low-light image enhancement. First,

NPLIE estimates initial illumination leveraging the proposed multi-scale guided filter.

The algorithm uses multiple boxes to achieve textural smoothening while preserving

the structural details. Second, we refine the initial illumination using the formulated

multi-objective optimization function. NPLIE estimates reflectance using the refined

illumination. Lastly, the algorithm adjusts the refined illumination using the proposed

adaptive illumination adjustment to obtain the final illumination with corrected light-

ness. NPLIE combines the final illumination with the reflectance to provide an en-

hanced image.

In earlier work [14, 15], a smooth image is considered as an estimate of illumina-

tion. However, direct smoothening using a center/surround function does not capture

the characteristics of non-uniform illumination. In dark regions, most of the informa-

tion about illumination is available on the channel with the maximum intensity value

[1, 17, 3]. A set of algorithms [1, 17, 3] use pixel-wise maximum across all color chan-

nels (bright-channel) as initial illumination. However, the bright-channel of low-light

images may not represent true illumination. An image is indeed a 2D representation

of 3D scenes (real world). Therefore, two adjacent objects in an image may be far

distant in reality, and illumination in such cases may also vary. However, maximum

intensity for two adjacent objects may be similar, and bright-channel will not distin-

guish their illumination. Moreover, in the surrounding region of a light source, the

bright-channel estimation produces a scattering effect during low-light enhancement.

It can be observed from Fig. 3.2 that the bright channel as initial illumination generates

undesired artifacts. Thus, we proposed a structure-aware initial illumination instead of

a bright-channel to address the above issue.
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(a) bmin (b) bm (c) bmax (d) L̂LIME (e) L̂NPLIE

Fig. 3.3: Initial illumination with bmin, bm, bmax, LIME (i.e. simple maximum inten-

sity) and Proposed method in (3.3) respectively.

3.2.1.1 Structure-Aware Initial Illumination Estimation

In any optimization-based approach, initial illumination plays a defining role as it acts

as a reference for refined illumination. One may notice in the red box of Fig. 3.2 that

structural details are lost in Fig. 3.2(d) (in case of LIME), while details are preserved

in Fig. 3.2(e) (in case of NPLIE). Similarly, the artifacts are prominently visible on

the pillar in the green box of Fig. 3.2(d). The analysis of illumination estimation can

help to understand these losses of details and artifacts, as shown in Fig. 3.2(b). One

may notice that illumination is changing abruptly, which is quite unnatural. Thus, a

structure-aware illumination estimation is highly desirable in images with non-uniform

light conditions. The textural details of the image have almost no effect on the spatial

variation of the illumination. Thus, the illumination of an image may be considered

to be independent of textural details. The algorithm should smoothen textural details

while preserving structural details to achieve an actual (or near actual) estimation of

the illumination. In the proposed method, we develop an algorithm for structure-aware

estimation of initial illumination by proposed multi-scale guided filtering.

In guided filtering [163], there is a fundamental assumption of linear relation be-

tween the guidance image (I) and the smoothen image (Ib). The linear model in guided

filter ensures that the smoothen image contain an edge only if the input image has an

edge. However, near strong edges gradient of each parameter of the filter is expected

to be very small. Therefore, it is expected that the filtering should preserve structural

details while smoothening the textural details. However, it also depends on the box

size and image content inside the box.

In case of a box with high variance, the smoothen image retains maximum details

from the guidance image which causes structural details preservation. In case of a box

with low variance, the smoothen image captures the mean of the box filter that causes

smoothening of textural details. The smaller box generally results in low variance as
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Fig. 3.4: Framework of Structure-Aware Initial Illumination Estimation.

the details do not change much within the box (except abrupt changes i.e. dominant

structural details). Thus, it will perform textural smoothening with dominant structural

details preservation. However, the overall smoothening will be low if we consider a

very small box size (i.e. small neighborhood). As we increase the box size, the vari-

ance will increase primarily due to two reasons: (i) higher probability of including

high detailed regions; and (ii) the variation inside the box is high due to larger spa-

tial region coverage. The larger box size will result in better structural retention with

slightly less contrast as it tries to pull all the values near the mean of the large region.

From the above discussion, we noticed that smaller box size results in better textural

smoothening with only dominant structural details preservation. On the other hand,

larger box sizes result in better structural details preservation with compromised textu-

ral smoothening. Thus, it is intuitive to use some intermediate box size between bmin

and bmax. However, it is empirically observed that the intermediate box also fails to

give desired illumination estimation and contains some drawbacks of both bmin and

bmax. It shows that the guided filter with a single box size is unable to perform the

textural smoothening and structural preservation simultaneously, which is required for

illumination. We propose to use three different box sizes bmin, bm, and bmax to obtain

structure-aware smoothening. However, the above relation is an approximate relation;

thus, we performed exhaustive experimentation on a large set of images to analyse the

effect of the box size in section 3.2.2.2.

We empirically observed that box size eight provides good textural smoothening

as shown in Fig. 3.3(a). Thus, we select the minimum box size as eight, i.e. bmin =

8. However, bmin fails to preserve the structural details near the pillar region in Fig.

3.3(a). On the other hand maximum box size i.e. bmax preserves the structural details;
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however, it fails to smoothen the textural details significantly as shown in Fig. 3.3(c).

The maximum box size, bmax is computed as:

bmax = round(min(H,W )/2) (3.1)

where H and W represents number of rows and columns of the image respectively.

Intuitively, we consider intermediate box size (bm) for trade-off between bmin and bmax.

However, intermediate box size also fails to give desired illumination and contains

some drawbacks of both boxes. bm is computed as:

bm = round((bmin + bmax)/2) (3.2)

The framework of structure-aware initial illumination estimation is shown in Fig.

3.4. In first step, guided filters with box sizes bmin, bm, and bmax are applied to the low-

light image. Then, the pixel-wise max operation is performed across all three color

channels on each output images of guided filters. This results in three max channels

corresponding to each box size (max guided channels). Finally, the pixel-wise max

operation is applied on above three max guided channels to achieve the structure-aware

initial illumination. Fig. 3.3 shows the results of initial illumination for smoothened

image (using bmin, bm, and bmax), simple maximum operation (used in LIME), and

the proposed method. We consider maximum operation [1, 5, 3] to obtain the effect

of light in the initial illumination. It can be observed from Fig. 3.3(d) that proposed

initial illumination contains the effect of light, structural preservation (at top near the

grill), and low textural details. For notational convenience, let us consider b1 = bmin,

b2 = bm, and b3 = bmax. The proposed algorithm computes initial illumination as

given below:

L̂ = max
i

{ 3
⋃

i=1

max
c∈{R,G,B}

{

Icbi

}

}

(3.3)

where L̂ denotes the initial illumination, Icbi denotes cth color channel of the output

image of guided filter with box size bi, max denotes pixel-wise maximum, and (R, G,

B) denotes (red, green and blue) color channel of the image.

3.2.1.2 Formulated Optimization for Refined Illumination Estimation

The proposed initial illumination gives a reasonably good estimation of actual illu-

mination and results in good enhancement. However, the estimated illumination still

contains textural details and may result in over-enhancement. Thus, there is a need
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for refining the initial illumination while preserving the structural details. To achieve a

structure-aware smoothening, we formulate the following multi-objective optimization

problem:

min
L

||L̂ − L||22 + ³n||∇Im −∇L||22 + ´n||G ◦ ∇L||1 (3.4)

where L is the refined illumination, L̂ is initial illumination as obtained by (3.3), ∇

denotes first-order derivative operator, ∇Im denotes maximum of ∇ from all channels

of I, G is a weight matrix based on initial illumination as discussed later in this section,

|| • ||p represents Lp norm operator, and ³n and ´n are the regularization parameters.

The first term (i.e. ||L̂−L||22) of (3.4) provides fidelity between initial illumination

and refined illumination. The second term (i.e. ||∇Im − ∇L||22) pulls the gradient of

the refined illumination towards the maximum gradient of input image (∇Im). It tries

to maximize the structural details in the illumination. The third term (i.e. ||G ◦ ∇L||1)

provides smoothness to minimize textural details. The second term of (3.4) limits

the smoothening effect introduced by the third term, while the third term prevents the

second term from enhancing textural or noisy details. Thus, combining the second and

third terms results in preserving structural details and smoothening textural details in

the refined illumination.

In the third term, weight matrix G plays a vital role in smoothening of the textural

details. The weights in matrix G are calculated as below:

Gx = −log(∇xL̂) (3.5)

where ∇x denotes first-order derivative along horizontal dimension.

Gy = −log(∇yL̂) (3.6)

where ∇y denotes first-order derivative along vertical dimension. The logarithm of

derivatives assign a higher weight to textural details, while reducing the importance of

structural details. Note that low gradient values characterize texture details, while

high gradient values characterize structural details. Thus, the minimization of the

multi-objective function significantly suppresses textural details and results in textu-

ral smoothening, while reducing the smoothening effect in structural details.

The efficient solution of (3.4) can be obtained using the Alternative Direction Min-

imization (ADM) algorithm [164]. The researchers [2, 4, 3] have proven the conver-

gence of optimization problem like in (3.4) to the global optimum. Let us replace the
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term ∇I with an auxiliary variable K and rewrite objective function in (3.4) as:

argmin
L, K

||L̂ − L||22 + ³n||∇Im − K||22 + ´n||G ◦ K||1 s.t.∇L = K (3.7)

The multi-objective optimization which contains equality constraint can use Lagrangian

multiplier to compute the optimum point. The equality constraint in (3.7) can be in-

cluded in the objective function using Lagrangian multiplier (M). The augmented La-

grangian function of (3.7) is given as:

L = ||L̂ − L||22 + ³n||∇Im − K||22 + ´n||G ◦ K||1 + φ(M,∇L − K) (3.8)

where φ(M,∇L−K) =
É

2
||∇L−K||22+ïM,∇L−Kð and ï·, ·ð denotes element-wise

multiplication, É is a positive penalty term. The penalty term is required to control the

rate of convergence to the solution [164]. The optimization problem can be solved

easily by iteratively updating one variable while considering others as constant. The

separation of the optimization problem (3.4) into sub-problems can simplify it. We

divide the proposed multi-objective function into two sub-problems, sub-problem L,

and sub-problem K. Sub-problem L is formed using all terms of (3.8) which contain

illumination component. Sub-problem K is formed by considering the all terms of (3.8)

which contain equality constraint. Let us solve both sub-problems using ADM[164]

algorithm.

Sub-problem L: Considering only terms related to the variable I of (3.8), we obtain the

following sub-problem at ith iteration:

Li+1 = argmin
L

||L̂ − L||22 + φ(Mi,∇L − Ki) (3.9)

This is a well-known least square problem and can be solved by differentiating it with

respect to L and putting it equal to 0:

L =
2L̂ + DT (ÉK − M)

2 + ÉDTD
(3.10)

where D denotes the matrix containing Dx and Dy, Dx is the difference along rows and

Dy is the difference along columns. Multiplication, transpose, and inverses of large

matrices may be computationally inefficient. Thus, we use the 2D-FFT method by

considering the condition of the circular boundary, and compute L as:

Li+1 = F−1

(

F
(

2L̂
)

+
∑

d∈{x,y} F
c
(

Dd(É
iKi − Mi)

)

2 + Éi
∑

d∈{x,y} F
c
(

Dd

)

· F
(

Dd

)

)

(3.11)
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where F denotes 2D-FFT operation, F c denotes complex conjugate of 2D-FFT oper-

ation, F−1 denotes the inverse of 2D-FFT operation and 2 is a matrix equivalent to

image size having all elements 2. Here, all operations are element-wise.

Sub-problem K: The sub-problem K is obtained from (3.8) by selecting terms related

to K only. Thus, we have the following sub-problem at ith iteration:

Ki+1 = argmin
K

³n||∇Im − K||22 + ´n||G ◦ K||1

+
É

2
||∇L − K||22 + ïM,∇L − Kð

(3.12)

To solve the minimization problem (3.12), take derivative with respect to K and equate

it to zero. The value of a pixel in an image cannot be negative. However, K can have

negative pixel values because of higher weights, which is inappropriate while dealing

with images. Thus, the computation of K requires normalization to deal with negative

pixel values. Shrinkage operation [4, 3] helps in thresholding the values of the image.

Hence, we can solve (3.12) using shrinkage operation:

Ki+1 = S β·G

2αn+ωi

[

2³n∇Im + É∇Li+1 + Mi

2³n + Éi

]

(3.13)

where Sφ[x] = sign(x)max(|x|−ϕ, 0) and all operations are element-wise. The value

of parameters ³n and ´n are chosen empirically. The parameters analysis shows that

the best values of ³n and ´n are 0.5 and 0.1 respectively. The detailed analysis is

discussed in section 3.2.2.6.

M and É : The Lagrangian multiplier matrix M and penalty term É can be updated as

follows:

Mi+1 = Mi + Éi(∇Li+1 − Ki+1);

Éi+1 = Éi¶, ¶ > 1.
(3.14)

The above iterative algorithm needs suitable stopping criteria to achieve an opti-

mal solution. We can either consider a threshold for the difference between Li+1 and

Li (i.e. Li
error) or work out the maximum number of iterations. We considered the

second option and found the maximum number of iterations using a large number of

experiments with various image datasets. We analyze the results and found that after

eight iterations, the proposed algorithm gives optimal results. Additionally, the al-

gorithm often runs a larger number of iteration without significant improvement and

results in the wastage of computation power if we consider the threshold difference.

The whole procedure of estimating refined illumination is summarized in Algorithm 1,
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Algorithm 1: Refined illumination estimation

Input: Proposed Structure-aware initial illumination L̂, ³n & ´n
Initialization: L0 = K0 = M0 = 0, É0= 1, ¶ = 1.5.

while not converged do

Update Li+1 via (3.11);

Update Ki+1 via (3.13);

Update Mi+1 via (3.14);

i=i+1;

end

Output: Refined illumination L=Li

which covers all details regarding variables initialization.

After estimation of illumination, we require to estimate reflectance. Remember

illumination is independent of color channel; however, reflectance depends on color

channel. The estimated reflectance is given as:

Rc = Ic/L (3.15)

where Rc is estimated reflectance of cth color channel and division is element-wise.

3.2.1.3 Adaptive Illumination Adjustment

In traditional approaches for illumination adjustment, finding a suitable value for the

adjusting factor (like gamma) for all kinds of images is not feasible because images

with different illumination require different values of adjusting factor for the same al-

gorithm. LIME and many other algorithms [3, 4, 2] use gamma correction for the

adjustment of lightness in the image. For Fig. 3.5, LIME suggests suitable value of

µ = 0.8, which works well for image ’Wall’. However, in the ’Shoe’ image of Fig.

3.5, LIME results in over-enhancement around the white corners of the shoe. One may

work out some lower value of gamma, say µ = 0.5. It addresses the problem of over-

enhancement (ignoring some dark patches) in the image ’Shoe’ but fails to improve

illumination in case of the image ’Wall’. Thus, the same gamma value is unable to deal

with different types of images. Even if an algorithm computes a different gamma value

for different images, i.e. image-dependent gamma, it will not handle images with vary-

ing illumination. A global value of gamma is unable to produce faithful enhancement

of all the regions in images with varying illumination. It can be observed from Fig. 3.6

that in one region (highlighted in the red box), LIME results in over-enhancement, and

the other region (highlighted in the green box), it gives under-enhancement. Thus, to

achieve natural enhancement, we require an adaptive illumination adjustment method
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(a) Input image (b) LIME, γ = 0.5 (c) LIME, γ = 0.8

(d) Input image (e) LIME, γ = 0.5 (f) LIME, γ = 0.8

Fig. 3.5: Lightness comparison in Shoe(top row) image and Wall(bottom row) image

after enhancement using LIME algorithm (with µ=[0.5,0.8]).

that adopts the value according to the local region of the low-light images. In this

work, we developed an adaptive illumination adjustment method that uses the local

illumination properties of the image. The adaptive illumination adjustment method

is adapting automatically according to the required enhancement in the regions. The

proposed approach eradicates over-enhancement and under-enhancement in different

regions of the image with varying illumination. Thus, it helps in providing natural en-

hancement for all types of images irrespective of illumination property. The proposed

illumination adjustment is given as:

Lf = L·log(L) (3.16)

where Lf is the adjusted illumination estimation, and · represents the element-wise

power operation. The logarithmic function improves consistency in illumination of

the image. The proposed adaptive illumination adjustment uses the properties of es-

timated illumination properties to manage the lightness in the different regions of an

image. The adaptive illumination adjustment improves the lightness of dark-regions
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(a) Input image (b) LIME (c) Proposed method

Fig. 3.6: Input image, LIME with µ=0.8, and NPLIE with proposed adaptive illumi-

nation adjustment.

and restricts the lightness of regions with normal illumination. Note that the images

are normalized between 0 to 1. The element-wise product of adjusted illumination and

reflectance provides an enhanced image. The final enhanced image is given as:

Icf = Rc ◦ Lf (3.17)

where Icf is final enhanced image.

3.2.2 EXPERIMENTAL RESULTS AND ANALYSIS

The proposed algorithm is analyzed and validated experimentally. The performance

is evaluated with both quantitative and visual assessments. The time complexity is

another important aspect to assess the performance of an algorithm. Thus, the com-

putational cost is also analyzed for the proposed approach. We tested the proposed

method using a large set of images (having varying illumination) taken from various

image datasets: LECARM [5], NPEA [1], ExDark Dataset [165], LOL Dataset [95],

EnlightenGAN [166], MIT-Adobe5k dataset [168] and NASA Database [167]. We

compare the performance of the proposed algorithm with other state-of-the-art algo-

rithms: NPEA [1], PIRE [2], LIME [3], SRLIME [4], LECARM [5], LSDD [6], Zero-

DCE [7], and CSDGAN [8]. We have used codes and parameters (of other algorithms)

as available on the author’s websites/or as provided by authors for a fair comparison.

3.2.2.1 Quantitative Assessment

The quantitative assessment is always desirable to validate any experimental result.

It may be easily verified that a quantitative measure occasionally may give better

value for poorly enhanced image and inferior value for a high-quality image and vice

versa. There is no single universally accepted quantitative assessment method avail-

able. There are two types of measures for quantitative assessments of the images:
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referential and non-referential measures. In case of referential measures, good qual-

ity ground truth images are required. It is nearly infeasible to find an image database

having pairs of good quality illuminated and dark (with varying illumination) version

of the images. Even if such data is created, the enhancement is limited by the quality

of the illuminated reference images. That is, the value of referential measure greatly

depends upon the quality of the reference image. Thus, we have used four quanti-

tative measures (frequently used in literature): Contrast Gain (CG) [2], Normalized

Discrete Entropy (DEN ) [169], Information maximization based No-reference quality

metric (NIQMC) [170], and Visual Information Fidelity (VIF) [171]. The measures for

quantitative assessment was applied to all images in all datasets except MIT-Adobe5k

dataset. In MIT-Adobe5k dataset, we have sampled 500 images that are either captured

in night or contains low-light regions. Then, the mean metric value was computed and

reported on all images of other datasets and sampled images of Adobe-MIT5k dataset.

Higher structural details contribute to better contrast. Thus, higher CG is desirable for

enhanced images. A higher value of DEN represents more details and better enhance-

ment. A higher value of NIQMC denotes better enhancement and more information in

an image. Higher value of VIF indicates better enhancement and more nature preserv-

ing enhancement. The results of the quantitative assessment for various algorithms are

shown in Table 3.1. The best values for quantitative metrics are bold. It may be noted

from Table 3.1 that NPLIE achieves the highest mean value (for CG, DEN , NIQMC,

and VIF). LIME achieves comparable results; however, it may be observed from the

visual analysis that LIME generates artifacts and provides poor color constancy. There-

fore, CG, DEN , NIQMC, and VIF metrics show that NPLIE is superior to the other

state-of-the-art algorithms.

Statistical assessment: Analyzing all results manually may infer erroneous conclu-

sions. Thus, we perform a statistical analysis of the results obtained by the proposed

algorithm and other contemporary algorithms. We perform paired z-test [172] for the

statistical analysis of the results. The pairs of proposed and other algorithms are used

to perform the z-test. To assess the performance, the null hypothesis (H0) and alternate

hypothesis (H1) are:

H0: The performance of NPLIE and algorithm X is same.

H1: The performance of NPLIE is better than algorithm X.

We conduct one-tail testing [173] to evaluate the enhancement. The probability of re-

jecting H0 (i.e. p-value [174]) is obtained using z-distribution table [172]. We reject

H0 for a significantly small p-value and accept H0 for a larger p-value. We test the

hypothesis for all four measures (i.e. CG, DEN , NIQMC, and VIF). Table 3.5 shows

the z-statistics and p-value for the pair of NPLIE and other algorithms. It may be noted
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Table 3.1: Mean values of Quantitative Measures for various algorithms

Metric NPEA PIRE LIME SRLIME LECARM LSDD Zero-DCE CSDGAN Proposed

CG 0.57 0.54 0.61 0.42 0.55 0.55 0.88 0.91 0.96

DEN 0.68 0.66 0.66 0.62 0.68 0.68 0.64 0.41 0.77

NIQMC 4.79 4.08 5.38 4.07 4.56 4.34 3.69 2.84 5.45

VIF 17.25 4.51 25.18 3.46 6.51 5.77 3.90 4.52 32.31

Table 3.2: Statistical analysis of one tail paired z-test for CG, DEN , NIQMC, and VIF

Metric Algorithm X NPEA PIRE LIME SRLIME LECARM LSDD Zero-DCE CSDGAN

CG
Z-stat 23.87 27.51 18.43 32.97 24.68 25.61 6.02 3.28

p-value 0 0 0 0 0 0 8.89E-10 5.25E-04

DEN
Z-stat 9.50 39.87 10.74 40.65 19.11 29.95 46.46 97.67

p-value 0 0 0 0 0 0 0 0

NIQMC
Z-stat 68.25 62.23 4.44 61.07 40.43 44.62 66.17 67.02

p-value 0 0 4.49E-06 0 0 0 0 0

VIF
Z-stat 5.67 12.69 2.13 13.21 11.64 11.95 12.59 12.21

p-value 7.22E-09 0 0.017 0 0 0 0 0
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3.2. Nature Preserving Low-light Image Enhancement (NPLIE)

from Table 3.5 that all p-values are less than 0.05; thus, we can reject the null hypoth-

esis (H0) with at least a 0.05 level of significance. Hence, we can accept the alternate

hypothesis that NPLIE achieves better enhancement than the other algorithms.

3.2.2.2 Effect of Box size on Initial Illumination

This section presents a detailed analysis of box size for initial illumination. Single box

size is incapable of providing desirable initial illumination. We propose initial illumi-

nation estimation using three box size i.e. bmin, bm and bmax. For proper estimation

of initial illumination, we need to perform textural smoothening while preserving the

structural details. We investigated the behavior of guided filters by varying the box size

over 500 different types of images i.e. covering all kind of detail variations. We have

shown three sample images for demonstration in Fig. 3.7. For the purpose of analysis,

we have divided an image into three categories: low detailed regions, high detailed

regions, and mixed regions (regions with low details for smaller boxes and high details

for larger boxes, and vice versa).

Case I - Low detailed regions: In Fig. 3.7(a) and 3.7(b), the area highlighted with

blue color shows the low detailed region in the image, and the blue line in the plot

shows variance with respect to multiple box sizes. In such regions, variance is low for

a smaller box, and there is a slight change in variance as we move from small box size

to high box size because of fewer details. The low variance of the box results in high

textural smoothening. In such regions, structural details are unavailable; thus, there

is no effect of the box size. Smaller box size in such regions provides slightly higher

smoothening than the larger box size, which can be observed from variance shown in

the plot of Fig. 3.7(a) and 3.7(b). In low detailed regions, box size has less effect

on variance as these regions do not contain structural details. Such regions perform

textural smoothening for small and large box sizes due to low variance.

Case II - High detailed regions: In Fig. 3.7(a) and 3.7(b), the area highlighted with

red color shows the high detailed region in the image, and the red line in the plot shows

the variance with respect to multiple box sizes. Such regions contain textural and high

structural details. Smaller boxes in such regions capture low variance, thus provides

smoothening of the textural details. In high detailed regions of an image, the variance

of a box increases sharply with an increase in box size up to maximum variance as

shown by the red curve of the plot in Fig. 3.7(a) and 3.7(b). High variance results in

low smoothening thus, results in the preservation of structural details. Moreover, the

smoothened image with a large box size appears to be faded as it tries to pull all values

towards the mean value of a large region. The smaller box size performs textural
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(a) Sample 1

(b) Sample 2

(c) Sample 3

Fig. 3.7: Effect of box size on variance. The plot shows variance of the box with

varying box size where x-axis denotes the box-size and y-axis denotes the variance of

respective box. In the plot, red line and blue line shows the effect of box size in region

highlighted with red color and blue color.

smoothening in the high detailed region, and the larger box size performs structural

preservation.

Case III - Mixed Regions: In Fig. 3.7(c), the area highlighted with red and blue

color shows the mixed region in the image. In Fig. 3.7(c), the area highlighted with

blue color in the sky is a low detailed region. In this region, the variance is low for

smaller box sizes, resulting in higher textural smoothening. However, when we in-

crease the box size after some limit, it will capture structural details due to which

variance will increase, resulting in structural preservation. On the other hand, the red

area and red curve in Fig. 3.7(c) shows a region where initially the variance increases

with an increase in box size, but once the box starts to capture the low detailed re-

gion, then the variance reduces. Thus, in such regions smaller box provides textural
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(a) Refined 1 (b) Refined 2 (c) Refined 3 (d) Refined 4

Fig. 3.8: Assessment of refined illumination.

smoothening, and the larger box provides structural details preservation with slight tex-

tural smoothening as it captures comparably higher variance. Moreover, intermediate

box size in such regions helps in structural preservation.

It is evident from the above analysis that the textural smoothening and structural

preservation both cannot be achieved simultaneously using a single scale guided filter.

As the textural smoothening and structural preservation depend on box size, charac-

teristics of the image, and the neighborhood; thus, multiple box sizes are required to

achieve textural smoothening and structural preservation simultaneously. The assess-

ment of proposed initial and refined illumination is discussed in the next section.

3.2.2.3 Assessment of Initial and Refined Illumination

We analyzed the effect of the proposed initial and proposed refined illumination by

comparing the performance of various combinations (listed below). The following

combinations of refined illuminations are used for assessment:

• Refined 1 : the bright channel (used in [5, 1, 3]) with optimization used in [5, 3].

• Refined 2 : the proposed initial illumination with optimization used in [5, 3].

• Refined 3 : the bright channel (used in [5, 1, 3]) with the proposed optimization

formulated in (3.4).

• Refined 4 : the proposed initial illumination with the proposed optimization

formulated in (3.4).

These combinations (refined 1 to 4) are chosen to analyze the performance of the

proposed initial illumination and the proposed optimization formulated in (3.4). The
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Fig. 3.9: Graph for quantitative comparison between several refined illumination

performance of the various combinations is analyzed by computing the performance

metrics on enhanced images. We performed an exhaustive assessment on a large set

of images, and some of the visual results are shown in Fig. 3.8. It is evident from

Fig. 3.8(a) that refined 1 provides over-enhancement near the stands in the top image

and near the cup in the bottom image. Refined 2 restricts the over-enhancement up

to an extent, as shown in Fig. 3.8(b). It shows that the proposed initial illumination

helps in restricting the over-enhancement. However, the overall enhancement is lim-

ited as refined 2 uses inadequate optimization. The result of refined 3 is shown in Fig.

3.8(c). Refined 3 provides comparably better performance than refined 1 and refined 2.

It shows that the proposed optimized refinement restricts the over-enhancement after

combining with the bright channel. It can be observed that the formulated optimiza-

tion provides superior enhancement as compared to the optimization used in [5, 3] with

the bright channel and the proposed initial illumination. Refined 4 achieves superior

enhancement than other combinations. Refined 4 uses proposed initial illumination

and proposed optimization, which helps in achieving better enhancement. Hence, the

refined 4 (proposed method) is superior to any other combination of the initial illumi-

nation and optimization.

Further, we performed quantitative analysis of the resulting images using Contrast

Gain (CG) [2], Normalized Discrete Entropy (DEN ) [169], Information maximization

based No-reference quality metric (NIQMC) [170], and Visual Information Fidelity

(VIF) [171]. For all performance measures, the higher value is the better. Details of the

measures are discussed in section 3.2.2.1. Fig. 3.9 shows the quantitative assessment of

the above-mentioned combinations (refined 1 to 4). Note: we normalized all measures

using division with the maximum for representation purposes. Fig. 3.9 shows that

refined 1 achieves good DEN and NIQMC. However, CG and VIF are not good in

case of refined 1. Refined 2 uses proposed initial illumination, which improves the
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(a) PIRE (b) LIME (c) SRLIME (d) NPLIE

Fig. 3.10: Assessment of proposed adaptive illumination adjustment. Top row shows

the results with traditional gamma (for illumination adjustment on various approaches),

and bottom row shows the results with proposed adaptive illumination adjustment on

various approaches.

value of CG, DEN , NIQMC, and VIF as shown in Fig. 3.9. In case of refined 3,

the initial illumination is not appropriate, which results in a decrease in the value of

all performance measures except CG. It is evident from Fig. 3.9 that the proposed

approach (i.e. refined 4) performs better than other combinations for all performance

measures.

3.2.2.4 Assessment of proposed adaptive illumination adjustment

We replaced the traditional gamma correction for lightness improvement with the pro-

posed adaptive illumination adjustment in PIRE, LIME, SRLIME, and NPLIE to ana-

lyze its effect. Fig. 3.10 shows the comparison of the proposed adaptive illumination

adjustment and the traditional gamma with PIRE, LIME, SRLIME, and NPLIE. It is

evident from Fig. 3.10 that the proposed adaptive illumination adjusment improves

the performance of PIRE [2], LIME [3], and NLPIE. There is a slight improvement

in lightness after using the proposed adaptive illumination adjustment with PIRE. Fig.

3.10(b) shows that there is a significant improvement in lightness when we use the

proposed adaptive illumination adjustment with LIME. Fig. 3.10(c) shows results of

SRLIME with traditional gamma and the proposed adaptive illumination adjusment.

The results of SRLIME degrades with proposed adaptive illumination adjustment as

its illumination estimation is inadequate. The proposed adaptive illumination adjust-

ment improves the overall lightness in case of NPLIE as shown in Fig. 3.10(d).

45



3.2. Nature Preserving Low-light Image Enhancement (NPLIE)

(a) Traditional gamma (for illumina-

tion adjustment)

(b) Proposed adaptive illumination

adjustment

Fig. 3.11: Quantitative assessment of proposed adaptive illumination adjustment.

The quantitative assessment of various algorithms with traditional gamma and pro-

posed adaptive illumination adjustment is shown in Fig. 3.11. It is shown in Fig.

3.11(a) and 3.11(b) that the values of all performance measures improve for PIRE,

LIME and NPLIE. However, the values of all measures decrease in case of SRLIME.

The decomposed components from SRLIME algorithm are dependent on each other

because of the optimization. In attempt to remove noise, SRLIME sometimes looses

minor details which leads to inadequate estimation of the components. The proposed

adaptive illumination adjustment uses the estimated illumination component for cor-

rection of lightness in the image, which is inadequate in SRLIME and may contain

the details of reflectance. Thus, the illumination of SRLIME after the proposed illu-

mination adjustment causes over-enhancement and distortion in the enhanced image.

Hence, the proposed adaptive illumination adjustment fails to achieve better enhance-

ment with SRLIME.

3.2.2.5 Visual Assessment

As discussed in the earlier section that there is no universally accepted quantitative

measure for image assessment. Thus, visual assessment of the results becomes a ne-

cessity. An exhaustive visual assessment of the results from the proposed algorithm

and other contemporary algorithms is performed. For easy reference, some of the re-

gions of the images are highlighted in colored boxes, and the magnified view is shown

adjacent to each image. The sample results are shown in Fig. 3.1 and Fig. 3.13-3.12.

The enhanced images of NPEA shows that it provides limited improvement of

lightness, less contrast and over-enhancement in some regions. The highlighted region

(red box) in Fig. 3.13(c) shows over-enhancement near cup. Fig. 3.14(c) shows less
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3.12: Results of different algorithms on sample images. (a) Input image; (b)

NPEA; (c) PIRE; (d) LIME; (e) SRLIME; (f) LECARM; (g) LSDD; (h) Zero-DCE; (i)

CSDGAN; (j) Proposed method.

improvement in lightness. In Fig. 3.12(b), enhanced image of NPEA is acceptable

but contrast is slightly low. PIRE provides limited enhancement as shown in Fig.

3.13(e), 3.14(e), and 3.12(c). It can be noted from the highlighted regions that PIRE

fails to provide appropriate lightness in the dark regions. The enhanced images of

LIME are shown in Fig. 3.13(g), 3.14(g), and 3.12(d). Fig. 3.13(g) shows LIME

results in poor color constancy. Moreover, enhanced image of LIME shows over-

enhancement in Fig. 3.13(h). SRLIME provides blurred details which causes poor
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t)

Fig. 3.13: Results of different algorithms on image corner. (a) Input image; (b) Patch of (a); (c) NPEA; (d) Patch of (c); (e) PIRE; (f)

Patch of (e); (g) LIME; (h) Patch of (g); (i) SRLIME; (j) Patch of (i); (k) LECARM; (l) Patch of (k); (m) LSDD; (n) Patch of (m); (o)

Zero-DCE; (p) Patch of (o); (q) CSDGAN; (r) Patch of (q); (s) Proposed method; (t) Patch of (s).
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t)

Fig. 3.14: Results of different algorithms on image road. (a) Input image; (b) Patch of (a); (c) NPEA; (d) Patch of (c); (e) PIRE; (f) Patch

of (e); (g) LIME; (h) Patch of (g); (i) SRLIME; (j) Patch of (i); (k) LECARM; (l) Patch of (k); (m) LSDD; (n) Patch of (m); (o) Zero-DCE;

(p) Patch of (o); (q) CSDGAN; (r) Patch of (q); (s) Proposed method; (t) Patch of (s).
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3.2. Nature Preserving Low-light Image Enhancement (NPLIE)

visibility of details as shown in Fig. 3.13(i), 3.14(i), and 3.12(e). Fig. 3.14(i) shows

that SRLIME provides limited lightness. Fig. 3.13(k), 3.14(k), and 3.12(f) shows the

results of LECARM. It provides limited enhancement in low-light images and faded

colors as shown in Fig. 3.14(l). In Fig. 3.13(m), 3.14(m), and 3.12(g), LSDD shows

blurring effect; thus, the details in the image is unclear. Moreover, LSDD fails to

achieve appropriate contrast. Zero-DCE provides limited enhancement as shown in

Fig. 3.13(o) and 3.14(o). CSDGAN fails to improve the lightness in the dark regions

as shown in Fig. 3.13(q) and Fig. 3.14(q). Both Zero-DCE and CSDGAN are deep-

learning based methods and fails to achieve better results in generalized cases. Fig.

3.13(s), 3.14(s) and 3.12(h) shows the result of proposed algorithm. It can be noted

that the proposed algorithm provides significant improvement of lightness in the low-

light images as highlighted in Fig. 3.13(t) and Fig. 3.14(t). Moreover, the proposed

algorithm restricts over-enhancement in light dominant region while enhancing the

details of the dark regions in the images with varying illumination condition as shown

in Fig.3.1(s), and 3.12(h). The visual comparison shows that the proposed algorithm

achieves the superior enhancement of lightness with adequate contrast.

3.2.2.6 Parameter Analysis

The proposed algorithm involves two regularization parameters ³n and ´n. To ana-

lyze the effect of these parameters, we performed exhaustive experimentation, and it is

found that the values of ³n and ´n should vary between 0 and 1. Since the optimization

problem (3.4) is multi-objective optimization, considering negative values of ³n and

Fig. 3.15: Mean contrast gain for different pairs of (³n,´n). The contour denotes that

pairs inside the contour have values based on the contour color. The colorbar represents

the value of the contrast gain with respect to the color from the surface plot.
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3.2. Nature Preserving Low-light Image Enhancement (NPLIE)

´n does not make any sense. Parameters ³n and ´n regularize structural information

and smoothening of textural details, respectively. Thus, if either of the parameter ³n

and ´n have a value greater than 1, then one of the objectives (textural or structural

details) will be dominant. For example, if parameter ³n is increased beyond value 1,

the structural details will be dominant. Moreover, while capturing structural details,

textural details may also get enhanced due to use of the gradients in the related term.

It may result in unnatural enhanced images. Similarly, a large value of ´n may result

in smoothening of structural details as well. This results in over-smoothen refined illu-

mination. To avoid the dominance of the term related to the regularization parameter

and limit the adverse effect, we consider values of ³n and ´n between 0 and 1. To

arrive at optimal values of the parameters ³n and ´n, we perform experimentation over

500 images of diverse illumination and consider their mean contrast gain as a measure

of enhancement. However, to have a better correlation between image qualities and

values, we also analyze the best values using visual analysis. The results are plotted in

Fig. 3.15. It may be noted that the best values of ³n and ´n are 0.5 and 0.1, respec-

tively. Thus at ³n = 0.5, better structural details are captured without over-enhancing

textural details. In case of ³n values less than 0.5, structural information of the image

is not captured adequately. On the other hand, for ³n greater than 0.5, textural details

are captured along with structural details. The parameter ´n at value 0.1 provides de-

sirable smoothening of textural details without losing structural details. For case of ´n

less than 0.1, smoothening of textural details is inadequate, while in case of ´n greater

than 0.1 smoothening of structural details occurs as well. In our experimentation, the

empirical values of parameters generate satisfactory results.

3.2.2.7 Computational Time

The computational time complexity plays an important role in the performance anal-

ysis of any algorithm. Thus, the computational time analysis of the various algorithm

is performed on a set of 200 images with size 350x229. Table 4.4 shows the average

computational time per image. In Table 4.4, (G) shows that the algorithm is running

on ubuntu with titan-rtx GPU and 128GB RAM. Zero-DCE requires very lesser time

then the proposed NPLIE. However, Zero-DCE is running on GPU whereas proposed

NPLIE is using cpu for computations. Furthermore, the visual results of the proposed

NPLIE is better than Zero-DCE. We use MATLAB 2018a on Windows10 running at

8GB RAM and core i5 processor @ 3.40GHz for CPU based algorithms. NPEA, SR-

LIME, and LSDD are slower than other algorithms. These algorithms are not useful

for real-time applications due to slow convergence. LECARM takes slightly lesser
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3.3. DSE-Net: Deep simultaneous estimation network

Table 3.3: Average computational time per image (in seconds)

NPEA PIRE LIME SRLIME LECARM LSDD Zero-DCE NPLIE

2.33 0.22 0.39 3.64 0.11 1.53 0.01(G) 0.21

time than the proposed algorithm. However, the visual quality of enhanced images

produced by the proposed method is much better.

3.3 DSE-Net: Deep simultaneous estimation network

This section presents a novel branched encoder-decoder based deep simultaneous es-

timation network (DSE-Net) for low-light image enhancement. The proposed method

first decomposes the input image into reflectance and illumination component using the

proposed branched encoder-decoder model. Since the reflectance and illumination of

an image contain different characteristics thus, both components require distinct focus

for estimation. The proposed branched encoder-decoder model uses a separate de-

coder to estimate the reflectance and illumination. DSE-Net estimates new reflectance

by element-wise division of the input image and the estimated illumination. After the

decomposition of an image, the proposed DSE-Net aims at improving illumination us-

ing another deep network and then combines the improved illumination with the new

reflectance. Finally, the proposed method performs image refinement to improve the

visual context of the resultant image. The proposed model is capable of dealing with

both low-light images and images with non-uniform illumination. The proposed low-

light image enhancement is two-fold. First, the proposed approach deals with lightness

by simultaneous decomposition and adjustment of the estimated illumination. The sec-

ond module focuses on colour, contrast adjustment, and other visual aesthetics (like

implicit noise) of the final enhanced image.

The major contributions of DSE-Net are summed up as follows:

1. We proposed a novel branched encoder-decoder architecture for simultaneous

estimation of reflectance and illumination components. The proposed branched

encoder and decoder network uses separate decoders to estimate illumination

and reflectance from the encoded image.

2. We proposed a new loss function for image decomposition, which considers

the characteristics of illumination and reflectance. The proposed loss function

helps the decomposition network in textural smoothing of the illumination and

estimating reflectance with finer details.
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3.3. DSE-Net: Deep simultaneous estimation network

3. We proposed an image refinement module to improve the colour, contrast, and

other details (by suppression of intrinsic noise) in the enhanced results to im-

prove the quality further.

4. We conduct extensive experiments to show the effectiveness of our approach and

its competitiveness with various state-of-the-art alternatives.

3.3.1 The Proposed Method

This section presents the proposed deep simultaneous estimation network (or DSE-

Net) for low-light image enhancement. The framework of DSE-Net is illustrated in

Fig. 3.16. The proposed DSE-Net contains three modules: image decomposition, illu-

mination adjustment, and image refinement module. The image decomposition module

works on the retinex model. The estimated illumination needs to be adjusted to adjust

the lightness of a low-light image. DSE-Net achieves correction of lightness using the

proposed illumination adjustment module. The proposed DSE-Net derives one more

reflectance map, called Rnew, by performing element-wise division of the input image

and the estimated illumination. It ensures that the details lost in the decomposition

process are still preserved and used in further modules. Further, the proposed method

combines the adjusted illumination and the estimated new reflectance to obtain the im-

age with proper lightness. The lightness-adjusted image sometimes needs refinement

to resolve artifacts that arise due to lightness correction. The image refinement module

focuses on improving the color, contrast, and other visual aesthetics of an image. The

following subsections contain a detailed description of the proposed method.

3.3.1.1 Image Decomposition

We propose a novel branched encoder-decoder architecture for image decomposition

that inputs an image and decomposes it into reflectance and illumination simultane-

ously. The proposed image decomposition uses two decoder blocks that focus on the

estimation of reflectance and illumination separately. Since reflectance and illumina-

tion have different characteristics; thus, both components are required to be treated

separately using different decoders. The encoder of the proposed image decomposi-

tion module contains multiple down-blocks for feature extraction and encoding of an

image. The down-block is a combination of convolution, max-pooling, and channel-

attention [175], the detailed architecture is shown in Fig. 3.18. The proposed decoders

are a set of up-blocks to estimate the reflectance and illumination of an image. The

up-block contains upsampling, convolution, and channel attention; the detailed archi-
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Fig. 3.16: The proposed framework of DSE-Net. From the functionality perspective, it is mainly divided into three modules, including

image decomposition, illumination adjustment, and image refinement module.
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3.3. DSE-Net: Deep simultaneous estimation network

tecture is shown in Fig. 3.18. The proposed DSE-Net uses encoder and branched

decoder as shown in Fig. 3.17. The dotted line in Fig. 3.17 denotes the multiple num-

bers of intermediate blocks. DSE-Net contains five down-blocks and five up-blocks in

the experiment.

Decomposing an image into two components is challenging as no ground-truth

information is available for reflectance and illumination. To overcome the issue, we

designed a loss function that incorporates various constraints related to reflectance and

illumination. The proposed model uses the pairs of low-light images and ground truth

images [Il, Ih] to train the decomposition network. Researchers [3, 1] discussed various

illumination properties like local smoothness with structural-related details. Thus, we

proposed the illumination constraint in the decomposition loss to maintain the relative

structure of the illumination component with local smoothing, which can be denoted

as:

Lill =
∑

i∈{l,h}

∥max(I)i − Li∥1 +
∥

∥

∥

∇Li

(∇Pi + ϵ)

∥

∥

∥

1

(3.18)

where ∇ denotes the first order derivative (∇ = ∇h + ∇v) across horizontal and

vertical axis, max denotes the pixel-wise maximum operation, P denotes max(R) and

ϵ is the threshold value that restricts the value of the denominator term. Note that low

gradient values characterize texture details, while high gradient values characterize

structural details. The reflectance of an image contains properties related to the object

details and textures. Thus, we introduced a reflectance constraint to maximize the

contrast, structure, and texture-related details. The reflectance constraint focuses on

the improvement of structural and textural details in the estimated reflectance, which

can be expressed as:

Lref = ∥Rl − Rh∥
2
2 +

∑

i∈{l,h}

∥∇(max(Ii)) ∗ exp(c ∗ ∇max(Ri))∥1 (3.19)

where ∥·∥22 denotes the squared l2 norm, Rl denotes the reflectance of low-light image,

Rh denotes the reflectance of ground truth image. The term ∥Rl − Rh∥1 measures the

dissimilarity between reflectance of low-light image (Rl) and reflectance of ground-

truth image (Rh). Further, the reflectance contains the structure and texture-related

details. Thus, the second term ∥∇(max(Li)) ∗ exp(c ∗ ∇max(Ri))∥1 maximizes the

structural and textural details in estimation of the reflectance component. The proposed

DSE-Net decomposes an image into two components and the combination of the com-

ponent reconstructs the image. Thus, reconstruction loss must be used to maintain the
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3.3. DSE-Net: Deep simultaneous estimation network

Fig. 3.17: Framework of proposed image decomposition module of DSE-Net. I, R

and L denotes the input image, reflectance and illumination respectively.

properties of the retinex model. It can be expressed as:

Lrecon = ∥Il − Rl · Ll∥
2
2 + ∥Ih − Rh · Lh∥

2
2 (3.20)

In any data-driven approach, the loss function plays a vital role in obtaining ef-

fective results. In this work, we proposed illumination and reflectance constraints in

the decomposition loss to achieve effective decomposition of a low-light image. The

proposed loss function leverages the prior knowledge to effectively decompose an im-

age into two components (i.e., reflectance and illumination) with the proposed novel

branched encoder-decoder. The proposed combined loss for the image decomposition

network can be expressed as:

Ltotal = willLill + wrefLref + wreconLrecon (3.21)

where will, wref , and wrecon are the weights assigned to the losses which are decided

empirically. The values of the reconstruction loss is 1, illumination constraint is 0.2,

and reflectance constraint is 0.12.

The proposed decomposition network consists of two branches corresponding to

the two desired outputs. We modified the bottleneck layers in the proposed branched

encoder-decoder to propose a new architecture. The proposed encoder-decoder splits

the bottleneck into two parts to preserve the properties of reflectance and illumination

components. The architecture comprises convolutional (Conv) and rectified linear unit

(ReLU) layers along with the pooling and upsampling operations. Finally, it uses

the sigmoid activation function to estimate reflectance and illumination. The detailed

architecture is shown in Fig. 3.16.
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3.3. DSE-Net: Deep simultaneous estimation network

Fig. 3.18: Architecture design of UP-Block and Down-Block of DSE-Net.

In contrast to various illumination estimation techniques, the proposed method si-

multaneously estimates both the reflectance (R) and illumination (L) that, takes ad-

vantage of reconstruction, and produces better results. Further, we derive one more

reflectance map, called Rnew, by performing an element-wise division operation on

the input image and the estimated illumination. It makes sure that the details lost in

the decomposition process are still preserved and can be used in further modules. Af-

ter decomposition, DSE-Net requires lightness correction, for which we proposed the

illumination adjustment module.

3.3.1.2 Illumination Adjustment

The adjustment of lightness plays a vital role in low-light image enhancement. The

estimated illumination from the decomposition module contains low lightness, which

needs adjustment to achieve enhancement. However, direct amplification may some-

times lead to over/under-enhanced results. Thus, an illumination adjustment module

is required to treat lightness’s dynamic nature in low-light images. We proposed a

data-oriented illumination adjustment module, which can adaptively treat lightness.

The proposed adjustment module analyses the illumination characteristics at multiple

levels using the variation of receptive fields. Firstly, it processes the estimated illumi-

nation on a large (normal) scale; then, it uses downsampling to cover the larger region

in the receptive field for illumination analysis. The proposed illumination adjustment

module is U-Net-like architecture with channel attention. With the help of multi-level

features of estimated illumination, the proposed model tries to capture the global and

local distribution of the illumination. The adjustment in the estimated illumination of

low-light image is needed to improve the lightness in the enhanced image. The illu-

mination adjustment module requires a loss function to improve the lightness in the

estimated illumination. Thus, the loss function must focus on improving the adjusted
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3.3. DSE-Net: Deep simultaneous estimation network

illumination (i.e. from illumination adjustment module) with some ground-truth im-

age. To maintain the properties of illumination, we are using a regularization term as

well. The loss function to perform the illumination adjustment is:

L = ∥Rl · Ladj − Ih∥
2
2 +

∥

∥

∥

∇Ladj

(∇Pl + ϵ)

∥

∥

∥

1

(3.22)

where, Ladj denotes the adjusted illumination, and P denotes max(R). The first term

∥Rl · Ladj − Ih∥
2
2 is used to reduce the difference between the illumination-adjusted

image (Rl · Ladj i.e. product of reflectance and adjusted illumination) and the ground

truth image (Ih). Moreover, the smooth image is considered as illumination by many

researchers [3, 1]. Thus, the second term ∥∇Ladj/(∇Pl + ϵ)∥1 maximizes the smooth-

ing in the illumination component by suppressing the textural details.

The algorithm then performs the element-wise multiplication of Rnew and adjusted

illumination to get the brightened image Inew. In order to improve the color, contrast,

and other visual details, the proposed method concatenates the image Inew with previ-

ously estimated R and feeds it to the image refinement module.

3.3.1.3 Image Refinement

The proposed method restores many details and obtains satisfactory results after the

image decomposition. We propose the image refinement module to deal with various

distortions introduced in the previous modules. It aims to produce sharp and natural-

looking outputs while suppressing intrinsic noise. The image refinement network takes

the concatenation of the lightness-adjusted image and the estimated reflectance com-

ponent as input and produces the final enhanced image.

The proposed refinement module is an encoder-decoder architecture (similar to

the decomposition module without the branched decoder) with skip connections and

channel attention. The refinement module attempts to refine the unwanted artifacts and

other issues from the lightness-adjusted image. The architecture uses multiple down-

blocks and up-blocks. The down and up blocks are connected with a skip connection

between them. With the help of down and up-block, the refinement module can focus

on different parts of the image with varying receptive fields. The combination of down-

blocks forms the encoder, and the combination of up-blocks forms the decoder. The

layer details are somewhat similar to the image decomposition network except for the

introduction of skip connections, which is illustrated in Fig. 3.16.

The proposed algorithm trains the image refinement network using a multi-objective

loss function. The proposed loss function leverages three losses, namely, information
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3.3. DSE-Net: Deep simultaneous estimation network

loss, color loss [176], and MSE loss. The three losses are computed between the final

enhanced output and the ground truth image. In low-light images, it is challenging

to enhance the details present in dark regions. Thus, to restore the details and pre-

serve other information, the proposed method leverages the information loss [177].

We measure the information loss between the enhanced images (Ienh) and the ground-

truth images (Ih). Instead of direct pixel-wise difference, the information loss uses

the Euclidean distance between the activation maps obtained by the rectified linear

unit (ReLU) activation of the VGG-16 network, which is pre-trained on the ImageNet

dataset.

Linfo = ∥È(Ih)− È(Rl)∥
2
2, (3.23)

where È() is the feature map obtained after 5th activation block of VGG-16 network.

The color loss [176] is obtained using Gaussian blur on images and then taking the

pixel-wise difference. The final combined loss for the refinement unit can be expressed

as:

Ltotal = winfoLinfo + wcolorLcolor + wmseLmse (3.24)

where w represents the weights assigned to the losses. This network can adjust color

and contrast and deal with inherent noise to produce natural-looking output. The em-

pirical values of winfo, wcolor and wmse are 2, 1, and 2 respectively.

3.3.2 Experiments

3.3.2.1 Implementation Details

The proposed method employs the LOL dataset [95] that provides 500 pairs of low-

light images and corresponding ground-truth images. The dataset is split into two parts,

450 pairs for training and the remaining ones for evaluation. Moreover, we generate

1000 synthetic image pairs for training purposes. To generate synthetic images, we

have corrected the lightness in the images using gamma values in 0.4 to 0.8. The patch

size and the batch size are 128×128 and 10, respectively, for the image decomposition

network. For the image refinement network, the patch size is taken as 256 × 256, and

the batch size is taken as 10. The proposed approach employs an ADAM optimizer

with a learning rate of 10−4 and other default parameters. We implement our work

using the Tensorflow framework and train the entire network on NVIDIA-Titan-RTX

GPU and Intel Xeon CPU with 128GB RAM.
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3.3. DSE-Net: Deep simultaneous estimation network

3.3.2.2 Quantitative Comparisons

We performed comparison among the proposed DSE-Net and other state-of-the-art al-

ternatives including LIME [3], STAR [106], GLADNet [94], KinD [96], ZeroDCE [7],

and CSDGAN [8]. We perform the experiments by taking images from some widely

used datasets, including LOL [95], LIME [3] MEF [179], NPEA [1], and DICM [180].

The LOL dataset comprises low-light and ground-truth image pairs. In contrast, the

other datasets only include the images captured in diverse lighting environments and

have no ground-truth. The results for various methods are obtained by using source

codes that are available publicly following the suggested parameters. Further, We ana-

lyzed the proposed method in comparison to the state-of-the-art methods in an exhaus-

tive manner.

We employ four metrics involving Peak Signal-to-Noise Ratio (PSNR), Structural

Similarity (SSIM) [178], Blind Image Spatial Quality Evaluator (BRISQUE) [181],

and Universal Image Quality Index (UQI) [182] for quantitative assessments. A higher

value for the metrics involving PSNR, SSIM, and UQI demonstrates better image qual-

ity, while a lower value is desirable for the BRISQUE score. PSNR, SSIM, and UQI

are full-reference metrics and thus calculated using the testing image pairs available

in the LOL dataset. On the other hand, BRISQUE is a no-reference metric and thus

estimated using images from all the employed datasets.

Table 3.4 shows the quantitative analysis of PSNR, SSIM, BRISQUE, and UQI

metrics for LIME [3], STAR [106], GLADNet [94], KinD [96], ZeroDCE [7], CS-

DGAN [8], and the proposed DSE-Net. It can be noted from Table 3.4 that the pro-

posed DSE-Net outperforms the other state-of-the-art methods. SSIM value of the

proposed method shows the higher quality of structural details in the enhanced image

Table 3.4: Quantitative comparisons by using various image quality assessment met-

rics. The best results are shown in red and the second best are shown in blue color.

Method PSNR SSIM BRISQUE UQI

LIME [3] 12.610 0.719 23.561 0.740

STAR [106] 10.070 0.413 25.506 0.345

GLADNet [94] 16.183 0.791 22.253 0.926

KinD [96] 15.225 0.815 22.334 0.914

ZeroDCE [7] 13.570 0.744 21.370 0.793

CSDGAN [8] 18.059 0.787 26.556 0.543

DSE-Net 21.109 0.823 17.183 0.928
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Table 3.5: Statistical analysis of one tail paired t-test between algorithm X and DSE-Net

Metric Algorithm X LIME [3] STAR [106] GLADNet [94] KinD [96] ZeroDCE [7] CSDGAN [8]

PSNR
t-stat 17.355 20.515 7.969 10.544 13.523 4.855

p-value 7.24E-23 5.28E-26 1.07E-10 1.68E-14 1.84E-18 6.36E-06

SSIM
t-stat 9.888 14.358 2.796 0.938 3.954 3.39

p-value 4.14E-13 1.74E-19 0.004 0.176 1.23E-04 6.77E-04

BRISQUE
t-stat 52.257 159.066 41.236 85.850 33.348 72.838

p-value 6.15E-45 1.84E-68 5.23E-40 2.19E-55 1.21E-35 6.48E-52

UQI
t-stat 7.346 19.437 0.325 1.121 6.145 9.344

p-value 9.69E-10 5.61E-25 0.373 0.134 6.99E-08 9.12E-13
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3.3. DSE-Net: Deep simultaneous estimation network

compared to other methods. The proposed method achieves the best values for all the

quantitative measures. The second best values for the different measures are achieved

by different approaches, as shown in Table 3.4. Thus, the quantitative measures vali-

date the superiority of the proposed DSE-Net over other techniques. The best results

are shown in red, and the second-best is shown in blue color.

Statistical assessment: The manual analysis of all results may lead to erroneous

conclusions. Thus, the statistical analysis of the other alternatives and DSE-Net is

performed to analyse the results. We performed paired t-test [183] to analyse the results

in statistical manner. The pairs of other methods (named, algorithm X) and proposed

DSE-Net are used to perform t-test. The null and alternate hypothesis to perform the

t-test and asses the performance are:

H0: Performance of DSE-Net and algorithm X is same.

H1: Performance of DSE-Net is better than algorithm X.

We evaluated the enhancement by conducting one-tail testing. we obtained p-value

(i.e. probability for rejecting null hypothesis) using t-distribution table [183]. The H0

is accepted for a large p-value and rejected for a smaller p-value. The hypothesis is

tested using four measures (i.e. PSNR, SSIM, BRISQUE, and UQI). The t-statistics

and p-value for the pair of other methods and proposed DSE-Net is shown in Table 3.5.

It can be observed from Table 3.5 that most of the p-values are less than 0.05 (except

SSIM in case of KinD, and UQI in case of GLADNet and Kind). Hence, the alternate

hypothesis can be accepted which shows that DSE-Net achieves better enhancement.

3.3.2.3 Ablation Study

The proposed DSE-Net contains three sub-modules for low-light image enhancement.

We perform various ablation studies to demonstrate the impact of each component of

DSE-Net in achieving the desired output.

Ablation of image decomposition module: In the decomposition module of DSE-

Net, the proposed branched encoder-decoder uses channel attention and multiple con-

straints (in loss). Table 3.6 shows the influence of each component in low-light image

enhancement. The values in Table 3.6 show the mean PSNR and SSIM [178] score

of the output image from DSE-Net without the mentioned component. The ablation

of the respective model (as per Table) changes only the mentioned part of the model

while keeping other modules the same as the final module. It can be observed from

Table 3.6 that the proposed DSE-Net performs superiorly with respect to other varia-

tions. Further, it can be noted that each component contributes to the improvement of

the proposed DSE-Net.
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Table 3.6: Ablation study of Image Decomposition network. SSIM and PSNR values

are shown below for DSE-Net without using mentioned module for training.

Method PSNR SSIM

without Channel Attention 17.43 0.78

Without Illumination Constraint 19.22 0.79

Without Reflectance Constraint 18.38 0.73

Without Reconstruction loss 17.09 0.72

DSE-Net 21.11 0.82

(a) (b) (c) (d) (e)

Fig. 3.19: Ablation study of Illumination adjustment module. (a) Input; (b) Estimated

illumination; (c) Estimated reflectance; (d) Adjusted illumination; (e) Output.

Ablation of illumination adjustment module: As per the retinex model, mul-

tiplication of the estimated components generates the original image (low-light). To

improve the lightness in an image, the estimated illumination needs adjustment. Thus,

DSE-Net uses an illumination adjustment module to improve the lightness in an im-

age. Fig. 3.19 shows the intermediate results i.e., estimated illumination, estimated

reflectance, adjusted illumination, and the final enhanced image. It can be observed

from Fig. 3.19 that the estimated illumination contains lightness properties that need

correction to improve the lightness in the final image. The adjusted illumination shows

that the proposed illumination adjustment module performs lightness correction to im-

prove the overall lightness of the image. The final output shows that the enhanced

image contains regions with proper lightness in the scene. Without the illumination

adjustment module, the proposed model generates the original image without any cor-

rection in lightness.

Ablation of image refinement module: In the proposed DSE-Net, the image re-

finement module helps in the improvement of color, contrast, and other visual aesthet-

ics of the final output. The refinement module uses a combination of loss and channel

attention to improving the image. Table 3.7 shows the influence of each component

of refinement module in low-light image enhancement. The values in Table 3.7 shows

the mean PSNR and SSIM [178] score of the output image from DSE-Net without the

mentioned component. The ablation of the respective model (as per Table) changes
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3.3. DSE-Net: Deep simultaneous estimation network

Table 3.7: Ablation study of Image Refinement module. SSIM and PSNR values are

shown below for DSE-Net without using mentioned module for training.

Method PSNR SSIM

without Channel Attention 19.11 0.80

Without information loss 18.84 0.78

Without color loss 19.22 0.80

Without MSE loss 17.28 0.77

DSE-Net 21.11 0.82

only the mentioned part of the model while keeping other modules the same as the

final module. It can be noted that each component contributes to the enhancement of

the final result and refinement module of the proposed DSE-Net. The proposed model

achieves superior performance than other combinations mentioned in Table 3.7.

3.3.2.4 Visual Comparisons

We present the visual comparisons of various low-light images captured under diverse

lighting conditions. The sample results are given along with the details.

Fig. 3.20 shows a ‘castle’ image with extremely dark surroundings and the cor-

responding enhanced results using various methods. It can be observed that all the

methods, except STAR and KinD, give a competitive performance in the restoration

of details. One may notice that the castle and its stand are entirely hidden in the in-

put, as shown in Fig. 3.20(a). STAR fails in producing a bright output, as shown in

Fig. 3.20(e), and similarly, the lightness improvement is limited in the case of LIME

and CSDGAN. Though GLADNet restores the details, it produces unnatural output, as

shown in the marked patch illustrated in Fig. 3.20(h). It can be observed that GLAD-

Net introduces some artifacts near the light source. KinD smooths out natural details

while handling noise and produces a blurred output, as visible in Fig. 3.20(i). The

proposed approach outperforms other methods in preserving the naturalness and col-

ors, as illustrated by Fig. 3.20(o). Further, the proposed method effectively deals with

the problem of over-enhancement, as shown in Fig. 3.20(p), and produces a bright

output.

Fig. 3.21 shows the results obtained for a ‘landscape’ image. It can be observed

that GLADNet improves the visibility but alters the color of the sky, as shown in Fig.

3.21(g). STAR performs unsatisfactorily in detail restoration and brightness improve-

ment, as shown in Fig. 3.21(e) and 3.21(f). KinD produces over-smooth results, as

observed in Fig. 3.21(j), and it can be shown that the texture details are also wiped
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Fig. 3.20: Castle. (a) Input; (b) Marked patch of input; (c) LIME; (d) Marked patch of LIME; (e) STAR; (f) Marked patch of STAR;

(g) GLADNet; (h) Marked patch of GLADNet; (i) KinD; (j) Marked patch of KinD; (k) ZeroDCE; (l) Marked patch of ZeroDCE; (m)

CSDGAN; (n) Marked patch of CSDGAN; (o) Ours; (p) Marked patch of ours.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Fig. 3.21: Landscape. (a) Input; (b) Marked patch of input; (c) LIME; (d) Marked patch of LIME; (e) STAR; (f) Marked patch of STAR;

(g) GLADNet; (h) Marked patch of GLADNet; (i) KinD; (j) Marked patch of KinD; (k) ZeroDCE; (l) Marked patch of ZeroDCE; (m)

CSDGAN; (n) Marked patch of CSDGAN; (o) Ours; (p) Marked patch of ours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.22: Toys. (a) Input; (b) LIME; (c) STAR; (d) GLADNet; (e) KinD; (f) ZeroDCE; (g) CSDGAN; (h) Ours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.23: Glass-Door. (a) Input; (b) LIME; (c) STAR; (d) GLADNet; (e) KinD; (f) ZeroDCE; (g) CSDGAN; (h) Ours.
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out. CSDGAN tries to improve the contrast; however, the lightness improvement is

not proper. The proposed method and LIME work best, as shown in Fig. 3.21(o) and

3.21(c), respectively. However, LIME often introduces artifacts and performs over-

enhancement, as illustrated by the small white spots in Fig. 3.21(d). The proposed

method achieves superior enhancement. The enhanced result contains more details

and sharpness as compared to other methods.

Some more examples are provided in Fig. 3.22 and 3.23. From the observations, it

can be observed that LIME can restore the details but often over-enhances the images.

KinD focuses on noise removal, and as a result, it produces blurred outputs and restores

a lesser amount of details in contrast to other methods. GLADNet and ZeroDCE per-

form well in terms of details restoration but often accompany noise and poor colors.

Though STAR and CSDGAN give natural outputs, however, they somewhat fail in

terms of lightness improvement. The proposed method shows excellent performance

in terms of details restoration and outperforms other methods by producing less noisy,

bright, and natural outputs.

3.3.2.5 Computational Time

The computational cost is an important performance aspect of any algorithm. Thus, the

analysis of computational cost for various algorithm is performed on a set of 500 im-

ages with size 600× 400. Table 4.4 shows the average computational time per image;

(C) in table 4.4 shows that the algorithm runs on CPU. We run all algorithms (except

LIME and STAR) on ubuntu running at 128GB RAM and Intel Xeon processor with

nvidia titan-RTX gpu. For LIME and STAR, we used matlab running on windows 11

with i9 processor and 64GB RAM. STAR is slower than other algorithms. STAR algo-

rithm is not useful for real-Time applications due to slow convergence. ZeroDCE takes

slightly lesser time than the proposed DSE-Net because it uses light-weight network to

estimate curve parameter. Further, the proposed DSE-Net produces results with better

visual quality in the enhanced images.

Table 3.8: Average computational cost per image (in seconds)

LIME(C) STAR(C) GLADNet KinD ZeroDCE CSDGAN DSE-Net

0.47 2.02 0.39 0.37 0.06 0.11 0.09
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3.4 Application in Computer Vision

One of the primary inspirations behind low-light image enhancement is to upgrade

the performance of vision tasks. Thus, we demonstrate the potency of the proposed

method in upgrading the performance of object detection and recognition task. We

used the Tensorflow Object Detection API, which can detect the objects in images us-

ing machine learning and classify them into various categories. We test some low-light

images and their corresponding enhanced results using the API. Further, the minimum

support is taken as 0.25 for detecting an object.

Fig. 3.24 shows some of the examples. It can be seen that the API wrongly iden-

tifies the kitchen utensils and interprets them as mechanical fans in the first case. In

contrast, things are correctly recognized after enhancement by the proposed method.

In the second case, there is a significant improvement in the performance of object

detection and recognition task. The object detection API could not recognize any-

thing for the low-light image while it clearly labels the pillow and furniture for the

enhanced counterpart. The developed enhancement methods help in improvement of

object recognition; however, the time required is not suitable for real-time applications.

Further, the quantitative analysis shows a limited improvement in performance under

low-light conditions.

Fig. 3.24: The performance of Object Detection API on the images before (left) and

after (right) enhancement by the proposed DSE-Net.

70



3.5. Summary

3.5 Summary

In this chapter, we presented two new approaches for low light image enhancement.

The first approach is named as NPLIE which is based on estimation of illumination

from a low light image. NPLIE gives natural contrast enhancement for low-light im-

ages. Further, we proposed a new adaptive illumination adjustment which helps in

providing appropriate lightness to all regions in the images with varying illumination.

The experimental analysis shows that the proposed algorithm improves dark regions

of the image without over-enhancing properly illuminated areas of the same image.

The exhaustive experimentation over a large number of images with different varia-

tions in the illumination conditions to check the performance of the proposed NPLIE

is performed. The visual assessment shows that the proposed NPLIE maintains color

constancy over the object under varying light conditions.

The second approach is named as DSE-Net which develops a deep network for si-

multaneous estimation of reflectance and illumination. DSE-Net uses a novel encoder-

decoder architecture and decomposes images for low-light image enhancement and

formulates a multi-objective loss function that considers the retinex theory. After de-

composition of the image, the proposed method performs deep illumination adjustment

for effective treatment of low-light regions. Further, we proposed an image refinement

sub-module that performs the color and contrast adjustment with suppression of im-

plicit noise in the image. The experimental results show that the proposed approach

works adequately in restoring the details hidden in the dark areas. Furthermore, exten-

sive experiments conducted on various challenging images show the superiority of the

proposed method over the state-of-the-art approaches.
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Chapter 4
Single Image Dehazing

This chapter presents a new single-image dehazing algorithm based on variational op-

timization. The chapter includes related work, estimation of transmission map, esti-

mation of atmospheric light, experimental analysis, and conclusion.

4.1 Introduction

Computer vision tasks require images with appropriate visibility of the scene. How-

ever, sometimes the environment is not favorable to capture an image with good vis-

ibility, resulting in hazy images, rainy images, many other types of degraded images.

In a real-world scenario, the atmosphere contains tiny particles that cause reflection,

refraction, and light scattering due to bad weather conditions. Thus, outdoor images

captured in lousy weather suffer from degraded visibility. While capturing an image

in such conditions, the blending of atmospheric light and the transmission leads to a

hazy image. Most vision-based tasks like object detection, fruit picking robot, and 3D

reconstruction depend significantly upon the image quality. The hazy images contain

faded colors, low contrast, and fewer details. Due to haze in an image, feature extrac-

tion becomes challenging that degrades the performance of the vision-based tasks. To

improve the performance of vision-based tasks in a hazy environment, we must remove

the effect of haze from the image. Image dehazing enhances the colors and contrast of

an image by removing or reducing the effect of haze thus, improves the performance of

the vision-based tasks. An inferior image dehazing method may cause undesirable ar-

tifacts and loss of crucial details. Therefore, developing a compelling image dehazing

algorithm is a challenging task.

Most of the image dehazing algorithms suffer from one or more of the following

limitations:
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• limited generalization in case of learning-based dehazing methods.

• Over or under enhancement in dehazed image.

• Undesired artifacts and halo effects.

• Insignificant haze removal i.e. restricted image dehazing.

• Distortion of colors in dehazed images.

• Loss of finer details in the dehazed images.

In this chapter, we present a new single image dehazing algorithm using variational

optimization-based transmission estimation to overcome these issues. The estimation

of transmission map, atmospheric light, and scene radiance from an image without

prior knowledge is ill-posed. The transmission map can be estimated from structural

details (dominant edges of a scene, objects, and haze) of an image. To estimate the

structure-aware transmission map, we leverage the notion of adaptive bilateral filtering

[184]. Further, We formulate and solve a new variational optimization to estimate

final transmission map. The objective function of variational optimization function

helps in achieving the textual suppression and structural preservation. The significant

contributions are summarized as follows:

• We propose a new method for the estimation of structure-aware initial trans-

mission. We leverage the concept of adaptive bilteral filtering to achieve the

strcuture-aware initial transmission.

• We formulated a new variational optimization problem with regularization terms

to preserve the structural details in the final transmission while smoothing the

textural details. We used the Alternative Direction Minimization (ADM) algo-

rithm [164] to solve the formulated variational optimization.

• We performed an exhaustive analysis of the proposed approach with state-of-

the-art algorithms on various datasets [20, 125, 185, 186, 187] using qualitative

and visual analysis.

4.2 The Proposed Approach

This section presents the proposed variational optimization-based single image de-

hazing. Koschmieder et al. [26], and McCartney [27] presented the fundamental
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scattering-based physical phenomenon which is used as the basis for dehazing. The

formulation is given by:

I(x) = L∞Ä(x) exp
−βd(x) +L∞(1− exp−βd(x)) (4.1)

where x is a pixel on a 2D coordinate plane, I is the observed image intensity, L∞

is the atmospheric light, d is the distance between object and lens, Ä is the reflectance

of the object in the frame, and ´ is the atmospheric attenuation constant.

I is the result of the medium of transmission and light reflected from the object(s)

in the frame, essentially representing the hazy image or the direct attenuation, and

t(x) represents the transmission exp−βd(x). Hence, reflectance times atmospheric light;

L∞Ä(x), is the actual haze-free image given by J(x). Simplifying the equation and

replacing atmospheric light with A, we obtain:

I(x) = J(x)t(x) + A(1− t(x)) (4.2)

From (4.1) and (4.2), we can infer that the estimation of two unknowns (i.e. A and

t(x)) in the physical model is ill-posed. However, if depth information (d(x)) is known

then we can estimate J(x), A and t(x) from I(x). We have another image formation

model which is known as Retinex model [10, 13, 188]. The retinex model considers an

image as a product of reflectance and illumination. Retinex model is a special kind of

physical model. If we consider Atmospheric light equal to zero then the second part of

the physical model will become zero. We can write the physical model with A equal

zero as:

I(x) = J(x)t(x) (4.3)

It becomes similar to the retinex model. When the effect of atmospheric light is not

present in an image then this model is used for image enhancement. In absence of

atmospheric light, the scene radiance acts as reflectance and transmission map acts as

illumination.

The atmospheric light can be considered to be constant through out a scene for

all practical purposes. However, transmission varies with respect to space (medium).

A hazy image captures the information about transmission map in terms of haze and

object details present in it. Textural details (minor details of the scene, and texture of

objects) of a scene does not affects the transmission map. However, structural details

(dominant edges of a scene, objects, and haze) plays a major role in estimation of

transmission map. The details of transmission map estimation is discussed in Section

4.2.1. Fig. 4.1 shows the framework of the proposed variational optimization-based
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Fig. 4.1: Framework of Variational optimization based single image dehazing.

single image dehazing. Firstly, the proposed method estimates the structure-aware

initial transmission. After estimating the initial transmission, we estimate the final

transmission using the formulated variational optimization and initial transmission. We

further estimate the uniform atmospheric light. Finally, the proposed method estimates

the scene radiance for the dehazed output.

4.2.1 Estimation of Transmission map

In hazy images, the haze increases with increase in depth of the scene from the camera.

The effect of haze is higher for the object at the higher depth and lesser to the closer

object. The transmission map varies throughout the image (space). Thus, the transmis-

sion map capture the structural properties of the scene. The scene at larger depth will

have different value of transmission than the scene which is at closer depth. Authors

[20, 125] use our notion loosely by using foreground, background, and depth estima-

tion to estimate the transmission map. However, these approaches have limited suc-

cess. The information related to transmission map can be estimated in a better manner
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by using the structural information of the haze. To achieve the structural information,

we have to smooth the textural details without loosing the structural details. Thus, we

propose a structure-aware transmission map estimation. We propose structure-aware

transmission map, which uses structural-details, properties and position of a scene in

the image. The proposed method uses variational optimization for the estimation of

the final transmission map. The variational optimization-based method requires an ini-

tial transmission to estimate the final transmission map. It uses fidelity between the

initial and final transmission map. Thus, the initial transmission has a defining effect

on the estimation of the final transmission map. We estimate structure-aware initial

transmission map that contains structural details with smooth texture. To achieve ade-

quate textural smoothing with appropriate structural details, we use the Scale Adaptive

Bilateral Filtering (SABF) [184]. SABF is a method of textural smoothing that uses bi-

lateral filtering with adaptive scale. The proposed initial transmission can be expressed

as:

T̂ = S(max(Ic)) (4.4)

where T̂ is the initial transmission, max is the pixel-wise max operation, I is the

input image, and S is the operator which performs Scale adaptive bilateral filtering.

The proposed approach leverages variational optimization to estimate the final

transmission map from the initial transmission. Thus, we formulated the variational

optimization function with initial transmission and regularization terms. The optimiza-

tion function performs structure-preserving smoothing for transmission estimation. To

achieve the structure-aware transmission map, we proposed to solve the following op-

timization problem:

min
T

||T̂ − T||22 + ³||∇Im −∇T||22 + ´||GT ◦ ∇T||1 (4.5)

where T is the final transmission map, T̂ is initial transmission as obtained by

(4.4), ∇ denotes first-order derivative operator, ∇Im denotes maximum of ∇ from all

channels of I (i.e., input image), GT is the weight based on the initial transmission,

|| • ||p is the Lp norm operator, and ³ & ´ is the parameter to stabilize the effect of

both terms.

The first L2 norm term (i.e. ||T̂ − T||22) of the optimization problem provides

fidelity between initial and final transmission map. The second L2 norm term (i.e.,

||∇Im − ∇T||22) tries to maximize the structural details in the transmission. The L1

norm term (i.e. ||GT ◦ ∇T||1) endeavours to minimize the textural details and provide

the structural-preserving smoothing. To achieve the structural-preserving smoothing
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L1 norm term uses weight map GT . The weight map GT can be computed as-

GT =

√

G2
T (x) + G2

T (y) (4.6)

where GT (x) and GT (y) are the weight map along the horizontal and vertical di-

rections, which are defined as:

GT (x) = −log(∇xT̂) (4.7)

GT (y) = −log(∇yT̂) (4.8)

where ∇x and ∇y are the first-order derivatives along the horizontal and vertical

directions. The weight map provides higher values for the textural details and lower

values for structural details. Thus, the minimization of the optimization problem sup-

presses the textural details which helps in structure-preserving smoothing.

The Alternative Direction Minimization (ADM) method can provide an efficient

solution to the optimization problem in (4.5). It can be seen in (4.5), both term (i.e.

L1 and L2 norm) contains T. Thus, an auxiliary variable K is introduced to separate

both terms which makes it easy to solve. The introduction of K adds a constraint i.e.

∇T = G. The equivalent optimization problem can be written as:

min
T

||T̂ − T||22 + ³||∇Im − K||22 + ´||GT ◦ K||1 s.t.∇T = K (4.9)

The lagrangian multiplier can provide a single optimization function by combining

the equality constraint. The augmented lagrangian function can be represented as:

L = ||T̂ − T||22 + ³||∇Im − K||22 + ´||GT ◦ K||1 + φ(M,∇T − K) (4.10)

where φ(M,∇T − K) = ω
2
||∇T − K||22 + ïM,∇T − Kð and ï·, ·ð is pixel-wise

multiplication, É controls the convergence rate to the solution [164]. ADM can solve

the optimization problem easily. The solution iteratively updates one term by keeping

other as fixed at that time. The optimization problem is divided two into sub-problems,

one for solution of T, and other for solution of K. The decomposition of (4.10) can be

expressed as:

Ti+1 = min
T

||T̂ − T||22 + φ(Mi,∇T − Ki) (4.11)

Ki+1 = min
K

³||∇Im − K||22 + ´||GT ◦ K||1 + φ(Mi,∇T − Ki) (4.12)

The sub-problem in (4.11) contains terms from (4.10) which contains transmission
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map. Further, the sub-problem in (4.12) contains all term related to equality constraint

in (4.10).

Gathering terms related to T for ith iteration, It is a conventional least square prob-

lem. To solve the sub-problem we differentiate it w.r.t. to T and putting it equal to

0:

T =
2T̂ + DT (ÉK − M)

2 + ÉDTD
(4.13)

where D is a matrix which contains Dx and Dy, Dx and Dy denotes the differ-

ence along horizontal and vertical direction. Inverses, transpose, and multiplication of

large matrices may be computationally costly. Thus, we use the 2D-FFT method by

considering the condition of the circular boundary, and compute T as:

Ti+1 = F−1

(

F
(

2T̂
)

+
∑

d∈{x,y} F
c
(

Dd(É
iKi − Mi)

)

2 + Éi
∑

d∈{x,y} F
c
(

Dd

)

· F
(

Dd

)

)

(4.14)

where F denotes 2D-FFT operation, F c denotes complex conjugate of 2D-FFT

operation, F−1 denotes the inverse of 2D-FFT operation and 2 is a matrix equivalent

to image size having all elements 2. Here, all operations are element-wise.

Considering only K- related terms from (4.10) to obtain (4.12) i.e. sub-problem

related to K for ith iteration. To solve the (4.12), we take derivative with respect to K

and equate it to zero. Shrink operation maintains threshold of an image based on the

base of shrink. Thus, we solved the K sub-problem using shrink operation:

Ki+1 = S β·GT

2α+ωi

[

2³∇Im + É∇Ti+1 + Mi

2³ + Éi

]

(4.15)

where Sφ[x] = sign(x)max(|x| − ϕ, 0) and, all operations are element-wise. The

values of parameters ³ and ´ are chosen empirically. The following computation pro-

vides the Lagrangian M and penalty term É:

Li+1 = Li + Éi(∇Ii+1 − Ki+1);

Éi+1 = Éi¶, ¶ > 1.
(4.16)

To provide an optimal solution, the above iterative process requires an stopping

criteria. Empirically it is noted that the proposed algorithm provides adequate estima-

tion of transmission map after eight iterations. The other stopping criteria of threshold

difference many times runs for a larger time without any improvement in the transmis-

sion. Thus stopping after eight iteration helps in achieving adequate transmission map

and avoids the longer running time.
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After estimation of the transmission map, the proposed algorithm estimates the

final transmission as:

T1 = A− T (4.17)

The final transmission (T1) uses the variational optimization and the duality [189]

to facilitate the estimation of transmission.

4.2.2 Estimation of Atmospheric light

He et al. [20] proposed DCP, a method for an atmospheric light estimation that helps

in achieving dehazed results. The atmospheric light in DCP is distinct for all color

channels, which sometimes causes artifacts in the enhanced image. Moreover, it uses

a neighborhood approach in transmission estimation, which increases the time re-

quired to estimate atmospheric light. The atmospheric light is independent of the color

and properties of the object. Thus, atmospheric light should be the same across all

color channels. Therefore, we propose Dark-channel based uniform atmospheric light,

which is independent of the color channel of the image. To estimate the proposed at-

mospheric light, we consider the maximum operation of the pixel-wise minimum of a

color image. The proposed approach estimates the atmospheric light in fewer efforts.

It is also constant across all color channels, which helps estimation of the transmission

and the final dehazed image. The proposed atmospheric light can be represented as:

A = max
(

min
c∈R,G,B

Ic, ϵ
)

(4.18)

where I is the input image, c denotes the color channel, and A denotes the proposed

atmospheric light. The proposed estimation of atmospheric light requires less time as

it does not use a kernel to estimate atmospheric light.

Finally, we estimate the dehazed image based on the estimated atmospheric light

and final transmission map. The dehazed image can be expressed as:

Jc =
Ic − (1− T1)A

max(T1, ϵ)
(4.19)

where ϵ is the threshold of the image, and c is the color channel of RGB color

space.
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4.3 Experimental results and Assessment

We analyzed the proposed algorithm on images from several databases: DCP [20],

CAP [125], RESIDE database [185], O-Haze database [186], and HazeRD [187]. The

quantitative and visual assessment is used to analyse the performance of proposed

method with state-of-the-art algorithms: DCP [20], CAP [125], Dehazenet [133], AOD

[134], FFA [139], GCA [135], and DHS [145]. The codes and parameters of the other

algorithms are taken from the authors’ provided source to ensure a fair comparison.

Further, the discussion regarding parameter analysis ensures the superior performance

of the proposed approach with the best values of the parameters.

4.3.1 Quantitative Analysis

Quantitative analysis is always desirable to validate any experimental result. However,

it is a challenging task to develop a quantitative measure in the case of image dehazing.

There have been several attempts to design such a measure. It may be easily verified

that a quantitative measure may give better value for a poorly dehazed image and a low

value for a high-quality enhanced image. Unfortunately, there is no single universally

accepted quantitative assessment method available. We have used three quantitative

methods (frequently used in literature): PSNR, SSIM [190], and VIF[171].

Peak Signal-to-Noise Ratio (PSNR) measures the ratio between the highest inten-

sity of the image and corrupting noise. PSNR considers the strength of information

with respect to the noise. Higher PSNR denotes adequate signal quality with respect to

the noise. Thus, higher PSNR shows better enhancement. PSNR analyses the signal to

noise ratio. It does not provide any additional assessment related to image content and

dehazing. SSIM (Structural Similarity Index) [190] estimates similarity between two

images based on the structural features. It measures similarity between two images

based on mean, standard deviation, and variance. In addition, it analyses the struc-

tural degradation in the enhanced image with respect to the reference image. A higher

SSIM value denotes better enhancement as it shows lesser degradation in the enhanced

image. VIF (Visual Information Fidelity) [171] evaluates the naturalness of the en-

hanced image based on the image fidelity between reference and enhanced image. To

evaluate the naturalness, it uses the naturalness scene statistics model. A higher VIF

value denotes the lesser distortion and less amount of information loss. Thus, a higher

VIF value shows better enhancement. We perform exhaustive experimentation on a

large set of images. Table 4.1, Table 4.2, and Table 4.3 show the minimum, maximum,

median, mean, and standard deviation values of SSIM, PSNR, and VIF, respectively.
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Table 4.1: Quantitative assessment for various algorithms using statistical values of PSNR.

Metrices DCP [20] CAP [125] DehazeNet [133] AOD [134] FFA [139] GCA [135] DHS [145] Ours

Min 9.69 8.54 7.99 9.55 12.71 7.45 8.83 10.16

Max 20.53 20.17 20.64 20.04 22.14 19.24 22.88 23.74

Median 16.97 14.48 14.22 15.55 16.21 16.52 14.24 17.10

Mean 16.88 14.32 16.73 14.92 17.50 17.13 16.02 17.60

Std. Dev. 3.23 2.90 4.16 2.99 3.48 2.97 4.34 2.84

Table 4.2: Quantitative assessment for various algorithms using statistical values of SSIM.

Metrices DCP [20] CAP [125] DehazeNet [133] AOD [134] FFA [139] GCA [135] DHS [145] Ours

Min 0.53 0.45 0.35 0.40 0.47 0.37 0.57 0.55

Max 0.94 0.92 0.89 0.92 0.88 0.93 0.91 0.94

Median 0.82 0.80 0.75 0.76 0.76 0.85 0.78 0.88

Mean 0.81 0.83 0.77 0.77 0.69 0.82 0.83 0.87

Std. Dev. 0.12 0.11 0.13 0.12 0.15 0.11 0.10 0.10

Table 4.3: Quantitative assessment for various algorithms using statistical values of VIF.

Metrices DCP [20] CAP [125] DehazeNet [133] AOD [134] FFA [139] GCA [135] DHS [145] Ours

Min 0.18 0.16 0.21 0.22 0.27 0.23 0.28 0.29

Max 0.98 0.98 0.80 0.89 0.79 0.66 0.76 1.03

Median 0.49 0.46 0.43 0.51 0.56 0.44 0.42 0.61

Mean 0.51 0.44 0.47 0.48 0.54 0.49 0.44 0.59

Std. Dev. 0.19 0.18 0.17 0.19 0.17 0.15 0.17 0.16

8
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Note best values in the table are bold, and the second-best values are underlined. The

minimum statistical measure shows the worst-case performance of the method. The

maximum statistical measure shows the best-case performance of the various method.

The median, mean, and standard deviation show the statistics for average-case perfor-

mance.

The statistical measure for PSNR values of various algorithms is shown in Table

4.1. It can be noted from Table 4.1 that the proposed method achieves the best mean

PSNR value. The standard deviation shows that the deviation in PSNR values of the

proposed method is less in comparison to other state-of-the-art methods. The minimum

statistical measure shows that the proposed method achieves the second-best value in

the worst case. Table 4.2 shows statistical measures for SSIM values of various algo-

rithms. It can be observed from Table 4.2 that the proposed algorithm achieves the best

mean value. The standard deviation of SSIM for the proposed method shows that most

values remain near the mean value. The proposed method achieves the second-best

SSIM value in the case of minimum statistical measures. Table 4.3 shows statistical

measures for VIF values of various algorithms. It can be observed from Table 4.3

that the proposed algorithm achieves the best mean value. The proposed algorithm is

second-best in the case of standard deviation. However, the mean value of the pro-

posed method is better than GCA. The standard deviation of GCA with a lower mean

VIF value means that most of the VIF values will remain near the mean statistics. The

quantitative assessment shows that the proposed method is achieving superior values

for most of the quantitative measures.

4.3.2 Visual Assessment

Due to the unavailability of universally accepted quantitative measures, visual assess-

ment became mandatory for image assessment. The visual assessment for the proposed

algorithm with other contemporary algorithms is performed extensively. Few sample

results are shown in Fig. 4.2 to Fig. 4.6. For every test result image from Fig. 4.2 to

Fig. 4.6, the input image is shown in (a), and the result of the proposed algorithm is

shown in (q).

The input image ’Canon’ as shown in Fig. 4.2(a), depicts a hazy image, and the

zoomed-in section of the marked patch is shown in Fig. 4.2(b). The result of DCP

is shown in Fig. 4.2(c) along with the zoomed-in image of the highlighted region.

DCP provides adequate dehazing. However, it can be noticed from Fig. 4.2(d) that the

image is slightly smoother and contains fewer details, which is undesirable. Fig. 4.2(e)

shows the results of CAP. It can be observed from Fig. 4.2(f) that CAP is unable to
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 4.2: Canon. (a) Input image; (b) Patch of input image; (c) DCP; (d) Patch of DCP;

(e) CAP; (f) Patch of CAP; (g) DehazeNet; (h) Patch of DehazeNet; (i) AOD; (j) Patch

of AOD; (k) FFA; (l) Patch of FFA; (m) GCA; (n) Patch of GCA; (o) DHS; (p) Patch

of DHS; (q) Proposed method; (r) Patch of Proposed method.

remove haze properly and smoothed out the image, which results in the loss of details.

The result of DehazeNet as shown in Fig. 4.2(g). Fig. 4.2(h) shows that the details

are properly visible, and haze removal is also not adequate. AOD fails to eradicate the

effect of haze from the image as shown in Fig. 4.2(i). The result of FFA is shown in

Fig. 4.2(k). It can be observed from Fig. 4.2(l) that the haze removal using FFA is

inadequate. The result of GCA is shown in Fig. 4.2(m). GCA achieves image dehazing

but at the cost of image lightness which causes detail loss as shown in Fig. 4.2(n). The

results of DHS is shown in Fig. 4.2(o). The artifacts are evident in the result of DHS as

shown in Fig. 4.2(p). The result of the proposed algorithm is shown in Fig. 4.2(q). The

proposed algorithm achieves superior image dehazing with proper contrast as shown in

Fig. 4.2(r). The proposed algorithm achieves better color enhancement than the other

algorithms.

The ’House’ image and results of various algorithms are shown in Fig. 4.3. The

result of DCP is shown in Fig. 4.3(c). It can be observed from Fig. 4.3(d) that DCP

generates few undesired artifacts near the edges. Further, the details in the images

are slightly smoother. Fig. 4.3(e) shows the results of CAP, which provides a limited

enhancement in the image. CAP provides the blurred and dull details, which can be

noticed from Fig. 4.3(f). It is evident from Fig. 4.3(d) that DehazeNet provides Over-

enhanced results, which degraded the image quality. The result of AOD is shown in
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 4.3: House. (a) Input image; (b) Patch of input image; (c) DCP; (d) Patch of DCP;

(e) CAP; (f) Patch of CAP; (g) DehazeNet; (h) Patch of DehazeNet; (i) AOD; (j) Patch

of AOD; (k) FFA; (l) Patch of FFA; (m) GCA; (n) Patch of GCA; (o) DHS; (p) Patch

of DHS; (q) Proposed method; (r) Patch of Proposed method.

Fig. 4.3(e). The haze removal in AOD is acceptable, as shown in Fig. 4.3(f). However,

the colors in the enhanced image of AOD are faded. Haze can be observed from the

results of FFA and GCA as shown in Fig. 4.3(k) and 4.3(m), respectively. The result

of DHS is shown in Fig. 4.3(h); it generates various artifacts. Further, DHS distorts

the color of the input image, which is undesirable. Fig.4.3(q) shows the result of

the proposed algorithm. It can be noted from Fig. 4.3(r) that the proposed algorithm

achieves better colors with adequate image dehazing. The superior details in the results

of the proposed algorithm can be observed from Fig. 4.3(q).

The input image ’Flags’ and its results from various contemporary algorithms is

shown in Fig. 4.4. The result of DCP is shown in Fig. 4.4(c), which shows adequate

image dehazing. However, the details in the image are not clearly visible due to the

smoothing effect. Fig. 4.4(e) shows the results of CAP, which provides limited haze

removal as thin haze is visible in the results. It can be observed from Fig. 4.4(f) that

the details in the result of CAP are inadequate. In Fig. 4.4(g), the DehazeNet algorithm

provides over-enhancement in the results due to over-exposure. AOD and FFA fail to

remove the haze from the image as haze are evident in the results as shown in Fig.

4.4(e) and Fig. 4.4(f) respectively. The result of GCA is shown in Fig. 4.4(m), which

shows that GCA fails in removing overall haze as haze is available in many regions.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 4.4: Flags. (a) Input image; (b) Patch of input image; (c) DCP; (d) Patch of DCP;

(e) CAP; (f) Patch of CAP; (g) DehazeNet; (h) Patch of DehazeNet; (i) AOD; (j) Patch

of AOD; (k) FFA; (l) Patch of FFA; (m) GCA; (n) Patch of GCA; (o) DHS; (p) Patch

of DHS; (q) Proposed method; (r) Patch of Proposed method.

In Fig. 4.4(o), DHS provides haze removal; however, artifacts and color distortion

are evident. Fig. 4.4(i) shows the results of the proposed algorithm. The proposed

algorithm provides better contrast and lightness. Further, the structural details of the

output are better than the rest of the algorithms.

In Fig. 4.5, the input ’Forest’ image and result from other algorithms is presented.

The presence of artifacts is evident in the result of DCP as shown in Fig. 4.5(d).

The results of CAP is shown in Fig. 4.5(e). It shows that the detail enhancement is

limited. The result of DehazeNet shows over enhancement which causes loss of details

as shown in Fig. 4.5(g). The result of AOD is shown in Fig. 4.5(i). In AOD, details

and color enhancement is inadequate. FFA, GCA, and DHS is unable to perform image

dehazing as shown in Fig. 4.5(k), 4.5(m) and 4.5(o) respectively. The haze is visible

in the results of FFA, GCA, and DHS. The result of the proposed algorithm is shown

in Fig. 4.5(q). The proposed algorithm performed superior image dehazing than other
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 4.5: Forest. (a) Input image; (b) Patch of input image; (c) DCP; (d) Patch of DCP;

(e) CAP; (f) Patch of CAP; (g) DehazeNet; (h) Patch of DehazeNet; (i) AOD; (j) Patch

of AOD; (k) FFA; (l) Patch of FFA; (m) GCA; (n) Patch of GCA; (o) DHS; (p) Patch

of DHS; (q) Proposed method; (r) Patch of Proposed method.

contemporary algorithms. Further, the proposed algorithm provides better colors in the

enhanced image along with better details in the image.

The results of various contemporary algorithms for the ’Sea’ input image are shown

in Fig. 4.6. Fig. 4.6(c) shows the results of DCP. It can be observed from Fig. 4.6(c)

and 4.6(d) that it provides a slight smooth output which results in fewer details. The

result of CAP is shown in Fig. 4.6(e). The details in the result of CAP are not clearly

visible, as shown in Fig. 4.6(f). DehazeNet algorithm provides high exposure in few

regions of the image as shown in Fig. 4.6(g). Further, It fails to preserve the color

properties of the image. The result of AOD is shown in Fig. 4.6(i). It can be noted

from Fig. 4.6(i) that the lightness in the enhanced image is low that results in loss

of crucial details. FFA fails to provide image dehazing as shown in Fig. 4.6(k). The

result of GCA shows fewer details due to low lightness, as shown in Fig. 4.6(m). It

can be noted from Fig. 4.6(o) that DHS fails to remove haze effectively. Fig. 4.6(q)

shows the results of the proposed algorithm. The proposed algorithm achieves image

dehazing with adequate contrast and color enhancement. The details in the result of

the proposed algorithm are better than the result of other algorithms.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 4.6: Sea. (a) Input image; (b) Patch of input image; (c) DCP; (d) Patch of DCP;

(e) CAP; (f) Patch of CAP; (g) DehazeNet; (h) Patch of DehazeNet; (i) AOD; (j) Patch

of AOD; (k) FFA; (l) Patch of FFA; (m) GCA; (n) Patch of GCA; (o) DHS; (p) Patch

of DHS; (q) Proposed method; (r) Patch of Proposed method.

4.3.3 Limitations

The discussion in the above section shows that the proposed method works better than

other contemporary methods. The highlighted and zoomed-in areas of Fig. 4.5 shows

that all methods fail to provide significant dehazing for smaller objects at larger depth

(i.e. leaves in the background) in the image. The result of DCP and DHS is shown

in Fig. 4.5(d) and 4.5(p), respectively. The highlighted area of DCP and DHS shows

the generated artefacts near the edges which degrade the visibility of smaller objects

at larger depth. The result of CAP, AOD, FFA, and GCA shown in Fig. 4.5(f), 4.5(j),

4.5(l), and 4.5(n), respectively. These algorithms fail to provide dehazing for the ob-

jects at larger depths. Dehazenet provides over-exposure in the final image which

results in degraded visibility of the background as shown in Fig. 4.5(h). It can be ob-

served from Fig. 4.5(r) that for smaller objects at larger depths, our method provides

limited dehazing. The details are better than other contemporary algorithms, still it

need some improvement for smaller objects at larger distance. The proposed method

considers atmospheeric light to be constant across throughout the image. However, in

night-time hazy images the atmospheric light is not same with-in the scene. Thus, the

proposed algorithm may fail to deal with night-time hazy images with non-uniform

atmospheric light.

87



4.3. Experimental results and Assessment

Fig. 4.7: Mean SSIM for different values of α and β.

4.3.4 Parameter Analysis

The proposed dehazing method uses α and β regularization parameters. We performed

exhaustive experimentation to analyse the effect of regularization parameters. It is

found that regularization parameters should vary between 0 and 1. Since positive val-

ues of regularization parameters contribute effectively in the variational optimization.

The parameter α and β regulates the preservation of structural details and smoothing

of textural details, respectively. Thus, if any of the regularization parameters have a

value greater than one, then the respective term will dominate. If the value of α is in-

creased beyond one, then structural details will dominate. In addition to the structural

details, it may enhance the textural details due to the use of gradient in the respective

term. On the other hand, if the value of β is greater than one, then it may result in the

smoothing of structural details along with textural smoothing. We consider the value of

regularization parameters between zero and one to avoid the dominance of the respec-

tive regularization term and limit the adverse effect. We selected SSIM to analyse the

regularization parameter as it is one of the most widely used quantitative assessment

measures. Fig. 4.7 shows the parameter analysis for various values by keeping the best

value of other parameters. It may be observed from Fig. 4.7 that the proposed method

works best for α = 0.5 and β = 0.1. The performance of the proposed algorithm

degrades for other values of α and β as they affect the structural details and textu-

ral smoothing. In our experimentation, the empirical values of parameters generate

satisfactory results.

4.3.5 Computational Time

The run time of the various algorithm is analysed on a large set of images. The average

run time per image is shown in Table 4.4. We analyze the run time of the algorithms
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on a system with 8GB RAM, Tesla k80 GPU, and Core i5 processor @ 3.40GHz. We

resized all images to 512x512 for a fair comparison. Further, we used codes and pa-

rameters from the authors’ provided source. The algorithms which run on CPU are

denoted with (C) with average running time in Table 4.4. On the other hand, (G) with

the average run time in Table 4.4 shows that the algorithm uses GPU for computa-

tion. It can be observed from Table 4.4 that the proposed algorithm outperforms all

algorithms except GCA [135]. GCA uses GPU for execution which provides faster

computations to the algorithms. The above analysis shows that the proposed algorithm

faster than most of the other contemporary algorithms.

Table 4.4: AVERAGE RUN TIME PER IMAGE (IN SECONDS)

DCP CAP DehazeNet AOD FFA GCA Ours

1.96 (C) 2.26 (C) 2.63 (C) 2.63 (C) 0.36 (G) 0.19 (G) 0.21 (C)

4.4 Summary

In this chapter, we proposed a single image dehazing algorithm based on the proposed

variational optimization. The method uses the notion of same transmission for object

at the same depth of any structure. The method develops a variational optimization

for estimation of structure-aware transmission map using the initial transmission. The

property of duality and atmospheric light is used to estimate the final transmission. The

uniform atmospheric light is developed to provide better dehazing. The experimental

assessment shows that the proposed algorithm improves the color and structure of the

hazy images. Further, it restricts the over-enhancement of the regions with lesser haze.

The exhaustive experimental assessment over a large number of images from several

datasets shows that the algorithm yields dehazed images with natural visual quality.

The visual analysis shows that the proposed method achieves better haze removal than

the other algorithms.
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Chapter 5
Object Recognition in Low-light

Environment

This chapter presents a new multi-exposure refinement network for low-light object

detection (MRN-LOD). The chapter includes the dataset for object detection in the

low-light environment, multi-exposure feature extractor, Adaptive refinement network,

experimental results and analysis, and the conclusion.

5.1 Introduction

Recent object recognition methods use a common architectural framework that in-

cludes the backbone, neck, and head as the components. The backbone focuses on fea-

ture extraction from the input image using pre-trained convolutional neural networks

(CNN). The neck uses a feature pyramid network to process the extracted features

to facilitate the recognition1 of objects of different sizes. The processed features are

used by the detection head to detect object classes and anchor boxes. Many varia-

tions of these components are developed to improve the performance and efficiency

of object recognition methods. It is difficult to extract features from low-light im-

ages using existing backbones, which affects the detection performance. This chapter

presents a new Multi-exposure refinement network for low-light object recognition to

achieve better performance. MRN-LOD contains a multi-exposure feature extraction

network (MFE) and an adaptive refinement network (ARN). We propose the notion

of feature extraction from low-light images and multi-exposure images to facilitate

low-light feature extraction. An adaptive refinement network is developed to refine

the extracted features of low-light images using multi-exposed images. In MRN-LOD,

1Note: In this chapter, recognition and detection both means same i.e. object recognition.
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feature extraction uses our MFE and refinement is performed using the ARN. The re-

fined features are used by the detection head to recognize and localise the objects. The

key contributions of the proposed MRN-LOD are as follows:

1. The notion of feature extraction from multi-exposure images to improve the per-

formance of low-light object recognition. The multi-exposure images are gener-

ated using a single low-light image with distinct exposure parameters.

2. The development of an adaptive refinement network to refine the features of

input low-light images. The ARN provides better features from low-light images

to achieve improved detection performance in low-light conditions.

3. A new multi-exposure refinement network for low-light object detection is pro-

posed, which extracts features directly from the low-light image without explicit

use of enhancement and adaptively refines the extracted feature.

4. Extensive experimentation demonstrates the superior performance of the pro-

posed method compared to other contemporary methods for low-light object

recognition.

5.2 The Proposed Method

The proposed method focuses on object detection from low-light images, employing

the combination of our multi-exposure feature extraction and adaptive refinement net-

work. Unlike existing methods that predominantly prioritize image enhancement prior

to detection, where detection performance heavily relies on the effectiveness of the

enhancement algorithm, our method takes a different approach. It eliminates the need

for image enhancement methods and significantly reduces both the time and compu-

tational resources required. To achieve this, we introduce a multi-exposure feature

extraction technique that directly extracts features from low-light images, eliminating

the need for separate enhancement methods. Additionally, we introduce an adaptive re-

finement network designed to process and refine the features extracted from low-light

images using multi-exposed images. Finally, MRN-LOD employs a detection head to

precisely localize objects within the images and assign them to their respective classes;

the architecture of MRN-LOD is given in Fig. 5.1.
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Fig. 5.1: MRN-LOD: Multi-exposure refinement network for low-light object detection. It uses the proposed MFE for extracting feature
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the detection head for the prediction of bounding boxes with respective classes.
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5.2. The Proposed Method

5.2.1 Multi-exposure feature extraction

Low-light images often exhibit a mixture of well-illuminated regions, thanks to local

light sources, and areas plagued by poor visibility due to insufficient light. This vari-

ation in lighting conditions within a single image poses a formidable challenge for

feature extraction. The available object detection methods focus on a single image

for feature extraction and detection. These methods fail to detect objects in low-light

images as feature extraction from a single low-light image is very difficult. The exist-

ing and straightforward approach is to enhance the low-light image and then perform

feature extraction. However, the enhancement step requires additional computational

and time. Moreover, the quality of the extracted features is contingent upon the effec-

tiveness of the enhancement algorithm. The failure of the enhancement algorithm may

lead to a degraded detection performance.

Another approach may be scaling exposure towards the brighter side. However, de-

termining a universal exposure factor applicable to all types of image and region (i.e.,

local variation of light in an image), each with its unique lighting variations, is very dif-

ficult, if not impossible. Further, the exposure-scale version of the image suffers from

the enhancement of the noise, saturation, and other artifacts. It makes feature extrac-

tion and object detection even worse. Thus, the direct use of a single-exposure image

is inadequate for low-light object detection to achieve satisfactory performance. A new

feature extraction paradigm for object detection in low-light images is required. We

propose a new feature extractor, namely, the MFE network for low-light images. The

MFE network generates multiple exposure instances of the input image to facilitate

feature extraction. We introduce two exposures with the input image in MFE namely,

an input image, baseline-exposure, and extended-exposure. The MFE network extracts

features from the low-light image, it may effectively extract features from regions with

normal lightness. The images with variations in exposure facilitate feature extraction

from other regions of low-light images. The extended-exposure focuses on features of

darker regions. The baseline-exposure helps in feature extraction from regions which

are minorly affected with lightness issues. The MFE extracts feature pyramids from

the above-mentioned multi-exposed inputs. We denote the feature pyramid of the in-

put image as P1, baseline-exposure as P2, and extended-exposure as P3. The feature

pyramid of distinct inputs (Pj) can be represented as:

Pj = [F3

j ,F
2

j ,F
1

j ] (5.1)

where j denotes the jth input, and F l
j denotes the feature map of lth level of Pj . The
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extraction of the feature pyramid uses the ResNet architecture [136] in our method for

all input with distinct exposures.

The MFE network is designed to capture features from various regions within low-

light images by employing discrete exposure scales. Nevertheless, the challenge of

inadvertent feature inclusion persists, attributable to factors such as noise amplifica-

tion, saturation, and the emergence of unwanted artifacts. To mitigate these issues, we

introduced an adaptive refinement process to obtain the appropriate features for ob-

ject detection. This refinement procedure is strategically engineered to emphasize the

extraction of pertinent features conducive to enhancing the effectiveness of low-light

object detection. The adaptive refinement network is discussed in the next section.

5.2.2 Adaptive refinement network

We proposed an adaptive refinement network to refine the features of low-light images

using multi-exposed images. The detailed architecture is given in Fig. 5.2. Separate

processing of the features from multi-exposed images may process undesired features

along with desired features. We propose to process the features in a combined manner

to focus more on the adequate features from distinct exposures while minimizing the

impact of inappropriate features. The refinement of features can be performed by

simply adding the feature maps. However, the direct addition of feature maps assigns

equivalent importance to all constituent feature maps. A weighted additive approach

may provide appropriate importance to the respective feature maps. In this approach,

the scalar weight parameter plays a pivotal role in regulating importance across the

entirety of feature maps, thereby enabling adjustments that either augment or diminish

the significance of these features. However, in the context of this refinement approach,

it is noteworthy that undesirable features are given the same degree of attention as their

more desirable counterparts, a configuration that is less than ideal.

To focus on the appropriate features, we propose using kernel-based adaptive re-

finement. Here, the weights of the kernel facilitate the attention of the appropriate

features. We propose a convolution-based adaptive refinement network to focus on the

appropriate features within and across distinct exposure inputs. The convolution-based

refinement helps the different ARNs of MRN-LOD in focusing on the distinct region

of the image. The learning phase of the convolution helps the ARN to focus on the

appropriate region in the low-light image. The general expression for the proposed

adaptive refinement is given as:

F
l = Wl

∗ (F l
S1

»F
l
S2

»F
l
S3

» · · · ) (5.2)
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Fig. 5.2: Architecture of our Adaptive refinement network (ARN).

where » denotes the concatenation of feature maps. The expression for convolution-

based adaptive refinement (used in fig. 5.2) in the ARN is expressed as:

F
l = conv(F l

S1
»F

l
S2

»F
l
S3
) (5.3)

To further improve the refined feature maps (F l), we perform multilevel refine-

ment across ARN. The ARN performs multilevel feature refinement using the refined

features of the level lth and (l − 1)th. The multilevel refinement in the ARN can be

expressed as:

F
l = conv(F l−1 + UP (F l)) (5.4)

where UP denotes the up-sampling operation with a scale factor of two. After mul-

tilevel refinement, the ARN network uses two convolution layers for processing the

features, which can be expressed as:

F
l = conv(conv(F l)) (5.5)

Finally, the proposed ARN generates refined feature maps. The feature map from

the top level of ARN is used to generate two more feature maps after max pooling

and convolution. The detection head contains two subnetworks for bounding box and

classification which processes the refined feature maps. The generalized focal loss

[191] is used to train the proposed MRN-LOD. The summary of the overall proposed

MRN-LOD is discussed in the following section.
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5.2.3 MRN-LOD: Multi-exposure refinement network for low-light

object detection

The framework of proposed MRN-LOD is shown in Fig. 5.1. The MRN-LOD synth-

sizes two images with different exposures and then performs feature extraction from all

images using the MFE network. The features extracted from multiple images are pro-

cessed using the adaptive refinement network to refine the feature of low-light images

with the help of other images with distinct exposure. The ARN helps the MRN-LOD to

focus on the distinct regions in low-light images for better detection. The detector head

processes the refined features to detect the class and location of the object. The archi-

tecture of the detection head is given in Fig. 5.1. We utilized the class subnetwork, and

box subnetwork [191] to acquire the object class and localization, respectively. The

refined feature map is processed by various convolution layers in class subnetwork as

shown in Fig. 5.1 to detect the object classes. Another set of convolution layers in

the box subnetwork are used to process the feature maps to improve the quality of

bounding boxes. The subnetworks for class and box prediction use distinct sets of

convolution layers to process the refined features ARN, which can be represented as:

x = conv(F l) (5.6)

x = conv(x) (5.7)

where, ∀F l from the ARNs. The class and box subnet uses the feature of all levels of

the ARN for the final prediction.

The proposed MRN-LOD uses the loss function of generalized focal loss [191] for

training. The loss function (L) is expressed as:

L = −α(1− q)γlog(q)− β(1− d)ηlog(d) (5.8)

where α and β denote the focus on the classification and localisation, respectively. γ

and η are the parameters for controlling the focus on hard examples. q denotes the

probability of predicted objects and d denotes the predicted quality score.
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5.3 Experimental results and assessment

5.3.1 Dataset

The availability of datasets is one of the important aspects of deep-learning based ob-

ject detection methods for training and evaluation. To facilitate direct training of the

object detection model for low-light conditions, we developed our synthetic dataset

using the MS-COCO dataset [68]. The synthetic dataset contains all samples with syn-

thetic low-light for eighty classes. We use the power law to synthesize the low-light

image by using a random value of the exponent in the range 0.2 to 0.5. This approach

produces low-light images with a large range of darkness. Moreover, the resulting im-

ages contain local variation in light according to the nature of the input image. We

trained the proposed model on our synthetic dataset for training on low-light samples.

To evaluate the performance of the proposed model in the real-world scenario, we used

Ex-dark [165] dataset. The Ex-dark dataset [165] is publicly available for object de-

tection in low-light conditions with 7,363 annotated low-light images. The Ex-dark

dataset contains images with ten types of low-lightness for twelve kinds of objects.

The annotated images help in the evaluation of object detection methods in low-light

conditions. The model uses training and validation sets for training and a test set of

images for evaluation on unseen images for robust comparison of the models. We used

the model trained on our synthetic dataset for fine-tuning the Ex-dark dataset. The

proposed model is evaluated on both datasets to show the superiority of the proposed

model.

5.3.2 Implementation details

The proposed MRN-LOD has been implemented using the PyTorch framework in con-

junction with MMDetection [192]. The MFE utilizes pre-trained ResNet architectures

[136], specifically ResNet-50 and ResNet-101, considering hardware constraints. To

optimize the MRN-LOD model, we conducted training for a total of 24 epochs employ-

ing the Stochastic Gradient Descent (SGD) optimizer. The learning rate was set to 0.01,

with a decay factor of 0.1 applied at the 16th and 22nd epochs to enhance convergence.

The training process follows a 2x training schedule, with each GPU accommodating a

batch size of 3 samples. For our experiments, we employed two Titan-RTX GPUs to

efficiently train the MRN-LOD model. The MRN-LOD model was trained using our

synthetic dataset and Exdark dataset [165]. During the multi-scale training of MRN-

LOD, we performed resizing of the shorter side of the input image to two specific

scales, namely 480 and 800 pixels, to diversify the training process. To ensure optimal
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model performance, we conducted an extensive analysis of exposure parameter using

the grid search method in our experiments. In the context of the ablation study, we

exclusively employed ResNet-50 for feature extraction using the MFE network. The

ablation models underwent training for 12 epochs, and the batch size is six samples.

These experimental setups and configurations were devised to thoroughly evaluate the

performance and efficacy of the proposed MRN-LOD model under varying conditions.

5.3.3 Ablation study

In this section, we perform an ablation analysis to assess the contributions of the two

primary components in our proposed MRN-LOD model, namely, the Multi-exposure

Feature Extraction (MFE) and the Adaptive refinement Network (ARN).

We explored the effectiveness of MFE through several model configurations dur-

ing the ablation study. We tweaked the configuration of MFE and developed two vari-

ants of the proposed model. The first variant uses one exposure-adjusted image along

with another image (low-light or exposure-adjusted image with different parameters).

This variant helped us assess the importance of distinct exposure-adjusted images in

our MFE network. Furthermore, we altered the exposure parameter in the exposure-

adjusted images to evaluate the exposure parameter for our model. This arrangement

helps us investigate the influence of distinct exposure parameters on performance. Ta-

ble 5.1 demonstrates the performance comparison among these different MFE con-

figurations. Notably, the MFE networks (first variant) exhibit superior performance

when compared to many existing state-of-the-art methods designed for low-light con-

ditions, as demonstrated in Table 5.3. However, we observe that the proposed MFE

network surpasses all other models, including our first variant. Consequently, we opt

Table 5.1: Ablation study of the proposed MFE for low-light object detection. Bold

values demonstrate better performance.

Exposure AP AP50 AP75

[low-light, 4.0] 34.3 50.7 36.3

[4.0, 1.25] 34.1 50.1 35.9

[low-light, 1.25] 33.3 49.7 35.4

[2.85, low-light, 1.25] 34.7 51.6 37.1

[4.0, low-light, 1.43] 34.7 51.7 37.1

Proposed 34.9 51.9 37.4
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Table 5.2: Ablation study of our ARN for low-light object detection.

MRN-LOD AP AP50 AP75

without ARN 31.4 48.7 32.9

with ARN 34.9 51.9 37.4

for the proposed MFE configuration (with three inputs) in our final model. The pro-

posed MFE network excels by focusing on features extracted from both brighter and

darker regions, leading to improved overall performance when compared to another

alternative.

To assess the significance of the ARN, we investigated two model configurations:

one with ARN and another without ARN. Table 5.2 presents a comparative analy-

sis of these two configurations. Our findings reveal that the MRN-LOD model with

ARN consistently outperforms its counterpart without ARN. The variant without ARN

processes features independently, including undesired features, resulting in a notable

performance degradation. This analysis underscores the critical role of adaptive re-

finement in the proposed model, which the proposed ARN addresses effectively. The

ARN network facilitates the refinement of relevant features, leading to a notable en-

hancement in overall performance.

5.3.4 Quantitative analysis

This section presents an exhaustive quantitative analysis of the other contemporary

methods and the proposed MRN-LOD on our synthetic dataset and the Ex-dark dataset.

The analysis of the models with our synthetic dataset is given in Table 5.3 and Table

5.4. To maintain fairness in the comparison, we used the models and checkpoints from

mmdetection [192]. The average precision (AP) is used to comparatively analyse the

performance of state-of-the-art object detection models in a low-light environment in

Table 5.3. The detection methods used for quantitative analysis in Table 5.3 use the

ResNet-101 backbone. The proposed MRN-LOD 50 and MRN-LOD 101 use ResNet-

50 and ResNet-101, respectively in the MFE for feature extraction. We analysed the

detection performance with multiple pairs of the enhancement method and the detec-

tion methods. It can be observed from Table 5.3 that the object detection methods

[70, 193, 194, 191] without image enhancement perform poorly under low light con-

ditions. The use of a few image enhancement methods [2, 4, 1, 6, 7] helped the detec-

tion methods achieve comparably better performance. Sometimes, image enhancement

[3, 5] leads to degrading performance. The improvement by the enhancement methods
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Table 5.3: Quantitative Assessment of various methods for object detection in low-

light conditions

Method AP AP50 AP75 APS APM APL

RetinaNet [70] 23.4 36.7 24.3 11.9 25.3 34.6

RepPoints [193] 27.7 44.1 29.1 13.3 29.7 41.1

FoveaBox [194] 24.8 39.4 25.7 13.3 27.7 34.7

GFL [191] 30.0 44.4 31.7 16.4 32.2 43.2

PIE [2] + RetinaNet [70] 25.4 39.6 26.7 11.8 27.6 37.3

PIE [2] + RepPoints [193] 29.9 47.3 31.4 14.1 32.3 44.3

PIE [2] + FoveaBox [194] 27.0 42.9 27.8 13.7 29.9 37.5

PIE [2] + GFL [191] 32.5 47.7 34.5 17.1 34.8 46.4

LIME [3] + RetinaNet [70] 21.7 34.3 22.6 9.3 23.9 33.0

LIME [3] + RepPoints [193] 25.2 40.1 26.3 10.7 27.1 38.6

LIME [3] + FoveaBox [194] 19.9 32.3 20.6 10.3 23.4 28.4

LIME [3] + GFL [191] 27.2 40.2 29.2 12.7 29.7 40.1

NPEA [1] + RetinaNet [70] 25.6 39.9 26.6 11.4 27.9 37.8

NPEA [1] + GFL [191] 32.8 48.1 34.8 16.6 35.3 47.0

SLIE [4] + RetinaNet [70] 25.2 39.5 26.3 10.7 27.4 37.1

SLIE [4] + GFL [191] 32.1 47.2 34.2 16.5 34.5 46.4

CRM [5] + RetinaNet [70] 22.8 35.3 23.7 10.7 25.4 33.3

CRM [5] + FoveaBox [194] 23.8 37.6 24.7 12.7 27.0 32.8

CRM [5] + GFL [191] 28.8 42.0 31.0 15.6 31.3 40.8

LSDD [6] + RetinaNet [70] 24.3 38.1 25.4 10.4 27.0 36.0

LSDD [6] + FoveaBox [194] 25.0 39.9 25.9 12.7 28.4 35.4

LSDD [6] + GFL [191] 31.2 45.9 33.5 15.5 33.8 45.2

ZDCE [7] + RetinaNet [70] 26.6 41.4 27.9 12.6 29.1 38.5

ZDCE [7] + FoveaBox [194] 28.0 44.2 29.3 14.5 31.2 38.3

ZDCE [7] + GFL [191] 33.7 49.4 35.8 17.5 36.5 47.6

Proposed MRN-LOD 50 37.5 55.0 40.3 21.6 40.9 48.6

Proposed MRN-LOD 101 42.7 60.8 46.0 24.5 46.0 57.7

100



5.3. Experimental results and assessment

is limited and depends greatly on the characteristics of samples in the dataset. The

proposed methods outperform the other alternatives in Table 5.3 for object detection

under low-light conditions. The proposed model (with ResNet-101-DCN) achieves

48.1 AP on the MS-COCO dataset as against 47.3 AP of GFL with ResNet-101-DCN.

The proposed model also outperforms other models (with the same backbone) on the

MS-COCO dataset.

To further analyse the proposed methods, we trained the contemporary methods

with the help of data augmentation (with lightness variation) to improve the perfor-

mance in low-light conditions. To ensure a fair comparison among the various models,

we employed the mmdetection for training without any alterations to the hyperparam-

eters. Given the constraints imposed by hardware limitations, it was not tenable to

retrain all models with their specified configurations. Consequently, we retrained only

the top-performing models under low-light conditions, which is sufficient to establish

the effectiveness of our proposed model. We adopted ResNet-101 as the backbone ar-

chitecture for all models considered for a fair comparison. The performance of various

state-of-the-art models in low light with and without data augmentation is shown in

Table 5.4. It can be seen from Table 5.4 that the performance of all models improved

for low-light images after retraining with the help of data augmentation. Furthermore,

the proposed model is achieving superior performance than all other models, as shown

in Table 5.4.

The quantitative analysis of the contemporary methods and the proposed method

on the Ex-dark [165] dataset is given in Table 5.5. The results of various methods

(without enhancement) [40, 57, 193, 61] demonstrate that the existing methods are

trained for normal-light images, and fail to deal with low-light conditions. The perfor-

mance of the existing methods degrades under low-light conditions. The enhancement

methods help the existing detection methods to achieve improved performance. How-

ever, the improvement in performance due to enhancement methods is limited. As

the enhancement methods have their own constraints. The specialized methods for

low-light object detection are also compared with the proposed MRN-LOD on the

Ex-dark dataset. The low-light detection methods show better performance than the

methods which focus on enhancement-before-detection. However, there is still scope

for improvement. The proposed method achieves superior performance than the other

contemporary methods.
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Table 5.4: Performance of various object detection models (with ResNet-101 backbone) after training with and without Data Augmenta-

tion, separately. Models are evaluated in the ODLE dataset to verify performance in low light.

Method Data Augmentation (DAg) AP AP50 AP75 APS APM APL

RetinaNet [70]
without DAg 29.0 45.1 30.5 14.4 31.3 41.8

with DAg 30.7 48.7 33.7 15.6 34.9 43.1

GA [195]
without DAg 28.7 45.2 30.3 13.7 30.7 41.3

with DAg 34.0 52.6 36.2 17.9 36.7 46.4

FSAF [196]
without DAg 29.8 46.1 31.2 14.2 32.1 42.5

with DAg 31.5 49.3 33.1 15.9 33.5 42.5

ATSS [197]
without DAg 31.4 47.1 33.3 16.6 34.3 43.3

with DAg 34.3 50.9 37.2 19.7 37.6 43.7

RepPoints [193]
without DAg 32.8 50.9 34.9 16.3 35.1 47.2

with DAg 35.2 53.7 37.7 19.4 39.7 49.9

FoveaBox [194]
without DAg 31.5 49.1 32.9 16.4 34.4 43.9

with DAg 32.6 51.4 34.4 16.2 35.7 44.5

FCOS [198]
without DAg 30.2 47.0 31.4 16.2 32.9 40.6

with DAg 33.5 51.9 35.2 18.5 36.6 44.9

Generalized Focal Loss [191]
without DAg 35.9 52.4 38.5 19.2 38.7 50.2

with DAg 39.5 57.3 42.8 22.1 43.1 53.3

Proposed MRN-LOD 101 - 42.7 60.8 46.0 24.5 46.0 57.7

1
0
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Table 5.5: Quantitative assessment of distinct methods on Ex-dark dataset for low-light object detection.

Methods Bicycle Boat Bottle Bus Car Cat mAP

Chair Cup Dog Motorbike People Table

Faster RCNN [40] 70.3 56.2 63.5 73.4 66.6 55.6 60.0

52.9 58.8 69.1 54.3 66.9 32.3

Cascade RCNN [57] 70.4 58.0 60.7 80.3 61.0 63.4 61.2

48.3 59.3 75.4 55.0 66.2 36.6

YOLO [61] 71.8 64.5 63.9 81.6 76.8 55.4 62.7

49.7 56.8 63.8 61.8 65.7 40.5

KIND [96] + YOLO [61] 73.4 68.1 65.5 86.2 78.3 63.0 67.3

56.9 62.7 68.2 67.1 69.6 48.2

Zero-DCE [7] + YOLO [61] 79.5 71.3 70.4 89.0 80.7 68.4 72.0

65.7 68.6 75.4 67.2 76.2 51.1

EnlightenGAN [97] + YOLO [62] 86.6 65.0 69.8 92.7 69.7 72.9 72.9

71.5 68.7 77.6 74.3 69.1 56.8

LEDet [199] 77.0 73.3 60.5 86.5 73.8 68.7 67.6

59.6 64.5 76.4 61.6 63.5 46.2

MAET [200] 81.3 71.6 74.5 89.7 82.1 69.5 74.0

65.5 72.6 75.4 72.7 77.4 53.3

IAT-YOLO [201] 79.8 76.9 78.6 92.5 83.8 73.6 77.8

72.4 78.6 79.0 79.0 81.1 57.7

FRSE-Net [202] 85.9 70.7 77.6 92.8 78.7 72.0 77.3

74.4 78.7 80.9 74.3 80.6 61.0

Proposed MRN-LOD 87.2 77.9 79.5 92.6 85.9 73.8 79.9

78.6 80.5 83.4 72.6 82.1 64.3

1
0
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5.3. Experimental results and assessment

5.3.5 Visual analysis

We provide visual samples in Fig. 5.3(a)-(i) to showcase the robustness and efficacy

of the MRN-LOD model in low-light object recognition. These samples further illus-

trate that our MRN-LOD model consistently performs well in challenging low-light

scenarios.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5.3: Visual results of the proposed MRN-LOD network on sample images from

validation set of the ODLE dataset.

5.3.6 Computational Time

In this section, we analyse the computational efficiency of the proposed MRN-LOD.

Most of the existing approaches use enhancement before detection for low-light object

recognition. Such methods require a higher computational time, as they require sepa-

rate time for both enhancement and detection. The proposed MRN-LOD eliminates the

requirement of an explicit enhancement step to be performed before detection. Thus,

it reduces the time required by the enhancement step and requires the time only for de-

tection step. Hence, it requires less computational time as compared to the approaches

104



5.4. Summary

based on enhancement before detection. The source codes and checkpoints are used

from the authors’ official source or MMdetection for a fair comparison. Existing ob-

ject recognition methods [70, 193, 194, 191] without any image enhancement method

require comparable or slightly less time than our MRN-LOD methods. However, it can

be noted that the performance of these methods is very poor compared to our proposed

MRN-LOD. In methods based on enhancement before detection, the enhancement step

requires additional time to enhance image quality so that detection performance can be

improved. We have considered both deep learning based and statistical image en-

hancement methods to assess the detection performance. The execution of statistical

methods [2, 3, 4, 5, 6] is performed on i7 processor. The total time required by meth-

ods based on enhancement before detection is higher than the time required by the

proposed method. To summarize, our MRN-LOD 50 method is the fastest among all

tested methods with better detection performance. MRN-LOD 101 takes an additional

0.01 seconds but offers a 12% increase in AP compared to direct detection methods.

5.4 Summary

In this chapter, we present a new Multi-exposure refinement network for low-light

object detection (MRN-LOD) to avoid the need for enhancement before detection. The

MRN-LOD contains: multi-exposure feature extractor, adaptive refinement network,

and detection head. The developed multi-exposure feature extractor extracts features

from the multi-exposure images generated by the low-light image. We introduced the

notion of feature extraction from muylti-exposure images for object detection in low

light. In addition, we proposed an adaptive refinement network to refine the features

of low-light images for better detection performance. The detection head uses the

refined features to perform object detection. Extensive experimentation on real-world

and synthetic datasets shows the superiority of the proposed MRN-LOD.
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Chapter 6
Object Recognition in Hazy Environment

This chapter presents a new bi-stream feature fusion network for hazy object detec-

tion/recognition. The chapter includes the dataset for object detection in the hazy envi-

ronment, hybrid input, bi-stream feature extractor, multi-level feature fusion network,

experimental results and analysis, and the conclusion.

6.1 Introduction

For object detection in a hazy environment, the obvious solution [154, 152] is to apply

image dehazing (as pre-processing) [76, 80] before the object detection1 method. How-

ever, such an approach requires additional time and computation to enhance the image.

Moreover, the performance of object detection relies highly on the performance of the

dehazing algorithm in such an approach. Alternatively, some researchers [203, 204]

used domain adaptation for object detection in a hazy environment. DA-based ap-

proaches attempt to learn haze-relevant features from an image-dehazing dataset to

achieve better performance. In general, DA-based approaches have poor generaliza-

tion across the datasets. A single-step solution i.e. direct object detection in a hazy

environment is always desirable.

In this work, we developed an end-to-end trainable model for object detection in a

hazy environment. The existing object detection model for hazy environments uses the

image-dehazing dataset to learn haze-relevant features using domain adaptation. There

are benchmark datasets available for evaluation of the performance. The presently

available dataset [185, 205] contains samples of five to eight classes. To train a deep

learning based end-to-end trainable method, we require a large amount of data. The

performance of DL-based approaches is primarily governed by the quality and quantity

1Note: In this chapter, recognition and detection both means same i.e. object recognition.
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6.2. The Proposed Approach

of data samples along with the model. In this work, we develop a synthetic dataset for

hazy object detection (DHOD) with twenty classes and more than twenty thousand an-

notated images. DHOD is synthesized using the Pascal-VOC dataset [69]. The DHOD

contains annotated hazy images with distinct-level of haze. We used the developed

DHOD dataset to train the proposed model and the benchmark RTTS dataset to test

the performance and generalization.

We propose a novel architecture namely Bi-stream feature fusion (BFF) for ob-

ject detection in the hazy environment. BFF consists of a Bi-stream feature extractor

(BFE), and Multi-level feature fusion (MFF). The Bi-stream feature extractor uses two

streams with inputs as a hazy image in one stream and a hybrid image in the other

stream. The hybrid image is a combination of the min-channel, gradient, and max-

channel of the hazy image. The hybrid image facilitates the BFE network in extracting

appropriate features from hazy images. The proposed BFE network extracts multi-

level features from the hazy image and hybrid image. Further, we propose the MFF

network to perform the fusion of extracted features at multiple levels and process the

extracted features. The BFF uses BFE for feature extraction, and MFF for feature fu-

sion and processing. Finally, the proposed approach leverages the class subnetwork

(subnet) and box subnet for object localization and classification. The major contribu-

tions of the proposed work are summarized as follows:

1. We proposed a novel Bi-Stream Feature Extraction (BFE) network. The BFE

extracts features at multiple levels from the hazy image and hybrid image.

2. We proposed a multi-level adaptive feature fusion (MFF) network to perform

the fusion of adequate features. MFF provides attention to appropriate features

across the streams.

3. We developed a new dataset for hazy object detection (DHOD) to train the object

detection models in the hazy environment based on the Pascal-VOC dataset.

4. We proposed an object detection model for the hazy environment namely Bi-

stream feature fusion network, which outperforms state-of-the-art object detec-

tion models in a hazy environment.

6.2 The Proposed Approach

The existing object detection models are developed and trained to deal with images

captured in normal environments. The existing models perform poorly in a hazy envi-

ronment as such methods are not capable of dealing with hazy conditions. Thus, we
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Fig. 6.1: Framework of Bi-Stream Feature Fusion for Object Detection in Hazy Environment.
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6.2. The Proposed Approach

propose a Bi-stream feature fusion (BFF) model for object detection in a hazy envi-

ronment. The proposed model involves three sub-modules: Hybrid input, Bi-stream

feature extractor, and feature-fusion block. The framework of proposed BFF network

is shown in Fig. 6.1.

The proposed Bi-stream feature extractor is developed with a combination of two-

streams (rather than a single stream) that leverages res-blocks in each stream. Each

res-block contains a set of convolution, batch-norm and skip-connection to extract the

features from the input image. In between each res-block, there is a pooling layer to

reduce the size of the feature map. The set of res-blocks helps in the extraction of

multi-level features from the hazy image and hybrid input. The feature-fusion block

(FF-block) performs convolution-based and multi-level fusion to process the feature

map in an appropriate manner. The feature fusion block is developed to perform an

adaptive feature fusion, as shown in Fig. 6.2. The fused features are processed with the

help of class and box subnets to detect the location of the object along with the class.

The class and box subnets are two distinct convolution networks which generate the

class and bounding box respectively. The detailed discussion is given in the following

sections.

6.2.1 Hybrid image formation

Images captured in a hazy environment contain less visible and faded details, which

degrades the performance of object detection. The existing object detection models

use single-stream (i.e. only hazy images as input) for feature extraction and detection.

Feature extraction from hazy images is a challenging task due to lesser details. Thus,

we introduced the notion of hybrid input which to facilitate the feature extraction from

the hazy image. Further, we propose the BFF model with two distinct streams to deal

with the hazy image (haze-stream) and the hybrid image (hybrid-stream). The fea-

ture extraction from haze-stream and hybrid-stream uses pre-trained backbones which

requires three-channels input; thus, we develop a hybrid input with three-channels.

The notion of hybrid input is to facilitate the feature extraction from hazy images.

The dehazed image as the hybrid input may help the feature extraction; however, image

dehazing techniques have their own limitations and require a large amount of compu-

tational time. Thus, we considered three such components as channels which helps

in haze-related domains and require less computational time to restrict computational

overhead. In DCP [20], the method uses a dark channel prior which uses window-

based element-wise minimum to perform image dehazing. We considered the simple

element-wise minimum pixel (min-channel) as the first channel of hybrid input. The
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min-channel of hazy image is influenced by the airlight which assist the hybrid-stream

in extraction of haze-relevant feature. The min-channel used in the hybrid image is

represented as:

H1 = min
c∈{R,G,B}

(Ichazy) (6.1)

where I denotes the hazy image, c denotes the channels of the image (i.e. red, green,

and blue channel), and H1 denotes the first channel of the hybrid image.

The second channel of hybrid input contains the gradient of the hazy image. Image

edges are important to detect an object. However, it is difficult to extract features re-

lated to edges from the hazy image because hazy images contains faded details. Many

dehazing methods [76, 206] focuses on improvement of gradient information to en-

hance the image. Thus, we leverages the gradient information as the second channel

of our hybrid input to provide the textural-details for facilitating the feature extraction.

The second channel of hybrid image H2 is represented as:

H2 = max( max
c∈{R,G,B}

(∇hIc), max
c∈{R,G,B}

(∇vIc)) (6.2)

where ∇h and ∇v denote the first order derivative across horizontal and vertical direc-

tions of the image I.

Many approaches consider the inverted hazy images as the low-light images to en-

hance the image quality. The element-wise maximum is used in many low-light image

enhancement methods. Moreover, min-channel is an assumption-based consideration

for the hybrid input and, it can have minor limitations. Thus, we considered the max-

channel as the third channel to counter the limitations of the min-channel in the hybrid

channel. The max-channel can be represented as:

H3 = max
c∈{R,G,B}

(Ic) (6.3)

where, H3 denote the third channel of the hybrid input. The final hybrid input (Ihybrid)

is a combination of the three drived channels i.e. [H1,H2,H3].

6.2.2 Bi-Stream feature extraction

The existing feature extractors perform poorly in a hazy environment. Thus, a new

feature extraction paradigm for object detection in hazy images is required. We pro-

pose a novel feature extractor namely, a Bi-Stream feature extraction (BFE) network

for hazy images with two distinct streams. We introduce two streams in BFE namely,

haze-stream, and hybrid-stream to deal with distinct input separately. The haze-stream
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6.2. The Proposed Approach

Fig. 6.2: Architecture of feature fusion block

facilitates the feature extraction from the input hazy images. The hybrid stream assists

the haze-stream in extracting appropriate features from the hazy images. The frame-

work of BFF is shown in Fig. 6.1. The BFE extracts multi-level features from the

above-mentioned streams. We denote multi-level features of hazy-stream as PS1
, and

hybrid-stream as PS2
. The multi-level features of jth stream (PSj

) is represented as:

PSj
= [F3

Sj
,F2

Sj
,F1

Sj
] (6.4)

where Sj denotes the jth stream, and F l
Sj

denotes the feature map of lth level of PSj
.

The extraction of lth level features in the jth stream can be represented as:

F l
Sj

= ψk(|I|Sj
) (6.5)

where l = k − 1 and k is the block number of ResNet-like architecture (ψ) [136], I

denotes the input image, and Sj ∈ [hazy, hybrid] denotes the input to the stream.

The streams of BFE attempt to extract features from the hazy images and hybrid

input. However, the problem of irrelevant features may still occur due to noise am-

plification, saturation, and other artefacts in the hybrid input, and suppressed details

in the hazy image. Thus, we perform an adaptive feature fusion at multiple levels to

extract the appropriate features for object detection. We propose an adaptive feature

fusion for the features of the proposed bi-stream model. The proposed fusion focuses

on the appropriate features which help in effective object detection in hazy images.

The convolution-based adaptive feature fusion is used in the proposed feature fusion

block, discussed in the next section.
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6.2.3 Feature Fusion Block

The extracted multi-level features of the Bi-stream feature extraction network can be

processed separately to detect the objects. However, such an approach processes the

undesired features along with the appropriate features which degrade the performance

of object detection as discussed in section 6.3.3. The multi-level features of both

streams may contain appropriate features from distinct regions of images. Thus, we

perform the adaptive feature fusion of the Bi-stream features. We propose the feature

fusion network for the fusion and processing of the Bi-stream features. The detailed

architecture of the feature fusion network is shown in Fig. 6.2. The simplest fusion

approach can be given by considering the weighted sum, which can be expressed as:

F l = w1 ∗ F
l
S1

+ w2 ∗ F
l
S2

(6.6)

where F l denotes the fused feature map, w1 denotes weights for the first feature map,

and w2 denotes the weights of the second feature maps. The weighted sum strategy

provides equal importance to the complete feature map. However, feature fusion is

required to combine adequate features from distinct streams. The weighted sum of

the feature maps is unable to fuse the adequate features based on the characteristics.

However, the feature maps may contain adequate features in one region while having

irrelevant features in others. Thus, we proposed an adaptive feature fusion to fuse

the multi-level features. The proposed multi-level adaptive feature fusion approach is

represented as:

F l = conv(F l
S1

»F l
S2
) (6.7)

where F l denotes the fused feature map, conv denotes convolution, and » denotes the

concatenation of feature maps.

We perform multi-level fusion with the feature maps of the previous feature fusion

block to further improve the fused feature maps (F l). The feature fusion network

performs the multi-level fusion by using the fused features of (l + 1)th and lth block.

The multi-level fusion in the MSPF network can be expressed as:

F l = conv(F l+1 »MaxPool(F l)) (6.8)

where MaxPool denotes the max pooling operation with a kernel and stride of

two. The multi-level fusion is used in all the levels of the proposed methods except the

first level. After fusion, the feature fusion network uses three convolution layers for
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processing the features, which can be expressed as:

F l = conv(conv(conv(F l))) (6.9)

Finally, the proposed feature fusion block generates fused multi-level features Pff ,

which can be expressed as:

Pff = [F3,F2,F1] (6.10)

To process the fused multi-level features, we use the detection approach which is sim-

ilar to RetinaNet. The training of the proposed network uses generalized focal loss

[191]. The summary of the overall proposed BFF network is discussed in the follow-

ing section.

6.2.4 Bi-Stream feature fusion for object detection in hazy envi-

ronment

The framework of the proposed BFF network for object detection in hazy environment

is shown in fig. 6.1. The BFF network extracts multi-level features from a hazy image

and hybrid input, then feeds into a feature fusion network. The feature fusion network

performs a multi-level adaptive feature fusion to generate a fused feature pyramid.

The fused feature pyramid requires processing for object detection and localization.

We leveraged the class subnet and box subnet [191] to obtain the object class and

localization, respectively. The class subnet processes each feature map of the fused

pyramid using a convolution-network to detect the object classes from an image. An-

other convolution-network (i.e. box subnet) processes the feature maps to improve the

quality of bounding boxes. The training of class and box subnets along with the feature

extraction and fusion block is performed using the generalized focal loss. The class

and box subnets use distinct sets of convolution layers to process the features from the

fused feature pyramid, which can be represented as:

x = conv(conv(F l)) (6.11)

where, ∀F l ∈ Pff . The class and box subnet uses the feature of all the levels from the

fused feature pyramid for prediction. The loss function (L) is expressed as:

L = −
c∑

m=1

αm(1− pnm)
γlog(pnm) (6.12)
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where αm represents weights of mth class, pnm represents the probability of class c for

sample t, c represents the overall class number, and γ controls the degree of weights

of samples.

6.3 Experimental results and analysis

6.3.1 Dataset

The existing object detection method for hazy images uses the pre-trained models

and attempts to learn the haze-relevant features using domain adaptation. The mod-

els leverage either the RESIDE dataset or the foggy-cityscapes dataset to learn haze

characteristics. Further, the validation of the object detection methods for a hazy en-

vironment uses the RTTS dataset [185] which is a subset of the RESIDE dataset. In

such scenarios, the object detection methods tend to learn features which are similar to

the features of RTTS dataset. Thus, such detectors perform well on the RTTS dataset

and fail to generalize in the real-world scenario (or images of other datasets). In the

Foggy-cityscapes dataset, there are eight object classes and three levels of haze for

both training and validation. To perform end-to-end training and demonstrate the gen-

eralization capabilities of our proposed BFF model, we develop a new dataset which

contains hazy images based on the images of Pascal-VOC dataset for training the ob-

ject detection methods in a hazy environment. Our synthesized dataset is used to train

the proposed model and then validation is performed using the datasets available for

validation: RTTS dataset, Foggy-cityscapes, and Foggy-driving dataset.

The synthetic haze generation for our DHOD (dataset for hazy object detection)

uses two approaches. In both approaches of haze generation, DHOD leverages the

annotated images of pascal-VOC dataset. The first approach of haze generation is

based on the physical image formation model [118, 76], which requires depth map and

atmospheric light to generate haze in an image. The depth map is used in the estimation

of transmission map with the aid of a beta parameter to control the haze in the depth.

Further, the atmospheric light also controls the haze in an image. The variation of

beta parameter and the atmospheric light helps in synthesizing the images with distinct

variations of haze. The depth map is not available for the images. Thus, the estimation

of depth map from a single image is performed using monodep [207]. The estimated

depth is utilized for transmission map synthesis using the beta parameter. We used

random values for atmospheric light and beta parameters to vary the level of haze in

the images in a random manner. The discrete haze characteristics are not suitable for

real-world scenarios. The value of atmospheric light and beta are in the range of 0.7
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Table 6.1: Details of the datasets used for experimentation.

Dataset Classes (instances) Total samples

Synthetic aeroplane, bicycle, bird, boat, bottle, bus,

car, cat, chair, cow, dining table, dog, horse,

motorbike, person, potted plant, sheep, sofa,

train, tvmonitor

24,640

RTTS Person, Car, Bus, Bike, Bicycle 4,322

Foggy-cityscapes Person, Rider, Car, Truck, Bus, Train, Bike,

Bicycle

5000

Foggy-Driving Person, Rider, Car, Truck, Bus, Train, Bike,

Bicycle

101

to 0.95. The second approach uses a generative method based on Cycle-GAN [208] to

synthesize haze controlled by the generator. In the second approach of haze generation

for DHOD, we developed a cycle-GAN to generate hazy to haze-free and haze-free to

hazy samples. We trained the developed model on an unpaired set of hazy and normal

images collected from distinct sources. The Cycle-GAN is used to generate haze in

the samples. The final DHOD contains sixty percent of hazy images from the first

approach and the forty percent of hazy images from the second approach. The training

of the proposed model on our developed DHOD dataset and validation on the other

datasets shows the superiority and generalization of the proposed model. The details

of the datasets used for experimentation are given in Table 6.1.

6.3.2 Implementation details

The proposed BFF is implemented using the PyTorch framework. Both streams of

the BFE network use pre-trained ResNet-101 in all experiments. The BFF network

is trained for ten epochs using Stochastic Gradient Descent (SGD). The learning rate

for the SGD optimizer is 0.01 for all experiments with decay at 8th and 11th epochs.

During training, the model uses a batch size of 4 samples per GPU on the machine

with two Titan-RTX GPUs and 128GB RAM. The proposed BFF model is trained

on the synthesized DHOD dataset and validated on the RTTS dataset to analyze the

performance in a hazy environment. In multi-scale training, we resized the shorter

side of the input image into multiple scales between 360 to 640. In the ablation study,

the BFF uses ResNet-101 in both streams of the BFE network. Further, the models are

trained for twelve epochs during ablation with a batch size of eight.
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6.3.3 Ablations

In this subsection, we analyzed the effectiveness of hybrid input and multi-level fea-

ture fusion. Table 6.2 shows the analysis of distinct components of the hybrid image.

We have used three components in the hybrid image since the BFE network uses pre-

trained backbone which can deal with three-channel input. Each component in the

hybrid image is analysed to evaluate its impact on the overall performance. The mean

average precision measure is used for analysis. Firstly, we evaluated the impact of in-

dividual components (i.e. xmin, xmax, and xdelta) by processing just one component in

the hybrid frame and having other components as zero. The results shown in Table 6.2

show that only one component in the hybrid input reduces the overall mAP. The exclu-

sion of two components from the hybrid input reduces the performance of the proposed

methods by at least 1.6 mAP value. Further, the exclusion of a single component from

the hybrid frame decimates the performance by at least 0.9 mAP value.

Table 6.3 shows the impact of multi-level fusion in the proposed method. we de-

veloped two alternative configurations, one with multi-level fusion and the other one

without fusion. The BFF model with the proposed multi-level fusion outperforms the

variant of our model without fusion. Direct detection using the distinct level of features

from both streams is unable to process the features adequately. Thus, the BFF model

without fusion results in a lesser mAP. On the other hand, the processing of bi-stream

features using the proposed approach helps the proposed model in achieving better

performance. This analysis shows the importance of proposed multi-level features in

our BFF model. Our BFF model performs the fusion of appropriate features within

and across the stream which results in a better performance.

Table 6.2: Ablation study of the hybrid input

Xmin Xmax Xdelta mAP

✓ ✓ − 48.4

✓ − ✓ 50.3

− ✓ ✓ 49.3

✓ − − 47.9

− ✓ − 48.7

− − ✓ 49.6

✓ ✓ ✓ 51.2
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Table 6.3: Ablation study of multi-level feature fusion.

BFF model mAP

without fusion 46.9

with fusion 51.2

6.3.4 Quantitative Analysis

This section presents an exhaustive quantitative analysis of the proposed BFF and state-

of-the-art methods on the RTTS dataset, Foggy-cityscapes dataset, and Foggy-driving

dataset. The values of quantitative measures for other methods are taken from the

source provided by the authors for a fair comparison. The class-wise average preci-

sion and mean average precision of each method are used for quantitative comparison.

State-of-the-art methods (used for comparison) use ResNet-50, ResNet-101, and VGG-

16 as the backbones. The RTTS dataset, Foggy-cityscapes dataset, and Foggy driving

dataset are widely used for the assessment of object detection methods in hazy envi-

ronments. The proposed method outperforms the other methods in hazy conditions as

well as normal conditions.

6.3.4.1 Validation on RTTS Dataset

The performance comparison of the proposed BFF with other contemporary methods

on the RTTS dataset is given in Table 6.4. RTTS is a part of RESIDE (a well-known

image dehazing dataset). It contains more than four thousand hazy images to assess

the performance of object detection in a hazy environment. The images are annotated

for five classes in RTTS namely, bicycle, bike, bus, car, and person. The RTTS dataset

is not used for training the proposed method. Pascal-VOC dataset is used for warm-

up training of the proposed model. Then, we used the synthesized DHOD dataset for

training the model to deal with hazy object detection. The trained model is validated

on the RTTS dataset. The contemporary methods are trained on the RESIDE dataset

for adaptation of the haze in the detection model. The supervised training on RESIDE

helps the existing models in learning the haze-relevant characteristics which are similar

to the RTTS dataset. Table 6.4 shows that the proposed BFF-101 (with ResNet-101

backbone) outperforms the other state-of-the-art methods. Further, the BFF-50 model

achieves second best for most of the classes. For the bicycle class, the BFF-50 achieves

the third-best score. The mAP shows the superior performance of the proposed BFF

network.
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Table 6.4: Quantitative results of state-of-the-art methods in the hazy environment

on RTTS dataset. The values in bold depict the best performance and the values in

underlined depict the second best.

Method Person Car Bus Bike Bicycle mAP

Faster R-CNN [40] 46.6 39.8 11.7 19.0 37.0 30.9

DA-Faster [209] 42.5 43.7 16.0 18.3 32.8 30.7

SWDA [210] 40.1 44.2 16.6 23.2 41.3 33.1

SCL [211] 33.5 48.1 18.2 15.0 28.9 28.7

PBDA [147] 37.4 54.7 17.2 22.5 38.5 34.1

SADA [212] 37.9 52.7 14.5 16.1 26.2 29.5

DA-ODFS [213] 47.7 53.4 19.1 30.2 49.3 39.9

Proposed BFF-50 71.3 52.5 26.4 43.8 49.1 48.6

Proposed BFF-101 74.0 55.2 28.4 46.9 51.6 51.2

6.3.4.2 Validation on Foggy-Cityscapes Dataset

Another widely used dataset for performance analysis of object detection methods in

hazy environments is Foggy-cityscapes. The cityscapes dataset is processed to add

foggy conditions and generate foggy-cityscapes. Many methods attempted domain

adaptation of the cityscapes dataset to the foggy-cityscapes dataset for object detection

in a hazy environment. The existing models are finetuned on the foggy-cityscapes to

learn the haze-relevant features for object detection in hazy environments. The foggy-

cityscapes dataset contains seven classes: bicycle, bike, bus, car, person, rider, train,

and truck. The proposed BFF network is finetuned on the foggy-cityscapes dataset to

learn the features related to the new classes rider and truck. The proposed methods and

other contemporary methods are validated on the images of foggy-cityscapes and re-

sults are shown in Table 6.6. The mAP shows that the proposed BFF-101 outperforms

the existing methods for most of the classes. Further, it achieves the second best result

for the truck and bus class. The overall mAP shows the superior performance of the

proposed method on the foggy-cityscapes dataset.

6.3.4.3 Validation on Foggy-Driving Dataset

One of the widely used datasets for the validation of object detection methods in a

hazy environment is Foggy-driving. The Foggy-driving depicts driving scenes from

real-world foggy environments. The images are captured in a foggy environment with
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Table 6.6: Quantitative results of state-of-the-art methods in the hazy environment on Foggy-cityscapes dataset. The values in bold depict

the best performance and the values in underlined depict the second best.

Method Person Rider Car Truck Bus Train Bike Bicycle mAP

Faster R-CNN [40] 32.0 39.5 36.2 19.4 32.1 9.4 23.3 33.2 28.1

DA-Faster [209] 37.2 46.8 49.9 28.2 42.3 30.9 32.8 40.0 38.5

SWDA [210] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3

SCL [211] 30.7 44.1 44.3 30.0 47.9 42.9 29.6 33.7 37.9

PBDA [147] 34.9 46.4 51.4 29.2 46.3 43.2 31.7 37.0 40.0

Mega-CDA [203] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8

UaDAN [214] 36.5 46.1 53.6 28.9 49.4 42.7 32.3 38.9 41.1

MEAA [215] 34.2 48.9 52.4 30.3 42.7 46.0 33.2 36.2 40.5

SADA [212] 48.5 52.6 62.1 29.5 50.3 31.5 32.4 45.4 44.0

CaCO [216] 38.3 46.7 48.1 33.2 45.9 37.6 31.0 33.0 39.2

MGA [217] 43.9 49.6 60.6 29.6 50.7 39.0 38.3 42.8 44.3

DA-ODFS [213] 39.9 51.6 59.0 39.7 58.0 49.1 39.2 45.1 47.6

Proposed BFF-50 48.9 52.1 65.5 35.1 56.8 47.8 38.6 46.2 48.9

Proposed BFF-101 51.7 54.2 66.8 37.3 57.8 51.2 41.1 48.5 51.1

1
1
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the mobile phone and web. Many approaches use foggy-driving dataset to test the

real-world generalization of their methods. The validation of different methods on the

real-world foggy-driving dataset is shown in Table 6.5. Various methods have shown

the performance analysis on synthetic datasets and their codes are unavailable to test on

the real-world dataset. The performance analysis on the Foggy-driving dataset shows

that the proposed BFF-101 can generalize on real-world scenes.

Table 6.5: Quantitative results of state-of-the-art methods in the hazy environment on

Foggy-Driving dataset. The values in bold depict the best performance and the values

in underlined depict the second best.

Method mAP

Faster R-CNN 26.4

DA-Faster 31.6

SWDA 33.5

SCL 33.5

SADA 32.3

DA-ODFS 34.6

Proposed BFF-101 36.4

6.3.5 Computational time

We analysed the computational time of the proposed method and other contemporary

methods [40, 209, 210, 211, 213, 215]. The codes and parameters are used as given

by the authors for computational time analysis. We used images of size 1000 × 600

for the analysis. Most of the methods are focused on dehazing or its variants for adap-

tation. Further, the contemporary methods use the two-stage detection mechanism to

achieve better accuracy in hazy conditions. The methods [40, 209, 210, 211, 213, 215]

require different amounts of time for training; however, the time required for the infer-

ence is approximately the same. These methods process seven frames per second. The

proposed method leverages a single-stage detection mechanism with BFE and feature

fusion block. The proposed method with ResNet-101 processes fourteen frames per

second. Further, our method with ResNet-50 processes eighteen frames per second.

The proposed method achieves better detection performance than the other contempo-

rary methods.
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6.4. Summary

6.4 Summary

In this chapter, we propose a Bi-stream feature fusion (BFF) network for object de-

tection in a hazy environment. The BFF network consists of three modules: hybrid

input, Bi-stream feature extractor (BFE), and multi-level feature fusion. We present

the notion of hybrid input to extract features from the hazy images in an effective

manner. This paper leverages the hybrid input for feature extraction from the hazy

images to avoid the requirement of enhancement in hazy object detection. The pro-

posed BFE network extracts multi-level features from the hazy image and hybrid input.

The multi-level feature fusion (MFF) network performs the convolution-based adaptive

feature fusion and processes the extracted features. The proposed BFF model outper-

forms other state-of-the-art methods in hazy environments while achieving competitive

performance in normal conditions. Another challenge in hazy object detection is the

unavailability of a dataset with sufficient samples and classes. In this work, we devel-

oped a synthetic object detection dataset for a hazy environment (DHOD). The DHOD

dataset contains twenty object classes with more than twenty thousand samples.
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Chapter 7
Conclusion and Future Work

In the thesis, we developed new methods for object recognition in low-light and hazy

environment. We attempted object recognition in low-light and hazy environment by

two approaches. In the first approach, we developed the methods for low-light image

enhancement and single image dehazing to deal with low-light and hazy image for bet-

ter object recognition. In the second approach, we developed the methods for direct

object recognition from the low-light/hazy images. We developed illumination estima-

tion for nature preserving low-light image enhancement. The algorithm gives natural

contrast enhancement for low-light images. Further, we proposed a new adaptive illu-

mination adjustment which helps in providing appropriate lightness to all regions in the

images with varying illumination. In addition to this, we developed a novel branched

encoder-decoder based deep simultaneous estimation network called DSE-Net. The

proposed method decomposes images into reflectance and illumination for low-light

image enhancement. The proposed image decomposition architecture formulates a

multi-objective loss function that considers the retinex theory. After decomposition of

the image, the proposed method performs deep illumination adjustment for effective

treatment of low-light regions. The developed enhancement methods are capable of

dealing with varying illumination. Further, we developed a variational optimization for

single image dehazing to improve recognition in hazy environment. We proposed an

initial estimate of the transmission map that uses structure-aware smoothing. Further,

we formulated a variational optimization which is used for the estimation of the final

transmission map. The variational optimization refines the initial transmission with the

help of various regularization terms. The proposed algorithm estimates dark-channel

based uniform atmospheric light. These methods improve the performance of object

recognition up to a certain limit. However, the computational requirement increases to

deal with the low-light/hazy conditions using such approach which harms the real-time
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performance of the object recognition systems. We developed direct object recognition

methods for low-light environment (MRN-LOD) and hazy environment (BFF). These

methods focuses on feature extraction from the low-light and hazy images using the

developed techniques. The extracted features are refined and used for the classifica-

tion and localization. We developed a DHOD dataset for training the object detection

model directly on hazy annotated images. We showed the validation on the RTTS

dataset after training on our DHOD dataset. Our extensive experimentation on both

a synthetic dataset and the existing datasets demonstrates the superior performance of

our proposed approach in challenging low-light and hazy conditions. Furthermore, it is

noteworthy that our method maintains a competitive performance for object detection

even under normal lighting conditions.

7.1 Future Work

The methods developed in this thesis represent a significant advancement in the field

of computer vision, particularly for object recognition in low-light and hazy environ-

ments. However, as with any research endeavor, there are numerous opportunities for

further exploration and enhancement. Below are several key directions for future work:

• The lack of a comprehensive dataset for night-time hazy conditions is not avail-

able. Future work will focus on creating such a dataset, which will include a

diverse range of scenes and objects under varying levels of haze and low light.

This dataset will be crucial for developing and benchmarking new algorithms

tailored specifically for night-time hazy object detection.

• While the current methods demonstrate robust performance, further optimiza-

tion is necessary to enhance their speed and computational efficiency without

compromising accuracy. Future research will explore advanced techniques such

as hardware acceleration, algorithmic refinement, and parallel processing. Ad-

ditionally, leveraging techniques from hardware-specific optimizations, such as

GPU and TPU acceleration, will be considered to achieve real-time processing

capabilities.

• Building on the current work, future research will extend the scope to include

object recognition under other adverse weather conditions, such as rain, snow,

and extreme brightness. Each of these conditions presents unique challenges.

Research will focus on adapting and expanding the existing algorithms to han-

dle these new challenges effectively. This may involve developing novel feature
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extraction techniques or enhancing existing models with new layers and archi-

tectures tailored to these conditions.

• Further studies will assess the impact of these advancements in practical appli-

cations, including urban planning, environmental monitoring, and public safety.

For instance, object recognition in low-light and hazy conditions could signifi-

cantly enhance surveillance systems, disaster management, and autonomous ve-

hicle navigation. Research will aim to quantify the benefits and potential im-

provements in these areas, considering both technical performance and societal

impact.

• Future research will also explore unconventional methods and emerging tech-

nologies that could further enhance object recognition capabilities. This may in-

clude investigating the potential of quantum computing, or novel machine learn-

ing paradigms. These explorations could lead to breakthroughs in handling the

complex and dynamic conditions of low-light and hazy environments.

By addressing these areas, future research will not only enhance the existing meth-

ods but also pave the way for groundbreaking advancements in computer vision, ul-

timately contributing to safer, smarter, and more efficient technologies in various do-

mains.
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