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MEDICAL IMAGE ANALYSIS OF WIRELESS CAPSULE 

ENDOSCOPY DATA 

PALAK HANDA 

ABSTRACT 

Gastrointestinal (GI) diseases, often diagnosed through endoscopy, constitute 

a significant global health burden. The manual inspection of endoscopy data, 

particularly in colonoscopies and video capsule endoscopy (VCE) is time-intensive 

and prone to oversight. Automating abnormality detection and cleanliness assessment 

through medical image analysis (MIA) and artificial intelligence (AI) promises to 

revolutionize this process, offering quicker and more precise diagnostics. Such 

assessments may help to enhance patient outcomes by developing sophisticated 

algorithms capable of detecting abnormalities and assessing cleanliness in real-time. 

By streamlining endoscopy evaluations, such automatic assessments may help in 

addressing critical healthcare needs, facilitating earlier detection, and intervention for 

GI diseases, ultimately improving patient care and reducing the burden on healthcare 

systems.  

Currently, the diagnostic yield of colonoscopy and VCE in a real-time clinical 

setting has been investigated in several Indian and abroad medical studies but MIA 

and AI based studies to perform automatic abnormality detection and cleanliness 

assessment in endoscopy are rare. The absence of high quality, multi-labelled, and 

medically validated AI datasets is a major reason behind the less no. of studies being 

conducted. Lack of AI datasets hinder a transparent comparison between the 

performance of existing automated systems in this field with the up-coming systems. 

Most of the automated systems have been designed for less no. of endoscopy frames 

which are unavailable for public research use. The existing datasets mostly contain 

binary class labels such as ‘abnormal’ or ‘normal/healthy’ and ‘clean’ or 

‘unclean/dirty’ and ‘adequate’ or ‘inadequate’ and do not provide information related 

to mucosal visual quality, presence of impairments, artefacts, medical scores and 

distortions etc.  

Multi-label classification is an emerging and presently less explored area. It 
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has the potential to address several tasks such as the automatic cleanliness scoring in 

endoscopy. The assessment of cleanliness in endoscopy is crucial for ensuring optimal 

visualization and, consequently, accurate diagnosis. Cleanliness metrics play a pivotal 

role in maintaining the quality of endoscopy examinations, allowing healthcare 

professionals to make informed decisions based on clear and unobstructed images. 

They play an even more crucial role in VCE as it is non-invasive in nature and lacks 

therapeutic capabilities. Owing to the above-discussed research gaps, this research 

focuses on two tasks namely automatic detection of abnormality in polyp and non-

polyp frame in colonoscopy frames and automatic assessment of cleanliness in VCE.  

The first task focused on developing an explainable, end-to-end and robust 

architecture for automatic colorectal polyp diagnosis using colonoscopy polyp and 

non-polyp frames. The developed architecture consisted of a novel, fine-tuned feature-

extracting module, followed by polyp and non-polyp frame identification and a 

window-based polyp detection system. To show the robustness of the developed 

architecture, a new test set was developed and evaluated.  After the analysis, it was 

released on Zenodo, an open-source platform for research purposes. It is called the 

gastrointestinal atlas-colon polyp dataset. It consisted of seven patient videos obtained 

from open-source, copyright free web sources. Explainable and evaluation methods 

like class activation mapping, feature mapping, occlusion testing, hyper-parameter 

tuning ablation experiments, and separate, sequential, and non-sequential frame-based 

test set analysis have been used to show the efficacy of the proposed architecture. The 

developed architecture has been compared with the existing state-of-the-art 

methodologies in this field. Additionally, architecture has been compared with a 

transfer learning architecture as well.  

The second task focused on development of methodology to automatically 

assess the cleanliness in VCE video frames. First, the process of scoring VCE frames 

has been automated as per existing KOrea CanaDA (KODA) scoring system. The 

process is an easy-to-use mobile application called AI-KODA. AI-KODA Score is a 

flutter-based application which can be downloaded on a mobile. The application first 

trains a gastroenterologist how to use KODA. After a simple training, the 



xii 
 

  

gastroenterologist can upload VCE video frames on the application and score them. 

After successful scoring, a report is generated for the overall score. The scores are also 

collected in real-time and saved for the development of a frame level, high-quality, 

and multi-labelled dataset for automatic multi-label classification of clean v/s dirty 

VCE video frames. The developed dataset has been subjective to medical verification 

with the help of three experienced gastroenterologists. Based on the common 

consensus by the three gastroenterologists, a common dataset comprising of 2173 with 

eight distinct labels of KODA has been developed. A comprehensive evaluation, 

interpretation, benchmarking of the generated dataset has been done using ten machine 

learning models and eight transfer learning algorithms on google Collaboratory and a 

supercomputer named, NVIDIA RTX A5000 workstation. The developed dataset and 

its methodology are first-of-its-kind.  

The proposed methodologies for these two tasks are scalable, robust, work in 

real-time, and are explainable in nature. The comprehensive analysis followed for each 

of the tasks shows its promising future in the gastroenterology department. Both the 

methodologies help in reducing the time and effort of the gastroenterologist in timely 

detection of polyps in colonoscopy and cleanliness assessment in VCE. 
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CHAPTER 1 

INTRODUCTION 

The gastrointestinal (GI) tract, or digestive tract or alimentary canal, is the tract or 

passageway of the digestive system which extends from the mouth to the anus [1]. The 

GI tract contains all the major organs of the digestive system, in humans and other 

animals, including the mouth, pharynx (throat), oesophagus, stomach, small intestine, 

large intestine, rectum, and anus [1]. GI diseases found in these organs are widespread 

across the globe. Various factors brought on by industrialization, changes in nutrition 

and diet, and increased use of antibiotics have contributed in increasing the prevalence 

rate of GI diseases over the years [2], [3], [4]. Figure 1.1 represents the growing 

popularity of the keyword ‘gastrointestinal disease’ on google web searches over the 

last 20 years worldwide. 

 

 

 

 

 

 

 

 

Figure 1.1 Graphical representation of the google web searches of the keyword ‘Gastrointestinal 

disease’ from 2004-2023 across globe. The numbers on the y axis represent search interest relative to 

the highest point on the chart for the given region and time. X axis represents the time period considered. 

Source: Google trends. 

According to the latest statistics provided by World Health Organization (WHO), about 

40% of the population across globe suffer from GI diseases at some point of their lives 

[5]. In the United States, digestive diseases affect more than 40 million individuals and 
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account for millions of clinical visits annually, with health care expenditures totalling 

$119.6 billion in 2018 [5]. Cancers of the GI have grown and become responsible for 

one in four of the found cancer cases and account for one in three cancer deaths 

globally (Figure 1.2) [2], [3], [5], [6]. 

Different type of endoscopy methods is being utilized to diagnose, treat and manage 

these diseases. Due to the growing prevalence of GI diseases across globe, the global 

market of endoscopy has exponentially increased. In the past five years, the Compound 

Annual Growth Rate (CAGR) of global endoscopy visualization systems like 

colonoscopy and video capsule endoscopy (VCE) have been up by 7.2% and account 

to more than a 100 billion market revenue in the next ten years [7], [8]. 

 

 

 

 

 

 

Figure 1.2 Incidence and mortality of GI cancer cases in 2018 [6]. 

1.1 Endoscopy 

Endoscopy is a medical procedure that allows a doctor to inspect and observe the inside 

of the body, commonly the GI tract. It is of various types depending upon the type of 

organs considered for examination. The varied types of endoscopies allow for real-

time examination, aiding in the identification of abnormalities, obtaining biopsies, and 

facilitating therapeutic interventions for diagnosis and treatment purposes of GI 

diseases. In this thesis, we will focus on primarily two types of endoscopies namely 

colonoscopy and VCE. 

1.1.1 Colonoscopy 

Colonoscopy is a diagnostic and therapeutic endoscopy method to examine the large 

intestine, and the distal portion of the small intestine with the help of a colonoscope 
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(Figure 1.3) [9]. A colonoscope is a flexible, slender tube equipped with a light source 

and camera. It is a crucial diagnostic tool for detecting colorectal conditions, such as 

polyps, tumours, or inflammation [9], [10]. It remains a gold standard for colon cancer 

screening which accounts for major cancer in GI [11], [12], [13]. Medtronic, Ethicon 

(Johnson and Johnson), Boston Scientific, Olympus, R. Bard, Coloplast, Hologic, 

Bayer, Applied Medical, Cook Medical are some of the famous colonoscopy 

manufacturing companies. 

 

Figure 1.3 Representative diagram of colonoscopy procedure. Source: Bio render developed.  

1.1.2 Video Capsule Endoscopy 

VCE is relatively a newer, non-invasive endoscopic method which allows direct 

visualization of the GI tract especially small bowel due to its miniaturized size, and 

safeguarding sedation-related complications in diseased individuals [14]. It consists of 

a disposable capsule-shaped device which comprises of an optical dome, a battery, an 

illuminator, an imaging sensor, and a radio-frequency transmitter [14]. Figure 1.4 

depicts the VCE of stomach region. VCE is often considered as an alternative to 

conventional endoscopy methods [15]. Therapeutic Endoscopy Guidelines and 

Recommendations 2018-19 released by Indian Association of Gastrointestinal Endo 

Surgeons have recommended the use of VCE as an initial test for stable patients with 

overt or occult small-bowel bleeding and Crohn’s disease [16]. CapsoVision, Check-
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cap, Chongqing Jinshan Science and Technology, and Given Imaging are some of the 

famous companies of VCE. 

1.2 Challenges in Assessment of Endoscopy Data   

Both colonoscopy and VCE have improved a physician’s ability to find different 

abnormalities in the GI tract such as Crohn’s disease, Celiac disease, worms, polyps, 

and ulcer, etc [17], [18], [19]. However, these endoscopy methods are yet to reach its 

true potential in developing countries like India due to its cost, lack of standardized 

procedure for cleanliness assessment, poor reproducibility, and longer reading time 

without compromising the quality of the report with high false positives [10], [15], 

[17], [20], [21], [22].  

 

Figure 1.4 Representative diagram of a video generated from a capsule endoscopy. The video contains 

abnormal findings (polyp) in stomach region. Source: Video segment collected from Deptt. Of 

Gastroenterology and HNU, AIIMS Delhi.  

In terms of average cost, colonoscopy and VCE are approximately Rs. 3,000 - 10,000 

and Rs. 25,000 - 40,000 respectively which is difficult to afford by common men in 

developing counties like India. In terms of cleanliness assessment, Boston scoring is 

preferred for colonoscopy. Presently there is no standardized protocol followed before 

VCE to assess its cleanliness across the globe.  



5 
 

  

Approximately 2−3 hours of reading time is taken by an experienced 

gastroenterologist to inspect these endoscopy videos of 2-12 hours through a frame-

by-frame analysis. Manual interpretation and chances of the false-positive rate of the 

abnormalities in the endoscopy videos are high due to impairment of the mucosal 

frames with bubbles, debris, intestinal fluid, foreign objects, and chyme (food), etc 

[10], [15], [17], [20], [21], [22].  Qualification of the gastroenterologists, their 

experience in performing the endoscopy methods, measure of fatigue, distraction, and 

ability to multi-task in busy clinical schedules also contributes to higher miss-rate of 

the abnormalities. Further, poor bowel preparation, adequate mucosal exposure, 

contrast, and lightening and other hardware related technological limitations delays 

this process [10], [17], [23]. 

1.3 Role of Artificial Intelligence in Assessment of Endoscopy Data  

There has been an active participation from medical practitioners, researchers and 

industry professionals to perform medical image analysis (MIA) and artificial 

intelligence (AI) for the automatic assessment of endoscopy data [18], [24], [25], [26], 

[27]. MIA and AI are predicted to have profound effects on the future of colonoscopy 

and VCE in the context of automatic abnormality detection, segmentation, 

classification, cleanliness assessment, scoring system, depth estimation, odometry, 

video summarization, and artefact removal systems [24], [28], [29]. They are believed 

to be free from fatigue, distraction, and other human biases. MIA focuses on 

development of methods and process of imaging the interior of a body for visual 

representations, clinical decision-making analysis, research, and medical intervention. 

Along with the integration of AI, such automated assessments can aid in reducing the 

burden on gastroenterologists and save their valuable time by reducing the inspection 

time of endoscopy video analysis while maintaining high diagnostic precision and 

improved reproducibility. Figure 1.5 depicts the popularity of the keywords like 

‘capsule endoscopy’, ‘colonoscopy’, and ‘AI in healthcare’ over the last 20 years 

worldwide. 

In AI tasks, a classification task refers to a type of labelling where an image or video 

is assigned certain concepts. The AI model tries to classify input data and predict new 
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data based on the assigned concepts (class labels). Based on the class label information 

in a dataset, it can be a binary, multi-class, multi-label or hierarchal classification. In 

the context of endoscopy, a binary classification may help the researcher to identify 

whether a video frame is ‘abnormal’ or ‘normal’ or ‘clean’ or ‘unclean’. A multi-class 

classification may help in identifying the name of the abnormality like ‘polyp’, ‘ulcer’, 

‘tumour’, ‘worms’, and ‘vascular malformation’, etc. A multi-label classification task 

may help in identifying the grade of cleanliness of a particular video frame like 

‘excellent’, ‘good’, ‘fair’ and ‘poor’ which may be mutually exclusive of each other’s 

labels. Classification task may also be referred to as classifying a particular 

abnormality, for example polyp according to its medical morphology and types like 

Paris classification, and Kudo’s classification. 

 

 

 

 

 

 

 

 

 

Figure 1.5 Graphical representation of the google web searches of the keyword ‘capsule endoscopy’, 

‘colonoscopy’, and ‘AI in healthcare’ from 2004-2022 across globe. The numbers on the y axis represent 

search interest relative to the highest point on the chart for the given region and time. X axis represents 

the time considered. Source: Google trends. 

Visual data quality assessment task includes assessing the cleanliness of the GI tract, 

its intestinal content classification and overall quality assessment in terms of 

resolution, specularity, pacemaker artefacts, saturation, blurring and contrast of an 

endoscopy video frame or segment. Video summarization task aims to generate a short 

0

20

40

60

80

100

120

2
0
0

4
-0

1

2
0
0

4
-0

8

2
0
0

5
-0

3

2
0
0

5
-1

0

2
0
0

6
-0

5

2
0
0

6
-1

2

2
0
0

7
-0

7

2
0
0

8
-0

2

2
0
0

8
-0

9

2
0
0

9
-0

4

2
0
0

9
-1

1

2
0
1

0
-0

6

2
0
1

1
-0

1

2
0
1

1
-0

8

2
0
1

2
-0

3

2
0
1

2
-1

0

2
0
1

3
-0

5

2
0
1

3
-1

2

2
0
1

4
-0

7

2
0
1

5
-0

2

2
0
1

5
-0

9

2
0
1

6
-0

4

2
0
1

6
-1

1

2
0
1

7
-0

6

2
0
1

8
-0

1

2
0
1

8
-0

8

2
0
1

9
-0

3

2
0
1

9
-1

0

2
0
2

0
-0

5

2
0
2

0
-1

2

2
0
2

1
-0

7

2
0
2

2
-0

2

capsule endoscopy: (Worldwide) AI in healthcare: (Worldwide)

colonoscopy: (Worldwide)

Time 

N
o

. 
o

f 
g

o
o
g

le
 w

eb
 

se
ar

ch
es

 



7 
 

  

summary of the content of a longer endoscopy video by selecting and presenting the 

most informative video segments to the gastroenterologists. Localization task aims to 

find the location of the video segment or frame in the GI tract. Abnormality detection 

task includes identifying an abnormality along with its location in the video frame with 

the help of bounding box and class label information. It may also help in distinguishing 

between various abnormalities, intestinal fluid, and mucosal layers, lumen etc., in a 

particular video segment or a frame. 

Segmentation is a type of labelling where each pixel in an image is labelled with pre-

defined concepts. An image may be divided into pixel groupings which may be then 

labelled and classified. This is done with the goal of simplifying an image or changing 

how an image is presented to the AI model, to make it easier to analyze and interpret. 

In the context of endoscopy frame, a segmentation task may aim to provide the exact 

outline of the abnormality and or grade of cleanliness within a video frame or segment. 

A pixel-by-pixel details may be provided for a given abnormality and or grade of 

cleanliness, as opposed to classification models, where the model identifies what is in 

an abnormality and or grade of cleanliness in an endoscopy video frame, and detection 

models, which places a bounding box around specific abnormalities and or grade of 

cleanliness. Segmentation tasks are computationally more expensive and require 

detailed medical information in comparison to the above list tasks. 

1.4 Research Motivation  

GI diseases, often diagnosed through endoscopy, constitute a significant global health 

burden [6]. The manual inspection of endoscopy data, particularly in colonoscopies 

and VCE, is time-intensive and prone to oversight [30]. Automating abnormality 

detection and cleanliness assessment through MIA and AI promises to revolutionize 

this process, offering quicker and more precise diagnostics [31], [32]. Such 

assessments may help to enhance patient outcomes by developing sophisticated 

algorithms capable of detecting abnormalities and assessing cleanliness in real-time. 

By streamlining endoscopy evaluations, such automatic assessments may help in 

addressing critical healthcare needs, facilitating earlier detection, and intervention for 
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GI diseases, ultimately improving patient care and reducing the burden on healthcare 

systems [30], [31], [32], [33], [34], [35]. 

Currently, the diagnostic yield of colonoscopy and VCE in a real-time clinical setting 

has been investigated in several Indian and abroad medical studies but MIA and AI 

based studies to perform automatic abnormality detection and cleanliness assessment 

in endoscopy are rare. The absence of high quality, multi-labelled, and medically 

validated AI datasets is a major reason behind the less no. of studies being conducted. 

Lack of AI datasets hinder a transparent comparison between the performance of 

existing automated systems in this field with the up-coming systems. Most of the 

automated systems have been designed for less no. of endoscopy frames which are un-

available for public research use. The existing datasets mostly contain binary class 

labels such as ‘abnormal’ or ‘normal/healthy’ and ‘clean’ or ‘unclean/dirty’ and 

‘adequate’ or ‘inadequate’ and do not provide information related to mucosal visual 

quality, presence of impairments, artefacts, medical scores and distortions etc. 

Multi-label classification is an emerging and presently less explored area. It has the 

potential to address several tasks such as the automatic cleanliness scoring in 

endoscopy. The assessment of cleanliness in endoscopy is crucial for ensuring optimal 

visualization and, consequently, accurate diagnosis. Cleanliness metrics play a pivotal 

role in maintaining the quality of endoscopy examinations, allowing healthcare 

professionals to make informed decisions based on clear and unobstructed images. 

They play even more crucial role in VCE as it is non-invasive in nature and lacks 

therapeutic capabilities. 

With progressing research in AI and development of these automated systems, 

interpretability and extensive performance analysis also needs to be addressed. In this 

thesis, two tasks namely automatic detection of abnormality in polyp and non-polyp 

frame in colonoscopy frames and automatic assessment of cleanliness in VCE will be 

focused. Figure 1.6 depicts the representative diagram of the research motivation 

behind this thesis. 
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1.5 Problem Formulation  

The field of endoscopy plays a crucial role in diagnosing and monitoring various GI 

conditions. However, the manual assessment of endoscopy data is time-consuming, 

subjective, and prone to human error [31], [32], [36]. The integration of MIA and AI  

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Representative diagram to depict the research motivation behind this thesis.  

  

 

Figure 1.7 Representative diagram to depict the problem formulation approach utilized in this thesis. 

has shown promise in automating this process, offering potential improvements in 

efficiency and accuracy. This thesis aims to develop and evaluate an AI-based system 
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for the automatic assessment of endoscopy data, primarily for colonoscopy and VCE, 

addressing key challenges in automatic abnormality detection and cleanliness 

assessment. Endoscopy data collection and its medical validation with the help of 

experienced gastroenterologists is vital in this field. It is followed by its data 

processing and development of AI-based system for automatic abnormality detection 

and cleanliness assessment. Performance analysis and result verification with the help 

of experienced gastroenterologists are very important. Figure 1.7 shows a 

representative diagram of the problem formulation for this thesis. In the subsequent 

chapters, several steps will be added in this. 

1.6 Research Objectives  

The primary goal of this thesis is to develop methodologies to perform automatic 

detection of abnormality in polyp and non-polyp frame in colonoscopy frames and 

automatic assessment of cleanliness in VCE. The methodologies used, its application, 

research findings, and accomplishments for each of the research goals are listed below 

in this segment: 

Research Objective 1: 

• To develop an endoscopy dataset for research use. 

Research Objective 2: 

• To develop a deep learning architecture for reducing the diagnostic time for 

abnormality detection in the developed endoscopy dataset. 

Research Objective 3:  

• To develop a transfer learning-based approach to classify and assess the cleanliness 

of the developed frames.  

Research Objective 4:  

• To develop a deep learning architecture for multi-label classification pipeline for 

the developed dataset. 
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1.7 Research Contribution 

This thesis has focused on two tasks namely automatic detection of abnormality in 

polyp and non-polyp frame in colonoscopy frames and automatic assessment of 

cleanliness in VCE. The first task focused on developing an explainable, end-to-end 

and robust architecture for automatic colorectal polyp diagnosis using colonoscopy 

polyp and non-polyp frames. The developed architecture consisted of a novel, fine-

tuned feature-extracting module, followed by polyp and non-polyp frame 

identification and a window-based polyp detection system. To show the robustness of 

the developed architecture, a new test set was developed and evaluated.  After the 

analysis, it was released on Zenodo, an open-source platform for research purposes. It 

is called the gastrointestinal atlas-colon polyp dataset. It consisted of seven patient 

videos obtained from open-source, copyright free web sources. Explainable and 

evaluation methods like class activation mapping, feature mapping, occlusion testing, 

hyper-parameter tuning ablation experiments, and separate, sequential, and non-

sequential frame-based test set analysis have been used to show the efficacy of the 

proposed architecture. The developed architecture has been compared with the existing 

state-of-the-art methodologies in this field. Additionally, the architecture has been 

compared with a transfer learning architecture as well. 

The second task focused on development of methodology to automatically assess the 

cleanliness in VCE video frames. First, the process of scoring VCE frames has been 

automated as per existing KOrea CanaDA (KODA) scoring system. The process is an 

easy-to-use mobile application called AI-KODA. AI-KODA Score is a flutter-based 

application which can be downloaded on a mobile. The application first trains a 

gastroenterologist how to use KODA. After a simple training, the gastroenterologist 

can upload VCE video frames on the application and score them. After successful 

scoring, a report is generated for the overall score. The scores are also collected in real-

time and saved for the development of a frame level, high-quality, and multi-labelled 

dataset for automatic multi-label classification of clean v/s dirty VCE video frames. 

The developed dataset has been subjective to medical verification with the help of 

three experienced gastroenterologists. Bases on the common consensus by the three 
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gastroenterologists, a common dataset comprising of 2173 with eight distinct labels of 

KODA has been developed. A comprehensive evaluation, interpretation, 

benchmarking of the generated dataset has been done using ten machine learning 

models and eight transfer learning algorithms on google Collaboratory and a super 

computer named, NVIDIA RTX A5000 workstation. The developed dataset and its 

methodology are first-of-its-kind. 

The proposed methodologies for these two tasks are scalable, robust, work in real-

time, and are explainable in nature. The comprehensive analysis followed for each of 

the task, shows its promising future in the gastroenterology department. Both the 

methodologies help in reducing the time and effort of the gastroenterologist in timely 

detection of polyps in colonoscopy and cleanliness assessment in VCE. 

1.8 Outlines of the Thesis  

The thesis entitled, ‘Medical Image Analysis of Wireless Capsule Endoscopy Data’ 

comprises six chapters followed by conclusions and future scope and a bibliography. 

The thesis is organized as following: 

Chapter 1: Introduction 

This chapter will cover the motivation and purpose of the outlined research topic. It 

will also contain the main idea for the development of the thesis. 

Chapter 2: Literature Review 

In this chapter, a detailed literature review of the available endoscopy datasets in this 

field for MIA and AI, existing methodologies for automatic detection of abnormality 

and cleanliness assessment in endoscopy primarily for colonoscopy and VCE will be 

done. Existing endoscopy studies utilizing multi-label classification tasks will also be 

discussed. It will be followed by discussion of the current limitations of the existing 

studies, chapter summary and contribution of the present research to the field. 

Chapter 3: Development of Deep Learning Architecture for Abnormality 

Detection in Endoscopy 
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This chapter contributes to the development of a deep learning architecture 

abnormality detection in endoscopy. In this, polyp and non-polyp has been dealt as 

abnormalities. The chapter details the utilized methodology to prepare the AI dataset, 

its processing, and experimental settings to execute the proposed deep learning 

architecture for polyp and non-polyp detection in colonoscopy frames. It is followed 

by discussion of the achieved results, its comparison with the existing methodologies 

in this field and future scope in the field.  

Chapter 4: Development of Artificial Intelligence Korea Canada for Cleanliness 

Assessment in Endoscopy 

This chapter contributes to the development of an easy-to-use mobile based application 

called AI-KODA for real-time data collection and medical annotation for an automatic 

cleanliness assessment in endoscopy primarily VCE. The chapter details the utilized 

methodology to develop the mobile application, prepared dataset, method of 

annotation, study design and statistical analysis of the study. It is followed by 

discussion of the achieved results, its comparison with the existing methodologies in 

this field, efficacy of the developed application, reliability estimates, and conclusion 

and future scope in the field. 

Chapter 5: Development of Classification Techniques for Cleanliness Assessment 

in Endoscopy 

This chapter contributes to the development of classification techniques for automatic 

assessment of cleanliness in endoscopy primarily VCE. The chapter details the utilized 

methodology to prepare the AI dataset, its processing, and experimental settings to 

execute the classification tasks. It is followed by discussion of the achieved results, its 

comparison with the existing methodologies in this field and future scope in the field.  

Chapter 6: Conclusion, Future Scope and Social Impact 

This chapter will contain the summary of all the ideas, observations and contributions 

of the results obtained in each objective. Also, the future directions in this field are 

sketched in this section. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In response to challenges faced in the tiring analysis of endoscopy data, researchers 

and clinicians have turned to MIA and AI as a transformative solution [31], [33], [37]. 

This chapter details the literature review of this field. It will unfold in a structured 

manner, beginning with the discussion of the existing datasets available in this field. It 

will be followed by an exploration of the foundational studies that laid the groundwork 

for automated endoscopy analysis. It will then progress to recent developments in AI 

algorithms, deep learning techniques, and computer vision applications specifically 

tailored for abnormality detection and cleanliness assessment in colonoscopy and 

VCE. 

The significance of this literature review lies in providing a comprehensive 

understanding of the state-of-the-art methodologies, and challenges associated with 

automated endoscopy analysis. By synthesizing existing knowledge, this chapter aims 

to guide future research endeavours, fostering the evolution of more robust, accurate, 

and clinically applicable AI systems for endoscopy. Ultimately, the integration of such 

technologies into routine clinical practice has the potential to revolutionize GI 

diagnostics, leading to earlier detection, improved patient outcomes, and more efficient 

healthcare delivery. 

2.2 Endoscopy Datasets Available for Artificial Intelligence-enabled 

Techniques 

Recent advancements in AI techniques are enabling automation in gastroenterology 

field especially for the detection, localization, segmentation and classification of colon 

polyps, associated lesions, abnormal growth and bleeding in the colon and rectum 

region which helps a physician to screen and diagnose colorectal cancer at an early 

stage [18], [24], [26], [38], [39]. High-quality, open access and free colonoscopy data 

plays an important role in escalating research and advancements in this field [27]. 
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Various colonoscopy data with different medical settings, medically verified 

annotations, masks and bounding boxes have been released by researchers since 2012 

[27], [29], [40]. We discuss each of the dataset one by one. Table 2.1 details the names 

of the dataset, their available link and the no. of polyp and non-polyp frames in the 

dataset. 

Table 2.1 List of open-source colonoscopy polyp datasets with available links. 

 

S. No. Dataset 
No. of polyps and 

Non-polyps 

Application 

1 Polypgen Database 3762 and 2520 (images) 
Polyp detection and 

segmentation 

2 Kvasir 
1000 and 1000 

(images) 

Classification 

3 Kvasir SEG 1000 and 0 (images) Polyp segmentation 

4 Hyper Kvasir 1028 (images) Classification and segmentation 

5 CVC Clinic 612 and 0 (images) Polyp detection and segmentation 

6 CVC Colon 380 and 0 Polyp detection 

7 CVC EndosceneStill 912 and 0 Polyp segmentation 

8 CVC PolypHD 56 and 0 Polyp segmentation 

9 Etis-Larib 196 and 0 Polyp detection 

10 ASU Mayo 5200 and 14200 Polyp recognition 

11 CVC-ClinicVideoDB 38 (videos) Polyp detection 

12 Piccolo 3433 and 0 Polyp classification 

13 CP-CHILD 1400 and 8100 Polyp detection 

14 PIBAdb 31400 and 14000 Polyp classification 

15 CVC300 300 and 0 (images) Polyp detection 

16 
SUN Colonoscopy 

Dataset 

49,136 and 109,554 

(frames) 

Colorectal-polyp detection 

17 
LDPolyp 

Video Database 

200 and 0 (images) Polyp detection 

18 
BKAI-IGH 

NeoPolyp Database 

1000 and 0 (images) 
Polyp segmentation and 

detection 

19 Endotest 48641 and 205113 (frames) Polyp recognition 

20 
GLRC 

Dataset 

76 and 0 (videos) Classification 

21 
Colonoscopic 

Dataset 

155 and 0 (videos) Polyp recognition and detection 
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CVC Colon dataset consists of 15 short sequences of colonoscopy videos from 13 

patients which are annotated by medical experts [41]. The dataset contains 380 polyp 

images in total along with binary masks as ground truth. In each sequence exactly one 

polyp is shown and the frame size captured is 500×574 pixels. The dataset was 

developed as part of the GIANA grand challenge of 2017 and 2018. CVC Colon can 

be used for tasks like polyp segmentation and detection. 

Etis-Larib database was developed by the Universitat Autonoma de Barcelona [42]. It 

contains 196 images from endoscopy videos including one polyp in each image. The 

data was collected from 44 different polyps in 34 sequences [42]. Images have a 

resolution of 1225×966 pixels. Annotations are also provided in from of binary masks 

(polyp locations) by medical specialists. 

ASU-Mayo clinic database consists of a total of 19,400 frames with 5200 polyps and 

14,200 without polyps [43]. 286 patients from 11 different centres were part of the 

study and data was collected from 10 positive and 10 negative shots of polyps, at 

multiple scales and camera angles [43]. Ground truth is provided in form of a binary 

mask (white for polyp region) which was created by expert colonsocopists. 

Colonoscopy images include narrow band imaging and vary greatly in their 

appearance, including the level of colon preparation, the colonoscopic events, and the 

amount of motion and interlacing artifacts. 

Gastrointestinal lesions in regular colonoscopy (GLRC) dataset consists of 76 

colonoscopy videos which were 30 seconds long and contain ground truth of 

histopathology, endoscopist inspection and camera calibration for 3D shape 

reconstruction [44]. The dataset contains 15 serrated adenomas, 21 hyperplastic lesions 

and 40 adenomas. The data was gathered using white light imaging and narrow band 

imaging, recording the lesion from various viewpoints and angles [44]. The aim of 

building the dataset was to help replicate experiments and compare various machine 

learning approaches for classification and detection along with help in automated 

classification of adenoma and serrated adenoma. The effect of shape features on 

classification can also be studied using the colonoscopic dataset by employing 

structure for motion techniques. 
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CVC ClinicDB dataset consists of 612 images from 31 colonoscopy sequences with a 

resolution of 384×288 [45]. The ground truth is provided in the form of a mask. The 

dataset has been utilized for medical image segmentation tasks related to polyp 

detection in colonoscopy videos. It was the official database used in the medical image 

computing and computer assisted intervention (MICCAI) 2015 Sub-Challenge on 

Automatic Polyp Detection Challenge in Colonoscopy Videos [46]. 

CVC-EndoScene still dataset is a combination of two datasets namely CVC- ColonDB 

and CVC-ClinicDB [47]. It consists of 44 video sequences (912 white-light images) 

which are extracted from 36 colonoscopy patient videos [47]. In addition to the images, 

the dataset also provides additional annotations (hand-made) for lumen and specular 

highlight segmentation along with defining a void class for the black boundaries of the 

images. Four classes in total are thus annotated namely polyp, lumen, background, 

specularity and border as void. The dataset is split into 60% training, 20% validation 

and 20% test sets with no patient overlapping in any set (20 patients in train, 8 

validation and 8 in test). It has been released to provide a benchmark of endoluminal 

scene segmentation. 

CVC-PolypHD provides 56 polyps images in high definition and is widely used in 

segmentation tasks [41], [47]. Binary masks of polyp locations are included as ground 

truths and the resolution of images is 1920×1080 pixels in comparison with the SD 

resolutions of 574×500 and 384×288 pixels. It was a part of the GIANA grand 

challenge polyp segmentation task (validation set) held in 2017 and 2018. 

CVC-ClinicVideoDB was introduced as part of the GIANA grand challenge 2017 and 

2018 for colonoscopy polyp detection [41]. The database includes 38 short and long 

sequence videos. 18 SD videos are provided for training with resolutions of 768×576 

pixels. Binary masks for polyp locations are provided as ground truth. The data is 

collected from patients at Hospital Clinic of Barcelona, Spain. 

CVC-300 is a 300-colonoscopy image database. It contains annotations of all 

sequences showing polyps with frame size of 500×574 pixels [48]. The data is 

collected from 13 colonoscopy patients. Different types of polyp appearance can be 
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found in this database, leading to a great deal of variation. This database was part of 

the GIANA grand challenge polyp detection and segmentation task of 2017 and 2018 

as a test set. 

The Kvasir dataset (v1) contains 4000 images from inside the GI tract [49]. The images 

are annotated by experts and include 8 classes with anatomical landmarks like Z-line, 

pylorus, cecum, etc. and pathological findings including esophagitis, polyps, ulcerative 

colitis, etc. Additionally, several images related to polyp removal like ‘dyed and lifted 

polyp’, ‘dyed resection margins’, etc. are also provided. Images with resolutions of 

720×576 and 1920x1072 pixels are present and the data is collected at the Vestre Viken 

Health Trust (VV) in Norway. By using an electromagnetic imaging system 

(ScopeGuide, Olympus Europe), some classes of images have a green box in the corner 

of the image to illustrate the endoscope’s position and configuration inside the bowel. 

The main applications of this dataset are automatic detection and classification of 

pathological findings in endoscopy procedures. Version 2 of the dataset, also called as 

Kvasir v2, consists of meticulously annotated and augmented images from the version 

1. This dataset was part of the Mediaeval Medical Multimedia Challenge and made 

available in 2017. 33536 total images are contained in Kvasir v2 with 4192 images in 

each of the 8 classes. It is further divided into 80% train and 20% validation sets. 

Hyper Kvasir contains about one million gastrointestinal tract image and videos [50]. 

The data is collected from gastric and colonoscopy examinations from Baerum 

Hospital, Norway between 2008 to 2016. 110,079 (10,662 labelled and 99,417 

unlabelled) images and 374 videos are present with anatomical, normal and 

pathological findings [50]. Authors have provided a bounding box, and a segmentation 

mask, of 1000 polyp images. The motivation behind creating the database was to 

provide a large dataset for colonoscopy-based machine learning research as the 

existing databases are small. Moreover, providing partially labelled data can aid 

supervised as well as semi and unsupervised learning solutions. 

The Kvasir SEG dataset contains annotated polyp images from the original Kvasir v1 

dataset [51]. Authors have developed their corresponding masks. Some of the original 

images contain the image of the endoscope position marking probe from the 
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ScopeGuide (Olympus). Each folder contains 1000 images. The Kvasir SEG dataset 

has image folder, masks folder and JSON file (for bounding boxes). It is suitable for 

general segmentation, bounding box detection, localization, and classification of 

polyps. It can also assist the development of robust solutions for images captured by 

colonoscopies from different manufacturers. 

Piccolo dataset comprises of 3433 images (2131 White-light intensity and 1302 narrow 

bind intensity) collected from Hospital Universitario Basurto (Bilbao, Spain) [52]. The 

images are extracted from 40 patients and 76 lesions [52]. The dataset is manually 

annotated with a binary mask for polyps along with a void class for not required 

background by medical experts. Clinical metadata is also provided in a CSV file 

format. 854×480 and 1920×1080 are the 2 image resolutions available [52]. Olympus 

endoscopes (CF-H190L and-CF-HQ190L) are used for video capturing and the data is 

divided into training (2203), validation (897) and test (333) sets with no set having 

same patients. 

Polypgen database is a comprehensive polyp detection and segmentation database 

consisting of colonoscopy data from more than 300 patients admitted in 6 different 

data centres situated in Paris, Italy, Norway, UK and Egypt [53]. The dataset includes 

both single frames split as well as sequence data of positive (polyp containing) and 

negative (absence of polyp) samples [53]. A major limitation of the data is that the 

sequence positive samples contain a mixture of polyp instances and normal mucosa 

frames due to continuity of polyp appearance and disappearance. The negative samples 

also contain cases of colon linings, light reflections and mucosa covered with stool 

which can be mistaken for polyps. A total of 6282 frames are present in this dataset 

with 3762 positive samples and 2520 negative frame samples with bounding box 

annotations in VOC format [53]. 

CP-CHILD dataset collected at Hunan children’s hospital contains colonoscopy 

images of children under 18 years [54]. A total of 1600 children’s data is recorded and 

used to create two polyp datasets i.e., CP-CHILD-A and CP-CHILD-B. CHILD- A 

dataset contains 7000 non polyp and 1000 polyp images while CHILD-B includes 1100 

non polyp and 400 polyp RGB images [54]. CHILD-A images are taken by Olympus 
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PCF-H290DI, while FUJIFLIM EC-530 wide meter is used for CHILD-B. Image 

resolution is 256×256 and class labels are identified by endoscopists. The training set 

contains 800 images of non-polyps and 300 images of polyps, while the test set 

contains 100 images of polyps and 300 images of non-polyps. 

Polyp Image Bank database included colorectal polyp images and collected using 

white light as well as narrow band imaging. A histological report of each polyp is also 

provided. Annotations are done manually by clinical experts in the form of bounding 

boxes. A total of 31,400 polyp images (22,600 white light and 8,800 narrow band 

imaging) and 14,000 non-polyp images are present in the dataset from 1,176 different 

polyps. Video and image resolution is 768×576. This dataset can be used for polyp 

classification for different kinds of polyps like Adenoma vs. Hyperplastic vs. Sessile 

Serrated Adenoma vs. Traditional Serrated Adenoma vs. Non-Epithelial Neoplastic vs. 

Invasive. 

SUN Colonoscopy Dataset is used to evaluate the effectiveness of an automated 

colorectal polyp detection system, based on colonoscopy videos [55]. It is collected at 

the Showa University Northern Yokohama Hospital. It contains still images from 113 

colonoscopy videos, 100 being positive (containing polyp) and 13 negative samples 

[55]. There are 49,136 polyp frames in the SUN database, each one annotated with 

bounding boxes. 109,554 frames include non-polyp scenes. There are many different 

types of polyps in the resulting database i.e., 7 hyperplastic polyps, 4 sessile serrate 

lesions, 82 low-grade adenomas, 2 traditional serrated adenomas, 4 high-grade 

adenomas, and 1 invasive cancer. 

LDPolypVideo Database contains video footage from colonoscopies showing polyps 

and more complex bowel environments is included in this large-scale database [56]. 

The database consists of 160 colonoscopy videos in which 40,266 frames contain 

polyp annotations and in total 200 labelled polyps [56]. Polyp annotation is improved 

by using an object-tracing- based intelligent annotation tool. Additionally, it offers 103 

videos, including 861,400 frames without annotations. Therefore, unsupervised and 

semi-supervised methods will be able to benefit from these videos as they enrich the 
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diversity of the data. Authors also evaluated the data using you look only once 

(YOLO), retina network and centre network for polyp detection. 

The BKAI-IGH NeoPolyp database is an open-source colonoscopy polyp database 

developed and released by BK.AI, Hanoi University of Science and Technology 

incorporation with Institute of Gastroenterology and Hepatology (IGH), Vietnam [57]. 

The database has two versions. BKAI-IGH NeoPolyp-Small contains 1200 (1000 train, 

200 test) images including 1000 white light imaging and 200 flexible spectral imaging 

colour enhancement images [57]. It consists of 2 classes of polyps namely neoplastic 

(red) and non-neoplastic (green). Segmentation and classification annotations are 

available as ground truth which are verified by experienced endoscopists at IGH, 

Vietnam. The NeoPolyp database is bigger and contains about 7500 polyp images in 

four different colour modes namely linked colour imaging, narrow band imaging, 

white light imaging, flexible spectral imaging colour enhancement. An additional 

class, ‘undefined’ polyp is also included (yellow colour) in the NeoPolyp database. 

The larger dataset is not publicly available yet. The application of the BKAI-IGH 

NeoPolyp database is polyp segmentation with more focus on incisive classification 

for neoplasm polyp identification. 

Endotest dataset is an annotated polyp colonoscopy database, constructed with the aim 

to compare various polyp detection systems [58]. Endotest along with containing 

sequences of polyp and non-polyp frames, also includes frame- wise full length polyp 

colonoscopies [58]. The data was provided by 2 centres (University Hospital Ulm and 

Würzburg) using Olympus CV-190 endoscopy processor. It consists of 2 sets i.e., a 

validation dataset which contains 48 videos with 12159 polyp images and 10697 non-

polyp an the second, performance dataset which has 10 full-length colonoscopies with 

36482 polyp and 194416 non-polyp ones [58]. They are manually annotated. 

Colonoscopic dataset is a collection of various polyp classification video datasets 

namely MICCAI 2017 [46], CVC colon DB [41], GLRC [44], and data collected from 

University of Kansas Medical Centre (KUMC). The KUMC dataset includes 80 

colonoscopy videos which were then manually annotated. The motivation behind 

developing this dataset was to open source a colonoscopy-based poly detection 
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database with a large number of samples so as to compare various deep learning 

models. Each frame is manually labelled with various polyp classes as well as 

locations. A total of 155 video sequences or 37,899 frames are available with bounding 

boxes and labelled polyp classes acting as ground truth. Moreover, the data is split into 

116 training, 17 validation, and 22 test sets. 

Table 2.2 Comparative analysis of the available colonoscopy datasets in this field.   
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Table 2.2 presents existing available datasets of colonoscopy polyps for AI enabled 

techniques. They are compared on the basis of their releasing year, size of the data, 
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mode of acquisition, type of image or video format, presence of polyps and non-

polyps, medical validation and presence of ground truths in the datasets. The first 

colonoscopy dataset released in the year 2012, namely CVC ColonDB and CVC-

PolypHD have paved a way towards scientific research in early diagnosis of GI tract 

related diseases and effective management through robust AI techniques. SUN 

colonoscopy has recorded from maximum no. of patients i.e., 1731 out of which 1405 

were eligible for the study. Only CP-CHILD dataset has focused on collecting 

colonoscopy data of children suffering from colorectal disease up-to 18 years of age. 

SUN and Endotest data contain maximum polyp and non-polyp frames amongst the 

twenty-one discussed datasets. Most datasets have been released with binary masks 

which play an important role in segmentation tasks. Fewer, recently released datasets 

like Polypgen have provided sequential frames and most datasets contain de-identified 

videos or its frames for analysis. 

Available datasets still lack consideration of real-time medical settings. Real- time 

scenarios contain glare and artifacts in the colonoscopic video frames due to the 

coaxial arrangement of the lens and light source leads. The brightness and contrast of 

recorded video frames may not be of high-resolution due to varied reasons and depends 

on the geometry of the tissue area and liquid cleansing, and medical resource, cost, 

camera settings. Blurred frames are also recorded due to the movement of the sensor 

inside the organ cavity. The captured tissue images vary significantly during the 

contraction of the muscle fibres of the organ due to the peristalsis movement in the 

colon and rectum region of the body. Mode of acquisition also brings variations in the 

recording. It is clear from Table 2.2 that the image resolution varies significantly in all 

the available datasets. Several datasets like Polypgen, Kvasir SEG, etc, contain 

medical information on the left side of the video frames and contain a black box in the 

extreme left corner. Such frames require data cleaning methods before acting as input 

to AI pipelines. Cleansing score analysis of the endoscopic video is another important 

area of research which is still emerging. 

Now we discuss the dataset available in VCE. High-quality, open-access and free VCE 

data act as a catalyst for on-going state-of-the-art AI research works in management of 

various GI tract related diseases such as Crohn's disease, colorectal cancer, GI 
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bleeding, motility disorders, celiac disease, inflammation, polyps, and hookworms etc 

[24], [62], [63], [64]. Researchers have focused on different problems related to VCE 

technology like anomaly detection, video summarization, noise and artefact removal, 

and processing etc wherein each problem requires a unique, and high-quality VCE data 

for analysis [20], [24], [65], [66], [67]. Table 2.3 shows a comparative analysis 

between the existing, available VCE datasets for research use. 

KID project VCE data was originally launched as an internet-based digital video atlas 

for VCE in 2017 [68]. It is the first dataset which is actively utilized by researchers 

and is available for medical image analysis in VCE research and remains the 

benchmark dataset since 2017 [68].  It contains more than 2500 annotated image and 

47 videos and was collected from six centres. All the videos were acquired using 

MiroCam (IntroMedic Co, Seoul, Korea) capsule endoscope. KID data is bifurcated 

into two datasets, three videos and its parts. Dataset 1 consists of 77 VCE images which 

has various anomalies like angioectasia, apthae, chylous cysts, polypoid lesions, 

villous oedema, bleeding, lymphangiectasias, ulcers and stenoses. Dataset 2 consists 

of 2371 VCE images. Several polyploids, vascular and, inflammatory lesions observed 

in small bowel region are included in this dataset along with normal images from the 

GI tract. It was developed with a high standard image quality, protocols and standard 

annotations for state-of-the-art research purposes. 

Kvasir-Capsule is currently the largest and most recent, diverse, publicly available 

VCE dataset which contains 4,741,504 normal and abnormal image frames extracted 

from 117 anonymous videos [65]. It was collected from Norwegian Hospital using 

Olympus EC-S10 endocapsule. It was released in 2020 on OSF home, a free website 

to share research works. The findings are divided into two categories i.e., anatomy and 

luminal findings. 47,238 video frames are labelled and contains a bounding box for 

each frame. Rest of the frames are unlabelled. Both video and images which are 

labelled and unlabelled are available for download. All the annotations have been 

medically verified by four specialized hospital doctors. However, no cleansing grades 

during bowel preparation, class labels and related medical information to assess the 

grade of cleanliness has been done. 
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Gastrolab is an image gallery-based website which contains raw images, and video 

segments of different type of endoscopies of varied locations, patients and, GI tract 

diseases and their types [69]. It is managed by science photo library. Red Lesion Endo- 

Table 2.3 Comparative analysis between the existing, available VCE datasets for research use. 

Name of the CE 

dataset 

Data collection place and 

year of release 

No. of classes 

and VCE 

images 

Limitations/ Remarks 

 

KID 

Royal Infirmary of 

Edinburgh, United Kingdom 

and 2017 

8 and 683 

images 

Lack cleansing score, sequential 

frames and multi-label medical 

information. Benchmark dataset in 

AI WCE research. 

Kvasir-Capsule 

Department of Medicine, 

Bærum Hospital, Vestre 

Viken Hospital Trust, 

Norway and 2020 

14 and 

47,41,504 

images 

Lack cleansing score, and multi-

label medical information. 

Presently largest WCE data 

Gastrolab 
Multiple labs across globe 

and - 
4 and - 

Raw VCE video frames and video 

segments of crohn ulcerations, 

normal GI tract, hyperplasia, and 

whipples. 

Red Lesion 

Endoscopy 

(MICCAI 2017) 

Institute for Systems and 

Computer Engineering, 

Technology and Science 

(INESC TEC), Portugal and 

2018 

2 and 3895 

images 

Contains only red lesions. Medical 

annotation is done for Set A only. 

Annotated bleeding 

(Farah deeba) 
- and 2016 2 and 50 images 

Contains only bleeding and non-

bleeding WCE images which may 

not be medically verified.  

Crohn IPI 
Nantes University Hospital 

and 2020 

7 and 3498 

images 

Focused on one disease i.e., 

Crohn’s disease 

EndoSLAM 
Multiple labs in UK, USA 

And 2020 

- and 3294 

images 

Developed for depth estimation and 

Monocular Visual Odometry, 

contains Tumor frames.  

VRCaps 
Multiple labs in UK, USA 

and 2021 
- 

- (Artificial data synthesis of CE 

technology) 

CE Cleanliness 

Hospital Universitari i 

Politècnic La 

Fe,Valencia and 2020 

2 and 1417 

images 

Lacks anomaly information, class 

labels of anomalies, medically 

validated cleansing scores 

-scopy Dataset is the first publicly available VCE dataset which contains red lesions 

like angioectasias, angiodysplasias, and bleeding only. It is freely available on 
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INESCTEC data repository since 2018 and contains two sets. Set 1 and 2 consists 

ofabout 3295 non-sequential and 600 sequential frames respectively with manually 

annotated masks. The videos were recorded using different cameras like MiroCam, 

Pill-Cam SB1, SB2 and SB3. Annotated bleeding dataset was released in 2016 for 

automatic segmentation of 50 bleeding and non-bleeding VCE images [70]. The 

ground truth images are also available. No other information is available for this 

dataset. Crohn IPI dataset contains 3498 WCE image frames from different 

pathological findings and normal images collected using PillCam3 at Nantes 

University Hospital [71]. All the abnormal videos were taken from patients suffering 

from Crohn's disease. The annotations were medically verified by three independent 

medical experts. Various anomalies like ulcers, lesions, erythema, edema, and stenosis 

etc. The data is available on request from the authors. 

EndoSLAM dataset contains different types of endoscopic recordings of porcine GI 

tract organs, synthetic data generated through VR caps and phantom recordings of the 

colon and other GI tract organs with computed tomography scan ground truth [72]. 

The recordings have been acquired using conventional endoscopes like Olympus 

colonoscope and newer WCE cameras like MicroCam, Pillcam colon, high- and low-

resolution cameras. 42,700 image frames distributed in 35 sub-datasets have been 

developed which aims to provide 6D depth pose, 3D ground truths, image frames from 

different cameras views, angles and light conditions. A virtual environment has also 

been released on the similar area of interest known as VR caps [73]. Both of them are 

available freely on Github. 

CE cleanliness is the only dataset which is available for assessing the grade of 

cleanlinesss [74]. It was released in 2020 and acquired at Hospital Universitari i 

Politècnic La Fe from Valencia, using Pillcam SB 3 system. 563 individual frames of 

576×576 pixels were extracted from 35 different CE videos during patient procedures 

and considered as training set. 854 additional frames of 576×576 pixels were extracted 

from 30 additional CE videos of different patients for development of validation set. 

The dataset has been built to locate and quantify the intestinal content in a CE 

procedure wherein the extracted frames have been cut into patches of 64×64 pixels, 

with a step size of 32 pixels which are class labelled as dirty or clean. No other medical 
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information related to the findings of the CE and their class labels has been mentioned 

in the dataset. 

2.3 Abnormality Detection Methodologies in Endoscopy 

Abnormality detection in endoscopy involves identifying deviations from normal 

tissue appearance during internal examinations of organs like the GI tract [18], [24], 

[26], [75]. Utilizing specialized cameras, this diagnostic technique helps detect 

anomalies such as polyps, lesions, or inflammation. Computer-aided systems, 

employing image analysis and machine learning, assist in recognizing subtle 

abnormalities, enhancing diagnostic accuracy. Early detection through endoscopic 

abnormality recognition is crucial for timely intervention, enabling effective treatment 

of conditions like colorectal cancer [11], [12], [76], [77], [78]. This approach combines 

medical expertise with technology, contributing to improved patient outcomes by 

ensuring the early identification and management of abnormalities within the visual 

field of endoscopic procedures [79], [80]. 

In this thesis, we will focus on a specific abnormality known as polyp. A polyp is an 

abnormal growth of tissue that protrudes from the mucous membrane (inner lining) of 

an organ [81], [82], [83]. Polyps can occur in various parts of the body, including the 

colon, stomach, nasal passages, uterus, and other organs. In the context of 

gastrointestinal health, such as colonoscopy or endoscopy procedures, the term ‘polyp’ 

commonly refers to growths in the lining of the colon or rectum. 

Polyps vary in size, shape, and appearance, and they can be classified into different 

types based on their characteristics [83]. Some common types of colorectal polyps 

include adenomatous polyps, hyperplastic polyps, and serrated polyps [83]. 

Adenomatous polyps, in particular, are of concern due to their association with an 

increased risk of colorectal cancer [82], [83]. It's important for individuals, especially 

those at higher risk, to undergo regular screenings and consult with healthcare 

professionals to monitor and manage the presence of polyps for preventive health 

measures. 

One of the early studies on automatic detection of polyps using colonoscopy frames 

focused on identifying polyp region through texture-based feature extraction followed 
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by classification of support vector machine (SVM) to identify the position of the polyp 

[84]. The authors developed sub-frames of the main frame and labelled them normal 

region and polyp region to develop a training dataset. The frame resolution was of 

378×254. Texture features were calculated for each of the sub-image and then 

classification task was performed to identify the position of the polyp. The authors 

achieved a sensitivity up-to 86.2% on their test dataset of seventy-four colonoscopy 

frames. The simulation codes were run on a 1.83GHz Intel Centrino Duo CPU and 

2GB RAM computer. A similar study achieved a region over curve (ROC) curve up-

to 0.96 using texture-based features [85]. The authors pointed out that the major 

drawback of automating the process is the lack of the high-resolution data in this field.  

So, the authors collected a high-resolution colonoscopy video with resolution of 

1920×1080 and processed it for automatic detection of polyps. This way the sub-

images were of higher resolution and more precise features were extracted from it. In 

continuation to the study, an automatic polyp region segmentation using watershed 

algorithm and ellipse segmentation was proposed [86]. The authors showed that 

texture-based features had a limitation over frames which contain multiple polyps and 

demanded a fixed-sized analytical window to be cut out as a sub-image. The elliptical 

shape-based algorithm covered small and large polyps and achieved a sensitivity and 

specificity of 93% and 98% respectively.  

Similar studies surfaced from 2010-2015 wherein the researchers utilized hand-crafted 

features which were colour-based, statistical-based, texture-based, special-information 

based to identify polyp and normal tissue using different machine learning classifiers 

like SVM, random forest (RF), k-Nearest Neighbours (KNN), linear regression, 

logistic regression (LR), etc. Most studies consisted of splitting the frames into a 50-

50 manner to train and test their AI models over colonoscopy frames ranging from 50-

500 [41], [45], [84], [85], [86], [87], [88]. MICCAI is focused on advancing research 

in MIA and AI, launched its first biomedical challenge on polyp recognition. State-of-

the-art datasets were released wherein CVC Colon DB was also released. Interested 

researchers and industry professionals participated in these challenges from 2015-2017 

to work on the problem of automatic detection of polyps in colonoscopy frames. 

However, the need of robust datasets which contain diverse polyp frames with varied 
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size, type, and texture remained a research gap. The dataset released in the challenges 

were not accessible for public research use at the time. In the subsequent years, partial 

datasets were released for public research use. The existing selection bias problem in 

these datasets remained an un-looked area. It was only realised in a study published in 

a medical journal wherein the doctors showed that the AI model interpreted a frame as 

polyp which was completely resected by the doctors during polypectomy [89]. The 

study showed the biasness of the AI model and showed the need to include non-polyp 

frames, incomplete polyp resection-based frames, and unwanted frames which were 

discarded in the existing datasets. 

With the advent of ensembles and deep learning models, this field too experienced the 

shift. Different deep learning models YOLO, single shot detector (SSD), custom 

convolutional neural networks (CNN), faster CNN, u network etc were implemented 

in this field [26], [75], [90], [91]. Some of the studies have been discussed here. 

Wang et al. [92] conducted the first prospective randomized control study to 

automatically detect polyps using segment network, a deep learning architecture. The 

architecture was trained and tested on private data collected from the Endoscopy 

Center of the Sichuan Provincial People’s Hospital, China. The deep learning 

architecture was able to detect about 81.16% polyps present in 292 colonoscopy videos 

in comparison to the human operator who detected about 50.1% polyps present in 293 

colonoscopy videos. The false positives were reported for images with bubbles, faeces, 

undigested debris, wrinkled mucosa, rounded drug capsules, and local inflammation 

in the area. Zhang et al. [93] proposed an SSD Global Pooling Network (GPNet) for 

the automatic detection of gastric polyps, in real-time, using private data from Sir Run 

Run Shaw Hospital, China. The architecture consisted of feature pyramids along with 

a backbone of visual geometric group (VGG) 16 to automatically extract unique 

features of polyps in colonoscopy frames. 

Hsu et al. [94] proposed a CNN network consisting of three CNN layers followed by 

a max pooling layer for polyp detection and classification with the input of grey-scaled 

polyp frames. CVC-Clinic and privately collected polyp video frames were used to 

train the network. Soons et al. [95] proposed a real-time polyp detection using the 
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DISCOVERY computer-aided detection (CAD) system on privately collected data 

from Europe. The authors have reported about twenty percent false positives rate in 

eighty-one colonoscopy videos. 

Jha et al. [96] proposed a deep learning architecture named colon segment network to 

automatically detect, localize, and segment polyp frames using the Kvasir-SEG 

dataset. To tackle the high number of false positives found in neighbouring frames, 

Qadir et al.  [97] proposed a CNN-based object detector network with a False Positive 

(FP) reduction unit. The authors trained and tested their network on CVC-Clinic, ASU-

Mayo Clinic, and CVC-Clinic-Video DB datasets. Rodrıguez et al. [98] used a fine-

tuned YOLO version three architecture to detect polyps in real-time using privately 

collected data from Chuo University, Japan. The pipeline was developed and evaluated 

using a Compi-based framework. 

Nehme et al. [99] evaluated the effectiveness of the first Food and Drug Administration 

(FDA) approved CAD device to automatically detect adenomas in daily clinical 

practice. The authors concluded that the CAD device did not improve adenoma 

detection in the clinical setup. It was found prone to a high number of false positives, 

and a high level of distraction. It was also susceptible to prolonged procedure time. 

Krenzer et al. [100] proposed a deep learning architecture based on YOLO called the 

ENDOMIND-Advanced to detect polyps in real time. The authors merged seven open-

source datasets (out of twenty-three) and one privately collected data from Germany 

to train, test, and validate their deep learning architecture. 

Sanchez et al. [75] pointed out that the existing state-of-the-art experimental studies 

have focused on polyp detection and classification with deep learning architectures 

using private datasets. Most experimental studies included in their review study had 

not tested their architectures for human-unaltered video datasets due to a lack of open-

source datasets. The same may be observed through the studies discussed above. 

Additionally, the above discussion reveals that there is still scope for improvement in 

the detection of abnormality specifically for polyps, in routine clinical and real-time 

use. 
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2.4 Cleanliness Assessment Methodologies in Endoscopy  

Cleanliness assessment in endoscopy involves two major aspects namely the 

quantification of chemicals which are given to a patient to clean the tract of the patient 

before endoscopy, and scoring methods which may analyse the endoscopy video for 

their cleanliness post the endoscopy. The first aspect is decided through the state of the 

patient, their allergies, resistance to any drug, experience of the endoscopist, and 

standard rules followed at the hospital. The second aspect is still state-of-the-art as 

most scoring methods are not standardized for video analysis and assessed through 

frame-by-frame analysis, and have not been tried and evaluated for large, and multi-

centre clinical trials. In VCE, purgatives like polyethylene glycol, sodium phosphate 

and simethicone etc are given to the patient to prepare their bowel. Several studies 

have been on-going to check which purgative is best in nature and whether bowel 

preparation before VCE enhances the diagnostic yield of the VCE or not. Contradicting 

results have been reported over the years. Nevertheless, the manufacturers of the VCE 

suggest fasting of at least 6-12 hours before the procedure, and in-take of liquid diet 

before and after the procedures for 2 days. In this thesis, we have hypothesized that 

the assessment of cleanliness in VCE is crucial for ensuring optimal visualization and, 

consequently, accurate diagnosis or the so-called diagnostic yield of the VCE. 

Cleanliness metrics, the scoring system must play a pivotal role in maintaining the 

quality of VCE examinations, allowing gastroenterologists to make informed decisions 

based on clear and unobstructed images. 

Now we will discuss the state-of-the-art methodologies surfacing for automatic 

cleanliness assessment in VCE. One of the initial studies appeared in the year 2015 

wherein Klein et al. [101] designed and validated a computed small bowel preparation 

score based on the pixels in the colour bar of red-green-blue (RGB) images. The 

authors categorized the images as ‘adequate’ and ‘in-adequate’ to perform CE image 

classification and correctly classified 71 CE videos out of total 85 CE videos. Pietri et 

al. [102] focused on developing a computer-aided system based on four different 

statistical features namely grey level correlation matrix (GLCM), fractal dimension 

features and Hough transform to evaluate the abundance of bubbles in CE. 400 still 

frame was categorized as ‘scarce in bubbles’ or ‘abundant in bubbles’ based on the 
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percentage presence of bubbles observed by the physician in the CE frame. A 

sensitivity up-to 95.79% and 94.74% was achieved for specified features on the 

validation set. 

Abou Ali et al. [103] developed a computer-aided assessment of cleansing (CAC) 

score to inspect the effectiveness of evaluation of quality for CE still frames. The 

authors used channels of colour intensities of the RGB model and extracted it for each 

frame. A SB-CAC score cut-off of 1.6 validated a sensitivity of 91.3 % and a specificity 

of 94.7 % for 228 still frames categorized as ‘adequate’ and ‘inadequate’. Oumrani et 

al. [104] proposed an automatic rapid tool for assessing mucosal visualization quality 

of still CE images using colour intensity ratio, brightness index and GLCM features 

and random forest classifier. 600 normal still CE frames were extracted and evaluated 

through 10-point assessment grid. The combination of the mentioned features 

produced a sensitivity up-to 90%.  

Noorda et al. [74] developed a CNN architecture with light weight and reduced 

trainable parameters to automatically evaluate the degree of cleanliness in CE on an 

intuitive scale such as ‘clean’ or ‘dirty’. In order to locate and quantify the intestinal 

content, the authors developed patches from the extracted VCE frames. Based on the 

5-fold cross validation performed on 35 video patch frames for training set and 30 

different videos for validation set, an average classification accuracy up-to 95.23% has 

been reported. 

Nam et al. [105] developed a deep learning-based software to calculate cleansing score 

in CE. They used 700 images per each cleansing score and implemented an existing 

deep learning model named Inception residual network version 2 (Inception ResNet 

V2). Abnormality such as polyp, ulcer, bleeding etc., found in the frame were not 

considered in the training and test set. The top-1 and top-2 accuracies achieved by the 

deep learning network were 69.4% and 91.2%, respectively. Based on the 

classification, scores were manually assigned and compared with physician’s decision 

to check the efficacy of the network. Similar work by the authors used Generic CNN 

consisting of five convolutional and max pooling layers with one full connected layer 

for 4,00,000 still frames categorized into score 1-5 depending on mucosal visibility. 
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The proposed network achieved an accuracy up-to 93% on 120 test set frames and 

misclassification rate up-to 24.7% on 51,380 separate set of CE frames. A VGG16 

neural network based automatic SB cleanliness scoring was proposed using 600 

normal still CE frames [106]. They were categorized as ‘adequate’ and ‘inadequate’ 

based on 10-point scale. The authors reported an accuracy up-to 89.7%. It may be 

noticed that only one dataset is presently available which doesn’t contain medical-

based scoring information and contains binary labels. Most studies have been done 

using private datasets with two labels. To the best of our knowledge, no study has been 

to automate an existing medical score for VCE cleanliness assessment. Additionally, 

real-time studies have not been tried further suggesting a scope of improvement in this 

field. 

2.5        Multi-label Classification in Endoscopy  

Multi-label classification in endoscopy involves categorizing endoscopy videos or 

frames into multiple classes or labels, indicating the presence of various abnormalities 

or conditions or scores simultaneously. This approach is essential in gastroenterology, 

where endoscopy procedures may reveal multiple pathologies in a single examination, 

such as identifying polyps, inflammation, or ulcers. Advanced machine learning 

algorithms may analyze endoscopic imagery to classify and label diverse 

abnormalities, enabling comprehensive diagnosis and treatment planning. By 

addressing the complexity of detecting multiple conditions in a single endoscopic 

session, multi-label classification may contribute to be more accurate and provide 

holistic assessments of patients' GI health during endoscopy procedures. Upon 

conducting a thorough search on engineering village, a famous literature search 

website by Elsevier, google scholar, PubMed, IEEE explorer, and science direct for 

years 1950-2024, we found that multi-label classification in endoscopy is still an 

emerging area. Primary reasons behind this are the already existing lack of data in 

endoscopy for AI-enabled techniques. Scarce data is available for binary labels. Multi-

label data collection demands collaboration with experienced gastroenterologists and 

understanding of the medical problem. Herein, we discuss the existing studies in multi-

label classification for endoscopy. 
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Vasilakakis et al. [107] investigated the semantics of a CE video content such as 

mucosal tissues, hole of the lumen, bubbles and debris through a weakly supervised 

framework. This framework consisted of salient point detection algorithm, bag-of-

word representation and multi-label classification using support vector machine 

classifier. The authors extended their work and developed a multi-label classification 

method for five categories namely abnormal, debris, bubble and lumen hole using bag-

of-words approach on CIE-Lab converted CE RGB frames and a convolutional neural 

network architecture enabling multi-scale feature extraction (MM-CNN). The 

experimental work used KID data wherein multi-labels were developed using 

Ratsnake software. Keywords like ‘abnormal’, ‘debris’, ‘bubble’ and ‘lumen hole’ 

were added to a particular CE frame containing a lesion abnormality like ‘polyp’, 

‘ulcer’, ‘bleeding’ etc. It was done to finally check whether the CE frame has existence 

of abnormalities or not, the existence of debris or not, etc. They did not consider 

dependencies between labels and associated cleansing score. The developed method 

achieved an area under curve (AUC) score up-to 0.94, 0.91 and 0.85 for debris, bubble 

and lumen hole classes. 

Park and Lee [108] proposed a class-labelling method that can be used to design a 

learning model by constructing a knowledge model focused on main lesions defined 

in standard terminologies for CE such as minimal standard terminology and CE 

structured terminology The knowledge model considers the anatomy of the GI tract 

and findings in CE. Three major class labels namely normal, abnormal and 

discriminative class have been given wherein the normal class labels are further 

distinguished based on the bubbles, wrinkles, location of the capsule and 

discriminative classes contains frames due to low power, transmission or reception 

problems, and a large amount of foam. The special cases have been analyzed by 

developing clusters of colour similarity through k-means algorithm. The supra- and 

sub-classes have been made using the concept of ontology. The authors conducted a 

classification task to distinguish the different organs using a generic CNN and achieved 

an accuracy up-to 33.5%. 

Mohammed et al. [109] developed a pathology-sensitive abnormality detection 

through CNN pipelines, attention, residual long short-term memory (LSTM), and self-
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supervision sub module for colon diseases in VCE data. They developed VCE dataset 

(presently private) containing 455 short video segments with 28,304 frames and 14 

classes of colorectal diseases. The classes consisted of abnormalities such as erosions, 

debris, diverticulosis, erythema, granularity, haemorrhage, inflammation, edema, 

angioectasia, polyp, pseudo polyp, tumour and ulceration. A total of 227 and video 

were considered for training and testing the proposed AI method. The authors 

performed video and frame-level prediction and achieved a precision, recall, F1-score 

and specificity up-to 61.6%, 54.6%, 55.1%, and 95.1% respectively. 

2.6 Chapter Summery and Gaps in the Study  

This chapter delves into the critical advancements and challenges in colonoscopy and 

VCE, specifically focusing on two pivotal aspects: automatic abnormality detection, 

with a primary emphasis on polyps, and cleanliness assessment for maintaining the 

diagnostic yield and video quality of VCE. The key points of the chapter include: 

• Introduction to the evolution of computer-aided systems in colonoscopy and 

VCE for a reliable and fast automated analysis which saves the time and 

effort of gastroenterologists.  

• Exploration of colonoscopy and VCE datasets for Ai-enabled techniques. 

• Emphasis on existing methodologies for automatic polyp detection and 

cleanliness assessment in VCE.  

• Advancements in multi-label classification of endoscopy data. 

Pertaining to the literature discussed in the above sections, following are the research 

gaps: 

• Lack of high-quality, large endoscopy dataset for abnormality detection and 

cleanliness assessment. 

• Need for robust and effective methodologies to detect abnormalities in 

endoscopy. 

• Need for precise and fast methodologies to assess the cleanliness in 

endoscopy. 

• Need of multi-label classification in endoscopy.  
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2.7 Conclusion and Future Scope 

In this chapter, we discussed the existing colonoscopy and VCE datasets and 

methodologies which may be utilized to tackle the problem in automation of 

endoscopy analysis, specifically for automatic polyp detection and cleanliness 

assessment in VCE. In both the problems, the traditional approaches initiated with 

handcrafted features such as the texture, colour, and statistical abstractions and 

application of machine learning algorithms. The approaches have slowly evolved to 

automated feature extraction through deep learning algorithms. There is a need of 

development of large dataset and methodologies in both the field for advancement in 

this field. 

The above discussed research gaps have acted as a source of motivation for the 

development of new methodologies in this field. This thesis will focus on developing 

and releasing two new datasets namely gastrointestinal polyp dataset and KODA 

dataset to advance research and simulations for automatic polyp detection in 

colonoscopy and cleanliness assessment in VCE. Two new methodologies will be 

discussed in detail to combat the research gaps of need of robust and effective 

methodologies to detect abnormalities, assessment of cleanliness and multi-label 

classification in endoscopy primarily VCE in the Chapter 3, 4, and 5. 
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CHAPTER 3 

DEVELOPMENT OF DEEP LEARNING ARCHITECTURE FOR 

ABNORMALITY DETECTION IN ENDOSCOPY 

3.1 Introduction 

The incidence rate of GI and liver diseases has significantly increased, especially in 

developing countries like India, China, and Japan, due to the increased use of 

antibiotics, and changes in environmental conditions, health, and diet [3]. Colorectal 

cancer is one such common GI disease that is characterized by persistent changes in 

the bowel, bleeding in the rectal region, colorectal polyps (CP), and discomfort in the 

abdomen [76]. The cumulative risk of colon cancer developing for an un-removed and 

un-treated polyp is about 24% at 20 years after its diagnosis [83]. Colonoscopy, an 

endoscopic method has been suggested as an early diagnostic method to remove and 

treat these colon and rectum polyps [76]. The procedure takes about 30-60 minutes 

which records for an adjustable frame rate of up to 4-30 frames per second [17]. 

Manual analysis of large colonoscopy frames for a single patient is not only time-

consuming but also repetitive for an experienced gastroenterologist [17], [110]. 

Considering the low doctor-to-patient ratio, and lack of resources, various machine 

learning, deep learning, and transfer learning pipelines have been proposed to 

introduce automation in the detection of CP while reducing the false positive rate and 

eventually, aid in the burden on skilled gastroenterologists [111], [112]. Several 

handcrafted features such as scale-invariant feature transform (SIFT), histogram of 

oriented gradients (HOG), colour space statistical features, etc., have been proposed in 

the past [113]. 

3.2 Related Works 

Deep learning architectures such as faster-residual CNN, single shot multi-box 

detector, YOLO, Inception version 3 (V3), VGG 16, Resnet V2, and Resnet-150, etc., 

have been frequently used for CP detection, segmentation, and classification [26], [29], 

[75], [90], [91]. Hsu et al. [94] proposed a CNN consisting of three CNN layers 
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followed by a max pooling layer for CP detection and classification with the input of 

gray-scaled CP frames. CVC-Clinic and privately collected CP video frames were used 

to train the network. The study also inferred through hyper-parameter tuning that the 

accuracy of the proposed network decreases dramatically when images of polyps are 

smaller than 1600 pixels. Another study proposed an architecture with four 

convolutional layers and max pooling layers followed by two fully connected layers 

to detect CPs. Rahim et al. [114] proposed a sixteen-layered CNN with MISH 

activation function instead of rectified linear unit activation (ReLU) for automatic 

polyp detection. Two research works have been carried out in interpreting the deep 

learning architectures. The first study, by Wang et al. [92] focused on CP 

classification, segmentation, and detection using Shapley additive explanations and 

performance predictors. The second study checked the uncertainty in CNN while 

performing colorectal polyp semantic segmentation using the uncertainty method 

called the Monte Carlo Guided Backpropagation [115]. Kliegis et al. [89] investigated 

the famous, pharmaceutically approved, CAD-Eye AI system (Fujifilm Europe) for 

polyp detection and characterization after completing endoscopic resection of colon 

adenomas. The AI system poorly misidentified all the seventeen resection sites and its 

exposed normal sub-mucosal tissue as polyp regions showing that the system should 

be trained and tested for occluded frames to avoid such misidentifications. Excellent 

review developed by Rodríguez et al. [26], [98] pointed out that the current research 

works in this field have focused on polyp detection and classification using deep neural 

networks (DNN) but still lacks the testing on human-unaltered video datasets, larger, 

and freely, available datasets like ImageNet for computer vision related tasks, with 

variable CP and non-CP frames. Hence, there is still room for improvement in terms 

of extensive test set analysis, occlusion testing, and hyper-parameter tuning leading to 

the development of trustable and explainable AI pipelines for automatic CP diagnosis. 

3.3 Problem Statement 

With the rise in the use of deep learning architectures, the concept of `end-to-end' 

learning has become popular wherein the feature extracting and pre-processing steps 

have merged in the deep learning pipeline and are often performed `on the fly' to save 
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computational time and memory [39]. Pharmaceutically approved deep learning 

systems such as GI genius (Medtronic Plc, Dublin, Ireland), DISCOVERY (PENTAX 

Medical, Tokyo, Japan), Endo-BRAIN-EYE (Olympus Corporation), and CAD-EYE 

(Fujifilm, Tokyo, Japan) have motivated researchers to develop robust architectures 

which are able to detect even the minutest CPs of dimension less than 2 mm [26], [29], 

[75], [90], [91]. However, due to the complexity and black-box nature of these 

architectures, developing trust among the user (clinical staff and doctors) is presently 

difficult. Recent reviews done in this field have shown the lack of separate validation 

and test set analysis due to the unavailability of open-source datasets in video or still, 

image form [26], [29], [75], [90], [91]. It further has led to poor generalizability and 

over fitting of existing state-of-the-art deep learning architectures [26], [29], [75]. In 

continuation, it has also hindered the analysis of sequential and non-sequential frames 

in colonoscopy videos. 

These architectures consist of various hyper-parameters like kernel size, weights, 

kernel initializer, learning rate, optimizer, batch size, scaling, data augmentation 

methods, etc. Fine-tuning of these hyper-parameters and their block-by-block removal 

through ablation experiments are vital and can be further explained and tuned as per 

the requirements of health officials. Architecture explainability and transparency are 

important, that focus on how deep learning architectures associate a certain CP video 

frame with its class label and further depict factors that influence this prediction. For 

instance, a recent study by Wickstrøm et al. [115] investigated the uncertainty in the 

prediction of U-Net and SegNet, CNN based segmentation architectures for CP 

diagnosis. Another study conducted a survey of intrinsic and extrinsic explainable 

methods for health officials in the gastroenterology department and reported the 

explainability of Gradient-weighted Class Activation Mapping (Grad-CAM) to be the 

most efficient and preferred amongst doctors in comparison to Shapley Additive 

exPlanations (SHAP) values [92], [116].  

Owing to the above-discussed research gaps in this field, the present work proposes an 

explainable, end-to-end, automatic colorectal polyp diagnosis architecture called 

`Window bAsed Detection afTer Mixed Convolutions Polyp Identification (WADT-

MCPI)'. The main contributions of the work are concluded as follows: 

• The work proposes an end-to-end deep learning architecture called `Window 
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bAsed Detection afTer Mixed Convolutions Polyp Identification (WADT-

MCPI)' for an automatic colorectal polyp diagnosis under colonoscopy. 

• Explainability of the proposed architecture through feature mapping, CAM, 

and ablation studies. 

• Development and release of a test set named `Gastrointestinal atlas-Colon 

Polyp' for a separate test or validation set analysis in this field.  

• Extensive test set analysis on a variety of sequential and non-sequential 

colonoscopic frames while achieving an average test set accuracy up to 93%. 

• The work also shows the behavior of the proposed architectures for various 

hyper-parameters in deep learning architectures, the developed occlusive 

frames and its comparison with the vanilla Inception v3 architecture.  

3.4 Methodology 

This section details the dataset preparation, augmentation, and experimental settings 

to develop the proposed architecture for automatic CP detection in colonoscopy 

frames. Table 3.1 shows the no. of CP and non-CP frames present in each of the 

datasets considered while training, validating, and testing the proposed architecture.  

Table 3.1 Details of the chosen dataset. 

Name of dataset No. of polyps No. of non-polyps Total no. of frames 

(a) Training data 

Kvasir 400 800 1200 

Etis-Larib 157 - 157 

CVC-Colon 299 - 299 

(b) Validation data 

Kvasir 100 200 300 

Etis-Larib 39 - 39 

CVC-Colon 76 - 76 

(c) Testing data 

Test 0 150 - 150 

Test 1 256 - 256 

Test 2 103 23 126 

Test 3 10 13 23 

The detailed specification of the chosen datasets namely Etis-Larib, CVC-Colon, and 
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Kvasir v1 is presented elsewhere [40]. The details of the proposed test set named 

‘Gastrointestinal atlas-Colon Polyp’ are mentioned in the subsequent sections. 

3.4.1 Data preparation and augmentation 

Etis-Larib, CVC-Colon, and Kvasir v1 data were considered such that the training 

comprised 80% of the data (1656 images) and the remaining 20% formed the 

validation set (415 images). 1000 images from the ‘normal cecum’, ‘normal pylorous’, 

and ‘normal z-line’ of the Kvasir v1 data were considered to balance the non-polyp 

class. Both the training and validation set underwent data augmentation techniques 

namely shearing, zoom re-scaling, and horizontal flipping to increase the size of the 

dataset and introduce variability in the images since polyp size varies in a real-time 

setting. Other parameters like ‘channel_shift_range’ and ‘fill_mode’ were not used 

because they did not prove to bring many noticeable changes in the dataset. After data 

augmentation, a manual check was done to ensure the dis-similarity of the frames and 

rule out the chances of data leakage in the proposed work. Four different test sets were 

considered for testing the proposed architecture. Figure 3.1 depicts the variety of CP 

and non-CP frames considered in this work. Testing set 0 consists of the developed 

frames from Gastrointestinal atlas-Colon Polyp. In testing set 1, unique, random polyp 

frames extracted from the recently released Polyp-Gen data (Figure 3.1 Testing data 

(i)) were considered. Mixed, random frames collected from Polyp-Gen, the proposed 

test set (Figure 3.1 Testing data (g)), and the Gastro-lab website were considered in 

Test set 2 (Figure 3.1 Testing data (h)). Developed frames for occlusion testing were 

considered as Test set 3 (Figure 3.1 Testing data (j)). 

The gastrointestinal atlas-Colon Polyp dataset contains seven videos. The first video 

is about 71-year-old man who underwent a colonoscopy for a dyspeptic syndrome 

containing large, ulcerated polyp with a wide pedicle and uneven surface of intra-

mucosal cancer foci. Due to the patient's anticoagulation, it was advised to postpone 

the polypectomy till 15 days. The second video is about Recto-Sigmoid junction 

adenomas with chicken skin mucosa. It is associated with colonic neoplasms which 

are endoscopic allies and histologically aberrant. Colonic chicken skin mucosa is an 

endoscopic condition that develops in the lamina propria of the mucosa next to colonic 
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tumors because of fat build up in macrophages. The pathophysiological consequences 

of the presence of microvilli that resembled those in the small intestine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Examples of the colorectal polyp and non-polyp frames considered for training, validating, 

and testing the proposed architecture. Train polyp data (a) Kvasir v1, (b) Etis-Larib, (c) CVC-Colon; 

Validation polyp data (d) Kvasir v1, (e) Etis-Larib, (f) CVC-Colon; Testing data (g) Proposed 

Gastrointestinal atlas-Colon Polyp test data, (h) Mixture (i) Polyp-Gen data, (j) Developed frames for 

occlusion testing. The non-polyp frames in training and validation data are from Kvasir v1 as Etis-Larib 

and CVC-Colon don't contain colorectal non-polyp frames.  

were found unclear in the patient. The distal colon was the primary location of related 

adenomas, which were linked to advanced disease and numerous adenomas. 

According to the physician’s opinion, it may serve as a possible indicator of the 

development of distant colorectal adenomas into cancer. The third video is about a 56-

year-old woman who had irregular rectal bleeding for the past four months. A 

colonoscopy revealed a big lump with congested internal hemorrhoids. The fourth 



43 
 

  

video is another clip from the first video of the same patient. The fifth video is about 

59-year-old woman who had tubulovillous adenoma which is ileocecal in origin valve. 

The sixth video shows an adenoma. No further information is provided on the website. 

Finally, the seventh video shows an ileocecal valve-emerging sessile tubulovillous 

adenoma found in a 59-year-old female who underwent a colonoscopy as part of her 

routine medical care. 

3.4.2 Proposed Architecture 

The proposed architecture called `Window bAsed Detection afTer Mixed 

Convolutions Polyp Identification (WADT-MCPI)' consisted of an input layer with 

hyper dimensions, hyper channels, and depth dimensions, a feature extracting module, 

and two fully connected layers for identification of CP and non-CP frames. It is 

followed by a window-based detection of the CP region during test set analysis. The 

feature extracting module consisted of concatenations of one conventional 

convolutional layer with sixteen filters of kernel size 33, one layer of fractionally 

strided convolutions with thirty-two filters of kernel size 33, and one layer of 

depthwise separable convolution with sixty-four filters of kernel size 33; each layer 

followed by a max pooling layer with a pool size of 22. The organization of the 

convolutional layers in the feature-extracting module was experimentally checked 

using the feature maps and evaluation metrics (Table 3.2). After that, the learned 

features were flattened to a 1D vector and were passed to two fully connected layers 

of 128 and 1 units respectively for class identification purposes. All the layers except 

the last layer were activated with the help of the non-linear activation function “ReLU” 

which accelerates the convergence of stochastic gradient by using less activation while 

minimizing the cost function of the stated problem [117], [118]. A sigmoid function 

was utilized in the last fully connected layer as it helps in mapping the learned features 

between 0 and 1. It is often considered an appropriate unit for mapping output 

probabilities in a binary classification problem [118], [119]. After the evaluation stage, 

the proposed architecture was subjected to a window-based detection using the 

mentioned Algorithm 1 to detect the presence of CP in the four test sets. Initially, a 

window size of 64643 was set to slide over CP colonoscopic frames of size 
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1281283. An empty matrix of the maximum box was initialized along with the 

maximum prediction set to zero. As the window slid over the pixels of each frame, the 

window patch was cropped and normalized to perform a prediction. The coordinates 

of the bounding box were computed. It was then superimposed as a red line, a 

rectangular-shaped box to represent the CP region in the original frame. 

 

3.4.3 Experimental settings 

The proposed architecture has been implemented using Python with TensorFlow in the 

back end on a local machine with 16GB RAM of specification AMD Ryzen 7 2700 

Eight-core processor, with NVIDIA Ge-Force GTX 1050Ti and 4GB RAM graphics 

card. A hyper image dimension, batch size, epochs, channels, and mode of 128128, 

32, 50, 3, and RGB respectively were set. The adam optimizer with a learning rate of 

0.001, loss as binary cross entropy was set. A random seed was initialized to obtain 

reproducible tensors in the appropriate code lines. A total of 1,850,945 parameters 

were found to be trainable. The above-mentioned hyper-parameters have been 

considered after extensive hyper-parameter tuning and analysis. It is discussed in 

Section 3.5.1. Some of the formula for the utilized evaluation metrics have been 

mentioned below: 
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Classification accuracy is the percentage of properly defined data from the complete 

set indicated by the TP and TN condition or the percentage ratio of correctly specified 

data to the full dataset, as shown in Eq. (3.1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

 𝑇𝑃 +  𝐹𝑃 + 𝐹𝑁 +  𝑇𝑁
                              (3.1) 

Here, TP is number of true positives, TN is number of true negatives, FP is number of 

false positives, and FN is number of false negatives. 

 Precision is the uniformity of the measuring findings as shown in Eq. (3.2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

 𝑇𝑃 +  𝐹𝑃
                           (3.2) 

Recall is the proportion of similar occurrences recovered as shown in Eq. (3.3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

 𝑇𝑃 + 𝐹𝑁
                                  (3.3) 

F-score is the weighted harmonic mean of precision and recall as shown in Eq. (3.4). 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                            (3.4) 

3.5 Results and Discussion 

The present work proposes WADT-MCPI for automatic colorectal polyp diagnosis 

using colonoscopy frames. Several experiments were conducted to fine-tune the 

architecture and check its effect on the identification of the CPs in the validation set 

(presented in Section 3.5.1), conducted ablation experiments, feature maps, and CAM 

in Section 3.5.2. Section 3.5.3 discusses the effect of occlusion testing and four test 

sets on the proposed architecture. The comparative experimental results of the present 

work with vanilla Inception v3 architecture have been discussed in Section 3.5.4 

followed by a comparative analysis with existing state-of-the-art works in Section 

3.5.5. 
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3.5.1 Hyper-parameter tuning 

Four optimizers namely adam, stochastic gradient descent (SGD), RMSProp, and 

adadelta were considered while fine-tuning the proposed architecture optimizer. It can 

be noticed in Table 3.2 and Figure 3.3 that the Adam optimizer achieved the best 

results, followed closely by RMSprop, possibly due to its excellent robustness to the 

choice of hyper-parameters in comparison to the before-mentioned optimizers. Glorot 

uniform performed the best amongst the four kernel initializers due to its ability to 

achieve faster convergence in comparison to other initializers and detected 182 CP 

frames out of 215 frames. RGB colour space performed the best among the three-

colour spaces namely gray and HSV. RGB colour space offers a linear combination of 

red, green, and blue spaces which is appropriate for the present pipeline as the chosen 

colonoscopy dataset, was originally captured with high resolution and intensity of 

colour spaces. While deciding the image dimension of the pipeline, two dimensions 

i.e., 128128 and 6464 were considered due to the highly variable image dimension 

of the chosen dataset. 128128 dimensions were considered for further analysis as the 

architecture performed better in terms of average validation accuracy. A kernel size 

decides the dimensions of the filter matrix which slides over an image through various 

convolutional layers [120]. A 33 kernel size outperformed in comparison of the other 

kernel sizes depicting that smaller kernel sizes understand minute details and are able 

to achieve better receptive fields and further extract deeper features from the 

colonoscopic frames. 

Hyper-parameter tuning of convolution layers is a computationally expensive task and 

required both theoretical and experiment-result-based understanding. So, in order to 

choose the best convolutional layer for the proposed feature extracting module, we 

tested four different convolutional layers namely the conventional convolution layer 

(referred to as conv2d in Keras), functionally strided convolution layer (referred to as 

conv2d transpose in Keras), depthwise layer (referred as depthwise conv2d in Keras), 

and depthwise separable (referred as separable conv2d in Keras) convolution layer. 

We built four separate modules from each of the before-mentioned convolution layers 

while keeping the same settings for the rest of the proposed work. The comparisons 

were made based on the run time and learnable elements of the layers, robustness 
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towards polyp identification, and the developed feature maps.  

 

 

Figure 3.2 Reported results of the accuracy and loss for various varied hyper-parameters in the proposed 

feature extracting module. 

Transpose convolution layer required the maximum no. of learnable elements 

(2,391,329) for the same settings followed by depthwise separable layer (1,609,068). 

While the least trainable parameters were obtained in the depthwise convolution layer 

(75,611) and were found computationally faster in comparison to other convolution 

layers. We also tested the dilated convolutional layer-based module with a dilation 

factor of 2. It produced similar results as conventional convolution layers in terms of 

training and validation accuracy but was found biased towards non-CP frames during 

test set analysis and hence not considered for the present study. It can be noticed from 

Table 3.2 that the separable convolution-based feature extracting module was able to 

identify all the CP frames but classified several non-CP frames as CP frames as well. 

Depthwise convolution layers were found biased towards non-CP frames and were not 

able to identify any CP frame in the validation set. The same can also be observed from 

the developed feature map of a precancerous CP frame which shows severe dysplasia 

in Figure 3.4. It is worth mentioning that appropriate hyper-parameter tuning and 

sequence decision of the proposed module, not only helped in extracting better feature 
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abstractions in comparison with the conventional convolution-based module but also 

regulated the problem of vanishing gradient with increasing deeper filter and layers 

while reducing the spatial size of the input to reduce the no. of computations. 

Table 3.2 Reported results of the accuracy and loss for various varied hyper-parameters in the proposed 

feature extracting module. 

Parameter 

Average 

training 

accuracy 

Average 

training loss 

Average 

validation 

accuracy 

Average 

validation loss 

No. of polyps 

detected correctly 

(215) 

(a) Optimizers 

Adam 93.01% 0.16 91.66% 0.25 206 

SGD 81.56% 0.39 82.95% 0.37 120 

RMSProp 91.58% 0.20 88.62% 0.32 192 

Adadelta 65.80% 0.66 62.74% 0.67 103 

(b) Kernel initializers 

Glorot_uniform 92.77% 0.16 90.93% 0.25 182 

Uniform 91.02% 0.21 88.54% 0.31 141 

Normal 91.82% 0.18 90.74% 0.27 156 

Glorot_normal 65.17% 0.66 64.72% 0.67 81 

(c) Colour space 

RGB 92.25% 0.17 90.60% 0.26 206 

Grayscale 91.08% 0.20 84.84% 0.51 103 

HSV 91.30% 0.19 51.27% 6.05 98 

(d) Image dimension 

128 × 128 

64 × 64 

92.30% 

92.62% 

0.17 

0.17 

95.54% 

89.74% 

0.29 

0.22 

202 

201 

(e) Kernel size 

3 92.75% 0.16 89.7% 0.27 183 

5 91.51% 0.19 89.45% 0.28 144 

7 91.06% 0.20 89.34% 0.30 84 

(f) Convolution layers 

Separable Conv2D 83.13% 0.36 83.74% 0.37 215* 

Depth wise Conv2D 78.78% 0.43 80.14% 0.44 0* 

Transpose Conv2D 86.28% 0.30 87.43% 0.33 101 

Conventional Conv2D 87.84% 0.28 89.85% 0.26 182 
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Figure 3.3 Achieved feature maps of the different convolution layers. (a) Depthwise separable layer, 

(b) Depthwise layer, (c) Transpose layer, and (d) Conventional convolution layer. 

3.5.2 Feature mapping, class activation mapping and ablation experiments 

A feature map represents the output of applying a filter to an input image. It helps in 

visualizing and explaining the complex, internal representations detected by the 

convolution filter layer for that input image [121]. Several feature maps were 

developed while fine-tuning the proposed feature-extracting module. Based on the 

feature map observations and achieved results from the validation set, the present work 

developed the sequence of convolution layers in the proposed feature extracting 

module. First, we discuss the feature maps in Figure 3.4. It can be noticed that both 

depthwise separable and conventional convolution layer has the deadest filters 
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represented as completely dark blue followed by the transpose layered module. 

However, both layered modules have several activations on edges, and boundaries 

within the image. Some of the filters were perfectly able to detect the shape of the 

precancerous CP frame.  

 

Figure 3.4 Achieved feature maps of the proposed feature extracting module. 

Depthwise separable convolutions coming from the Inception family are inspired by 

the estimation of matrices through the merging of two convolution operations namely 

the spatial convolution and point-wise convolution operation [120], [121]. They help 

in learning higher levels of feature abstraction with increasing depth dimension [117], 

[120]. Functionally strided convolutions also referred to as de-convolutions or 

transposed convolutions help in projecting the obtained feature maps to a higher 

dimensional space by swapping the forward and backward passes of a convolution 

process [120]. It doesn't necessarily obtain the opposite of a conventional 

convolutional layer but helps in maintaining connectivity of the previous feature map 

with the next by maintaining the same matrix shape [120]. The same can be observed 

from the obtained feature maps in Figure 3.4 and 5. Figure 3.5 depicts the feature maps 

obtained after fine-tuning the proposed feature-extracting module. It can clearly be 

noticed that the no. of dead filters has decreased because of the chosen sequence of the 

proposed feature extracting module wherein even the reduced input image after the 

second pooling stage was able to extract deeper features such as colour, depth, shape, 

and boundaries of the CP frame.  
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CAM is another method to develop trust and transparency of the CNN layers for the 

health officials by providing a weighted map of the input image which depicts the 

important regions utilized while predicting new images for a certain layer without 

explicitly declaring the bounding boxes [122]. Grad CAM is a generalization of CAMs 

and uses the classification score gradient to determine which parts of the image are 

most crucial for classification (here, identification of CP) [123]. Figure 3.6 shows 

some of the generated CAMs from the training, testing, and validation set of the 

present work. The red colour depicts the parts of the proposed architecture exhibiting 

high attention and are a CP frame during the prediction stage. The blue region 

emphasizes less attention and firing of the activation function at the region. The 

proposed architectural layers perfectly emphasized the CP region for the first three CP 

frames in Figure 3.6 while the fourth frame's CP region was not understood well. A 

discussion on the missed polyps has been done in the next sub-section. 

The ablation experiments were conducted in a systematic manner, wherein the layers 

in the feature-extracting module were commented on one by one and checked for all 

evaluation metrics during the architecture fitting stage. An average decrease of 5-10% 

was observed in the validation accuracy with respect to baseline accuracy of 92.29% 

when any of the layers were removed. To analyze the effect of hyper-parameters 

mentioned in Section 4.1 and vanilla Inception v3 architecture results in up to 50 

epochs have been discussed. 

 

Figure 3.5 Class activation maps. 

3.5.3 Test set analysis and occlusion testing 

Test set analysis helped us to evaluate the future, real-time performance of the 

proposed architecture with unaltered, un-seen colonoscopic data during the training 

and validation stage. Table 3.3 shows the no. of correctly predicted CP frames from 
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all the test cases. First, we discuss the results achieved for test 0 consisting of the 

developed `Gastrointestinal atlas-Colon Polyp' test data. It consists of sequential 

frames of seven patient videos extracted from an open-source medical website. There 

are several qualities to the developed test set i.e., a) the presence of de-identified (non-

sequential) frames for future application of AI techniques; b) the presence of sequential 

positive and negative CP video frames for sequential frame analysis for both medical 

and AI analysis; c) Variety of CPs in terms of size, type, and its location; and d) Same 

image dimension (128128) with high-resolution and processed data with no patient 

information in the released frames. We also release the full videos in a separate folder 

for future medical video analysis. 

Figure 3.7 shows some of the missed CP windows (thirty-four) for test 1 which 

consisted of randomly selected, positive frames from polyp-gen data. Upon close 

observation, it can be noticed that most CPs are flat, sessile serrated in nature [83] or 

polyp smaller than 1 mm, present on the folds of the mucosal layer or hidden due to 

reflection of a camera at the time of colonoscopic recordings. All such frames may be 

difficult to detect due to indifference in colour with the colon surface. There may be 

several reasons behind this missed rate i.e., a) polyp-gen data consists of mixed-sized 

polyps while the training and validation set contains less variation of small-sized 

polyps. b) considered window size during the detection stage. Test 2 consisted of 

mixed frames with variable settings of colonoscopy, resolution, origin, types, and size 

of polyps. Figure 3.8 (c) and (d) depict an example of correctly detected and identified 

CP sequential frames for videos 6 and 7. It can be noticed that the proposed 

architecture was able to identify and detect CPs in varying environments. Figure 3.8 

(a) shows the correctly detected CPs from test 2 wherein it can be observed that the 

proposed architecture was able to detect multiple minute and large-sized CPs. Figure 

3.8 (b) shows the CP frames which were common in tests 0 and 2 and were repeatedly 

missed in both the test set analysis. The fourth CP frame in Figure 3.6 verifies the 

reason behind this wherein in the fourth CAM, the higher activation can be observed 

around the boundary of the polyp region. The introduction of a variety of CP and non-

CP frames along with data augmentation methods such as zooming out to reduce the 

size of the CPs may correct this missing rate. 

To the best of our knowledge, occlusion testing has not been carried out in this field. 
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It refers to hiding or blocking or closing a certain portion of a frame that may be 

otherwise important for prediction. Such an analysis also helps in interpreting 

predictions done by AI networks. The results of the test set analysis of Test 3 which 

consisted of the developed occlusive frames shown in Figure 3.1 have been prepared 

based on the discussion and opinions of an experienced gastroenterologist. We discuss 

two interesting cases depicted in Figure 3.8 (e) where the first frame contains a benign 

polyp in its progressive stage and the second frame is an adenoma with high-grade 

dysplasia. The proposed architecture predicted both frames as non-CP frames. 

However, in the opinion of the experienced gastroenterologist, the first frame may be 

considered a non-CP frame but the stalk of the adenoma in the second frame is still 

visible and may not be overruled as a non-CP frame.  

Table 3.3 Results of the test set analysis. 

Test Set No. Total no. of polyps Correctly predicted polyps 

Test 0 150 139 

V1. Polipo MSD z6 15 11 

V2. Pediculado 3 38 35 

V3. Polipo MSD z2 23 21 

V4. Polypileocecalval ve1 22 21 

V5. Polypvv 5 24 23 

V6. Rectalcarpet1 16 16 

V7. Pediculado 5 12 12 

Test 1 256 222 

Test 2 103 68 

Test 3 10* 7* 

 

Similar to this, the present work also developed four frames to analyze the AI 

prediction of frames after the complete resection of a polyp. A recent study suggested 

that AI networks misidentified such frames and produced ambiguous results [89]. To 

check this, we completely patched four CP frames from the training set with their 

adjacent colon surface. The proposed architecture identified three frames as non-CP 

frames out of the four frames. However, the generalized conclusion cannot be made 

and remains a future prospect for the present work. Studies have proposed different 

positive and negative augmentations in this field to increase the quantum and variety 

of data [124], [125], [126]. Through the present analysis, it can be observed that such 
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augmentations should be introduced with care as they may hide the polyp region and 

appear `normal', confusing the AI network as a non-CP frame leading to ambiguous 

results and developing mistrust among health professionals. 

 

Figure 3.6 Missed polyp frames during test set analysis from Polyp-gen dataset. 

3.5.4 Comparison with vanilla Inception v3 architecture 

The present work also compared the achieved results with the famous Inception v3 

architecture as it has proven to achieve efficient prediction for the Image Net database 

with a lower error rate and is found computationally less expensive in comparison to 

several transfer learning architectures [39], [127], [128], [129], [130]. The term vanilla 

refers to the development of standard Inception v3 architecture without fine-tuning. 

An accuracy, precision, recall, specificity, and F1-score up to 48.67%, 50.77%, 

30.70%, 6-8.00%, and 38.26% respectively was achieved on the colonoscopy dataset 

for Inception v3 architecture. The present work has achieved accuracy, precision, 

recall, specificity, and F1-score up to 92.53%, 94.23%, 91.16%, 94%, and 92.67% 

respectively. Clearly, the proposed architecture outperformed the vanilla Inception v3 

for all evaluation metrics. Figure 9 depicts the achieved loss and area-under-curve 

(AUC) score graph of the Inception v3 architecture. It was observed that the proposed 

architecture not only computationally ran faster but also achieved a steadily decreasing 

loss graph for both the training and validation set for increasing no. of epochs. Further, 

the proposed architecture required less no. of trainable parameters (1,850,945) as 

opposed to the vanilla Inception v3 architecture (21,819,170).  

3.5.5 Comparison with existing state-of-the-art works 
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A comparative analysis of the proposed architecture has been done with the recent 

state-of-the-art works from 2020-2022 in automatic polyp diagnosis using 

colonoscopy frames. Comparative parameters like the similarity of the dataset, CNN 

architecture and estimated explainability methods, evaluation metrics, and 

computational resources have been considered in Table 3.4.  

Patel et al. [131] performed a comparative analysis between VGG19, ResNet, 

DenseNet, SENet, MnasNet, on four different, private, and publicly available datasets 

for automatic polyp classification. In comparison with their best-reported results with 

the proposed architecture, the present work has achieved higher precision, AUC score, 

and overall accuracy while identifying CP frames. In addition, the present work has 

included several explainability methods and evaluation metrics to test the robustness 

of the proposed architecture.  

 

Figure 3.7 Colorectal polyp (CP) frame examples of the results achieved during test set analysis. (a) 

Correctly detected CP frames. (b) Repeatedly missed CP frames. (c) and (d) Correctly detected and 
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identified frames. (e) Occlusive frames. 

Jheng et al. [132] proposed a CNN-based algorithm to identify colonic diseases and 

normal anatomical landmarks using privately collected colonoscopic frames. They 

have achieved a slightly higher recall, specificity, and overall accuracy in comparison 

to the proposed architecture. However, it is worth mentioning that their proposed 

CNN-based algorithm with VGG16 backbone (GUTAID) has not been validated on 

any open-source dataset nor tested on un-altered, varied colonoscopy sequential and 

non-sequential frames which were not a part of training and validation set. On the 

contrary, the present work has focused on performing an extensive test set analysis on 

varied CP types, sizes, shapes, and sources while also checking the effect of each layer 

with respect to CP identification in colonoscopy frames along with systematic ablation 

studies. This further shows the generalizability of the proposed architecture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Achieved loss and AUC score graphs for the proposed architecture and vanilla Inception v3. 

Jia et al. [133] proposed a PLPNet model for automatic polyp recognition and 

segmentation using publicly available CVC-ColonDB, CVC-ClinicDB, and GIANA 

2017 databases. Their pipeline executed each frame within 380 ms on a single NVIDIA 

GeForce GTX TITAN Xp. The proposed architecture was able to execute each frame 

in comparatively less time (300 ms) on the eight-core processor, NVIDIA GeForce 
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GTX 1050Ti GPU. The achieved recall is slightly less (0.94%) than [133], possibly 

due to the consideration of different datasets with less no. of non-CP frames. Ellahyani 

et al. [134] proposed a fine-tuned polyp detection pipeline with a hybrid mixture of 

VGG16 and mobile net using ETIS-LaribPolypDB, kvasir-seg, and CVC-ClinicDB 

database. They have achieved a higher AUC score value possibly due to the imbalance 

in CP and non-CP frames in their chosen dataset. The present work has outperformed 

in terms of all the other comparative parameters such as precision, recall, F1 score, and 

explainability methods. It can be noticed from Table 3.4 that the proposed architecture 

has performed better in comparison to the work done by Rahim et al. [114] for all the 

comparative parameters. 

Table 3.4 Comparison of the proposed pipeline with existing state-of-the-art works. NR = not reported. 

Parameters [131] [132] [133] [134] [114] Proposed 

Precision (%) 78.09 NR 84.80 91.00 94.44 94.23 

Recall (%) NR 89.80 92.10 89.00 82.92 91.16 

Specificity (%) NR 96.80 NR NR NR 94.00 

F1 Score (%) NR NR 88.30 90.00 88.30 92.67 

AUC Score 76.40 NR NR 95.20 90.42 91.75 

Overall accuracy (%) 75.70 93.30 NR NR NR 92.53 

Execution time per epoch (milli seconds) NR NR 381 ms NR 600 ms 300 ms 

Ablation study No No No No No Yes 

CAM graphs No Yes Yes No Yes Yes 

Occlusion testing No No No No No Yes 

Separate test set analysis Yes No No No No Yes 

Feature mapping No No No No No Yes 

Hyper-parameter tuning No Yes Yes Yes Yes Yes 

 

3.6 Conclusion and Future Scope 

In this work, an explainable, end-to-end WADT-MCPI architecture for automatic 

colorectal polyp diagnosis has been proposed using colonoscopy CP and non-CP 

frames. The proposed architecture consists of a novel, fine-tuned feature-extracting 

module, followed by CP and non-CP frame identification and a window-based CP 

detection system. The work has achieved an overall accuracy, precision, recall, 

specificity, F1 score, and AUC score up to 94.23%, 91.16%, 94.00%, 92.67%, 91.75%, 
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and 92.53% respectively. A new test set has also been developed and released for 

research purposes. Explainable and evaluation methods like class activation mapping, 

feature mapping, occlusion testing, hyper-parameter tuning ablation experiments, and 

separate, sequential, and non-sequential frame-based test set analysis have been used 

to show the efficacy of the proposed architecture. Future works will focus on 

improving the evaluation metrics, and inclusion of more colonoscopy data with 

different types of occlusion effect. 
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CHAPTER 4 

DEVELOPMENT OF ARTIFICIAL INTELLIGENCE KOREA 

CANADA FOR CLEANLINESS ASSESSMENT IN ENDOSCOPY 

4.1 Introduction 

Conventional radiologic and endoscopic techniques have difficulty penetrating the 

small bowel. VCE a non-invasive, non-anesthetic diagnostic technique is utilized for 

viewing inside the small bowel due to its minuscule size [14]. It is a relatively a newer 

technique in comparison to other endoscopic techniques which was developed in 1981 

and received clinical approval in 2001 [14]. It is commonly used in obscure GI bleed, 

iron deficiency anemia, Crohn’s disease, celiac disease, familial syndromes etc. 

However, there are limitations to VCE including its cost, longer reading time, high 

miss-rate of lesion detection, and no therapeutic applications [20], [21], [23], [25], 

[66], [135], [136]. 

The high miss-rate of lesion detection is due to several limitations. One of the major 

limitations behind this is the lack of adequate bowel preparation, and its objective 

scoring system [23], [25]. This limitation is common in other endoscopic procedures 

as well. However, no strict guidelines have been proposed by the inventors/ companies 

of VCE to assess the ‘adequacy’ of the bowel. An adequate bowel preparation and its 

objective scoring system is essential for obtaining and analyzing a good quality VCE 

video for lesion detection [23]. 

There is currently a lack of a valid, objective, fast, repeatable, and dependable scoring 

system to evaluate the bowel’s sufficiency in VCE [23], [137]. A number of scores, 

including the Viazis score (2004) [138], Brotz score (2009) [139], Park’s score (2010) 

, and KODA score (2020) [140], have been proposed to evaluate the small bowel 

preparation. These scores are state-of-the-art, laborious, and rely on the observer’s 

judgment to be scored. They have not been standardized for picture or video analysis 

and are not frequently utilized in conventional clinical practice. 
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4.2 Related Works 

We discuss Viazis score (2004) [138], Brotz score (2009) [139], Park’s score (2010), 

and KODA score (2020) [140] which have been proposed to evaluate the small bowel 

preparation. 

Viazis et al. [138]conducted a prospective, randomized, controlled trial to investigate 

the impact of bowel preparation on the diagnostic yield of CE. They enrolled patients 

and randomly assigned them to either receive bowel preparation or not before 

undergoing CE. The researchers utilized a standardized bowel preparation protocol, 

which included a combination of laxatives and clear liquid diet. Following the 

procedure, they employed a scoring system to assess the efficacy of bowel preparation 

based on the cleanliness of the small bowel mucosa based on adequacy (adequate v/s 

non-adequate). 

The results demonstrated a significant increase in the diagnostic yield of CE among 

patients who underwent bowel preparation compared to those who didn't. Specifically, 

the group that received bowel preparation exhibited a higher detection rate of small 

bowel lesions. This finding emphasized the importance of proper bowel preparation in 

optimizing the diagnostic accuracy of CE for identifying small bowel disorders. 

Moreover, the study underscores the effectiveness of the standardized bowel 

preparation protocol utilized, as indicated by the cleanliness scores of the small bowel 

mucosa. These findings highlight the necessity of incorporating bowel preparation as 

a routine component of CE procedures to enhance diagnostic outcomes and improve 

patient care. 

Brotz et al. [139] aimed to validate three grading systems for assessing small bowel 

cleansing in CE. The study encompassed a quantitative index, a qualitative evaluation, 

and an overall adequacy assessment. Patients undergoing CE were prepared with a 

standard bowel cleansing regimen consisting of a polyethylene glycol-based solution 

and a clear liquid diet. The researchers employed three grading systems to evaluate the 

quality of small-bowel cleansing: a quantitative index based on CE images, a 

qualitative assessment by expert reviewers, and an overall adequacy assessment 

integrating both quantitative and qualitative aspects. The findings of the study 

demonstrated the effectiveness of the standardized bowel preparation protocol in 
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achieving adequate small-bowel cleansing. Moreover, the validation of the three 

grading systems revealed their utility in accurately assessing the cleanliness of the 

small bowel during CE procedures. The study underscores the importance of utilizing 

standardized grading systems to evaluate bowel preparation efficacy in CE, providing 

clinicians with valuable tools to optimize diagnostic accuracy and patient outcomes.  

Park et al. [141] presented a novel cleansing score system for CE aimed at evaluating 

the effectiveness of bowel preparation. Prior to CE, patients underwent preparation 

involving a polyethylene glycol-based solution and a clear liquid diet, ensuring optimal 

visualization of the small bowel mucosa. The novel cleansing score system introduced 

by the authors involved assessing four key aspects of bowel cleanliness: fluid 

accumulation, residual bubbles, small bowel visualization, and presence of debris. 

Each criterion was assigned a score ranging from 0 to 2, with higher scores indicating 

better cleansing. The total score ranged from 0 to 8, with higher scores reflecting 

superior bowel cleanliness. The study found that the novel cleansing score system 

provided a comprehensive and objective means of evaluating bowel preparation 

efficacy for CE. Moreover, the system demonstrated good interobserver agreement 

among the reviewers, enhancing its reliability in clinical practice. 

KODA score is an extension of Park score with variation in the range of the questions 

asked in KODA [140], [141]. It is the latest manual scoring system for assessing the 

small bowel preparation quality in VCE. It has been clinically validated on 1,233 still 

images obtained from twenty-five capsule videos with the help of twenty health 

experts. The still images were captured on a five-minute interval from the first picture 

of the duodenum to the first picture of the cecum during each VCE procedure i.e., in a 

four-hour small bowel transit time, forty-eight images were captured and then scored. 

The final scoring is based on the score achieved from two sub-scores namely the 

percentage of visualized mucosa and degree of obstruction in each VCE frame divided 

by the total number of frames captured in one VCE procedure. A standardized training 

module has been released by the inventors of the KODA score to acquaint the score 

system to the health experts in this field. The training module is currently state-of-the-

art and has been utilized to assess the outcome of one randomized controlled study in 

VCE [142]. 

Automatic computer-operated assessments have also been introduced in this field. The 
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studies have focused on comparing the red over green pixel ratio (R/G), R/G ratio, 

abundance of bubbles, brightness with the help of machine learning, checking 

adequacy and in-adequacy using neural networks, automatic score classification of 

visible mucosa, dirty and clean patches, and colour bar differentiation. These studies 

may prove to be more reliable, quick-to-assess, and provide independence from the 

intra- and inter- observer variability. 

4.3 Problem Statement 

Currently, no computer-operated assessment study has been done to automate an 

existing score for cleanliness assessment in VCE. The primary objective of the present 

study was to develop an automated approach to automatically assess the cleanliness of 

VCE as per the latest scoring system using AI models in real-time. The secondary 

objective of the present study was: 

• To develop a simple and user-friendly application for gastroenterologists to score 

the VCE frames as per the latest scoring system i.e., KODA. The application is 

called as AI-KODA score. It is fully auto- mated and works in real-time on an 

Android phone. It also helps in development of a multi-labelled im- age dataset. 

• To generate a high-quality, multi-labelled image dataset which is medically 

validated and can be utilized for development of AI models for computer- operated 

assessments in this field. 

• To conduct a comprehensive evaluation, interpretation, benchmarking of the 

generated dataset using famous AI algorithms. 

In this chapter, the first objective will be covered wherein we will focus on the 

development of AI-KODA, its study design followed to collect the scores through AI-

KODA, determination of inter-rater and intra-rater reliability of KODA score among 

three readers for prospective AI applications. The AI applications will be discussed in 

the next chapter.  

4.4 Methodology 

In this, we will discuss the preparation of the capsule videos, followed study design, 
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and statistical analysis setup in Section 4.4.1, 4.4.2, and 4.4.3 respectively. 

4.4.1 Preparation of capsule videos 

Twenty-eight patient capsule videos performed at a tertiary care academic institute 

were used in this study. All small bowels capsule endoscopic procedures were 

performed using Pillcam SB3 capsule (Given imaging) and read on RAPID viewer. 

All the patients had received a bowel preparation as per the standard guidelines. In 

each VCE video, the abnormality was diagnosed and marked, and anatomical land 

markings were present. The VCE frames were selected at an interval of five-minutes 

as per KODA from each VCE video. Random frames were also selected which 

consisted of abnormality and anatomical landmarks by experienced 

gastroenterologists irrespective of the obstruction or amount of visibility present in the 

VCE frame during the small bowel transit. In total, 1539 sequential-frames and 634 

random frames were selected in twenty-eight videos. Both the frames were exported 

in high-quality jpg format, cropped and resized from 576 × 576 to 320 × 320. Then 

both the frames were uploaded into the backend (Microsoft Azure) of AI-KODA Score 

testing module. 

 

Figure 4.1 Example of CE frames selected over (a) – (h) five-minute interval and (i) – (p) random 

interval in one capsule video using the RAPID viewer software. 

All the videos and extracted image frames were anonymized and all the information 

related to the patient was removed. Figure 4.1 depicts the selected frames. The study 

was done according to Helsinki declarations and was approved by the institute ethics 

committee (Ref. No.: IEC-666/05.08.2022) and a waiver of consent was granted. 
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4.4.2 Study design  

Three gastroenterology fellows who had been trained in reading VCE shared a manual 

and a link to download the AI-KODA score application in their mobile phone. The 

application consisted of a secure login system, profile setup, and two modules namely 

training module and testing module. Figure 4.2 depicts the AI-KODA score 

application. The training module was taken from the original KODA score after 

necessary permission from the authors [140]. The testing module consisted of 2173 

frames which were selected from the twenty-eight patient capsule videos. Two 

questions i.e., percentage of mucosa visualized, and degree of obstruction were 

displayed on each VCE frame. In the first question, the four options were > 75% 

(representing VMscore1), 50% − 75% (representing VMscore2), 25% − 49% 

(representing VMscore3), and < 25% (representing VMscore4). In the second 

question, the four options were < 5% (representing OVscore1), 5% − 25% 

(representing OVscore2), 26% − 50% (representing OVscore3) and > 50% 

(representing OVscore4). The option selected for each of the question, their timestamp 

and email ID were saved in real-time in the application’s backend. In the back end, for 

each selection in any of the two questions, a numeric ‘1’ was assigned. The rest of the 

non-selected options were assigned a numeric ‘0’. In this manner, each VCE frame 

was assigned two labels (VM and OV sub-scores) out of the total eight labels. This 

assignment was done by the inspiration of one-hot encoding method. It is a method 

used to convert categorical values to binary value of ‘0’ or ‘1’. Figure 4.3 represents 

the front-end and backend flow of the developed application. Features of training 

module includes: 

• User-friendly manual to learn and understand the KODA Score. 

• Four examples and their correct answers to get familiar with the KODA Score. 

• Features of testing module includes: 

• User-friendly Testing Module to score the VCE frames on the screen.  

• The KODA Score reference sheet can be viewed from the top question mark 

(?) button for any ambiguity/help to score the frame.  

• A timer to note the time taken to score one frame. 

• Forward button to view the next VCE frame. 
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• Backward button to view the previous VCE frame.  

• A pop-up in case the user has not selected ANY option from the two questions. 

• Exit button to exit the Testing Module. 

 

Figure 4.2 Snapshot of the of the developed application. (a) Login page, (b) home page, (c) training 

module, and (d) testing module with its different operations. 

 

Figure 4.3 Frontend and Backend Data Flow Storage System of AI-KODA Score Application. 

The fellows were allowed to toggle between the frames and could change their answer 

by clicking on the backward and forward button on the testing module. Both entries 

were saved and analyzed for inter-rater and intra-rater reliability estimates in IBM 

SPSS Statistics 20. The study was conducted twice with a gap of four weeks in between 

them. 

All the three fellows were asked to sign up for the application, set up a profile and 

complete the training module before starting the testing module both the times. They 
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were also given an option to access the training module and the KODA reference sheet 

at any point of time during the scoring stage. Figure 4.4 represents the KODA 

reference sheet. All the fellows’ independently rated 2173 frames as per KODA score 

and were unaware of clinical information related to the frames. Upon completion of 

the scoring, the fellows were given a feedback form to assess the efficacy of the 

developed application, its interface and automation with the help of Likert scale. They 

were asked to provide suggestions for its further development as per real-time clinical 

settings. 

 

Figure 4.4 KODA score reference sheet.  

4.4.3 Statistical Analysis Setup 

Intra-class correlation coefficients (ICCs) are often utilized as a quantitative estimate 

to check the aspect of reliability. Eq. (4.1) represents the way of calculating ICCs. 

ICC =  
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

=  
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
         (4.1) 
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So, the ICCs were estimated using two-way random effect model described in [143] 

with 95 % confidence interval (CI) and measure of consistency using IBM SPSS 

Statistics 20. The strength of the achieved estimates was interpreted as poor if the ICC 

value was less than 0.5, moderate if the ICC value was between 0.5 and 0.75, good if 

the ICC value was between 0.75 and 0.9 and excellent for ICC value above 0.9 [143]. 

The sample size of twenty-eight videos was calculated as per ICC hypothesis testing 

with a minimum acceptable reliability, expected reliability, significance level, number 

of raters, and repetitions per subject as 0.8, 0.9, 0.05, 3, and 2, respectively [143]. The 

Likert scale was interpreted as excellent if the rating was 5, very good as 4, good as 3, 

fair as 2, and poor if the rating was assigned a value of 1 [144]. 

4.5 Results  

In this, we discuss the demographic and statistical details of the patients, and AI-

KODA score application feedback and efficacy and reliability estimate in Section 

4.5.1, 4.5.2, and 4.5.3 respectively. 

4.5.1 Demographic and statistical details of the patients 

Out of the twenty-eight patients, thirteen were males (47%) and fifteen were females 

(53%). Four polyps, ten erosions, eight ulcers, two bleeding regions, one stricture, two 

worms and one angioectasia were observed in twenty-three videos. Five videos were 

found normal. The average small bowel passage time was 279.6 minutes (SD=110.2). 

Figure 4.5 depicts the patient demographics of the study. 

4.5.2 AI-KODA Score Application Feedback and Efficacy  

All the three gastroenterology fellows rated the AI-KODA score application user 

experience as excellent in the feedback form. All of them favored to utilize the 

application in their real-time practice with suggested modifications like inclusion of 

more examples in training module for clarification of ambiguous frames, automatic 

stool and bubble identification, and automatic deletion of the repetitive frames per 

video. The fellows took about 2-10 seconds time (SD=2.05) to score each frame and 

referred to the reference sheet for about 2-20 times (SD= 8.65) during the entire study.  
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Figure 4.5 Demographics of the twenty-eight capsule videos. (a) Types of diseases diagnosed, (b) Types 

of anomalies found.  

4.5.3 Reliability estimates 

Inter-rater and intra-rater estimates for the five-minute interval frames and random-

interval frames are summarized in Table 4.1 and 4.2.  

Table 4.1 Average measure of inter-rater intra-class correlation coefficients for five-minute interval and 

random intervals in twenty-eight capsule videos.  

Average measure 

Five-minutes interval Random interval 

Cycle 1 Cycle 2 Ar. Mean Cycle 1 Cycle 2 Ar. Mean 

(a) Sum of sub-score 1 (a) Sum of sub-score 1 

Intraclass Correlation 0.96 0.98 0.97 0.99 0.98 0.99 

Lower bound 0.92 0.97 0.94 0.99 0.97 0.98 

Upper bound 0.98 0.99 0.98 0.99 0.99 0.99 

 (b) Sum of sub-score 2 (b) Sum of sub-score 2 

Intraclass Correlation 0.91 0.97 0.94 0.99 0.97 0.98 

Lower bound 0.84 0.95 0.89 0.98 0.95 0.97 

Upper bound 0.95 0.98 0.97 0.99 0.98 0.99 

 (c) Sum of final score (c) Sum of final score 

Intraclass Correlation 0.84 0.83 0.84 0.91 0.89 0.90 

Lower bound 0.70 0.69 0.70 0.84 0.80 0.82 

Upper bound 0.92 0.91 0.92 0.95 0.94 0.95 

 

For sequential frames, ICCs for inter-rater variability of sum of sub-score 1 (ICC 0.97, 

95 % CI 0.94-0.98), sum of sub-score 2 (ICC 0.94, 95 % CI 0.89-0.97), and final score 
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(ICC 0.84, 95 % CI 0.70-0.92) were excellent to good among the three fellows. For 

random frames, ICCs for inter-rater variability of sum of sub-score 1 (ICC 0.99, 95 % 

CI 0.98-0.99), sum of sub-score 2 (ICC 0.98, 95 % CI 0.97-0.99), and final score (ICC 

0.90, 95 % CI 0.82-0.95) were excellent among the three fellows.  In sequential frames, 

ICCs for intra-rater variability of sum of sub-score 1 (ICC 0.92, 95 % CI 0.83-0.96), 

sum of sub-score 2 (ICC 0.84, 95 % CI 0.66-0.92), and final score (ICC 0.52, 95 % CI 

0.29-0.78) were good to moderate among the three fellows. For random frames, ICCs 

for intra-rater variability of sum of sub-score 1 (ICC 0.98, 95 % CI 0.96-0.99), sum of 

sub-score 2 (ICC 0.97, 95 % CI 0.95-0.98), and final score (ICC 0.90, 0.78 % CI 0.78-

0.95) were excellent among the three fellows. 

Table 4.2 Average measure of intra-rater intra-class correlation coefficients for five-minute interval and 

random intervals in twenty-eight capsule videos.  

Average 

measure 

Five-minutes interval Random interval 

Doctor 

1 

Doctor 

2 

Doctor 

3 

Ar. 

Mean 

Doctor 

1 

Doctor 

2 

Doctor 

3 

Ar. 

Mean 

(a) Sum of sub-score 1 (a) Sum of sub-score 1 

Intraclass 

Correlation 
0.97 0.95 0.84 0.92 0.99 0.96 0.99 0.98 

Lower bound 0.94 0.89 0.66 0.83 0.98 0.92 0.98 0.96 

Upper bound 0.98 0.97 0.92 0.96 0.996 0.98 0.99 0.99 

 (b) Sum of sub-score 2 (b) Sum of sub-score 2 

Intraclass 

Correlation 
0.96 0.91 0.65 0.84 0.99 0.94 0.99 0.97 

Lower bound 0.91 0.82 0.25 0.66 0.99 0.88 0.98 0.95 

Upper bound 0.98 0.96 0.84 0.92 0.99 0.97 0.99 0.98 

 (c) Sum of final score (c) Sum of final score 

Intraclass 

Correlation 
0.80 0.67 0.09 0.52 0.92 0.86 0.91 0.90 

Lower bound 0.57 0.30 0 0.29 0.84 0.70 0.81 0.78 

Upper bound 0.90 0.85 0.58 0.78 0.96 0.93 0.96 0.95 

 

4.6 Discussion 

We developed a simple, easy-to-use mobile-based application to automate the task of 

scoring the VCE frames as per existing KODA scoring system for an effective 

cleanliness assessment in VCE and determined its inter-rater and intra-rater reliability. 
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To the best of the author’s knowledge, this is the first attempt to automate this process. 

Through this process, we were able to develop a multi-label dataset for prospective AI 

applications in this field. Also, ours is the third study to show the effectiveness of 

KODA for cleanliness assessment in research and clinical use. The achieved results 

for inter-rater and intra-rater reliability were found overall good. They were consistent 

with the original KODA study for inter-rater ICCs of five-minute intervals.  

We agree that the existing KODA score is simple and has a face validity as claimed 

by the original KODA study. The analysis of visualized mucosa helps a 

gastroenterologist to analyze the examination quality and the likelihood of missing the 

lesion according to bowel preparation degree [145]. This analysis is an important 

indicator of intra-procedural quality on VCE [145]. However, there are some inherent 

challenges while scoring the frames as per the second question i.e., percentage of 

obstructed view. We observed that the intra-rater reliability of sum of sub-score 2 

(percentage of obstructed view) declined in case of gastroenterology fellow 2 and 3. 

Similarly, due to the decline in the sub-score 2 ICCs, the overall score ICCs also 

declined drastically for intra-rater estimates. Slight decline was noticed in inter-rater 

ICCs for sum of sub-score 2. This is possibly due to lack of examples in the training 

module and their associated instructions for frames containing shadows and different 

types of obstructions like fluids, bubbles, solid food and fibers etc. In our opinion, the 

existing KODA score faces a practical knowledge gap for its successful 

implementation in real-time clinical settings. There is a need for the inclusion of more 

frames in the training module which focus on addressing these challenges. Some 

ambiguous frames have been discussed in Figure 4.6. 

Presently, about 3-4 hours are consumed per video analysis for manual anomaly 

detection in VCE [146], [147]. During this duration, the VCE cleanliness preparation is 

also assessed and reported by gastroenterologists. So, to estimate the efficacy of the 

developed application, we assumed that if a reader takes about thirty seconds to score 

one frame using the developed application, then 2173 frames extracted from 28 capsule 

videos will be completed in about 22.35 hours. Hence, per video analysis for a small 

bowel transit time of four hours, in a real-time setting using the developed application 

will take about 24 minutes. In the study, the gastroenterologists scored one frame in 

between 2-10 seconds (SD= 2.05) and took about 1.6 minutes - 8 minutes per video 
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(SD= 4.62). Thus, showing the time-saving efficacy of the developed application in 

comparison to the manual KODA score which may require use of pen and paper or 

self-calculations during analysis. This will be further reduced with the help of AI 

techniques and automatic frame extraction to fully automate the cleanliness assessment 

of VCE videos in real-time.  

 

Figure 4.6 (a) – (f) Sample frames with ambiguous scores. In case of (a), the opinion varied between 

<5% and 5%-25% for percentage of obstructed view. In case of (b), the opinion varied between 5%-

25% and 26%-50% for percentage of obstructed view. In (c), the opinion varied between <5% and 5-

25% for percentage of obstructed view. Some ambiguities were found for the percentage of mucosa 

visualized. In (d) the opinion varied between >75% and 25%-49% for the percentage of mucosa 

visualized. Ambiguous scores of percentages of mucosa visualized and obstructed view were achieved 

in both (e) and (f). For (f), the opinion varied between 50%-75% and 25%-49% for mucosa visualized 

and 5%-25% and >50% for obstructed view. Similarly, in (f) the opinion varied between <25% and 

50%-75% for mucosa visualized and >50% and <5% for obstructed view.  

The previous scores have considered different types of intervals like two-minute, first 

and last ten-minutes of the small bowel segments, first five-minutes of each segment, 

random intervals etc., while selecting the VCE frames for scoring purpose [101], [138], 

[139], [141], [148]. The original KODA score considers frame selection at an interval 

of five-minutes [140]. In this study, two types of intervals (five-minutes and random) 

were considered while assessing the frames as per existing KODA to check the effect 

of intervals with respect to its scoring system. It was observed that the ICCs showed a 

similar trend as observed in the five-minute interval and were found reliable for both 

inter-rater and intra-rater estimates. This analysis was also done for the future 
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development of an AI based scoring system which will be potentially free-of intervals 

effect, assess the entire video and represent a generalized scoring system for 

cleanliness assessment in VCE. Thus, solving the consideration of intervals in existing 

scoring systems. 

There are two main limitations to the developed application i.e., it is presently 

available only for Android device users and users must login from the same Android 

device while scoring the frames. The history information was not saved to maintain 

the confidentiality of the frames and the users.  

4.7 Conclusion and Future Scope 

In conclusion, the developed application automates the process of scoring the VCE 

frames as per the existing KODA score which saves time in cleanliness assessment 

and is user-friendly for research and clinical use. The achieved inter-rater estimates 

are encouraging. Further research on the existing KODA scoring system is required to 

achieve an improved intra-rater reliability. The development of an automatic multi-

label cleanliness assessment for VCE with the help of the developed data will be 

discussed in the next chapter. 
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CHAPTER 5 

DEVELOPMENT OF CLASSIFICATION TECHNIQUES FOR 

CLEANLINESS ASSESSMENT IN ENDOSCOPY 

5.1 Introduction 

In continuation to the discussed limitations in the previous chapter, the limitations can 

be combatted with the development of reliable and efficient computer-aided automatic 

scoring systems for health experts in gastroenterology department using AI algorithms. 

Automatic computer-operated assessments have been introduced in this field to 

automate and reduce the assessment time of cleanliness in VCE [106], [137], [149], 

[150]. These studies may prove to be more reliable, quick for assessment, and provide 

independence from the intra-observer and inter-observer variability. 

5.2 Related Works 

We discuss the related works in this field, briefly, in two perspective namely computer-

assisted cleanliness assessments, and multi-label classification in VCE. 

Klein et al. [101] designed and validated a computer-aided small bowel preparation 

score based on the pixels in the colour bar of VCE frames. They categorized the frames 

into ‘adequate’ and ‘inadequate’ and performed VCE frame classification. Pietri et al. 

[102] focused on developing a computer-aided system based on four different 

statistical features namely grey-level correlation matrix, speeded up robust features, 

fractal dimension features, and Hough transform to evaluate the abundance of bubbles 

in VCE frames. Four hundred still frames were categorized as ‘scarce in bubbles’ or 

‘abundant in bubbles’ based on the percentage presence of bubbles observed by the 

physician in the VCE frames. A sensitivity of up-to 94.74% was achieved on the 

validation set. Ali et al. [103] developed a CAC score to inspect the quality of VCE 

still frames as ‘adequate’ and ‘inadequate’. The authors used channels of colour 

intensities of the RGB model and extracted it for each frame. A CAC score cut-off of 

1.6 validated a sensitivity of up to 91.3% and a specificity of up to 94.7% for 228 still 

frames. Oumrani et al. [104] developed an automatic rapid tool for assessing mucosal 
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visualization quality of still VCE frames using colour intensity ratio, brightness index 

and grey level correlation matrix features and random forest classifier. Six hundred 

normal still VCE frames were extracted and evaluated through ten-point assessment 

grid. The combination of the mentioned features produced a sensitivity up-to 90%. 

Noorda et al. [74] developed a deep learning algorithm with light weight and reduced 

trainable parameters to automatically evaluate the degree of cleanliness in VCE on an 

intuitive scale namely ‘clean’ or ‘dirty’. To locate and quantify the intestinal content, 

the authors developed patches from the extracted frames. Nam et al. [151] developed 

a deep learning-based software to calculate cleansing score in VCE. They used 700 

frames per each cleansing score and implemented an existing deep learning model 

named Inception residual network version two. Abnormalities such as polyp, ulcer, 

bleeding etc., found in the frame were not considered in the training and test set. The 

top − 1 and top − 2 accuracies achieved by the network were 69.4% and 91.2%, 

respectively. Based on the classification, scores were manually assigned and compared 

with physician’s decision to check the efficacy of the network. A similar work by the 

authors used generic convolutional neural network consisting of five convolutional 

and max pooling layers with one full connected layer for 4,00,000 still frames 

categorized into score 1 − 5 depending on mucosal visibility [152]. Their network 

achieved an accuracy up-to 93% on 120 test set frames and misclassification rate up-

to 24.7% on 51,380 separate set of VCE frames. A neural network based automatic 

cleanliness scoring was proposed using six hundred normal still VCE frames [153]. 

The frames were categorized as ‘adequate’ and ‘inadequate’ based on ten-point scale. 

The authors reported an accuracy up-to 89.7%. 

Now we discuss multi-label classification in VCE which has been scarcely explored. 

Vasilakakis et al. [107] investigated the semantics of a VCE video content and 

developed a multi-label classification method for five categories namely abnormal, 

debris, bubble and lumen hole. The authors utilized bag-of-words approach on CIE-

Lab converted VCE RGB frames and a convolutional neural network architecture 

enabling multi-scale feature extraction to categorize the multi-labels. Ratsnake 

software was utilized to add the multi-labels. The authors did not consider 

dependencies between la- bels and associated cleansing score. The developed method 
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achieved an area under curve (AUC) score up-to 0.94, 0.91 and 0.85 for debris, bubble 

and lumen hole classes. Park and Lee [108] proposed a class-labelling method that 

may be used to design a learning model by constructing a knowledge model focused 

on main lesions defined in standard terminologies for VCE such as minimal standard 

terminology and VCE structured terminology. The knowledge model considered the 

anatomy of the GI tract and findings in VCE. Three major class labels namely nor- 

mal, abnormal and discriminative class were given. The normal class labels were 

further distinguished based on the bubbles, wrinkles, and location of the capsule. The 

discriminative classes contained frames due to low power, transmission or reception 

problems, and a large amount of foam. The special cases were analyzed by developing 

clusters of colour similarity through k-means algorithm. The supra- and sub-classes 

were made using the concept of ontology. The authors conducted a classification task 

to distinguish the different organs using a generic convolutional neural network and 

achieved an accuracy up-to 33.5%. Mohammed et al. [109], [154] developed a 

pathology-sensitive abnormality detection through deep learning algorithms for colon 

diseases in VCE data. They developed VCE dataset (presently private) containing 455 

short video segments with 28,304 frames and 14 classes of colorectal diseases. The 

classes consisted of abnormalities such as erosions, debris, diverticulosis, erythema, 

granularity, haemorrhage, inflammation, edema, angioectasia, polyp, pseudo polyp, 

tumour and ulceration. The authors performed video and frame-level prediction and 

achieved an average precision, recall, F1-score and specificity up-to 61.6%, 54.6%, 

55.1%, and 95.1% respectively. 

Table 5.1 discusses the previous approaches in this field. In particular, the studies have 

compared the red over green pixel ratio (R/G), R/G ratio, brightness, abundance of 

bubbles, and checking adequacy and in- adequacy using neural networks; they have 

also looked at automatic score classification of visible mucosa, dirty and clean patches, 

and colour bar differentiation. 

Table 5.1 Previous approaches in this field. 

Ref. and Year Type of classification Description 

Klein et al. [101] and 2016 
 

 

Designed and validated a computer-aided small 

bowel preparation score based on the pixels in 
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Binary 

(adequate v/s in-adequate) 

the colour bar of VCE frames. 

Pietri et al. [102]and 2018 
Binary 

(bubble v/s no bubble) 

Focus on evaluating abundance of bubbles in 

VCE frames. Used 400 frames. Sensitivity 

achieved up to 94.74% 

Ali et al. [102] and 2018 
Binary 

(adequate v/s in-adequate) 

Computer-aided assessment of cleansing score 

for checking sufficiency of VCE frames. Used 

228 frames. Sensitivity achieved up to 91.3%. 

Oumrani et al. [104] and 

2019 

Binary 

(adequate v/s in-adequate) 

Automatic rapid tool for assessing mucosal 

visualization quality in VCE frames. Used 600 

frames. Sensitivity achieved up-to 90%. 

Noorda et al. [74] and

 2020 
Binary (clean v/s dirty) 

Automatic evaluation of degree of cleanliness 

in VCE. Used 700 frames as patches. 

Sensitivity achieved up-to 91.2% 

Leenhardt et al. [153]and 

2021 

Binary (adequate v/s in-

adequate) 

Neural network for automatic cleanliness 

scoring in VCE. Used 600 frames. Accuracy 

achieved up-to 89.7%. 

Nam et al. [151]and 2021 
Multi-class 

(1 v/s 2 v/s 3 v/s 4 v/s 5) 

Software to calculate cleansing score in VCE. 

Used 4L frames in training. Removed abnormal 

frames. Accuracy up-to 93% for 120 frames. 1-

5 scales are as per adequacy. 

Mohammed et al. [109]  and 

2020 
Multi-class 

Developed a pathology sensitive abnormality 

detection in VCE for colon diseases. Used 28, 

304 frames and 14 classes. Precision achieved 

up-to 54.6%. 

Vasilakakis et al.[107] and 

2020 
Multi-label 

Investigation in semantics of VCE video 

content. Categories are abnormal, debris, 

bubble and lumen hole. Ratsnake software was 

utilized to add the multi-labels. AUC achieved 

between 85 − 94%. 

Park and Lee [108]and

 2020 
Hierarchical 

Class-labelling method for lesion detection as 

minimal standard terminology in VCE. Supra 

classes included normal, abnormal, and 

discriminative. Sub-class included 

bubbles, wrinkles, and location of the capsule. 

Accuracy achieved up-to 33.5%. 

It can be noticed that most studies have been designed for CE frames up to 700 with 

binary class labels such as ‘clean’ and ‘dirty’, ‘adequate’ and ‘inadequate’. No 

computer-operated assessment study to automate an existing medical score for 

cleanliness assessment in VCE has not been done. The same conclusion was also 
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reported in [137]. The primary reason behind this is the absence of high quality, multi-

labelled, and medically validated AI dataset. Lack of data creates a serious limitation 

on the performance and re- producibility of the existing computer-operated 

assessments in this field. Automatic multi-label classification is an emerging and 

presently less explored area in this field. It has the potential to address automatic 

scoring system for cleanliness assessment in VCE. 

CE cleanliness is the only dataset which is publicly available for assessing the grade 

of cleanliness. It was released in 2020 and acquired at Hospital Universitari i Politècnic 

La Fe from Valencia, using Pillcam SB 3 system. 563 individual frames of 576 × 576 

pixels were extracted from 35 different CE videos during patient procedures and 

considered as training set. 854 additional frames of 576 × 576 pixels were extracted 

from 30 additional CE videos of different patients for development of validation set. 

The dataset has been built to locate and quantify the intestinal content in a CE 

procedure where-in the extracted frames have been cut into patches of 64 × 64 pixels, 

with a step size of 32 pixels which are class labelled as dirty or clean. No other medical 

information related to the findings of the CE and their class labels has been mentioned 

in the dataset. 

5.3 Problem formulation 

The primary objective of the present study was to develop an automated approach to 

automatically assess the cleanliness of VCE as per the latest scoring system using AI 

models in real-time. The secondary objective of the present study was: 

• To develop a simple and user-friendly application for gastroenterologists to score 

the VCE frames as per the latest scoring system i.e., KODA. The application is 

called as AI-KODA score. It is fully auto- mated and works in real-time on an 

Android phone. It also helps in development of a multi-labelled image dataset. 

• To generate a high-quality, multi-labelled image dataset which is medically 

validated and can be utilized for development of AI models for computer- operated 

assessments in this field. 

• To conduct a comprehensive evaluation, interpretation, benchmarking of the 

generated dataset using famous AI algorithms. 
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We have achieved the first objective in this previous chapter. Now the second and third 

objective will be discussed in this chapter. For this, the problem formulation for 

automatic classification of the developed multi-labelled dataset will be discussed. The 

dataset consists of the same 2173 VCE frames.  

Let X ∈ R, 𝑖 × 𝑗 × 𝑘 represents the tensor of an RGB-coloured VCE frame wherein i, 

j, and k are the frame width, height, and colour channels, respectively. For each frame, 

there is an output tensor Y of labels q, q > 1. The output tensor consists of two label 

sets L1 and L2. Both the label sets are distinct. The labels in each of the label set are 

mutually exclusive. Their probability of occurrence is 1/4. For automatic classification 

purpose, Xm is reshaped to a one-dimensional (1-D) vector of n features. Similarly, Ym 

is reshaped to 1-D array with indices of the max element of the array in a particular 

axis. m represents the no. of frames in this study (2173). Then Xm and Ym are randomly 

split into training, validation, and testing ratio of 70%, 20%, and 10% respectively 

which are used for fitting and predicting values from each classifier. 

5.4 Methodology 

After the scoring of the frames, two times, the frames with common sub-scores were 

extracted. The frames with ambiguous sub-scores were sent back to the 

gastroenterology fellows for a third-time review. The final decision was made with the 

help of a senior gastroenterologist. Finally, a multi-label image dataset with eight 

labels (VM and OV sub-scores) was developed. It was subjected to exploratory data 

analysis (EDA). Then the dataset was transformed into three datasets namely ‘only 

VM scores’, ‘only OV scores’, and ‘both VM and OV scores.  Figure. 5.1 depicts the 

label distribution in the dataset. Clearly, it is an un-balanced dataset. Highest no. of 

labels in VM and OV were VMscore3 and OVscore2 respectively. Lowest no. of labels 

in VM and OV were VMscore1 and OVscore3 respectively. The correlation between 

the labels has been shown in Figure 5.2. VM sub-scores were negatively correlated 

with each other. A similar trend can be observed in OV sub-scores. OVscore1 and 

VMscore0 were highly positively correlating with each other.  
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Figure 5.1 Label distribution of the developed dataset. 

For machine learning experiments, each of the dataset was then randomly split into 

train: validate: test ratio of 70: 20: 10. After the random split, in each of the dataset, 

1521 frames represented the train data, 434 represented the validation data, and 218 

frames represented the test data. A comprehensive evaluation was done for the three 

datasets using ten famous machine learning algorithms. The machine learning 

algorithms used were RF classifier, ridge classifier, bagging classifier, multi-layer 

perceptron (MLP) classifier, KNeighbours classifier, decision tree (DT), support 

vector classifier (SVC), Gaussian naive Bneuayes (NB), logistic regression (LR), and 

Adaboost classifier.  

For transfer learning experiments, each of the dataset was then randomly split into 

train: validate: test ratio of 60:20:20. They were split in a manner that there is no 

repetition of frames nor data leakage in any of the training, validation, and testing 

datasets. A comprehensive benchmarking and evaluation were done using eight 

famous transfer learning algorithms namely VGG 19, ResNet 50 V2, ResNet 152V2, 

Inception v3, Inception residual network, xception, mobile network (MobileNet) V2, 

and dense network (DenseNet) 169 base networks for each of the dataset. We discuss 

briefly about the machine learning and transfer learning algorithms.  
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Figure 5.2 Correlation matrix of the labels. 

RF is a supervised machine learning algorithm used for both classification as well as 

regression tasks [155]. The concept of RF is based on ensemble learning, a process of 

combining multiple classifiers to improve the accuracy of the model [155], [156]. RF 

employs several decision tree classifiers on the dataset and averages the result across 

all the trees to output a result for regression, meanwhile, the most commonly predicted 

label is chosen for classification [155], [156].  

A DT is a machine learning algorithm with a treelike structure, depicting all possible 

outcomes for a particular choice. It is employed for both classification and regression 

and is a part of the supervised branch of machine learning algorithms, i.e. the model is 

trained and tested on a set of data containing the desired classification result. The base 

of the DT is a root node containing several branches, following which are decision 

nodes representing the decisions that are to be made, leaf nodes depict the outcome of 

those decisions. The DT keeps growing by recursively splitting based on the attributes 

of the training data until a stopping criterion is met [156], [157]. 
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Ridge classifier is a machine learning algorithm designed for binary and multi-class 

classification tasks [156]. By combining ideas from conventional classification 

techniques and Ridge Regression, it offers a distinct method for classifying data points. 

Bootstrap aggregation (bagging) is an ensembling method that attempts to resolve 

overfitting for classification or regression problems [155]. Bagging aims to improve 

the accuracy and performance of machine learning algorithms. Each classifier's 

training set is generated by randomly drawing, with replacement, N examples - where 

N is the size of the original training set; many of the original examples may be repeated 

in the resulting training set while others may be left out. Each individual classifier in 

the ensemble is generated with a different random sampling of the training set. The 

predictions for each subset are then aggregated through majority vote for classification 

or averaging for regression, increasing prediction accuracy. 

In machine learning, linear regression is a supervised learning algorithm used for 

predicting a continuous outcome variable (also called the dependent variable) based 

on one or more predictor variables (independent variables) [155], [156]. It falls under 

the category of regression algorithms, which are used when the target variable is a real 

or continuous value. Researchers have used it for classification problems as well. 

LR is a statistical method commonly used in machine learning for binary classification 

problems. Despite its name, it is a classification algorithm rather than a regression 

algorithm. LR predicts the probability that an instance belongs to a particular category. 

For example, email spam or not. The output is a value between 0 and 1, which 

represents the probability of the instance belonging to the positive class. It is a 

supervised machine learning algorithm. It can be extended to handle multi-class 

classification as well [155]. 

The Gaussian Naive  Algorithm is a form of the Naive Bayes algorithm used in 

classification problems. The Naive Bayes algorithms are a collection of algorithms 

used in machine learning. The is a probabilistic algorithm that all the features in a class 

are independent of each other.  In Gaussian Naive Bayes the features of the data are 

continuous and have a gaussian distribution. This algorithm works on continuous and 

normally distributed features [155]. 
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The SVC is an integral element within the expansive domain of machine learning, 

introduced in the early 1960s [155]. This historical foundation laid the groundwork for 

SVC, solidifying its position as a cornerstone within the discipline. Motivated by the 

ambition to devise robust classification algorithms capable of navigating intricate 

decision boundaries with unparalleled accuracy, SVC naturally evolved as an 

extension of Vapnik and Chervonenkis' pioneering work on SVM [156]. The impetus 

behind SVC is firmly rooted in the pursuit of a classification model possessing both 

formidable power and versatility, ensuring high accuracy across diverse datasets. 

The nomenclature of the Support Vector Classifier pays homage to the central concept 

of "support vectors" inherent in SVM. In SVM-based classification, these support 

vectors exert significant influence over the determination of the decision boundary's 

positioning and orientation [157]. This conceptual foundation serves as the bedrock 

upon which SVC establishes its classification prowess, emphasizing its continuity with 

the principles set forth by SVM. 

The mathematical underpinnings of SVC closely echo the principles articulated by 

SVM [155]. At its core, the essence of SVC lies in the determination of an optimal 

hyperplane that maximally segregates different classes within the feature space. 

Articulated as an optimization problem, SVC is designed to maximize the margin 

between classes while simultaneously minimizing classification errors, endowing it 

with robust discriminative capabilities. 

SVC's efficacy transcends disciplinary boundaries, rendering it a versatile workhorse 

in a myriad of classification tasks [155]. Particularly adept in scenarios characterized 

by non-linear and complex decision boundaries, SVC finds applications across a broad 

spectrum, spanning domains such as image classification, text categorization, 

bioinformatics, and beyond. The adaptability of SVC positions it as an indispensable 

tool in various fields where precise and accurate classification holds paramount 

importance. 

Gradient Boosting, a transformative concept in machine learning, represents an 

evolution rather than a singular model, with its development unfolding over the course 

of time [155]. The foundational work on gradient boosting was elucidated by Jerome 



83 
 

  

H. Friedman in the late 1990s, marking the Inception of a paradigm that has since 

become instrumental in enhancing predictive accuracy [156], [157]. His seminal work 

laid the groundwork for a technique that redefined the landscape of ensemble learning. 

At the core of Gradient Boosting lies an inspiration to augment the accuracy of 

predictive models by synergistically combining the strengths of multiple weak 

learners, typically in the form of decision trees. The motivation is to harness the 

collective power of these learners in an additive manner, mitigating their individual 

weaknesses. 

The nomenclature "Gradient Boosting" is a nod to the optimization technique of 

gradient descent employed in the process. The term "boosting" encapsulates the 

iterative approach of enhancing model performance by sequentially adding weak 

learners to rectify the errors of their predecessors. This iterative refinement process 

forms the crux of the technique. 

The mathematical foundation of Gradient Boosting revolves around the minimization 

of a loss function through the application of gradient descent [155]. In each iteration, 

a weak learner is introduced into the ensemble to correct errors made by the existing 

model. The weights of misclassified instances are strategically adjusted to guide the 

ensemble towards the optimal solution, creating a powerful and adaptive model. 

The architecture of Gradient Boosting manifests in its iterative, additive nature. At its 

core, it assembles an ensemble of weak learners, often decision trees, sequentially. In 

each iteration, a new tree is created to correct the errors of the ensemble up to that 

point. Combining these weak learners leads to a robust and accurate predictive model. 

Gradient Boosting, known for its versatility, finds applications in various fields, 

including regression and classification problems. Implementations like XGBoost, 

LightGBM, and AdaBoost have emerged as stalwarts, showcasing exemplary 

performance in many domains like finance, healthcare, and natural language 

processing [155], [156]. This adaptability positions Gradient Boosting as a go-to 

technique in diverse and complex problem-solving scenarios. 
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The VGG model often called as VGGNet is a convolutional neural network model 

proposed by A. Zisserman and K. Simonyan of the University of Oxford in 2014 that 

supports 16 layers [117]. The VGG architecture serves as a foundation for cutting edge 

object recognition models. It was created as a deep neural network, outperforms 

baselines on a variety of tasks and datasets into ImageNet [117], [119]. It is usually 

pre-trained on the ImageNet dataset, containing millions of images across thousands 

of categories. This pre-training helps the model learn a rich set of hierarchical features. 

After pre-training, the model can be fine-tuned on specific datasets or used as a feature 

extractor for various image-related tasks through transfer learning. 

ResNet50V2, an evolution born from the pioneering ResNet50, represents a significant 

stride in the realm of deep learning architectures [117]. The original ResNetV2 paper 

was presented in 2016, signalling a deliberate effort by researchers from Microsoft 

Research, including Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, to 

enhance the ResNet lineage [117]. The inspiration behind ResNet50V2 stems from a 

concerted effort to refine the original ResNet architecture. Recognizing the need for 

improvements in training efficiency and model generalization, ResNet50V2 emerges 

as a testament to the continuous pursuit of excellence in deep learning. 

The nomenclature "ResNet50V2" carries the implication of version improvement over 

the original ResNet, denoted by the "V2" suffix. This signifies the incorporation of 

advancements aimed at addressing limitations and elevating overall model 

performance. While maintaining the fundamental structure of ResNet50, ResNet50V2 

introduces notable tweaks in its architecture. A pivotal change involves the adoption 

of "bottleneck residual blocks" accompanied by additional batch normalization before 

each weight layer. These modifications are strategically designed to enhance model 

generalization and facilitate more seamless optimization during training. The 

mathematical principles governing ResNet50V2 closely align with those of its 

predecessor, ResNet50 [117]. The incorporation of additional batch normalization 

steps remains a key strategy, aimed at facilitating the training of deep networks by 

ensuring a more efficient gradient flow. These principles underscore the model's 

commitment to addressing challenges in training deep neural networks. 
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ResNet50V2 finds its stride in a multitude of computer vision applications, mirroring 

the domains where ResNet50 has excelled [117]. The enhancements in training 

efficiency and generalization position ResNet50V2 as a preferred choice in scenarios 

where heightened performance is crucial. The model's versatility extends its utility 

beyond research labs, making it an asset in industries relying on computer vision for 

tasks such as image recognition, object detection, and image segmentation. 

The Inception residual network was created by Christian Szegedy, Sergey Ioffe and 

Vincent Vanhoucke in the year 2016 [117]. The model is basically an extension of the 

Inception network and is made using a culmination of the Inception infrastructure and 

Residual Connections which explains its name Inception Residual Network or 

Inception Resnet. Inception basically applies various transformation operations to the 

input data and gives a concatenated output. They are great at creating deep models that 

are still computationally efficient. 

A problem faced in training deep neural networks is the vanishing gradient problem 

[117], [119], [120]. As back propagation occurs through the many layers of a deep 

neural network, gradients (which are loss function derivatives for network parameters) 

start becoming increasingly small. This is not ideal as it subdues the training process. 

To solve this issue residual connection, or skip connections, were introduced to the 

Inception block giving this model high feature-extraction power with a built-in fail-

safe to gradient vanishing for deep models [117]. Now we will discuss rest of the 

followed methodology to evaluate and run the discussed machine learning and transfer 

learning algorithms.  

The evaluation metrics was achieved using predicted scores by machine learning or 

transfer learning algorithms v/s the true scores given by the readers. The metrics used 

for the three multi-label machine learning-based classification tasks included overall 

accuracy, balanced accuracy, weighted average of the achieved precision, recall, F1-

score, and Jaccard score. The metrics were reported for both the validation and test 

data. Overall accuracy, binary accuracy, overall categorical accuracy, loss, precision, 

recall, and top-k categorical accuracy were used as the evaluation metrics for the three 

multi-label transfer learning-based classification tasks for both training and validation 
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data. Weighted average of the achieved precision, recall, and F1-score were reported 

for the testing data. Some of the formula for the utilized evaluation metrics have been 

mentioned below: 

Classification accuracy is the percentage of properly defined data from the complete 

set indicated by the TP and TN condition or the percentage ratio of correctly specified 

data to the full dataset, as shown in Eq. (5.1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

 𝑇𝑃 +  𝐹𝑃 + 𝐹𝑁 +  𝑇𝑁
        (5.1) 

Here, TP is number of true positives, TN is number of true negatives, FP is number of 

false positives, and FN is number of false negatives. 

 Precision is the uniformity of the measuring findings as shown in Eq. (5.2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

 𝑇𝑃 +  𝐹𝑃
              (5.2) 

Recall is the proportion of similar occurrences recovered as shown in Eq. (5.3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

 𝑇𝑃 + 𝐹𝑁
                         (5.3) 

F-score is the weighted harmonic mean of precision and recall as shown in Eq. (5.4). 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                (5.4) 

The machine learning-based experiments were run on Google Co laboratory with 

Python 3 Google Compute Engine backend (GPU). For all the classification tasks, a 

hyper image dimension, channels, and mode of 64×64, 3, and RGB respectively were 

set. All the images were normalized between pixel values of 0 and 1. A random seed 

was initialized to obtain reproducible tensors in the appropriate code. No other hyper-

parameter tuning, nor augmentation techniques were utilized to report the results of 

vanilla machine learning algorithms. 

The benchmarking setup of transfer learning experiments were developed on Python 

with TensorFlow in the back end on an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20 
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GHz with 2 processors, 128 GB RAM, and dedicated 24 GB NVIDIA RTX A5000 

workstation. For all the classification tasks, a hyper image dimension, batch size, 

epochs, channels, and mode of 320 × 320, 32, 250, 3, and RGB respectively were set. 

All the images were normalized between pixel values of 0 and 1. No other 

augmentation techniques were utilized. The Adam algorithm was used as the optimizer 

with a learning rate of 1e − 3, a beta 1 of 0.9, a beta 2 of 0.999, epsilon of 1e − 7, and 

loss as binary cross-entropy. A random seed was initialized to obtain reproducible 

tensors in the appropriate code with weights taken from ImageNet for all the transfer 

learning algorithms. The last layer was activated using a sigmoid function to predict 

the probability of each label between 0 and 1. Trainable, non-trainable, and total 

parameters of the transfer learning algorithms along with their size have been 

mentioned in Table 5.2. 

Table 5.2 Details of the transfer learning algorithms used in the three multi-label classification tasks. 

S. No.    Transfer learning 

algorithm     

Trainable parameters     Non-trainable 

parameters 

Total 

parameters 

Size 

 

(a) Only VM labels and only OV labels 

1.            VGG 19 204,804 20,024,384 20,229,188 78.8 MB 

2.            ResNet50V2 819,204 23,564,800 24,384,004 99.7 MB 

3.            Inception v3 524,292 21,802,784 22,327,076 90 MB 

4.   InceptionResNetV2 393,220 54,336,736 54,729,956 213 MB 

5.             Xception 819,204 20,861,480 21,680,684 89.3 MB 

6. MobileNetV2 512,004 2,257,984 2,769,988 14.9 MB 

7. DenseNet 169 665,604 12,642,880 13,308,484 57.4 MB 

8. ResNet152V2 819,204 58,331,648 59,150,852 233 MB 

(b) Both VM and OV labels 

1.             VGG 19 409,608 20,024,384 20,433,992 81.1 MB 

2.            ResNet50V2 1,638,408 23,564,800 25,203,208 109 MB 

3. Inception v3 1,048,584 21,802,784 22,851,368 96 MB 

4. InceptionResNetV2 786,440 54,336,736 55,123,176 218 MB 

5. Xception 1,638,408 20,861,480 22,499,888 98.7 MB 

6. MobileNetV2 1,024,008 64,097,687 3,281,992 20 MB 

7. DenseNet 169 1,331,208 12,642,880 13,974,088 65 MB 

8. ResNet152V2 1,638,408 58,331,648 59,970,056 242 MB 
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5.5 Results and Discussion 

Achieved evaluation metrics for validation data and test data have been summarized 

in Table 5.3 and 5.4. In case of only VM labels based multi-label classification, the 

evaluation metrics ranged between 45.31 − 61.75% for validation data and 40.69 − 

57.07% for test data. In case of only OV labels, the evaluation metrics ranged between 

42.33 − 59.90% for validation data and 37.33 − 57.88% for test data. In case of both 

VM and OV labels, the evaluation metrics ranged between 44.08 − 61.05% for 

validation data, and 45.38 − 62.38% for test data.  Overall, for validation and test data, 

RF outperformed in comparison to the ten machine learning algorithms. The highest 

overall accuracy, balanced accuracy, weighted average of the achieved F1-score, 

recall, precision, and Jaccard score was achieved up to 62.38%, 57.26%, 59.93%, 

62.38%, 62.58%, and 45.38% respectively. 

Table 5.3 Achieved evaluation metrics on validation data. 

Type of labels Evaluation metrics RF Ridge 
Baggin

g 
MLP 

KNeighb

ours 
DT SVC 

Gaussi

an NB 
LR 

Adab

oost 

Only VM 

Overall accuracy 61.75 52.99 55.99 57.83 58.29 50.92 53.68 57.60 57.37 58.52 

Balanced accuracy 46.61 41.28 39.78 47.15 41.05 40.47 32.53 46.73 45.69 45.87 

F1-score (weighted 

average) 
58.40 51.37 52.15 55.92 52.33 51.17 42.26 56.49 55.44 57.84 

Recall (weighted 

average) 
61.75 52.99 55.99 57.83 58.29 50.92 53.68 57.60 57.37 58.52 

Precision (weighted 

average) 
57.63 51.20 50.53 55.59 54.49 51.80 43.57 55.89 54.35 57.86 

Jaccard score 45.31 37.70 39.73 42.11 38.71 37.12 31.07 43.01 41.80 44.32 

Only OV 

Overall accuracy 59.90 40.55 51.38 45.62 43.54 44.70 45.39 52.30 43.54 55.29 

Balanced accuracy 57.26 39.99 50.02 38.74 46.27 44.04 37.72 54.42 44.04 54.17 

F1-score (weighted 

average) 
59.93 40.49 51.38 37.49 42.83 44.83 36.44 51.50 43.58 55.46 

Recall (weighted 

average) 
59.90 40.55 51.38 45.62 43.54 44.70 45.39 52.30 43.54 55.29 

Precision (weighted 

average) 
62.58 41.68 53.40 54.75 51.24 45.13 45.08 52.11 43.65 56.83 

Jaccard score 42.33 25.43 34.85 24.90 27.40 29.01 24.22 35.16 28.14 38.55 

Both VM and 

OV 

Overall accuracy 61.05 52.99 58.75 55.06 58.52 48.38 54.60 53.68 56.22 48.15 

Balanced accuracy 50.82 43.55 46.86 44.56 35.95 40.44 37.17 46.92 46.29 36.00 

F1-score (weighted 

average) 
57.71 51.09 55.36 52.12 54.25 48.97 45.11 53.70 53.55 38.27 

Recall (weighted 

average) 
61.05 52.99 58.75 55.06 58.52 48.38 54.60 53.68 56.22 48.15 

Precision (weighted 

average) 
57.68 50.13 54.54 51.33 56.94 49.80 46.79 54.22 52.32 37.41 

Jaccard score 44.08 36.48 41.33 38.13 39.91 34.55 33.01 39.18 39.63 27.92 
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Table 5.4 Achieved evaluation metrics on test data. 

Type of labels Evaluation metrics RF Ridge Baggin

g 

MLP KNeigh

bours 

DT SVC Gaussia

n NB 

LR Adaboos

t 

Only VM Overall accuracy 56.88 49.54 47.70 51.83 56.42 44.03 45.87 55.50 51.37 55.50 

Balanced accuracy 45.89 40.93 36.09 44.54 42.77 35.00 31.24 51.31 44.15 47.54 

F1-score (weighted 

average) 

52.79 46.26 43.15 49.17 52.53 42.52 33.54 54.66 48.07 55.40 

Recall (weighted 

average) 

56.88 49.54 47.70 51.83 56.42 44.03 45.87 55.50 51.37 55.50 

Precision (weighted 

average) 

51.43 46.65 42.42 48.75 57.07 41.97 40.72 54.30 47.06 56.26 

Jaccard score 38.82 32.10 30.44 35.76 38.05 29.37 23.01 39.35 34.59 40.69 

Only OV Overall accuracy 51.83 42.66 48.62 42.20 46.78 46.33 43.11 47.70 46.33 54.12 

Balanced accuracy 49.87 42.72 47.16 37.02 49.91 46.80 36.64 49.09 47.92 53.31 

F1-score (weighted 

average) 

50.78 42.79 48.45 31.86 46.64 46.38 33.41 46.78 46.06 54.30 

Recall (weighted 

average) 

51.83 42.66 48.62 42.20 46.78 46.33 43.11 47.70 46.33 54.12 

Precision (weighted 

average) 

55.77 43.37 50.31 38.34 57.88 47.34 41.58 46.91 45.99 57.06 

Jaccard score 34.59 27.40 32.13 21.38 30.46 30.29 22.04 31.00 30.35 37.33 

Both VM and 

OV 

Overall accuracy 61.00 56.88 58.71 58.71 62.38 47.24 57.79 58.25 57.79 55.96 

Balanced accuracy 46.51 40.71 44.85 41.27 43.45 37.91 33.10 49.18 44.45 35.86 

F1-score (weighted 

average) 

56.97 54.57 56.60 54.77 56.83 49.25 46.56 59.14 55.12 46.24 

Recall (weighted 

average) 

61.00 56.88 58.71 58.71 62.38 47.24 57.79 58.25 57.79 55.96 

Precision (weighted 

average) 

56.58 53.77 58.43 52.71 57.60 53.10 43.40 60.39 55.81 46.68 

Jaccard score 45.38 41.88 43.40 42.28 44.01 35.90 35.73 44.79 42.57 35.88 

Achieved evaluation metrics for training data, validation data, and test data have been 

summarized in Table 5.5 and 5.8 for only VM labels. The highest overall accuracy, 

binary accuracy, overall categorical accuracy, top-k categorical accuracy, precision, 

recall, and loss for an average of 250 epochs during the training stage was achieved up 

to 0.99, 0.99, 0.98, 1, 0.99, 0.99, and 0.082 respectively. Likewise, 0.99, 0.99, 0.99, 1, 

0.99, 0.99, and 0.004 was achieved as the highest overall accuracy, binary accuracy, 

overall categorical accuracy, top-k categorical accuracy, precision, recall, and loss 

respectively for the last epoch. The highest overall accuracy, binary accuracy, overall 

categorical accuracy, top-k categorical accuracy, precision, recall, and loss for an 

average of 250 epochs during the validation stage was achieved up to 0.62, 0.82, 0.62, 

1, 0.69, 0.57, and 1.37 respectively. Likewise, 0.64, 0.83, 0.62, 1, 0.74, 0.60, and 1.84 
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was achieved as the highest overall accuracy, binary accuracy, overall categorical 

accuracy, top-k categorical accuracy, precision, recall, and loss respectively for the last 

epoch. The highest macro average of the achieved precision, recall, and F1- score 

during the testing stage was achieved up to 0.72, 0.52, and 0.49 respectively. The 

highest weighted aver- age of the achieved precision, recall, and F1-score during the 

testing stage was achieved up to 0.71, 0.65, and 0.60 respectively. For the training and 

validation data, DenseNet169, ResNet50V2, ResNet152V2, and InceptionV3 

performed similar. The main difference was observed in the achieved loss value. For 

the test data, Inception resnet performed the best in comparison to the other algorithms. 

It was followed by ResNet50V2, ResNet152V2 and then exception algorithm. 

Table 5.5 Achieved evaluation metrics on training and validation data for only VM labels. 

Evaluation metrics VGG 19 ResNet 

152V2 

ResNet 

50V2 

MobileNet 

V2 

InceptionV3 Inception 

resnet 

Exception DenseNet169 

For training data 

Overall accuracy (average 

of 250 epochs) 

0.95 0.97 0.97 0.98 0.97 0.98 0.97 0.97 

Overall accuracy (last 

epoch) 

0.99 0.97 0.98 0.99 0.98 0.99 0.98 0.98 

Binary accuracy (average 

of 250 epochs) 

0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Binary accuracy (last 

epoch) 

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Overall categorical 

accuracy (average of 250 

epochs) 

0.95 0.97 0.97 0.98 0.97 0.98 0.97 0.97 

Overall categorical 

accuracy (last epoch) 

0.99 0.97 0.98 0.99 0.98 0.99 0.98 0.98 

Top-k categorical 

accuracy (average of 250 

epochs) 

1 1 1 1 1 1 1 1 

Top-k categorical 

accuracy (last epoch) 

1 1 1 1 1 1 1 1 

Precision (average of 250 

epochs) 

0.95 0.98 0.99 0.98 0.98 0.98 0.98 0.98 

Precision (last epoch) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Recall (average of 250 

epochs) 

0.94 0.98 0.99 0.98 0.98 0.98 0.98 0.98 

Recall (last epoch) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Loss (average of 250 

epochs) 

0.095 0.25 0.096 0.12 0.086 0.083 0.069 0.082 

Loss (last epoch) 0.004 0.24 0.065 0.10 0.051 0.050 0.041 0.038 

For validation data 

Overall accuracy (average 

of 250 epochs) 

0.55 0.61 0.61 0.56 0.61 0.59 0.60 0.62 
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Overall accuracy (last 

epoch) 

0.58 0.64 0.60 0.55 0.60 0.58 0.59 0.59 

Binary accuracy (average 

of 250 epochs) 

0.75 0.82 0.81 0.79 0.82 0.80 0.80 0.82 

Binary accuracy (last 

epoch) 

0.79 0.82 0.81 0.77 0.83 0.80 0.81 0.82 

Overall categorical 

accuracy (average of 250 

epochs) 

0.55 0.61 0.61 0.56 0.61 0.59 0.60 0.62 

Overall categorical 

accuracy (last epoch) 

0.58 0.64 0.60 0.55 0.60 0.58 0.59 0.59 

Top-k categorical 

accuracy (average of 250 

epochs) 

1 1 1 1 1 1 1 1 

Top-k categorical 

accuracy (last epoch) 

1 1 1 1 1 1 1 1 

Precision (average of 250 

epochs) 

0.52 0.69 0.65 0.58 0.69 0.63 0.61 0.68 

Precision (last epoch) 0.58 0.65 0.64 0.54 0.74 0.61 0.66 0.64 

Recall (average of 250 

epochs) 

0.53 0.51 0.53 0.54 0.51 0.53 0.55 0.57 

Recall (last epoch) 0.52 0.57 0.54 0.56 0.47 0.56 0.46 0.60 

Loss (average of 250 

epochs) 

1.39 6.38 9.12 6.09 3.83 3.51 4.24 3.72 

Loss (last epoch) 1.84 7.88 10.31 7.31 5.87 4.16 6.25 5.13 

 

Achieved evaluation metrics for training data, validation data, and test data have been 

summarized in Table 5.6 and 5.8 for only OV labels. The highest overall accuracy, 

binary accuracy, overall categorical accuracy, top-k categorical accuracy, precision, 

recall, and loss for an average of 250 epochs during the training stage was achieved up 

to 0.98, 0.99, 0.98, 1, 0.99, 0.99, and 0.08 respectively. Likewise, 0.99, 1, 0.99, 1, 1, 

1, and 0.00 was achieved as the highest overall accuracy, binary accuracy, over- all 

categorical accuracy, top-k categorical accuracy, precision, recall, and loss respectively 

for the last epoch. The highest overall accuracy, binary accuracy, overall categorical 

accuracy, top-k categorical accuracy, precision, recall, and loss for an average of 250 

epochs during the validation stage was achieved up to 0.56, 0.82, 0.61, 1, 0.69, 0.54, 

and 1.53 respectively. Likewise, 0.60, 0.83, 0.60, 1, 0.74, 0.63, and 2.25 was achieved 

as the highest overall accuracy, binary accuracy, over- all categorical accuracy, top-k 

categorical accuracy, precision, recall, and loss respectively for the last epoch. The 

highest macro average of the achieved precision, recall, and F1-score during the testing 

stage was achieved up to 0.56, 0.55, and 0.54 respectively. The highest weighted 
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average of the achieved precision, recall, and F1-score during the testing stage was 

achieved up to 0.55, 0.60, and 0.54 respectively. For the training and validation data, 

InceptionV3 performed the best among the eight algorithms; followed by 

MobileNetV2 and Inception resnet. For the test data, ResNet50V2, Mo- bileNetV2, 

and DenseNet169 performed similar. 

Achieved evaluation metrics for training data, validation data, and test data have been 

summarized in Table 5.7 and 5.8 for both VM and OV labels. The highest overall  

Table 5. 6 Achieved evaluation metrics on training and validation data for only OV labels. 

Evaluation metrics VGG 19 
ResNet 

152V2 
ResNet50V2 MobileNetV2 InceptionV3 

Inception 

resnet 
Exception DenseNet169 

For training data 

Overall accuracy (average of 

250 epochs) 
0.94 0.98 0.98 0.97 0.97 0.98 0.97 0.97 

Overall accuracy (last epoch) 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 

Binary accuracy (average of 

250 epochs) 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Binary accuracy (last epoch) 0.99 0.99 0.99 1 0.99 0.99 0.99 0.99 

Overall categorical accuracy 

(average of 250 epochs) 
0.98 0.97 0.98 0.98 0.97 0.98 0.97 0.97 

Overall categorical accuracy 

(last epoch) 
0.98 0.97 0.98 0.98 0.98 0.99 0.98 0.98 

Top-k categorical accuracy 

(average of 250 epochs) 
1 1 1 1 1 1 1 1 

Top-k categorical accuracy 

(last epoch) 
1 1 1 1 1 1 1 1 

Precision (average of 250 

epochs) 
0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.98 

Precision (last epoch) 0.99 0.99 1 1 0.99 0.99 0.99 0.99 

Recall (average of 250 epochs) 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.98 

Recall (last epoch) 0.99 0.99 0.99 1 0.99 0.99 0.99 0.98 

Loss (average of 250 epochs) 0.09 0.25 0.09 0.07 0.08 0.08 0.06 0.08 

Loss (last epoch) 0.06 0.24 0.06 0.00 0.05 0.05 0.04 0.03 

For validation data 

Overall accuracy (average of 

250 epochs) 
0.46 0.52 0.52 0.56 0.61 0.55 0.54 0.53 

Overall accuracy (last epoch) 0.47 0.52 0.52 0.55 0.60 0.54 0.55 0.52 

Binary accuracy (average of 

250 epochs) 
0.73 0.77 0.77 0.79 0.82 0.79 0.77 0.77 

Binary accuracy (last epoch) 0.70 0.78 0.78 0.77 0.83 0.78 0.77 0.77 

Overall categorical accuracy 

(average of 250 epochs) 
0.46 0.52 0.55 0.56 0.61 0.55 0.54 0.53 

Overall categorical accuracy 

(last epoch) 
0.47 0.52 0.54 0.55 0.60 0.54 0.55 0.52 

Top-k categorical accuracy 

(average of 250 epochs) 
1 1 1 1 1 1 1 1 

Top-k categorical accuracy 1 1 1 1 1 1 1 1 
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(last epoch) 

Precision (average of 250 

epochs) 
0.46 0.57 0.57 0.58 0.69 0.59 0.54 0.53 

Precision (last epoch) 0.43 0.57 0.56 0.54 0.74 0.59 0.55 0.53 

Recall (average of 250 epochs) 0.49 0.42 0.44 0.54 0.51 0.45 0.49 0.46 

Recall (last epoch) 0.63 0.42 0.45 0.56 0.47 0.46 0.48 0.46 

Loss (average of 250 epochs) 1.53 5.51 5.06 6.09 3.8 2.01 3.16 3.25 

Loss (last epoch) 2.84 5.52 5.03 7.31 5.8 2.25 3.89 3.68 

 

accuracy, binary accuracy, overall categorical accuracy, top-k categorical accuracy, 

precision, recall, and loss for an average of 250 epochs during the training stage was 

achieved up to 0.93, 0.99, 0.93, 0.99, 0.99, 0.99, and 0.04 respectively. Likewise, 0.95, 

1, 0.95, 0.99, 1, 1, and 0.00 was achieved as the highest overall accuracy, binary 

accuracy, overall categorical accuracy, top-k categorical ac- curacy, precision, recall, 

and loss respectively for the last epoch. The highest overall accuracy, binary accuracy, 

overall categorical accuracy, top-k categorical ac- curacy, precision, recall, and loss for 

an average of 250 epochs during the validation stage was achieved up to 0.49, 0.80, 

0.49, 0.90, 0.62, 0.50, and 1.28 respectively. 

Table 5.7 Achieved evaluation metrics on training and validation data for both OV and VM labels. 

Evaluation metrics VGG 19 ResNet152V2 ResNet50V2 MobileNetV2 InceptionV3 
Inception 

resnet 
Exception 

DenseNe

t169 

For training data 

Overall accuracy (average of 

250 epochs) 
0.52 0.93 0.90 0.82 0.84 0.88 0.80 0.76 

Overall accuracy (last 

epoch) 
0.43 0.95 0.90 0.83 0.87 0.91 0.83 0.76 

Binary accuracy (average of 

250 epochs) 
0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Binary accuracy (last epoch) 0.99 0.99 0.99 0.99 1 1 0.99 1 

Overall categorical accuracy 

(average of 250 epochs) 
0.52 0.93 0.90 0.82 0.84 0.88 0.80 0.76 

Overall categorical accuracy 

(last epoch) 
0.43 0.95 0.90 0.83 0.87 0.91 0.83 0.76 

Top-k categorical accuracy 

(average of 250 epochs) 
0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

Top-k categorical accuracy 

(last epoch) 
0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

Precision (average of 250 

epochs) 
0.95 0.99 0.99 0.99 0.98 0.98 0.98 0.98 

Precision (last epoch) 0.99 0.99 0.99 0.99 1 1 0.99 1 

Recall (average of 250 

epochs) 
0.94 0.99 0.99 0.99 0.98 0.98 0.98 0.98 

Recall (last epoch) 0.99 0.99 0.99 0.99 1 1 0.99 1 

Loss (average of 250 0.07 0.12 0.11 0.08 0.04 0.05 0.07 0.06 
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epochs) 

Loss (last epoch) 0.01 0.12 0.07 0.02 0.00 0.00 0.04 0.00 

For validation data 

Overall accuracy (average of 

250 epochs) 
0.31 0.48 0.46 0.43 0.46 0.49 0.43 0.44 

Overall accuracy (last 

epoch) 
0.28 0.49 0.48 0.44 0.48 0.51 0.46 0.44 

Binary accuracy (average of 

250 epochs) 
0.77 0.78 0.79 0.79 0.79 0.80 0.79 0.79 

Binary accuracy (last epoch) 0.76 0.78 0.78 0.80 0.79 0.80 0.78 0.79 

Overall categorical accuracy 

(average of 250 epochs) 
0.31 0.48 0.46 0.43 0.46 0.49 0.43 0.44 

Overall categorical accuracy 

(last epoch) 
0.28 0.49 0.48 0.44 0.48 0.51 0.46 0.44 

Top-k categorical accuracy 

(average of 250 epochs) 
0.88 0.79 0.89 0.89 0.87 0.85 0.84 0.90 

Top-k categorical accuracy 

(last epoch) 
0.83 0.74 0.90 0.88 0.87 0.85 0.85 0.90 

Precision (average of 250 

epochs) 
0.54 0.58 0.62 0.60 0.60 0.62 0.60 0.59 

Precision (last epoch) 0.52 0.59 0.59 0.65 0.60 0.63 0.58 0.59 

Recall (average of 250 

epochs) 
0.48 0.41 0.43 0.47 0.48 0.50 0.49 0.50 

Recall (last epoch) 0.46 0.41 0.43 0.46 0.48 0.51 0.49 0.49 

Loss (average of 250 

epochs) 
1.28 7.40 5.41 3.24 2.79 3.01 3.85 4.00 

Loss (last epoch) 1.81 8.70 5.78 2.91 2.84 3.09 5.23 4.29 

 

Likewise, 0.51, 0.80, 0.51, 0.90, 0.65, 0.51, and 1.81 was achieved as the highest 

overall accuracy, binary accuracy, overall categorical accuracy, top-k categorical ac- 

curacy, precision, recall, and loss respectively for the last epoch. The highest macro 

average of the achieved precision, recall, and F1-score during the testing stage was 

achieved up to 0.31, 0.26, and 0.23 respectively. The highest weighted average of the 

achieved precision, re- call, and F1-score during the testing stage was achieved up to 

0.69, 0.50, and 0.55 respectively. For the training and validation data, ResNet50V2, 

ResNet152V2, and Inception resnet performed similarly. For the test data, all 

algorithms performed similarly and produced poor evaluation metrics. 

Table 5.8 Achieved evaluation metrics on test data for only OV, only VM, and both OV and VM labels. 

Evaluation metrics VGG 19 ResNet152V2 ResNet50V2 MobileNetV2 InceptionV3 
Inception 

resnet 
Exception DenseNet169 

(a) Only VM labels 

Precision (macro average) 0.46 0.55 0.56 0.38 0.45 0.72 0.52 0.47 

Precision (weighted average) 0.53 0.60 0.59 0.54 0.56 0.71 0.60 0.54 

Recall (macro average) 0.47 0.51 0.50 0.47 0.48 0.52 0.53 0.45 
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Recall (weighted average) 0.60 0.65 0.61 0.57 0.57 0.63 0.61 0.58 

F1-score (macro average) 0.44 0.47 0.46 0.36 0.45 0.49 0.51 0.45 

F1-score (weighted average) 0.54 0.58 0.53 0.52 0.55 0.60 0.59 0.55 

(b) Only OV labels 

Precision (macro average) 0.46 0.52 0.55 0.56 0.51 0.52 0.54 0.55 

Precision (weighted average) 0.53 0.52 0.54 0.55 0.51 0.52 0.53 0.53 

Recall (macro average) 0.47 0.54 0.55 0.53 0.51 0.54 0.47 0.54 

Recall (weighted average) 0.60 0.52 0.55 0.53 0.50 0.52 0.49 0.54 

F1-score (macro average) 0.44 0.52 0.54 0.54 0.50 0.53 0.48 0.54 

F1-score (weighted average) 0.54 0.52 0.54 0.53 0.50 0.51 0.49 0.53 

(c) Both OV and VM labels 

Precision (macro average) 0.31 0.29 0.25 0.30 0.27 0.30 0.29 0.27 

Precision (weighted average) 0.69 0.61 0.63 0.64 0.66 0.64 0.66 0.61 

Recall (macro average) 0.23 0.16 0.19 0.26 0.17 0.20 0.18 0.18 

Recall (weighted average) 0.31 0.46 0.47 0.39 0.50 0.47 0.43 0.45 

F1-score (macro average) 0.13 0.19 0.21 0.16 0.20 0.23 0.21 0.21 

F1-score (weighted average) 0.37 0.48 0.53 0.44 0.55 0.52 0.50 0.51 

Upon application of AI on the developed dataset, a highest precision (macro average), 

precision (weighted average), recall (macro average), recall (micro average), F1-score 

(macro average), and F1-score (weighted aver- age) up-to 0.72, 0.71, 0.55, 0.65, 0.54, 

and 0.60 respectively was achieved on the test data for any of the three datasets. After 

a comprehensive evaluation of the three datasets and their AI pipeline, we noticed that 

several algorithms did not generalize well on the test data. A higher training evaluation 

metrics with slightly lower validation metrics and poor testing metrics indicated 

overfitting. Possible reasons include that the algorithms were not able to understand 

the pattern of VM and OV sub-scores, different distribution of the training, validation, 

and test datasets, and no hyper-parameter tuning, nor augmentation of the frames in 

the imbalanced dataset. The analysis also indicated that the algorithms were able to 

understand only VM sub-scores better in comparison to only OV sub-scores and both 

VM and OV sub-scores. Based on the achieved metrics, OV sub-scores were difficult 

to predict even with a training of 250 epochs on a super-computer. Overall, VGG19 

classifier converged best over 250 epochs. Rest of the algorithms required more no. of 

epochs to further reach lower loss values. In future, we plan to include a real-time 

predictor in AI-KODA. 

We show the interpretability results of each of the multi-label classification pipeline 

through Figure 5.3, and 5.4. Similar observations were seen through the achieved 

gradient activation maps.  A gradient activation map offers valuable insights into a 



96 
 

  

model's decision-making process. By highlighting regions of an input that heavily 

influence classification outcomes, it provides a spatial understanding of feature 

importance. High activation areas signify regions where the model concentrates its 

attention, typically containing critical features pertinent to the task facilitating 

improvements in both model design and feature engineering [122].  

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Gradient activation map of a VCE frame with 25% visualized mucosa and 50% obstructed 

view for the three multi-label classification pipelines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 Gradient activation map of a VCE frame with 75% visualized mucosa and 5% obstructed 

view for the three multi-label classification pipelines. 
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Overall, the gradient activation map serves as a powerful tool for model analysis, 

offering actionable insights into the inner workings of machine learning algorithms 

and enhancing their transparency and interpretability. By visualizing these activation 

maps, researchers and health practitioners such as the gastroenterologists can better 

understand how the AI model interprets input data and make informed decisions about 

model architecture, training, and optimization strategies [92], [115], [116], [123], 

[158], [159], [160]. 

We discuss the strengths and limitations of the research work discussed in this chapter.  

One of the study's strengths is the creation of an intuitive application (AI-KODA score) 

that allows for real-time scoring and its mechanism to save the scores in the backend. 

It is fast and helps in quick assessment of the cleanliness in VCE as per KODA. In 

turn, the application also aids in the creation of a multi-label image collection for the 

automated evaluation of cleanliness in VCE.  

For manual abnormality detection, around 3–4 hours are spent by experienced 

gastroenterologists on each video analysis of 8–12 hours of VCE [25], [28], [35], 

[123], [150]. During this time, the gastroenterologists also evaluate and report on the 

cleaning preparation and quality of VCE frames. If KODA score is implemented in a 

real-time clinical setting, the gastroenterologist must first choose frames at intervals 

of five minutes, after which they must rate each frame according to VM and OV. 

Analysis of every frame that was chosen will come next, and it could take a while to 

score each frame manually. It may require memorising all the sub-scores, or use of 

pen-paper to write down the scores which may lead to a high miss-rate or miss-

calculation. AI-KODA score application automates both processes. 

In the previous chapter, we demonstrated that the AI-KODA score application is time-

saving and effective in contrast to the manual KODA score, which necessitates self-

calculations and the usage of paper and pen during analysis. 

Ours is the first VCE dataset to assess the cleanliness of VCE frames as per the latest 

medical scoring system (KODA). It is multi-labelled and of high-quality. While 

gathering the dataset, we did not eliminate any frames that contained abnormalities. 
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Abnormal frames have been excluded in previous research. This demonstrates the 

variety in our gathered dataset. Our study is the third to demonstrate KODA's efficacy. 

We concur with the original KODA study and have shown that KODA has face validity 

and is straightforward. 

We further attempted to reduce the evaluation time with the help of AI algorithms, and 

automatic frame extraction to fully automate the task of cleanliness assessment in 

VCE. We have shown the feasibility of AI for automation in this field by applying ten 

machine learning algorithms and eight transfer learning algorithms on the developed 

dataset. KODA utilised with AI doesn't require a specific interval for collection of 

frames. It may potentially help in development of a generalized scoring system in 

VCE. The previous research has considered different types of intervals like two 

minutes, first and last ten minutes of the small bowel segments, first five minutes of 

each segment, random intervals etc while selecting the VCE frames for scoring 

purpose. The original KODA score considers frame selection at an interval of five 

minutes. In this study, two types of intervals (five minutes and random) were 

considered while assessing the frames as per existing KODA to check the effect of 

intervals with respect to its scoring system. It was observed that the ICCs of five 

minutes and random frames showed a similar trend in reliability estimation. 

We preferred using transfer learning algorithms instead of deep learning algorithms 

with no changes in parameters or augmentation as they have been shown to produce 

good results on small biomedical datasets[39], [127], [128], [129], [130], [150]. We 

have reported all the common evaluations used in multi-label classification over a 250-

epoch training with distinct training, validation, and test datasets while ensuring no 

data leakage and repetition of frames for the transfer learning algorithms. A similar 

methodology was followed for the machine learning algorithms based multi-label 

classification. Through this, we intended to help the future researchers to compare their 

work with our standardised results and improve this state-of-the-art study.  

There are a few limitations to the present study discussed. First, video level analysis 

was not performed as the original KODA doesn’t have specific instructions for the 

same. In this research field, there is a mixed opinion for use of frames v/s a full-length 
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video for automatic cleanliness assessment. As per the position statement of ESGE on 

the expected value of AI [23], automatic assessment of cleanliness in VCE should be 

evaluated for full length video as per existing validated scales. However, presently, 

frame-by-frame analysis is more preferred in clinical practice as the full-length video 

is about 8 − 12 hours [23]. The full-length videos are not directly downloadable and 

can only be viewed on the CE soft wares like RAPID. Our system allows a video of 

20 seconds for downloading purpose. Second, AI-KODA score application is only 

available for WCE users now. The users must login from the same Android device 

while scoring the frames. Improvements are being done on this limitation. History 

information was not saved to maintain the confidentiality of the frames and the users. 

Third, the collected data is from one centre and contains third generation CE frames. 

We are in process of collecting scores of the open-source datasets in VCE like the 

Kvasir-capsule and CE-cleanliness. Despite these limitations, the present study has 

achieved encouraging results. 

5.6 Conclusion and Future Scope 

The use of automatic cleanliness assessment in VCE is essential as it has the potential 

to mitigate the subjectivity, complexity, and duration of the current scoring systems in 

this research field. In this study, a new automatic scoring system for evaluating the 

cleanliness of VCE frames was developed. Initially, a novel multi-label image dataset 

comprising medical scores of twenty-eight VCE frames was produced via the 

suggested mobile ap- plication named AI-KODA score. Second, with the assistance of 

three gastroenterologists, the efficacy of the collected data was examined. Third, to 

demonstrate the potential of AI in this research field, a comprehensive evaluation and 

benchmarking of the created dataset was carried out with the assistance of ten machine 

learning and eight transfer learning algorithms. With positive outcomes, the study is 

simple to apply in both clinical and research settings. 
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CHAPTER 6 

CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

In this thesis, we addressed two tasks namely automatic detection of abnormality in 

polyp and non-polyp frame in colonoscopy frames and automatic assessment of 

cleanliness in VCE. The proposed methodologies for these two tasks are scalable, 

robust, work in real-time, and are explainable in nature. The comprehensive analysis 

followed for each of the task, shows its promising future in the gastroenterology 

department. We discuss the summary of the work done in the thesis through Section 

6.1. It is followed by future scope/ directions and social impact of the work done in 

Section 6.2. 

6.1 Summary of the Work Done in the Thesis 

The first task focused on developing an explainable, end-to-end WADT-MCPI 

architecture for automatic colorectal polyp diagnosis using colonoscopy CP and non-

CP frames. The developed architecture consisted of a novel, fine-tuned feature-

extracting module, followed by CP and non-CP frame identification and a window-

based CP detection system. The architecture achieved an overall accuracy, precision, 

recall, specificity, F1 score, and AUC score up to 94.23%, 91.16%, 94.00%, 92.67%, 

91.75%, and 92.53% respectively on the colonoscopy dataset. To show the robustness 

of the developed architecture, a new test set was developed and evaluated.  After the 

analysis, it released on Zenodo, an open-source platform for research purposes. It is 

called the gastrointestinal atlas-colon polyp dataset. It contains seven patient videos 

obtained from open-source, copyright free web sources. Explainable and evaluation 

methods like class activation mapping, feature mapping, occlusion testing, hyper-

parameter tuning ablation experiments, and separate, sequential, and non-sequential 

frame-based test set analysis were used to show the efficacy of the proposed 

architecture. The developed architecture was compared with the existing state-of-the-

art methodologies in this field. Additionally, the architecture was compared with a 

transfer learning architecture as well. In both the comparisons, the developed 

architecture outperformed and achieved better evaluation metrics. 
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The second task focused on development of methodology to automatically assess the 

cleanliness in VCE video frames. First, we automated the process of scoring VCE 

video frames as per existing KODA scoring system by developing an easy-to-use 

mobile application called AI-KODA. AI-KODA Score is a flutter-based application 

which can be downloaded on a mobile. The application first trains a gastroenterologist 

how to use KODA. After a simple training, the gastroenterologist can upload VCE 

video frames on the application and score them. After successful scoring, a report is 

generated for the overall score. The scores are also collected in real-time and saved for 

the development of a frame level, high-quality, and multi-labelled dataset for 

automatic multi-label classification of clean v/s dirty VCE video frames. The 

developed dataset was subjective to medical verification with the help of three 

experienced gastroenterologists. A good level of ICCs was achieved. Bases on the 

common consensus by the three gastroenterologists, a common dataset comprising of 

2173 with eight distinct labels of KODA were developed. A comprehensive 

evaluation, interpretation, benchmarking of the generated dataset was done using ten 

machine learning models and eight transfer learning algorithms on google 

Collaboratory and a supercomputer named, NVIDIA RTX A5000 workstation. The 

developed dataset and its methodology are first-of-its-kind. With positive outcomes, 

the study is simple to apply in both clinical and research settings and helps in automatic 

assessment of cleanliness in VCE. Both the methodologies developed in the first and 

second task helps in reducing the time and effort of the gastroenterologist in timely 

detection of polyps in colonoscopy and cleanliness assessment in VCE. 

6.2 Future Scope/ Directions and Social Impact 

 

As we peer into the horizon of possibilities of automation in the field of polyp detection 

in colonoscopy and cleanliness assessment in VCE through AI, we are propelled by 

the conviction that the pursuit of knowledge and research is an ever-evolving process, 

one that demands continuous exploration, adaptation, and refinement. We discuss the 

possible future directions and social impact in these fields.  

For the first task, the future scope may in the direction to a large, multi-centre clinical 

study to validate the developed architecture which may also: 
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• Improve the evaluation metrics. 

• Inclusion of more colonoscopy data with different types of occlusion effects. 

• Focus on selection bias problem in this field. 

• Comprehensive evaluation using more advanced explainability techniques. 

 

For the second task, the future scope may be in the direction to a large, multi-centre 

clinical study to validate KODA score which may also: 

• Determine an acceptable cut-off ratio. 

• Develop a method for video analysis. 

• Improve the intra-rater reliability estimates. 

• Further simplify OV and add more training examples. 

• Comprehensive evaluation of the developed dataset with meta-learning 

algorithms. 

• Development of multi-head algorithms for combined and robust prediction of 

VM and OV.
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Thank you very much for reading. 

 

“Auron se kya? Khud hi se pooch lenge raahein.  

Yaheen kaheen, mauzon mein hi, dhoondh lenge hum.  

Boondon se hi to hai waheen, bandh lenge leharein,  

pairon tale jo bhi mile. Baandh lenge hum kinaare, kinaare.” 

 

 

 
Que Sera, Sera! 
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