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Abstract

The ongoing transformation of electric power distribution systems involves the
gradual adoption of cutting-edge advancements in communication, control,
measurement, and metering technologies. This evolution is geared towards
realizing the concept of a smart distribution system, characterized by increased
flexibility, sustainability, reliability, and efficiency. The future distribution
systems are anticipated to engage actively and involve customers while
incorporating various distributed energy resources (DERs) like renewable energy
sources (RESs), battery energy storage (ESs), and electric vehicles (EVs). This
shift is expected to usher in a new era contributing to environmental and
economic well-being. However, a comprehensive planning and operational
strategy with strategic goals is imperative to reap the benefits of smart
distribution systems fully.

This thesis delves into the exploration of methodologies for optimal planning
and operation within smart distribution systems, aiming to achieve
comprehensive techno-economic advantages. To address existing gaps in current
studies, a novel index method, based on Shannon’s Entropy (SE-IM), is
introduced. This method identifies the optimal location for capacitor bank
placement, incorporating multiple criteria such as voltage stability, loss
reduction, and system load-ability. Utilizing particle swarm optimization, the
thesis determines the optimal size for the capacitor bank placement. The
application of this method to three distribution systems—IEEE 12-bus, 34-bus,
and a practical 108-bus radial distribution network from an Indian utility—is
discussed, demonstrating superior results compared to existing techniques.

Furthermore, the analysis of optimal capacitor bank placement in the
presence of distributed generation (DG) and load uncertainty highlights the
approach’s capacity to enhance network quantities while maintaining security
and reliability constraints. Given the increasing significance of planning in smart
distribution systems, particularly in analyzing various techno-economic
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measures, a method is proposed to assess the weights associated with objectives
in a weighted multi-objective optimal DG placement problem. This method
employs Shannon’s Entropy formula to evaluate the relative importance of each
objective function, subsequently determining unbiased weights. The efficacy of
this approach is validated through numerical simulations on a 38-bus test
system, showcasing its effectiveness across various scenarios.

This work introduces a practical method for optimizing the day-ahead
schedule of electric vehicle charging stations (EVCSs) in a smart distribution
system. The primary goal is to minimize real power loss payments, accounting
for various operational constraints, voltage limits, and the intricate dispatching
and storage constraints of EVCSs. The formulation includes sophisticated
demand response modeling and addresses uncertainties in electricity prices and
load forecasting. The method leverages mixed-integer nonlinear programming,
coupled with the strategic use of single-agent and multi-agent control strategies
to provide the optimal solution. The real-world applicability and effectiveness of
this approach are demonstrated through simulations conducted on a modified
12-bus distribution network, highlighting its tangible benefits.

In addition, this thesis unveils a framework designed to proficiently manage
a diverse array of DERs within the smart distribution system. The emphasis is on
optimizing the operations of local energy communities and elevating grid
services at the utility level. For this, an aggregation modeling of DERs is
proposed, assessing cumulative flexibility based on individual preferences,
spatial considerations, and temporal behavior. A sophisticated hierarchical
control framework is presented to facilitate coordinated dispatch among key
entities, namely the electric utility (EU) operator, community aggregators (CAs),
and individual DERs. CAs are tasked with minimizing operational costs within
their respective energy communities, while the EU operator focuses on
enhancing grid services, all within the confines of distribution network
constraints. Simulations performed on a modified IEEE-123 bus radial
distribution network affirm the efficacy of this proposed approach.
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Chapter 1

Introduction

This chapter offers a concise synopsis of the topics explored in the present thesis.
It delineates the research dimensions emanating from the critical review on
optimal planning and operations for smart distribution system, subsequently
elucidating the contributions made by this thesis.

1.1 Background

Electric power distribution systems serve as the interface between electricity
end-users and the power grid. In the past, distribution systems have adhered to
a centralized operational model, meaning that only the owner or operator of the
distribution system made decisions. In contrast, today’s grid undergoes a
transformation marked by the rising integration of Distributed Energy Resources
(DERs), demand response programs, and initiatives focused on energy efficiency
[1]. The growing prevalence of DERs, including energy storage systems (ESs),
photovoltaic (PV) plants, wind turbine (WT) farms, and others, enhances
dispatch capabilities, enabling them to furnish both energy and vital grid
ancillary services, thereby contributing to economic and environmental
advantages.

The distribution system is poised to evolve into a network comprising DERs,
including smaller microgrids interconnected through the distribution system
network. This emerging distribution paradigm is often denoted as an active
distribution network (ADN) [2]. Within this innovative operational framework,
distribution system management transitions from a passive role of operating and
maintaining assets to an active role in dynamically orchestrating networks that



Chapter 1. Introduction 2

adapt to economically motivated activities. Moreover, a market-driven economic
structure becomes imperative to foster healthy competition among DER owners
and centralized generation entities on an equitable basis. This approach aims to
enhance both economic efficiency and operational security within the
distribution system.

Smart distribution systems (SDSs) exhibit several key characteristics,
including the deployment of massive installations of DERs, the implementation
of system automation, the incorporation of net-metering and bilateral electricity
flow, the integration of communication networks for efficient information
transfer, and the establishment of free electricity markets with new
functionalities and services [3]. These systems are characterized by the presence
of micro players, namely electricity end-users or prosumers, who utilize multiple
DERs to generate electricity locally. However, the integration of DERs can have
significant implications for grid operations, particularly when penetration levels
surpass recognized tipping points.

One notable consequence is the alteration of power flows, leading to
electricity moving in multiple directions. Additionally, the occurrence of loop
flows in distribution circuits emerges as a challenge associated with the
integration of DERs into the grid. These changes were not initially foreseen by
the current generation of grid controls, confronted with various challenges for
distribution network operators (DNOs) in the upcoming years [4]. These
challenges include the electrification of both transportation and heating sectors,
the proliferation of renewable-based distributed generation systems in low- and
medium-voltage networks, and the limited visibility of lower voltage network
levels due to inadequate instrumentation and monitoring.

As a result, there is a pressing need for the management and control
architecture of distribution systems to undergo a gradual transformation to
pragmatically techno-economic feasible accommodation of emerging smart grid
technologies, distributed energy resources, and active electricity end-users or
prosumers.
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1.2 Literature Review

The imperative for a seamless evolution of the distribution system necessitates
the formulation of strategic plans serving as roadmaps for the development of
novel consumption paradigms. Specifically, the SDS intricately links to the
enhancement and modification of existing Distribution Networks (DN), the
introduction of innovative distribution concepts, and mechanisms empowered
by advanced technologies aligning with anticipated future requirements.
Numerous SDS concepts, as reported in the literature, primarily revolve around
the modification of DN attributes, DERs, renewable energy sources (RESs), ESs,
reliability, Information and Communication Technology (ICT), Power Electronics
(PE), and Active Network Management (ANM) techniques.

This thesis provides an extensive review of prior research on SDS planning,
focusing on the analysis and categorization of planning models and methods
proposed in these scholarly articles. The examination encompasses various
perspectives, including objectives, decision variables, constraint conditions, and
solving algorithms. Simultaneously, considerable attention is dedicated to
elucidating the principal theoretical issues and challenges in planning models
and methodologies. These issues are systematically extracted, discussed, and
accompanied by applicable suggestions for addressing them.

1.2.1 Optimal Distribution Network Planning with DERs

The integration of RESs into traditional distribution network planning has
historically relied on deterministic methods and a "fit and forget" strategy,
typically centered around worst-case and low-probability scenarios [5].
Unfortunately, these approaches overlook the inherent uncertainties associated
with RESs and diverse operational conditions. The advent of widespread DERs
has exacerbated the limitations of deterministic methods, leading to issues such
as unnecessary grid reinforcements, increased network losses, and the failure to
achieve development and environmental targets. Consequently, these traditional
planning methods impede the effective integration of DERs and are deemed
inadequate for distribution network planning.
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Distribution network planning is a multifaceted and intricate task, requiring
the formulation of not only distribution network plans but also the optimal
allocation of DERs in terms of economic efficiency, reliability, and safety [6–9].
The planning process is further complicated by high-level uncertainties
stemming from DERs, network dynamics, load demands, and other variables,
adding complexity to the model and rendering solution-finding more
challenging. In contrast to traditional planning methods, distribution network
planning tools must conduct comprehensive analyses based on various criteria,
such as economic, technical, and environmental considerations, within a
multi-objective framework.

The pursuit of optimal distribution network planning has attracted
considerable research attention, resulting in the development of numerous
models and methodologies with distinctive features and significant references.
Several influential reviews have been published on the optimal planning of
distribution networks [10–15]. In their comprehensive review [11], the authors
examine smart distribution network planning, encompassing intelligent
technologies, anticipated functionalities, modern distribution concepts, policies,
and plans, while addressing real-world optimization problems with a focus on
multi-objective considerations and multi-stakeholder perspectives. Another
extensive review [14] delves into the planning of distribution networks,
highlighting differences between traditional and active planning models, and
proposing a generic multi-dimensional framework for optimal distribution
network planning to overcome current research limitations. Similarly, a review
in [10] scrutinizes numerous papers from 2007 to 2014, categorizing distribution
network planning research based on planning models and solving methods, and
outlining future research trends.

Moreover, [15] concentrate on the distribution network planning problem,
offering a comprehensive review of multi-objective models and solving
algorithms. They underscore potential future directions in modern distribution
network planning from a multi-objective perspective. In contrast to these review
articles, other scholars [12, 13] focus on reviewing and summarizing the
literature related to the allocation of RESs and ESs in distribution networks,
respectively.

The transition from conventional distribution networks to ADNs signifies a
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paradigm shift where DERs are no longer passive components but are actively
controlled and coordinated, aiming to enhance the overall utilization of DERs.
Furthermore, as DER penetration continues to rise, the progression from ADNs
to SDSs underscores that SDSs transcend their conventional role as mere
conduits for delivering electric power to consumers. Instead, they are evolving
into comprehensive systems encompassing Distributed Generators (DGs), ESs,
dynamically responsive and flexible load demands, active networks, and more.

In SDS planning, the paramount objective is maximizing efficiency while
adhering to system constraints. The escalating economic risks associated with
investment needs, particularly in restructured networks, have motivated
planners to adopt meticulous design approaches. Consequently, the optimal
placement of electrical devices in power systems has become a pivotal concern,
attracting significant attention from researchers. Over the past decades, diverse
solutions and methodologies have been developed for the optimal allocation of
shunt capacitors, DGs, ESs, network reconfiguration, and various other electrical
resources in both transmission and distribution networks.

This thesis critically examines the existing literature pertaining to the optimal
allocation of shunt capacitors and distributed generation. It aims to identify the
limitations of current studies, which will be expounded upon in subsequent
subsections. The emphasis is on providing a comprehensive review and analysis,
shedding light on the drawbacks of existing approaches, and paving the way for
advancements in the field.

Optimal Allocation of Capacitor Banks in Distribution Network

Globally, the electrical networks are getting over-stressed due to increasing
demand for energy on the one hand and decreasing capacity of the existing
networks on the other, because of various factors such as integration of DERs,
shortage of reactive power, aging of extant infrastructure, and global warming,
etc. This results in incidents of frequent blackouts, and huge monetary loss to
society. Installation of shunt capacitor banks (SCBs) is one of the effective
methods to de-stress the networks, apart from network expansion, installation of
the DGs, voltage regulators (VRs), and FACTS devices [16, 17]. The root cause
analysis reports on some of the recent blackout incidents [18, 19] indicate that
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deficit reactive power supply in the network was the leading cause behind
blackouts.

Fundamentally, The capacitor units are interconnected in parallel-series
configurations to constitute a singular-phase SCB, enclosed within a steel
housing. The series arrangement mitigates dielectric costs, while the parallel
arrangement augments the overall capacitance of the SCB. Adhering to a general
guideline, the minimum capacitor units connected in parallel are determined
such that the isolation of one capacitor unit within a group does not induce a
voltage imbalance exceeding 110% of the rated voltage on the remaining
capacitors in the group. Simultaneously, the minimum number of
series-connected groups is stipulated to prevent the complete bypass of a group
from subjecting the others in operation to a sustained over-voltage exceeding
110% [20]. The reactive power (QC) generated by the capacitor is contingent on
the applied voltage (V) and capacitive reactance (XC), as expressed by (1.1) [21].

QC =
V2

XC
(1.1)

Conventionally, the capacitors were installed near the primary substation;
however, presently, the trend has changed. Installation of capacitors is now done
based on the system requirements such as voltage profile improvement, loss
reduction, and increasing the system load-ability by installing the capacitors at
optimal locations [22, 23]. SCBs are strategically positioned within a composite
of fixed and switched (variable) SCB units. The magnitude of the fixed-type SCB
is contingent upon the system’s mean reactive power requirements, while the
switched-type SCB fulfills the disparity between the current reactive power
demand and the available power from the fixed SCB unit. A specialized control
mechanism is implemented to regulate the power of the switched SCB unit. The
authors [24, 25] have introduced methodologies that yield both continuous and
discrete capacitor sizes. In instances of continuous capacitor sizing, it is
postulated that the capacitor size will comprise a blend of fixed and switched
SCB units. The preliminary adjustment of the capacitor during stable operating
conditions will be accomplished through the utilization of the switched SCB unit.

The limitation of computation capacity was the main reason behind earlier
capacitor placement methods in the network, which were based on calculus and
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defined as an analytical approach. The first work carried out by [26] in 1956
proposed the famous ‘2/3 rule’ for the placement of the fixed capacitor in a
uniformly distributed load in a distribution network. In [27] and [28], the
methodology is extended by considering the switched capacitors or placement
and sizing of capacitors on a uniform distribution network. Following these
pioneering works, numerous analytical approaches have been proposed [29–31].
However, the analytical techniques required to make certain assumptions, such
as uniformly distributed load, and these techniques also neglect the upfront
investment of capacitors.

Later, the capacitor placement and sizing problem was formulated in [22]
using dynamic programming, and a class of numerical programming approaches
was evolved for capacitor allocation in distribution networks. The mathematical
model optimized the objective function while satisfying certain constraints, e.g.,
voltage limit, capacitor size limit, and limit on the maximum number of
capacitors. In [23], the capacitor placement problem was proposed as a
mixed-integer programming problem. Integrating the heuristics in analytical or
numerical programming approaches reduces the search space and convergence
time to the optimal solutions [32]. Heuristic methods for capacitor placement
and sizing were also reported by several other researchers [33–35].

Recently, artificial intelligence (AI) techniques have been implemented for
capacitor placement and sizing problems, which dramatically reduced the search
space and decreased overall computational time. In AI-based techniques, the
genetic algorithm [36], particle swarm optimization (PSO) [37], fuzzy [38], flower
pollination [32], and ant colony [39] are pretty powerful algorithms in solving
complex problems and hence being used extensively. However, these AI
methods require high memory space and computational time for solving
complex systems. Recently, some authors have also dealt with the capacitor
placement problem by combining other network problems like voltage
regulators, DGs placement, and load tap changers [40, 41].

The main objectives of the optimal capacitor placement problem are to
quantify the location, size, and type of the capacitors to be placed in a power
distribution network to enhance the comprehensive techno-economic benefits.
For determining the capacitors’ optimal location, many index methods have
been proposed in the past [39, 42, 43]. These methods identify potential nodes for
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capacitor placement based on the identification of nodes having higher power
loss, weak voltage magnitude, and other technical quantities. The optimal
capacitor placement problems commonly utilize the following set of constraints
to identify the size of SCB (1.2) and the position of SCB (1.3).

QC ≤ ∑
i∈Nb

Qi ∀Nb = {1, 2, ..., nb} (1.2)

1 ≤ QPos
C ≤ nbus (1.3)

In the modern power system, DERs are gaining importance due to major
advantages like improving the voltage profile, power loss reduction, and
enhancing system security and reliability [44]. Moreover, there are other benefits
of the DERs integration as below [45]:

• DERs share the load demands, reducing greenhouse gas and other air
pollutants emissions by the central power plants.

• By local generation through DERs, line losses in transmission and
distribution are reduced extensively, and less energy production.

• In the case of fossil fuel-based power plants, warm water discharge, land
usability, and other factors impact the environment directly or indirectly.

Therefore, multi-dimensional problems become prominent, wherein studies
have integrated capacitor placement issues with various other power system
considerations. These include DG placement, voltage regulators, and network
reconfiguration. In addressing the complexity of the capacitor placement
problem, the study in [46] characterizes it as multi-dimensional and extends the
scope by incorporating voltage regulator placement to manage volt/var control.
Moreover, the investigation in [47] integrates diverse DG types, shunt capacitors,
and network reconfiguration into a unified problem. The findings from this
study suggest that concurrently addressing these three objectives yields a
substantial reduction in power losses, emphasizing the significance of
simultaneous optimization in enhancing overall system performance.
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Optimum Sizing and Placement of DG in Distribution Network

In contrast to the conventional centralized generation approach, DG represents a
paradigm wherein a portion of electric power is generated and distributed to
end-users through small-scale generation units situated nearby. This
decentralized approach encompasses an array of locally installed power
generation units, including both renewable and conventional types. In recent
times, the rapid evolution of technology has rendered distributed generators
highly advantageous across economic, technical, and environmental domains
[48–50].

The integration of DG into power systems manifests a reduction in overall
power losses. However, the relationship between DG penetration levels and
power losses follows a U-trajectory. Consequently, sub-optimal DG placement
may aggravate power losses, compromising the voltage profile below acceptable
thresholds [51]. Given the array of technical and non-technical challenges, the
imposition of additional issues becomes intolerable for utilities. Therefore, the
optimal placement and sizing strategy for DGs is a must to minimize overall
system losses and enhance voltage profiles.

Historically perceived solely as an active energy source, DG’s role has
evolved with the recognition that reactive power control contributes to a
superior network voltage profile while concurrently diminishing power losses.
Researchers have delved into the impact of DG on the load-ability of distribution
networks [52, 53], establishing that the DG augments the load-carrying capacity
of the distribution system. The strategic placement of DGs emerges as a critical
consideration, as it not only facilitates maximal benefits but also incurs minimal
investment costs [54]. Consequently, extensive research efforts have been
dedicated to optimal DG planning within distribution systems. These endeavors
seek to refine our understanding of the intricate interplay between DG
deployment strategies, power system performance, and the overarching goal of
achieving maximum benefits with prudent investment costs.

The techniques for the optimal allocation of DGs address challenges
associated with the sizing and appropriate placement of DGs. These techniques
involve diverse objective functions coupled with numerous compelled technical
and operational constraints. Various computational methods are applied,



Chapter 1. Introduction 10

considering different DG types based on power factor (PF) and varying numbers
of units. The problem formulation for loss minimization typically relies on three
distinct loss formulae: branch power loss formula, current loss formulae, and
exact loss formulae. In a study referenced as [55], the objective based on the
power loss formula is formulated according to (1.4). Notably, in 1971, Elgerd [56]
introduced a loss formula widely recognized as the exact loss formula, referring
to (1.5). Furthermore, (1.6) represents the current loss formula, as demonstrated
in [57].

PL = ∑
i∈Nb

(
P2

b,i + Q2
b,i

|Vi|2

)
Rb,i (1.4)

PL = ∑
i∈Nb

∑
j∈Nb

[
αij
(

PiPj + QiQj
)
+ βij

(
QiPj − PiQj

)]
(1.5)

PL = ∑
i∈Nb

|Ib,i|2 Rb,i (1.6)

The minimization of energy loss represents a key objective in the optimal
placement of DG units, attracting substantial attention from researchers.
Notably, dispatchable DG units exhibit a more pronounced positive impact on
energy loss reduction and voltage profile enhancement than their
non-dispatchable counterparts. A noteworthy contribution to this discourse is in
[58], where an analytical expression (1.7) proposed in [59] was adapted and
refined for the optimal allocation of dispatchable and non-dispatchable DG units
aimed at the overarching goal of minimizing annual energy losses.

EL = 91.25
96

∑
t=1

Pt
L ∆t (1.7)

An innovative approach in [60] employs a Particle Swarm Optimization
(PSO)-based planning model to address the allocation of dispatchable and
non-dispatchable DG units within distribution systems, seeking to identify the
optimal hourly production profile and DG unit penetration. Nevertheless, their
approach assumes a uniform generation load profile over 24 hours throughout
the year, with annual energy loss computed using (1.8).
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EL =
T

∑
t=1

[
Pt

L (X)
]

; X : variable vector (1.8)

Furthermore, Sultana and Roy [61] employed an opposition-based learning
concept in the Krill Herd Optimization algorithm to minimize annual energy loss
after the optimal siting and sizing of renewable DG. However, it is imperative to
note that their methodology deliberately avoids environmental and geographical
constraints considerations.

Researchers have suggested various innovative approaches concerning
voltage assessment techniques and problem formulation methods to address
voltage security issues. The escalating demand in the future gives rise to a
frequent rate of voltage change, particularly at nodes identified as sensitive
nodes, leading to the potential occurrence of voltage collapse [62, 63]. Improving
load-ability entails the reliable identification of sensitive nodes and the strategic
control of voltage at vulnerable buses through optimal placement of DG [62].
Diverse indices for predicting voltage collapse in power systems have been
proposed by different researchers using steady-state analytical methods [64–66].
Additionally, literature has explored DG placement techniques based on voltage
stability to position DG units on the weakest buses, prone to voltage collapse in
the near future [67, 68].

Multi-objective planning (MOP) offers a more pragmatic approach to enhance
DG sizing and placement by determining an optimal compromise solution from
a range of single objective functions. Within the literature, the amalgamation of
various objectives, along with improving voltage profiles, using weighting factors
results in a unified objective function termed the Weight Objective Function, as
formally articulated in (1.9). In (1.9), α represents the weight coefficient, FL(X)

represents an objective function, for example, the energy loss function, and FV(X)

represents the voltage profile function.

Minimize F(X) = α
FL(X)

FL
(
X(base)

) + (1− α)
FV(X)

FV
(
X(base)

) (1.9)

The stud krill herd optimization technique is used in [69] to solve a
weighted-sum MOP for the ideal location and sizing of DGs, where the
appropriate weight preferences for the problem objectives have been taken
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subjectively. An analytical hierarchical process (AHP) technique is widely
utilized for obtaining the weight coefficients in the weighted-sum method of
MOP [70–73]. However, the pairwise comparison matrix in the AHP technique is
formed based on the decision maker’s choice. The weighted normalized decision
matrix is constructed based on predetermined weight coefficients in the
technique for order preference by similarity to ideal solution (TOPSIS) to find the
preferred alternative most near to the positive ideal solution while solving MOP
for optimal siting and sizing of DGs in [73, 74]. The selection of appropriate
weight factors in weighted-sum MOP is still challenging and poses ambiguity
[75].

Various methods have recently been developed based on the Pareto
dominance concept to obtain trade-off solutions among the different objectives in
a MOP, such as Harris Hawks optimizer [75], non-dominated sorting genetic
algorithm (NSGA) [76], and multi-objective differential evolution [77]. However,
relatively fewer efforts have been laid into presenting strategies for selecting the
best trade-off from a set of non-dominated solutions, which still requires further
research. Often, distance-based methods, such as grey relational analysis [75]
and fuzzy decision [76–78], are utilized instead of investigating the inherent
relationship (i.e., relative influence) among objectives to find the best alternative.

The literature review reveals numerous approaches have addressed the
optimal allocation problem of DGs in the distribution network to reduce
investment and operational costs, as in [79–84]. Reference [79] proposes a
multi-stage planning model and stochastically characterizes the demand and
renewable generation uncertainties. Efficient planning strategies are suggested
for DG integration in community micro-grids in [80, 81]. A tri-level planning
model for DERs amalgamation is presented in [82], and robust optimization has
been used to handle different physical and financial uncertainties. Reference [83]
suggests a two-stage robust optimization framework for non-dispatchable DG
investment planning to facilitate the uncertain charging demand of electric
vehicles (EVs). Reference [84] proposes a flexible global strategy for distribution
planning in a two-stage optimization process which probabilistically aids the
uncertainty modeling. Multi-stage problem formulation in [81–84] solves
investment optimization in the prior stage, and then operational objectives are
optimized in the later stage subject to security and reliability-related constraints.



Chapter 1. Introduction 13

A comprehensive model is presented in [85] to optimally select wind power
plant technologies and allocate them to distribution networks. A method for
combined expansion of the distribution network and generating resources has
been proposed in [86] for social welfare maximization. Reference [87]
emphasizes distribution network planning methodology to optimize the quality
of supply as well as operational costs. A multi-state model for DG optimal
allocation has been reported in [88] that accommodates all possible real-world
operating conditions of loads and DGs. A non-biased DG allocation strategy has
been proposed in [89] to avoid topological biases and incentive self-consumption
instead of trading locally or to the grid.

Recently, the optimal planning frameworks for DG allocation have been
developed to mitigate the effect of the surge in demand due to the heavy
integration of EVs in the distribution systems [83, 90, 91]. A stochastic-based
optimization model has been proposed in [90] for optimal sizing and siting of
small wind turbines in urban or suburban areas. Reference [91] presents a
comprehensive model to co-optimize the size and location of DGs, energy
storage units, and EV charging stations. In general, the DG allocation problem is
complex, mixed-integer, multi-objective, and stochastic due to the uncertain
behavior of renewable energy resources and hard to solve in its present form.
Evolutionary algorithms like improved non-dominated sorting genetic algorithm
[76] and decomposition-based algorithm [92] effectively solve the optimization
problem; however, being trapped into a locally optimal solution raises concern
about using such algorithms. An efficient analytical technique has been
illustrated in [93] to enhance computational speed and accuracy compared to
classical analytical-based methods. A data-driven approach for evaluating the
optimal size of renewable distributed generation is suggested in [94], reducing
the complexity and computational burden.

The techniques and methods employed for the sizing and siting of DG can be
broadly categorized into analytical, classical optimization, meta-heuristic, and
other techniques. Analytical techniques involve mathematical modeling and
direct numerical solutions, suitable for small and simple systems. However, for
large and complex systems, they may face challenges in computational efficiency.
Examples include Eigen-Value based Analysis [95], Index method [96],
Sensitivity-Based Method [97], and Point Estimation Method [98].
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Classical optimization techniques aim to optimize formulated problems
under given conditions and constraints. This category includes Linear
Programming [95], Mixed Non-linear Programming [99], Dynamic Programming
[100], Sequential Quadratic Programming [99], Ordinal Optimization [101],
Optimal Power Flow [102], and continuous power flow [103]. These methods
cater to linear and nonlinear objective functions and constraints, handling
optimization efficiently. Meta-heuristic techniques, such as Fuzzy Logic [104],
Genetic Algorithm [105], Ant Colony Search Algorithm [98], Artificial Bee
Colony [101] and others, offer efficient, accurate, and optimal solutions for
complex problems. These methods are up-and-coming for addressing challenges
in diverse areas.

Other techniques encompass various approaches like Clustering-based [106],
Tabu-Search Algorithm [107], Bat Algorithm [108], Big Bang Big Crunch
Optimization [109], Brute Force algorithm [110], Backtracking Search
Optimization [111], and Modified Teaching-Learning Based Optimization [112].
Each technique serves specific purposes, ranging from clustering patterns to
adaptive memory-based optimization.

These methods collectively present a comprehensive toolkit for addressing
challenges related to DG sizing and siting in power distribution systems, offering
a range of options suited to different system complexities and optimization
objectives [104, 113].

1.2.2 Optimal Distribution Network Operations with DERs

The design of utility distribution systems is aimed at efficiently delivering
reliable electric power to consumers at their point of use. However, in the past
decade, the electric power grid has undergone unprecedented transformations,
necessitating a substantial shift in the design, operation, and control of
traditional power systems. Factors such as the increased penetration of DERs,
the integration of EVs, bi-directional power flow, and the implementation of
smart metering are reshaping the power grid. The inherent variability of
renewable generation and the susceptibility of traditional power systems to
demand and generation fluctuations pose potential challenges at the system
level. Nevertheless, these emerging technologies can offer essential grid services
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to enhance efficiency, reliability, and resilience if strategically deployed and
controlled.

Traditionally, distribution system operations have been predominantly
passive, relying on rule-based methods to control a few legacy voltage control
devices like capacitor banks and voltage regulators along the feeder. These
controls operated based on pre-designed rules and local measurements, suitable
for predictable loads and systems lacking local generation resources. However,
integrating DERs introduced variability and uncertainty, rendering rule-based
and local-control-only algorithms inadequate. Studies have indicated that
incorporating active grid-edge resources, such as PVs, WTs, ESs, or new load
types like EVs, may lead to various system-level challenges, including voltage
limit violations, increased voltage variability, three-phase voltage unbalance, and
thermal limit violations [114, 115].

Additionally, it has been observed that relying solely on local control may
result in unnecessary tap changes and capacitor bank operations, which, being
mechanical devices, are prone to failure with an increased number of operations
[116]. Addressing these system-level operational challenges necessitates a
coordinated operation of controllable devices within the system, including the
integration of new resources. Recognizing the potential of these grid-edge
resources to provide additional grid services, such as capacity, flexibility,
ramping, and voltage support, has spurred the development of new methods
and advanced applications for actively managing these resources in power
distribution systems [117].

This thesis conducts a thorough analysis of the current literature related to
the optimization of EV Fleet Operations in smart distribution systems, and DERs
within distribution systems, focusing on their modeling and optimization
aspects. The primary focus is on delivering a comprehensive review and
analysis, spotlighting the limitations of existing methodologies, and laying the
groundwork for progress in the domain, that will be elaborated upon in the
following subsections.
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Optimizing EV Fleet Operations in Smart Distribution System

Worldwide, there is a global shift towards converting vehicles to electric power
as a strategic response to address climate change and mitigate pollution. To
sustain and facilitate this transition, it is imperative to expand the infrastructure
of electric vehicle charging stations (EVCS) to cater to the growing demand
among the general population. However, the simultaneous and uncoordinated
proliferation of EV and the corresponding expansion of EVCS may have
far-reaching consequences on the distribution network, environmental
conditions, EV users, and the charging stations themselves. These repercussions
pose substantial challenges of a technical, economic, and environmental nature
[118]. Effectively the charging and discharging coordination and scheduling
activities of EVs at EVCSs becomes crucial to preemptively address these
challenges [119]. Furthermore, recognizing EVs as potential sources of energy
storage opens avenues for leveraging their capabilities to enhance network
performance and efficiency through adept control mechanism [120].

The electrification of vehicles constitutes a key aspect in realizing a
zero-emission transportation system [121]. EVs serve as a primary alternative in
this paradigm shift [122]. However, challenges such as the high cost of EVs and
the scarcity of EVCS significantly influence public preference during the
transition to EVs [123, 124]. The uncoordinated EVCS in the distribution system
poses challenges for power network management, operation, and control,
thereby jeopardizing system reliability [122, 125]. Over the past decade, research
has intensified concerning the optimal placement of EVCSs and the impact of EV
dispatching on the distribution network [126, 127].

As the EV count on the road increases, regulating their charging/discharging
becomes more complex, akin to the challenges posed by the "egg or chicken"
theory [124]. Establishing a charging infrastructure necessitates a visible
presence of EVs, creating a cycle where investors await more EVs on the road
while potential users delay EV purchases until more EVCSs are available. Lopes
et al. [26] highlight four key considerations associated with the widespread
integration of EVs. The outlined investigations encompass:

1. an assessment of the effects of battery charging on power system operations;
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2. the delineation of appropriate operational management and control
methodologies concerning the charging intervals of EV batteries;

3. the identification of optimal strategies for prioritizing the utilization of RES
in charging EVs and

4. an evaluation of the potential for EVs to contribute to power system services,
encompassing provisions for reserves and power delivery.

Extensive research has been conducted to elucidate the advantages of EVs
and mitigate the associated challenges. The literature reveals that adapting the
dispatch of EVs can lower the adverse effects of their integration into the grid,
thereby contributing substantially to enhancing overall system efficiency
[128–130]. Furthermore, the systematic deployment of EVs through aggregators
exhibits the potential to mitigate grid load fluctuations and provide diverse
ancillary services. It has the consequential effect of optimizing the operational
aspects of the grid, encompassing economic efficiency, security, and stability
[131].

Primarily, the literature has classified three distinct control strategies to
pursue the techno-economic objectives. These strategies are centralized control,
and decentralized framework involving transactive and price control.
Centralized control entails direct scheduling and control of EVs. In contrast,
decentralized control typically relies on pricing signals, where individual EVs
optimize their charging based on electricity price information provided by EV
aggregators or DSOs. The primary distinction between transactive and price
control lies in the information exchange requirements; transactive control
necessitates explicit responses from individual EVs, while price control does not
require such responses. It is generally acknowledged that centralized control
yields system-level decisions, ensuring superior results such as power system
security [132, 133]. However, the drawback is the high cost of communication
infrastructure for centralized charging. A notable advantage of decentralized
control is the potential to minimize communication infrastructure costs [134].
Nonetheless, the optimality of the dispatch solution depends on information
sharing and the methods employed for scheduling.

The authors [135, 136] conducted a comparative analysis of centralized and
decentralized control methods against devising optimal plans for energy
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delivery to EVs while mitigating grid congestion. Their study primarily focused
on the communication aspects of both strategies, delineating their respective
advantages and disadvantages. However, a more thorough investigation is
required to assess how the control strategy and the optimization technique
influence the performance and requirements at the physical and information
layers of the system.

The author [137] employed linear approximation to characterize the battery
state of charge, formulating the charging process of an EV fleet as a Linear
Programming (LP) optimization problem aimed at minimizing charging costs.
The lower computational time and simple linear order problem formulation
make the LP technique widely utilized in prevailing studies [138]. The author in
[139] formulated a Sequential Quadratic Optimization problem for the power
losses stemming from significant EV penetration into the grid. The approach
presented in [140] introduced a classical dynamic programming formulation to
minimize charging costs through participation in the regulation market. Results
from [139] indicate that the disparity in charging profiles between Quadratic
Programming (QP) and Dynamic Programming (DP) techniques is negligible.
However, due to the heavier storage requirements of DP compared to QP, the
computational time for DP is longer.

In [141], Mixed-Integer Linear Programming was utilized to assess the impact
of EVs in power systems characterized by high wind generation and demand
response programs. The application of Mixed-Integer Non-Linear Programming
was explored in EV scheduling, particularly when considering other distributed
resources with non-linear operational characteristics. It is crucial when
introducing network technical constraints such as line thermal limits and bus
voltage operation boundaries [142]. Recently, as observed in studies [137, 140],
assumes deterministic knowledge of load profiles, the initial state of charge,
driving patterns, grid conditions, and electricity prices. However, this
assumption does not align with realistic scenarios. Therefore, there is a
compelling need to adopt a stochastic approach [143–145] and robust
optimization techniques [146, 147] to mitigate risks associated with uncertainties
in the mentioned aspects.

An exploration into the potential of EVs to contribute to load recovery,
enhance network stability, and improve power system metrics emerges as a
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critical avenue. This investigation necessitates a delicate approach that integrates
economic objectives and accounts for the preferences of key stakeholders such as
the system operator, EV aggregator, and EV owner. Determining the most
effective strategy for EV dispatching requires a delicate balance, acknowledging
the varied interests and priorities of each party involved [127]. As society
witnesses a proliferation of diverse EV models in the coming years, the necessity
arises for a charging infrastructure that is not only readily accessible but also
equipped with unique charging tactics tailored to individual EV specifications.
Recognizing the evolving significance of EVs as valuable assets, the impending
transition from the existing centralized grid to a decentralized structure and an
upgraded communication network is poised to facilitate their widespread
integration. Smart charging methods, coupled with the increased utilization of
Vehicle-to-Grid (V2G) and connected mobility technologies, will underscore the
multifaceted benefits of EVs [148, 149]. To effectively coordinate the diverse
objectives in the smart charging of EVs, recent trends emphasize the integration
of interests encompassing EV owners, ancillary services required by the
transmission system operator, and the distribution system operator. These
integrative approaches acknowledge potential conflicts, particularly concerning
EV flexibility, necessitating real-time EV fleet management for optimal
functionality [150, 151].

DERs on Distribution Network: Modelling and Optimization

In recent years, there has been a notable surge in the interest enfolding DERs,
primarily attributed to their fast deployment in power capacity installations and
their presence in distribution systems. DERs largely implicate DGs and ESs, with
some definitions extending to include EVs, demand response (DR) strategies,
and intelligent electronic devices (IEDs) utilized for grid coupling. The
integration of DERs introduces challenges to the overall operating system due to
the diverse nature of energy generation from RESs, the probabilistic aspects of
EV charging, and the exponential integration of IEDs by end-users. This section
organized a literature review on DERs, including aspects such as modeling,
control techniques, energy flexibility, objective functions, and the impacts of
DERs on distribution network operation.
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The literature review primarily focuses on the definitions and fundamental
characteristics of DERs, including the modeling of RESs, especially WTs and PVs,
ESs, DR, and EVs. The produced energy estimation of a WT relies on historical
wind data from the specified location and the turbine’s power curve. Commonly
employed probabilistic load flow models utilize Weibull or Rayleigh density
functions for representing wind behavior [152]. Power curves, integral to the
modeling process, can be supplied by manufacturers [153] or calculated using
mathematical formulations, as exemplified by (1.10) [154] and (1.11) [155]. These
equations involve variables such as wind speed (v), power generated from the
wind turbine (Pw), a constant (F) accounting for turbine efficiency and air
density, initial and final cutting speeds (vciandvco), and wind turbine nominal
power (PN).

Pw =


0, v < vciov > vco

Fv3, vci ≤ v ≤ 3
√

PN/F
PN, 3

√
PN/F < v ≤ vco

(1.10)

Pw =


0 v < vciov > vco

PN
v3−v3

ci
v3

N−v3
ci

vci ≤ v ≤ vN

PN vN < v ≤ vco

(1.11)

In PV systems, the output power can be characterized through mathematical
modeling or empirical measurements [154, 156, 157], catering to deterministic
and probabilistic methods. (1.12) and (1.13) provide a means to calculate the
power of a PV panel (PPV), incorporating parameters such as panel area (Apv),
global horizontal irradiance (Ginc), temperature coefficient (βre f ), nominal
efficiency (ηre f ), operating temperature (Top), and reference temperature (Tre f ).
To determine the (Top), standard test conditions must be considered like ambient
temperature (Ta), PV cell temperature under normal conditions (NOCT), Tre f ,
and solar irradiance of reference (1000 W/m2).

PPV = Apv · Ginc · ηref
[
1 + βref

(
Top − Tref

)]
(1.12)

Top = Ta +
NOCT − 20

800
· Ginc (1.13)
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Furthermore, (1.14) and (1.15) elucidate models for ESs, facilitating the
computation of both charging and discharging the battery’s energy over time.
These models factor in instant energy, charge or discharge power, and battery
and inverter efficiencies [158].

Ebat,ch(t+∆t) = Emin
bat(t0) + ∆t∗Pbat,ch(t)

∗ηbat,inv (1.14)

Ebat,dis(t+∆t) = Ebat(t) + ∆t∗
Pbat,dis(t)

ηbat,inv
(1.15)

The modeling of EVCS involves time step-based approaches [156, 159] using
models such as constant power, constant impedance, and constant current (ZIP
models) [160] or probabilistic representations, such as probability density
functions, describing the stochastic aspects of EV trajectories, arrival and
departure times, and daily journey counts [161, 162]. Additionally, the literature
outlines EVCS modeling in either the time domain [163, 164] or frequency
domain [163], providing insights into the non-linearity of these EVCSs
concerning the power grid. The preceding subsection has already conducted a
thorough literature review on EVs and EVCSs.

Finally, electrical loads are modeled as linear components subject to hourly
variations [165], incorporating probability functions [166]. These loads may
exhibit changes in behavior influenced by incentive programs, such as demand
response [167]. DR involves altering electricity consumption patterns in response
to energy price fluctuations. The Department of Energy in the United States
defines DR as an incentive framework to curtail electricity consumption during
high energy price periods in the wholesale market or compromise power system
reliability. The International Energy Agency (IEA) broadens this definition to
encompass intentional modifications to end-users electricity consumption
patterns involving shifts in time, power, or energy consumption [168].

The literature review reveals a growing utilization of DERs in electric power
systems, necessitating extensive research for a smooth transition into the existing
distribution infrastructure. Reference [169] emphasizes the importance of DER
integration to meet future electricity demands in industrialized countries.
Reference [170] conducts a steady-state and dynamic analysis of a microgrid,
showing that the insertion of DER significantly improves voltage profiles and
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reduces power flows and losses. Reference [171] defines microgrids as
aggregations of electrical loads and RESs, emphasizing the role of Energy
Management Systems (EMS). Reference [172] employs the DER Customer
Adoption Model to study small-scale onsite generators. References [173, 174]
stress the benefits of integrating various DERs via microgrids, with [174]
proposing an agent-based control framework.

The literature further discusses challenges and solutions in DER integration
[175, 176], benchmarks for modeling DER integration [177], and methods for
hierarchically integrating DERs into existing power distribution systems
[178, 179]. Reference [180] stresses the importance of integrating RESs, while
[181] discusses challenges and solutions in smart power distribution networks.
Reference [182] proposes a two-layer simulation-based optimization method for
optimal DER allocation. Reference [183] presents a MILP model for DER system
design, and [184] delineates a method for determining the optimal size of an ES
for primary frequency control. Reference [185] reviews modeling, planning, and
energy management of DERs integrated microgrids, emphasizing their potential
to solve energy-related problems.

Effectively managing a large fleet of DER devices poses significant challenges
in system-wide operation and control, primarily due to computational intricacy
[186–188]. Power aggregation has emerged as a promising solution to address
this challenge, garnering considerable attention for harnessing flexibility from
the distribution side. Each DER device’s power generation or consumption can
be encapsulated within a feasible region defined by its operational constraints
and dynamics. Power aggregation involves modeling and characterizing the
aggregate flexibility at the substation, representing the achievable net power
injection into the distribution feeder. By succinctly presenting this feasible
region, the distribution grid can actively engage in transmission system
operation and control, effectively functioning as a virtual power plant [189].

Essentially, power aggregation can be viewed as a projection of
high-dimensional operational constraints onto the feasible region of the net
substation load. However, computational intensity and impracticality arise when
dealing with tens of thousands of electric devices and multiple time steps.
Therefore, much research focuses on constructing inner or outer approximations
of the exact feasible region. Reference [190] employs time-moving ellipsoids to
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model the aggregate P-Q feasible domain over time, employing a data-driven
system identification procedure for obtaining model parameters. In [191, 192],
the individual flexibility of each DER is described as a polytopic feasible set, with
aggregate flexibility calculated as the Minkowski sum of individual polytopes.
Reference [193] applies polytopic projection to derive aggregate flexibility and
formulates an approximated optimization problem for a tractable solution.
Robust optimization models for estimating and optimally scheduling aggregate
reserve capacities, considering uncertainties in regulation signals and forecast
errors, are developed in [[194, 195].

Following these developments, various control strategies have been proposed
for utilizing DER flexibility for grid services. Strategies in [196–198] incentivize
DER owners for grid services, considering the DER aggregator’s revenue
maximization and/or DER owners’ cost minimization, with decoupled energy
exchange and regulation periods. In [199], a multilayered decentralized DER
coordination approach is presented for tracking a given profile while
maximizing aggregator revenues. In [200], real-time controllers are developed
for following the trajectory of a regulation service signal without considering
cost objectives. Notably, these studies do not account for interactions between
DERs and the distribution feeder; DERs merely track predetermined profiles.

Studies [201–203] consider the distribution feeder’s network topology and
develop algorithms for DER coordination. In [201], DERs generate their
schedules via self-optimization, and subsequently rescheduled for distribution
feeder operation cost minimization without considering their self-optimization
preferences. MPC-based strategies for EV charging stations with EVs as DERs
are developed in [202, 203]. In [202], the cost of power generation and EV
charging is minimized, with EVs having only grid-to-vehicle capability. In [203],
the cost of generators in the distribution feeder is minimized while fulfilling only
EV charging constraints.

DERs present an exciting challenge for the current engineering sector,
particularly in the energy field. Every advance and effort made by the public or
private sector to develop and deploy reliable, affordable, and accessible DERs is
crucial for integration. Notably, much research on DERs often focuses on
studying one or two technologies simultaneously, with the analysis of three
technologies in a row occurring infrequently. Furthermore, the typical
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distribution network topology considers the radial configuration for DER
integration, emphasizing that DERs contribute to reducing expenditures in
power grid reinforcement. Achieving this goal requires combining DER
technologies with optimization algorithms for allocation, dispatch, and operative
control.

1.3 Research Gap

Some of the gaps identified in the literature are as follows:

1. The previous studies mainly focus on a single criterion, e.g., either of loss
reduction, voltage stability, or system load ability and neglect some of the
equally critical quantities while proving the solution for determining the
capacitors’ optimal location.

2. The past studies postulate the multi-objective problem formulation for
obtaining the optimal solution of DG placement; however, no adequate
technique is proposed to quantify the relative weight coefficient in
multi-objective optimization.

3. Economic consideration has become an inevitable factor in the present
electricity paradigm. Therefore, electric vehicle charging schedule
optimization to reduce operation costs from the perspective of the
distribution system operator.

4. Control techniques for dispatching DERs lack a few important
considerations, like eliminating discrete decision variables in problem
formulation, flexibility evaluation without considering network
constraints, and self-optimization preferences.

1.4 Research Objectives

Based on the research gaps identified in Section 1.3. The main objective of the
thesis is to provide comprehensive techno-economic improvement directives for
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a smart distribution system. For this, the following research studies need to be
conducted:

1. Optimal allocation for shunt capacitors in the smart distribution system.

To develop a suitable method for optimal allocation of capacitors, including
multiple criteria (e.g., voltage stability, loss reduction, and system
load-ability) for obtaining a pragmatically feasible techno-commercial
solution.

2. Optimal solutions for distributed energy resource placement in the smart
distribution system.

To formulate a multi-objective problem that incorporates different technical
and economic impact indices (i.e., real power loss, reactive power loss,
voltage deviation, and DER installation cost) based on their degree of
importance in distribution network planning.

3. Effective cost analysis of electric vehicle.

Optimizing the system operation cost by capturing charging/ discharging
modes provides a nearly optimal solution to the smart distribution system’s
global EV charging scheduling problem.

4. Day-ahead scheduling optimization of DERs and EV based on dynamic
pricing signal for a smart distribution system.

To minimize the operation costs by optimal day-ahead scheduling of DERs
and EVs in a smart distribution system. The proposed approach will reduce
the computational burden by eliminating the discrete decision variables in
the problem formulation.

1.5 Structure of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 introduces a novel
index method for identifying the optimal node to deploy a capacitor bank in the
smart distribution system. The optimization of the capacitor bank size is
conducted using a particle swarm optimization technique. The chapter
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illustrates the efficacy of this innovative approach by applying it to three distinct
RDN topologies, namely the IEEE 12-bus, 34-bus, and a practical 108-bus RDN
from an Indian utility.

In Chapter 3, a method is outlined for establishing the weights assigned to
objectives in a multi-objective optimization problem related to the optimal
placement of DG. The chapter emphasizes the importance of impartially
assessing these weights during the planning stages of DG placement in a smart
distribution system. The effectiveness of this approach is validated through
numerical simulations conducted on a 38-bus test system, considering various
cases to showcase its efficacy.

In Chapter 4, a cost-effective analysis of EVs is presented through the
optimization of charging and discharging schedules within the smart
distribution system. This optimization integrates demand response, robust
optimization, and single or multi-agent control strategies. Through case studies,
the chapter provides a comprehensive analysis of different aspects involved in
solving the global EV charging scheduling problem.

Chapter 5 presents a comprehensive framework that initially proposes an
aggregation model for a sizable EV fleet and deferrable residential loads.
Subsequently, it introduces a hierarchical control strategy to establish dispatch
coordination among the utility operator, community aggregator, and DERs. The
chapter conducts numerical simulations on the IEEE 123-bus system to
demonstrate the applicability of the method on a large distribution network.

In Chapter 6, the primary focus is on presenting the key conclusions and
contributions derived from the research. Additionally, the chapter outlines
potential directions for future work, providing insights into areas that warrant
further exploration and development.
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Chapter 2

Optimal Allocation of Capacitor in
Smart Distribution System

2.1 Preamble

This chapter focuses on enhancing power quality and reliability in electrical
networks through strategically positioned shunt capacitor banks (SCB). The
primary objective is to develop a method for the optimal allocation of capacitors,
allowing for the consideration of multiple objective functions or criteria. The
proposed approach begins with a load flow study to determine network
quantities in an uncompensated state. Subsequently, optimal capacitor bank
locations are identified using a novel indexing method based on Shannon’s
Entropy. The sizes of the optimal capacitor banks are then determined by
applying the particle swarm optimization algorithm. The cost function is
formulated as the minimization of the sum of active power loss cost and
capacitors’ annual costs while adhering to various operational constraints. The
proposed approach is compared with previously published methods on radial
distribution networks (RDN) of varying sizes (IEEE-12 bus, 34-bus, and 108-bus)
to assess its effectiveness, revealing its superior performance.

The remainder of the chapter is organized as follows: In Section 2.2, the
nomenclature for the parameters, indices, and variables employed in the
problem formulation of optimal allocation for shunt capacitors in smart
distribution systems is outlined. Section 2.3 describes the problem formulation
and the approach for load flow analysis. Section 2.4 delineates Shannon’s
Entropy approach applied for raking the potential solutions of optimal allocation
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and presents the proposed SE-IM approach for indexing the potential buses for
optimal siting of the capacitors. Section 2.5 presents the simulated results carried
out on three standard RDN, i.e., IEEE-12 bus, 34 bus, and 108 bus, followed by
the summary of the chapter in Section 2.6.

2.2 Nomenclature

Sets

Ub Set of buses in the network

Γ Set of lateral branches in the network

Ucap Set of optimal location for capacitor placement

Variables

Iline(Ibus) Branch (bus) current

Ireal
line

(
Iimag
line

)
Real (imaginary) component of line current

Vbus/VLi ith bus voltage in lth lateral

Vs (Vr) Voltage at sending (receiving) end of the node

PLi(QLi) Real (reactive) power at ith sending end bus in lth lateral

Pe f f
e

(
Qe f f

r

)
Effective real (reactive) power at receiving end node

Ploss Total active power loss

Īkl Normalized index score of kth entity for lth model
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Parameters

λp Active power loss cost per kW per annum

λcap Capacitor installation cost per kVAr per annum

QT Total demanded reactive power load

R Line resistance in Ω

X Line Reactance in Ω

Ωcap Capacitor size in kVAr

Qload
t Total demanded load

2.3 Optimal Capacitor Allocation Problem

Formulation

The optimal allocation of capacitors is one of the most effective methods of
minimizing power losses, and improving the voltage profile as they are
significant in the distribution network [204]. The objectives comprise the optimal
capacitor allocation problem are: defining of location, size, type, and control
methods associated so that the technical and economic benefits could be
maximized against the installation and annual running cost of the SCB. In this
section, the primary focus is on conducting a load flow analysis using a direct
approach to assess the network parameters both before and after the integration
of capacitors in a distribution network. Following that introduces the problem
formulation, which aims to minimize the annual energy loss cost.

2.3.1 Direct Approach for Load Flow Analysis

The direct approach-based load flow analysis is more suitable for radial
networks than the classical load flow analysis techniques and also requires less
computational time to converge [205]. It evaluates two matrices using
topological network attributes, which are bus injection to branch current (BIBC)
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FIGURE 2.1: 3-bus network depicting bus and line parameters.

and branch current to bus voltage (BCBV) matrices. These matrices relate bus
current to the bus voltage through branch current in the network. For a 3-bus
RDN (see Figure 2.1), the relationship between the bus current, branch current,
and bus voltage may be expressed by (2.1) and (2.2):[

I12

I23

]
2×1

=

[
1 1
0 1

]
2×2

[
I2

I3

]
2×1

(2.1)

[
V1

V1

]
2×1

−
[

V2

V3

]
2×1

=

[
z12 0
z12 z23

]
2×2

[
I12

I23

]
2×1

(2.2)

The bus voltage (V1) is a slack bus in (2.2) and its magnitude is equal to 1. The
voltages at bus 2 and 3 in (2.2) can be quantified using the branch currents I12 and
I23, which are determined by (2.1) using the bus currents I2 and I3. In general,
for a main feeder radial distribution network having {1, 2, . . . , n} ∈ Ub\N0 buses;
the formulation of the BIBC and BCBV matrices may be represented by (2.3) and
(2.4), respectively.

(
Ik
line

)
(n−1)×1

= [BIBC](n−1)×(n−1)

(
Ik
bus

)
(n−1)×1

(2.3)

In (2.3), BIBC is a ((n− 1)× (n− 1)) matrix that dictates the relationship
between bus and branch currents at kth iteration. Similarly, the BCBV is a
((n− 1)× (n− 1)) matrix that portrays the relationship between the branch
currents and bus voltages in the RDN.

(
V1 −Vk

bus

)
(n−1)×1

= [BCBV](n−1)×(n−1)

(
Ik
line

)
(n−1)×1

(2.4)
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From (2.3) and (2.4), the distribution load flow matrix can be formed as:(
V1 −Vk

bus

)
(n−1)×1

= [BIBC](n−1)×(n−1)[BCBV](n−1)×(n−1)

(
Ik
bus

)
(n−1)×1

(2.5)

where
[BIBC](n−1)×(n−1)[BCBV](n−1)×(n−1) = [DLF](n−1)×(n−1) (2.6)

Several load flow studies have utilized this approach to carry out the load
flow analysis, e.g., [206], [207], and found to be superior as the method saves
computational time by avoiding LU factorization and backward-forward
swapping of the Y admittance matrix or Jacobian matrix. Instead, it exploits the
topological characteristics of RDN to solve load flow problems directly [205].

2.3.2 Minimization of Cost of Annual Energy Loss

The proposed approach focuses on the minimization of cost of annual energy
loss (AEC) in $/year, which is constituted by the annual active power loss cost
($/kW) and the capital investment cost ($/kVAr) of siting the capacitors at
potential locations.

Mathematically, the AEC (in $) function S(Ploss, Ωcap) can be presented as:

S(Ploss, Ωcap) =

λp ∑
L∈Γ

∑
i∈Ub\{n}

RLi+1
P2

Li + Q2
Li

V2
Li

+

λcap ∑
j∈Ucap

Ωcap
j

 (2.7)

where λp and λcap are the cost parameters for active power loss cost
($/kW/year) and capacitor installation cost ($/kVAr/year), respectively. The
expected life considered for a capacitor bank is ten years. The capacitor
allocation problem can be formulated as a minimum of AEC function subjected
to line flow and variable bound constraints, given by (2.8)-(2.12):

min .
[P,Q,V,Ω]

S(Ploss, Ωcap) (2.8)

subject to: (V1 −Vbus) + [DLF] (Ibus) = 0 (2.9)

Ucap −Umax
cap ≤ 0 (2.10)
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Ωcap
t − α.Qload

t ≤ 0 (2.11)

Π(Vbus, Ωcap) ≤ 0 (2.12)

where (2.8) represents the annual energy cost ($/year) as an objective function,
(2.9) dictate the load flow analysis explained earlier, (2.10) represents the limit on
capacitors number Umax

cap that can be installed, (2.11) represents the bound on
total maximum capacitor size α.Qload

t that can be installed and (2.12) represents
the bounds on voltage and individual capacitor size. The value of α in (2.11) is
selected so that the power factor will remain lagging or unity. However, due to
intermittent capacitor sizes in a fixed-type capacitor scheme, it may be possible
that the power factor becomes marginally leading. The minimum and maximum
capacitor sizes (range) based on the two type schemes (switched or fixed)
considered in this article are:

Ωcap =


(0− 1200) kVAr; switched type capacitor 150, 300, 450,
600, 750, 900,
1050, 1200

 kVAr; fixed type capacitor

To determine the optimal size of the capacitors in the considered RDN, classic
Particle Swarm Optimization (PSO) is applied in the present work [208], as this
algorithm requires lesser computational resources and time, and is also easy to
implement compared to other meta-heuristic algorithms. To obtain the optimal
sitting of the capacitors, the novel approach based on Shannon’s Entropy (SE) is
evaluated in the following Section.

2.4 Solution Methodology

The prevailing index methods for optimal allocation of capacitors are mainly
focused on a single criterion, which is either of reduction of losses in the line or
improvement of voltage at buses or increase in the load ability of the network.
This work presents a novel methodology that enables the distribution network
operator to include as many criteria as desired at a time for optimal capacitor
allocation. In this approach, the optimal capacitor allocation problem is solved in
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two stages. First, a load flow study is conducted for given busloads and line
data, termed as the base case (un-compensated), to get the active power flow in
each line and voltage profiles at the buses. In the second stage, the optimal site to
place the capacitor is determined using the SE; and the optimal size is computed
through classic PSO and given in Appendix A. The following sub-section briefly
describes the concept of Shannon’s Entropy.

2.4.1 Modeling of Shannon’s Entropy

The concept of SE was proposed to quantify the degree of randomness in a
variable in information theory by C.E. Shannon in 1948 [209]. This work utilizes
the principle to acquire the degree of importance of an indexing model to obtain
a cumulative index score. The SE formula el can be represented as:

el = −e0

s

∑
k=1

Īkl. ln Īkl (2.13)

where e0 denotes the entropy constant and is equal to (ln s)−1, Īkl represents the
normalized index scores of kth entity (i.e., bus in this case) for all considered
indexing models (l) in the formulation. Furthermore, the degree of
diversification can be obtained as: δl = 1− el; by normalizing µl = δl

/
∑r

l=1 δl,
where µl is the degree of importance of an index model. The cumulative index
score of any kth entity is evaluated as:

ηk = ∑s
k=1 µl Ikl (2.14)

2.4.2 Proposed Shannon’s Entropy-based Index Method

After the formulation of load flow study for an un-compensated network,
Shannon’s Entropy-based Index Method (SE-IM) prioritizes the buses based on
their index score, which is computed by combining three existing indices, which
are loss sensitivity index (LSI) [39], power loss index (PLI) [42], and voltage
sensitivity index (VSI) [43]; a parametric study is summarized in Table 2.1. This
approach allows the distribution network operator (DNO) to incorporate many
criteria at a time to emulate the real-world scenario. The central aid of using SE is
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to define the degree of importance for each index method (or criteria). The steps
involved in solving the optimal capacitor problem using the novel SE-IM
approach are described in the flow chart of the algorithm shown in Figure 2.2.

1. Data mining: load the bus data and line data of the network under study.

2. Identify or define the criteria required for improvement in RDN.

3. Optimal capacitor placement stage k = 1.

4. Do the load flow analysis as given in Section 2.3 for the base case (i.e.,
uncompensated RDN).

5. Solve different existing index methods that improve the criteria mentioned
in STEP 2.

6. Combine the index scores using the SE described in Section 2.4.

7. Sort the SE-IM score and their respective bus in descending order. The buses
with high scores get priority for siting of capacitors.

8. Initialize an empty set G and set the candidate node count n = 1.

9. Apply the classic PSO algorithm to evaluate the optimal capacitor size Ωcap,
and repeat load flow analysis after capacitor placement.

10. Check whether the criteria obtained in STEP 9 are improved than those
obtained in STEP 4. If yes, store the candidate node and capacitor size in G.
Increment the count n by 1.

11. If n > max(N): go to STEP 12; else, go to STEP 9.

12. If G is an empty set: go to STEP 14; else, go to STEP 13. Empty G set signifies
that no further significant improvement can be gained with further addition
of capacitor, so algorithm stops.

13. If the next capacitor placement stage is to be carried, then increment k by
one and check k < max(K); if yes, go to STEP 4.

14. Stop and print the obtained results.
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TABLE 2.2: Load flow analysis for uncompensated networks (before
capacitor placement)

Test P-Loss Vmax/Vmin Weakest Computational Load AEC

system (MW) (p.u.) voltage bus time (sec.) demand (MW) ($)

12-Bus 0.0207 1 / 0.9434 12 0.022 0.435 3479.28

34-Bus 0.2217 1 / 0.9417 27 0.025 4.637 37248.94

108-Bus 0.6450 1 / 0.8944 105 0.041 12.132 108363.14

2.5 Results and Discussion

The simulations study are carried out on radial distribution networks for IEEE 12
bus, 34 bus and 108-bus practical RDN of Indian utility to demonstrate the
efficacy of the proposed approach. The comparison of the proposed approaches
has been made with four prevailing index methods, which are loss sensitivity
index methods 1 and 2 (LSI_1&2), vector-index method (PLI), and voltage
sensitivity index method (VSI). The cost parameters

(
λp and λcap

)
are

considered as 168 $/kW/annum and 5 $/kVAr, respectively. The base quantities
are considered for load flow studies are: Sbase = 100MVA and kVbase = 11kV.
Table 2.2 reports the load flow solutions for base (before capacitor placement)
RDNs at one p.u. load level. In Table 2.2, the computational time (including the
time elapsed in solving the load flow problem, data/results calculations, and
display of results) to converge the load flow solutions is stated. It is noteworthy
that, as the network size increases, the considered load flow method becomes
more time-efficient.

For the compensation of network, two cases based on the capacitor type have
been considered; switched and fixed capacitor type schemes; the ranges or
available sizes for capacitors are mentioned in Section 2.3. After determining the
optimal siting, the optimal capacitor size is evaluated using the classic PSO
algorithm. The result of the above approach is delineated in subsequent
paragraphs.
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FIGURE 2.2: The workflow of the proposed SE-IM approach.
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FIGURE 2.3: Single line diagram of IEEE-12 bus RDN including a
distributed generator in case-1 (blue) and case-2 (orange).

2.5.1 Results of IEEE-12 Bus Radial Distribution Network

The IEEE-12 bus RDN is structurally simple and small network consisting of 11
lines connecting 12 buses radially as shown in Figure2.3. The total active and
reactive powers supplied from the substation are 0.456 MW and 0.413 MVAr,
respectively. The total active power loss that occurred in the RDN is 0.0207 MW
as shown in Table 2.2. The SE-IM index score is quantified for all the nodes at one
p.u. load level and presented in Figure 2.4. A comparative analysis between the
prevailing index approaches and the proposed approach for the optimal
allocation and sizing of the capacitor is performed and results are given in Table
2.3. For simulations of these approaches, it was considered that the upper and
lower voltage limits are bounded to be 0.95 and 1.05 p.u., respectively. The
maximum number of locations

(
Umax

cap

)
where the capacitor can be placed is

restricted to one in each case. In Table 2.3, Case-1 and Case-2 represent the fixed
capacitor type and switched capacitor type scheme, respectively. Followings are
the main findings of the simulation study.

1. After the capacitor placement, there are significant improvements in
techno-economical quantities that can be seen in comparison to the base
case. The major technical quantities considered in the present analysis are
the power loss reduction, voltage profile improvements, and reduction in
the network’s current (or power) flows. In addition, the analysis of
economic quantity is the annual cost incurred due to the active power loss.
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FIGURE 2.4: SE-IM index score for 12 bus RDN at 1 p.u. load level.

TABLE 2.3: Comparison among different existing index methods and
proposed approach for IEEE-12 bus RDN

Method
Capacitor Position / P-Loss Vmax/Vmin AEC Net Saving

Size (MVAr) (MW) (p.u.) ($) (%)

Method 1: Loss Sensitivity Index (1)

Case-1 8 / 0.300 0.0129 1 / 0.9574 2169.52 33.33

Case-2 9 / 0.1284 0.0138 1 / 0.9515 2317.68 31.54

Method 2: Loss Sensitivity Index (2)

Case-1 5 / 0.300 0.0141 1 / 0.9518 2365.37 27.70

Case-2 5 / 0.2333 0.0145 1 / 0.95 2437.85 26.58

Method 3: Vector Index (PLI)

Case-1 4 / 0.450 0.0163 1 / 0.9506 2735.33 14.92

Case-2 4 / 0.4107 0.0161 1 / 0.95 2698.72 16.53

Method 4: Voltage Sensitivity Index (VSI)

Case-1 12 / 0.150 0.0136 1 / 0.9545 2283.71 32.21

Case-2 12 / 0.1110 0.0144 1 / 0.9518 2417.59 28.92

Method 5: Shannon’s Entropy based Index Method (Proposed)

Case-1 8 / 0.300 0.0129 1 / 0.9574 2169.52 33.33

Case-2 9 / 0.1284 0.0138 1 / 0.9515 2317.68 31.54

2. The loss sensitivity index (Method 1) and the proposed approach
prioritized the same buses for optimal capacitor placement, i.e., 8th bus for
fixed capacitor and 9th bus for switched capacitor type schemes.
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FIGURE 2.5: Voltage profiles for IEEE-12 bus RDN in case-1 (fixed
capacitors).

3. The SE-IM approach mainly improves all the techno-economic quantities
as compared to other method, except the node voltages in Case 2, which
is significantly improved by the VSI (Method 4). The voltage profiles are
delineated in Figures 2.5-2.6.

4. The results show that node 8 is best suited for a fixed capacitor placement
scheme while node 9 is appropriate for a switched capacitor placement
scheme. Finally, the PLI (Method 3) shows node 4 for optimal capacitor
placement and generating the least preferable results in all manner.

Discussion on the capacitor size is omitted as this work mainly focuses on
determining the optimal location for capacitor placement. However, the
capacitor size is determined to enable the techno-economical comparison
between the prevailing methods and the proposed method.

Optimal Capacitor Placement in the Presence of Distributed Generation

An analysis is carried out to understand the effectiveness of the proposed
approach in the presence of distributed generation (DG). The computed results
only consider the fixed type capacitor placement for the sake of simplicity and
presented in Table 2.4. It is assumed that DG is of Type-1 (supply only real
power PDG), and two cases based on the location of DG are considered as follow
(see Figure 2.3):
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FIGURE 2.6: Voltage profiles for IEEE-12 bus RDN in case-2
(switched capacitors).

FIGURE 2.7: Voltage profile for IEEE-12 bus RDN after capacitor
placement in the presence of single DG.

Case-1. When DG of 0.235 MW is placed at the 9th bus.

Case-2. When DG of 0.280 MW is placed at the 5th bus.

It is observed that the total real power loss reduction is more using the SE-IM
approach for both cases (i.e., 83.09% and 73.43%, respectively) in comparison to
the actual scenario (DG and capacitor are placed at the same node). The voltage
profile improvement and real power flow curves are shown in Figure 2.7 and
Figure 2.8, respectively.
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TABLE 2.4: Comparison between two methods for adding single
capacitor in the presence of DG

Method
DG Location Capacitor Position P-Loss Vmax/Vmin Net P-loss

/ Size (MW) / Size (MVAr) (MW) (p.u.) Reduction (%)

Actual*

Case-1 9 / 0.235 [35] 9 / 0.150 0.0038 1 / 0.9889 81.64

Case-2 5 / 0.280 [35] 5 / 0.300 0.0066 1 / 0.9703 68.12

Proposed Approach

Case-1 9 / 0.235 8 / 0.300 0.0035 1.0007 / 0.9934 83.09

Case-2 5 / 0.280 8 / 0.300 0.0055 1 / 0.9757 73.43

* It is assumed to place DG and capacitor at the same location.

FIGURE 2.8: Active power flow in IEEE-12 bus RDN after capacitor
placement in the presence of single DG.

2.5.2 Result of 34 Bus Radial Distribution Network

The proposed approach synergizes four prevailing methodologies through
Shannon’s entropy. The comparison of the result of the proposed approach
vis-à-vis that of the prevailing index methods is presented in Table 2.5. The load
flow results for the base network are given in Table 2.2, where total active loss
was 221.72 kW and total annual loss cost incurred was USD 37248.94. For
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simulations study using these approaches, it was considered that the maximum
number of locations Umax

cap where the capacitors can be placed is limited to four in
each case, and the minimum and maximum voltages limits on the buses are
considered to be 0.95 p.u. and 1.05 p.u., respectively. In (2.11), the value of α is
assumed to be 1.1, i.e., the total kVAr capacity that can be injected into the
network is limited to 1.1 times the total demand (i.e., 2873.5 kVAr). In Table 2.5,
Case-1 represents the fixed capacitor placement, and Case-2 represents the
switched capacitor placement in RDN. Some of the important findings of this
analysis are discussed below.

1. It is observed that there is a reduction in active power loss, and annual
saving in $/year and optimum for the proposed approach compared to the
existing index methods. Though in Case-1, the active power loss reduced
more by VSI method and voltage profile is better for vector-index (PLI)
method; however, the combined active power loss and voltages profile is
significantly improved for the SE-IM approach. The minimum and
maximum voltage magnitudes are tabulated in Table 2.5 as well.

2. The annual energy loss cost (AEC) is minimum for the proposed approach
in Case-2 (switched capacitor scheme), i.e., USD 28252.64.

3. Figures 2.9 and 2.10 show the voltage profiles before and after compensation
in Case-1 and Case-2, respectively. Figure 2.11 depicts the potential locations
for capacitors allocation in 34 bus RDN, red color represents the switched
capacitors, and green color represents the fixed capacitors.

4. The optimal locations and capacitors’ sizes computed for the proposed
approach is presented in Table 2.6.

2.5.3 Result of 108 bus RDN of an Indian utility

The comparative results for 108-bus practical RDN of an Indian utility are
reported in Table 2.7. The maximum number of locations where the capacitors
can be placed is limited to 15 in each case. The minimum and maximum voltages
on the buses are considered as 0.90 p.u. and 1.10 p.u., respectively. In (2.11), the
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TABLE 2.5: Comparison among different existing index methods and
proposed approach for 34-bus RDN

Method
Total Capacitor P-Loss Vmax/Vmin AEC Net Saving

Size (MVAr) (MW) (p.u.) ($) (%)

Method 1: Loss Sensitivity Index (1)

Case-1 3.000 0.1624 1 / 0.9505 27285.32 22.72

Case-2 1.7773 0.1688 1 / 0.95 28350.90 21.50

Method 2: Loss Sensitivity Index (2)

Case-1 2.850 0.1613 1 / 0.9504 27095.32 23.43

Case-2 1.7620 0.1688 1 / 0.95 28356.70 21.51

Method 3: Vector Index (PLI)

Case-1 3.000 0.1610 1 / 0.9509 27040.14 23.38

Case-2 1.6261 0.1716 1 / 0.95 28820.98 20.44

Method 4: Voltage Sensitivity Index (VSI)

Case-1 2.400 0.160 1 / 0.9505 26874.67 24.63

Case-2 1.7221 0.1684 1 / 0.95 28295.59 21.72

Method 5: Shannon’s Entropy based Index Method (Proposed)

Case-1 2.550 0.1609 1 / 0.9506 27037.32 23.99

Case-2 1.7472 0.1682 1 / 0.95 28252.64 21.81

TABLE 2.6: Optimum location and size in MVAr obtained using
proposed approach

Case Optimal Location and Size in MVAr

Case-1 19 (0.600); 7 (1.050); 23 (0.450); 25 (0.450)

Case-2 20 (0.2176); 23 (0.4592); 9 (0.2261); 25 (0.8444)

value of α is assumed to 1, which implies that the maximum total kVAr capacity
that can be injected into the network is considered to be equal to the total
demanded load (i.e., 9.099 MVAr). Table 2.7 shows that active power loss
reduced significantly for the proposed approach compared to that of the
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FIGURE 2.9: Voltage profiles for 34 bus RDN in Case-1 (fixed
capacitors).

FIGURE 2.10: Voltage profiles for 34 bus RDN in Case-2 (switched
capacitors).

prevailing methods; as a result, the AEC noticeably reduced. In Table 2.7, Case-1
and Case-2 represent the fixed and switched capacitor placement type schemes
in RDN.

The SE-IM approach gives flexibility to the network operators for selecting the
various criterion based on requirements. The inclusion of as many criteria into the
formulation will make the optimal capacitor allocation problem more realistic.
Figure 2.12 and Figure 2.13 present the voltage profiles calculated through the
prevailing and the proposed methods.
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FIGURE 2.11: 34 bus RDN depicting potential locations for switched
capacitors (red) or fixed capacitors (green) using SE-IM approach.

FIGURE 2.12: Voltage profiles for practical 108 bus Indian RDN in
Case-1.

Optimal Capacitor Placement in the Presence of Load Uncertainty

To examine the effectiveness of the proposed SE-IM approach in the presence of
load uncertainty, three load levels are considered, i.e., light, nominal, and peak,
and their respective load multiplying factors are 0.5, 1.0, and 1.6. The results are
obtained for fixed capacitor type scheme, reported in Table 2.8. Figures 2.14 and
2.15 show the voltage profiles and active power flow profiles before and after
the compensation during light, nominal and peak load conditions, respectively.
Followings are the main findings from the above study.
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TABLE 2.7: Comparison among different existing index methods and
proposed approach for 108-bus RDN

Method
Total Capacitor P-Loss Vmax/Vmin AEC Net Saving

Size (MVAr) (MW) (p.u.) ($) (%)

Method 1: Loss Sensitivity Index (1)

Case-1 8.850 0.4363 1 / 0.9164 73302.56 28.27

Case-2 3.1958 0.4954 1 / 0.9080 83218.08 21.73

Method 2: Loss Sensitivity Index (2)

Case-1 8.700 0.4485 1 / 0.9152 75353.64 26.45

Case-2 3.4878 0.5108 1 / 0.9084 85805.31 19.21

Method 3: Vector Index (PLI)

Case-1 7.800 0.4356 1 / 0.9132 73186.85 28.86

Case-2 3.4793 0.4935 1 / 0.9148 82903.68 21.89

Method 4: Voltage Sensitivity Index (VSI)

Case-1 6.750 0.4630 1 / 0.9173 77777.22 25.11

Case-2 2.2140 0.5082 1 / 0.9094 85383.18 20.18

Method 5: Shannon’s Entropy based Index Method (Proposed)

Case-1 9.000 0.4227 1 / 0.9175 71012.79 30.32

Case-2 6.0445 0.4699 1 / 0.9094 78942.33 24.36

1. At light load condition, the net real power loss is reduced by 31.55%, while
the AEC saving is 22.71% after the placement of capacitors of total capacity
4.50 MVAr.

2. At nominal load condition, the power loss reduction and AEC saving are
optimum than light and peak load condition.

3. AEC savings are less in peak load conditions. It is because of the limitation
on the total number of places where capacitors could be placed, same as the
nominal or light load condition.
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FIGURE 2.13: Voltage profiles for practical 108 bus Indian RDN in
Case-2.

TABLE 2.8: Results of optimal capacitor placement problem for
practical 108 bus Indian RDN in the presence of load uncertainty

Load
Level

Before Compensation After Compensation
Net AEC

Saving (%)P-Loss Vmax/Vmin Total Capacitor P-Loss Vmax/Vmin

(MW) (p.u.) Size (MVAr) (MW) (p.u.)

Case-1: Fixed Capacitor Type Scheme

Light 0.1515 1 / 0.9499 4.500 0.1037 1 / 0.9571 22.71

Nominal 0.6450 1 / 0.8944 9.000 0.4227 1 / 0.9175 30.32

Peak 1.8028 1 / 0.8177 16.650 1.6073 1 / 0.9001 8.10

2.6 Summary

The main focus of this work is to present an approach that allows the network
operators to select multiple criteria in the formulation at a time for optimal
capacitor siting. The efficacy of the proposed approach is evaluated by
implementing it on an IEEE-12 bus, 34 standard bus, and a 108-bus practical
RDN of an Indian utility, and the result is compared with that of the prevailing
four methods and the proposed method is found to be superior. The significant
contributions of the work are summarized below.
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FIGURE 2.14: Voltage profiles for practical 108 bus Indian RDN in
the presence of load uncertainty.

FIGURE 2.15: Active power flows in practical 108 bus Indian RDN in
the presence of load uncertainty.

1. In this work, two cases of analysis have been considered based on the
capacitor types, which are switched and fixed types.

2. The proposed approach comprehensively improved the techno-economic
quantities, which fulfilled the objectives of the optimum siting problem
effectively.

3. An impact on optimal capacitor placement problem is analyzed in the
presence of DG and load uncertainty in the RDN. It is noted that; the



Chapter 2. Optimal Allocation of Capacitor in Smart Distribution System 50

proposed approach improved the network’s quantities while satisfying all
the considered security and reliability constraints.

4. The proposed SE-IM approach offers flexibility in selecting multiple
criteria, and also enables combining the index scores obtained from the
methods considered based on their degree of importance and thereby
improves the network quantities.
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Chapter 3

Optimal Solutions for DG Placement
in Smart Distribution System

3.1 Preamble

Distributed generation (DG) has become essential to ensure the quality,
reliability, and security of distribution network (DN) operations. Consequently,
the integration of DGs into power DNs is experiencing a significant surge.
However, with the increased penetration of DGs, the responsibilities of the
distribution network planner (DNP) are also on the rise. It is crucial to conduct
impact analyses of DGs in the power network to prevent degradation of
reliability and power availability. Unplanned and arbitrary DG placement may
lead to adverse effects on DN parameters, such as power loss increase, system
voltage drops, and reduced loading capability. This chapter focuses on devising
a technique to strategically place DG units in DNs. The approach involves
assigning weights calculated according to the relative influence of various
techno-economic objective functions considered in a multi-objective problem,
utilizing Shannon’s Entropy. The proposed approach has been applied to a lossy
38-node test system to illustrate its efficacy. The results indicate that the
suggested method enhances system response compared to prevailing methods
addressing the multi-objective DG placement problem.

The remainder of the chapter is organized as follows: In section 3.2, the
nomenclature for the parameters, indices, and variables employed in the
problem formulation of optimal placement of DG in the smart distribution
system is outlined. Section 3.3 discusses how the influence of an objective
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function is changed with the alteration in the network’s physical properties.
Section 3.4 discusses the modeling of voltage-dependent loads and different
techno-economic objective functions considered in problem formulation. Section
3.5 delineates the proposed approach for quantifying the weights associated with
the objectives in a multi-objective DG placement problem and presents the
solution approach to optimal placement of DG. Simulated results and
discussions are reported in Section 3.6, followed by the summary of the chapter
in Section 3.7.

3.2 Nomenclature

Sets and Indices

Uρ, Uσ, Uτ Set of industrial, residential, and commercial type of load
buses, respectively

Ut Set of time intervals in 24 hours

Ud Set of number of days intervals in a year

Udg Set of DGs to be placed in distribution system

Ub, Ul Set of buses (except substation bus) and lines in the network,
respectively

Variables

PLoss(QLoss) Real (reactive) power loss

Vt
b Bus voltage magnitude during tth time

Sl MVA flow in the lth line

Pdg Real power generated by DG

Okl Index score of kth entity for lth criteria
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λl Weight value for lth criteria (objective)

ηk Comprehensive score of kth entity (i.e., bus)

Parameters

Pcp
L
(
Qcp

L
)

Constant power real (reactive) load demand

PL,i (QL,i) Real (reactive) load demand at ith bus

Vt
spec. Voltage at root node at tth time interval

T Total number of time intervals

Smax
l MVA capacity of lth line

UICdg Unit installation cost of DG ($/MW)

UOCdg Unit O&M cost of DG ($/MW)

UCsub Unit cost of electricity purchased from grid ($/MW)

3.3 Impact Assessment of Power Loss Index in DG

Placement Problem

It is known that the integration of DG significantly influences both technical and
economic quantities within a DN. This section demonstrates that variations in
DN configurations result in differing relative impacts on these quantities.
Consequently, their significance as an objective function in a multi-objective
assessment must be adjusted based on their varying impacts in the context of the
DG placement problem. To demonstrate this, the mathematical formula for the
power loss index is derived in equations (3.1)-(3.5) and subsequently, applied to
evaluate two distinct configurations of a 7-bus distribution system, as depicted
in Figure 3.1.

Ploss = ∑
n∈Ul

[
rn,n+1.(In,n+1)

2
]

(3.1)
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FIGURE 3.1: 7-bus distribution system depicting 0.10 MW of DG
integration at each potential node in (a) config. 1, (b) config. 2.

Ploss = ∑
n∈Ul

[
rn,n+1.

(
(Pn,n+1)

2 + (Qn,n+1)
2
)]

(3.2)

Pdg
loss = ∑

m∈Ul

[
rm,m+1.

((
Pm,m+1 − Pdg)2

+ (Qm,m+1)
2
)]

+ ∑
i=(n−m)∈Ul

[
ri,i+1.

(
(Pi,i+1)

2 + (Qi,i+1)
2
)] (3.3)

Pdg
loss = Ploss − ∑

m∈Ul

[
rm,m+1.

(
2.Pm,m+1.Pdg −

(
Pdg
)2
)]

(3.4)

%P∆
loss =

∣∣∣∣∣P
dg
loss

Ploss
− 1

∣∣∣∣∣ =
∑

m∈Ul

[
rm,m+1.

(
2.Pm,m+1.Pdg −

(
Pdg)2

)]
∑

n∈Ul

[
rn,n+1.

(
(Pn,n+1) 2 + (Qn,n+1)

2
)] (3.5)
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FIGURE 3.2: Evaluated power loss index at each bus after placing
0.10 MW of DG in config. 1 and 2.

In equations (3.2)-(3.5), it is assumed that the voltage is 1 p.u. at all nodes in
the network, allowing it to be neglected in the illustration. The power loss index,
depicted in Fig. 3.2, illustrates the computed impact of successively placing 100
kW of DG at each potential node in two distinct configurations. Concurrently,
the standard deviation is calculated for each configuration. The analysis reveals
that the DG in configuration two has a more significant effect on power loss
compared to configuration one. Consequently, it is advisable to additionally
prioritize the power loss objective function in formulating a multi-objective
problem for configuration two.

3.4 Modelling of Load Demands and Problem

Formulation

This section articulates the formulation of the multi-objective DG placement
problem, considering diverse technical and economic objective functions. The
multi-objective function is subjected to equality and inequality constraints,
including active and reactive power flows, voltage limits, and bounds on DG
size and location. Additionally, a subsection is dedicated to the load modeling
based on their dependence on voltage, aiming to scrutinize the influence of
different load models on the optimal DG placement problem.
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3.4.1 Mathematical Modeling of Load Demand

The primary objective of the DNP is to conduct a mathematical assessment of the
techno-economic implications of DG on the DN before its integration, accounting
for the dynamic characteristics of various loads. This analysis incorporates
voltage-dependent load modeling and classifies loads into industrial,
commercial, and domestic categories, departing from the conventional constant
power load demands represented as (Pcp

L and Qcp
L ). The mathematical

formulation expresses the active (PL,i) and reactive (QL,i) loads for the ith bus as
detailed in [165].

PL,i = Pcp
L,i . Vα (3.6)

QL,i = Qcp
L,i . Vβ (3.7)

In equations (3.6) and (3.7), the parameters α and β represent the exponential
factors associated with distinct load categories. Specifically, the respective values
for α are 0.18, 0.92, and 1.51, while the corresponding values for β are 6.0, 4.04, and
3.40, corresponding to industrial, residential, and commercial loads. The overall
expressions for the active and reactive power requirements of a DN are articulated
in equations (3.8) and (3.9), respectively.

PTL = ∑
b∈Uρ

Pcp
L,b. V0.18

b + ∑
b∈Uσ

Pcp
L,b. V0.92

b + ∑
b∈Uτ

Pcp
L,b. V1.51

b (3.8)

QTL = ∑
b∈Uρ

Qcp
L,b. V6.0

b + ∑
b∈Uσ

Qcp
L,b. V4.04

b + ∑
b∈Uτ

Qcp
L,b. V3.40

b (3.9)

The anticipation is that the introduction of a capacitor into the network
enhances the voltage profile, leading to a reduction in losses and subsequently a
decrease in demand from the substation. However, contrary to expectations,
empirical evidence indicates that as the voltage profile improves, there is an
observed increase in demand from the substation [210]. Consequently, this work
explores the impact of voltage-dependent load modeling, as defined in equations
(3.8) and (3.9), on the planning of DG placement.
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3.4.2 Multi-objective DG Placement Problem Formulation

In generic, a weighted-sum multi-objective optimization problem for DG
placement in DN can be written as follows:

minimize
N

∑
ϕ=1

λϕ. fϕ (x, u) (3.10)

s.t. h (x, u) = 0 (3.11)

g (x, u) ≥ 0 (3.12)

In (3.10), the variable N denotes the total number of objectives considered in the
multi-objective problem for DG placement. The symbol λϕ signifies the relative
weight assigned to the ϕth objective function (OF). In equations (3.11)-(3.12), the
equality and inequality constraints encompass factors such as power flow
balance, node voltage limitations, boundaries on active and reactive power, as
well as other operational and security constraints. The proposed study
incorporates both technical and economic OFs to facilitate a techno-economic
performance analysis while adhering to constraints related to power flow and
limits on variable quantities.

Technical Objective Functions

It is widely acknowledged that the integration of DG has a substantial impact on
several technical parameters within a DN, including changes in real and reactive
power losses, adjustments to node voltage profiles, and the regulation of line
capacities. Therefore, evaluating the extent of these changes in network
parameters during the analysis of DG placement is essential for practical
applications, considering the numerous OFs involved. In this investigation, four
specific technical OFs are utilized to scrutinize the influence of DG integration
within the network. These OFs are expressed mathematically as:

Active power loss: LP = ∑
t∈Ut

∑
n∈Ul

[
rn,n+1.

(
It
n,n+1

)2
]

(3.13)

Reactive power loss: LQ = ∑
t∈Ut

∑
n∈Ul

[
xn,n+1.

(
It
n,n+1

)2
]

(3.14)
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Voltage deviation: VD = ∑
t∈Ut

∑
b∈Ub

(
Vt

b −Vt
spec.

Vt
max −Vt

min

)2

(3.15)

Line capacity limit: IC =
1
T ∑

t∈Ut

max
(∣∣∣Sk,t

l

∣∣∣)l∈Ul
(3.16)

The primary objective of these OFs is to identify suitable nodes for the
placement of DG. Consequently, the optimization of DN parameters can be
achieved post-DG placement, resulting in an augmented level of reliability. In
the context of this study, the impact analysis of DG is quantified on a singular
phase within a three-phase system, with the assumption of a balanced DN
system. To maintain a streamlined analysis without compromising the integrity
and scholarly contribution of the work, the inherent uncertainty associated with
the time-varying nature of the load is deliberately excluded from consideration.

Economic Objective Function

Essentially, the economic aspect of the DG placement problem holds comparable
significance to the incorporation of various technical OFs. As a result, a cost
index, denoted as ECost, has been formulated and integrated into the proposed
methodology. This index is articulated as:

Ecost = Cdg
ins + ∑

t∈Ut

[
Cdg,t

o&m + Ct
sub

]
(3.17)

where Cdg
ins = ∑

i∈Udg

[(
Pdg

i .UICdg
i .CRF

)/
365
]

(3.18)

and Cdg
o&m = ∑

i∈Udg

(
Pdg

i .UOCdg
i

)
(3.19)

and Csub = UCsub.
[
eq.(4) +

(
PTL − Pdg

T

)]
(3.20)

and CRF =
ζ(1 + ζ)γ

(1 + ζ)γ − 1
(3.21)

The capital recovery factor (CRF) mentioned in (3.21) represents the complete
installation cost disbursed in γ uniform payments at an interest rate of ζ%.
Notably, several existing studies tend to overlook the economic dimension in the
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formulation of the DG placement problem. Nevertheless, the financial operation
of the system aligns with the current dynamics of the competitive electricity
market. Hence, it is imperative to incorporate an economic aspect into the DG
placement problem, alongside the consideration of other technical OFs.

Constraints

Every optimization problem operates within a defined set of constraints.
Consequently, this work employs both equality and inequality conditions to
restrict variables and refine feasible solutions, as outlined below:

P f r
br = Pto

br +
(

Pto
L − Pdg,to

)
+

[
r f r
(

I f r
br

)2
]

(3.22)

Q f r
br = Qto

br +
(

Qto
L −Qdg,to

)
+

[
x f r
(

I f r
br

)2
]

(3.23)

Vto
b = V f r

b −
[(

r f r + jx f r
)

.
(

I f r
br

)∗]
(3.24)

Vi,min
b ≤ Vi

b ≤ Vi,max
b (3.25)

Pdg
i,min ≤ Pdg

i ≤ Pdg
i,max (3.26)

∑
i∈Udg

Pdg
i ≤ Pdg

max (3.27)

Equations (3.22)-(3.24) signify the power flow constraints for real and reactive
power. Equation (3.25) outlines restrictions on voltage, specifying upper and
lower limits. Additionally, (3.26)-(3.27) establish constraints on both individual
and overall installed capacity of DG.

3.5 Solution Methodology

Recently, several approaches have been put forth for optimal DG placement,
with an emphasis on multi-objective optimization. However, these methods
often lack a well-defined strategy for determining weight factors assigned to
each objective, a crucial aspect in achieving optimal decision-making. As a
result, there exists a potential risk of obtaining sub-optimal solutions for the DG
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placement problem. The subsequent subsection introduces an approach that
leverages Shannon’s Entropy to quantify the pertinent weight factors for the
objectives. This is done based on their respective degrees of influence in the
multi-objective optimal DG placement problem.

3.5.1 Shannon’s Entropy for Weight Evaluation Incorporating

DNP Priority Information

The entropy formula is applied in information theory to quantitatively assess the
spread of a variable in multi-criteria decision-making. The fundamental concept
behind entropy is that a higher dispersion in the measured variable indicates
greater disparity among criteria, leading to the extraction of more information.
Additionally, greater weight (signifying importance) should be assigned to a
criterion with higher dispersion, and conversely [211]. Mathematically, the
empirical weights are determined through the following steps.

1. Reconstruct techno-economic OFs to impact indices for unitless
measurement.

Okl = 1−
(

f k
l

/
f base
l

)
(3.28)

2. Normalize the measured values (i.e., index)

Okl =
Okl

∑
k=1→E

Okl
(3.29)

3. Evaluate Shannon’s Entropy value el for lth index, and is defined as

el = −e0

s

∑
k=1

Okl × ln Okl (3.30)

here, e0 is termed as entropy constant and is equal to (ln s)−1. Furthermore,
the degree of diversification is obtained by δl = 1− el.

4. Compute the degree of importance (i.e., relative weight)

λl =
(1− el)

/
∑N

l=1 (1− el)
(3.31)
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In this work, λl represents the relative weights in the multi-objective DG
placement problem. In some given conditions, the DNP strategically sets a
preference for an objective; thus, relative weights must be changed
accordingly. This priority information (PI) can be incorporated by
modifying the λl in (3.31) for indices with PI as in (3.32) and indices
without PI as in (3.33).

λn∈N =
(1− en) +

(
ζn ∗∑N

l=1 (1− el)
)

∑N
l=1 (1− el)

(3.32)

λm∈{N\n} =
(1− em)

∑N
l=1 (1− el)

− ∑n∈N ζn ∗ (1− em)

∑N
l=1 (1− el)−∑n∈N (1− en)

(3.33)

where n and m represent a set of indices with PI and without PI, respectively.

3.5.2 Proposed Approach for Optimal DG Planning

The weighted sum of various technical and economic OFs is used to create a
weighted multi-objective function, determining the optimal placement of DG in
the distribution system. This weighted multi-objective problem, denoted as
(MOk

w), is expressed as:

MOk
w =

{
λ1Lk

P + λ2Lk
Q + λ3Vk

D + λ4 Ik
C + λ5Ek

cost

}
(3.34)

s.t. (3.8)− (3.9) and (3.22)− (3.33) (3.35)

∑N
ϕ=1 λϕ = 1 ∧ λϕ ∈ [0, 1] (3.36)

In equation (3.34), Lk
P denotes the active power loss, Lk

Q refers to reactive
power loss, Vk

D represents the maximum voltage deviation, Ik
C signifies the line

capacity limit and Ek
cost stands for the total cost associated with the kth

distribution network configuration during the tth time interval or peak hour of
the dth day. The relative weights generally determine the extent of influence of
technical and economic objectives in the DG placement problem. To quantify
these empirical weight values, this study adopts the concept of Shannon’s
Entropy, as elucidated in the preceding subsection.
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FIGURE 3.3: Workflow to evaluate different techno-economic OFs.

The process for assessing various techno-economic OFs is depicted in Figure
3.3. A detailed outline of the proposed solution methodology is presented in the
flowchart featured in Figure 3.4. The effectiveness of this approach is scrutinized
using a 38-node test system within the MATLAB environment. The ensuing
section presents and discusses the simulated results.

3.6 Results and Discussion

The 38-node test system consists of the combined active and reactive power
demand, totaling 3501.6 kW and 1870.2 kVAr, respectively. Various load types,
including industrial, commercial, and residential, are integrated into the system
configuration (see Figure 3.5). The simulation utilizes base quantities Sbase and
kVbase for analysis, with values set at 100 MVA and 12.66 kV, respectively. The
specific numerical values for cost parameters used in calculating the total cost
are provided in Table 3.1. In the context of mixed loads, the base case real and
reactive power losses are documented as 152.8 kW and 101.5 kVAr, respectively.
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FIGURE 3.4: Workflow for the proposed approach based on
Shannon’s Entropy formula.

FIGURE 3.5: Single line diagram of 38-node test system depicting
residential, commercial, and industrial loads.

This work assesses relative weights by considering the extent of influence
each objective has in the DG placement problem. Four distinct cases are outlined
in the following subsections to demonstrate the effectiveness of the proposed
approach, emphasizing variations in the physical properties of the network.
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TABLE 3.1: Numerical values for cost parameters to evaluate overall
cost

Parameters Numerical Values

Cdg
ins 750 $/kVA

Cdg
o&m 0.04 $/kWh

Csub 0.0656 $/kWh

ζ 10%

γ 18 years

TABLE 3.2: Evaluated optimal weights considering a change in DG
location and size in 38-node test system

Weight factors

DG size (kW) λ1 λ2 λ3 λ4 λ5

150 0.25 0.27 0.38 0.09 0.01

300 0.22 0.24 0.33 0.20 0.01

600 0.17 0.19 0.24 0.40 0.00

Finally, a comparison between the proposed method and the weight allocation
approach, previously examined in past studies, is presented.

3.6.1 Case 1: Effect on Weights for Change in DG Location and

Size

In this case, each node is viewed as a potential site for placing DG. Subsequently,
DG units of three different sizes (150 kW, 300 kW, and 600 kW) are successively
installed at every candidate node. The optimal weights (λϕ) determined through
evaluation are documented in Table 3.2. The resulting weighted multi-index
(MIW) scores for each configuration of the kth distribution network are
illustrated in Figure 3.6. The key outcomes of the simulation study are outlined
below.



Chapter 3. Optimal Solutions for DG Placement in Smart Distribution System 65

FIGURE 3.6: Multi-objective score for the 38-node test system,
considering diverse sizes of DG positioned at each node within the

circuit.

1. With the placement of 150 kW DG: Bus 18 has been identified as the
optimal site for placing DG, as illustrated in Figure 3.6. Figure 3.7 reveals a
more pronounced dispersion for the voltage deviation index (VDI)
compared to other indices. Consequently, the impact is substantial, and the
assigned weight value for VDI, namely 0.38, is the highest among all
indices. In contrast, the economic index (EIC) has a negligible influence in
this scenario, with a quantified weight of 0.01, as depicted in Figure 3.7,
where the dispersal is minimal.

2. With the placement of 300 kW DG: Bus 17 has been determined as the
optimal site for placing DG, as indicated in Figure 3.6. The weight value for
the voltage deviation index (VDI) is higher compared to other impact
indices, specifically 0.33.

3. With the placement of 600 kW DG: The ideal node identified for placing the
DG is bus 14, as illustrated in Figure 3.6. In 12 configurations for this DG
size, the line capacity limit constraint is breached, as depicted in Figure 3.8.
Consequently, it can be concluded that the line capacity index (ICC) has a
more pronounced impact compared to other indices. The computed weight
value for ICC using SE, specifically 0.40, is the highest among all the indexes.

It is noteworthy that the ICC index carries a weight of 0.09 when
incorporating a 150 kW DG into the RDN. However, as the DG size increases,
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FIGURE 3.7: Techno-economic index scores for 38-node test system
with DG of 150 kW sited at each circuit node.

FIGURE 3.8: Techno-economic index scores for 38-node test system
with DG of 600 kW sited at each circuit node.

resulting in more instances of line capacity limit violation, the influence of the
ICC index rises, reaching 0.20 and 0.40 for DG installations of 300 kW and 600
kW in the RDN, respectively. Following the optimal DG placement,
improvements in various network parameters such as power loss, voltage
magnitude, and annual cost expenditure (including DG installment cost, O&M
cost, and power purchase from the grid) are detailed in Appendix B {refer to
Table B.1}.
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TABLE 3.3: Evaluated optimal weights when varying DG size at 6th

bus in 38-node test system

Weight factors

Bus location λ1 λ2 λ3 λ4 λ5

6 0.19 0.20 0.25 0.00 0.36

FIGURE 3.9: Techno-economic index scores and multi-index score for
38-node test system with varying DG placed at 6th bus.

3.6.2 Case 2: Effect on Weights for Varying the DG Size at a Bus

The candidate bus location is consistently set at the 6th bus for DG siting, and the
problem is defined by varying the DG size from 0 to 4500 kW in increments of 5
kW. The computed weight scores for various techno-economic indices are
presented in Table 3.3. In Figure 3.9, it can be observed that the dispersion
measure is more pronounced for EIC (specifically, λl=5 = 0.025). As the DG size
changes, the impact correspondingly increases. Consequently, the weight
assigned to EIC, amounting to 0.36, is the highest among all indices. The
influence of ICC is minimal, as no deviation is detected (i.e., λl=4 ≈ 0) during the
increment in DG size.

In contrast to Case 1, where the weight attributed to EIC had minimal impact
on determining the optimal DG configuration, in this scenario, EIC plays a crucial
role in selecting the optimal DG. This shift is because the increase in DG size leads
to a rise in installation costs. The quantified network parameters before and after
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TABLE 3.4: Evaluated optimal weights considering the change in DG
location and power factor (pf) in 38-node test system

Weight factors

Power factor (pf) λ1 λ2 λ3 λ4 λ5

0.80 0.17 0.20 0.25 0.31 0.07

0.90 0.18 0.21 0.26 0.33 0.02

1.0 0.18 0.21 0.26 0.35 0.00

the placement of DG are detailed in Appendix B (refer to Table B.1).

3.6.3 Case 3: Effect on Weights with Different Power Factor

In this scenario, an analysis of the weight formulation for various indices is
performed for distinct power factors. To achieve this, each node in the RDN is
considered a potential location for 500 kW of DG placement, and simulations are
conducted for three different power factors: 0.80, 0.90, and unity. The resulting
optimal weights

(
λϕ

)
are presented in Table 3.4. Across all power factor

conditions, the influence of ICC stands out as more substantial than that of other
indices, and the associated weight values for ICC are nearly identical. The key
findings of the simulation study are outlined below.

1. For all examined power factor conditions, Bus 15 is identified as the
prospective node for the placement of 500 kW of DG. The quantified
weight measures for each index under all power factor conditions remain
nearly constant.

2. In addition to ICC, VDI has a greater impact on the DG placement problem
compared to LIP and LIQ. The influence of EIC is the least significant in
determining the optimal DG placement.

3. The calculated network parameters following the optimal placement of DG
are documented in Appendix B (refer to Table B.1). The conclusion drawn
from the results suggests that operating the system under a power factor
condition of 0.9 is advisable for achieving optimum performance.
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FIGURE 3.10: Multi-index scores for each node considering different
power factors in the 38-node test system (DG of 500 kW).

Figure 3.10 illustrates the MIW scores obtained when 500 kW of DG is placed
at each potential node under distinct power factor conditions.

3.6.4 Case 4: Effect on Weights for Change in Bus Load Type

The alteration of load bus types within a network affects the problem of DG
placement. Hence, the suggested method is simulated under varying load bus
types, as outlined in Section 3.4.1. Each node within the RDN represents a
prospective location for the optimal placement of 300 kW DG units. Weight
scores quantified across different load types, are presented in Table 3.5. The
ensuing paragraphs detail the primary outcomes of the simulation study.

1. In scenarios with constant power loads, ICC exerts the greatest influence on
the DG placement problem. Conversely, across all voltage-dependent load
models, VDI demonstrates a more pronounced impact compared to other
indices.

2. After systematically placing a 300 kW DG within the network to pinpoint
the optimal node, only 12 configurations are found where line capacities
adhere to the specified limit.

3. The influence of each index remains consistent across all voltage-dependent
load models, as depicted in Figure 3.11. Consequently, the quantified weight
measures for each index also exhibit minimal variation.
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TABLE 3.5: Evaluated optimal weights considering the change in the
type of load buses in 38-node test system

Weight factors

Load type λ1 λ2 λ3 λ4 λ5

Constant power 0.08 0.09 0.13 0.70 0.00

Industrial load 0.21 0.24 0.32 0.22 0.01

Residential load 0.22 0.24 0.33 0.20 0.01

Commercial load 0.22 0.24 0.33 0.20 0.01

Mix-type load 0.22 0.24 0.33 0.20 0.01

FIGURE 3.11: The multi-index scores considering the change in the
type of load buses in the 38-node test system (DG of 300 kW).

4. With the identical DG capacity, bus 18 emerges as the optimal node in
scenarios involving constant power loads. Conversely, when considering
voltage-dependent load buses, bus 17 is identified as the preferable
location.

Figure 3.11 illustrates the multi-index scores obtained when a 300 kW DG unit
is positioned at each potential node, accounting for various load models. The
computed network parameters after the optimal DG placement are detailed in
Appendix B (refer to Table B.2).
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TABLE 3.6: Evaluated optimal weights considering the DNP priority
information and optimal solution for DG planning

Cases
Weight factors PI Information Optimal

λ1 λ2 λ3 λ4 λ5 λ6 (ζi) Solution

Case-1 0.24 0.27 0.10 0.39 - - - 6th bus/2523 kW

Case-2 0.34 0.23 0.09 0.34 - - ζ1 = 10% 6th bus/2480 kW

Case-3 0.29 - - - 0.34 0.37 ζ1 = 10% 6th bus/2834 kW

3.6.5 Case 5: Effect of Incorporating DNP Priority Information

The three cases are simulated and compared for the DG placement problem to
illustrate the effect of incorporating DNP priority information while evaluating
the relative weights. This evaluation includes an additional objective function,
annual energy not supplied (AENS), that accounts for system reliability, in
addition to the technical and economic objectives outlined in section 3.4.2. In
mathematical terms, the AENS is formulated as follows:

RAENS = ∑L
q=1 Pk

q ×Uq (3.37)

1. Solve DG placement problem, considering technical objective functions
(OFs).

2. Solve DG placement problem, considering technical OFs and DNP priority
information.

3. Solve DG placement problem, considering one technical, economic, and
reliability OFs and DNP priority information.

The evaluation of weight factors while incorporating priority information,
alongside the determination of optimal solutions for DG planning, is pivotal in
enhancing the performance and reliability of distribution networks. In Table 3.6,
three distinct cases (Case-1, Case-2, Case-3) are meticulously examined, each
presenting unique weight factors (λi) allocated to various parameters influencing
DG planning decisions. The inclusion of priority information (ζi) further refines
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TABLE 3.7: Distribution network (DN) quantities for all three
considered cases

Cases
DN Quantities

APL (kW) RPL (kVAr) Vmin(p.u.) AEC (M$) AENS

Base 152.80 101.50 18 / 0.9252 - 1.6732

Case-1 72.23 52.74 18 / 0.9616 1.718 1.6236

Case-2 72.06 52.58 18 / 0.9611 1.724 1.6227

Case-3 75.04 54.92 18 / 0.9660 1.678 1.6165

the optimization process, guiding the placement and capacity determination of
DG units. The optimal solutions derived from these analyses delineate specific
locations and capacities for DG integration, exemplifying Case-1 where the
optimal placement is identified at the 6th bus with a capacity of 2523 kW.
Moreover, Table 3.7 provides a comprehensive assessment of DN quantities
across all considered cases, facilitating a comparative analysis against base
values. These quantified metrics, encompassing parameters such as Average
Power Loss (APL), Reactive Power Loss (RPL), and Annual Energy Cost (AEC),
offer insights into the efficacy of DG integration strategies in mitigating losses
and enhancing network performance. Such meticulous evaluations underscore
the importance of informed decision-making in optimizing distribution network
operations.

3.6.6 Case 6: Comparison of the proposed approach to prevailing

studies

This thesis juxtaposes the proposed methodology against previously published
approaches, namely analytical hierarchical analysis (AHP), grey relational
analysis (GRA), and fuzzy decision method (FDM), to ascertain its effectiveness.
The comparative outcomes are documented in Table 3.8. The evaluation of the
optimal size and placement of DG takes into account objective functions such as
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TABLE 3.8: Comparison among different existing methods and
proposed approach

Proposed

Methods AHP GRA* FDM* Approach

Weight factors

λ1 0.54 - - 0.19

λ5 0.16 - - 0.39

λ6 0.30 - - 0.42

Optimal 6th bus / 6th bus / 6th bus / 6th bus /

Solution 2492 kW 1995 kW 1995 kW 3180 kW

APL (kW) 72.11 73.52 73.52 81.09

RPL (kW) 52.63 52.95 52.95 59.22

Vmin (p.u.) 18 / 0.9613 18 / 0.9543 18 / 0.9543 18 / 0.9707

AEC (M$) 1.722 1.788 1.788 1.636

AENS 1.6234 1.6332 1.6332 1.6096

* GRA and FDM strategies determine the best-compromised solution from a set of

non-dominated solutions of Pareto-front.

active power loss (LP), economic factor (Ecost), and AENS as a measure of
reliability.

Table 3.8 indicates a significant enhancement in network quantities compared
to the base network configuration (i.e., without DG), for the approaches under
comparison. The prevailing technique shows further improvements in technical
quantities. However, when DG is placed according to the proposed approach
reduces annual expenditure by a total of 1.636 M$, while ensuring system
operation within standard limits and reducing annual energy not supplied.

3.7 Summary

This thesis explores a new method for evaluating weights based on the relative
impact of indices in a weighted multi-objective problem concerning optimal DG
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placement in RDN. The effectiveness of this approach is assessed by applying it
to a 38-node test system and analyzing various scenarios based on alterations in
network physical properties. A comparative analysis is performed, revealing that
the proposed approach outperforms existing methods. The primary contributions
of this study include:

1. To achieve a practical and economically viable solution, the problem
formulation takes into account a range of technical and economic impact
indices.

2. DN buses are classified as voltage-dependent loads to assess how different
load models affect DG placement.

3. The proposed method calculates weights associated with indices by
considering their relative influence in the multi-objective problem of
optimal DG allocation, thus removing the subjectivity associated with
selecting weight measures.

4. The primary benefits of the proposed method include its integration of the
priority information for the indices provided by DNP in unavoidable
circumstances, its straightforward execution, and its compatibility with
other similar multi-objective optimization problems.

5. The choice of indices relies on the perspectives of the DNP regarding both
technical and commercial aspects of DG placement.
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Chapter 4

Cost Effective Analysis of Electric
Vehicle in Smart Distribution System

4.1 Preamble

In this chapter, we delve into a novel method to address the efficient day-ahead
(DA) scheduling of electric vehicle charging stations (EVCSs) within a smart
distribution system. The primary objective is the minimization of real power loss
payments while adhering to a spectrum of operational constraints encompassing
real and reactive power flow, bus voltage limits, and the nuanced dispatching
and storage constraints characteristic of EVCSs. A key facet of our approach lies
in the integration of sophisticated demand response modeling and uncertainties
inherent in electricity prices and load forecasting. The solution is derived
through mixed-integer nonlinear programming, with the distribution network
operator (DNO) assuming a pivotal role in orchestrating secure and efficient
daily operations. The work explores both single-agent and multi-agent system
control strategies, underpinned by the secure exchange of data between the
DNO and EVCSs to facilitate effective dispatching. The efficacy of the proposed
methodology is rigorously examined through simulations conducted on a
modified 12-bus radial distribution network, ultimately showcasing substantial
optimization gains vis-à-vis conventional techniques.

The remainder of the chapter is organized as follows: In Section 4.2, the
nomenclature for the sets, indices, variables, and parameters employed in the
problem formulation of optimal DA scheduling of EVCS within the smart
distribution system. Section 4.3 provides a succinct overview of the smart
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distribution system architecture. Section 4.4 outlines the formulation of the DA
scheduling problem incorporating the demand response model. Section 4.5 then
elaborates on the problem formulation, considering uncertainty modeling in the
DA scheduling process. Section 4.6 presents and analyzes the numerical results
obtained from our approach. Finally, Section 4.7 offers a summary of the chapter
to encapsulate our findings and contributions.

4.2 Nomenclature

The notation used in this article to represent the sets, indices variables, and
parameters are stated as follows:

Sets and Indices

i/j/k Indices for network buses

T Set of 24 hours of a day

t Index for the time horizon

Φ Set of buses participating in DR

Variables

pt
g,j/qt

g,j Active/reactive power generation of RERs at the jth bus during
the tth hour

pt
d,j/qt

d,j Active/reactive load demand at the jth bus during the tth hour

Pt
ij/Qt

ij Active/reactive branch power flow between the ith and jth

buses during the tth hour

lt
ij Squared current magnitude flow between the ith and jth buses

during the tth hour

υt
i Squared voltage magnitude at the ith bus during the tth hour
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Et
RC,i/Et−1

RC,i Available SoC of a RCS at the ith bus during the tth/ (t− 1)th

hour

Pt
RC,i Active power injected from a RCS at the ith bus during the tth

hour

Ωt
i /℧

t
i Binary decisions for charging/discharging a RCS at the ith bus

during the tth hour

Pdch,t
RC,i /Pch,t

RC,i Discharging/charging power of a RCS at the ith bus during the
tth hour

Earr/dep,t
REV,i SoC of REVs upon arrival/departure to/from a RCS at the ith

bus during the tth hour

Et
CC,i/Et−1

CC,i Available SoC of a CCS at the ith bus during the tth/ (t− 1)th

hour

Pch,t
CC,i Charging power of a CCS at the ith bus during the tth hour

Edep,t
CEV,i SoC of CEVs upon departure from a CCS at the ith bus during

the tth hour

µt
i DR decision variable for altering demand pattern

Θi Binary decisions, whether the ith bus participate in DR or not

δ
ψ/d
t Prediction error in price/loads during the tth hour, respectively

Parameters

rij/xij Resistance/reactance of a line connecting the ith and jth buses

pt
g,i

/pt
g,i The minimum/maximum limits of pt

g,i

∆t Time interval, i.e., one

ηdch/ηch Discharging/charging efficiency coefficients of RCSs and CCSs
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Et
RC,i/Et

RC,i The minimum/maximum limits of Et
RC,i

Pdch,t
RC,i /Pch,t

RC,i The maximum limits of Pdch,t
RC,i /Pch,t

RC,i

Et
CC,i/Et

CC,i The minimum/maximum limits of Et
CC,i

Pt
CC,i The maximum limit of Pt

CC,i(
pt

d,i
)0/
(
qt

d,i
)0 Original active/reactive load demand at the ith bus during the

tth hour

Υi Demand flexibility at the ith bus

Θi The maximum limit of Θi

ψt Energy price during the tth hour

α̂t Maximum perturbation during the tth hour

Γ Level of robustness

4.3 Smart Distribution System Architecture

A Smart Distribution System integrates advanced information and
communication technologies, interactive software, and robust methodologies. It
boasts high-level automation and intelligent electronic components, rendering it
bi-directional and interactive. This enables self-healing capabilities, enhanced
power quality, dependable power provision, and efficient utilization of DERs.
The architecture of a typical SDS, as depicted in Figure 4.1, illustrates centralized
information flow, where DER entities directly interface with the DNO without
intermediary interactions.

This discussion revolves around a distribution network featuring Renewable
Energy Sources (RESs) in the form of solar photovoltaic plants and wind farms,
EVCSs catering to both residential and commercial sectors, and load aggregators.
The Distribution Network Operator (DNO) assumes responsibility for managing
the operational schedules of RESs. Residential Charging Stations (RCSs) are
simulated to capture the extensive adoption of Electric Vehicles (EVs) for
personal use (REVs), either through Vehicle-to-Grid (V2G) or Grid-to-Vehicle
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FIGURE 4.1: Architecture of a generic smart distribution system.

(G2V) modes. Commercial EVs (such as electric buses and trucks), exhibiting
distinct behavior from REVs, are treated as a separate entity and integrated into
the network via Commercial Charging Stations (CCSs) in G2V mode exclusively.

End-user consumers actively participate in Demand Response (DR)
scheduling. The DNO manages loads at specific nodes involved in the DR
program through a mutual agreement for sharing benefits between the DNO and
proactive consumers. Load aggregators represent consumers’ interests by
submitting controllable load demands to the DNO. Assuming a non-profit
stance, the DNO operates as a price-taker from the independent system operator
or forecasts electricity prices when engaging in the wholesale market paradigm.
Subsequently, it establishes generation and consumption profiles for DERs based
on dynamic pricing signals, optimizing system utilization and DER deployment.

4.4 Day-Ahead Scheduling Problem Formulation

Traditionally, RESs transmit their power output to the grid whenever it’s
available, leading to potential mismatches between supply and demand. This
study introduces a novel approach where EVCSs and DR modeling are
leveraged to mitigate the intermittent nature of RESs’ power output. Specifically,
an optimal DA schedule for EVCSs is devised to minimize real loss payments
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within the SDS. The DA scheduling problem for EVCSs is dissected into two
parts: one addressing DR modeling and the other handling uncertainties in
electricity prices and load demands. It is assumed that the DNO has the
authority to validate the DA schedules for EVCSs based on dynamic pricing
signals. This research aims to minimize payments associated with real power
losses in the network while adhering to various constraints such as real and
reactive power flow equations, bus voltage limits, EVCS dispatching and storage
constraints, and DR constraints.

4.4.1 Objective Function and Constraints

From a mathematical perspective, the objective function for minimizing real
power loss payments can be formulated as follows:

min ∑
t∈T

ψt.

(
∑

i,j∈E

(
rij.lt

ij

))
(4.1)

In equation (4.1), ψt represents the energy price at the tth time interval, while
equation (4.1) denotes the total real power loss payment over the 24 hours. The
objective function (4.1) is constrained by the following conditions.

−
(

pt
g,j − pt

d,j

)
= Pt

ij − rij.lt
ij − ∑

k:j→k
Pt

jk − Pch,t
CC,j +

[(
Ωt

i .P
dch,t
RC,i

)
−
(
℧t

i .P
ch,t
RC,i

)]
(4.2)

−
(

qt
g,j − qt

d,j

)
= Qt

ij − xij.lt
ij − ∑

k:j→k
Qt

jk (4.3)

υt
j = υt

i − 2.
(

rij.Pt
ij + xij.Qt

ij

)
+
(

r2
ij + x2

ij

)
.lt

ij (4.4)

υt
i .l

t
ij ≥

(
Pt

ij

)2
+
(

Qt
ij

)2
(4.5)

υi := |Vi|2 ∈
{

Vi, Vi
}

and lij :=
∣∣Iij
∣∣2 (4.6)

Equations (4.2)-(4.5) are commonly referred to as the DistFlow equations
within the relaxed branch flow model [212], employed for power flow analysis
during the tth time interval. Initially, these equations were defined utilizing
variables (S, l, υ, s0), which were subsequently transformed into variables
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(
Pij, Qij, lij, (i, j) ∈ E , υi, i ∈ N ,

(
pg − pl

)
0 ,
(
qg − ql

)
0

)
commonly utilized in

the formulation.
Solar photovoltaic panels and wind turbines are supplying real power

pSPV/WT
g,i to the ith bus during the tth time interval, constrained by upper and

lower limits as specified in equations (4.7)-(4.8):(
pSPV

g,i

)t
≤
(

pSPV
g,i

)t
≤
(

pSPV
g,i

)t
(4.7)

(
pWT

g,i

)t
≤
(

pWT
g,i

)t
≤
(

pWT
g,i

)t
(4.8)

The operational behavior of an RCS is illustrated by the REV’s behavioral
tendencies, such as stored energy, time of arrival/departure, and driving
demand.

Et
RC,i = Et−1

RC,i +
[
Earr,t−1

REV,i − Edep,t−1
REV,i

]
−
[(

Ωt
i .P

dch,t
RC,i /ηdch −℧t

i .P
ch,t
RC,i.ηch

)
.∆t

]
(4.9)

Pt
RC,i =

[(
Ωt

i .P
dch,t
RC,i

)
−
(
℧t

i .P
ch,t
RC,i

)]
(4.10)

Ωt
i +℧t

i ≤ 1 (4.11)

Et
RC,i ≤ Et

RC,i ≤ Et
RC,i (4.12)

0 ≤ Pdch,t
RC,i ≤ Pdch,t

RC,i (4.13)

0 ≤ Pch,t
RC,i ≤ Pch,t

RC,i (4.14)

In the above, equation (4.9) signifies the state of charge (SoC)
(

Et
RC,i

)
of an

RCS connected to the ith bus for scheduling. Equation (4.10) represents the total
injected power (Pt

RC,i) into the network. The constraint in Equation (4.11) prevents

simultaneous charging/discharging
(

Pch,t
RC,i/Pdch,t

RC,i

)
. Equations (4.12)-(4.14) set the

upper and lower bounds on Et
RC,i, Pch,t

RC,i, and Pdch,t
RC,i power for an RCS, respectively,

at the tth time interval.
CCS equipped with high-power transfer capacity chargers are exclusively

modeled for Grid-to-Vehicle (G2V) operation mode. Commercial Electric
Vehicles (CEVs), utilized for commercial purposes, have limited integration time
with the grid, making it challenging to allocate sufficient time solely for
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charging. Additionally, upon arrival, their State of Charge (SoC) tends to be close
to the lower limit.

Et
CC,i = Et−1

CC,i +
[(

Pch,t
CC,i.ηch

)
.∆t

]
+ Edep,t−1

CEV,i (4.15)

Et
CC,i ≤ Et

CC,i ≤ Et
CC,i (4.16)

0 ≤ Pt
CC,i ≤ Pt

CC,i (4.17)

In the above, equation (4.15) represents the SoC
(

Et
CC,i

)
of a CCS at tth time

interval. The constraints for the upper and lower limits on CCS variables are
outlined in equations (4.16)-(4.17).

The DR model is defined by the following constraints.

pt
d,i =

(
pt

d,i
)0 × µt

i (4.18)

qt
d,i =

(
qt

d,i
)0 × µt

i (4.19)

(1−Θi.Υi) ≤ µt
i ≤ (1 + Θi.Υi) (4.20)

∑t∈T

(
pt

d,i.∆t
)
= ∑t∈T

(
pt

d,i
)0.∆t (4.21)

∑t∈T

(
qt

d,i.∆t
)
= ∑t∈T

(
qt

d,i
)0.∆t (4.22)

∑i∈Φ Θi ≤ Θ̄ (4.23)

In the equations provided, (4.18)-(4.19) denote the adjusted real (pt
d,i) and

reactive (qt
d,i) power demands, respectively. Equation (4.20) defines the feasible

range within which the demand can be modified. Θi represents a binary variable
indicating whether the ith bus is participating in the DR program. Constraints
(4.21)-(4.22) ensure that the total demand over 24 hours remains constant, i.e.,
matching the original demand. Equation (4.23) limits the total number of buses
permitted to participate in the DR program.

4.4.2 Optimization Model

The formulation of the DA scheduling problem presented here is an MINLP
problem, which stands as a quintessential instance of an NP-complete
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optimization problem. In its inherent structure, an MINLP model can be
articulated as:

min
x

f (x) (4.24)

subject to : c (x) ≤ 0, (4.25)

x ∈ X, xi ∈ Z, ∀ i ∈ {0, 1} (4.26)

where, x =
{

ψt, (Ω/℧)t
i , µt

i , Θi, (P/Q)t
ij , Vt

i , It
ij, (p/q)t

g,i , Pdch,t
RC,i , Pch,t

RC,i,

Pch,t
CC,i, Et

RC,i, Earr,t−1
REV,i , Edep,t−1

REV,i , Et
CC,i, Edept,t

CEV,i

} (4.27)

4.4.3 Control Strategies for RCSs Dispatch

This work employs both single-agent system (SAS) and multi-agent system
(MAS) control strategies to track the optimal DA scheduling solution, contingent
upon the level of data-sharing consensus between the DNO and RCSs.

Single-Agent System (SAS)

In this study, the formulated problem is addressed within a SAS framework
when RCSs reach a consensus to share their data with the DNO and authorize
the control of operational schedules for RCSs. The objective function within the
SAS framework is expressed as follows:

min f (x) = ∑
t∈T

ψt.

(
∑

i,j∈ε

(
rij.lt

ij

))
(4.28)

Multi-Agent System (MAS)

MAS framework can be employed to address the provided optimization model
by decomposing the problem into sub-problems, thereby separating the
independent variables and constraints. In this study, the MAS approach is
utilized when RCSs are unwilling to share their data with the DNO due to
concerns regarding security breaches or other issues. Instead, they provide their
scheduling preferences while seeking to maximize their benefits. The objective
function within the MAS framework is reformulated as follows:
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min f (x) = ∑
t∈T

ψt.
(

∑
i,j∈ε

(
rij.lt

ij

))
+

{
max ∑

t∈T
ψt.
((

Ωt
i .P

dch,t
RC,i −℧t

i .P
ch,t
RC,i

))}
(4.29)

Equation (4.29) introduces the min-max problem, aiming to minimize payment
losses while maximizing the benefits for RCSs when dispatching their available
SoC in an optimized schedule. The MAS strategy demands less computational
time compared to the SAS approach, albeit with a higher likelihood of obtaining
a sub-optimal solution. This study explores the disparity between SAS and MAS
control strategies through simulations. In this study, the branch and bound (BnB)
technique [213] is employed to search for the optimal solution within a bounded
search space, systematically exploring all subsets of potential solutions organized
in a rooted tree structure. Appendix C presents Algorithm 1, which outlines the
BnB algorithm employed for addressing the Mixed Integer Programming (MIP)
problem associated with optimizing the scheduling of RCSs.

4.5 Day-Ahead Scheduling Problem Formulation

Incorporating Uncertainties

The electricity price can fluctuate due to various factors, including competition
among generator companies in the unbundled electricity market, variations in
energy demands from different distribution companies, and contingencies at the
transmission level. To tackle the uncertainty in load demand, it’s modeled to
reflect real-world behavior. Consequently, DNO are consistently vigilant in
mitigating the impact of unforeseen events on the DA schedule, where both
electricity prices and load demands may deviate from forecasted values.

Within this section, we convert the formulated problem into a robust
optimization challenge aimed at addressing the worst-case scenario while
incorporating a predetermined level of conservatism (denoted by Γ). Generally,
an uncertainty set (Uα) is established, defining the realized value (αr

t) of an
uncertain variable (αt) as follows [214]:

Uα =

{
(αr

t = αt + δt.α̂t)|∑
t∈T

δt = Γ, ∀ δt ∈ [0, 1]
}

(4.30)
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where α̂t =


(
αU

t − αt
)

, if αr
t ≥ αt(

αL
t − αt

)
, otherwise

(4.31)

In equation (4.30), δt denotes the prediction error, while αL
t and αU

t represent
the lower and upper limits of the nominal value αt during the tth time interval in
equation (4.31). The parameter Γ can be adjusted from 0 to 24 to control the level
of robustness in the formulated problem, and its value is determined based on the
desired degree of conservatism that the DNO wishes to maintain. Consequently,
the uncertainty sets for electricity price (Uψ) and load demand (Upd) are described
as follows:

Uψ =

{(
ψr

t = ψt + δ
ψ
t .ψ̂t

)
|∑

t∈T
δ

ψ
t = Γψ, ∀ δ

ψ
t ∈ [0, 1]

}
(4.32)

Upd =

{(
(pt

d,j)
r = pt

d,j + δd
t .p̂t

d,j

)
|∑

t∈T
δd

t = Γd, ∀ δd
t ∈ [0, 1]

}
(4.33)

Therefore, the robust version of the problem introduced in Section 4.4 has been
developed, and the objective function is now expressed as follows.

min ∑
t∈T

ψt.
(

∑
i,j∈ε

(
rij.lt

ij

))
+

[
max ∑

t∈T
δ

ψ
t .ψ̂t

(
∑

i,j∈ε

(
rij.lt

ij

))]
(4.34)

The objective function in equation (4.34) poses a min-max problem,
necessitating a bi-level optimization approach. The inner layer maximizes the
effect of uncertainties to address the worst-case scenario, while the outer layer
minimizes deviations from the forecasted value. However, this paper has
reconfigured the bi-level problem into a single-level optimization task to
alleviate computational complexity. This was achieved by redefining equation
(4.34) and subjecting it to the following constraints:

min

[
∑
t∈T

ψt.
(

∑
i,j∈ε

(
rij.lt

ij

))
− ∑

t∈T
δ

ψ
t .ψ̂t

(
∑

i,j∈ε

(
rij.lt

ij

))]
(4.35)

subject to : (4)− (23) and (4.36)

δ
ψ/d
t ∈ [0, 1] ; ∑t∈T δ

ψ/d
t = Γψ/d (4.37)
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FIGURE 4.2: Modified IEEE-12 bus radial distribution system.

(
pt

d,j + δd
t .p̂t

d,j

)
− pt

g,j = Pt
ij − rij.lt

ij − ∑
k:j→k

Pt
jk − Pch,t

CC,j +
[(

Ωt
i .P

dch,t
RC,i

)
−
(
℧t

i .P
ch,t
RC,i

)]
(4.38)(

qt
d,j + δd

t .q̂t
d,j

)
− qt

g,j = Qt
ij − xij.lt

ij − ∑
k:j→k

Qt
jk (4.39)

In the problem formulation outlined in equations (4.35)-(4.39), it is presumed
that the sequences of intervals for deviations in load demand from the forecasted
value adhere to a descending order of electricity price intervals. This assumption
is rooted in the objective of the problem, which aims to enhance robustness against
undesired events.

4.6 Results and Discussion

This section presents simulations conducted for extensive case studies on a
modified IEEE 12-bus RDN, as illustrated in Figure 4.2. RESs are situated at bus
9 in the network, comprising a solar photovoltaic plant with a total capacity of
100 kWp and a wind farm with a rated capacity of 100 kW. REVs can operate in
both Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) modes. Figure 4.3 depicts
the arrival and departure of REVs to and from RCSs located at buses two
(residential area) and seven (commercial area) in the network, with a capacity for
40 and 30 EVs simultaneously, respectively.

As depicted in Figure 4.3, at 7 AM, there are 32 REVs available at the RCS on
bus two, decreasing to 5 by 11 AM as most owners leave for work. Conversely,
the RCS on bus seven starts with 0 REVs at 7 AM, reaching full capacity by 11



Chapter 4. Cost Effective Analysis of Electric Vehicle in Smart Distribution
System

87

FIGURE 4.3: Pattern of REVs arrival and departure at RCSs located
at buses 2 (residential area) and 7 (commercial area).

AM. In the evening, REVs begin departing from the RCS on bus seven starting at
5 PM, reaching 0 total by 10 PM, while arrivals increase at the RCS on bus two
from 5 PM, reaching maximum capacity by 10 PM. CCS integrates into the grid at
bus 12, with CEVs available for charging during the night, from 7 PM to 7 AM. It
is assumed that the bus participating in the DR program is the same as where the
CCS is located (i.e., bus 12) to mitigate the effect of increased load demand due to
the CCS.

The proposed problem is implemented in an AMPL environment using a
KNITRO solver [215], executed on an 11th Gen Intel(R) Core(TM) i5-1135G7 @
2.40 GHz CPU processor with 8 GB RAM. Figure 4.4 illustrates the hourly rated
load demand (in kW) along with the upper and lower uncertainty limits. The
load demand exhibits a morning peak around 11 AM and an evening peak from
7 PM to 8 PM, primarily driven by residential consumption. During the night,
the load demand decreases, with a minimum between 1 AM and 5 AM. It is
assumed that no load will be curtailed during the DA scheduling process.

DNO acquires electricity prices from the utility grid. However, in situations
of uncertainty, the DNO only possesses knowledge of the upper and lower limits
within which the hourly price fluctuates. Figure 4.4 also displays the electricity
prices (in $/kWh) [216] along with their upper and lower uncertainty limits. The
hourly electricity prices significantly increase from 9 AM to 11 AM due to
heightened load demand. There’s a slight decrease around noon, followed by
another peak at 1 PM. Subsequently, prices begin to decline from 2 PM, except
for a surge at 8 PM attributed to high demand during that time interval.
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FIGURE 4.4: Hourly load demand and price characteristics.

4.6.1 Case Studies

Analysis has been conducted on five distinct case studies.

Case-1: Base Case

A base case has been established for comparison and analysis, wherein no RESs
and charging stations are integrated into the system. The total real power losses in
the system amount to 266.96kW, incurring a loss payment of 60.50$. In scenarios
involving electricity price uncertainty, the loss payments would range from 60.50$
(at Γ = 0) to 66.55$ (at Γ = 24), representing varying degrees of conservativeness.
When uncertainties in both electricity price and load demand are factored in, the
real power loss increases by 21.95% (at Γ = 24), consequently inflating the total
loss payment by a maximum of 34.21%.

Case-2: RESs Placed in System

In this scenario, no charging stations are installed, but the integration of RESs
facilitates a bidirectional energy flow in the system. The inclusion of RESs
contributes to a reduction in the total daily real power losses within the network,
decreasing from 266.96kW to 178.67kW, and consequently lowering the incurred
payments from 60.50$ to 37.07$. Figure 4.5 displays the total hourly power
supplied by RESs and compares the hourly power demand from the grid
between Cases 1 and 2. Notably, RESs reach a maximum generation of 155.2kW
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FIGURE 4.5: Hourly power generation from RESs and hourly power
demand from the grid in Cases 1 and 2.

at 1 PM, significantly reducing the power demand from the grid. With RESs
integrated into the network, the hourly load demands from the grid decrease in
Case 2 compared to Case 1.

Case 3: RCSs Placed in System

DA Scheduling of RCSs in SAS Framework: RCSs are scheduled optimally to
minimize real power loss payments. The charging/discharging capacities of EV
chargers at buses two and seven are set at 3.3kW and 6.6kW, respectively. Other
technical specifications for REVs and RCSs are adopted from [217]. In Figure 4.6,
the dispatch states of RCSs at buses 2 and 7 are depicted in red and blue bar
graphs, respectively. It is evident from Figure 4.6 that both RCSs discharge their
available energy from 8 AM to 3 PM when electricity prices are high.
Subsequently, the RCS at bus two continues discharging energy until 9 PM,
while the RCS at bus seven stores energy from 4 PM to 9 PM to reach the initial
SoC. A discharge schedule is initiated for the RCS at bus seven at 8 PM, driven
by slightly higher electricity prices in adjacent intervals. The RCS at bus two is
scheduled for charging from 11 PM to 6 AM when electricity prices are at their
lowest, resulting in a reduction in total loss payment, i.e., 33.79$, despite an
increase in overall load demand throughout the day.

The line graph depicted in Figure 4.6 illustrates the hourly DA schedules for
RCSs situated at buses 2 and 7, with a focus on minimizing losses as the objective
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FIGURE 4.6: Hourly DA schedules for RCSs located at buses 2
and 7, aiming to minimize loss payments (represented by bars) and
minimize losses themselves (represented by lines), are provided in

Case 3.

function. In contrast to the strategy for minimizing real power loss payments,
RCSs at buses 2 and 7 are scheduled to discharge during periods of high load
demand, specifically at 11 AM and from 7 PM to 8 PM. During low-load demand
periods, RCSs store energy to reach their initial SoC. For instance, the RCS at
bus two is scheduled for charging from 11 PM to 6 AM when demand is lower.
Meanwhile, the RCS at bus seven engages in charging between 1 PM and 3 PM,
despite the peak electricity price occurring at 1 PM. Consequently, active losses
have been notably reduced to 176.42kW. However, the loss payment has increased
to 37.05$, compared to 33.79$ when minimizing losses is the objective function.

Table 4.1 presents a comparison of active losses (in kW) and real power loss
payments (in $) across Cases 1, 2, and 3. In scenarios where RESs are not utilized
alongside the operation of RCSs, the calculated network active power losses
amount to 284.02kW, surpassing the base case’s active losses (266.96kW), as
detailed in Table 4.1. This exacerbates the current network condition. Hence,
incorporating RESs offers significant benefits in mitigating the escalating
demand attributed to the integration of numerous RCSs into the network.

DA Scheduling of RCSs in MAS Framework: In this scenario, RCSs
autonomously optimize their schedules to maximize their advantages and



Chapter 4. Cost Effective Analysis of Electric Vehicle in Smart Distribution
System

91

TABLE 4.1: Comparison of active losses (kW) and loss payments ($)
under various cases

Cases
Active Loss payment

loss (kW) ($)

Case-1: No RESs & RCSs placed 266.96 60.50

Case-2: RESs placed & no RCSs 178.67 37.07

Case-3(a): RCSs placed & no RESs 284.02 51.88

Case-3(a): RESs & RCSs placed 193.58 33.79

TABLE 4.2: Technical characteristics for commercial electric vehicle

CEV Parameter Value

Battery capacity 300 kWh

Charging power 40 kW

Charging efficiency 0.92

Minimum energy state 15%

Maximum energy state 95%

Average power consumption 75 kWh/100 km

transmit their preferences to the DNO for DA scheduling. Subsequently, the
DNO incorporates the RCS schedules into the overall DA schedules. The
dispatch schedules for RCSs in Cases 3(a) and 3(b) are compared in Figure 4.7. It
can be observed in Figure 4.7 that the discharging/charging schedules for the
RCS at bus two in Case 3(b) closely resemble those in Case 3(a), except at 7 AM
when RCSs discharge their stored energy to maximize benefits. However, the
schedules for the RCS at bus seven exhibit slight variations compared to those in
Case 3(a); for instance, the RCS begins storing energy at noon as electricity prices
decrease, then discharges again at 1 PM when prices peak. As RCS owners
communicate their scheduling preferences to the DNO, the total benefits for RCS
owners amount to 374.51$, with a corresponding loss payment of 35.52$, which
is higher than the 33.79$ observed in Case 3(a).
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FIGURE 4.7: Comparison between Cases 3(a) and 3(b) regarding the
DA hourly schedules for RCSs located at buses 2 and 7.

Case 4: CCSs Placed in System

It is assumed that during the daytime, CEVs deplete almost all of their battery
energy (ECEV − ECEV = 0.95− 0.15 = 0.80 kWh) before connecting to the grid. In
the current simulation, one CEV is integrated into the CCS available at bus 12.
The CCS charging schedule is executed while the DNO endeavors to minimize
real power loss payments. The technical specifications for a CEV are outlined in
Table 4.2. The DA schedule for the CCS (represented by a bar graph) and the
dispatches for RCSs at buses 2 and 7 (depicted via line graphs) are illustrated in
Figure 4.8. During nighttime when electricity prices are relatively low, the
system experiences losses totaling 202.17kW. However, the associated loss
payment amounts to 34.00$, a slight increase compared to scenarios without CCS
integration. Conversely, when minimizing losses serves as the objective function,
the loss payment incurred by the DNO rises to 37.37$, marking a 9% increase
compared to when minimizing loss payments is the focus.

Case 5: DNO Incorporating Demand Response Model

Bus 12 is enlisted for participation in the DR program, where 10% of the rated
demand for each time interval is deemed controllable and can be shifted during
scheduling. DNO adjusts load demand periods by integrating the DR model into
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FIGURE 4.8: DA hourly schedules for CCS and RCSs in Case 4.

FIGURE 4.9: The controllable load demand undergoes shifts upon
the integration of demand response in Case 5.

the DA schedule optimization aimed at minimizing loss payments. Figure 4.9
presents a comparison between the load demand curve before and after the
incorporation of the DR model. Despite scheduled CEV charging occurring from
11 PM to 6 AM during periods of low electricity prices, load demand remains
unchanged. However, controllable loads from high-price periods (i.e., from 8 AM
to 3 PM, excluding noon when prices dip lower than adjacent intervals, and from
7 PM to 9 PM) are shifted to low-price periods. This results in post-DR load
demand aligning much closer to the ideal load demand, as depicted in Figure 4.9.
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TABLE 4.3: Comparison between loss minimization and loss
payment minimization as objective functions

Cases

Loss minimization Loss payment minimization

Active Loss payment Active Loss payment

loss (kW) ($) loss (kW) ($)

Case-1 266.96 60.50 266.96 60.50

Case-2 178.67 37.07 178.67 37.07

Case-3(a) 176.42 37.05 193.58 33.79

Case-3(b) 205.34 35.52 205.34 35.52

Case-4 184.77 37.37 202.17 34.00

Case-5 184.24 37.36 202.18 33.66

4.6.2 Comparative Analysis

This study examines the contrast between minimizing operational losses and
minimizing real power loss payments through a comparative numerical analysis,
as detailed in Table 4.3. It is observed that focusing on loss minimization leads to
a notable reduction in active losses. However, when prioritizing loss payment
minimization as the objective function, although active losses also decrease
significantly, the associated loss payments are comparatively lower. Minimizing
the financial burden on the DNO is crucial within the context of the current
competitive electricity market paradigm.

This study conducts an impact analysis on uncertainty modeling for
worst-case scenarios using robust optimization techniques. The effects of
applying robust optimization to minimize loss payments under uncertainty, with
a parameter value of Γ = 4, are evaluated and presented in Table 4.4. It is noted
that robust optimization significantly enhances the optimization of DA schedules
for RCSs in both single-agent and multi-agent systems, as evidenced by the
results of Cases 3(a) and 3(b) in Table 4.4.

Table 4.5 presents a comparison of computational complexity between single-
agent system and multi-agent system control strategies by examining the types of
variables and constraints in Cases 3(a) and 3(b). In Case 3(a), the DNO formulates
the optimal DA schedules for RCSs in a single-layer problem to minimize real
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TABLE 4.4: Impact of applying robust optimization (RO) on loss
payment minimization under uncertainty with Γ = 4

Cases

Without RO With RO

Active Loss payment Active Loss payment

loss (kW) ($) loss (kW) ($)

Case-1 280.90 72.90 280.90 72.90

Case-2 188.20 45.17 188.20 45.17

Case-3(a) 201.20 41.96 201.59 40.22

Case-3(b) 212.58 43.63 213.59 42.40

Case-4 209.79 42.19 210.19 40.43

Case-5 209.69 41.76 208.75 39.92

power loss payments. However, in Case 3(b), the DA scheduling occurs in two
stages. Initially, RCSs determine their schedules to maximize their benefits and
communicate their DA schedule preferences to the DNO. Subsequently, the DNO
integrates these RCS schedules and devises overall optimized DA schedules in
the subsequent stage aimed at minimizing loss payments.

4.7 Summary

This work presents a novel approach aimed at optimizing the DA schedules of
EVCSs within the RESs integrated smart distribution system. The optimization
objective is focused on minimizing real power loss payments from the
perspective of the DNO. Through numerical simulations conducted on a
modified IEEE-12 bus RDN, the efficacy of the proposed method is
demonstrated. The findings from extensive case studies underscore the
superiority of the proposed approach over traditional active loss minimization
strategies. Notably, it significantly reduces operational losses within the network
while alleviating the financial burden on the DNO during daily operations in
competitive market environments. Key highlights of the study include:

1. Implementation of DR model to shape load demand profiles, enabling
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TABLE 4.5: Comparison of computational complexities between
single-agent and multi-agent systems in Case-3

Variable and constraint type SAS

MAS

Main Sub-

Problem Problem

Pt
ij 264 264 -

Qt
ij 264 264 -

υt
i 264 264 -

lt
ij 264 264 -(

pSPV
g,i

)t
12 12 -(

pWT
g,i

)t
24 24 -

Ωt
i 48 - 48

℧t
i 48 - 48

Pdch,t
RC,i 37 - 37

Pch,t
RC,i 37 - 37

Pt
RC,i 38 - 38

Et
RC,i 38 - 38

Total no. of variables 1338 1092 246

Bounded variables 508 300 208

unbounded variables 830 792 38

No. of binary variables 96 - 96

total no. of constraints 1180 1056 124

Linear equality constraints 792 792 38

Nonlinear equality constraints 340 264 38

Linear inequality constraints 48 - 48

Computational Time (s) 577.27 0.46 200.56

controllable load shifts from high to low electricity price periods for more
efficient DA operations.
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2. Utilization of robust optimization techniques to address worst-case
uncertainties in electricity price and load demand during DA operations,
with a defined level of conservativeness by the DNO.

3. Integration of single-agent and multi-agent system control strategies based
on consensus in information flow between RCSs and DNO, facilitating the
derivation of DA schedules for RCSs.

4. Overall, the proposed approach offers a practical and effective solution for
optimizing DA schedules of EVCSs for smart distribution system,
prioritizing real power loss payment minimization, and enhancing
operational efficiency in the distribution network.
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Chapter 5

Aggregation and Scheduling of DERs
in Smart Distribution System

5.1 Preamble

This chapter introduces a comprehensive framework aimed at efficiently
administering a substantial array of heterogeneous distributed energy resources
(DERs) functioning within smart distribution systems, with the goal of
optimizing the operations of local energy communities (LECs) and enhancing
grid services. Initially, we establish a methodology for aggregating DERs to
assess their combined flexibility, taking into account factors such as their
preferences, spatial distribution, and temporal dynamics. Following this, we
implement a hierarchical control framework (HCF) to effectively deploy the
aggregated flexibility of DERs. The HCF encompasses three primary entities: an
electric utility (EU) operator, community aggregators (CAs), and individual
DERs. CAs leverage the flexibility derived from the aggregated DERs within
their respective LECs to minimize operational expenses while adhering to
distribution network constraints. Conversely, the EU operator coordinates
dispatch setpoints received from CAs along with disaggregated DERs to regulate
node voltages within the distribution system and mitigate power losses, thereby
enhancing grid services. Through numerical simulations conducted on a
modified IEEE-123 bus radial distribution network, we validate the effectiveness
of our approach in proficiently managing DERs for cost-effective operations and
enhancing grid services.

The remainder of the chapter is organized as follows: In Section 5.2, the
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nomenclature for the variables, and parameters employed in the problem
formulation within this chapter. Section 5.3 provides an overview of the
proposed aggregation and control framework, as well as the branch power flow
model utilized for distribution network modeling. Section 5.4 delves into the
modeling of electric vehicle (EVs) aggregation at charging stations (CS) and the
representation of deferrable loads for the demand response mechanism. In
Section 5.5, the formulation of the HCF-based optimal operation strategy for
local energy communities and the electric utility operator is presented. Section
5.6 presents the numerical results, followed by the summary to encapsulate our
findings and contributions in Section 5.7.

5.2 Nomenclature

Variables

P f low
ij,t , Q f low

ij,t Active, reactive branch power flow between buses i and j at
time t

l f low
ij,t Current flow (squared) between buses i and j at time t

υnode
i,t Node voltage (squared) at bus i at time t

ECS
i,t Residual energy of CS at bus i at time t

Pch,CS
i,t Charging power of CS at bus i at time t

Pdch,CS
i,t Discharging power of CS at bus i at time t

ζDL
i,j,t State of DL j at bus i at time t

ζDL
i,j,t0

State of DL j at bus i in current time slot t0

PDL
i,j,t Power consumed by DL j at bus i at time t

ξtask
i,j,k,t State of task k for DL j at bus i at time t

PRE
i,g,t, QRE

i,g,t Active, reactive power supplied by RESs g at bus i at time t
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Parameters

pFL
i,t , qFL

i,t Inflexible (fixed) active, reactive load demand at bus i at time t

rij, xij Resistance, reactance of a line connecting buses i and j

Na
i,t, Nd

i,t No. of EVs arrived, departed at bus i at time t

Ea,EV
i,n Residual energy of arrived EV n at bus i

Ed,EV
i,n Desired energy at departure of EV n at bus i

ηCS
ch,i, ηCS

dch,i Efficiencies of the charging, discharging power of CS at bus i

ECS
i,t , ECS

i,t Upper, lower bound of the residual energy of CS at bus i at time
t

Pch,CS
i,t Maximum charging power of CS at bus i at time t

Pdch,CS
i,t Maximum discharging power of CS at bus i at time t

Pch,EV
i,n Maximum charging power of EV n at bus i

Pdch,EV
i,n Maximum discharging power of EV n at bus i

EEV
i,n,t, EEV

i,n,t Upper, lower bound of the residual energy of EV n at bus i at
time t

ηdch,EV
i,n Discharging power efficiency of EV n at bus i

ηch,EV
i,n Charging power efficiency of EV n at bus i

tEV
a,n , tEV

d,n Arrival, departure time of EV n

EEV
i,n Minimum of residual energy of EV n at bus i

EEV
i,n Maximum of residual energy of EV n at bus i

αi,j, βi,j Starting, ending time (operational) of DL j at bus i

ζ̂DL
i,j,t State of DL j at bus i in previous time slot t

ZDL
i,j No. of time slots (operational) required by DL j at bus i
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EDL
i,j Energy required by DL j at bus i

Ptask
i,j,k Rated power of task k for DL j at bus i

Ztask
i,j,k No. of time slots (operational) required by DL j at bus i to finish

task k

SRE
i,g,t Apparent power capacity of RES g at bus i at time t

ϕi,g Angle defining power factor of RES g at bus i

PRE, f ore
i,g,t Active power forecast for RES g at bus i at time t

5.3 Framework Overview and Network Modelling

This study considers the various LECs within the distribution network,
comprising both static loads and a variety of DERs, including electric vehicle
charging stations, deferrable loads (DLs), and renewable energy sources (RESs)
represented by photovoltaic (PV) installations and wind turbine (WT) arrays, as
depicted in Figure 5.1. The proposed work posits that CAs are responsible for the
management of DERs dispersed throughout their respective communities.
Moreover, the supervision of LECs and disaggregated DERs, including Energy
Storage Systems (ESs) integrated with PV installations and WT arrays, is
delegated to an EU operator.

For simplicity, a radial distribution network with a single feeder connected to
EU modeled by a tree graph G := (N , E), where i ∈ N := 1, 2, . . . , n represents a
node and (i, j) ∈ E ⊆ N × N represents a distribution line connected ith to jth

nodes. The relaxed branch flow model presented in [212] is employed for power
flows for this network, as expressed in (5.1)-(5.4); where, for each node i ∈ N at

tth time interval, denote υnode
i,t =

∣∣∣Vnode
i,t

∣∣∣2 refers to magnitude squared of node

voltage. Let sFL
i,t = pFL

i,t + jqFL
i,t be node i net complex fixed load demand.

Similarly, for each line (i, j) ∈ E at tth time interval, denote l f low
ij,t :=

∣∣∣I f low
ij,t

∣∣∣2 refers
to magnitude squared of branch current flows from i node to j node. Let
S f low

ij,t = P f low
ij,t + jQ f low

ij,t be the sending-end branch flow from i node to j node. A
solution of (5.1)-(5.4) to a given sFL is denoted by
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FIGURE 5.1: Schematic of the proposed aggregation and control
framework.

x(sFL) := (S f low, I f low, Vnode, sFL
0 ), is unique for practical radial network where

|V0| ≃ 1 and rij, xij are small p.u. values.

pFL
j,t = ∑

i:i→j

(
P f low

ij,t − rijl
f low
ij,t

)
− ∑

k:j→k
P f low

jk,t (5.1)

qFL
j,t = ∑

i:i→j

(
Q f low

ij,t − xijl
f low
ij,t

)
− ∑

k:j→k
Q f low

jk,t (5.2)

υnode
j,t = υnode

i,t − 2
(

rijP
f low

ij,t + xijQ
f low
ij,t

)
+
(

r2
ij + x2

ij

)
l f low
ij,t (5.3)

υnode
i,t l f low

ij,t =
(

P f low
ij,t

)2
+
(

Q f low
ij,t

)2
(5.4)

Moreover, we consider the LEC as a sub-network comprising DERs
interconnected to the distribution feeder line through a single Point of Common
Coupling (PCC). At each time increment, a CA has the capability to monitor
various parameters at the PCC, including voltage levels and the exchange of
active/reactive power with the feeder. The CA aggregates energy requirements
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from dispersed DER units across the LEC and assesses available flexibility to
facilitate efficient dispatching, aiming for optimal utilization of its DERs to
satisfy the energy needs within the LEC. Subsequently, the CA communicates
these dispatch setpoints to the EU operator to address additional energy
demands, while the EU operator endeavors to enhance overall grid services.

5.4 DERs Aggregation Model for EV Fleets and

Residential Flexible Loads

The electrical grid has experienced a significant surge in the integration of EVs
and RESs, notably photovoltaic panels. DERs incorporating diverse technologies,
including deferrable loads, RESs, and EVs, are dynamically reshaping the energy
landscape, directing it towards a more de-carbonized and resilient configuration.
Consequently, acknowledging and leveraging the full potential of DERs becomes
unquestionably paramount. To effectively integrate a considerable number of
DERs into the overall system operation, it is essential to establish an aggregate
model capable of encompassing and accommodating their inherent flexibility.
This study primarily focuses on two pivotal categories of DERs: EV fleets at CS
and deferrable loads. This section delineates the modeling approach employed
for aggregating EV fleets at CS and for aggregating DLs to facilitate demand
response.

5.4.1 Aggregation Model for EV Fleets at CSs

In real-world scenarios, the CS can acquire crucial information about EVs upon
their connection. This data encompasses details such as the time of arrival and
departure, initial and desired energy levels, maximum charging rate, and the
duration for which charging is scheduled by the user [218]. The continuous
influx and departure of EVs lead to a dynamic variation in the EV count at CS
over time. As a result, the EV fleet at the CS is amalgamated into a cohesive unit
with time-sensitive power and energy constraints. This process effectively
outlines the operational parameters of the CS.

1. The power capacity constraints of EV aggregation
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Pdch,CS
i,t ≤ Pdch,CS

i,t −
(

Pdch,CS
i,t

/
Pch,CS

i,t

)
Pch,CS

i,t (5.5)

0 ≤ Pch,CS
i,t ≤ Pch,CS

i,t (5.6)

0 ≤ Pdch,CS
i,t ≤ Pdch,CS

i,t (5.7)

Pch,CS
i,t = Pch,CS

i,t + Pch,EV
i,n∈N

(
Na

i,t − Nd
i,t

)
(5.8)

Pdch,CS
i,t = Pdch,CS

i,t + Pdch,EV
i,n∈N

(
Na

i,t − Nd
i,t

)
(5.9)

Equation (5.5) originates from the Extn-LP approach proposed in [219] for
battery modeling, aimed at streamlining the feasible search space. Constraints
(5.6) and (5.7) define the maximum and minimum bounds on the charging and
discharging powers at the CS located at bus i during time slot t, respectively.
Additionally, (5.8) and (5.9) establish the upper limits for the charging and
discharging powers at the CS at bus i during time slot t, respectively.

2. The energy capacity constraints of EV aggregation

EEV(a,d)
i,t =

Na
i,t

∑
n=1

Ea,EV
i,n −

Nd
i,t

∑
n=1

Ed,EV
i,n (5.10)

ECS
i,t = ECS

i,t−1 +

[
ηCS

ch,iP
ch,CS
i,t −

Pdch,CS
i,t

ηCS
dch,i

]
∆t + EEV(a,d)

i,t (5.11)

(
ηCS

ch,iP
ch,CS
i,t

)
∆t ≤

(
ECS

i,t − ECS
i,t−1 − EEV(a,d)

i,t

)
(5.12)(

Pdch,CS
i,t

)
∆t ≤

(
ECS

i,t−1 + EEV(a,d)
i,t − ECS

i,t

)
ηCS

dch,i (5.13)

ECS
i,t ≤ ECS

i,t ≤ ECS
i,t (5.14)

ECS
i,t = ECS

i,t−1 +

Na
i,t

∑
n=1

EEV
i,n,t −

Nd
i,t

∑
n=1

Ed,EV
i,n (5.15)

ECS
i,t = ECS

i,t−1 +

Na
i,t

∑
n=1

EEV
i,n,t −

Nd
i,t

∑
n=1

Ed,EV
i,n (5.16)
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EEV
i,n,t =


0, t ∈ T\

[
tEV
a,n , tEV

d,n

]
max

 EEV
i,n , Ea,EV

i,n − Pdch,EV
i,n,t

ηdch,EV
i,n

(
t− tEV

a,n
)

,

Ed,EV
i,n − ηch,EV

i,n Pch,EV
i,n,t

(
tEV
d,n − t

)
 , tEV

a,n ≤ t ≤ tEV
d,n

(5.17)

EEV
i,n,t =


0, t ∈ T\

[
tEV
a,n , tEV

d,n

]
min


EEV

i,n , Ea,EV
i,n + ηch,EV

i,n Pch,EV
i,n,t

(
t− tEV

a,n
)

,

Ed,EV
i,n +

Pdch,EV
i,n,t

ηdch,EV
i,n

(
tEV
d,n − t

)
 , tEV

a,n ≤ t ≤ tEV
d,n

(5.18)
In Equation (5.10), EEV(a,d)

i,t represents the net energy at the CS located at bus i
during time slot t, considering the energy received from arriving EVs and
subtracting the desired energy of departing EVs. Equation (5.11) delineates the
energy update procedure for the CS at bus i during time slot t. Constraint (5.12)
governs the charging capacity rate, while (5.13) imposes restrictions on the
discharging capacity rate, as discussed in [219]. Notably, the combination of
(5.12) and (5.6) yields a more stringent condition:
Pch,CS

i,t ≤ min
{

Pch,CS
i,t ,

(
ECS

i,t − ECS
i,t−1 − EEV(a,d)

i,t

)}
, enforcing a tighter upper

bound on the charging power capacity. Similarly, the fusion of (5.13) and (5.7)
results in a more rigorous constraint:
Pdch,CS

i,t ≤ min
{

Pdch,CS
i,t ,

(
ECS

i,t−1 + EEV(a,d)
i,t − ECS

i,t

)}
, establishing a tighter upper

limit on the discharging power capacity. Additionally, (5.14) imposes limitations
on the energy at the CS at bus i during time slot t. Constraints (5.15) and (5.16)
compute the lower and upper boundaries, respectively, for the net energy at the
CS at bus i during time slot t. Finally, constraints (5.17) and (5.18) determine the
permissible operational range for an EV n at the CS at bus i during time slot t.

Illustrative Example

To provide a clearer demonstration of the proposed aggregation model for EVs at
the CS and to compare it with previously reported aggregation models in
references [218] and [220], we conducted a case study involving two specific EVs.
The parameters and assumptions used are derived from reference [218] and are
presented in Table 5.1. We then utilized equations (5.17) and (5.18) to calculate
the operational regions for each of these two individual EVs, with the results
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TABLE 5.1: Parameters of Electric Vehicles

EV tEV
a,n tEV

d,n Ea,EV
i,n Pch,CS

i,t /Pdch,CS
i,t BEV

i,n

1 0 6 4 4 20

2 2 7 12 4 20

FIGURE 5.2: Operation ranges of the individual EV1 and EV2.

FIGURE 5.3: Operation range for EVs aggregation (EV1 and EV2)
models.

shown in Figure 5.2. Furthermore, by employing equations (5.15) and (5.16) from
the proposed model, we determined the operational range for the CS, which
encompasses both EVs. We also provide a comparative evaluation against the
models in references [218] and [220], as depicted in Figure 5.3.

In Figure 5.3, the upper cumulative energy limit of the CS begins to decline in
the fifth time slot due to the operational characteristics of the proposed model.
This reduction is attributed to the need to satisfy the energy requirements of EV1
before it departed from the CS. Subsequent time slots further highlight this
reduction, coinciding with the departures of EV1 in the sixth slot and EV2 in the
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seventh, resulting in their energy becoming unavailable for dispatch. Conversely,
prior methods illustrated in references [218] and [220] demonstrate a different
pattern, wherein the energy limits of EVs continue to accumulate in subsequent
time slots even after they depart from the CS.

Furthermore, previous studies, such as those discussed by [218] and [220],
assume that EVs may charge up to or above the desired energy specified by their
owners, as depicted in Figure 5.3. In this investigation, we pose a critical
question: why would an EV owner be inclined to pay for charging beyond their
desired energy level? Consequently, the proposed method imposes a constraint
on the upper bound to align with the desired energy level at the time of an EV’s
departure, as illustrated in Figure 5.2.

5.4.2 DLs Aggregation Model for Demand Response

Effectively managing various DLs is crucial for preemptively mitigating sudden
surges in power demand within an LEC. To accomplish this, CAs are responsible
for gathering data from consumers, which includes spatial and temporal
operational characteristics, along with the energy requirements linked to specific
household loads. In mathematical terms, the modeling process for aggregating
DLs to offer demand response can be outlined as follows.

ζDL
i,j,t = 0, t ∈ T\

[
αi,j, βi,j

]
(5.19)

t0−1

∑
t=αi,j

ζ̂DL
i,j,t + ζDL

i,j,t0
+

βi,j

∑
t=t0+1

ζDL
i,j,t = ZDL

i,j (5.20)

t0−1

∑
t=αi,j

P̂DL
i,j,t + PDL

i,j,t0
+

βi,j

∑
t=t0+1

PDL
i,j,t = EDL

i,j (5.21)

In equation (5.19), a DL j located at bus i must operate within the designated
operational time interval

[
αi,j, βi,j

]
, as defined by the consumer. Constraint (5.20)

outlines that a DL j at bus i necessitates a total of ZDL
i,j time slots to fulfill all its

tasks, consequently, DL j must commence no later than βi,j − ZDL
i,j + 1 and

conclude no sooner than αi,j + ZDL
i,j . Furthermore, a DL j at bus i has a predefined

energy demand EDL
i,j to complete all tasks, as depicted in equation (5.21).
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FIGURE 5.4: A graphical example of residential DL with distinct
types of tasks.

In the case of a DL j situated at bus i, involving multiple operational tasks
indexed as k = 1, 2, ..., Nj,k, each with different power levels and mutually
exclusive, the description is provided in equations (5.22)-(5.23). However, these
tasks must follow a sequential order, where the completion of the first task must
precede the initiation of the second one, as guaranteed by constraint (5.24).

PDL
i,j,t =

Nj,k

∑
k=1

Ptask
i,j,k ξtask

i,j,k,t (5.22)

ζDL
i,j,t =

Nj,k

∑
k=1

ξtask
i,j,k,t (5.23)

k−1

∑
x=1

t0−1

∑
t=αi,j,k

ξtask
i,j,x,t ≥

(
k−1

∑
x=1

Ztask
i,j,k

)
ξtask

,i,j,x,t0
(5.24)

This article classifies DL tasks according to their operational features,
particularly highlighting the contrast between interruptible and deferrable tasks
versus non-interruptible and deferrable tasks. Figure 5.4 provides a visual
representation illustrating this differentiation in task types. In the depicted
example, the complete time frame for a sequential task spans from 1 to 12; Task 1
requires three-time slots to finish, while Task 2 requires two. Additionally, it’s
demonstrated that Task 1 concludes before Task 2 begins.
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Interruptible and Deferrable Task

For an interruptible and deferrable task, its initiation time may vary within the
specified operational window, indicated by

[
αi,j,k, βi,j,k

]
. Equation (5.25) ensures

that the execution of a DL can be postponed, provided that the postponement
does not exceed a predefined time limit

[
αi,j,k + φi,j,k

]
, where φi,j,k signifies the

acceptable delay duration from the perspective of consumers.

t0−1

∑
t=αi,j,k

ξ̂task
i,j,k,t + ξtask

i,j,k,t0
+

αi,j,k+φi,j,k

∑
t=t0+1

ξtask
,i,j,k,t ≥ 1 (5.25)

Non-Interruptible and Deferrable Task

Deferrable refers to the ability to reschedule a task during the course of the day.
Conversely, once initiated, finishing it without interruption is crucial to minimize
potential decreases in thermal efficiency. Constraints (5.25) and (5.26) are utilized
to define the characteristics of non-interruptible and deferrable properties.

t0+Ztask
i,j,k

∑
t=t0+1

ξtask
i,j,k,t ≥ Ztask

i,j,k

(
ξtask

i,j,k,t0+1 − ξtask
i,j,k,t0

)
(5.26)

5.5 Problem Formulation for Optimal Operations in

SDS

This study integrates an optimal operation strategy based on a Hierarchical
Control Framework to manage the control of DERs flexibility at both the LECs
and EU levels. The main goal of the CA is to facilitate the activation of DERs
within a LEC, guided by signals from the EU operator and grid constraint
considerations, aiming for cost-effective operations. Simultaneously, the EU
operator is responsible for coordinating all CAs and providing dispatch setpoints
to individual DERs on the feeder while factoring in network constraints to
enhance grid services.
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5.5.1 Cost Optimal Dispatch Problem Formulation

CA addresses the following problem formulation to optimize its operational cost
and ascertain the dispatch setpoints for the DERs available within the LEC.

min ∑
t∈T

∑
i∈N

λToU
RL,t

pFL
i,t + ∑

j∈N SL
i

PSL
i,j,t


+λRE,t

(
∑

g∈Gi

PRE
i,g,t

)
+ λToU

CS,t

(
Pch,CS

i,t − Pdch,CS
i,t

)] (5.27)

s.t. (5.1)− (5.26) , υnode
i ∈

{
Vi, Vi

}
(5.28)(

PRE
i,g,t

)2
+
(

QRE
i,g,t

)2
≤
(

SRE
i,g,t

)2
(5.29)

−ϕi,gPRE
i,g,t ≤ QRE

i,g,t ≤ ϕi,gPRE
i,g,t (5.30)

0 ≤ PRE
i,g,t ≤ PRE, f ore

i,g,t (5.31)

The objective (5.27) is aimed at minimizing the overall operational cost. The
first term represents payments from the CA to the EU operator for supplying the
power needed for fixed and deferrable load demands. Here, λToU

RL,t signifies the
standard Time of Use (ToU) electricity rate applicable to power purchased from
the EU. The second term in (5.27) indicates payments from the CA to RESs for
procuring power at a fixed electricity rate, λRE,t. The third term in (5.27) accounts
for the cost of electricity for the net power acquired for CSs. Constraints (5.28)-
(5.31) ensure the feasibility of power flow in the network and adhere to DERs
power bounds.

5.5.2 Problem Formulation for Improving Grid Services

In this work, the objective of the EU operator is to enhance grid services by
minimizing voltage regulation and power loss in the distribution network. This
is achieved by synchronizing with the specified dispatch setpoints from the CAs
and optimizing the dispatch of disaggregated DERs. The mathematical
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formulation for the proposed approach is presented as follows.

min ∑
t∈T

[
∑

i∈N

[
γvd

(
Vnode

i,t −Vnom

)2
]

+ ∑
(i,j)∈E

[
γloss

(
rijl

f low
ij,t

)] (5.32)

s.t. (5.1)− (5.4) f or υnode
i,t ∈

{
Vi, Vi

}
, pagg

i,t (5.33)

pagg
i,t = − ∑

g∈Gi

PRE
i,g,t + Pch,CS

i,t + ∑
j∈N SL

i

PSL
i,j,t (5.34)

(
PRE,DA

i,g,t

)2
+
(

QRE,DA
i,g,t

)2
≤
(

SRE,DA
i,g,t

)2
(5.35)

−ϕi,gPRE,DA
i,g,t ≤ QRE,DA

i,g,t ≤ ϕi,gPRE,DA
i,g,t (5.36)

0 ≤ PRE,DA
i,g,t ≤ PRE, f ore

i,g,t (5.37)

EES
i,t = EES

i,t−1 +

[
ηES

ch,iP
ch,ES
i,t −

Pdch,ES
i,t

ηES
dch,i

]
∆t (5.38)

(5.5)− (5.7), (5.12)− (5.14) f or EES
i,t , Pch,ES

i,t , Pdch,ES
i,t (5.39)

Equation (5.32) comprises two terms: the first term focuses on improving
node voltages, while the second term aims to reduce network power losses. The
symbol γ in (5.32) denotes the weighting assigned to the indices within the
objective function. Constraints described in (5.33)-(5.39) define the permissible
operating ranges for DERs and ensure viable network power flow.

5.6 Results and Discussion

The proposed problem is evaluated using a modified IEEE-123 bus radial
distribution network (RDN), depicted in Figure 5.5. All simulations are
conducted within the A Mathematical Programming Language (AMPL)
environment, employing a KNITRO solver [215]. The simulations are executed
featuring an 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz CPU processor
with 8 GB RAM.
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FIGURE 5.5: Modified IEEE 123 bus radial distribution network.

5.6.1 Description of Test System

The modified IEEE-123 bus RDN has been partitioned into five distinct LECs, as
depicted in Figure 5.5. Each LEC is furnished with CSs, RESs in the form of PV
plants and WT farms, and residential DLs denoted by nodes in red, alongside
fixed load demand represented by nodes in black. Configuration details of the
CSs and simulation parameters, including EV types and EV charging
infrastructure, are obtained from [221]. The power generation profiles of the PV
plants and WT farms are derived from historical supply patterns observed
during peak summer seasons [222]. Operational data, encompassing energy
consumption patterns and scheduling time slots for DLs with multiple tasks, are
adapted from [223]. For simplicity, the operational status is presented at hourly
intervals. Furthermore, several DERs, including RESs with integrated ESs, have
been strategically positioned at bus locations 135, 149, 152, 160, and 197, under
the control of the EU operator to enhance grid services.

5.6.2 Community Power Dispatch

To illustrate the power dispatch within LECs managed by CAs, numerical results
for LEC-1 are provided. LEC-1 configuration includes PV plant installations at
buses 20 and 26, each with an 80 kW capacity, and WT farms at bus 14 (80 kW)
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FIGURE 5.6: Hourly power supplied by RESs in LEC-1.

and bus 250 (220 kW). Additionally, CSs are positioned at buses 1 and 31,
accommodating 140 and 40 EVs with heterogeneous parameters, respectively, as
referred from [221]. Furthermore, there are a total of 252 DLs with a combined
power demand of 1918.15 kW distributed across fifteen buses, capable of
adjusting their power demands for demand response. The total fixed load
demand for LEC-1 is 9435.85 kW, with a consistent hourly demand pattern across
all nodes.

Figure 5.6 depicts the hourly power generation from RESs, showcasing a
peak power output of 212.03 kW during the 18th hour period. The cumulative
power supplied by the RESs over 24 hours amounts to 3596.28 kW. Operational
regions and aggregated energy states for the CSs at buses 1 and 31 are displayed
in Figure 5.7. The shaded area between the upper and lower power trajectories
represents the available aggregate power flexibility for the CSs that effectively
meet the charging requirements for EVs. Furthermore, Figure 5.8 presents the
hourly maximum charging power, aggregated charging power dispatch for the
CSs at buses 1 and 31, and the ToU electricity price derived from [224]. Notably,
an observation is made regarding the reduced charging demand of the CSs
during the 17th to 22nd time intervals, coinciding with elevated ToU prices,
resulting in a significant reduction in operational costs.

In this study, we examine six distinct categories of DLs, with three exhibiting
interruptible task characteristics and the remaining three having
non-interruptible characteristics. The specific parametric data for each DL can be
found in Table 5.2. The net hourly demand of DLs integrated at bus 28 is
illustrated in Figure 5.9. Notably, there are a total of 90 DLs located on bus 28,
evenly distributed among the six categories detailed in Table 5.2. It is
noteworthy that during the 17th to 22nd time intervals, the demand from DLs is
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FIGURE 5.7: The operation ranges and the aggregated energy states
for CSs at Bus 1 and Bus 31 in LEC-1.

FIGURE 5.8: The aggregated charging power of CSs at Bus 1 and Bus
31 in LEC-1.

observed to be zero, coinciding with high ToU electricity prices. Additionally,
Table 5.2 summarizes the total operational costs derived from solving the
optimal power dispatch in LECs by all five CAs, along with other significant
outcomes like power supplied by the EU operator, RESs generation, and power
demanded from CS in an LEC over the 24-hour time horizon.

5.6.3 Dispatch Set-points from EU Operator

This section presents the numerical outcomes related to the dispatch set-points
assessed for the disaggregated DERs within the network, with the aim of
enhancing grid services. Figure 5.10 illustrates the discharge power and energy
state patterns over 24 hours for disaggregated ESs located at buses 149, 135, 152,
160, and 197. Notably, the results indicate that during periods of elevated power
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TABLE 5.2: Daily operation data for considered deferrable loads

Term Interruptible DL Non-Inturruptible DL

DL Type I II III IV V VI

Power Level (kW) 5.475 4.875 3.5 0.65/1.26 1.875 2

Required Time 2 2 4 1/2 2 2

Starting Time 8 1 1 4 8 1

Ending Time 20 24 24 16 20 12

Total Energy Usage 10.95 9.75 14 0.65/2.52 3.75 4

FIGURE 5.9: Net hourly power demand by DL at Bus 28 in LEC-1.

TABLE 5.3: Total Cost of Operation and Power Dispatch in LECs

Term LEC-01 LEC-02 LEC-03 LEC-04 LEC-05

Operation Cost ($) 1323.16 1105.30 743.29 1397.43 60.82

Power Supplied
10240.29 8390.97 5436.16 11251.65 -171.65

by EU (kW)

RES Generation (kW) 3596.28 3924.36 3876.75 6912.71 5885.36

Power Demand
2181.05 830.75 857.47 1216.80 811.04

from CSs (kW)

demand from LECs, the ESs discharge, whereas during low-demand intervals,
the ESs charge to ensure demand fulfillment locally. For instance, during the 15th

hour, when demand is low, all ES units engage in charging, while in the 16th
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FIGURE 5.10: Discharging power and energy states of disaggregated
ESs.

TABLE 5.4: Comparison of Power Losses (kW) and Voltage
Deviation (V2) Under Various Scenarios

γloss× power γvd× voltage

loss (kW) deviation (V2)

Without DERs (No RESs & ESs) 1003.15 552.10

With RESs (No ESs) 855.49 485.46

With DERs (RESs+ESs) 846.68 483.87

hour, when LECs experience high demand, all ES units except the one at bus 149
switch to maximum discharging mode.

Furthermore, a comparative analysis of power losses and voltage deviations
in various scenarios is detailed in Table 5.4. It is worth mentioning that when the
EU operator does not dispatch the disaggregated DERs to fulfill LECs’ energy
demand and when the EU operator utilizes the full potential of DERs, the net
power losses are notably improved by 15.60 %. The findings reveal that effective
management of disaggregated DERs in coordination with the dispatch set-points
received from LECs can significantly enhance grid services, benefitting EU
operator.
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5.7 Summary

The chapter presents a comprehensive framework designed for the effective
management of a substantial fleet of DERs within the smart distribution system,
with a specific emphasis on optimizing operations within LECs and enhancing
grid services at the EU level. Through rigorous numerical simulations conducted
on a modified IEEE-123 bus RDN, the chapter demonstrates the robustness and
effectiveness of the proposed methodology. The results highlight the
framework’s capability to efficiently manage a sizable fleet of DERs within the
distribution system, achieving favorable outcomes in terms of economic cost,
system security, and computational efficiency. The significant contributions of
the work are summarized below.

1. An aggregation model targeted at assessing the combined feasible
operational range for a significant EV fleet stationed at a CS. The approach
notably improves accuracy and computational efficiency, thereby
enhancing the effective management of large-scale EV deployments.

2. Aggregation modelling of DLs characterized by distinct operational tasks,
aimed at streamlining demand response initiatives. The proposed approach
evaluates the impact of a substantial number of DLs on the distribution
system, taking into account their integration within the network.

3. A HCF designed to streamline the collaboration among the EU operator,
CAs, and individual DERs, thereby optimizing DER deployment for
cost-effective operations within LECs and enhancing grid services. This
approach meticulously considers network constraints to ensure effective
management.
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Chapter 6

Conclusions and Future Scopes

This chapter encapsulates the notable outcomes derived from the research,
offering overarching conclusions and discussions on the main findings,
alongside recommendations for potential future research extensions.

6.1 Conclusions

In the foreseeable future, utilities are expected to embrace a greater array of
smart grid technologies, facilitating the development of a distribution system
that is efficient, cost-effective, dependable, and robust. With the growing
adoption of renewable energy sources (RESs) like photovoltaic (PV) modules, the
need for innovative technologies to manage the uncertainties they introduce will
become imperative. Battery energy storage systems (ESs) and electric vehicles
(EVs) are poised to become pivotal in the energy management of future
distribution systems. Additionally, integrating smart buildings and homes will
empower flexible loads to actively engage in demand response initiatives. The
primary goal of this thesis was to delve into optimizing the planning and
functioning of distributed energy resources (DERs) within smart distribution
systems, considering both technical and economic improvements. A summary of
the primary content and conclusions derived from the thesis are as follows.

The second chapter was devoted to introducing an approach that empowers
network operators to concurrently consider multiple criteria for optimal
capacitor siting in the smart distribution system, which was absent in prevailing
optimal capacitor placement techniques. The proposed SE-IM approach offers
flexibility in selecting multiple criteria and allows for combining index scores
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from various methods based on their importance to determine the optimal node
for capacitor bank placement. Later, the particle swarm optimization method
was utilized to evaluate the optimal size of the capacitor bank, considering
whether it is switched or fixed type. The aim of comprehensive techno-economic
improvement was achieved by considering problem formulation that minimizes
the annual energy loss cost while subjected to various operational constraints.
The efficacy of this approach was assessed through implementation on various
radial distribution networks (RDN), including an IEEE-12 bus, 34 standard bus,
and a 108-bus practical RDN of an Indian utility, demonstrating its superiority
over prevailing methods. Furthermore, the analysis of optimal capacitor bank
placement in the presence of distributed generation (DG) and load uncertainty
underscored the approach’s ability to enhance network quantities while
adhering to security and reliability constraints.

Chapter three enfolds a novel method for evaluating weights assigned to
objectives based on the relative importance in a weighted multi-objective
problem concerning optimal DG placement in the smart distribution system. For
this, the proposed approach utilizes the formula of Shannon’s Entropy to
determine the degree of importance of an objective, while considering a range of
technical and economic impact objective functions to formulate the weighted
multi-objective problem to achieve a practical and economically viable solution.
This work further extends the methodology where incorporating the priority
information given by the distribution network planner in an inevitable situation.
The proposed approach’s effectiveness was assessed through its application to a
38-node test system, analyzing various scenarios based on alterations in network
physical properties. A comparative analysis demonstrates that the proposed
method outperforms existing approaches. Additionally, distribution network
buses are classified as voltage-dependent loads to assess the impact of different
load models on DG placement problems. Noteworthy benefits of the method
include its straightforward execution and its compatibility with similar
multi-objective optimization problems.

In Chapter four, a novel approach was presented, focusing on the
optimization of day-ahead schedules for Electric Vehicle Charging Stations
(EVCSs) within a smart distribution system. The primary goal was to minimize
real power loss payments from the perspective of the distribution network
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operator (DNO), ensuring system operational security amid the integration of
RESs and EVs. Additionally, a demand response mechanism was employed to
reduce operational costs by shifting controllable load demands from high-price
to low-price periods without curtailing the overall daily load demand. The
chapter explored a robust optimization technique to address worst-case
scenarios arising from price and load uncertainty, incorporating a predefined
level of conservativeness. Furthermore, a cost-effective analysis was conducted,
comparing the single-agent and multi-agent frameworks based on consensus
between EVCS and DNO for the execution of the proposed problem formulation.
The efficiency of the presented method was demonstrated through numerical
simulations conducted on a modified IEEE-12 bus RDN. Extensive case studies
validate that the proposed approach surpasses the active loss minimization
strategy, significantly diminishing operational losses within the network and
alleviating the financial burden on the DNO during daily operations in a
competitive environment.

In Chapter five, a comprehensive framework was introduced, specifically
designed for the effective management of a significant fleet of DERs within the
smart distribution system. The focus of this framework is on optimizing
operations within Local Energy Communities and enhancing grid services at the
electric utility (EU) level. This involved the development of an innovative
aggregation model for evaluating the operational range of EV fleets and an
approach for demand response initiatives with diverse deferrable loads, taking
into consideration factors like preferences, spatial distribution, and temporal
dynamics. Subsequently, a hierarchical control framework was implemented to
optimize DER deployment, accounting for network constraints and facilitating
coordination among EU operators, community aggregators, and individual
DERs for techno-economic benefits. The robustness and effectiveness of the
proposed methodology were demonstrated through rigorous numerical
simulations on a modified IEEE-123 bus RDN, showcasing the framework’s
proficiency in managing DERs efficiently and achieving favorable outcomes in
economic cost, system security, and computational efficiency.
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6.2 Contributions

The key contributions arising from the research outlined in this thesis include:

1. A new approach for optimal capacitor placement in smart distribution
systems was introduced to achieve comprehensive techno-economic
enhancements. The SE-IM method, the novel model proposed for this
purpose, enables the consideration of numerous indices in the selection of
the optimal node within the distribution network. Subsequently, the model
utilizes particle swarm optimization techniques for the optimal sizing of
capacitors.

2. An innovative method is suggested to remove subjectivity from the
selection of weights associated with objectives in the weighted
multi-objective optimal DG placement problem. The proposed approach
employs Shannon’s Entropy formula to ascertain the relative importance of
an objective function within a given multi-objective problem formulation,
allowing for the impartial evaluation of weights.

3. A thorough and cost-effective analysis has been conducted for EVs within
the smart distribution system. To achieve this, a proposed method
optimizes day-ahead schedules for EVCS within the smart distribution
system, aiming to minimize payments related to active power loss. The
problem formulation integrates demand response modeling to mitigate the
intermittency of RESs and employs robust optimization techniques to
address worst-case scenarios resulting from uncertainties in load demand
and electricity prices.

4. A proposed framework focuses on the aggregation and scheduling of a
significant fleet of Distributed Energy Resources (DERs) within a smart
distribution system, aiming to optimize operations within Local Energy
Communities and enhance grid services at the utility level. An innovative
approach is suggested for aggregating EV fleets and deferrable loads
available in the smart distribution system.
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6.3 Future Scopes

Based on the research conducted in this thesis, outlined below are key
considerations and prospective areas for future exploration and development.

1. There is an opportunity to delve into the application of machine learning
algorithms. By incorporating these algorithms, the objective is to bolster
decision-support capabilities within the proposed approaches, with a focus
on predicting and adapting to dynamic changes. Machine learning
algorithms can be harnessed to analyze historical data, recognize patterns,
and anticipate variations in factors such as energy demand, market prices,
and system behavior. This predictive capability can significantly contribute
to optimizing decision-making processes, enabling more proactive and
adaptive strategies for the management and operation of the smart
distribution system.

2. It is crucial to delve into methods that augment the resilience and
cybersecurity of the proposed framework, particularly in light of the
escalating digitalization of distribution networks. As smart distribution
systems heavily rely on interconnected digital technologies and
communication infrastructure, there is an inherent need to address
potential vulnerabilities and safeguard against cybersecurity threats. By
fortifying the resilience and cybersecurity aspects, the proposed
techno-economic analysis framework can better adapt to evolving
challenges and contribute to the establishment of trustworthy and secure
smart distribution networks in the face of increasing digital complexities.

3. It is essential to investigate the feasibility of real-time implementation of
the proposed methods within operational distribution networks.
Transitioning from theoretical models to practical applications involves
addressing challenges related to data integration, communication
protocols, and the scalability of the proposed approaches.

4. The techno-economic analysis can evolve into a more holistic evaluation
framework, providing insights not only into economic feasibility but also
into the broader societal and environmental implications of implementing
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smart distribution systems. This multi-faceted approach contributes to a
more comprehensive understanding of the overall impact and viability of
the proposed methods in real-world scenarios.

5. A promising avenue for exploration involves the integration of
peer-to-peer (P2P) energy trading platforms and blockchain technology.
This approach aims to foster a more resilient and transparent energy
ecosystem by leveraging decentralized and secure mechanisms.
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Appendix A

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic technique to find the optimum
solution based on the socio-psychological behavior of birds or fish. The algorithm
starts with several random solutions of a particle i as xi =

{
xi 1, xi 2, xi 3, ..., xi j

}
and updates after each iteration k to get the best solution achieved by ith particle
so far as ρbest

i =
{

ρbest
i 1 , ρbest

i 2 , ρbest
i 3 , ..., ρbest

i j

}
. Concurrently, the best solution so

far attained by any particle is also recorded, defined as the global best solution(
ψbest

i j

)
. After each iteration, the velocity νi =

{
νi 1, νi 2, νi 3, ..., νi j

}
and solution

xi j of the ith particle are updated by using following equations:

νk+1
i j = ω× νk

i j +
[
c1 × α1 ×

(
ρbest

i j − xi j

)]
+
[
c2 × α2 ×

(
ψbest

i j − xi j

)] (A.1)

xk+1
i j = xk

i j + νk+1
i j (A.2)

where k is the iteration count, c1 and c2 are the constants and equal to 2, α1 and
α2 represents the random variables and ω represents the inertia weight which
modifies after every iteration as:

ω = ωmax −
[(

ωmax −ωmin
)
× k

Kmax

]
(A.3)

where ωmax and ωmin are the maximum and minimum inertia weights and equal
to 0.9 and 0.4, respectively. In this article, the total 100 number of iterations (Kmax)

are carried out for each case to obtain the optimal solution.
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Appendix B

Techno-Economic Quantities:
Optimal DG Placement Case Results

Table B.1 and Table B.2 present the simulated network quantities following the
optimal integration of DG in the 38-node test system.

TABLE B.1: 38-node test network quantities results obtained for cases
3.6.1, 3.6.2, and 3.6.3 considered in Section 3.6

Case Configuration PLoss (kW) QLoss (kVAr) Vmin (p.u.) AEC ($)

Base Configuration 152.80 101.50 18 / 0.9252 2100053

Case-1

150 kW 135.40 89.30 33 / 0.9316 2070118

300 kW 121.90 80.20 33 / 0.9339 2042458

600 kW 102.90 67.70 33 / 0.9384 1991708

Case-2 6th bus 79.20 57.90 18 / 0.9695 1646869

Case-3

0.80 pf 103.0 67.70 33 / 0.9383 2062490

0.90 pf 101.80 66.80 33 / 0.9383 2033066

1.0 pf 108.20 71.10 33 / 0.9369 2008025
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Appendix C

Branch and Bound (BnB) Search
Technique

A branch-and-bound algorithm involves systematically exploring potential
solutions through a state space search. Imagine the set of candidate solutions as a
rooted tree, with the entire set at the root. The algorithm traverses branches of
this tree, each representing subsets of the solution set. Before enumerating the
candidate solutions of a branch, the algorithm evaluates the branch against
upper and lower bounds on the optimal solution. If a branch cannot possibly
produce a better solution than the best one found so far, it is discarded.
Algorithm 1 represents the BnB search algorithm for obtaining the optimal EV
scheduling solution.
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Algorithm 1 Branch and Bound algorithm for EV Scheduling

1: procedure EVSCHEDLING(EV, Π∗S, Π#
P)

2: L =
{
FEV

0
}

, set DEV
s = { } , DEV

p = { } , i← 0
3: while L ̸= ∅ do
4: FEV

k ← πs pops a node from L
5: if FEV

k is optimal then
6: DEV

p ← DEV
p ∪

{(
φ
(
FEV

k
)

, expand
)}

7: else
8: DEV

p ← DEV
p ∪

{(
φ
(
FEV

k
)

, prune
)}

9: end if
10: if FEV

k is not fathomed and πp
(
FEV

k
)
= expand then

11: FEV
i+1, . . . , FEV

i+a ← expand FEV
k , . . .

12: L ← L∪
{
FEV

i+1, . . . , FEV
i+a
}

, i← i + a
13: end if
14: if an optimal node F ∗(A)

d ∈ L then

15: DEV
s ← DEV

s ∪
{(

℘
(
F ∗(EV)

d

)
− ℘

(
FEV

i′
)

, 1
)

. . .

16: . . . : FEV
i′ ∈ L and FEV

i′ ̸= F
∗(EV)
d

}
17: end if
18: end while
19: return DEV

s , DEV
p

20: end procedure
∗- node selection, # - node pruning
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