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ABSTRACT 

Embeddings are known for their ability to understand semantic relationships, reduce 

dimensionality, and identify patterns in data. These techniques are mostly used in machine 

learning as they are helpful and can easily be integrated into prediction models. Embedding 

techniques such as Word2Vec, TF-IDF, FastText, and Doc2Vec are commonly used for 

software defect prediction tasks. While creating a defect prediction model, picking the suitable 

embedding method is very important. This study undertakes a comprehensive comparison of 

these widely-used embedding techniques within the realm of software defect prediction. The 

analysis is based on a diverse set of Java projects sourced from the open-source Promise 

repository. The evaluation process involved training and testing multiple deep learning models 

to assess the effectiveness of each embedding technique. Several key evaluation metrics, 

including the Matthews correlation coefficient (MCC), specificity accuracy, precision, recall, 

and F1 score, were used to measure performance. The results of this rigorous evaluation reveal 

that Doc2Vec significantly outperforms the other embedding techniques, demonstrating its 

superiority in capturing semantic nuances and contributing to more accurate defect predictions. 

FastText emerges as the second-best performer, surpassing TF-IDF and Word2Vec in various 

metrics. TF-IDF, while effective, falls short of the performance levels achieved by Doc2Vec 

and FastText, but still surpasses Word2Vec, which ranks last in this comparison. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Software development is inherently complex and fraught with numerous challenges. Lots of 

companies are now wasting colossal amounts of their money and resources fixing bugs within the 

computer software. The bugs might be small, but really set up big issues in terms of quality and how 

the system operates. If such bugs are not fixed, then faulty systems will grind to an embarrassing stop. 

This has an effect on user experience and stability of the system, from a consumer's perspective. The 

software defect prediction (SDP) technique is a powerful tool to tackle this situation. It helps avoid 

such faults much before they could be visible in terms of consequences. Such an approach would be 

very important if excellence in software engineering is to be achieved. In this view, it becomes 

indispensable to enrich the efficacy of SDP for expediting the development process of useful software. 

1.2 Problem Statement 

SDP is an AI software tool used by developers in dealing with the problems related to their software. 

It works in hand with predictive models, which focus more on innovation. In fact, all such innovations 

come through the techniques associated with NLP, ML, and DL. These include different types of 

embeddings, such as Word2Vec, GloVe, FastText, TF-IDF, and Doc2Vec. These techniques help to 

convert words into numerical vectors for the algorithms so that they are able to pick up the semantic 

relationships present in textual data. 

Although these have shown promise in improving SDP, there still lacks comprehensive comparison 

across different word embedding techniques within the context of SDP. Thus, there is a need to 

understand the relative performance of the different embedding techniques employed over models for 

SDP tasks. The necessity to confirm that diverse SDP models, integrating embedding techniques, will 

align seamlessly with defect prediction models. 

1.3 Objective 

This thesis aims to contribute significantly to the field of SDP by examining the impact of various 

embedding techniques on SDP tasks. Specifically, it seeks to achieve the following objectives: 

1. Examine the impact of various embedding techniques on SDP tasks. 

2. Conduct a comparative evaluation of commonly used embedding methods, such as 

Word2Vec, TF-IDF, FastText and Doc2Vec. 

3. Analyze the performance of different embedding techniques across multiple evaluation 

metrics specific to SDP. 

4. Evaluate how effective the DL models are when employed for SDP. 

5. Investigate how the integration of embedding techniques with DL models enhances SDP 

outcomes. 

6. Provide insights into selecting suitable embedding techniques tailored to specific SDP 

requirements. 

Through these objectives, the study aims to tell how effective embedding techniques are in enhancing 

SDP and offer guidance for researchers in selecting the most suitable techniques for their SDP tasks. 
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1.4 Dissertation Organisation 

The thesis is structured to systematically and comprehensively address the objectives. Chapter 1 

consists of Introduction which provides the overview of the project clarifying the main objectives and 

discusses the motivation behind the thesis along with the Problem Statement. Chapter 2, deals with 

the Background  wherein the background of the research work is dependent. It generally deals with 

the tech stacks and the important components that is essential and used mojorly in the thesis. Chapter 

3 provides us with the Literature Review or the Related work done in the domain of SDP. It 

summarises and gives the overview of existing research on the application of sequential models for 

software defect prediction. It covers methodologies, datasets, evaluation metrics, and case studies. In 

Chapter 4 goes with the detailed methodology including search strategies. It gives the detailed 

description of all the steps that is followed in the experiment with the inclusion criteria. It also covers 

the data extraction methods, corpus generation methods, how the model is pre-trained and what 

models have been considered for creating the embeddings along with the DL models that were used to 

actually predict the defects in software. It also presents us with the dataset discussion along with every 

version considered for the experiment. Chapter 5, consists of Experimental Setup that is every setup is 

defined in this section. For elaboration this chapter contains the evaluation metrics which helps to 

derive the conclusion of which embedding methods are suitable for Defect prediction model used in 

the research. This chapter also discusses about the hyperparameter settings which were set in order to 

get the desired result. Then finally comes the Chapter 6. That is Result and Discussion Section where 

tables and figure are provided giving defining the result that how things were set up and finally the 

result is achieved. In this section the technical details are present with examples of how each and 

everything is mentioned and taken into consideration. Chapter 7 is the Conclusion section that 

concludes the result. Along with it tells about the future research in the domain of SDP . Lastly the 

Reference section Chapter 8 is provided that shares the materials from where the inspiration had been 

taken. 
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CHAPTER 2 

BACKGROUND 

2.1 Predicting Software Defects 

SDP  is a process of using ML and DL techniques to predict the likelihood of software defects in a 

software system. The goal of SDP is to identify potential defects before they occur, enabling software 

development teams to take preventive measures and improve software quality. 

 

 

Figure 2.1 Flowchart of software defect prediction 

It can be challenging due to the dynamic nature of software development, where software code and 

requirements can change rapidly over time. Additionally, it can be difficult to obtain accurate 

historical data on defects and software metrics, especially in cases where the software system is new 

or has not yet been deployed. 

2.2 SDP Using DL Methods 

For years, ML techniques have played a crucial role in SDP tasks, offering valuable insights into 

potential defects through features extracted from software artifacts. However, traditional ML models 

face challenges when dealing with the complexity and intricacies of textual and image data. In 

contrast, DL techniques have proven to be highly effective for these data types. With their capability 

to automatically learn hierarchical representations from raw data, DL models excel at identifying the 

nuanced patterns and relationships within textual and image data. These methods encompass various 

neural network architectures. Some of the architecture such as Artificial Neural Networks, 

Convolution Neural Networks and Recurrent Neural Networks are often used for SDP. 

 

 



14 
 

 

2.3 Artificial Neural Networks 

A unit is an artificial neuron and is considered the fundamental unit of an artificial neural network. In 

essence, the Artificial Neural Network in a system consists of several layers of units. A layer can have 

a few dozen units or possess millions of them, all depending upon how complex neural networks are 

to be discovered for the data set. A typical artificial neural network is composed of input layers, 

output layers, and hidden layers. The input layer is where data comes in from the rest of the world, 

which the neural network is to appraise or learn about. This data will then pass through one or more 

hidden layers to convert the input into a more useful form for the following layer: the output layer. 

Finally, the output layer gives an output response to the ANNs of the input data given. 

 

Figure 2.2 Artificial Neural Network 

It is within this respect that ANNs are rather critical in the detection of bugs, since complex 

relationships between software data can be well modeled. With these ANNs being layered, they 

automatically identify useful features out of large datasets representing code metrics, bug reports, and 

textual data. This makes it possible for ANNs to identify probable defective patterns, allowing clear 

management proactively by means of the early detection of software problems. ANNs improve the 

accurateness and relevant SDP models by using their deep learning capabilities, making it better 

quality software. They are also making it more dependable in the life cycle of development. They are 

efficient in contemporary designed software development processes due to the flexibility of data 

types. 

2.4 Convolution Neural Networks 

CNNs are an enhanced form of artificial neural networks, primarily utilized for feature extraction 

from grid-like matrix datasets. Take visual datasets, such as pictures or videos, where data patterns are 

very important. The input layer, pooling layer, convolutional layer, and fully connected layers are 

some of the layers that make up a convolutional neural network. The architectural design can be seen 

in figure 2.3.  

The input is processed by the convolutional layer to extract features, the pooling layer reduces 

computation by downsampling the data, and the fully connected layer generates the final prediction. 

By using gradient descent and backpropagation, the network discovers the best filters. CNN are 

generally preferred for image data as they excel in feature extraction. However, 1-D CNN also 

performs well in textual data and hence it is used in areas such as NLP. 
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Figure 2.3 Convolution Neural Network 

CNNs significantly enhance SDP by effectively processing and analyzing code and textual data. 

CNNs are adept at identifying spatial hierarchies and patterns within data through their convolutional 

layers, making them particularly useful for examining code snippets, source code images, and 

structured text. By automatically learning and extracting features relevant to defect prediction, CNNs 

improve the accuracy and efficiency of detecting potential software bugs. Their ability to handle large 

and complex datasets ensures robust SDP models, ultimately contributing to higher software quality 

and more reliable development processes. 

2.5 Recurrent Neural Networks 

A type of neural network called a RNN uses the output from the preceding step as the input for the 

current step. In classical neural networks, all the inputs and outputs are independent of each other. 

However, there occur situations where, due to the previous words, a guess has to be made regarding 

what word is in the next sentence, therefore, they must be remembered. So, to tackle that problem an 

RNN with the help of a Hidden Layer was formed. The Hidden state is the most essential feature of an 

RNN; it's mostly the same with the sequence history. Due to the fact that an RNN retains memory 

associated with the previous input into the network, it's also referred to as the Memory State. 

 

 

Figure 2.4 Recurrent Neural Network 

 

RNNs are ideally suited to be used with SDP because they can deal with sequential data and capture 

dependencies over time. These architectures are more than well known for tasks in which the order of 

events and contexts really matters, such as changes to your code, history of commits, and bug report 

analysis through time. This is mainly because of the recurrence imputed in them, hence equipping 

RNNs with the intrinsic ability of tracking long-term dependencies by storage of a memory of past or 
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previous input sequences in ways of determining the dynamic understanding of how software grows 

and defects potentially introduced. 

2.5.1 Long Short-Term Memory Networks 

The RNNs of this special form, called LSTM networks, manage to alleviate the vanishing-path 

problem, widely present in traditional RNNs. LSTMs use a chain of input, forget, and output gates to 

control the flow of information in such a way that relevant information over a large time step can be 

maintained, while irrelevant data may be ignored. This is particularly valuable in SDP, where very 

long sequences of changes or histories of extended bugs lead to early changes that significantly affect 

later outcomes. LSTMs increase the predictive accuracy of SDP models by capturing long-term 

dependencies and allow them to identify complex patterns of defects that span very long software 

development periods. 

 

Figure 2.5 Architectural Design of GRU and LSTM 

2.5.2 Gated Recurrent Units (GRU) 

In fact, another variant of the RNN was developed to keep its good properties of being able to deal 

with long-term dependencies while at the same time reducing the complexity: the so-called Gated 

Recurrent Unit. In fact, GRUs fold together the input and forget gates, and cell and hidden states, into 

one update gate. This is computationally less complex of a computation during back prop and 

computationally faster to run than LSTMs because it has fewer gates, yet it still copes quite well with 

sequential dependencies. Hence, GRUs can settle on a reasonable balance between performance and 

efficiency, depending on the needs of real-time defect prediction in the codebase evolution analysis 

with SDP. Being lightweight in computation, GRU is competent enough to fit into this task; therefore, 

it can be a good choice for installing defect prediction within pipelines for CI and CD. 

2.6 Embedding Techniques 

High-dimensional data can be represented in various embedding techniques which internalize 

semantic relationships into dense, low-dimensional vectors. Embeddings represent words, phrases, or 

even entire documents as vectors within a continuous vector space based on both syntactic 

relationships and contextual meaning. Word embeddings are done with respect to approaches that look 

at large corpora like Word2Vec, GloVe, and FastText, enabling useful and meaningful comparisons. 

Embeddings are important to both ML and DL tasks because they provide a way to transform complex 

data into forms that can be handled by the model in use, thus helping sentiment analysis, text 

classification, and other tasks.  
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Heterogeneous and complex software data are made meaningful and processable by embedding 

techniques in the context of SDP tasks. The truly complex patterns living within a software artifact 

might not have been fully captured by the traditional approaches followed in SDP, which mostly 

relied on manually created features such as code metrics and historical defect data. The 

methodologies, including Word2Vec, Doc2Vec, TF-IDF, and FastText embeddings, encode syntactic 

and semantic information extracted from the source code and its surrounding documentation into 

continuous vector spaces. These embeddings have realized scalability and adaptability of SDP 

models, allowing for transfer learning where the models trained over one project are applied over 

successfully to others. 

In addition, embedding is expected to improve the handling of large codebases and diversified data 

sources, such as bug reports, commit messages, and documentation, by automatizing the process of 

feature extraction, thus reducing the need for human intervention. This way, resulting SDP models 

will provide much more fine-grained representation of software artifacts, making them on a much 

higher level of accuracy and prediction for more reliable and efficient processes of software 

development.  

2.7 Word2Vec 

A very common word embedding technique for word2vec in NLP aids in converting words into blasé 

vectors of a very low dimension and retains the semantics of the word. Word2Vec is a creation by 

Google, and it learns distributed representations of words based on their contextual usage across a 

corpus. The model has two primary architectures: skip-gram and continuous bag of words (CBOW).

 

Figure 2.6 Illustration of Skip-NGram and CBOW model 

The architecture of the CBOW model predicts a target word from its surrounding context words. For 

example, if we take the sentence "The cat sat on the mat" and we take the word "cat" as the target 

predictive word, then the words "The," "sat," "on," and "the" will be considered context words in 

CBOW for predicting "cat." The vector representations of these context words are needed to be 

summed up, or in other words aggregated, for an architecture to predict the target word. It works well 

in practice for small training sets and gives good results generally when the words are indeed very 

common. 

Given the target word, the Skip-gram architecture predicts the words before it. For example, "The," 

"sat," "on," and "the" are the context words that Skip-gram looks to predict the target word "cat." 

Finally, in order to train, Skip-gram forms context pairs by treating each word as an individual 
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observation. Skip-gram needs a high amount of training data. In contrast, it did better on larger 

datasets and much more competently with less frequent words. 

 

2.8 TF-IDF 

Term frequency-inverse document frequency, or TF-IDF for short, is a statistical metric that is 

frequently used in text mining and information retrieval to assess a word's significance in relation to a 

set of documents. Inverse Document Frequency and Term Frequency are two distinct concepts. 

Together, they make up TF-IDF.  

A term's frequency of occurrence in a document is assessed using the Term Frequency (TF) measure. 

Because every document is different in length, a term may appear far more frequently in longer 

documents than in shorter ones.  

𝑇𝐹(𝑡) =
𝑇𝑁(Number of times term t appears in a document) 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

On the other hand, the Inverse Document Frequency (IDF) component, which is derived from the 

logarithm of the ratio of the total number of documents to the number of documents containing the 

term, determines how uncommon a term is throughout the corpus. Terms that are uncommon 

throughout the corpus but frequently occur in a document have high TF-IDF scores, indicating their 

importance in characterizing the content of the document. The following is the formula for term 

frequency. 

𝐼𝐷𝐹(𝑡) =
log𝑒(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑖𝑡
 

The TF and IDF scores for each term in a document are multiplied to create TF-IDF scores, which are 

weighted scores that represent a term's importance both locally within the document and globally 

throughout the corpus. High TF-IDF score words are valued and frequently utilized as features or 

keywords in a variety of text analysis tasks, such as keyword extraction, text classification, and 

document ranking. The flexible and popular TF-IDF approach helps to extract valuable insights and 

patterns from textual data by giving textual information a numerical representation. 

2.9 FastText 

FastText is a state-of-the-art word embedding technique developed by Facebook's AI Research (FAIR) 

lab. It builds upon the success of Word2Vec but introduces several improvements, particularly in 

handling out-of-vocabulary words and subword information. FastText trains word vector models very 

quickly. In less than ten minutes, you can train roughly one billion words.  
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Figure 2.7 Binary tree sturcture followed by FastText 

It uses a binary tree to represent the labels in this method. In a binary tree, each node stands for a 

probability. The probability along the path leading to a given label represents that label. This indicates 

that the labels are represented by the binary tree's leaf nodes. 

Deep neural network models can be difficult to train and test. These methods use a linear classifier to 

train the model. Using this model, one can develop algorithms to obtain vector representations of 

words through supervised or unsupervised learning. It also evaluates these models. FastText supports 

both the CBOW and Skip-gram models. FastText handles uncommon and out-of-vocabulary words 

efficiently by representing words as bags of character n-grams, in contrast to Word2Vec, which 

represents each word as a single vector. This enables it to capture morphological information. 

FastText is especially helpful for tasks involving large vocabularies or languages with complex 

morphology because it can generate embeddings for words that are not present in the training data by 

taking subword information into consideration. 

Like Word2Vec, FastText trains on a skip-gram model with negative sampling; however, it 

incorporates character n-grams into the model architecture. This makes it possible for FastText to 

record more detailed semantic information and enhance the quality of word embeddings, particularly 

in tasks involving uncommon or misspelled words and morphologically rich languages. 

2.10 Doc2Vec 

Extending the Word2Vec model, Doc2Vec is a neural network-based method for producing document 

embeddings. Documents can be represented as continuous vector representations thanks to Doc2Vec, 

which learns embeddings for entire documents in contrast to Word2Vec, which learns embeddings for 

individual words. 
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Figure 2.8 Distributed memory architechture for Doc2Vec model 

The Paragraph Vector model, which comes in two flavors: Distributed Memory (DM) and Distributed 

Bag of Words (DBOW), is the most widely used implementation of Doc2Vec. With the help of 

document vector and surrounding word vectors, DM variant model gets to predict the next word in a 

context. On the other hand, DBOW uses only the document vector to guess randomly chosen words 

from the text. For example to create dense fixed-length vectors that can capture semantic meaning and 

contexts of a document, Doc2Vec uses neural networks to extract semantic information from 

documents. These embeddings are useful for document classification, grouping and similarity 

retrieval tasks in textual analysis where relationships between documents are maintained.
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LITERATURE REVIEW 

Word embeddings work by representing text in n-dimensional space. They are essential for solving 

NLP-related problems. One such problem in identifying Swahili Smishing communications directed 

at mobile money customers is emphasized by S. Iddi et al. [3]. These techniques allow for efficient 

classification by capturing semantic links in text, which is crucial for differentiating genuine messages 

from smishing ones. Similarly, to establish a unified feature space for text and image modalities, 

Zongwei [4] introduced a multi-modal approach by integrating TF-IDF features with LSTM networks 

for capturing sequential information. The incorporation of TF-IDF helps in refining the image 

modalities. 

Emotion processing is becoming an important research area in fields such as data analysis and NLP. 

For analyzing emotion, it is important to capture the presence of specific words along with their 

relationships with other words. Sabery [5] proposed a hybrid model for emotion analysis by 

combining the Deep Belief Network with TF-IDF and Glove. The embeddings helped outperform the 

baseline models in several metrics. In a similar context of emotion analysis, Canales [6] achieved 

efficient data annotation through Word2Vec embeddings, enhancing the categorization process of 

different emotions. 

In the context of SDP, the role of defect prediction models becomes equally important as the 

embedding techniques. For a longer period of time, conventional ML approaches have been used in 

creating prediction models. The issue with these approaches lies in capturing the semantic relationship 

among textual data. In comparison to these approaches, neural networks perform better with image 

and textual data. Using a DL approach, Miholca [7] significantly improved defect prediction, 

outperforming conventional methods in the Calcite program. The significance of SDP is also 

highlighted by Nevendra [8] in concerns regarding software complexity. The research shows notable 

performance gains by comparing DL techniques across open-source projects. This change in strategy 

creates new opportunities for improving defect prediction models. 

Using hybrid features [9] is advantageous, making defect prediction models more flexible. Wang 

cleverly combined the AST and Control Flow Graph (CFG) via the Graph Isomorphism Network to 

push SDP with H-GIN as evidence. With respect to the PyTraceBus dataset, H-GIN demonstrated 

better prediction accuracy than earlier approaches. Similarly, graph neural networks (GNN) and 

transformers were used to create a novel model that Tang and He presented [10]. Their technique, 

which included absolute and relative locations in the AST, addressed the local learning constraints of 

GNN and showed superior F-measure and improved detection of faulty features on the PROMISE 

dataset. 

Another hybrid model Siamese dense neural networks (SDNNs) proposed by Zhao etal. [R16], which 

capitalize on their capacity to learn from small amounts of data. To improve prediction accuracy, 

SDNNs combine learning of distance metrics and similarity features. In order to capture high-level 

similarity features and use a contrast loss function for prediction, the model is constructed and trained 

in two stages. The competitive performance of SDNNs is demonstrated through comparison with 

state-of-the-art SDP approaches across 10 datasets, exhibiting notable improvements in prediction 

accuracy when compared to benchmarked methods. 

A dataset of more than 400 thousand articles from design pattern books was used by D. Liu et al. for 

DPWord2Vec [11], a technique to concurrently embed design patterns and natural language words 

CHAPTER 3
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into vectors. According to evaluation, DPWord2Vec performs 24.2\%–120.9\% better than baseline 

algorithms when assessing word and design pattern similarity. Additionally, DPWord2Vec enhances 

design pattern tasks by 6.5\%–70.7\%, including tag suggestion and selection. A similar approach to 

learning from datasets was used in a technique for proposing Web services for superior Mashup 

applications put forth by B. Cao et al. [12]. Their method uses Word2Vec for semantic representations 

from service descriptions and creating a service relationship network, combining bilinear graph 

attention representation with xDeepFM quality prediction. The findings on the ProgrammableWeb 

dataset demonstrate better performance in terms of accuracy and recall compared to other approaches. 

The effect of issue classification using data from seven open-source repositories on SDP datasets is 

discussed by Petar Afric [16]. FastText is one of the four classification techniques that are compared. 

The results show that FastText has a big impact even though the RoBERTa model generates the 

highest quality datasets. While SDP models trained on FastText-classified datasets do not outperform 

those trained on RoBERTa, they still yield insightful results. The study shows that while FastText can 

increase issue classification accuracy, its ability to improve SDP model performance is not as strong 

as that of the RoBERTa model. 

The ensemble-based ML approaches [17] for software defect prediction from 2018 to 2021 are 

reviewed and evaluated in this review paper. Poor prediction still occurs despite advances because of 

problems with redundancy, correlation, and unbalanced data. Gaps in existing methods are exposed 

through the analysis of multiple viewpoints, evaluation criteria, and ML techniques. To overcome 

these obstacles and boost prediction performance in software defect detection, the paper promotes 

strong hyperparameter optimization, improved feature engineering, and the creation of stacking and 

averaging models. 

Using ML [18] tackles the problem of class imbalance in software defect prediction (SDP). Several 

important conclusions are drawn from the research's systematic evaluation of 27 datasets, 7 

classifiers, 7 input metrics, and 17 imbalanced learning techniques. Low imbalance is present in most 

datasets, which has little impact on traditional learning. On the other hand, performance is severely 

hampered by moderate to high imbalance. In this case, imbalanced learning may be advantageous, 

though outcomes may differ. The classifier type has the biggest effect on performance; input metrics 

have less of an impact. The imbalanced learning method comes in second. For moderately to highly 

imbalanced datasets, the study suggests using imbalanced learning. To prevent unfavorable outcomes, 

it is important to carefully choose the classifier-method combinations. 

A greedy Extractive Summarization algorithm [19] enhanced by Variable Neighborhood Search 

(VNS) is used to summarize scientific articles from arXive and PubMed. Sentences with high TFIDF 

values are given priority by the algorithm, which also adjusts document frequency for TFIDF 

vectorization. It attains ROUGE-1/ROUGE-2 scores of 0.40/0.13 on PubMed and 0.43/0.12 on 

arXive, which are on par with the performance of cutting-edge models that make use of sophisticated 

neural networks and substantial computing power. This method, in contrast to these sophisticated 

models, is based on simple statistical inference, showing that less complex methods can still yield 

high-quality summaries. 
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CHAPTER 4 

METHODOLOGY 

The methodology encompasses several key stages aimed at effectively analyzing Java code for bug 

prediction. The stages are described in a detailed manner in the coming subsections as follows: 

4.1 Corpus Generation from using AST 

The Python library javalang is used to represent the Java code in a tree-like structure that is the AST 

of the code. The Java code is taken from different Java projects described in Section 4.1. The Javalang 

library may be obtained from https://github.com/c2nes/javalang. There are two components in it: a 

lexer and a parser made specifically for Java [13]. Within the AST, each node corresponds to a 

specific construct such as MethodDeclaration, IfStatement, or VariableAccess, pinpointing 

occurrences within the source code. As a result, the AST facilitates the generation of a comprehensive 

corpus for each Java project. This corpus is used for fine-tuning the pre-trained TF-IDF, Word2Vec, 

Doc2Vec and FastText models. 

4.2 Generation of Sequence Tokens 

The categories of AST nodes selected as tokens are control flow nodes, class declarations, and method 

invocations, which are also depicted in Table. 1. A new sequence token file is created for every 

version of the Java project (for example, Ant 1.5), and when any of the selected tokens in the table is 

detected within the corpus generated by the AST, that token is appended to the sequence token file. 

This procedure iterates for every version of the Java project, thereby composing the sequence tokens. 

These tokens are subsequently utilized as input for the models to generate embeddings. 

4.3 Fine Tuning of Pre-Trained Model 

Transfer learning is employed by importing Word2Vec and TF-IDF models from Gensim and Scikit-

Learn libraries, respectively. The models are trained on the corpus generated by AST for each Java 

project. These trained models are fed with tokens to generate the embeddings. 

TF-IDF Vectorizer, imported from scikit-learn, is trained on the corpus. The vectorizer is fitted to the 

data using ‘fit-transform()‘, analyzing text, constructing vocabulary, and calculating TF-IDF scores. 

The resulting sparse matrix represents documents, words, and TF-IDF scores, forming the trained TF-

IDF model.  

The Word2Vec model is imported from the Gensim library to train on a corpus generated by AST. 

Specific parameters are used to initialize and train the model, such as a vector size of 100 words, a 

window size of 5, a minimum count of 5 and an epoch of training the model that is equal to 10. 

The Doc2Vec model is imported and trained based on a corpus produced by AST. Document 

embeddings which represent each document in a vector space are learned by it. The key parameters to 

initialize this model are: vector size (100), window size (5) and minimum word count (5).With 10 

epochs, the model iterates over the dataset 10 times for training. Utilizing 4 CPU cores speeds up the 

process.  

For FastText, we have initialized the imported model with parameters including vector size (100), 

window size (5), and minimum word count (5). The model undergoes 10 training epochs, utilizing 4 

CPU cores for computational efficiency and accelerating the training process. 
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4.4 Generation of Embeddings and workflow 

After subjecting the pre-trained models to fine-tuning with the corpus generated by AST, the sequence 

tokens extracted from each version of the project are then inputted into the trained models. By doing 

so, the models are able to produce embeddings that reflect the underlying contextual information 

embedded within the code. 

The whole process, as depicted in Fig. 4.1, goes by training a DL model using the vector 

representations obtained from the pre-trained models. This model is geared towards executing a 

specific task of defect prediction. The training process starts by inputting the embeddings into the 

model and iteratively refining model parameters to enhance performance. 

 

Figure 4.1. The process of defect prediction (a) Parsing the java code using AST. (b) Creating vectors 

using embedding techniques. (c) Training of DL model (d) Performing defect prediction 

4.5 Comparison of Techniques 

The output of the trained DL model assigns ”1” for bugs detected and ”0” for bug-free software. After 

getting the final output, a comparative analysis is conducted to evaluate the embeddings based on the 

evaluation metrics. 

This step assesses which embedding technique contributes more effectively to the model’s 

performance. The important performance indicators used in this thesis are described furtherin section 

5.2. Each of the embedding techniques is compared to one another on common terms based on 

evaluation metrics. 
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CHAPTER 5 

 Experimental Setup 

This section outlines the dataset utilized, the baseline DL model selected for comprehensive analysis, 

the hyperparameter setting, as well as the evaluation measures included in the experiment. 

5.1 Dataset Used 

The dataset used in this research is a set of 10 open-source Java projects that are taken from the 

PROMISE repository. The list of Java projects is given with their descriptions in Table 5.1. 

Table 5.1 Description of project along with their version 

 

5.2 Evaluation Measure 

A variety of evaluation metrics were employed as assessment measures to provide a full examination 

of the model’s performance across varied criteria. In the following equations, there are several key 

terms, which are mentioned below: 

1. True Positive (TP): Instances correctly classified as positive by the model. 

2. False Positive (FP): Instances incorrectly classified as positive by the model. 

3. True Negative(TN): Instances correctly classified as negative by the model. 

4. False Negative(FN): Instances incorrectly classified as negative by the model. 

Precision is the ratio of correctly predicted positive outcomes to all the predicted positive outcomes by 

the model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

Recall measures the proportion of actual positive cases that were correctly identified by the model. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
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The F1 Score is the harmonic mean of precision and recall. It is given as following. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

Accuracy is the ratio of correctly classified instances (both positives and negatives) to the total 

number of instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁
  

 

MCC is a measure of the quality of binary classifications. It is especially useful for evaluating models 

on imbalanced datasets. 

𝑀𝐶𝐶 =
TP ∗ TN − FN ∗ FP

√(TN + FN)(FP + TP)(TN + FP)(FN + TP)
 

FNR is the proportion of actual positive instances that were incorrectly classified as negative. 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

FPR is the proportion of actual negative instances that were incorrectly classified as positive. 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

TNR, also known as Specificity, is the proportion of actual negative instances that were correctly 

identified by the model. 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

These metrics are fundamental in evaluating the performance of classification models, particularly in 

distinguishing between the different types of errors and successes the model makes. 

5.3 Hyperparameter Settings 

Training spanned 200 epochs to ensure comprehensive data learning. For ANN architectures, a 

sigmoid activation function was utilized throughout the layers, while rectified linear unit (ReLU) 

activation was applied in dense layers of RNNs (LSTM and GRU) with sigmoid activation in the 

output layer. Binary crossentropy served as the loss function across all models, optimized by the 

Adam optimizer. A batch size of 32 was chosen for computational efficiency and model stability. Two 

dense layers with 64 and 32 neurons, respectively, were employed to capture intricate data patterns. 

For CNN architecture, 1D convolutional layers were leveraged to capture spatial dependencies in 

sequential software data, thereby enhancing overall model performance. 
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CHAPTER 6 

RESULT 

In this section, the performance of all the embedding techniques such as Word2Vec, Fast Text, TF-IDF 

and Doc2Vec across the four discussed DL models is presented. Tables [6.1]–[6.16] contain the 

projects on which the models are trained, along with the mean values of accuracy (Acc.), precision 

(Prec.), F1-score (F1), and MCC is calculated from various versions of the same projects. For 

instance, the Lucene project had versions 2.0, 2.2, and 2.4. Training on version 2.0 and testing on 

version 2.2 yielded an accuracy of 0.63, while training on version 2.2 and testing on version 2.4 

resulted in an accuracy of 0.61. The mean accuracy, calculated as 0.62, is included in the table. 

Detailed metrics are available at https://github.com/GauravSharma171691/Results-Word-TFIDF.  Fig. 

6.1 depicts mean FPR and FNR values for different embeddings TF-IDF (T) and Word2Vec (W), 

Doc2Vec(D) and FastText(F) across different project versions. 

With the help of tables, we can see that models with Doc2Vec outperforms other embeddings 

exhibiting superior performance compared to models those leveraging other embeddings. The order of 

comparison is Doc2Vec, FastText, TF-IDF and Word2Vec (Doc2Vec being the best among others). 

Models with Doc2Vec embeddings have higher precision, F1-score, accuracy, MCC, and TNR. 

Higher values of Precision, F1 Score, Accuracy, and MCC show that the model is better and effective 

at classification tasks. Table (6.17) and (6.18) illustrates the average performance of DL models when 

employed with embeddings, respectively. The tables clearly describes the average performance of 

embedding techniques based on key performance metrics such as Accuracy, Precision, MCC, Recall 

and TNR. 

The performance of the models trained in this study heavily depends on various aspects of the data it 

is trained on.  

1. Too small dataset can lead to poor performance of model on unseen data. 

2. Too large dataset may create models with many parameters affecting the deployment of 

model. 

In this research, within-project defect prediction (WPDP) is used. In WPDP, the models are trained on 

a version of the project and tested on another subsequent version of the same project. This situation's 

performance can be improved by using cross-project defect prediction (CPDP) [15], where the model 

can be trained on one project and tested on another project. 

Table 6.1 CNN based model using Word2Vec Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2372 0.9725 0.3805 0.2406 0.0619 

Camel 0.1877 0.9927 0.3148 0.1954 0.0694 

Ivy 0.2625 0.9674 0.413 0.2751 0.0142 

Jedit 0.1311 0.9567 0.2203 0.1397 0.1053 

log4j 0.6498 0.9705 0.7357 0.6623 0.0819 

lucene 0.621 0.9907 0.7633 0.6235 0.1071 

poi 0.4691 0.9877 0.5944 0.4752 0.0263 

synapse 0.2741 0.9819 0.4286 0.28 0.0161 

xalan 0.6484 0.9977 0.7608 0.6475 0.0266 

xerces 0.1667 0.9792 0.2848 0.169 0.0744 

https://github.com/GauravSharma171691/Results-Word-TFIDF
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Table 6.2 CNN based model using TF-IDF Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2517 0.9879 0.4012 0.2802 0.0861 

Camel 0.2854 0.4644 0.3357 0.7178 0.1929 

Ivy 0.0835 0.975 0.1538 0.1006 0.0085 

Jedit 0.1993 0.9293 0.3125 0.4179 0.2486 

log4j 0.6579 0.9825 0.7496 0.676 0.0746 

lucene 0.6144 0.9906 0.7598 0.6159 0.068 

poi 0.4785 0.9873 0.5972 0.4819 0.0504 

synapse 0.2576 0.9833 0.4083 0.2565 0.1112 

xalan 0.6489 0.9975 0.761 0.6491 0.0065 

xerces 0.1535 0.9846 0.2656 0.1955 0.069 

 

Table 6.3 CNN based model using FastText Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.4987 0.3736 0.3977 0.7529 0.4179 

Camel 0.2425 0.2745 0.2563 0.6414 0.1317 

Ivy 0.224 0.1165 0.206 0.683 0.159 

Jedit 0.3228 0.5698 0.3824 0.8101 0.4624 

log4j 0.7625 0.4234 0.5341 0.5549 0.2515 

lucene 0.6178 0.7533 0.6785 0.6094 0.2866 

poi 0.4323 0.4787 0.3694 0.4584 0.0512 

synapse 0.4643 0.3535 0.4088 0.6581 0.3134 

xalan 0.6182 0.3705 0.4786 0.4939 0.0302 

xerces 0.2167 0.2001 0.208 0.7751 0.1158 

 

Table 6.4 CNN based model using Doc2Vec Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.4686 0.3739 0.3976 0.7486 0.3599 

Camel 0.2266 0.2845 0.2262 0.638 0.0782 

Ivy 0.2501 0.1284 0.1834 0.9087 0.1802 

Jedit 0.3199 0.5369 0.3809 0.8114 0.4525 

log4j 0.8582 0.4013 0.59 0.5453 0.3196 

lucene 0.6948 0.5488 0.6134 0.5508 0.2084 

poi 0.4822 0.4647 0.3935 0.4459 0.0711 

synapse 0.4746 0.3679 0.413 0.6691 0.2641 

xalan 0.6705 0.3718 0.497 0.5306 0.1161 

xerces 0.3145 0.2434 0.2743 0.8227 0.2625 
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Table 6.5 ANN based model using Word2Vec Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.23765 0.9785 0.3817 0.23975 0.0579 

Camel 0.1859 0.9927 0.31255 0.18715 0.04575 

Ivy 0.0856 0.9714 0.1574 0.1333 0.0347 

Jedit 0.13125 0.956733 0.22105 0.145575 0.0818 

log4j 0.6506 0.97055 0.73485 0.65965 0.1254 

lucene 0.614 0.99395 0.7589 0.6131 0.021 

poi 0.29847 0.98767 0.5934 0.3037 0.0409 

synapse 0.2769 0.9818 0.432 0.29 0.0269 

xalan 0.6489 0.99767 0.7612 0.64853 0.02 

xerces 0.1661 0.9792 0.284 0.1655 0.1318 

 

Table 6.6 ANN based model using TF-IDF Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2465 0.99155 0.3945 0.2595 0.0378 

Camel 0.1893 0.9939 0.3179 0.2075 0.05895 

Ivy 0.0833 0.975 0.1535 0.0985 0.0136 

Jedit 0.1646 0.9509 0.2744 0.4367 0.1767 

log4j 0.7612 0.87955 0.81275 0.83605 0.2271 

lucene 0.61305 0.99405 0.75835 0.6116 0.0324 

poi 0.47705 0.9866 0.59737 0.480033 0.07843 

synapse 0.2794 0.9733 0.4324 0.3468 0.0867 

xalan 0.4724 0.9974 0.64185 0.47295 0.0206 

xerces 0.3145 0.2434 0.2743 0.8227 0.2625 

 

Table 6.7 ANN based model using FastText Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.3913 0.710155 0.462935 0.71735 0.24405 

Camel 0.263 0.60663 0.36692 0.62095 0.2219 

Ivy 0.145 0.600375 0.20712 0.487125 0.07727 

Jedit 0.34135 0.655233 0.433403 0.7447 0.46933 

log4j 0.6819 0.6343 0.65695 0.60955 0.2042 

lucene 0.66675 0.678015 0.66205 0.592525 0.21563 

poi 0.3086 0.70963 0.393605 0.452278 0.09813 

synapse 0.3661 0.63423 0.4385 0.62483 0.2282 

xalan 0.4917 0.531435 0.49385 0.5211 0.09715 

xerces 0.1938 0.416095 0.25898 0.64781 0.1149 

 

 



30 
 

 

 

Table 6.8 ANN based model using Doc2Vec Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.58175 0.426203 0.47462 0.824787 0.47091 

Camel 0.23525 0.429635 0.294722 0.737234 0.204105 

Ivy 0.18125 0.147125 0.153888 0.8735 0.119503 

Jedit 0.34563 0.635923 0.42873 0.823402 0.52774 

log4j 0.81975 0.471345 0.595833 0.60313 0.31713 

lucene 0.71305 0.68333 0.69774 0.64546 0.34254 

poi 0.477 0.552714 0.42744 0.508932 0.11932 

synapse 0.6471 0.210795 0.318513 0.813402 0.410025 

xalan 0.6718 0.58441 0.651973 0.52783 0.05844 

xerces 0.2903 0.273925 0.29138 0.803965 0.19661 

 

Table 6.9 GRU based model using Word2Vec Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2553 0.95045 0.39378 0.251533 0.06643 

Camel 0.18565 0.9927 0.31158 0.1867 0.02966 

Ivy 0.0818 0.939 0.14857 0.153125 0.03414 

Jedit 0.197133 0.896767 0.295867 0.448533 0.12959 

log4j 0.67715 0.7856 0.72048 0.7759 0.23524 

lucene 0.61155 0.99345 0.75605 0.6091 0.0503 

poi 0.4681 0.987667 0.629733 0.535 0.17515 

synapse 0.2394 0.93085 0.3775 0.2768 0.08615 

xalan 0.6498 0.997667 0.783167 0.646733 0.01925 

xerces 0.2095 0.95415 0.31398 0.2175 0.06698 

 

Table 6.10 GRU based model using TF-IDF Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2286 0.9801 0.3628 0.3188 0.11807 

Camel 0.1719 0.99255 0.28655 0.173 0.0339 

Ivy 0.0874 0.9778 0.1601 0.16955 0.05594 

Jedit 0.15675 0.945 0.2589 0.3802 0.10366 

log4j 0.65155 0.97995 0.78135 0.6207 0.132 

lucene 0.61255 0.99405 0.75535 0.6101 0.04795 

poi 0.507367 0.964967 0.6639 0.507867 0.1968 

synapse 0.23835 0.9837 0.3816 0.2898 0.0271 

xalan 0.6485 0.997233 0.782667 0.648067 0.0138 

xerces 0.207233 0.96355 0.32343 0.217133 0.0532 
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Table 6.11 GRU based model using FastText Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2666 0.6534 0.3569 0.6556 0.0863 

Camel 0.1971 0.7987 0.3597 0.2689 0.1536 

Ivy 0.1623 0.8387 0.2815 0.4748 0.2967 

Jedit 0.1641 0.5653 0.1914 0.7538 0.2083 

log4j 0.7282 0.8651 0.7139 0.7629 0.197 

lucene 0.7669 0.9507 0.8447 0.7669 0.1992 

poi 0.5579 0.6492 0.5386 0.5145 0.244 

synapse 0.3192 0.7649 0.3753 0.4043 0.1397 

xalan 0.7192 0.8525 0.7533 0.6544 0.1554 

xerces 0.1665 0.5433 0.1962 0.6151 0.2302 

 

Table 6.12 GRU based model using Doc2Vec Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.3351 0.5547 0.4039 0.6328 0.1545 

Camel 0.2845 0.9058 0.4487 0.4524 0.1679 

Ivy 0.2376 0.7169 0.3129 0.7355 0.2408 

Jedit 0.2021 0.7076 0.3096 0.6488 0.1922 

log4j 0.7044 0.8322 0.7156 0.6494 0.1301 

lucene 0.7656 0.9061 0.8285 0.7551 0.1655 

poi 0.6186 0.5968 0.5683 0.5071 0.2089 

synapse 0.3331 0.8734 0.4129 0.5108 0.1443 

xalan 0.713 0.9174 0.762 0.722 0.175 

xerces 0.469 0.563 0.4505 0.6631 0.2409 

 

Table 6.13 LSTM based model using Word2Vec Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2285 0.9228 0.3594 0.3143 0.0362 

Camel 0.1679 0.992 0.2821 0.2823 0.0501 

Ivy 0.1073 0.9757 0.1602 0.2648 0.0046 

Jedit 0.1295 0.866 0.2042 0.3333 0.1122 

log4j 0.6645 0.9399 0.6862 0.6518 0.1093 

lucene 0.6012 0.9879 0.7322 0.6159 0.0686 

poi 0.4701 0.983 0.612 0.4824 0.0824 

synapse 0.2368 0.962 0.3684 0.3585 0.0372 

xalan 0.6489 0.9806 0.781 0.6464 0.0213 

xerces 0.2166 0.9641 0.3469 0.3786 0.0946 
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Table 6.14 LSTM based model using TF-IDF Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2219 0.9065 0.3161 0.3846 0.1122 

Camel 0.1807 0.8854 0.2839 0.2542 0.0645 

Ivy 0.1683 0.9502 0.2516 0.1551 0.0936 

Jedit 0.1831 0.8643 0.2462 0.4328 0.2433 

log4j 0.5848 0.9414 0.6762 0.5963 0.0873 

lucene 0.6259 0.9249 0.7296 0.6285 0.1041 

poi 0.4924 0.9724 0.6368 0.5878 0.1325 

synapse 0.2369 0.8756 0.3501 0.2561 0.1504 

xalan 0.4842 0.8446 0.5041 0.7038 0.1024 

xerces 0.1876 0.7241 0.2784 0.2987 0.1061 

 

Table 6.15 LSTM based model using FastText Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2109 0.3512 0.2294 0.3765 0.3379 

Camel 0.1659 0.6266 0.2301 0.2427 0.1857 

Ivy 0.0998 0.3725 0.1448 0.1598 0.2879 

Jedit 0.1329 0.3082 0.1602 0.3316 0.3232 

log4j 0.6487 0.6905 0.6551 0.8545 0.2373 

lucene 0.6102 0.7378 0.6386 0.9197 0.295 

poi 0.4664 0.4828 0.4078 0.9751 0.2084 

synapse 0.2109 0.2174 0.2082 0.3948 0.2456 

xalan 0.4783 0.6247 0.4908 0.7037 0.236 

xerces 0.4294 0.4007 0.3684 0.7348 0.2098 

 

Table 6.16 LSTM based model using Doc2Vec Embedding 

Project Precision Recall F1 Score Accuracy MCC 

Ant 0.2515 0.4126 0.3011 0.5642 0.4583 

Camel 0.191 0.2532 0.2146 0.2791 0.2243 

Ivy 0.1842 0.2301 0.2052 0.2623 0.2945 

Jedit 0.1462 0.2745 0.1757 0.4303 0.3669 

log4j 0.6795 0.6874 0.6825 0.8457 0.2205 

lucene 0.6132 0.7358 0.6539 0.9197 0.3069 

poi 0.2717 0.4336 0.2932 0.4154 0.2196 

synapse 0.2344 0.2408 0.2267 0.3948 0.3867 

xalan 0.4753 0.5638 0.4908 0.7072 0.2291 

xerces 0.2222 0.2499 0.2083 0.3645 0.1538 
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  (a)              (b) 

   

  (c)            (d) 

Figure 6.1 Average values of (a) False Negative Rate using Word2Vec and TF-IDF (b) False Positive 

Rate using Word2Vec and TF-IDF (c) False Negative Rate using FastText and Doc2Vec (d) False 

Positive Rate using FastText and Doc2Vec. 

Table 6.17 Average performance of DL models with Word2Vec and TF-IDF embeddings 

Embedding Model Precision F1Score Accuracy MCC 

 

 

Word2Vec 

GRU 0.3809 0.4976 0.386 0.0668 

LSTM 0.3795 0.4927 0.3836 0.0506 

CNN 0.392 0.5121 0.3978 0.061 

ANN 0.3826 0.4989 0.3893 0.0551 

 

 

TF-IDF 

GRU 0.3947 0.5099 0.4259 0.0879 

LSTM 0.3998 0.5167 0.4618 0.11 

CNN 0.4047 0.5166 0.5087 0.0974 

ANN 0.4004 0.5153 0.4584 0.0848 

 

Table 6.18 Average performance of DL models with FastText and Doc2Vec embeddings 

Embedding Model Precision Accuracy MCC TNR 

 

 

FastText 

ANN 0.493 0.645 0.254 0.771 

CNN 0.473 0.626 0.219 0.71 

GRU 0.453 0.603 0.196 0.606 

LSTM 0.382 0.54 0.282 0.627 

 

 

Doc2Vec 

ANN 0.515 0.695 0.281 0.789 

CNN 0.493 0.646 0.241 0.813 

GRU 0.479 0.668 0.212 0.671 

LSTM 0.397 0.597 0.286 0.644 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

The performance of four different word embedding methods TF-IDF, Word2Vec, FastText, and 

Doc2Vecwas assessed in the context of SDP using various DL methods. Among these, Doc2Vec 

demonstrated the best performance, followed by FastText, TF-IDF, and Word2Vec. The evaluation 

aimed to determine the effectiveness of these embedding techniques in enhancing classification 

accuracy and reliability across a wide range of criteria. 

There are diverse prospects that can be exploited as a result of this research. Firstly, other advanced 

and specific embeddings like BERT, Code-BERT, RoBERTa, ELMO, XLNet can be considered. 

These techniques have manifested improved abilities to capture semantic relationships with higher 

accuracy that could further improve the performance of SDP models. 

In addition, in future studies on software engineering, the PROMISE dataset may be used but NASA’s 

dataset should be included in its investigation. The latter would increase the size of a corpus which 

would possibly engender better and more universal models. One more direction is to use CPDP rather 

than WPDP. Due to using multiple projects data for training DL models in contrast to WPDP 

methodology, CPDP approach enhances the ability of deep learning (DL) models to generalize across 

different contexts. 

This is an avenue that can be followed by hybrid models incorporating the strengths of different 

embedding techniques and DL architectures so as to capture more diverse features and relationships 

within the data. Also, it might be beneficial to test these improved versions across various languages 

or domains with expected results being more robust SDPs with enhanced adaptability and resilience. 

Continuous benchmarking against new models and embedding techniques is crucial in the rapidly 

evolving field of NLP to maintain effectiveness and relevance. While this study identified Doc2Vec as 

the most effective embedding method tested, significant potential for improvement remains through 

exploring advanced embedding techniques, using larger and more diverse datasets, and developing 

hybrid models. 
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