
i

Comparative Analysis of Word Embedding

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS

 FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

 IN

DATA SCIENCE

 Submitted by:

GAURAV SHARMA

 2K22/DSC/05

 Under the supervision of

Miss. PRIYA SINGH

Assistant Professor

 DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042 MAY, 2024

Techniques on Software Defect Prediction

v

ABSTRACT

Embeddings are known for their ability to understand semantic relationships, reduce

dimensionality, and identify patterns in data. These techniques are mostly used in machine

learning as they are helpful and can easily be integrated into prediction models. Embedding

techniques such as Word2Vec, TF-IDF, FastText, and Doc2Vec are commonly used for

software defect prediction tasks. While creating a defect prediction model, picking the suitable

embedding method is very important. This study undertakes a comprehensive comparison of

these widely-used embedding techniques within the realm of software defect prediction. The

analysis is based on a diverse set of Java projects sourced from the open-source Promise

repository. The evaluation process involved training and testing multiple deep learning models

to assess the effectiveness of each embedding technique. Several key evaluation metrics,

including the Matthews correlation coefficient (MCC), specificity accuracy, precision, recall,

and F1 score, were used to measure performance. The results of this rigorous evaluation reveal

that Doc2Vec significantly outperforms the other embedding techniques, demonstrating its

superiority in capturing semantic nuances and contributing to more accurate defect predictions.

FastText emerges as the second-best performer, surpassing TF-IDF and Word2Vec in various

metrics. TF-IDF, while effective, falls short of the performance levels achieved by Doc2Vec

and FastText, but still surpasses Word2Vec, which ranks last in this comparison.

vi

TABLE OF CONTENT

 Page No.

ACKNOWLEDGEMENT ii

CANDIDATE’S DECLARATION iii

CERTIFICATE iv

ABSTRACT v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

CHAPTER 1: INTRODUCTION 11

 1.1 Motivation 11

 1.2 Problem Statement 11

 1.3 Objective 11

 1.4 Dissertation Organisation 12

CHAPTER 2: BACKGROUND 13

 2.1 Software Defect Prediction 13

 2.2 SDP Using Deep Learning 13

 2.3 Artificial Neural Network 14

 2.4 Convolutional Neural Network 14

 2.5 Recurrent Neural Network 15

 2.5.1 LSTM 16

 2.5.2 GRU 16

 2.6 Embedding Techniques 16

 2.7 Word2Vec 17

vii

 2.8 TF-IDF 18

 2.9 FastText 19

 2.10 Doc2Vec 19

CHAPTER 3: LITERATURE REVIEW 20

CHAPTER 4: METHODOLOGY 22

 4.1 Corpus Generation Using AST 22

 4.2 Generation of Sequence Tokens 22

 4.3 Fine Tuning of Pre-trained models 22

 4.4 Generation of Embeddings 23

 4.5 Comparison of Techniques 23

CHAPTER 5: EXPERIMENTAL SETUP 24

 5.1 Dataset Used 24

 5.2 Evaluation Metrics 24

 5.3 Hyperparameter Settings 25

CHAPTER 6: RESULT 26

CHAPTER 7: CONCLUSION AND FUTURE WOEK 33

REFERENCES 34

LIST OF PUBLICATION 36

viii

LIST OF FIGURES

Page No.

Figure 2.1 Flowchart of Software Defect Prediction 13

Figure 2.2 Artificial Neural Network 14

Figure 2.3 Convolution Neural Network 15

Figure 2.4 Recurrent Neural Network 15

Figure 2.5 Architectural Design of GRU and LSTM 16

Figure 2.6 Illustration of Skip-NGram and CBOW model 17

Figure 2.7 Binary tree structure followed by FastText 19

Figure 2.8 Distributed memory architecture for Doc2Vec model 20

Figure 4.1 Process of Defect Prediction 24

Figure 6.1 Average values of FNR and FPR 33

ix

LIST OF TABLES

Page No.

Table 5.1 Description of project along with their version 25

Table 6.1 CNN based model using Word2Vec Embeddings 27

Table 6.2 CNN based model using TF-IDF Embeddings 28

Table 6.3 CNN based model using FastText Embeddings 28

Table 6.4 CNN based model using Doc2Vec Embeddings 28

Table 6.5 ANN based model using Word2Vec Embeddings 29

Table 6.6 ANN based model using TF-IDF Embeddings 29

Table 6.7 ANN based model using FastText Embeddings 29

Table 6.8 ANN based model using Doc2Vec Embeddings 30

Table 6.9 GRU based model using Word2Vec Embeddings 30

Table 6.10 GRU based model using TF-IDF Embeddings 30

Table 6.11 GRU based model using FastText Embeddings 31

Table 6.12 GRU based model using Doc2Vec Embeddings 31

Table 6.13 LSTM based model using Word2Vec Embeddings 31

Table 6.14 LSTM based model using TF-IDF Embeddings 32

Table 6.15 LSTM based model using FastText Embeddings 32

Table 6.16 LSTM based model using Doc2Vec Embeddings 32

Table 6.17 Average performance with Word2Vec and TF-IDF embeddings 33

Table 6.18 Average performance with FastText and Doc2Vec embeddings 33

x

LIST OF ABBREVIATIONS

SDP: Software Defect Prediction

CNN: Convolution Neural Network

ANN: Artificial Neural Network

RNN: Recurrent Neural Network

NLP: Natural Language Processing

CBOW: Continuous Bag of Words

LSTM: Long Short Term Memory

GRU: Gated Recurrent Unit

MCC: Matthews Correlation Coefficient

TF-IDF: Term Frequency

Word2Vec: Word to Vector

Doc2Vec: Document to Vector

FNR: False Negative Rate

FPR: False Positive Rate

11

CHAPTER 1

INTRODUCTION

1.1 Motivation

Software development is inherently complex and fraught with numerous challenges. Lots of

companies are now wasting colossal amounts of their money and resources fixing bugs within the

computer software. The bugs might be small, but really set up big issues in terms of quality and how

the system operates. If such bugs are not fixed, then faulty systems will grind to an embarrassing stop.

This has an effect on user experience and stability of the system, from a consumer's perspective. The

software defect prediction (SDP) technique is a powerful tool to tackle this situation. It helps avoid

such faults much before they could be visible in terms of consequences. Such an approach would be

very important if excellence in software engineering is to be achieved. In this view, it becomes

indispensable to enrich the efficacy of SDP for expediting the development process of useful software.

1.2 Problem Statement

SDP is an AI software tool used by developers in dealing with the problems related to their software.

It works in hand with predictive models, which focus more on innovation. In fact, all such innovations

come through the techniques associated with NLP, ML, and DL. These include different types of

embeddings, such as Word2Vec, GloVe, FastText, TF-IDF, and Doc2Vec. These techniques help to

convert words into numerical vectors for the algorithms so that they are able to pick up the semantic

relationships present in textual data.

Although these have shown promise in improving SDP, there still lacks comprehensive comparison

across different word embedding techniques within the context of SDP. Thus, there is a need to

understand the relative performance of the different embedding techniques employed over models for

SDP tasks. The necessity to confirm that diverse SDP models, integrating embedding techniques, will

align seamlessly with defect prediction models.

1.3 Objective

This thesis aims to contribute significantly to the field of SDP by examining the impact of various

embedding techniques on SDP tasks. Specifically, it seeks to achieve the following objectives:

1. Examine the impact of various embedding techniques on SDP tasks.

2. Conduct a comparative evaluation of commonly used embedding methods, such as

Word2Vec, TF-IDF, FastText and Doc2Vec.

3. Analyze the performance of different embedding techniques across multiple evaluation

metrics specific to SDP.

4. Evaluate how effective the DL models are when employed for SDP.

5. Investigate how the integration of embedding techniques with DL models enhances SDP

outcomes.

6. Provide insights into selecting suitable embedding techniques tailored to specific SDP

requirements.

Through these objectives, the study aims to tell how effective embedding techniques are in enhancing

SDP and offer guidance for researchers in selecting the most suitable techniques for their SDP tasks.

12

1.4 Dissertation Organisation

The thesis is structured to systematically and comprehensively address the objectives. Chapter 1

consists of Introduction which provides the overview of the project clarifying the main objectives and

discusses the motivation behind the thesis along with the Problem Statement. Chapter 2, deals with

the Background wherein the background of the research work is dependent. It generally deals with

the tech stacks and the important components that is essential and used mojorly in the thesis. Chapter

3 provides us with the Literature Review or the Related work done in the domain of SDP. It

summarises and gives the overview of existing research on the application of sequential models for

software defect prediction. It covers methodologies, datasets, evaluation metrics, and case studies. In

Chapter 4 goes with the detailed methodology including search strategies. It gives the detailed

description of all the steps that is followed in the experiment with the inclusion criteria. It also covers

the data extraction methods, corpus generation methods, how the model is pre-trained and what

models have been considered for creating the embeddings along with the DL models that were used to

actually predict the defects in software. It also presents us with the dataset discussion along with every

version considered for the experiment. Chapter 5, consists of Experimental Setup that is every setup is

defined in this section. For elaboration this chapter contains the evaluation metrics which helps to

derive the conclusion of which embedding methods are suitable for Defect prediction model used in

the research. This chapter also discusses about the hyperparameter settings which were set in order to

get the desired result. Then finally comes the Chapter 6. That is Result and Discussion Section where

tables and figure are provided giving defining the result that how things were set up and finally the

result is achieved. In this section the technical details are present with examples of how each and

everything is mentioned and taken into consideration. Chapter 7 is the Conclusion section that

concludes the result. Along with it tells about the future research in the domain of SDP . Lastly the

Reference section Chapter 8 is provided that shares the materials from where the inspiration had been

taken.

13

CHAPTER 2

BACKGROUND

2.1 Predicting Software Defects

SDP is a process of using ML and DL techniques to predict the likelihood of software defects in a

software system. The goal of SDP is to identify potential defects before they occur, enabling software

development teams to take preventive measures and improve software quality.

Figure 2.1 Flowchart of software defect prediction

It can be challenging due to the dynamic nature of software development, where software code and

requirements can change rapidly over time. Additionally, it can be difficult to obtain accurate

historical data on defects and software metrics, especially in cases where the software system is new

or has not yet been deployed.

2.2 SDP Using DL Methods

For years, ML techniques have played a crucial role in SDP tasks, offering valuable insights into

potential defects through features extracted from software artifacts. However, traditional ML models

face challenges when dealing with the complexity and intricacies of textual and image data. In

contrast, DL techniques have proven to be highly effective for these data types. With their capability

to automatically learn hierarchical representations from raw data, DL models excel at identifying the

nuanced patterns and relationships within textual and image data. These methods encompass various

neural network architectures. Some of the architecture such as Artificial Neural Networks,

Convolution Neural Networks and Recurrent Neural Networks are often used for SDP.

14

2.3 Artificial Neural Networks

A unit is an artificial neuron and is considered the fundamental unit of an artificial neural network. In

essence, the Artificial Neural Network in a system consists of several layers of units. A layer can have

a few dozen units or possess millions of them, all depending upon how complex neural networks are

to be discovered for the data set. A typical artificial neural network is composed of input layers,

output layers, and hidden layers. The input layer is where data comes in from the rest of the world,

which the neural network is to appraise or learn about. This data will then pass through one or more

hidden layers to convert the input into a more useful form for the following layer: the output layer.

Finally, the output layer gives an output response to the ANNs of the input data given.

Figure 2.2 Artificial Neural Network

It is within this respect that ANNs are rather critical in the detection of bugs, since complex

relationships between software data can be well modeled. With these ANNs being layered, they

automatically identify useful features out of large datasets representing code metrics, bug reports, and

textual data. This makes it possible for ANNs to identify probable defective patterns, allowing clear

management proactively by means of the early detection of software problems. ANNs improve the

accurateness and relevant SDP models by using their deep learning capabilities, making it better

quality software. They are also making it more dependable in the life cycle of development. They are

efficient in contemporary designed software development processes due to the flexibility of data

types.

2.4 Convolution Neural Networks

CNNs are an enhanced form of artificial neural networks, primarily utilized for feature extraction

from grid-like matrix datasets. Take visual datasets, such as pictures or videos, where data patterns are

very important. The input layer, pooling layer, convolutional layer, and fully connected layers are

some of the layers that make up a convolutional neural network. The architectural design can be seen

in figure 2.3.

The input is processed by the convolutional layer to extract features, the pooling layer reduces

computation by downsampling the data, and the fully connected layer generates the final prediction.

By using gradient descent and backpropagation, the network discovers the best filters. CNN are

generally preferred for image data as they excel in feature extraction. However, 1-D CNN also

performs well in textual data and hence it is used in areas such as NLP.

15

Figure 2.3 Convolution Neural Network

CNNs significantly enhance SDP by effectively processing and analyzing code and textual data.

CNNs are adept at identifying spatial hierarchies and patterns within data through their convolutional

layers, making them particularly useful for examining code snippets, source code images, and

structured text. By automatically learning and extracting features relevant to defect prediction, CNNs

improve the accuracy and efficiency of detecting potential software bugs. Their ability to handle large

and complex datasets ensures robust SDP models, ultimately contributing to higher software quality

and more reliable development processes.

2.5 Recurrent Neural Networks

A type of neural network called a RNN uses the output from the preceding step as the input for the

current step. In classical neural networks, all the inputs and outputs are independent of each other.

However, there occur situations where, due to the previous words, a guess has to be made regarding

what word is in the next sentence, therefore, they must be remembered. So, to tackle that problem an

RNN with the help of a Hidden Layer was formed. The Hidden state is the most essential feature of an

RNN; it's mostly the same with the sequence history. Due to the fact that an RNN retains memory

associated with the previous input into the network, it's also referred to as the Memory State.

Figure 2.4 Recurrent Neural Network

RNNs are ideally suited to be used with SDP because they can deal with sequential data and capture

dependencies over time. These architectures are more than well known for tasks in which the order of

events and contexts really matters, such as changes to your code, history of commits, and bug report

analysis through time. This is mainly because of the recurrence imputed in them, hence equipping

RNNs with the intrinsic ability of tracking long-term dependencies by storage of a memory of past or

16

previous input sequences in ways of determining the dynamic understanding of how software grows

and defects potentially introduced.

2.5.1 Long Short-Term Memory Networks

The RNNs of this special form, called LSTM networks, manage to alleviate the vanishing-path

problem, widely present in traditional RNNs. LSTMs use a chain of input, forget, and output gates to

control the flow of information in such a way that relevant information over a large time step can be

maintained, while irrelevant data may be ignored. This is particularly valuable in SDP, where very

long sequences of changes or histories of extended bugs lead to early changes that significantly affect

later outcomes. LSTMs increase the predictive accuracy of SDP models by capturing long-term

dependencies and allow them to identify complex patterns of defects that span very long software

development periods.

Figure 2.5 Architectural Design of GRU and LSTM

2.5.2 Gated Recurrent Units (GRU)

In fact, another variant of the RNN was developed to keep its good properties of being able to deal

with long-term dependencies while at the same time reducing the complexity: the so-called Gated

Recurrent Unit. In fact, GRUs fold together the input and forget gates, and cell and hidden states, into

one update gate. This is computationally less complex of a computation during back prop and

computationally faster to run than LSTMs because it has fewer gates, yet it still copes quite well with

sequential dependencies. Hence, GRUs can settle on a reasonable balance between performance and

efficiency, depending on the needs of real-time defect prediction in the codebase evolution analysis

with SDP. Being lightweight in computation, GRU is competent enough to fit into this task; therefore,

it can be a good choice for installing defect prediction within pipelines for CI and CD.

2.6 Embedding Techniques

High-dimensional data can be represented in various embedding techniques which internalize

semantic relationships into dense, low-dimensional vectors. Embeddings represent words, phrases, or

even entire documents as vectors within a continuous vector space based on both syntactic

relationships and contextual meaning. Word embeddings are done with respect to approaches that look

at large corpora like Word2Vec, GloVe, and FastText, enabling useful and meaningful comparisons.

Embeddings are important to both ML and DL tasks because they provide a way to transform complex

data into forms that can be handled by the model in use, thus helping sentiment analysis, text

classification, and other tasks.

17

Heterogeneous and complex software data are made meaningful and processable by embedding

techniques in the context of SDP tasks. The truly complex patterns living within a software artifact

might not have been fully captured by the traditional approaches followed in SDP, which mostly

relied on manually created features such as code metrics and historical defect data. The

methodologies, including Word2Vec, Doc2Vec, TF-IDF, and FastText embeddings, encode syntactic

and semantic information extracted from the source code and its surrounding documentation into

continuous vector spaces. These embeddings have realized scalability and adaptability of SDP

models, allowing for transfer learning where the models trained over one project are applied over

successfully to others.

In addition, embedding is expected to improve the handling of large codebases and diversified data

sources, such as bug reports, commit messages, and documentation, by automatizing the process of

feature extraction, thus reducing the need for human intervention. This way, resulting SDP models

will provide much more fine-grained representation of software artifacts, making them on a much

higher level of accuracy and prediction for more reliable and efficient processes of software

development.

2.7 Word2Vec

A very common word embedding technique for word2vec in NLP aids in converting words into blasé

vectors of a very low dimension and retains the semantics of the word. Word2Vec is a creation by

Google, and it learns distributed representations of words based on their contextual usage across a

corpus. The model has two primary architectures: skip-gram and continuous bag of words (CBOW).

Figure 2.6 Illustration of Skip-NGram and CBOW model

The architecture of the CBOW model predicts a target word from its surrounding context words. For

example, if we take the sentence "The cat sat on the mat" and we take the word "cat" as the target

predictive word, then the words "The," "sat," "on," and "the" will be considered context words in

CBOW for predicting "cat." The vector representations of these context words are needed to be

summed up, or in other words aggregated, for an architecture to predict the target word. It works well

in practice for small training sets and gives good results generally when the words are indeed very

common.

Given the target word, the Skip-gram architecture predicts the words before it. For example, "The,"

"sat," "on," and "the" are the context words that Skip-gram looks to predict the target word "cat."

Finally, in order to train, Skip-gram forms context pairs by treating each word as an individual

18

observation. Skip-gram needs a high amount of training data. In contrast, it did better on larger

datasets and much more competently with less frequent words.

2.8 TF-IDF

Term frequency-inverse document frequency, or TF-IDF for short, is a statistical metric that is

frequently used in text mining and information retrieval to assess a word's significance in relation to a

set of documents. Inverse Document Frequency and Term Frequency are two distinct concepts.

Together, they make up TF-IDF.

A term's frequency of occurrence in a document is assessed using the Term Frequency (TF) measure.

Because every document is different in length, a term may appear far more frequently in longer

documents than in shorter ones.

𝑇𝐹(𝑡) =
𝑇𝑁(Number of times term t appears in a document)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

On the other hand, the Inverse Document Frequency (IDF) component, which is derived from the

logarithm of the ratio of the total number of documents to the number of documents containing the

term, determines how uncommon a term is throughout the corpus. Terms that are uncommon

throughout the corpus but frequently occur in a document have high TF-IDF scores, indicating their

importance in characterizing the content of the document. The following is the formula for term

frequency.

𝐼𝐷𝐹(𝑡) =
log𝑒(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑖𝑡

The TF and IDF scores for each term in a document are multiplied to create TF-IDF scores, which are

weighted scores that represent a term's importance both locally within the document and globally

throughout the corpus. High TF-IDF score words are valued and frequently utilized as features or

keywords in a variety of text analysis tasks, such as keyword extraction, text classification, and

document ranking. The flexible and popular TF-IDF approach helps to extract valuable insights and

patterns from textual data by giving textual information a numerical representation.

2.9 FastText

FastText is a state-of-the-art word embedding technique developed by Facebook's AI Research (FAIR)

lab. It builds upon the success of Word2Vec but introduces several improvements, particularly in

handling out-of-vocabulary words and subword information. FastText trains word vector models very

quickly. In less than ten minutes, you can train roughly one billion words.

19

Figure 2.7 Binary tree sturcture followed by FastText

It uses a binary tree to represent the labels in this method. In a binary tree, each node stands for a

probability. The probability along the path leading to a given label represents that label. This indicates

that the labels are represented by the binary tree's leaf nodes.

Deep neural network models can be difficult to train and test. These methods use a linear classifier to

train the model. Using this model, one can develop algorithms to obtain vector representations of

words through supervised or unsupervised learning. It also evaluates these models. FastText supports

both the CBOW and Skip-gram models. FastText handles uncommon and out-of-vocabulary words

efficiently by representing words as bags of character n-grams, in contrast to Word2Vec, which

represents each word as a single vector. This enables it to capture morphological information.

FastText is especially helpful for tasks involving large vocabularies or languages with complex

morphology because it can generate embeddings for words that are not present in the training data by

taking subword information into consideration.

Like Word2Vec, FastText trains on a skip-gram model with negative sampling; however, it

incorporates character n-grams into the model architecture. This makes it possible for FastText to

record more detailed semantic information and enhance the quality of word embeddings, particularly

in tasks involving uncommon or misspelled words and morphologically rich languages.

2.10 Doc2Vec

Extending the Word2Vec model, Doc2Vec is a neural network-based method for producing document

embeddings. Documents can be represented as continuous vector representations thanks to Doc2Vec,

which learns embeddings for entire documents in contrast to Word2Vec, which learns embeddings for

individual words.

20

Figure 2.8 Distributed memory architechture for Doc2Vec model

The Paragraph Vector model, which comes in two flavors: Distributed Memory (DM) and Distributed

Bag of Words (DBOW), is the most widely used implementation of Doc2Vec. With the help of

document vector and surrounding word vectors, DM variant model gets to predict the next word in a

context. On the other hand, DBOW uses only the document vector to guess randomly chosen words

from the text. For example to create dense fixed-length vectors that can capture semantic meaning and

contexts of a document, Doc2Vec uses neural networks to extract semantic information from

documents. These embeddings are useful for document classification, grouping and similarity

retrieval tasks in textual analysis where relationships between documents are maintained.

21

LITERATURE REVIEW

Word embeddings work by representing text in n-dimensional space. They are essential for solving

NLP-related problems. One such problem in identifying Swahili Smishing communications directed

at mobile money customers is emphasized by S. Iddi et al. [3]. These techniques allow for efficient

classification by capturing semantic links in text, which is crucial for differentiating genuine messages

from smishing ones. Similarly, to establish a unified feature space for text and image modalities,

Zongwei [4] introduced a multi-modal approach by integrating TF-IDF features with LSTM networks

for capturing sequential information. The incorporation of TF-IDF helps in refining the image

modalities.

Emotion processing is becoming an important research area in fields such as data analysis and NLP.

For analyzing emotion, it is important to capture the presence of specific words along with their

relationships with other words. Sabery [5] proposed a hybrid model for emotion analysis by

combining the Deep Belief Network with TF-IDF and Glove. The embeddings helped outperform the

baseline models in several metrics. In a similar context of emotion analysis, Canales [6] achieved

efficient data annotation through Word2Vec embeddings, enhancing the categorization process of

different emotions.

In the context of SDP, the role of defect prediction models becomes equally important as the

embedding techniques. For a longer period of time, conventional ML approaches have been used in

creating prediction models. The issue with these approaches lies in capturing the semantic relationship

among textual data. In comparison to these approaches, neural networks perform better with image

and textual data. Using a DL approach, Miholca [7] significantly improved defect prediction,

outperforming conventional methods in the Calcite program. The significance of SDP is also

highlighted by Nevendra [8] in concerns regarding software complexity. The research shows notable

performance gains by comparing DL techniques across open-source projects. This change in strategy

creates new opportunities for improving defect prediction models.

Using hybrid features [9] is advantageous, making defect prediction models more flexible. Wang

cleverly combined the AST and Control Flow Graph (CFG) via the Graph Isomorphism Network to

push SDP with H-GIN as evidence. With respect to the PyTraceBus dataset, H-GIN demonstrated

better prediction accuracy than earlier approaches. Similarly, graph neural networks (GNN) and

transformers were used to create a novel model that Tang and He presented [10]. Their technique,

which included absolute and relative locations in the AST, addressed the local learning constraints of

GNN and showed superior F-measure and improved detection of faulty features on the PROMISE

dataset.

Another hybrid model Siamese dense neural networks (SDNNs) proposed by Zhao etal. [R16], which

capitalize on their capacity to learn from small amounts of data. To improve prediction accuracy,

SDNNs combine learning of distance metrics and similarity features. In order to capture high-level

similarity features and use a contrast loss function for prediction, the model is constructed and trained

in two stages. The competitive performance of SDNNs is demonstrated through comparison with

state-of-the-art SDP approaches across 10 datasets, exhibiting notable improvements in prediction

accuracy when compared to benchmarked methods.

A dataset of more than 400 thousand articles from design pattern books was used by D. Liu et al. for

DPWord2Vec [11], a technique to concurrently embed design patterns and natural language words

CHAPTER 3

22

into vectors. According to evaluation, DPWord2Vec performs 24.2\%–120.9\% better than baseline

algorithms when assessing word and design pattern similarity. Additionally, DPWord2Vec enhances

design pattern tasks by 6.5\%–70.7\%, including tag suggestion and selection. A similar approach to

learning from datasets was used in a technique for proposing Web services for superior Mashup

applications put forth by B. Cao et al. [12]. Their method uses Word2Vec for semantic representations

from service descriptions and creating a service relationship network, combining bilinear graph

attention representation with xDeepFM quality prediction. The findings on the ProgrammableWeb

dataset demonstrate better performance in terms of accuracy and recall compared to other approaches.

The effect of issue classification using data from seven open-source repositories on SDP datasets is

discussed by Petar Afric [16]. FastText is one of the four classification techniques that are compared.

The results show that FastText has a big impact even though the RoBERTa model generates the

highest quality datasets. While SDP models trained on FastText-classified datasets do not outperform

those trained on RoBERTa, they still yield insightful results. The study shows that while FastText can

increase issue classification accuracy, its ability to improve SDP model performance is not as strong

as that of the RoBERTa model.

The ensemble-based ML approaches [17] for software defect prediction from 2018 to 2021 are

reviewed and evaluated in this review paper. Poor prediction still occurs despite advances because of

problems with redundancy, correlation, and unbalanced data. Gaps in existing methods are exposed

through the analysis of multiple viewpoints, evaluation criteria, and ML techniques. To overcome

these obstacles and boost prediction performance in software defect detection, the paper promotes

strong hyperparameter optimization, improved feature engineering, and the creation of stacking and

averaging models.

Using ML [18] tackles the problem of class imbalance in software defect prediction (SDP). Several

important conclusions are drawn from the research's systematic evaluation of 27 datasets, 7

classifiers, 7 input metrics, and 17 imbalanced learning techniques. Low imbalance is present in most

datasets, which has little impact on traditional learning. On the other hand, performance is severely

hampered by moderate to high imbalance. In this case, imbalanced learning may be advantageous,

though outcomes may differ. The classifier type has the biggest effect on performance; input metrics

have less of an impact. The imbalanced learning method comes in second. For moderately to highly

imbalanced datasets, the study suggests using imbalanced learning. To prevent unfavorable outcomes,

it is important to carefully choose the classifier-method combinations.

A greedy Extractive Summarization algorithm [19] enhanced by Variable Neighborhood Search

(VNS) is used to summarize scientific articles from arXive and PubMed. Sentences with high TFIDF

values are given priority by the algorithm, which also adjusts document frequency for TFIDF

vectorization. It attains ROUGE-1/ROUGE-2 scores of 0.40/0.13 on PubMed and 0.43/0.12 on

arXive, which are on par with the performance of cutting-edge models that make use of sophisticated

neural networks and substantial computing power. This method, in contrast to these sophisticated

models, is based on simple statistical inference, showing that less complex methods can still yield

high-quality summaries.

23

CHAPTER 4

METHODOLOGY

The methodology encompasses several key stages aimed at effectively analyzing Java code for bug

prediction. The stages are described in a detailed manner in the coming subsections as follows:

4.1 Corpus Generation from using AST

The Python library javalang is used to represent the Java code in a tree-like structure that is the AST

of the code. The Java code is taken from different Java projects described in Section 4.1. The Javalang

library may be obtained from https://github.com/c2nes/javalang. There are two components in it: a

lexer and a parser made specifically for Java [13]. Within the AST, each node corresponds to a

specific construct such as MethodDeclaration, IfStatement, or VariableAccess, pinpointing

occurrences within the source code. As a result, the AST facilitates the generation of a comprehensive

corpus for each Java project. This corpus is used for fine-tuning the pre-trained TF-IDF, Word2Vec,

Doc2Vec and FastText models.

4.2 Generation of Sequence Tokens

The categories of AST nodes selected as tokens are control flow nodes, class declarations, and method

invocations, which are also depicted in Table. 1. A new sequence token file is created for every

version of the Java project (for example, Ant 1.5), and when any of the selected tokens in the table is

detected within the corpus generated by the AST, that token is appended to the sequence token file.

This procedure iterates for every version of the Java project, thereby composing the sequence tokens.

These tokens are subsequently utilized as input for the models to generate embeddings.

4.3 Fine Tuning of Pre-Trained Model

Transfer learning is employed by importing Word2Vec and TF-IDF models from Gensim and Scikit-

Learn libraries, respectively. The models are trained on the corpus generated by AST for each Java

project. These trained models are fed with tokens to generate the embeddings.

TF-IDF Vectorizer, imported from scikit-learn, is trained on the corpus. The vectorizer is fitted to the

data using ‘fit-transform()‘, analyzing text, constructing vocabulary, and calculating TF-IDF scores.

The resulting sparse matrix represents documents, words, and TF-IDF scores, forming the trained TF-

IDF model.

The Word2Vec model is imported from the Gensim library to train on a corpus generated by AST.

Specific parameters are used to initialize and train the model, such as a vector size of 100 words, a

window size of 5, a minimum count of 5 and an epoch of training the model that is equal to 10.

The Doc2Vec model is imported and trained based on a corpus produced by AST. Document

embeddings which represent each document in a vector space are learned by it. The key parameters to

initialize this model are: vector size (100), window size (5) and minimum word count (5).With 10

epochs, the model iterates over the dataset 10 times for training. Utilizing 4 CPU cores speeds up the

process.

For FastText, we have initialized the imported model with parameters including vector size (100),

window size (5), and minimum word count (5). The model undergoes 10 training epochs, utilizing 4

CPU cores for computational efficiency and accelerating the training process.

24

4.4 Generation of Embeddings and workflow

After subjecting the pre-trained models to fine-tuning with the corpus generated by AST, the sequence

tokens extracted from each version of the project are then inputted into the trained models. By doing

so, the models are able to produce embeddings that reflect the underlying contextual information

embedded within the code.

The whole process, as depicted in Fig. 4.1, goes by training a DL model using the vector

representations obtained from the pre-trained models. This model is geared towards executing a

specific task of defect prediction. The training process starts by inputting the embeddings into the

model and iteratively refining model parameters to enhance performance.

Figure 4.1. The process of defect prediction (a) Parsing the java code using AST. (b) Creating vectors

using embedding techniques. (c) Training of DL model (d) Performing defect prediction

4.5 Comparison of Techniques

The output of the trained DL model assigns ”1” for bugs detected and ”0” for bug-free software. After

getting the final output, a comparative analysis is conducted to evaluate the embeddings based on the

evaluation metrics.

This step assesses which embedding technique contributes more effectively to the model’s

performance. The important performance indicators used in this thesis are described furtherin section

5.2. Each of the embedding techniques is compared to one another on common terms based on

evaluation metrics.

25

CHAPTER 5

 Experimental Setup

This section outlines the dataset utilized, the baseline DL model selected for comprehensive analysis,

the hyperparameter setting, as well as the evaluation measures included in the experiment.

5.1 Dataset Used

The dataset used in this research is a set of 10 open-source Java projects that are taken from the

PROMISE repository. The list of Java projects is given with their descriptions in Table 5.1.

Table 5.1 Description of project along with their version

5.2 Evaluation Measure

A variety of evaluation metrics were employed as assessment measures to provide a full examination

of the model’s performance across varied criteria. In the following equations, there are several key

terms, which are mentioned below:

1. True Positive (TP): Instances correctly classified as positive by the model.

2. False Positive (FP): Instances incorrectly classified as positive by the model.

3. True Negative(TN): Instances correctly classified as negative by the model.

4. False Negative(FN): Instances incorrectly classified as negative by the model.

Precision is the ratio of correctly predicted positive outcomes to all the predicted positive outcomes by

the model.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall measures the proportion of actual positive cases that were correctly identified by the model.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

26

The F1 Score is the harmonic mean of precision and recall. It is given as following.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Accuracy is the ratio of correctly classified instances (both positives and negatives) to the total

number of instances.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁

MCC is a measure of the quality of binary classifications. It is especially useful for evaluating models

on imbalanced datasets.

𝑀𝐶𝐶 =
TP ∗ TN − FN ∗ FP

√(TN + FN)(FP + TP)(TN + FP)(FN + TP)

FNR is the proportion of actual positive instances that were incorrectly classified as negative.

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

FPR is the proportion of actual negative instances that were incorrectly classified as positive.

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

TNR, also known as Specificity, is the proportion of actual negative instances that were correctly

identified by the model.

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

These metrics are fundamental in evaluating the performance of classification models, particularly in

distinguishing between the different types of errors and successes the model makes.

5.3 Hyperparameter Settings

Training spanned 200 epochs to ensure comprehensive data learning. For ANN architectures, a

sigmoid activation function was utilized throughout the layers, while rectified linear unit (ReLU)

activation was applied in dense layers of RNNs (LSTM and GRU) with sigmoid activation in the

output layer. Binary crossentropy served as the loss function across all models, optimized by the

Adam optimizer. A batch size of 32 was chosen for computational efficiency and model stability. Two

dense layers with 64 and 32 neurons, respectively, were employed to capture intricate data patterns.

For CNN architecture, 1D convolutional layers were leveraged to capture spatial dependencies in

sequential software data, thereby enhancing overall model performance.

27

CHAPTER 6

RESULT

In this section, the performance of all the embedding techniques such as Word2Vec, Fast Text, TF-IDF

and Doc2Vec across the four discussed DL models is presented. Tables [6.1]–[6.16] contain the

projects on which the models are trained, along with the mean values of accuracy (Acc.), precision

(Prec.), F1-score (F1), and MCC is calculated from various versions of the same projects. For

instance, the Lucene project had versions 2.0, 2.2, and 2.4. Training on version 2.0 and testing on

version 2.2 yielded an accuracy of 0.63, while training on version 2.2 and testing on version 2.4

resulted in an accuracy of 0.61. The mean accuracy, calculated as 0.62, is included in the table.

Detailed metrics are available at https://github.com/GauravSharma171691/Results-Word-TFIDF. Fig.

6.1 depicts mean FPR and FNR values for different embeddings TF-IDF (T) and Word2Vec (W),

Doc2Vec(D) and FastText(F) across different project versions.

With the help of tables, we can see that models with Doc2Vec outperforms other embeddings

exhibiting superior performance compared to models those leveraging other embeddings. The order of

comparison is Doc2Vec, FastText, TF-IDF and Word2Vec (Doc2Vec being the best among others).

Models with Doc2Vec embeddings have higher precision, F1-score, accuracy, MCC, and TNR.

Higher values of Precision, F1 Score, Accuracy, and MCC show that the model is better and effective

at classification tasks. Table (6.17) and (6.18) illustrates the average performance of DL models when

employed with embeddings, respectively. The tables clearly describes the average performance of

embedding techniques based on key performance metrics such as Accuracy, Precision, MCC, Recall

and TNR.

The performance of the models trained in this study heavily depends on various aspects of the data it

is trained on.

1. Too small dataset can lead to poor performance of model on unseen data.

2. Too large dataset may create models with many parameters affecting the deployment of

model.

In this research, within-project defect prediction (WPDP) is used. In WPDP, the models are trained on

a version of the project and tested on another subsequent version of the same project. This situation's

performance can be improved by using cross-project defect prediction (CPDP) [15], where the model

can be trained on one project and tested on another project.

Table 6.1 CNN based model using Word2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2372 0.9725 0.3805 0.2406 0.0619

Camel 0.1877 0.9927 0.3148 0.1954 0.0694

Ivy 0.2625 0.9674 0.413 0.2751 0.0142

Jedit 0.1311 0.9567 0.2203 0.1397 0.1053

log4j 0.6498 0.9705 0.7357 0.6623 0.0819

lucene 0.621 0.9907 0.7633 0.6235 0.1071

poi 0.4691 0.9877 0.5944 0.4752 0.0263

synapse 0.2741 0.9819 0.4286 0.28 0.0161

xalan 0.6484 0.9977 0.7608 0.6475 0.0266

xerces 0.1667 0.9792 0.2848 0.169 0.0744

https://github.com/GauravSharma171691/Results-Word-TFIDF

28

Table 6.2 CNN based model using TF-IDF Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2517 0.9879 0.4012 0.2802 0.0861

Camel 0.2854 0.4644 0.3357 0.7178 0.1929

Ivy 0.0835 0.975 0.1538 0.1006 0.0085

Jedit 0.1993 0.9293 0.3125 0.4179 0.2486

log4j 0.6579 0.9825 0.7496 0.676 0.0746

lucene 0.6144 0.9906 0.7598 0.6159 0.068

poi 0.4785 0.9873 0.5972 0.4819 0.0504

synapse 0.2576 0.9833 0.4083 0.2565 0.1112

xalan 0.6489 0.9975 0.761 0.6491 0.0065

xerces 0.1535 0.9846 0.2656 0.1955 0.069

Table 6.3 CNN based model using FastText Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.4987 0.3736 0.3977 0.7529 0.4179

Camel 0.2425 0.2745 0.2563 0.6414 0.1317

Ivy 0.224 0.1165 0.206 0.683 0.159

Jedit 0.3228 0.5698 0.3824 0.8101 0.4624

log4j 0.7625 0.4234 0.5341 0.5549 0.2515

lucene 0.6178 0.7533 0.6785 0.6094 0.2866

poi 0.4323 0.4787 0.3694 0.4584 0.0512

synapse 0.4643 0.3535 0.4088 0.6581 0.3134

xalan 0.6182 0.3705 0.4786 0.4939 0.0302

xerces 0.2167 0.2001 0.208 0.7751 0.1158

Table 6.4 CNN based model using Doc2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.4686 0.3739 0.3976 0.7486 0.3599

Camel 0.2266 0.2845 0.2262 0.638 0.0782

Ivy 0.2501 0.1284 0.1834 0.9087 0.1802

Jedit 0.3199 0.5369 0.3809 0.8114 0.4525

log4j 0.8582 0.4013 0.59 0.5453 0.3196

lucene 0.6948 0.5488 0.6134 0.5508 0.2084

poi 0.4822 0.4647 0.3935 0.4459 0.0711

synapse 0.4746 0.3679 0.413 0.6691 0.2641

xalan 0.6705 0.3718 0.497 0.5306 0.1161

xerces 0.3145 0.2434 0.2743 0.8227 0.2625

29

Table 6.5 ANN based model using Word2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.23765 0.9785 0.3817 0.23975 0.0579

Camel 0.1859 0.9927 0.31255 0.18715 0.04575

Ivy 0.0856 0.9714 0.1574 0.1333 0.0347

Jedit 0.13125 0.956733 0.22105 0.145575 0.0818

log4j 0.6506 0.97055 0.73485 0.65965 0.1254

lucene 0.614 0.99395 0.7589 0.6131 0.021

poi 0.29847 0.98767 0.5934 0.3037 0.0409

synapse 0.2769 0.9818 0.432 0.29 0.0269

xalan 0.6489 0.99767 0.7612 0.64853 0.02

xerces 0.1661 0.9792 0.284 0.1655 0.1318

Table 6.6 ANN based model using TF-IDF Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2465 0.99155 0.3945 0.2595 0.0378

Camel 0.1893 0.9939 0.3179 0.2075 0.05895

Ivy 0.0833 0.975 0.1535 0.0985 0.0136

Jedit 0.1646 0.9509 0.2744 0.4367 0.1767

log4j 0.7612 0.87955 0.81275 0.83605 0.2271

lucene 0.61305 0.99405 0.75835 0.6116 0.0324

poi 0.47705 0.9866 0.59737 0.480033 0.07843

synapse 0.2794 0.9733 0.4324 0.3468 0.0867

xalan 0.4724 0.9974 0.64185 0.47295 0.0206

xerces 0.3145 0.2434 0.2743 0.8227 0.2625

Table 6.7 ANN based model using FastText Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.3913 0.710155 0.462935 0.71735 0.24405

Camel 0.263 0.60663 0.36692 0.62095 0.2219

Ivy 0.145 0.600375 0.20712 0.487125 0.07727

Jedit 0.34135 0.655233 0.433403 0.7447 0.46933

log4j 0.6819 0.6343 0.65695 0.60955 0.2042

lucene 0.66675 0.678015 0.66205 0.592525 0.21563

poi 0.3086 0.70963 0.393605 0.452278 0.09813

synapse 0.3661 0.63423 0.4385 0.62483 0.2282

xalan 0.4917 0.531435 0.49385 0.5211 0.09715

xerces 0.1938 0.416095 0.25898 0.64781 0.1149

30

Table 6.8 ANN based model using Doc2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.58175 0.426203 0.47462 0.824787 0.47091

Camel 0.23525 0.429635 0.294722 0.737234 0.204105

Ivy 0.18125 0.147125 0.153888 0.8735 0.119503

Jedit 0.34563 0.635923 0.42873 0.823402 0.52774

log4j 0.81975 0.471345 0.595833 0.60313 0.31713

lucene 0.71305 0.68333 0.69774 0.64546 0.34254

poi 0.477 0.552714 0.42744 0.508932 0.11932

synapse 0.6471 0.210795 0.318513 0.813402 0.410025

xalan 0.6718 0.58441 0.651973 0.52783 0.05844

xerces 0.2903 0.273925 0.29138 0.803965 0.19661

Table 6.9 GRU based model using Word2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2553 0.95045 0.39378 0.251533 0.06643

Camel 0.18565 0.9927 0.31158 0.1867 0.02966

Ivy 0.0818 0.939 0.14857 0.153125 0.03414

Jedit 0.197133 0.896767 0.295867 0.448533 0.12959

log4j 0.67715 0.7856 0.72048 0.7759 0.23524

lucene 0.61155 0.99345 0.75605 0.6091 0.0503

poi 0.4681 0.987667 0.629733 0.535 0.17515

synapse 0.2394 0.93085 0.3775 0.2768 0.08615

xalan 0.6498 0.997667 0.783167 0.646733 0.01925

xerces 0.2095 0.95415 0.31398 0.2175 0.06698

Table 6.10 GRU based model using TF-IDF Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2286 0.9801 0.3628 0.3188 0.11807

Camel 0.1719 0.99255 0.28655 0.173 0.0339

Ivy 0.0874 0.9778 0.1601 0.16955 0.05594

Jedit 0.15675 0.945 0.2589 0.3802 0.10366

log4j 0.65155 0.97995 0.78135 0.6207 0.132

lucene 0.61255 0.99405 0.75535 0.6101 0.04795

poi 0.507367 0.964967 0.6639 0.507867 0.1968

synapse 0.23835 0.9837 0.3816 0.2898 0.0271

xalan 0.6485 0.997233 0.782667 0.648067 0.0138

xerces 0.207233 0.96355 0.32343 0.217133 0.0532

31

Table 6.11 GRU based model using FastText Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2666 0.6534 0.3569 0.6556 0.0863

Camel 0.1971 0.7987 0.3597 0.2689 0.1536

Ivy 0.1623 0.8387 0.2815 0.4748 0.2967

Jedit 0.1641 0.5653 0.1914 0.7538 0.2083

log4j 0.7282 0.8651 0.7139 0.7629 0.197

lucene 0.7669 0.9507 0.8447 0.7669 0.1992

poi 0.5579 0.6492 0.5386 0.5145 0.244

synapse 0.3192 0.7649 0.3753 0.4043 0.1397

xalan 0.7192 0.8525 0.7533 0.6544 0.1554

xerces 0.1665 0.5433 0.1962 0.6151 0.2302

Table 6.12 GRU based model using Doc2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.3351 0.5547 0.4039 0.6328 0.1545

Camel 0.2845 0.9058 0.4487 0.4524 0.1679

Ivy 0.2376 0.7169 0.3129 0.7355 0.2408

Jedit 0.2021 0.7076 0.3096 0.6488 0.1922

log4j 0.7044 0.8322 0.7156 0.6494 0.1301

lucene 0.7656 0.9061 0.8285 0.7551 0.1655

poi 0.6186 0.5968 0.5683 0.5071 0.2089

synapse 0.3331 0.8734 0.4129 0.5108 0.1443

xalan 0.713 0.9174 0.762 0.722 0.175

xerces 0.469 0.563 0.4505 0.6631 0.2409

Table 6.13 LSTM based model using Word2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2285 0.9228 0.3594 0.3143 0.0362

Camel 0.1679 0.992 0.2821 0.2823 0.0501

Ivy 0.1073 0.9757 0.1602 0.2648 0.0046

Jedit 0.1295 0.866 0.2042 0.3333 0.1122

log4j 0.6645 0.9399 0.6862 0.6518 0.1093

lucene 0.6012 0.9879 0.7322 0.6159 0.0686

poi 0.4701 0.983 0.612 0.4824 0.0824

synapse 0.2368 0.962 0.3684 0.3585 0.0372

xalan 0.6489 0.9806 0.781 0.6464 0.0213

xerces 0.2166 0.9641 0.3469 0.3786 0.0946

32

Table 6.14 LSTM based model using TF-IDF Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2219 0.9065 0.3161 0.3846 0.1122

Camel 0.1807 0.8854 0.2839 0.2542 0.0645

Ivy 0.1683 0.9502 0.2516 0.1551 0.0936

Jedit 0.1831 0.8643 0.2462 0.4328 0.2433

log4j 0.5848 0.9414 0.6762 0.5963 0.0873

lucene 0.6259 0.9249 0.7296 0.6285 0.1041

poi 0.4924 0.9724 0.6368 0.5878 0.1325

synapse 0.2369 0.8756 0.3501 0.2561 0.1504

xalan 0.4842 0.8446 0.5041 0.7038 0.1024

xerces 0.1876 0.7241 0.2784 0.2987 0.1061

Table 6.15 LSTM based model using FastText Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2109 0.3512 0.2294 0.3765 0.3379

Camel 0.1659 0.6266 0.2301 0.2427 0.1857

Ivy 0.0998 0.3725 0.1448 0.1598 0.2879

Jedit 0.1329 0.3082 0.1602 0.3316 0.3232

log4j 0.6487 0.6905 0.6551 0.8545 0.2373

lucene 0.6102 0.7378 0.6386 0.9197 0.295

poi 0.4664 0.4828 0.4078 0.9751 0.2084

synapse 0.2109 0.2174 0.2082 0.3948 0.2456

xalan 0.4783 0.6247 0.4908 0.7037 0.236

xerces 0.4294 0.4007 0.3684 0.7348 0.2098

Table 6.16 LSTM based model using Doc2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2515 0.4126 0.3011 0.5642 0.4583

Camel 0.191 0.2532 0.2146 0.2791 0.2243

Ivy 0.1842 0.2301 0.2052 0.2623 0.2945

Jedit 0.1462 0.2745 0.1757 0.4303 0.3669

log4j 0.6795 0.6874 0.6825 0.8457 0.2205

lucene 0.6132 0.7358 0.6539 0.9197 0.3069

poi 0.2717 0.4336 0.2932 0.4154 0.2196

synapse 0.2344 0.2408 0.2267 0.3948 0.3867

xalan 0.4753 0.5638 0.4908 0.7072 0.2291

xerces 0.2222 0.2499 0.2083 0.3645 0.1538

33

 (a) (b)

 (c) (d)

Figure 6.1 Average values of (a) False Negative Rate using Word2Vec and TF-IDF (b) False Positive

Rate using Word2Vec and TF-IDF (c) False Negative Rate using FastText and Doc2Vec (d) False

Positive Rate using FastText and Doc2Vec.

Table 6.17 Average performance of DL models with Word2Vec and TF-IDF embeddings

Embedding Model Precision F1Score Accuracy MCC

Word2Vec

GRU 0.3809 0.4976 0.386 0.0668

LSTM 0.3795 0.4927 0.3836 0.0506

CNN 0.392 0.5121 0.3978 0.061

ANN 0.3826 0.4989 0.3893 0.0551

TF-IDF

GRU 0.3947 0.5099 0.4259 0.0879

LSTM 0.3998 0.5167 0.4618 0.11

CNN 0.4047 0.5166 0.5087 0.0974

ANN 0.4004 0.5153 0.4584 0.0848

Table 6.18 Average performance of DL models with FastText and Doc2Vec embeddings

Embedding Model Precision Accuracy MCC TNR

FastText

ANN 0.493 0.645 0.254 0.771

CNN 0.473 0.626 0.219 0.71

GRU 0.453 0.603 0.196 0.606

LSTM 0.382 0.54 0.282 0.627

Doc2Vec

ANN 0.515 0.695 0.281 0.789

CNN 0.493 0.646 0.241 0.813

GRU 0.479 0.668 0.212 0.671

LSTM 0.397 0.597 0.286 0.644

34

CHAPTER 7

CONCLUSION AND FUTURE WORK

The performance of four different word embedding methods TF-IDF, Word2Vec, FastText, and

Doc2Vecwas assessed in the context of SDP using various DL methods. Among these, Doc2Vec

demonstrated the best performance, followed by FastText, TF-IDF, and Word2Vec. The evaluation

aimed to determine the effectiveness of these embedding techniques in enhancing classification

accuracy and reliability across a wide range of criteria.

There are diverse prospects that can be exploited as a result of this research. Firstly, other advanced

and specific embeddings like BERT, Code-BERT, RoBERTa, ELMO, XLNet can be considered.

These techniques have manifested improved abilities to capture semantic relationships with higher

accuracy that could further improve the performance of SDP models.

In addition, in future studies on software engineering, the PROMISE dataset may be used but NASA’s

dataset should be included in its investigation. The latter would increase the size of a corpus which

would possibly engender better and more universal models. One more direction is to use CPDP rather

than WPDP. Due to using multiple projects data for training DL models in contrast to WPDP

methodology, CPDP approach enhances the ability of deep learning (DL) models to generalize across

different contexts.

This is an avenue that can be followed by hybrid models incorporating the strengths of different

embedding techniques and DL architectures so as to capture more diverse features and relationships

within the data. Also, it might be beneficial to test these improved versions across various languages

or domains with expected results being more robust SDPs with enhanced adaptability and resilience.

Continuous benchmarking against new models and embedding techniques is crucial in the rapidly

evolving field of NLP to maintain effectiveness and relevance. While this study identified Doc2Vec as

the most effective embedding method tested, significant potential for improvement remains through

exploring advanced embedding techniques, using larger and more diverse datasets, and developing

hybrid models.

35

REFERENCES

[1] Sharma, T., Jatain, A., Bhaskar, S., Pabreja, K. (2023). Ensemble ML Paradigms in Software

Defect Prediction. Procedia Computer Science, 218, 199-209.

https://doi.org/10.1016/j.procs.2023.01.002

[2] Malhotra, R., Singh, P. (2023). Recent advances in DL models: a systematic literature review.

Multimed Tools Appl, 82, 44977–45060. https://doi.org/10.1007/s11042-023-15295-z

[3] Mambina, I.S., Ndibwile, J.D., Michael, K.F.: 'Classifying Swahili Smishing Attacks for Mobile

Money Users: A Machine-Learning Approach'. In: IEEE Access, 83061--83074 (2022) DOI:

10.1109/ACCESS.2022.3196464

[4] Es-Sabery, F., Es-Sabery, I., Hair, A., Sainz-De-Abajo, B., Garcia-Zapirain, B.: 'Emotion

Processing by Applying a Fuzzy-Based Vader Lexicon and a Parallel Deep Belief Network Over

Massive Data'. In: IEEE Access 10, 87870--87899 (2022)

[5] Xie, Z., Liu, L., Wu, Y., Li, L., Zhong, L.: 'Learning TF-IDF Enhanced Joint Embedding for

Recipe-Image Cross-Modal Retrieval Service'. In: IEEE, pp. 3304--3316 Publisher: IEEE. (2021)

[6] Canales, L., Strapparava, C., Boldrini, E., Martínez-Barco, P. (2020). "Intensional Learning to

Efficiently Build Up Automatically Annotated Emotion Corpora." IEEE Transactions on Affective

Computing, 11(2), 335-347. DOI: 10.1109/TAFFC.2017.2764470.

[7] Miholca, D.-L., Tomescu, V.-I., Czibula, G.: 'An in-depth Analysis of the Software Features’

Impact on the Performance of DL-Based Software Defect Predictors'. IEEE Access 10, 64801--64818

(2022)

[8] Nevendra, M., \& Singh, P. (2022). A Survey of Software Defect Prediction Based on DL.

Archives of Computational Methods in Engineering, 29, 5723-5748. https://doi.org/10.1007/s11831-

022-09787-8

[9] Wang, X., Lu, L., Wang, B., Shang, Y., Yang, H.: 'SDP via GIN with Hybrid Graphical Features'.

IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-

C)(2023)

[10] Tang, F., He, P.: 'SDP using Multi-scale Structural Information'. In: ICCAI '23: Proceedings of

the 2023 9th International Conference on Computing and Artificial Intelligence, March 2023, pp. 548-

-556.

[11] Liu, D., Jiang, H., Li, X., Ren, Z., Qiao, L., Ding, Z.: 'DPWord2Vec: Better Representation of

Design Patterns in Semantics'.IEEE Transactions on Software Engineering,48(4), 1228--1248 (2022)

[12] Cao, B., Zhang, L., Peng, M., Qing, Y., Kang, G., Liu, J.: 'Web Service Recommendation via

Combining Bilinear Graph Representation and xDeepFM Quality Prediction'. IEEE Volume 20 Issue

2 1078--1092 (2023)

[13] Fan, G., Diao, X., Yu, H., Yang, K., \& Chen, L. (2019). Software Defect Prediction via

Attention-Based Recurrent Neural Network. Scientific Programming, Volume 2019,

https://doi.org/10.1155/2019/6230953

36

[14] Liang, H., Yu, Y., Jiang, L., \& Xie, Z. (2019). SEML: A Semantic LSTM Model for Software

Defect Prediction. IEEE Access, 7, 83812-83824. https://doi.org/10.1109/ACCESS.2019.2925313

[15] Bala, Y.Z., Samat, P.A., Sharif, K.Y., Manshor, N.: 'Improving Cross-Project SDP Method

Through Transformation and Feature Selection Approach'. IEEE Access 11, 2318--2326 (2022). IEEE.

[16] P. Afric, D. Vukadin, M. Silic, and G. Delac, "Empirical Study: How Issue Classification

Influences Software Defect Prediction," IEEE Access, vol. 11, pp. 11732-11748, Feb. 2023.

[17] T. Sharma, A. Jatain, S. Bhaskar, and K. Pabreja, "Ensemble Machine Learning Paradigms in

Software Defect Prediction," Procedia Computer Science, vol. 218, pp. 199-209, Jan. 2023.

[18] Q. Song, Y. Guo, and M. Shepperd, "A Comprehensive Investigation of the Role of Imbalanced

Learning for Software Defect Prediction," IEEE Transactions on Software Engineering, vol. 45, no.

12, pp. May 15, 2018.

[19] I. Akhmetov, A. Gelbukh, and R. Mussabayev, "Greedy Optimization Method for Extractive

Summarization of Scientific Articles," IEEE Access, vol. 9, pp. 168141-168153, Dec. 2021.

Similarity Report

PAPER NAME

WORD COUNT

7558 Words
CHARACTER COUNT

42631 Characters

PAGE COUNT FILE SIZE

794.1KB

SUBMISSION DATE

May 21, 2024 11:51 PM GMT+5:30
REPORT DATE

May 21, 2024 11:52 PM GMT+5:30

11% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

6% Internet database 5% Publications database

Crossref database Crossref Posted Content database

9% Submitted Works database

Excluded from Similarity Report

Bibliographic material Quoted material

Summary

Gaurav_Plag.docx

29 Pages

Similarity Report

9
Venkata Vara Prasad D, Lokeswari Y Venkataramana, P. Senthil Kumar,...<1%
Crossref

10
University of Strathclyde on 2023-08-31 <1%
Submitted works

11
export.arxiv.org <1%
Internet

12
University of Houston, Downtown on 2024-03-28 <1%
Submitted works

13
University of Wollongong on 2023-12-05 <1%
Submitted works

14
Tilburg University on 2024-05-20 <1%
Submitted works

15
fastercapital.com <1%
Internet

16
University of Houston, Downtown on 2024-03-31 <1%
Submitted works

17
Anna University on 2020-04-13 <1%
Submitted works

18
students.takelab.fer.hr <1%
Internet

19
link.springer.com <1%
Internet

20
ndl.ethernet.edu.et <1%
Internet

Sources overview

https://doi.org/10.1080/03067319.2020.1801665
https://export.arxiv.org/abs/2002.11844v2
https://fastercapital.com/keyword/bleu-score.html/1
https://students.takelab.fer.hr/theses/TakeLab-DR-2017-LukaSkukan.pdf
https://link.springer.com/article/10.1007/s10462-022-10144-1?code=e364123c-6493-4731-8853-72038e5f54cf&error=cookies_not_supported
http://ndl.ethernet.edu.et/bitstream/123456789/56389/1/52%202014.pdf

Similarity Report

21
bsj.uobaghdad.edu.iq <1%
Internet

22
Ngee Ann Polytechnic on 2023-08-15 <1%
Submitted works

23
Purdue University on 2023-12-27 <1%
Submitted works

24
Liverpool John Moores University on 2024-05-13 <1%
Submitted works

25
University of Leeds on 2018-05-02 <1%
Submitted works

26
qdosd.squiz.cloud <1%
Internet

27
theses.gla.ac.uk <1%
Internet

28
hindawi.com <1%
Internet

29
Bournemouth University on 2024-05-21 <1%
Submitted works

30
Mudasir Ahmad Wani, Mohammad ELAffendi, Patrick Bours, Ali Shariq ... <1%
Crossref

31
Sabanci Universitesi on 2006-12-26 <1%
Submitted works

32
Southern New Hampshire University - Continuing Education on 2024-0... <1%
Submitted works

Sources overview

https://www.bsj.uobaghdad.edu.iq/index.php/BSJ/article/download/8710/4663/102143
https://qdosd.squiz.cloud/__data/assets/pdf_file/0023/52772/I_Terrestrial-Aquatic-Ecology_P1.pdf
https://theses.gla.ac.uk/83308/1/2022PowellPhD.pdf
https://www.hindawi.com/journals/bmri/2011/525497/tab1/
https://doi.org/10.1007/s12559-023-10190-z

Similarity Report

33
Xuanye Wang, Lu Lu, Boye Wang, Yudong Shang, Hao Yang. "Software ... <1%
Crossref

34
Colorado State University, Global Campus on 2022-12-04 <1%
Submitted works

35
National College of Ireland on 2022-08-14 <1%
Submitted works

36
Rana Husni AlMahmoud, Bassam H. Hammo. "SEWAR: A corpus-based...<1%
Crossref

37
Subba Reddy Borra, Dasari Ramesh Gari Amrutha Nayana, Sripathi Srin... <1%
Crossref

38
The University of Manchester on 2010-09-10 <1%
Submitted works

39
journals.plos.org <1%
Internet

40
ntnuopen.ntnu.no <1%
Internet

41
research-collection.ethz.ch <1%
Internet

42
"Intelligent Natural Language Processing: Trends and Applications", Sp... <1%
Crossref

43
Oxford Brookes University on 2019-03-31 <1%
Submitted works

44
The Robert Gordon University on 2020-06-08 <1%
Submitted works

Sources overview

https://doi.org/10.1109/QRS-C57518.2022.00066
https://doi.org/10.1016/j.eswa.2023.121767
https://doi.org/10.1007/s42600-024-00346-7
https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0230416
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/3111306/Nicola%20Tamascelli.pdf?isAllowed=y&sequence=1
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/99258/eth-27085-01.pdf?isAllowed=y&sequence=1
https://doi.org/10.1007/978-3-319-67056-0

Similarity Report

45
Tilburg University on 2024-05-20 <1%
Submitted works

46
University of Hertfordshire on 2023-12-04 <1%
Submitted works

47
University of Malta on 2018-09-29 <1%
Submitted works

48
University of Surrey on 2023-09-04 <1%
Submitted works

49
docplayer.net <1%
Internet

50
Buqing Cao, Lulu Zhang, Mi Peng, Yueying Qing, Guosheng Kang, Jianx... <1%
Crossref

51
Universiti Sains Malaysia on 2015-06-25 <1%
Submitted works

52
AlHussein Technical University on 2024-01-29 <1%
Submitted works

53
Asia Pacific University College of Technology and Innovation (UCTI) on... <1%
Submitted works

Sources overview

https://docplayer.net/21040824-Hierarchical-probabilistic-neural-network-language-model.html
https://doi.org/10.1109/TNSM.2023.3234067

