Comparative Analysis of Word Embedding
Techniques on Software Defect Prediction

A DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS
FOR THE AWARD OF THE DEGREE
OF
MASTER OF TECHNOLOGY
IN
DATA SCIENCE
Submitted by:

GAURAV SHARMA
2K22/DSC/05
Under the supervision of
Miss. PRIYA SINGH

Assistant Professor

()YU

DELTECH

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi — 110042 MAY, 2024

rRICOUragell

+ then. our work would not have been successful. Her unw

_ hﬂpedmammmattb@pmusoflmmsnmimpomm
1 want to express my sincere thanks 1o the faculty and personnel at the institution for providing

us with a infrastructure, laboratorics, library, suitable educational resources, testing fwﬂ[ﬂﬂw

and a working atmosphere that didn’t interfere with our ability to complete our work.

I would also like to thank all of my friends and classmates for thir unwavering support. They

sisted me in every way, providing me with fresh ideas, the knowledge I needed, and the
parents for always

have as

will to finish the assignment. [want to express my gratitude to my
supporting me after finishing my task.

‘qu f i anneits

Gaurav Sharma

(2K22/DSC/05)
M.Tech (Data Science)
Delhi Technological University

Whmh is tsubmtted by me to Department of
"Tachmlagwal University, Shahbad Daulatpur, Delhi in partial fulfilment of re
award of the degree of Master of Technology in Data Science, has no
the basis for any fulfilment of requirement in any degree or other similar titl

This report is an authentic record of my work carried out during my degree und
of Miss. Priya Singh.

Place: Delhi

Date: 27p Ma.»a 2014

Maﬁlnrof']‘eclmolagy in Data Science, is a r¢
under my supervision. To the best of my hmwledge

or full for any degree or diploma to this university or elsewhere.

Place: Delhi

Date: 2_-:‘/’ S—I o \1

ABSTRACT

Embeddings are known for their ability to understand semantic relationships, reduce
dimensionality, and identify patterns in data. These techniques are mostly used in machine
learning as they are helpful and can easily be integrated into prediction models. Embedding
techniques such as Word2Vec, TF-IDF, FastText, and Doc2Vec are commonly used for
software defect prediction tasks. While creating a defect prediction model, picking the suitable
embedding method is very important. This study undertakes a comprehensive comparison of
these widely-used embedding techniques within the realm of software defect prediction. The
analysis is based on a diverse set of Java projects sourced from the open-source Promise
repository. The evaluation process involved training and testing multiple deep learning models
to assess the effectiveness of each embedding technique. Several key evaluation metrics,
including the Matthews correlation coefficient (MCC), specificity accuracy, precision, recall,
and F1 score, were used to measure performance. The results of this rigorous evaluation reveal
that Doc2Vec significantly outperforms the other embedding techniques, demonstrating its
superiority in capturing semantic nuances and contributing to more accurate defect predictions.
FastText emerges as the second-best performer, surpassing TF-IDF and Word2Vec in various
metrics. TF-IDF, while effective, falls short of the performance levels achieved by Doc2Vec

and FastText, but still surpasses Word2Vec, which ranks last in this comparison.

TABLE OF CONTENT

ACKNOWLEDGEMENT
CANDIDATE’S DECLARATION
CERTIFICATE
ABSTRACT
LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATIONS
CHAPTER 1: INTRODUCTION
1.1 Motivation
1.2 Problem Statement
1.3 Objective
1.4 Dissertation Organisation
CHAPTER 2: BACKGROUND
2.1 Software Defect Prediction
2.2 SDP Using Deep Learning
2.3 Artificial Neural Network
2.4 Convolutional Neural Network
2.5 Recurrent Neural Network
2.5.1 LSTM
2.5.2 GRU
2.6 Embedding Techniques

2.7 Word2Vec

Page No.
ii
iii

iv

viii

ix

11
11
11
11
12
13
13
13
14
14
15
16
16
16

17

Vi

2.8 TF-IDF
2.9 FastText
2.10 Doc2Vec
CHAPTER 3: LITERATURE REVIEW
CHAPTER 4: METHODOLOGY
4.1 Corpus Generation Using AST
4.2 Generation of Sequence Tokens
4.3 Fine Tuning of Pre-trained models
4.4 Generation of Embeddings
4.5 Comparison of Techniques
CHAPTER 5: EXPERIMENTAL SETUP
5.1 Dataset Used
5.2 Evaluation Metrics
5.3 Hyperparameter Settings
CHAPTER 6: RESULT
CHAPTER 7: CONCLUSION AND FUTURE WOEK
REFERENCES

LIST OF PUBLICATION

18

19

19

20

22

22

22

22

23

23

24

24

24

25

26

33

34

36

vii

LIST OF FIGURES

Page No.
Figure 2.1 Flowchart of Software Defect Prediction 13
Figure 2.2 Artificial Neural Network 14
Figure 2.3 Convolution Neural Network 15
Figure 2.4 Recurrent Neural Network 15
Figure 2.5 Architectural Design of GRU and LSTM 16
Figure 2.6 [lustration of Skip-NGram and CBOW model 17
Figure 2.7 Binary tree structure followed by FastText 19
Figure 2.8 Distributed memory architecture for Doc2Vec model 20
Figure 4.1 Process of Defect Prediction 24
Figure 6.1 Average values of FNR and FPR 33

viii

Table 5.1

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Table 6.6

Table 6.7

Table 6.8

Table 6.9

Table 6.10

Table 6.11

Table 6.12

Table 6.13

Table 6.14

Table 6.15

Table 6.16

Table 6.17

Table 6.18

LIST OF TABLES

Description of project along with their version
CNN based model using Word2Vec Embeddings
CNN based model using TF-IDF Embeddings
CNN based model using FastText Embeddings
CNN based model using Doc2Vec Embeddings
ANN based model using Word2Vec Embeddings
ANN based model using TF-IDF Embeddings
ANN based model using FastText Embeddings
ANN based model using Doc2Vec Embeddings
GRU based model using Word2Vec Embeddings
GRU based model using TF-IDF Embeddings
GRU based model using FastText Embeddings

GRU based model using Doc2Vec Embeddings

LSTM based model using Word2Vec Embeddings

LSTM based model using TF-IDF Embeddings
LSTM based model using FastText Embeddings

LSTM based model using Doc2Vec Embeddings

Average performance with Word2Vec and TF-IDF embeddings

Average performance with FastText and Doc2Vec embeddings

25

27

28

28

28

29

29

29

30

30

30

31

31

31

32

32

32

33

33

Page No.

LIST OF ABBREVIATIONS

SDP: Software Defect Prediction

CNN: Convolution Neural Network

ANN: Artificial Neural Network

RNN: Recurrent Neural Network

NLP: Natural Language Processing

CBOW: Continuous Bag of Words

LSTM: Long Short Term Memory

GRU: Gated Recurrent Unit

MCC: Matthews Correlation Coefficient

TF-IDF: Term Frequency

Word2Vec: Word to Vector

Doc2Vec: Document to Vector

FNR: False Negative Rate

FPR: False Positive Rate

CHAPTER 1
INTRODUCTION

1.1 Motivation

Software development is inherently complex and fraught with numerous challenges. Lots of
companies are how wasting colossal amounts of their money and resources fixing bugs within the
computer software. The bugs might be small, but really set up big issues in terms of quality and how
the system operates. If such bugs are not fixed, then faulty systems will grind to an embarrassing stop.
This has an effect on user experience and stability of the system, from a consumer's perspective. The
software defect prediction (SDP) technique is a powerful tool to tackle this situation. It helps avoid
such faults much before they could be visible in terms of consequences. Such an approach would be
very important if excellence in software engineering is to be achieved. In this view, it becomes
indispensable to enrich the efficacy of SDP for expediting the development process of useful software.

1.2 Problem Statement

SDP is an Al software tool used by developers in dealing with the problems related to their software.
It works in hand with predictive models, which focus more on innovation. In fact, all such innovations
come through the techniques associated with NLP, ML, and DL. These include different types of
embeddings, such as Word2Vec, GloVe, FastText, TF-IDF, and Doc2Vec. These techniques help to
convert words into numerical vectors for the algorithms so that they are able to pick up the semantic
relationships present in textual data.

Although these have shown promise in improving SDP, there still lacks comprehensive comparison
across different word embedding techniques within the context of SDP. Thus, there is a need to
understand the relative performance of the different embedding techniques employed over models for
SDP tasks. The necessity to confirm that diverse SDP models, integrating embedding techniques, will
align seamlessly with defect prediction models.

1.3 Objective

This thesis aims to contribute significantly to the field of SDP by examining the impact of various
embedding techniques on SDP tasks. Specifically, it seeks to achieve the following objectives:

1. Examine the impact of various embedding techniques on SDP tasks.

2. Conduct a comparative evaluation of commonly used embedding methods, such as
Word2Vec, TF-IDF, FastText and Doc2Vec.

3. Analyze the performance of different embedding techniques across multiple evaluation
metrics specific to SDP.

4. Evaluate how effective the DL models are when employed for SDP.

5. Investigate how the integration of embedding techniques with DL models enhances SDP
outcomes.

6. Provide insights into selecting suitable embedding techniques tailored to specific SDP
requirements.

Through these objectives, the study aims to tell how effective embedding techniques are in enhancing
SDP and offer guidance for researchers in selecting the most suitable techniques for their SDP tasks.

11

1.4 Dissertation Organisation

The thesis is structured to systematically and comprehensively address the objectives. Chapter 1
consists of Introduction which provides the overview of the project clarifying the main objectives and
discusses the motivation behind the thesis along with the Problem Statement. Chapter 2, deals with
the Background wherein the background of the research work is dependent. It generally deals with
the tech stacks and the important components that is essential and used mojorly in the thesis. Chapter
3 provides us with the Literature Review or the Related work done in the domain of SDP. It
summarises and gives the overview of existing research on the application of sequential models for
software defect prediction. It covers methodologies, datasets, evaluation metrics, and case studies. In
Chapter 4 goes with the detailed methodology including search strategies. It gives the detailed
description of all the steps that is followed in the experiment with the inclusion criteria. It also covers
the data extraction methods, corpus generation methods, how the model is pre-trained and what
models have been considered for creating the embeddings along with the DL models that were used to
actually predict the defects in software. It also presents us with the dataset discussion along with every
version considered for the experiment. Chapter 5, consists of Experimental Setup that is every setup is
defined in this section. For elaboration this chapter contains the evaluation metrics which helps to
derive the conclusion of which embedding methods are suitable for Defect prediction model used in
the research. This chapter also discusses about the hyperparameter settings which were set in order to
get the desired result. Then finally comes the Chapter 6. That is Result and Discussion Section where
tables and figure are provided giving defining the result that how things were set up and finally the
result is achieved. In this section the technical details are present with examples of how each and
everything is mentioned and taken into consideration. Chapter 7 is the Conclusion section that
concludes the result. Along with it tells about the future research in the domain of SDP . Lastly the
Reference section Chapter 8 is provided that shares the materials from where the inspiration had been
taken.

12

CHAPTER 2
BACKGROUND

2.1 Predicting Software Defects

SDP is a process of using ML and DL techniques to predict the likelihood of software defects in a
software system. The goal of SDP is to identify potential defects before they occur, enabling software
development teams to take preventive measures and improve software quality.

Historical

Modelin
Defect &

Balancing

Multiclass
Data

Predictin Predictor
Defect &
Data l
Prediction
Results

Figure 2.1 Flowchart of software defect prediction

It can be challenging due to the dynamic nature of software development, where software code and
requirements can change rapidly over time. Additionally, it can be difficult to obtain accurate
historical data on defects and software metrics, especially in cases where the software system is new
or has not yet been deployed.

2.2 SDP Using DL Methods

For years, ML techniques have played a crucial role in SDP tasks, offering valuable insights into
potential defects through features extracted from software artifacts. However, traditional ML models
face challenges when dealing with the complexity and intricacies of textual and image data. In
contrast, DL techniques have proven to be highly effective for these data types. With their capability
to automatically learn hierarchical representations from raw data, DL models excel at identifying the
nuanced patterns and relationships within textual and image data. These methods encompass various
neural network architectures. Some of the architecture such as Artificial Neural Networks,
Convolution Neural Networks and Recurrent Neural Networks are often used for SDP.

13

2.3 Artificial Neural Networks

A unit is an artificial neuron and is considered the fundamental unit of an artificial neural network. In
essence, the Artificial Neural Network in a system consists of several layers of units. A layer can have
a few dozen units or possess millions of them, all depending upon how complex neural networks are
to be discovered for the data set. A typical artificial neural network is composed of input layers,
output layers, and hidden layers. The input layer is where data comes in from the rest of the world,
which the neural network is to appraise or learn about. This data will then pass through one or more
hidden layers to convert the input into a more useful form for the following layer: the output layer.
Finally, the output layer gives an output response to the ANNSs of the input data given.

Hidden Layers

Input Layer . .
O AT

<A oA N

N OGO/
X A< NG TN X7
.e EHK A~ IRERA XSS

Output Layer

50

‘\A. ‘v/v “‘} .
OSSN w(gx..\,
77 >N\

Figure 2.2 Artificial Neural Network

It is within this respect that ANNs are rather critical in the detection of bugs, since complex
relationships between software data can be well modeled. With these ANNs being layered, they
automatically identify useful features out of large datasets representing code metrics, bug reports, and
textual data. This makes it possible for ANNs to identify probable defective patterns, allowing clear
management proactively by means of the early detection of software problems. ANNs improve the
accurateness and relevant SDP models by using their deep learning capabilities, making it better
quality software. They are also making it more dependable in the life cycle of development. They are
efficient in contemporary designed software development processes due to the flexibility of data

types.

2.4 Convolution Neural Networks

CNNs are an enhanced form of artificial neural networks, primarily utilized for feature extraction
from grid-like matrix datasets. Take visual datasets, such as pictures or videos, where data patterns are
very important. The input layer, pooling layer, convolutional layer, and fully connected layers are
some of the layers that make up a convolutional neural network. The architectural design can be seen
in figure 2.3.

The input is processed by the convolutional layer to extract features, the pooling layer reduces
computation by downsampling the data, and the fully connected layer generates the final prediction.
By using gradient descent and backpropagation, the network discovers the best filters. CNN are
generally preferred for image data as they excel in feature extraction. However, 1-D CNN also
performs well in textual data and hence it is used in areas such as NLP.

14

’ Convolutional +ReLu layers
[Max pooling layers

’ Dropout layers

s Fully connected layer

[Softmax

Figure 2.3 Convolution Neural Network

CNNs significantly enhance SDP by effectively processing and analyzing code and textual data.
CNNs are adept at identifying spatial hierarchies and patterns within data through their convolutional
layers, making them particularly useful for examining code snippets, source code images, and
structured text. By automatically learning and extracting features relevant to defect prediction, CNNs
improve the accuracy and efficiency of detecting potential software bugs. Their ability to handle large
and complex datasets ensures robust SDP models, ultimately contributing to higher software quality
and more reliable development processes.

2.5 Recurrent Neural Networks

A type of neural network called a RNN uses the output from the preceding step as the input for the
current step. In classical neural networks, all the inputs and outputs are independent of each other.
However, there occur situations where, due to the previous words, a guess has to be made regarding
what word is in the next sentence, therefore, they must be remembered. So, to tackle that problem an
RNN with the help of a Hidden Layer was formed. The Hidden state is the most essential feature of an
RNN; it's mostly the same with the sequence history. Due to the fact that an RNN retains memory
associated with the previous input into the network, it's also referred to as the Memory State.

Unfold

—
c
— =
c
—_—
c
—
[

Figure 2.4 Recurrent Neural Network

RNNSs are ideally suited to be used with SDP because they can deal with sequential data and capture
dependencies over time. These architectures are more than well known for tasks in which the order of
events and contexts really matters, such as changes to your code, history of commits, and bug report
analysis through time. This is mainly because of the recurrence imputed in them, hence equipping
RNNs with the intrinsic ability of tracking long-term dependencies by storage of a memory of past or

15

previous input sequences in ways of determining the dynamic understanding of how software grows
and defects potentially introduced.

2.5.1 Long Short-Term Memory Networks

The RNNs of this special form, called LSTM networks, manage to alleviate the vanishing-path
problem, widely present in traditional RNNs. LSTMSs use a chain of input, forget, and output gates to
control the flow of information in such a way that relevant information over a large time step can be
maintained, while irrelevant data may be ignored. This is particularly valuable in SDP, where very
long sequences of changes or histories of extended bugs lead to early changes that significantly affect
later outcomes. LSTMs increase the predictive accuracy of SDP models by capturing long-term
dependencies and allow them to identify complex patterns of defects that span very long software
development periods.

GRU LSTM

ylt] hi

h[t-1] f X + \ T\ hit] Cu —3==8 X 3 + —>C
] r(t] 11“ T T : l
x (_] 2(t] T hit] (PN tanh
H o 1> o |>tann] (9) O tanh J,

h (J J J 0 = X —2—>h‘

x[t]

Figure 2.5 Architectural Design of GRU and LSTM
2.5.2 Gated Recurrent Units (GRU)

In fact, another variant of the RNN was developed to keep its good properties of being able to deal
with long-term dependencies while at the same time reducing the complexity: the so-called Gated
Recurrent Unit. In fact, GRUs fold together the input and forget gates, and cell and hidden states, into
one update gate. This is computationally less complex of a computation during back prop and
computationally faster to run than LSTMSs because it has fewer gates, yet it still copes quite well with
sequential dependencies. Hence, GRUs can settle on a reasonable balance between performance and
efficiency, depending on the needs of real-time defect prediction in the codebase evolution analysis
with SDP. Being lightweight in computation, GRU is competent enough to fit into this task; therefore,
it can be a good choice for installing defect prediction within pipelines for Cl and CD.

2.6 Embedding Techniques

High-dimensional data can be represented in various embedding techniques which internalize
semantic relationships into dense, low-dimensional vectors. Embeddings represent words, phrases, or
even entire documents as vectors within a continuous vector space based on both syntactic
relationships and contextual meaning. Word embeddings are done with respect to approaches that look
at large corpora like Word2Vec, GloVe, and FastText, enabling useful and meaningful comparisons.
Embeddings are important to both ML and DL tasks because they provide a way to transform complex
data into forms that can be handled by the model in use, thus helping sentiment analysis, text
classification, and other tasks.

16

Heterogeneous and complex software data are made meaningful and processable by embedding
techniques in the context of SDP tasks. The truly complex patterns living within a software artifact
might not have been fully captured by the traditional approaches followed in SDP, which mostly
relied on manually created features such as code metrics and historical defect data. The
methodologies, including Word2Vec, Doc2Vec, TF-IDF, and FastText embeddings, encode syntactic
and semantic information extracted from the source code and its surrounding documentation into
continuous vector spaces. These embeddings have realized scalability and adaptability of SDP
models, allowing for transfer learning where the models trained over one project are applied over
successfully to others.

In addition, embedding is expected to improve the handling of large codebases and diversified data
sources, such as bug reports, commit messages, and documentation, by automatizing the process of
feature extraction, thus reducing the need for human intervention. This way, resulting SDP models
will provide much more fine-grained representation of software artifacts, making them on a much
higher level of accuracy and prediction for more reliable and efficient processes of software
development.

2.7 Word2Vec

A very common word embedding technique for word2vec in NLP aids in converting words into blasé
vectors of a very low dimension and retains the semantics of the word. Word2Vec is a creation by
Google, and it learns distributed representations of words based on their contextual usage across a
corpus. The model has two primary architectures: skip-gram and continuous bag of words (CBOW).

CBOW Skip-Ngram

input projection output input projection output
W—E O W—z
W-1 O -1
SUM 2= Wo Wo > O
Wi Wi
WE O WE

Figure 2.6 Illustration of Skip-NGram and CBOW maodel

The architecture of the CBOW model predicts a target word from its surrounding context words. For
example, if we take the sentence "The cat sat on the mat" and we take the word "cat" as the target
predictive word, then the words "The," "sat,” "on," and "the" will be considered context words in
CBOW for predicting "cat." The vector representations of these context words are needed to be
summed up, or in other words aggregated, for an architecture to predict the target word. It works well
in practice for small training sets and gives good results generally when the words are indeed very
common.

Given the target word, the Skip-gram architecture predicts the words before it. For example, "The,"
"sat," "on," and "the" are the context words that Skip-gram looks to predict the target word “cat.”
Finally, in order to train, Skip-gram forms context pairs by treating each word as an individual

17

observation. Skip-gram needs a high amount of training data. In contrast, it did better on larger
datasets and much more competently with less frequent words.

2.8 TF-IDF

Term frequency-inverse document frequency, or TF-IDF for short, is a statistical metric that is
frequently used in text mining and information retrieval to assess a word's significance in relation to a
set of documents. Inverse Document Frequency and Term Frequency are two distinct concepts.
Together, they make up TF-IDF.

A term's frequency of occurrence in a document is assessed using the Term Frequency (TF) measure.
Because every document is different in length, a term may appear far more frequently in longer
documents than in shorter ones.

TN (Number of times term t appears in a document)
Total number of terms in the document

TF(t) =

On the other hand, the Inverse Document Frequency (IDF) component, which is derived from the
logarithm of the ratio of the total number of documents to the number of documents containing the
term, determines how uncommon a term is throughout the corpus. Terms that are uncommon
throughout the corpus but frequently occur in a document have high TF-IDF scores, indicating their
importance in characterizing the content of the document. The following is the formula for term
frequency.

log,.(Total number of documents)

IDF(t) = - —
© Number of documents withtermtin it

The TF and IDF scores for each term in a document are multiplied to create TF-IDF scores, which are
weighted scores that represent a term's importance both locally within the document and globally
throughout the corpus. High TF-IDF score words are valued and frequently utilized as features or
keywords in a variety of text analysis tasks, such as keyword extraction, text classification, and
document ranking. The flexible and popular TF-IDF approach helps to extract valuable insights and
patterns from textual data by giving textual information a numerical representation.

2.9 FastText

FastText is a state-of-the-art word embedding technique developed by Facebook's Al Research (FAIR)
lab. It builds upon the success of Word2Vec but introduces several improvements, particularly in
handling out-of-vocabulary words and subword information. FastText trains word vector models very
quickly. In less than ten minutes, you can train roughly one billion words.

18

NODE 0

/\

Leaf wl : Travel NODE 1

PN

Leaf w3 : Indian
Cuisine

Leaf w2 : Food

Figure 2.7 Binary tree sturcture followed by FastText

It uses a binary tree to represent the labels in this method. In a binary tree, each node stands for a
probability. The probability along the path leading to a given label represents that label. This indicates
that the labels are represented by the binary tree's leaf nodes.

Deep neural network models can be difficult to train and test. These methods use a linear classifier to
train the model. Using this model, one can develop algorithms to obtain vector representations of
words through supervised or unsupervised learning. It also evaluates these models. FastText supports
both the CBOW and Skip-gram models. FastText handles uncommon and out-of-vocabulary words
efficiently by representing words as bags of character n-grams, in contrast to Word2Vec, which
represents each word as a single vector. This enables it to capture morphological information.
FastText is especially helpful for tasks involving large vocabularies or languages with complex
morphology because it can generate embeddings for words that are not present in the training data by
taking subword information into consideration.

Like Word2Vec, FastText trains on a skip-gram model with negative sampling; however, it
incorporates character n-grams into the model architecture. This makes it possible for FastText to
record more detailed semantic information and enhance the quality of word embeddings, particularly
in tasks involving uncommon or misspelled words and morphologically rich languages.

2.10 Doc2Vec

Extending the Word2Vec model, Doc2Vec is a neural network-based method for producing document
embeddings. Documents can be represented as continuous vector representations thanks to Doc2Vec,
which learns embeddings for entire documents in contrast to Word2Vec, which learns embeddings for
individual words.

19

Input layer Projection Layer Output Layer

wit-2)

Wir-1)

W[t=1)
Document 1D

Wit+2)

Figure 2.8 Distributed memory architechture for Doc2Vec model

The Paragraph Vector model, which comes in two flavors: Distributed Memory (DM) and Distributed
Bag of Words (DBOW), is the most widely used implementation of Doc2Vec. With the help of
document vector and surrounding word vectors, DM variant model gets to predict the next word in a
context. On the other hand, DBOW uses only the document vector to guess randomly chosen words
from the text. For example to create dense fixed-length vectors that can capture semantic meaning and
contexts of a document, Doc2Vec uses neural networks to extract semantic information from
documents. These embeddings are useful for document classification, grouping and similarity
retrieval tasks in textual analysis where relationships between documents are maintained.

20

CHAPTER 3
LITERATURE REVIEW

Word embeddings work by representing text in n-dimensional space. They are essential for solving
NLP-related problems. One such problem in identifying Swahili Smishing communications directed
at mobile money customers is emphasized by S. Iddi et al. [3]. These techniques allow for efficient
classification by capturing semantic links in text, which is crucial for differentiating genuine messages
from smishing ones. Similarly, to establish a unified feature space for text and image modalities,
Zongwei [4] introduced a multi-modal approach by integrating TF-IDF features with LSTM networks
for capturing sequential information. The incorporation of TF-IDF helps in refining the image
modalities.

Emotion processing is becoming an important research area in fields such as data analysis and NLP.
For analyzing emotion, it is important to capture the presence of specific words along with their
relationships with other words. Sabery [5] proposed a hybrid model for emotion analysis by
combining the Deep Belief Network with TF-IDF and Glove. The embeddings helped outperform the
baseline models in several metrics. In a similar context of emotion analysis, Canales [6] achieved
efficient data annotation through Word2Vec embeddings, enhancing the categorization process of
different emotions.

In the context of SDP, the role of defect prediction models becomes equally important as the
embedding techniques. For a longer period of time, conventional ML approaches have been used in
creating prediction models. The issue with these approaches lies in capturing the semantic relationship
among textual data. In comparison to these approaches, neural networks perform better with image
and textual data. Using a DL approach, Miholca [7] significantly improved defect prediction,
outperforming conventional methods in the Calcite program. The significance of SDP is also
highlighted by Nevendra [8] in concerns regarding software complexity. The research shows notable
performance gains by comparing DL techniques across open-source projects. This change in strategy
creates new opportunities for improving defect prediction models.

Using hybrid features [9] is advantageous, making defect prediction models more flexible. Wang
cleverly combined the AST and Control Flow Graph (CFG) via the Graph Isomorphism Network to
push SDP with H-GIN as evidence. With respect to the PyTraceBus dataset, H-GIN demonstrated
better prediction accuracy than earlier approaches. Similarly, graph neural networks (GNN) and
transformers were used to create a novel model that Tang and He presented [10]. Their technique,
which included absolute and relative locations in the AST, addressed the local learning constraints of
GNN and showed superior F-measure and improved detection of faulty features on the PROMISE
dataset.

Another hybrid model Siamese dense neural networks (SDNNSs) proposed by Zhao etal. [R16], which
capitalize on their capacity to learn from small amounts of data. To improve prediction accuracy,
SDNNs combine learning of distance metrics and similarity features. In order to capture high-level
similarity features and use a contrast loss function for prediction, the model is constructed and trained
in two stages. The competitive performance of SDNNs is demonstrated through comparison with
state-of-the-art SDP approaches across 10 datasets, exhibiting notable improvements in prediction
accuracy when compared to benchmarked methods.

A dataset of more than 400 thousand articles from design pattern books was used by D. Liu et al. for
DPWord2Vec [11], a technique to concurrently embed design patterns and natural language words

21

into vectors. According to evaluation, DPWord2Vec performs 24.2\%-120.9\% better than baseline
algorithms when assessing word and design pattern similarity. Additionally, DPWord2Vec enhances
design pattern tasks by 6.5\%-70.7\%, including tag suggestion and selection. A similar approach to
learning from datasets was used in a technique for proposing Web services for superior Mashup
applications put forth by B. Cao et al. [12]. Their method uses Word2Vec for semantic representations
from service descriptions and creating a service relationship network, combining bilinear graph
attention representation with xDeepFM quality prediction. The findings on the ProgrammableWeb
dataset demonstrate better performance in terms of accuracy and recall compared to other approaches.

The effect of issue classification using data from seven open-source repositories on SDP datasets is
discussed by Petar Afric [16]. FastText is one of the four classification techniques that are compared.
The results show that FastText has a big impact even though the RoBERTa model generates the
highest quality datasets. While SDP models trained on FastText-classified datasets do not outperform
those trained on ROBERT , they still yield insightful results. The study shows that while FastText can
increase issue classification accuracy, its ability to improve SDP model performance is not as strong
as that of the RoBERTa model.

The ensemble-based ML approaches [17] for software defect prediction from 2018 to 2021 are
reviewed and evaluated in this review paper. Poor prediction still occurs despite advances because of
problems with redundancy, correlation, and unbalanced data. Gaps in existing methods are exposed
through the analysis of multiple viewpoints, evaluation criteria, and ML techniques. To overcome
these obstacles and boost prediction performance in software defect detection, the paper promotes
strong hyperparameter optimization, improved feature engineering, and the creation of stacking and
averaging models.

Using ML [18] tackles the problem of class imbalance in software defect prediction (SDP). Several
important conclusions are drawn from the research's systematic evaluation of 27 datasets, 7
classifiers, 7 input metrics, and 17 imbalanced learning techniques. Low imbalance is present in most
datasets, which has little impact on traditional learning. On the other hand, performance is severely
hampered by moderate to high imbalance. In this case, imbalanced learning may be advantageous,
though outcomes may differ. The classifier type has the biggest effect on performance; input metrics
have less of an impact. The imbalanced learning method comes in second. For moderately to highly
imbalanced datasets, the study suggests using imbalanced learning. To prevent unfavorable outcomes,
it is important to carefully choose the classifier-method combinations.

A greedy Extractive Summarization algorithm [19] enhanced by Variable Neighborhood Search
(VNS) is used to summarize scientific articles from arXive and PubMed. Sentences with high TFIDF
values are given priority by the algorithm, which also adjusts document frequency for TFIDF
vectorization. It attains ROUGE-1/ROUGE-2 scores of 0.40/0.13 on PubMed and 0.43/0.12 on
arXive, which are on par with the performance of cutting-edge models that make use of sophisticated
neural networks and substantial computing power. This method, in contrast to these sophisticated
models, is based on simple statistical inference, showing that less complex methods can still yield
high-quality summaries.

22

CHAPTER 4
METHODOLOGY

The methodology encompasses several key stages aimed at effectively analyzing Java code for bug
prediction. The stages are described in a detailed manner in the coming subsections as follows:

4.1 Corpus Generation from using AST

The Python library javalang is used to represent the Java code in a tree-like structure that is the AST
of the code. The Java code is taken from different Java projects described in Section 4.1. The Javalang
library may be obtained from https://github.com/c2nes/javalang. There are two components in it: a
lexer and a parser made specifically for Java [13]. Within the AST, each node corresponds to a
specific construct such as MethodDeclaration, IfStatement, or VariableAccess, pinpointing
occurrences within the source code. As a result, the AST facilitates the generation of a comprehensive
corpus for each Java project. This corpus is used for fine-tuning the pre-trained TF-IDF, Word2\ec,
Doc2Vec and FastText models.

4.2 Generation of Sequence Tokens

The categories of AST nodes selected as tokens are control flow nodes, class declarations, and method
invocations, which are also depicted in Table. 1. A new sequence token file is created for every
version of the Java project (for example, Ant 1.5), and when any of the selected tokens in the table is
detected within the corpus generated by the AST, that token is appended to the sequence token file.
This procedure iterates for every version of the Java project, thereby composing the sequence tokens.
These tokens are subsequently utilized as input for the models to generate embeddings.

4.3 Fine Tuning of Pre-Trained Model

Transfer learning is employed by importing Word2Vec and TF-IDF models from Gensim and Scikit-
Learn libraries, respectively. The models are trained on the corpus generated by AST for each Java
project. These trained models are fed with tokens to generate the embeddings.

TF-IDF Vectorizer, imported from scikit-learn, is trained on the corpus. The vectorizer is fitted to the
data using ‘fit-transform()‘, analyzing text, constructing vocabulary, and calculating TF-IDF scores.
The resulting sparse matrix represents documents, words, and TF-IDF scores, forming the trained TF-
IDF model.

The Word2Vec model is imported from the Gensim library to train on a corpus generated by AST.
Specific parameters are used to initialize and train the model, such as a vector size of 100 words, a
window size of 5, a minimum count of 5 and an epoch of training the model that is equal to 10.

The Doc2Vec model is imported and trained based on a corpus produced by AST. Document
embeddings which represent each document in a vector space are learned by it. The key parameters to
initialize this model are: vector size (100), window size (5) and minimum word count (5).With 10
epochs, the model iterates over the dataset 10 times for training. Utilizing 4 CPU cores speeds up the
process.

For FastText, we have initialized the imported model with parameters including vector size (100),
window size (5), and minimum word count (5). The model undergoes 10 training epochs, utilizing 4
CPU cores for computational efficiency and accelerating the training process.

23

4.4 Generation of Embeddings and workflow

After subjecting the pre-trained models to fine-tuning with the corpus generated by AST, the sequence
tokens extracted from each version of the project are then inputted into the trained models. By doing
so, the models are able to produce embeddings that reflect the underlying contextual information
embedded within the code.

The whole process, as depicted in Fig. 4.1, goes by training a DL model using the vector
representations obtained from the pre-trained models. This model is geared towards executing a
specific task of defect prediction. The training process starts by inputting the embeddings into the
model and iteratively refining model parameters to enhance performance.

Embedding Techniques

Neural Network

[]
[] AST ®
o ¢ o0 ¢ EE) RO P —
, v .. ouewt=1 |
LIJ “Not Defective
- o
B
(a) (b) (c)

Figure 4.1. The process of defect prediction (a) Parsing the java code using AST. (b) Creating vectors
using embedding techniques. (c) Training of DL model (d) Performing defect prediction

4.5 Comparison of Techniques

The output of the trained DL model assigns 1" for bugs detected and ”0” for bug-free software. After
getting the final output, a comparative analysis is conducted to evaluate the embeddings based on the
evaluation metrics.

This step assesses which embedding technique contributes more effectively to the model’s
performance. The important performance indicators used in this thesis are described furtherin section
5.2. Each of the embedding techniques is compared to one another on common terms based on
evaluation metrics.

24

CHAPTER 5

Experimental Setup

This section outlines the dataset utilized, the baseline DL model selected for comprehensive analysis,
the hyperparameter setting, as well as the evaluation measures included in the experiment.

5.1 Dataset Used

The dataset used in this research is a set of 10 open-source Java projects that are taken from the
PROMISE repository. The list of Java projects is given with their descriptions in Table 5.1.

Table 5.1 Description of project along with their version

Projects|Versions Description

Ant 1.5, 1.6, 1.7 Java tool for managing processes, targets, and dependencies.

Camel 1.2,14,1.6 Open-source Java framework simplifying integration with EIPs, diverse transports,
APIs.

Ivy 1.4, 2.0 Ivy, a sub-project of Apache Ant, resolves project dependencies using external XML

files and downloads resources from repositories.

jEdit 4.0, 4.1, 4.2, 4.3|jEdit offers native syntax highlighting for more than 200 file formats, extendable
via XML. Supports UTF-8 and various encodings with robust folding and wrapping
features.

Logdj 1.0,1.1, 1.2 logdj is integral to the Apache Logging Services Project, offering dependable, open-
source logging utilities for diverse application needs.

lucene 20,22 24 Lucene is a Java-based, high-performance search engine library ideal for applications
needing structured or full-text search, faceting, and more.

poi 2.0, 2.5, 3.0 POI, an open-source Java library, facilitates creation and manipulation of Microsoft
Office file formats, enabling operations such as creation, modification, and reading.

synapse (1.1, 1.2 Synapse is analytics service merging data warehousing and Big Data analytics, offering
flexible querying options with scalable resources.

xalan 2.4, 2.5, 2.6, 2.7|Xalan-Java functions as an XSLT processor, converting XML documents into various
formats such as HTML, text, or other XML document types.

Xerces 12,13 It incorporates the Xerces Native Interface (XNI), offering a highly modular and

programmable framework for building parser components and configurations.

5.2 Evaluation Measure

A variety of evaluation metrics were employed as assessment measures to provide a full examination
of the model’s performance across varied criteria. In the following equations, there are several key
terms, which are mentioned below:

True Positive (TP): Instances correctly classified as positive by the model.
False Positive (FP): Instances incorrectly classified as positive by the model.
True Negative(TN): Instances correctly classified as negative by the model.
False Negative(FN): Instances incorrectly classified as negative by the model.

Mo

Precision is the ratio of correctly predicted positive outcomes to all the predicted positive outcomes by
the model.

TP
TP+FP

Precision =

Recall measures the proportion of actual positive cases that were correctly identified by the model.

TP
TP+FN

Recall =

25

The F1 Score is the harmonic mean of precision and recall. It is given as following.

2xPrecision*Recall

F1 Score =

Precision+Recall

Accuracy is the ratio of correctly classified instances (both positives and negatives) to the total
number of instances.

TP+TN

Accuracy = ———
y TN+FP+TP+FN

MCC is a measure of the quality of binary classifications. It is especially useful for evaluating models
on imbalanced datasets.
TP * TN — FN = FP

Mcc =
JC(TN+ EN)(FP + TP)(TN + FP)(FN + TP)

FNR is the proportion of actual positive instances that were incorrectly classified as negative.

FNR = ——
TP +FN

FPR is the proportion of actual negative instances that were incorrectly classified as positive.

FP

FPR =48 T Fp

TNR, also known as Specificity, is the proportion of actual negative instances that were correctly
identified by the model.

TN

TNR =20 T Fp

These metrics are fundamental in evaluating the performance of classification models, particularly in
distinguishing between the different types of errors and successes the model makes.

5.3 Hyperparameter Settings

Training spanned 200 epochs to ensure comprehensive data learning. For ANN architectures, a
sigmoid activation function was utilized throughout the layers, while rectified linear unit (ReLU)
activation was applied in dense layers of RNNs (LSTM and GRU) with sigmoid activation in the
output layer. Binary crossentropy served as the loss function across all models, optimized by the
Adam optimizer. A batch size of 32 was chosen for computational efficiency and model stability. Two
dense layers with 64 and 32 neurons, respectively, were employed to capture intricate data patterns.
For CNN architecture, 1D convolutional layers were leveraged to capture spatial dependencies in
sequential software data, thereby enhancing overall model performance.

26

CHAPTER 6
RESULT

In this section, the performance of all the embedding techniques such as Word2Vec, Fast Text, TF-IDF
and Doc2Vec across the four discussed DL models is presented. Tables [6.1]-[6.16] contain the
projects on which the models are trained, along with the mean values of accuracy (Acc.), precision
(Prec.), Fl-score (F1), and MCC is calculated from various versions of the same projects. For
instance, the Lucene project had versions 2.0, 2.2, and 2.4. Training on version 2.0 and testing on
version 2.2 yielded an accuracy of 0.63, while training on version 2.2 and testing on version 2.4
resulted in an accuracy of 0.61. The mean accuracy, calculated as 0.62, is included in the table.
Detailed metrics are available at https://github.com/GauravSharmal71691/Results-Word-TFIDF. Fig.
6.1 depicts mean FPR and FNR values for different embeddings TF-IDF (T) and Word2Vec (W),
Doc2Vec(D) and FastText(F) across different project versions.

With the help of tables, we can see that models with Doc2Vec outperforms other embeddings
exhibiting superior performance compared to models those leveraging other embeddings. The order of
comparison is Doc2Vec, FastText, TF-IDF and Word2Vec (Doc2Vec being the best among others).
Models with Doc2Vec embeddings have higher precision, F1-score, accuracy, MCC, and TNR.
Higher values of Precision, F1 Score, Accuracy, and MCC show that the model is better and effective
at classification tasks. Table (6.17) and (6.18) illustrates the average performance of DL models when
employed with embeddings, respectively. The tables clearly describes the average performance of
embedding techniques based on key performance metrics such as Accuracy, Precision, MCC, Recall
and TNR.

The performance of the models trained in this study heavily depends on various aspects of the data it
is trained on.

1. Too small dataset can lead to poor performance of model on unseen data.
2. Too large dataset may create models with many parameters affecting the deployment of
model.

In this research, within-project defect prediction (WPDP) is used. In WPDP, the models are trained on
a version of the project and tested on another subsequent version of the same project. This situation's
performance can be improved by using cross-project defect prediction (CPDP) [15], where the model
can be trained on one project and tested on another project.

Table 6.1 CNN based model using Word2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2372 0.9725 0.3805 0.2406 0.0619
Camel 0.1877 0.9927 0.3148 0.1954 0.0694
vy 0.2625 0.9674 0.413 0.2751 0.0142
Jedit 0.1311 0.9567 0.2203 0.1397 0.1053
log4j 0.6498 0.9705 0.7357 0.6623 0.0819
lucene 0.621 0.9907 0.7633 0.6235 0.1071
poi 0.4691 0.9877 0.5944 0.4752 0.0263
synapse 0.2741 0.9819 0.4286 0.28 0.0161
xalan 0.6484 0.9977 0.7608 0.6475 0.0266
Xerces 0.1667 0.9792 0.2848 0.169 0.0744

27

https://github.com/GauravSharma171691/Results-Word-TFIDF

Table 6.2 CNN based model using TF-IDF Embedding

Project Precision Recall F1 Score Accuracy MCC
Ant 0.2517 0.9879 0.4012 0.2802 0.0861
Camel 0.2854 0.4644 0.3357 0.7178 0.1929
vy 0.0835 0.975 0.1538 0.1006 0.0085
Jedit 0.1993 0.9293 0.3125 0.4179 0.2486
log4j 0.6579 0.9825 0.7496 0.676 0.0746
lucene 0.6144 0.9906 0.7598 0.6159 0.068
poi 0.4785 0.9873 0.5972 0.4819 0.0504
synapse 0.2576 0.9833 0.4083 0.2565 0.1112
xalan 0.6489 0.9975 0.761 0.6491 0.0065
Xerces 0.1535 0.9846 0.2656 0.1955 0.069
Table 6.3 CNN based model using FastText Embedding
Project Precision Recall F1 Score Accuracy MCC
Ant 0.4987 0.3736 0.3977 0.7529 0.4179
Camel 0.2425 0.2745 0.2563 0.6414 0.1317
vy 0.224 0.1165 0.206 0.683 0.159
Jedit 0.3228 0.5698 0.3824 0.8101 0.4624
log4j 0.7625 0.4234 0.5341 0.5549 0.2515
lucene 0.6178 0.7533 0.6785 0.6094 0.2866
poi 0.4323 0.4787 0.3694 0.4584 0.0512
synapse 0.4643 0.3535 0.4088 0.6581 0.3134
xalan 0.6182 0.3705 0.4786 0.4939 0.0302
Xerces 0.2167 0.2001 0.208 0.7751 0.1158
Table 6.4 CNN based model using Doc2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC
Ant 0.4686 0.3739 0.3976 0.7486 0.3599
Camel 0.2266 0.2845 0.2262 0.638 0.0782
vy 0.2501 0.1284 0.1834 0.9087 0.1802
Jedit 0.3199 0.5369 0.3809 0.8114 0.4525
log4j 0.8582 0.4013 0.59 0.5453 0.3196
lucene 0.6948 0.5488 0.6134 0.5508 0.2084
poi 0.4822 0.4647 0.3935 0.4459 0.0711
synapse 0.4746 0.3679 0.413 0.6691 0.2641
xalan 0.6705 0.3718 0.497 0.5306 0.1161
Xerces 0.3145 0.2434 0.2743 0.8227 0.2625

28

Table 6.5 ANN based model using Word2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC
Ant 0.23765 0.9785 0.3817 0.23975 0.0579
Camel 0.1859 0.9927 0.31255 0.18715 0.04575
vy 0.0856 0.9714 0.1574 0.1333 0.0347
Jedit 0.13125 0.956733 0.22105 0.145575 0.0818
log4j 0.6506 0.97055 0.73485 0.65965 0.1254
lucene 0.614 0.99395 0.7589 0.6131 0.021
poi 0.29847 0.98767 0.5934 0.3037 0.0409
synapse 0.2769 0.9818 0.432 0.29 0.0269
xalan 0.6489 0.99767 0.7612 0.64853 0.02
Xerces 0.1661 0.9792 0.284 0.1655 0.1318
Table 6.6 ANN based model using TF-IDF Embedding
Project Precision Recall F1 Score Accuracy MCC
Ant 0.2465 0.99155 0.3945 0.2595 0.0378
Camel 0.1893 0.9939 0.3179 0.2075 0.05895
vy 0.0833 0.975 0.1535 0.0985 0.0136
Jedit 0.1646 0.9509 0.2744 0.4367 0.1767
log4j 0.7612 0.87955 0.81275 0.83605 0.2271
lucene 0.61305 0.99405 0.75835 0.6116 0.0324
poi 0.47705 0.9866 0.59737 0.480033 0.07843
synapse 0.2794 0.9733 0.4324 0.3468 0.0867
xalan 0.4724 0.9974 0.64185 0.47295 0.0206
Xerces 0.3145 0.2434 0.2743 0.8227 0.2625
Table 6.7 ANN based model using FastText Embedding
Project Precision Recall F1 Score Accuracy MCC
Ant 0.3913 0.710155 0.462935 0.71735 0.24405
Camel 0.263 0.60663 0.36692 0.62095 0.2219
vy 0.145 0.600375 0.20712 0.487125 0.07727
Jedit 0.34135 0.655233 0.433403 0.7447 0.46933
log4j 0.6819 0.6343 0.65695 0.60955 0.2042
lucene 0.66675 0.678015 0.66205 0.592525 0.21563
poi 0.3086 0.70963 0.393605 0.452278 0.09813
synapse 0.3661 0.63423 0.4385 0.62483 0.2282
xalan 0.4917 0.531435 0.49385 0.5211 0.09715
Xerces 0.1938 0.416095 0.25898 0.64781 0.1149

29

Table 6.8 ANN based model using Doc2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC
Ant 0.58175 0.426203 0.47462 0.824787 0.47091
Camel 0.23525 0.429635 0.294722 0.737234 0.204105
vy 0.18125 0.147125 0.153888 0.8735 0.119503
Jedit 0.34563 0.635923 0.42873 0.823402 0.52774
log4j 0.81975 0.471345 0.595833 0.60313 0.31713
lucene 0.71305 0.68333 0.69774 0.64546 0.34254
poi 0.477 0.552714 0.42744 0.508932 0.11932
synapse 0.6471 0.210795 0.318513 0.813402 0.410025
xalan 0.6718 0.58441 0.651973 0.52783 0.05844
Xerces 0.2903 0.273925 0.29138 0.803965 0.19661
Table 6.9 GRU based model using Word2Vec Embedding
Project Precision Recall F1 Score Accuracy MCC
Ant 0.2553 0.95045 0.39378 0.251533 0.06643
Camel 0.18565 0.9927 0.31158 0.1867 0.02966
vy 0.0818 0.939 0.14857 0.153125 0.03414
Jedit 0.197133 0.896767 0.295867 0.448533 0.12959
log4j 0.67715 0.7856 0.72048 0.7759 0.23524
lucene 0.61155 0.99345 0.75605 0.6091 0.0503
poi 0.4681 0.987667 0.629733 0.535 0.17515
synapse 0.2394 0.93085 0.3775 0.2768 0.08615
xalan 0.6498 0.997667 0.783167 0.646733 0.01925
Xerces 0.2095 0.95415 0.31398 0.2175 0.06698
Table 6.10 GRU based model using TF-IDF Embedding
Project Precision Recall F1 Score Accuracy MCC
Ant 0.2286 0.9801 0.3628 0.3188 0.11807
Camel 0.1719 0.99255 0.28655 0.173 0.0339
vy 0.0874 0.9778 0.1601 0.16955 0.05594
Jedit 0.15675 0.945 0.2589 0.3802 0.10366
log4j 0.65155 0.97995 0.78135 0.6207 0.132
lucene 0.61255 0.99405 0.75535 0.6101 0.04795
poi 0.507367 0.964967 0.6639 0.507867 0.1968
synapse 0.23835 0.9837 0.3816 0.2898 0.0271
xalan 0.6485 0.997233 0.782667 0.648067 0.0138
Xerces 0.207233 0.96355 0.32343 0.217133 0.0532

30

Table 6.11 GRU based model using FastText Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2666 0.6534 0.3569 0.6556 0.0863
Camel 0.1971 0.7987 0.3597 0.2689 0.1536
vy 0.1623 0.8387 0.2815 0.4748 0.2967
Jedit 0.1641 0.5653 0.1914 0.7538 0.2083
log4j 0.7282 0.8651 0.7139 0.7629 0.197

lucene 0.7669 0.9507 0.8447 0.7669 0.1992
poi 0.5579 0.6492 0.5386 0.5145 0.244

synapse 0.3192 0.7649 0.3753 0.4043 0.1397
xalan 0.7192 0.8525 0.7533 0.6544 0.1554
Xerces 0.1665 0.5433 0.1962 0.6151 0.2302

Table 6.12 GRU based model using Doc2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.3351 0.5547 0.4039 0.6328 0.1545
Camel 0.2845 0.9058 0.4487 0.4524 0.1679
vy 0.2376 0.7169 0.3129 0.7355 0.2408
Jedit 0.2021 0.7076 0.3096 0.6488 0.1922
log4j 0.7044 0.8322 0.7156 0.6494 0.1301
lucene 0.7656 0.9061 0.8285 0.7551 0.1655
poi 0.6186 0.5968 0.5683 0.5071 0.2089
synapse 0.3331 0.8734 0.4129 0.5108 0.1443
xalan 0.713 0.9174 0.762 0.722 0.175

Xerces 0.469 0.563 0.4505 0.6631 0.2409

Table 6.13 LSTM based model using Word2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2285 0.9228 0.3594 0.3143 0.0362
Camel 0.1679 0.992 0.2821 0.2823 0.0501
vy 0.1073 0.9757 0.1602 0.2648 0.0046
Jedit 0.1295 0.866 0.2042 0.3333 0.1122
log4j 0.6645 0.9399 0.6862 0.6518 0.1093
lucene 0.6012 0.9879 0.7322 0.6159 0.0686
poi 0.4701 0.983 0.612 0.4824 0.0824
synapse 0.2368 0.962 0.3684 0.3585 0.0372
xalan 0.6489 0.9806 0.781 0.6464 0.0213
Xerces 0.2166 0.9641 0.3469 0.3786 0.0946

31

Table 6.14 LSTM based model using TF-IDF Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2219 0.9065 0.3161 0.3846 0.1122
Camel 0.1807 0.8854 0.2839 0.2542 0.0645
vy 0.1683 0.9502 0.2516 0.1551 0.0936
Jedit 0.1831 0.8643 0.2462 0.4328 0.2433
log4j 0.5848 0.9414 0.6762 0.5963 0.0873
lucene 0.6259 0.9249 0.7296 0.6285 0.1041
poi 0.4924 0.9724 0.6368 0.5878 0.1325
synapse 0.2369 0.8756 0.3501 0.2561 0.1504
xalan 0.4842 0.8446 0.5041 0.7038 0.1024
Xerces 0.1876 0.7241 0.2784 0.2987 0.1061

Table 6.15 LSTM based model using FastText Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2109 0.3512 0.2294 0.3765 0.3379
Camel 0.1659 0.6266 0.2301 0.2427 0.1857
vy 0.0998 0.3725 0.1448 0.1598 0.2879
Jedit 0.1329 0.3082 0.1602 0.3316 0.3232
log4j 0.6487 0.6905 0.6551 0.8545 0.2373
lucene 0.6102 0.7378 0.6386 0.9197 0.295

poi 0.4664 0.4828 0.4078 0.9751 0.2084
synapse 0.2109 0.2174 0.2082 0.3948 0.2456
xalan 0.4783 0.6247 0.4908 0.7037 0.236

Xerces 0.4294 0.4007 0.3684 0.7348 0.2098

Table 6.16 LSTM based model using Doc2Vec Embedding

Project Precision Recall F1 Score Accuracy MCC

Ant 0.2515 0.4126 0.3011 0.5642 0.4583
Camel 0.191 0.2532 0.2146 0.2791 0.2243
vy 0.1842 0.2301 0.2052 0.2623 0.2945
Jedit 0.1462 0.2745 0.1757 0.4303 0.3669
log4j 0.6795 0.6874 0.6825 0.8457 0.2205
lucene 0.6132 0.7358 0.6539 0.9197 0.3069
poi 0.2717 0.4336 0.2932 0.4154 0.2196
synapse 0.2344 0.2408 0.2267 0.3948 0.3867
xalan 0.4753 0.5638 0.4908 0.7072 0.2291
Xerces 0.2222 0.2499 0.2083 0.3645 0.1538

32

Average False Negative Rate Average False Positive Rate

0.08 1.05
0.07
0.06

0.5

0.05
09

0.04
0.85

0.03
0.02 2
0 0.7

GRU CNN ANN N ANN

LSTM GRU LSTM™ CN

o

3

WMFNRW ®FNRT WFPRW WFPRT

(@) (b)
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
o il h
0 0
ANN CNN LSTM GRU ANN CNN LSTM GRU
BFNRF BFNRD mFPRF MFPRD
(c) (d)

Figure 6.1 Average values of (a) False Negative Rate using Word2Vec and TF-IDF (b) False Positive
Rate using Word2Vec and TF-IDF (c) False Negative Rate using FastText and Doc2Vec (d) False
Positive Rate using FastText and Doc2Vec.

Table 6.17 Average performance of DL models with Word2Vec and TF-IDF embeddings

Embedding | Model | Precision | F1Score | Accuracy | MCC
GRU 0.3809 0.4976 0.386 0.0668
LSTM 0.3795 0.4927 0.3836 0.0506
Word2Vec | CNN 0.392 0.5121 0.3978 0.061

ANN 0.3826 0.4989 0.3893 0.0551
GRU 0.3947 0.5099 0.4259 0.0879
LSTM 0.3998 0.5167 0.4618 0.11

TF-IDF CNN 0.4047 0.5166 0.5087 0.0974
ANN 0.4004 0.5153 0.4584 0.0848

Table 6.18 Average performance of DL models with FastText and Doc2Vec embeddings

Embedding | Model | Precision | Accuracy | MCC TNR
ANN 0.493 0.645 0.254 0.771

CNN 0.473 0.626 0.219 0.71

FastText GRU 0.453 0.603 0.196 0.606
LSTM 0.382 0.54 0.282 0.627

ANN 0.515 0.695 0.281 0.789

CNN 0.493 0.646 0.241 0.813

Doc2Vec GRU 0.479 0.668 0.212 0.671
LSTM 0.397 0.597 0.286 0.644

33

CHAPTER 7
CONCLUSION AND FUTURE WORK

The performance of four different word embedding methods TF-IDF, Word2Vec, FastText, and
Doc2Vecwas assessed in the context of SDP using various DL methods. Among these, Doc2Vec
demonstrated the best performance, followed by FastText, TF-IDF, and Word2Vec. The evaluation
aimed to determine the effectiveness of these embedding techniques in enhancing classification
accuracy and reliability across a wide range of criteria.

There are diverse prospects that can be exploited as a result of this research. Firstly, other advanced
and specific embeddings like BERT, Code-BERT, RoBERTa, ELMO, XLNet can be considered.
These techniques have manifested improved abilities to capture semantic relationships with higher
accuracy that could further improve the performance of SDP models.

In addition, in future studies on software engineering, the PROMISE dataset may be used but NASA’s
dataset should be included in its investigation. The latter would increase the size of a corpus which
would possibly engender better and more universal models. One more direction is to use CPDP rather
than WPDP. Due to using multiple projects data for training DL models in contrast to WPDP
methodology, CPDP approach enhances the ability of deep learning (DL) models to generalize across
different contexts.

This is an avenue that can be followed by hybrid models incorporating the strengths of different
embedding techniques and DL architectures so as to capture more diverse features and relationships
within the data. Also, it might be beneficial to test these improved versions across various languages
or domains with expected results being more robust SDPs with enhanced adaptability and resilience.
Continuous benchmarking against new models and embedding techniques is crucial in the rapidly
evolving field of NLP to maintain effectiveness and relevance. While this study identified Doc2Vec as
the most effective embedding method tested, significant potential for improvement remains through
exploring advanced embedding techniques, using larger and more diverse datasets, and developing
hybrid models.

34

REFERENCES

[1] Sharma, T., Jatain, A., Bhaskar, S., Pabreja, K. (2023). Ensemble ML Paradigms in Software
Defect Prediction. Procedia Computer Science, 218, 199-209.
https://doi.org/10.1016/j.procs.2023.01.002

[2] Malhotra, R., Singh, P. (2023). Recent advances in DL models: a systematic literature review.
Multimed Tools Appl, 82, 44977-45060. https://doi.org/10.1007/s11042-023-15295-z

[3] Mambina, I.S., Ndibwile, J.D., Michael, K.F.: 'Classifying Swahili Smishing Attacks for Mobile
Money Users: A Machine-Learning Approach’. In: IEEE Access, 83061--83074 (2022) DOI:
10.1109/ACCESS.2022.3196464

[4] Es-Sabery, F., Es-Sabery, l., Hair, A., Sainz-De-Abajo, B., Garcia-Zapirain, B.: 'Emotion
Processing by Applying a Fuzzy-Based Vader Lexicon and a Parallel Deep Belief Network Over
Massive Data'. In: IEEE Access 10, 87870--87899 (2022)

[5] Xie, Z., Liu, L., Wu, Y., Li, L., Zhong, L.: 'Learning TF-IDF Enhanced Joint Embedding for
Recipe-Image Cross-Modal Retrieval Service'. In: IEEE, pp. 3304--3316 Publisher: IEEE. (2021)

[6] Canales, L., Strapparava, C., Boldrini, E., Martinez-Barco, P. (2020). "Intensional Learning to
Efficiently Build Up Automatically Annotated Emotion Corpora." IEEE Transactions on Affective
Computing, 11(2), 335-347. DOI: 10.1109/TAFFC.2017.2764470.

[7] Miholca, D.-L., Tomescu, V.-l., Czibula, G.: 'An in-depth Analysis of the Software Features’
Impact on the Performance of DL-Based Software Defect Predictors'. IEEE Access 10, 64801--64818
(2022)

[8] Nevendra, M., \& Singh, P. (2022). A Survey of Software Defect Prediction Based on DL.
Archives of Computational Methods in Engineering, 29, 5723-5748. https://doi.org/10.1007/s11831-
022-09787-8

[9] Wang, X., Lu, L., Wang, B., Shang, Y., Yang, H.: 'SDP via GIN with Hybrid Graphical Features'.
IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-
C)(2023)

[10] Tang, F., He, P.: 'SDP using Multi-scale Structural Information'. In: ICCAI '23: Proceedings of
the 2023 9th International Conference on Computing and Artificial Intelligence, March 2023, pp. 548-
-556.

[11] Liu, D., Jiang, H., Li, X., Ren, Z., Qiao, L., Ding, Z.: 'DPWord2Vec: Better Representation of
Design Patterns in Semantics'.IEEE Transactions on Software Engineering,48(4), 1228--1248 (2022)

[12] Cao, B., Zhang, L., Peng, M., Qing, Y., Kang, G., Liu, J.: "Web Service Recommendation via
Combining Bilinear Graph Representation and xDeepFM Quality Prediction'. IEEE Volume 20 Issue
2 1078--1092 (2023)

[13] Fan, G., Diao, X., Yu, H., Yang, K., \& Chen, L. (2019). Software Defect Prediction via
Attention-Based Recurrent Neural Network. Scientific Programming, Wolume 2019,
https://doi.org/10.1155/2019/6230953

35

[14] Liang, H., Yu, Y., Jiang, L., \& Xie, Z. (2019). SEML: A Semantic LSTM Model for Software
Defect Prediction. IEEE Access, 7, 83812-83824. https://doi.org/10.1109/ACCESS.2019.2925313

[15] Bala, Y.Z., Samat, P.A., Sharif, K.Y., Manshor, N.: 'Improving Cross-Project SDP Method
Through Transformation and Feature Selection Approach'. IEEE Access 11, 2318--2326 (2022). IEEE.

[16] P. Afric, D. Vukadin, M. Silic, and G. Delac, "Empirical Study: How Issue Classification
Influences Software Defect Prediction,”" IEEE Access, vol. 11, pp. 11732-11748, Feb. 2023.

[17] T. Sharma, A. Jatain, S. Bhaskar, and K. Pabreja, "Ensemble Machine Learning Paradigms in
Software Defect Prediction," Procedia Computer Science, vol. 218, pp. 199-209, Jan. 2023.

[18] Q. Song, Y. Guo, and M. Shepperd, "A Comprehensive Investigation of the Role of Imbalanced
Learning for Software Defect Prediction,” IEEE Transactions on Software Engineering, vol. 45, no.
12, pp. May 15, 2018.

[19] I. Akhmetov, A. Gelbukh, and R. Mussabayeyv, "Greedy Optimization Method for Extractive
Summarization of Scientific Articles," IEEE Access, vol. 9, pp. 168141-168153, Dec. 2021.

36

DELHI TRClNe
.Hlu\l\ b‘.(\.HNOL()GI(‘;\L UN]VERSITY
L\‘MI\!\:\; ;‘})N‘l O Delty Qollege of tngineering) ' ‘
T Dautatpur, Main Bawana Road, Delhi-42

PLAGLARISM VERIFICATION

e of 2.)
Titke of the Thaus _ (S \D avaclive
———— LAV AN

Tk &\\\\L\i ¢rg @f Waorel Ens],g_((CG“1
‘ ‘\ 5 A , 23 . Ny P e N s
2 te Se t boaa Pefe ({ v rL CHon {
Total Pages 3 q ¥ s g

: ‘ A Name of' the Scho b away (havme
JUPSOVINOT (8) e

Q) !\‘iq a Swgh
< ;

im’m: Sbg ‘&\\\\'\' r\\\l MM W 1
t Y {

rpost that the above thesis was scannad fir similanity detection. Process and outcome is given

Sofosre wsad: Teymibm

Stmilarity Index: 11/ | Total Word Couns: 1558

‘.7’
Due 22 Moy ot
{

¢
§ e S0 % kot

Sk Sienature of Supervisonis)
Candidarte’s Signatmre ¢

ot
]

™
-~

Page 17

7,

Similarity Report

PAPER NAME
Gaurav_Plag.docx

WORD COUNT CHARACTER COUNT

7558 Words 42631 Characters

PAGE COUNT FILE SIZE

29 Pages 794.1KB

SUBMISSION DATE REPORT DATE

May 21, 2024 11:51 PM GMT+5:30 May 21, 2024 11:52 PM GMT+5:30

® 11% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

* 6% Internet database « 5% Publications database
» Crossref database » Crossref Posted Content database

* 9% Submitted Works database

® Excluded from Similarity Report

* Bibliographic material » Quoted material

Summary

- Top sources foundin tk
T+ 6% Internet database
» Crossref database
+ 9% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. ﬁkﬂﬂapl?iﬁgj sources W
displayed. ‘

o sigarra.up.pt

Internet

National Institute of Technology, Rourkela on 2024-01-16

Submitted works

Boyang Liu, Guozheng Rao, Xin Wang, Li Zhang, Qing Cong. "DE3T

Crossref

Internet

cris.maastrichtuniversity.nl
Internet

Cranfield University on 2023-08-17
Submitted works

cdn.techscience.cn

(2]
@
o origin.geeksforgeeks.org
@
o
@

©®© 6 6 © 6 6 6 ©6 © 6 6 ©

Venkata Vara Prasad D, Lokeswari Y Venkataramana, P. Senthil Kumar,...

Crossref

University of Strathclyde on 2023-08-31

Submitted works

export.arxiv.org
Internet

University of Houston, Downtown on 2024-03-28
Submitted works

University of Wollongong on 2023-12-05

Submitted works

Tilburg University on 2024-05-20

Submitted works

fastercapital.com
Internet

University of Houston, Downtown on 2024-03-31
Submitted works

Anna University on 2020-04-13

Submitted works

students.takelab.fer.hr
Internet

link.springer.com

Internet

ndl.ethernet.edu.et

Internet

Similarity Report

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Sources overview

https://doi.org/10.1080/03067319.2020.1801665
https://export.arxiv.org/abs/2002.11844v2
https://fastercapital.com/keyword/bleu-score.html/1
https://students.takelab.fer.hr/theses/TakeLab-DR-2017-LukaSkukan.pdf
https://link.springer.com/article/10.1007/s10462-022-10144-1?code=e364123c-6493-4731-8853-72038e5f54cf&error=cookies_not_supported
http://ndl.ethernet.edu.et/bitstream/123456789/56389/1/52%202014.pdf

®© 06 6 6 6 © 6 6 6 6 0 6

bsj.uobaghdad.edu.iq

Internet

Ngee Ann Polytechnic on 2023-08-15

Submitted works

Purdue University on 2023-12-27

Submitted works

Liverpool John Moores University on 2024-05-13

Submitted works

University of Leeds on 2018-05-02

Submitted works

gdosd.squiz.cloud
Internet

theses.gla.ac.uk
Internet

hindawi.com
Internet

Bournemouth University on 2024-05-21
Submitted works

Mudasir Ahmad Wani, Mohammad ELAffendi, Patrick Bours, Ali Shariq ...

Crossref

Sabanci Universitesi on 2006-12-26

Submitted works

Southern New Hampshire University - Continuing Education on 2024-0...

Submitted works

Similarity Report

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Sources overview

https://www.bsj.uobaghdad.edu.iq/index.php/BSJ/article/download/8710/4663/102143
https://qdosd.squiz.cloud/__data/assets/pdf_file/0023/52772/I_Terrestrial-Aquatic-Ecology_P1.pdf
https://theses.gla.ac.uk/83308/1/2022PowellPhD.pdf
https://www.hindawi.com/journals/bmri/2011/525497/tab1/
https://doi.org/10.1007/s12559-023-10190-z

6 6 6 6 6 6 6 6 6 6 6 ©6

Similarity Report

Xuanye Wang, Lu Lu, Boye Wang, Yudong Shang, Hao Yang. "Software ...

<1%
Crossref
Colorado State University, Global Campus on 2022-12-04 <1%
Submitted works ’
National College of Ireland on 2022-08-14 <1%
Submitted works ’
Rana Husni AIMahmoud, Bassam H. Hammo. "SEWAR: A corpus-based... <1%
Crossref ?
Subba Reddy Borra, Dasari Ramesh Gari Amrutha Nayana, Sripathi Srin... <1%
Crossref °
The University of Manchester on 2010-09-10 <1%
Submitted works ’
journals.plos.org <1%
Internet
ntnuopen.ntnu.no <1%
Internet
research-collection.ethz.ch o
<1%
Internet
"Intelligent Natural Language Processing: Trends and Applications”, Sp... <1%
Crossref °
Oxford Brookes University on 2019-03-31 <1%
Submitted works ’
The Robert Gordon University on 2020-06-08 <1%
(o]

Submitted works

Sources overview

https://doi.org/10.1109/QRS-C57518.2022.00066
https://doi.org/10.1016/j.eswa.2023.121767
https://doi.org/10.1007/s42600-024-00346-7
https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0230416
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/3111306/Nicola%20Tamascelli.pdf?isAllowed=y&sequence=1
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/99258/eth-27085-01.pdf?isAllowed=y&sequence=1
https://doi.org/10.1007/978-3-319-67056-0

® 06 6 6 6 6 6 6 ©

Similarity Report

Tilburg University on 2024-05-20

<1%
Submitted works
University of Hertfordshire on 2023-12-04 <1%
Submitted works °
University of Malta on 2018-09-29 <1%
Submitted works °
University of Surrey on 2023-09-04 <1%
Submitted works ’
docplayer.net <1%
Internet
Buqing Cao, Lulu Zhang, Mi Peng, Yueying Qing, Guosheng Kang, Jianx... <1%
Crossref ’
Universiti Sains Malaysia on 2015-06-25 <1%
Submitted works ?
AlHussein Technical University on 2024-01-29 <1%
Submitted works ?
Asia Pacific University College of Technology and Innovation (UCTI) on... <1%
(o]

Submitted works

Sources overview

https://docplayer.net/21040824-Hierarchical-probabilistic-neural-network-language-model.html
https://doi.org/10.1109/TNSM.2023.3234067

DECLARATION
We/l hereby certify th y whieh .

3 y that the work which 1s presented in the Majar Projec
Corre :Qiogf,!vf Pvolus o] Word bm ""“’L"ﬂl"‘*““?m»t}n!o/h—'m’}}; f i‘_:{(:.‘l‘fé:lﬁ“"'ll‘:vrll-lVRU{;C;u‘gh ka entutled
;’) ”Wl Degree (_’Ml(;.”";"‘“‘l()l'/é\l:lslc'l‘ ol 'l‘cclT:’mlnLl)’-in‘ D;Jh- Ced et N fu|uf:-:(,l,,u'”: 'N'r the awird
epi : - A o206 SCa Tt ind submite .
;.m:w:,:,‘:':L:”“" l:"' 5:':];*;:»“"? '\“\’tﬁ.‘:*:‘, ,__TM______.T_, Delhr Technological University ”l,)'c'lt;:il ':-: ”::;

Jowr own, caticd out during a per i i .
Pﬂ.:}& (v b It period from 2012 Sdinder e i
J ‘

supervision of

The matie s e WL o
) cm |lllu rl |’msu|lul in this report/thesis has not been submitted by us/me for the award of any ol
cpree - 'y y s S iy S - B ' H an '
in t(tlkz:(-““s. or any other Institute/University. The work has been pl:lvlie\lncd/ucccl)lccl/cumn‘m:‘ e llL;
SCI SClexpanded/SSCl/Scopus indexed journal OR peer reviewed Scopus indexed conf ol
the following details: copu exed conference with
i . - Y ¥ Lj i
Title of the Paper: L‘_fm‘)a}\o,‘b vt S"MCL"‘J ¢ Word2Vee it TEB BN Soi‘ww D!i&d fuials el
Author names (in sequence as per rescarch paper); 4 ook e’ Chovowme Pr\':j o Si\'y W
@ ow Doke (titmnw

Name of Conlerence/Journal: 2“'4 T vl violiumod Luwi,uw
- 12 juba 1024

ool N fwoork F»ywpc»}

Conference Dates with venue (if applicable): 12
l‘l:wc you registered for the conference (Yes/No)?: Yo
Status of paper (Accepted/Pubhished/Communicated): A Go
Date of paper communication: ULF
Date of paper aceeptance: 1yt M WJ 1014
Date of paper publication:
&) ouunow S howme
2p21/0CL/08
P AN .S’P:l_)___/""b
{

Student(s) Roll No., Name and Signature

SUPERVISOR CERTIFICATE

To the best of my knowledge, the above work has not been submitted in part or full for any Degree or
Diploma to this University or elsewhere. I, further certify that the publication and indexing information '
given by the students is correct. ‘
‘ |
i
g |
Supervisor Name and Signature |

R Miss. Priqa Sinq 4 |

Place:

£
Date: 22 M““! 20254

- RESEARCH PAPER ACCEPTANCE/
OF ALONG WITH SCOPUS INDEXING PROOF

PLEASE 'ENCLOSE
f Journal Publication).

MUNICATION PRO
Science Direct in case 0

NOTE:
PUBLICATION/COM
(Conference Website OR

M Gma" Gaurav Sharma <sharmagaurav171691@gmail.com>

2nd International Conference on Data Science and Network Engineering :

Submission (146) has been edited.
3 messages

Microsoft CMT <email@msr-cmt.org> 1 April 2024 at 19:27
Reply-To: Microsoft CMT - Do Not Reply <noreply@msr-cmt.org>
To: sharmagaurav171691@gmail.com

Hello,

The following submission has been edited.

Track Name: Track 1: AI, ML, and DL

Paper ID: 146

Paper Title: Comparative Study: Word2Vec vs. TF-IDF in Software Defect Predictions”

Abstract:

Embeddings, renowned for their ability to capture seman tic nuances, reduce dimensionality, and learn
patterns from data, have become indispensable in various domains of machine learning and artificial
intelligence. In the realm of Software Defect Prediction (SDP), the selection of an appropriate
embedding technique holds paramount importance. This study scrutinizes the comparative efficacy of two
prominent embedding methods, Word2Vec and TF-IDF, in the context of SDP tasks. The entire analysis was
conducted on different sets of Java projects sourced from the open-source Promise repository. Through
the training and evaluation of diverse deep learning models tailored for defect prediction in
software, a comprehensive assessment was undertaken. Evaluation
metrics, including Matthews Correlation Coefficient (MCC), Specificity, Accuracy, alongside additional
performance indicators, were employed to assess the effectiveness of each embedding technique. The
findings unequivocally reveal that TF-IDF consistently outperforms Word2Vec across multiple metrics,
emphasizing its superior suitability for SDP tasks.

Keywords: Software Defect Prediction - Word2Vec - TF-IDF
Created on: Mon, 01 Apr 2024 13:55:53 GMT
Last Modified: Mon, ©1 Apr 2024 13:57:00 GMT

Authors:
- sharmagaurav171691@gmail.com (Primary)
- priya.singh.academia@gmail.com

Secondary Subject Areas: Not Entered
Submission Files: Article_Title.pdf (338 Kb, Mon, ©1 Apr 2024 13:55:07 GMT)

Submission Questions Response: Not Entered

Thanks,
CMT team.

To stop receiving conference emails, you can check the 'Do not send me conference email' box from your
User Profile.

Microsoft respects your privacy. To learn more, please read our Privacy Statement.

Microsoft Corporation
one Microsoft Way
Redmond, WA 98052

M Gmall Gaurav Sharma <sharmagaurav171691@gmail.com>

Decision (Accept) on Manuscript (Paper ID 146) of ICDSNE 2024

2 messages

Microsoft CMT <email@msr-cmt.org> 13 May 2024 at 22:20
Reply-To: Suyel Namasudra <suyel.namasudra@pnita.ac.in>
To: Gaurav Sharma SHARMA <sharmagaurav171691@gmail.com>

Dear Gaurav Sharma SHARMA,

Thank you for submitting your manuscript (Paper ID 146) entitled "Comparative Study: Word2Vec vs. TF-
IDF in Software Defect Predictions”" for a possible publication in the Proceedings of the Second
International Conference on Data Science and Network Engineering (ICDSNE 2024).

We have received the reports from the reviewers on your manuscript. Based on the received reviews, we
are pleased to inform you that your manuscript has been accepted for further processing.

While preparing the Camera-Ready paper, you are requested to consider the following comments:

1. Please use a native English-speaking editor. Papers with less than excellent English will not be
published even if technically perfect/accepted.

2. If there are any reviewers’ comments, describe in a separate file how the comments of each reviewer
are addressed.

3. The paper's title should be concise and as short as possible. Do not use any acronyms in the
paper's title.

4. Make sure the Abstract succinctly describes the paper as it is used in abstracting and citation
services. Keep the Abstract between 150 to 200 words.

5. Do not use any references in the Abstract.

6. Spell out each acronym the first time used in the body of the paper. Spell out acronyms in the
Abstract only, if used there.

7. Include a list of four to six keywords after the Abstract, which are not used in the title.

8. Include a paragraph at the end of the Introduction describing the organization of the paper. Also,
mention the point-wise contributions before this paragraph.

9. Make sure that the Conclusion succinctly summarizes the paper; it should not repeat phrases from
the Introduction (such as 'This paper presents ...')! Keep the Conclusion to about 300 words. Do not
use any references in the Conclusion.

10. Number the references sequentially as they are used in the text (not alphabetically). Each
reference must be referred to in the text. Use recent references. Provide complete information for all
references (authors' names, journal/conference name, pages, etc.; do not use et al. for authors).

11. Make sure all figures and tables are sequentially referred to in the body of the paper.

12. Clearly mention the email IDs of the corresponding authors.

13. No published materials (such as, figures, tables, etc.) should be used in the paper. All the
contents should be original.

14. Please visit the following links to prepare the Camera-Ready paper:

* SpringerNature's proceedings website (bit.ly/3AVXpzc)

* Word template for preparing the camera-ready paper (bit.ly/3HGUQJH) or LaTeX template for preparing
the camera-ready paper (bit.ly/3AWSYEd)

Please follow the below-mentioned steps to complete the Registration Process:
1. Deposit the Registration Fee to the following bank account as per the category. Kindly visit our
Conference Website (www.dsne.in) to know the Registration Fee details. If you are doing an online
transfer, please save a Screenshot of the online transaction and mention a comment like “Reg. Fee of
Paper ID 146” during payment.

Beneficiary Name: ICDSNE

Account Number: 41940623168

IFSC Code: SBIN©©11491

SWIFT Code: SBININBB476

Bank Name: State Bank of India

Branch Name: NIT Agartala

2. Make a ZIP file that consists of the following files:

1. Camera-Ready Paper Source File

2. Camera-Ready Paper PDF

3. Supplementary file (if any)

4., High-resolution figures (if any) in .jpg, .png, or .tif format in a folder, namely Figures.
The file name of the figures should be the figure number (like Figure 1).

3. Fill out the following form to complete the registration process:

ICDSNE 2024

< SECOND INTERNATIONAL CONFE
ON DATA SCIENCE AND NETWOR
ENGINEERING

i 12-13 July, 2024
Q Agratala, India.

alt="slide"/>

INTERNATIONAL CONFERENCE ON

Data Science and Network Engineering

Second International Conference on Data Science and Network Engineering (ICDSNE 2024) is being organized by the Department of Computer Science and Engineering,
National Institute of Technology Agartala (NIT Agartala), India, in hybrid mode (online/in-person) on 12-13 July, 2024. This institute is an Institution of National Importance by
Ministry of Education, Govt. of India, and it is located in Tripura, India. There are 4702 students enrolled in different undergraduate, post-graduate, and PhD programmes at NIT
Agartala. This institute supports excellent teaching and research environments to produce leaders, who can make a difference in the world. ICDSNE 2024 is a non-profitable
conference, and it provides an opportunity for researchers, academicians, and industry professionals to present their research work on data science and network engineering.
The main objective of this conference is to bring together researchers and practitioners in the world working on data science and network engineering, so that they can share
ideas, innovations, and recent trends in their respective areas to address real-time problems. ICDSNE 2024 will feature a range of presentations on the latest research activities,
as well as stimulating talks, and keynote addresses. There are multiple tracks in the conference covering almost all the areas of data science and network engineering. The
organizing committee is confident that this conference will provide a platform for researchers to share their ideas and to have future collaboration with different people across the
world. All accepted, registered, and presented papers will be included in the Springer Book Series entitled "Lecture Notes in Networks and Systems", which is indexed in DBLP,

Scopus, and many more.
)

To 3168

7,000
| Split with friends)

Completed

19 May 2024, 4:17 pm

State Bank of India
(T) 4320

Payment started
4:17 pm

27,000 was debited
4:17 pm

27,000 sent to 3168
417 pm

Payment completed
4:17 pm

UPI transaction ID
414008726445

To: NATIONAL INSTITUTE OF
TECHNOLOGY AGARTALA

=++23168

From: ASHISH KUMAR (State Bank of
India)

keshriashishO7@oksbi

Google transaction ID
CICAgPDs66PETA

DECLARATION

W l’mwcl-ll/l{cscmch Waork entitled

ork which is presented in the, Maje -

We/l hereby certify that the w , . i
o/l hereby cortify MM’?.JPTIVH;] Uinent of the requirement for the awi
- v ! Dolls Seatmer “and submitted to the

L poativn Aneliys o] Wardd Ebrelets E‘fﬁ‘ﬂ&‘jﬁ’i‘f
of ﬁl-:f)wt;uu of Bachelor/Master of” 'cﬂmnlugy i Pe . Fiimversity, Delhi s an
Department of Lo fAwen e L\&E-:‘fﬂ—"m'ﬁ". . . 8 0}';‘ SIY. o dor e
authentic record o my/our own, caimed out dunng a pcrl()(l from ¢¥7%
supervision of ri‘;lfc- S’\'\'\g W L

{

The matter presented m this report/thesis has not been subnut
The work has been pu

degree of this or any other Institute/Umiversity. v
w SCI/ SCI expanded/SSCI/Scopus indexed journal OR peer reviewed Scopus i
the following details:

hlml|cx|/:|cccplcd/unmmmic:nlcd

i

i

1

cd by us/me for the award of any other 5
| |

lexed conference with |

venlsed
¥ ¢ »(MM oﬁLM‘AC
Ve }of N pafart

Tule of the Paper: CLWPC%'U"‘ Mt‘»(a w3 (—(‘ '}KKSTTL»&);\O"‘:} ge;u./\&u Lhoane go‘ }uda:(2 S
dhopaper). Py e / . ¢) 5 ..
e od el gur S ST i TR

(‘ LVS]

Author names (1n secquence as per rescar
Name of Conference/Journal Tptumalime)
Conference Dates with venue (f appheable): 2 § - 2a Juw 2004
Have you registered for the conference (Yes/No)?: Y es
Status of paper (;\cccplcd/l’uhhshcd/(.‘mnnmmcalcd):
Date of paper communication.
Date of paper acceptance. q ke Mouj 2014
Date of paper publication’ |
€ ecein oo Shooaa |
3 ¥21/08€/05
Gourtin Shorre®

Student(s) Roll No., Name and Signature

A(Llfcc' |

SUPERVISOR CERTIFICATE {

To the best of my knowledge, the above work has not been submitted in part or full for any Degree or
Diploma 10 this University or elsewhere. I, further certify that the publication and indexing information

given by the students is correct.
i]?_::m re

L Supervisor Namc an

Mig. MJO wju

Place: -DL"LJM\

Dalc:ﬂ?‘m‘ M"‘le}‘n‘
{ T

. ENCLOSE = RESEARCH PAPER SR BTANCE |

PUB ACCEPTANCE |
IBLICATIONICOMMUNICATION FROOK ALONG WITH SCOPUS INDEXING FROOF |
erence Website OR Science Direct in casc of Journal Publication) E i |

M Gma" Gaurav Sharma <sharmagaurav171691@gmail.com>

International Conference on Intelligent Computing and Communication

Techniques : Submission (543) has been created.
1 message

Microsoft CMT <email@msr-cmt.org> 5 May 2024 at 16:51
Reply-To: Microsoft CMT - Do Not Reply <noreply@msr-cmt.org>
To: sharmagaurav171691@gmail.com

Hello,

The following submission has been created.
Track Name: Artificial Intelligence

Paper ID: 543

Paper Title: Analyzing Software Defect Prediction: A Comparative Study of FastText and Doc2Vec
Techniques

Abstract:

mbeddings are valued for their capacity to grasp semantic relation, streamlining dimensionality

and discerning data patterns. These are used across various domains of machine learning and artificial
in-

telligence. In the area of Software Defect Prediction, choosing an appropriate embedding technique is
very

important. This study aims to compare the effectiveness of two prominent word embedding methods that
are

FastText and Doc2Vec when applied for detecting bugs in softwares. The entire analysis is conducted by
using

different sets of Java projects taken from an open-source Promise repository. Through rigorous
training and

evaluation of several deep learning models, generally designed for defect detection in software, a
comprehen-

sive evaluation was conducted. Evaluation metrics, such as Matthews Correlation Coefficient,
Specificity, and

Accuracy, along with other important performance indicators, were used to assess the effectiveness of
both the

technique. The results indicate that Doc2Vec performs significantly better than FastText in terms of
multiple

metrics, depicting its superiority in predicting defects in the software.

Created on: Sun, 05 May 2024 11:20:55 GMT
Last Modified: Sun, @05 May 2024 11:20:55 GMT

Authors:
- priya.singh.academia@gmail.com (Primary)
- sharmagaurav171691@gmail.com

Secondary Subject Areas: Not Entered
Submission Files: F_D2Vec.pdf (298 Kb, Sun, @05 May 2024 11:15:20 GMT)

Submission Questions Response: Not Entered

Thanks,
CMT team.

To stop receiving conference emails, you can check the 'Do not send me conference email' box from your
User Profile.

Microsoft respects your privacy. To learn more, please read our Privacy Statement.

M Gma" Gaurav Sharma <sharmagaurav171691@gmail.com>

Notification of acceptance of paper id 543
1 message

Microsoft CMT <email@msr-cmt.org> 9 May 2024 at 11:51
Reply-To: ICICCT 2024 <icicctcon@gmail.com>
To: Gaurav Sharma SHARMA <sharmagaurav171691@gmail.com>

Dear Dr./ Prof. Gaurav Sharma SHARMA,
Congratulations...

Your paper / article paper id 543: Analyzing Software Defect Prediction: A Comparative Study of
FastText and Doc2Vec Techniques has been accepted for publication in International Conference on
Intelligent Computing and Communication Techniques at JINU New Delhi, India.

Kindly save your paper by given paper id only (eg. 346.docx, 346.pdf, 346_copyright.pdf)
Registration Link:
https://forms.gle/mSsHa8 GMLtMkWuaq8

Please ensure the following before registration and uploading camera ready paper.
1. Paper must be in Taylor and Frances Format.
Template and copyright with author instruction are given in below link: https://icicct.in/author_inst.html

2. Minimum 12 references should be cited in the paper and all references must be cited in the body.
Please follow the template.
3. The typographical and grammatical errors must be carefully looked at your end.
4. Complete the copyright form (available at template folder).
5. The regular fee (Available in registration section) will be charged up to 6 pages and after that
additional Rs.1000 for Indian authors / 10 USD for foreign authors per additional page will be
charged.
6. Reduce the Plagiarism below 10% excluding references and AI Plagiarism 0%.

Each Illustration must include a caption and an alternative text description to assist print
impaired readers (‘Alt Text’).

(Alt Text is mandatory for each Illustrations)
7. Certificate will be issued by the name of registered author (Single author only).
8. Certificates may be issued to all other authors on the extra payment of 1000/- INR per author.
9. Last Date of registration and uploading copyright and camera-ready copy: 31/05/2024.
10. Make a single payment which includes registration fee + Extra certificates fee + Extra page fees.
11. Permissions: Kindly make sure the permissions for each copyrighted artwork file have been cleared
ahead of the submission, with the details listed in the Permission Verification form (attached). All
permission grants must be submitted along with your final manuscript.
Figures: Please make sure no figures are missing, and all figures are high resolution
Tables: Please ensure that there are no missing tables, and the tables in your manuscript are not
pasted as figures
Citation: Kindly ensure there are no missing citations in your manuscript

Registration Link: https://forms.gle/mSsHa8GMLtMkWuaq8

Registration Fee to be deposited in below account
Bank Account Details :

Indian Account Details:

Account Holder Name: EVEDANT Foundation

Account Number: 0674002190422900

IFSC Code: PUNBOO67400
SWIFT Code: PUNBINBBGNM

Branch: Punjab National Bank, Navyug Market, Ghaziabad

Academic Excellence

and Research Award

ICICCT

Apply for Academic Excellence and

Research Award Now Il

INTERNATIONAL CONFERENCE
on

Intelligent Computing and
Communication Techniques
2829t June 2024, INU, New Delhi
Hybrid (Online & Offline) Mode
Registration Date has been
extended till 05-06-2024

P Mey2024

ISP ey 204 Eacte meledh

Transaction Successful
03:15 pm on 30 May 2024

Paid to

Evedant Foundation 37,000
XXXXXXXXXXXX2900
Punjab National Bank

Transfer Details N\

Transaction ID
T2405301515021898830127

Debited from

XXXXXX4700 37,000
UTR: 415189120638

Powered by

2 L4

