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ABSTRACT 

A wide range of hydrological processes in different spatiotemporal dimensions can be 

simulated using SWAT being a physical model. This study uses the Soil Water Assessment 

Tool (SWAT)model to analyse the possible effect of climate change on the future streamflow 

of the Narmada River watershed, a sub basin of the Narmada River, India. The model was 

calibrated for 1988-2007 and validated for 2008-2015 using monthly discharge data at the 

watershed outlet. Calibration and validation of the SWAT model were carried out in SWAT-

CUP using the SUFI-2 algorithm. The coefficient of determination (R2) and Nash Sutcliffe 

efficiency (NSE) were 0.87 in calibration, whereas in validation was 0.85 each. The outcome 

indicates that the simulated and observed flow have a good match. The calibrated model was 

then run for the future (2025-52) using climate model output. The study of climate change is 

completed using the Representative Concentration Pathway RCP4.5 and 8.5 scenarios from 

three different GCM. The downscaled output of these GCM from CORDEX has been used 

in this study after bias correction. The study aims to provide an understanding of applicable 

methodologies, for future streamflow implications from climate change, and worldwide 

strategies to reduce prediction uncertainty. Future research directions in SWAT modelling 

are also discussed.               

KEY WORDS: SWAT; Hydrological modelling; Climate change; Streamflow  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 

The changing climate has become an important topic of discussion in the last few decades. The 

accelerating increase in global temperatures is linked to the greenhouse effect and known as 

global warming (IPCC 2013). As per the reports, published by Intergovernmental Panel for 

Climate Change (IPCC 2013) eleven of the twelve years (1995-2005) rank among the twelve 

warmest years in the instrumental record of global surface. Over the past 50 years (1956-2005), 

the linear warming trend has doubled than that for 100 years (1906-2005). The changes in 

climate resulting in the change in rainfall pattern may adversely affect the future water 

resources availability in basins (Harmsen et al., 2007).    

Direct or indirect changes in air temperature and precipitation impacts the hydrologic cycle 

further effecting the water resources. Change in climate alters the characteristics of 

precipitation, such as amount and intensity as well as the rate of evapotranspiration. This leads 

to considerable significant changes on the hydrological regimes by affecting the volume, peak 

rate, and timing of river flow (Thin et al., 2020). Evaluation of changes in river flow due to 

changing climate is essential in the field of water resource management and decision making 

related to water resource availability. The assessment of climate change impact on streamflow 

is one of the most important issues in hydrological research (Myanmar Climate Change 

Alliance).  Simulation and quantification of the responses of regional hydrological and/or water 

quality processes to anthropogenic and natural causes, as well as different management 

techniques, is a typical use of hydrological and ecohydrological models. (Ogden, 2021; Sood 

and Smakhtin, 2015; Sood and Smakhtin, 2015). Input data, climate models, and hydrological 

or ecohydrological models, on the other hand, are all key sources of uncertainty in current 

hydro-climatic modelling frameworks (Kundzewicz et al., 2018).  

The water balance of the natural catchment has changed substantially and significantly due to 

anthropogenic involvement such river regulation. This has led the researcher’s inclination 

towards studies which utilizes a modelling approach to help in better understanding of complex 

watershed processes and their interactions with topography, land use management, soils and 

climate help in the evaluation of key water balance components, surface runoff, groundwater, 

and evapotranspiration being the major ones. Climate and land use lead to changes in 

hydrological components and are significant factors which lead to the amplification of hazards 



2 
 

such floods, droughts and pollutant transportation (Lee and Kim, 2017). The Fifth Assessment 

Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC 2014) emphasizes 

water resources availability, which states that streamflow in rivers is going to change 

significantly because of the changes in precipitation and temperature (IPCC 2014). Unplanned 

anthropogenic activities in the name of development have altered the atmospheric gas 

composition, causing the climatic parameters to change, along with several other adverse 

effects which in turn have prominent effects on the water resources locally as well as on a 

global scale. This calls attention to understand the hydrologic variability with respect to 

potential climatic changes.   

The Soil Water Assessment Tool (SWAT) is a basin-scale continuous model that evaluates the 

effects of various management techniques on watershed-related factors (Swain, 2017). It's a 

grey-box, physical, semi-distributed (in terms of space) model (Setegn et al., 2010).  SWAT is 

widely used for assessment and evaluation of hydrological impacts, such as estimation of 

streamflow, analysing the impact of changing climate on water resources, water quality 

assessment and flow simulation-based flood warning systems. Various studies conducted have 

identified SWAT as an efficient and potential model for the purpose of simulation and 

projection of hydrological parameters in a watershed.    The main aim of this paper is to 

comprehensively review the application of hydrological model SWAT for streamflow 

simulation and forecasting in changing climate scenarios. Furthermore, this paper also aims to 

discuss current challenges met and corresponding required future research directions in this 

area for a better and more comprehensible framework that will facilitate enhanced SWAT 

modelling in scenarios of changing climate.   

 

1.2 Impact of climate change on water resources 

Climate change is an unavoidable process that has brought the Earth from an ice age to the 

present. Many studies and investigations have been conducted around the world to determine 

the impact of future climate changes on human activities and the natural world. It was also 

frequently associated with the identification and evaluation of potential human adaptive 

responses to a changing climate. Water is most essential topographical agent that adjusts the 

surface morphology of the planet on an exceptionally great scale (Singh & Manaan, 2017). 

Proper water management practices are necessary to contribute to the area's socioeconomic 

growth. Freshwater "inadequacy" and security have been identified as the most pressing 
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worldwide environmental issues of the twenty-first century. These resources will be lost if they 

are not properly managed, which will have a negative impact on both our lives and the 

environment. Climate change will result in significant changes in the hydrological cycle's 

geographical and temporal pattern variation. This will result in water shortages, floods, 

droughts, and environmental deterioration, among other things, and is particularly noticeable 

in semi-humid and semi-arid regions. 

Climate change is a worrying event, according to numerous studies (for example, increase in 

temperature results in increase in evapotranspiration, and decrease in the amount of available 

water). This needs ongoing monitoring and quantification of climate change impacts. 

According to IPCC reports, observational data and climate projections show that freshwater 

supplies are particularly sensitive to climate change, which has far-reaching effects for human 

civilizations and ecosystems. Climate change has an impact on the operation and functionality 

of existing water infrastructure, such as hydropower, structural flood defences, drainage and 

irrigation systems, and water management practises. 

 

During the last few decades, the water resources are facing tremendous pressure dramatic 

change in climatic conditions and uneven rainfall pattern inducing problems of droughts and 

floods (Shan et al., 2020). By 2050, more than a billion people in Asia could be affected by a 

decrease in freshwater availability, particularly in large river basins. The Himalayan glacier 

melt, which is expected to increase flooding and rock avalanches, will have adverse impacts 

on water resources over the next two to three decades. The receding glaciers will eventually 

cause a decrease in river flows in future time periods. Increased flooding from the sea and, in 

some cases, river floods will put coastal areas, particularly densely populated mega-delta 

regions, at risk. 

 

In the recent years, the number and intensity of natural hazards has increased significantly 

around the world which has become an issue of global concern has raised the awareness about 

the changing climate of the earth in the global community. Climate change has proven to show 

adverse significant impacts on all realms of the hydrological cycle. Many researches and 

scientists have carried out studies to comprehend the situation of changing climate and its 

impact on hydrological systems. Evaluation of future streamflow under changing climate 

scenarios requires certain tools such as hydrological models, outputs from climate models, 

methods for downscaling and bias correction. Different combinations of RCP scenarios and 
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Global climate Models can be used to obtain results of the studies. The GCM model outputs 

are able to simulate complex climate aspects and are tested against historical observations and 

hence are commonly used by researchers. Numerous modelling studies have used hydrological 

model, SWAT along with climate models to assess and evaluate the impacts of climate change 

on streamflow in different regions (Tehrani et al., 2019).  

The studies involving climate change impact assessment on water resources thus becomes 

important for better water management practices in the near future to combat the adversities of 

changing climate. 

 

1.3 Objectives of the study    

The objectives of the thesis are:   

1. To setup SWAT hydrological model for Upper Narmada River Basin and to simulate 

streamflow at a specified location on the river basin.    

2. To prepare GIS inputs of the study area required by SWAT model    

3. To calibrate and validate the model using SWAT–CUP    

4. To assess and generate climate change impact on future streamflow and hydrological 

scenario including major water balance component (Precipitation, surface runoff, 

evapotranspiration, water yield) using CORDEX climate data in the SWAT model of 

Upper Narmada watershed.                                     
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CHAPTER 2 

LITERATURE REVIEW 

  

2.1 DESCRIPTION OF THE SWAT MODEL  

2.1.1 General Concepts  

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, continuous time watershed 

modelling system (Jain et al., 2017) to model the runoff from snowmelt and rainfall. It is a 

physical model based on daily time step working mechanism. SWAT is integrated into GIS 

environment as a free additional extension ArcSWAT for ArcGIS to make it capable of 

simulating a high level of spatial detail by allowing the division of a watershed into a large 

number of sub-basins (Gassman et al., 2003). SWAT is also capable of predicting the impact 

of land cover changes and water management practices on the characteristics of a specified 

catchment. Evaluation of sediment and agricultural yields in watersheds of varying sizes and 

type of soils is another area of application of SWAT model. Separating and evaluating the 

effects of a single variable is preferrable in SWAT since it is a deterministic model, and it is 

easy for comparison of the relative effects from one variable to another. In SWAT model, the 

watershed is divided into multiple subbasins and further into hydrological response units 

(HRUs) to incorporate hydrological modelling. HRUs are spatial objects possessing unique 

land use, management, and soil attributes. SWAT simulates surface runoff in a watershed by 

considering a number of different physical processes, which includes evaporation, runoff, 

infiltration process, potential and actual evapotranspiration, lateral flow and ground water 

contribution. Analysing long-term impacts is computationally efficient for users using SWAT 

by incorporating readily available inputs (Neitsch et al., 2011; Arnold et al., 2012; Hasan and 

Pradhanang 2017; Duan et al., 2018). The SWAT model is operated in two different phases 

simultaneously. The first phase is the land phase. It deals with various processes that occur in 

each sub-watershed. The other phase happens to be the routing phase, which evaluates the 

network through which water from each sub-watershed reaches the watershed's final exit 

(Swain, 2017). The basic equation that replicates the water balance in each sub-watershed 

follows a standard technique, in which the difference between inflow and outflow represents 

changes in moisture content (Swain, 2017). 

                          SWt = SW0 + Rd - Qs - Ea - Ws – Qg                                                       ....(1) 
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This equation represents the water-balance in SWAT model, where SWt is the moisture content 

of soil at time t (mm), SW0 is the initial moisture content (mm), t refers to time (days), Rd is 

the rainfall that has occurred on the particular day (mm), Qs indicates the runoff (surface flow) 

on corresponding day (mm), Ea refers to evapo-transpiration on that day (mm), Ws is the 

quantity of water that seeps into the soil leading to percolation on that particular day (mm) and 

Qg indicates return flow on the day (mm) (Swain, 2017). Different equations such as SCS-CN 

equation and Green-Ampt-Mein- Larsen equation is used for computation of runoff in SWAT. 

For evapotranspiration estimation, Penman-Monteith equation is commonly used in SWAT. 

Apart from Hargreaves and Priestly-Taylor methods. The SWAT model's principal uses lies in 

hydrological processes within watersheds, particularly in land-use and climate change 

(Gassman et al., 2016). However, it is affected by a significant amount of uncertainty, just like 

other hydrological models (Ma et al., 2019). Certain softwares have been created to help lessen 

these uncertainties. SWATCUP (Calibration and Uncertainty Program) is one such example, 

which addresses the inverse model using a set of procedures for calibrating and validating 

models, including PSO (Particle Swarm Optimization), GLUE (Generalized Likelihood 

Uncertainty Estimation), ParaSol (Parameter Solution), MCMC (Markov Chain Monte Carlo), 

and SUFI2 (Sequential Uncertainty Fitting Ver. 2), among others (Abbaspour et al., 2017). 

2.1.2 Input Data   

 For the simulation of hydrological processes in a basin system, SWAT requires a Digital 

Elevation Model (DEM), a land use map, a soil map, and daily-scale climate data (Tan et al; 

2021). There is an urgent need for the best datasets, particularly climate data, to ensure that the 

model performance replicates observed streamflow as accurately as possible (Abbaspour et al., 

2017). As a result, before developing and applying a specific SWAT watershed model, it is 

crucial to evaluate the available climate data sources. Climate data including daily precipitation 

data and minimum and maximum temperatures are usually available from local meteorological 

and/or hydrology agencies and are easy to obtain. Local climate datasets, on the other hand, 

can be expensive and difficult to obtain for model users.      Daily time step working for SWAT 

simulations demands climatic data such as precipitation, maximum and minimum temperature, 

and solar radiation data. Optional input data includes relative humidity and wind speed (Arnold 

et al., 2012b). These data can be generated internally using SWAT or taken from observed and 

measured records. Solar radiation, relative humidity, and wind speed are generated as monthly 

values that are tabulated for 13 different climate factors, although precipitation and temperature 

inputs are normally derived from collected data (Arnold et al., 2012b). Long-term weather 
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records are used in creating these tables which can be standard data sets within SWAT or must 

be developed from measured data for a specific research region (Tan et al., 2021). SWAT 

employs only the Penman-Monteith (Monteith, 1965) and Priestly-Taylor (Priestley and 

Taylor, 1972) potential evapotranspiration (PET) methodologies (Arnold et al., 2012b). The 

Green-Ampt infiltration method (Green and Ampt, 1911) necessitates the use of sub-daily 

precipitation inputs, which can be measured or generated. Also, the wind speed data also 

becomes necessary only if the Penman-Monteith option is selected for application in SWAT. 

Temperature data is required by a variety of algorithms, such as daily soil and water 

temperature calculations, crop growth, snowfall, and the Hargreaves PET method. Neitsch et 

al. (2011) and Arnold et al (2012b) provide additional explanations of how climate data are 

used in SWAT.    

2.1.3 Calibration and validation   

The calibration process of SWAT model requires the comparison of results of simulations with 

the values measured in the field (e.g., rainfall, discharge, etc.) in order to minimise the 

differences between them (Abbaspour et al., 2017). It is important to note that some parameters 

(such as snow-melt parameters and canopy storage) require prior calibration during the 

calibration process (Abbaspour et al., 2017). As a result, these parameters must be fitted and 

fixed first before being deleted from the second calibration (Abbaspour et al., 2017). In order 

to substantiate the calibrated findings, the process of validation is preformed (Abbaspour et al., 

2017). Apart from the accuracy of the input data (Meaurio et al., 2015), the time interval used 

to perform the calibration and validation stages can influence model performance (Amatya and 

Jha, 2011) and hence it is strongly advised to choose the time interval accordingly.  The SWAT 

model's performance must be assessed not only for analysing the model's ability to recreate 

hydrological processes within watersheds, but also for the support it provides in improving and 

refining the modelling process through parameter changes. (Krause and colleagues, 2005). 

Krause et al. (2005) also suggested using a variety of associated statistical measures to analyse 

model performance scientifically. NSE, PBIAS, and RSR are the most closely related statistical 

indices for evaluating hydrological models (Moriasi et al., 2007). For measuring the accuracy 

of SWAT predictions, the root mean square error (RMSE), coefficient of determination (R2), 

Nash-Sutcliffe Efficiency (NSE), percent bias (PBIAS), Kling-Gupta Efficiency (KGE), and 

various other statistics have been published in the literature. (Krause et al., 2005; Moriasi et 

al., 2007; Moriasi et al., 2015; Tan et al., 2019a). The R2 and NSE are the most commonly 

utilised statistics to assess the correctness of SWAT model output (Gassman et al., 2007; 
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Gassman et al., 2014; Tan et al., 2019b, 2020). For satisfactory NSE and R2 streamflow 

prediction outcomes, a requirement of 0.5 and 0.6 was proposed, along with stringent statistical 

criteria for "excellent" and "very good" streamflow simulation results (Moriasi et al., 2007, 

2015). Most of the studies reviewed here cited Moriasi et al. (2007) and/or Moriasi et al. (2015), 

according to the statistical results reported in the respective analyses, and references to the 

criteria of satisfactory or unsatisfactory results in the remainder of this discussion are implicitly 

based on the Moriasi et al. (2007, 2015) criteria. 

 

2.2 Global Climate Models 

Climate change research has been well supported since the early 1980s by the development of 

General Circulation Models (GCMs). GCMs are the most advanced and readily available tools 

for simulating the response of the Earth’s climate to changing atmospheric composition. GCMs 

are numerical models coupled with ocean models, land-use models, economic and future 

development models, and provide an arena for the study of climate change impacts on different 

processes involved in the atmosphere (Fowler et al., 2007). 

2.2.1 Representative Concentration Pathways (RCPs)  

RCPs are "time series of emissions and concentrations of the whole suite of greenhouse gases 

(GHGs), aerosols and chemically active gases, as well as land use/land cover," according to 

the EPA (Moss et al., 2008). There are four RCPs that are created using Integrated Assessment 

Models found in the literature. These RCPs are available in AR5 Chapters 11 to 14 of the "Fifth 

IPCC Assessment" as a basis for climate forecasting and projection. The following are four 

RCP scenarios: 

• RCP2.6  

The radioactive forcing peaks at almost 3 W m-2 prior to 2100, then falls with constant 

emissions after 2100, assuming continuous emissions. 

• RCP4.5 and RCP6.0  

In these scenarios, the corresponding ECPs assume constant concentrations after 2150 for two 

intermediate stabilisation pathways in which radiative forcing is stabilised at approximately 

4.5 W m-2 and 6.0 W m-2 after 2100. 
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• RCP8.5  

The related ECP assume continuous emissions after 2100 and constant concentrations after 

2250 for a high route in which radiative forcing reaches 8.5 W m-2 by 2100 and continues to 

rise for some years. 

2.2.2 Bias Correction  

The correction of daily projected raw GCM output is simply characterised as the bias correction 

approach. In this method, the difference in mean and variability between GCM and observation 

in a reference period is used. The output we get from GCM or RCM outputs is usually biased 

and hence there is a requirement to modify these outputs before using them in regional impact 

analyses (Ahmed et al., 2013). 

Following methods and approaches can be used for Bias correction:  

• Variance scaling (VARI)  

• Linear Scaling (LS)  

• Distribution Mapping (DM)  

• Local Intensity Scaling (LOCI)  

• Power transformation (PT)  

• Quantile Mapping (QM)  

• Delta Change Approach etc. (Fang, Yang, Chen & Zammit, 2015) 

2.3 Studies on Impacts of Climate Change on Streamflow in Asia    

Different studies have projected varying streamflow conditions under changing climate 

scenarios for different regions. Both positive and negative changes in streamflow have been 

projected. Studies conducted in India have shown different projections for streamflow under 

climate change. A study carried out on the Upper Sind River Basin calculated the average 

annual streamflow to increase by 16.4 and 93.5% over the mid-century and end-century, 

respectively (Narsimlu et al., 2013). Another study conducted in the Bhakra- Satluj River Basin 

projected an increase in mean annul streamflow by 12.8 % over mid-century and by 19.4 % for 

end century under A1B scenario (Hamid et al., 2017). Similar study conducted on the Upper 

Indus Basin projected showed increase in flow by 19.24% and 16.78% for mid and late century, 

respectively for RCP 4.5 scenario and increase of 20.13% and 15.86% during mid and late 

century, respectively for RCP 8.5 scenario (Shah et al., 2020). Some studies conducted in the 

Himalayan watershed also projected prominent changes in streamflow for the future climate 
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scenarios. The Upper Beas Basin situated in the Western Himalayas is expected to see a rise 

(0.31% to 14.18%) in mean annual streamflow. However, a decrease is expected in the latter 

half of the century due to reduction in snow cover as a result of increasing temperatures (Rani 

and Sreekesh., 2019).  Similar to India, in Thailand, one study conducted in the Nong Han Lake 

Basin, calculated higher streamflow than the baseline period (Supakasol et al., 2020). The study 

resulted in a significant increase of 41.9% in streamflow in the Chao Phraya basin. SWAT 

model has also been used in Iran to study the streamflow variability due to climate change. 

Halilrood River Basin in Iran is expected to see a slight increase in future streamflow, mainly 

due to increase in precipitation as result of changing climate (Mehmoodli et al., 2021). A 

climate modelling study in Vietnam over the Dakbla river basin used the SWAT model to study 

the impact of climate change on future stream flow in the basin. The results indicated an overall 

average annual increase of stream flow by 40% and risks of flooding (Raghavan et al., 2014).  

Assessment of climate change impacts on streamflow through SWAT modelling in Kabul 

River basin, Afghanistan showed an increase in future streamflow during most of the months 

(Aawar and Khare, 2020). The El Kalb River basin, Lebanon is predicted to have a decrease of 

28-29% in the average annual discharge during the 2021-2040 period and up to 45% decrease 

in streamflow under RCP 8.5 scenario for 2081-2100 period (Ghanimeh et al., 2021).    In 

China, the Lake Dianchi was studied for future streamflow assessment under A2 and B2 

climate scenario and the outputs revealed that the annual average streamflow would decrease 

in the future by the declination of -7.12 to - 21.83 % and -6.34 to -17.09 % under A2 (B2) 

scenarios (Zhou et al., 2015). Jianzhuangcuan catchments were also studied to quantify the 

impacts of climate change on streamflow (Huo and Li., 2013). The study revealed an increase 

in streamflow of up to 3.67 percent under 2020 and 2030 scenarios. The Yellow River Basin 

in Tibetan Plateau was also studied to assess the impact of future climate change on this 

region’s hydrological components for the period of 2013–2042 under three emission scenarios 

A1B, A2 and B (Zhang et al., 2015). The results showed that A1B and B1 scenarios were 

characterised by an increasing streamflow trend in future while a decrease in streamflow was 

projected for A2 scenario. The future climatic projections also show an increase in streamflow 

in the Miyun Reservoir Basin on the basis of CMIP5 models (Yan et al., 2019). For the study 

of the impact of changing climate on the Huangnizhuang catchment (HNZ) in China, six GCMs 

were employed under RCP2.6, RCP4.5 and RCP8.5 scenarios. The results revealed an increase 

in precipitation in the middle and end of twenty-first century over the HNZ, but a declining 

streamflow ranging -6.9 to 0.8 %, mainly due to an increase of evapotranspiration, as air 

temperature increases for all the GCMs and RCPs (Lü et al., 2015).      
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Table 2.1: Summary of reviewed publications assessing climate change impacts on streamflow in Asia 

 
 
Region 

 
 

Climate Model  

 
Down 

scaling method/ 
Bias Correction 

 
 

Country 

 
 

Key Findings 

 
 

Reference 

 
Subernarekha 

River basin 

 
4 RCMs 

(RCP 4.5, RCP 8.5) 

 
Bias Correction 

using IMD gridded 
data 

 
India 

 
Increase in 

streamflow with 
maximum increase 

under RCP 8.5 
scenario 

 
Gaur et al. 

(2021) 

 
Mun River Basin 

 
34 GCMs 

(RCP 2.6, RCP4.5, 
RCP8.5) 

 
Delta method for 

downscaling 

 
Thailand 

 

 
Increase in 

streamflow by 
10.5%-23.2% 

during 2020-2093 
 

 
Fang and Li 

(2021) 

 
Halilrood Basin 

 
11 G-RCMs 

(RCP4.5, RCP8.5) 

 
Bias correction 

using linear scaling 
and distribution 

mapping method 

 
Iran 

 
Higher 

precipitation 
intensity resulted 
in minor increase 

of streamflow 
in the months of 

January and March 

 
Mahmoodli, et al. 

(2021) 

 
El Kalb River  

Basin 

 
GCM 

(RCP 2.6,4.5, 8.5) 

 
Statistical 

downscaling using 
REMO 2009 

 
Lebanon 

 
28%, 28% and 45% 

decrease in 
average annual 

streamflow for RCP 
2.6, 4.5, 8.5 

respectively during 
2081-2100 

 
Ghanimeh et al. 

(2021) 

 
Laixi River Basin 

 
GCM 

(RCP2.6, RCP4.5, 
RCP8.5) 

 
Downscaling using 

SDSM 

 
China 

 

 
RCP2.6 scenario 

resulted in , greater 
increase of 

streamflow in the 
2050s than 2080s, 

and 
opposite under 

RCP4.5 and RCP8.5. 
 

 
Gao et al. 

(2021) 

 
Nong Han Lake 

Basin 
 

 
PRECIS RCM 
(A2 and B2) 

 

 
Bias correction by 

Change Factor 
Method 

 
Thailand 

 
Calculated runoff 
was higher than 

the baseline 
period. 

 

 
Supakasol, et al. 

(2020) 

 
Upper Indus Basin 

 
RCM 

(RCP 4.5 & RCP 8.5) 

 
The historical 
modification 
approach for 
downscaling 

 
India 

 
RCP4.5 showed 

increase in flow by 
19.24% and 

16.78% for mid and 
late century, 
respectively. 

Increase in flow 
was 20.13% during 

mid and  
15.86% during late 

century for RCP 
8.5. 

 

 
Shah et al. 

(2020) 

 
Vaksh River Basin 

 
5 GCM 

(RCP 4.5, RCP 8.5) 

 
Downscaled using 

Climate change 
toolkit (CCT) 

 
Tajikistan 

 

 
Streamflow is 
predicted to 

increase by 2099 

 
Gulakhmadov et al. 

(2020) 
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from 17.5% to 
52.3% under both 

RCP scenarios 
 

 
Tamor River Basin 

 
 

4 RCMs 
(RCP 4.5 and RCP 

8.5) 

 
Linear Scaling 

method 

 
 

Nepal 

 
Decrease of over 

8.5% in streamflow 
during the twenty-
first century under 

RCP8.5 scenario 
 

 
 

Bhatta et al. 
(2019) 

 
Upper Beas River 

Basin 

 
Non parametric 

methods 
(Mann-Kendall test 

and Sen Slope 
estimator) 

 
Synthetic method 

for developing 
climate change 

scenarios 

 
India 

 

 
A rise (0.31% to 
14.18%) in mean 
annual streamflow 

 

 
Rani and Sreekesh 

(2019) 

 
Miyun Resevoir 

Basin 

 
21 GCMs 

(RCP 4.5, RCP 8.5) 

 
Bias-Correction 

Spatial 
Disaggregation 
(BCSD) method 

 

 
China 

 

 
Increase in 

streamflow during 
2021-2035 period 

 
Yan et al. 

(2019) 

 
Wardha Region 

 

 
RCM 

(RCP 4.5 & RCP 8.5) 

 
The historical 
modification 
approach for 
downscaling 

 
India 

 
A decrease in 

future streamflow 
is expected 

 

 
Sowjanya et al. 

(2018) 

 
Satluj 

River Basin 

 
GCM 
(A1B) 

 
The use of PRECIS 

RCM for 
downscaling 

purpose 

 
India 

 
Increase in mean 
annul streamflow 

by 12.8 % over mid-
century and by 
19.4 % for end 

century 
 

 
Hamid et al. 

(2017) 

 
Yellow River Basin 

 

 
GCM 

(A1B, A2, B1) 

 
BCSD approach 

 
China 

 
Tangnaihai gauge 

reported an 
increase in 

streamflow under 
A1B and B1, while 
declining trend is 
witnessed in A2 

scenario 
 

 
Zhang et al. 

(2015) 

 
Koshi River Basin 

 
2 RCM 

(A1B scenario) 

 
Bias corrected 

 
Nepal 

 

 
 Monthly 

streamflow 
reduced by 30% in 

the dry months and 
increased by 25% 
in the high flow 

months 
 

 

 
Devkota and 

Gyawali 
(2015) 

 
Lake Dianchi 

 
7 GCMs 

(A2 and B2 
scenario) 

 
SDSM model 

 
China 

 
Decrease in 

annual average 
streamflow 

in the future by -
7.12 to 

-21.83 % under A2 
and -6.34 to -

17.09 % under B2 
scenarios 

 

 
Jing Zhou et al. 

(2015) 

 
Huangnizhuag 
catchment 

 
6 GCMs 

(RCP 4.5, RCP RCP 
8.5) 

 
Bias correction by 

Change Factor 
Method 

 
China 

 
Streamflow 

showed a decline, 

 
Lü et al. 
(2015) 
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 2.4 A General Global Review    

 The SWAT model applied on Volta River Basin in West Africa projected that river flow will 

decrease up to 40% in future period (Sood et al., 2017). Another study conducted in Africa in 

Lake Tana Basin integrated SWAT model and an ensemble of nine GCMs under A1B, B1 and 

A2 scenario to forecast the future streamflow. The results revealed five of the nine models 

indicating a significant reduction in annual streamflow over the period of 2080-2100 (Setegn 

et al., 2011). The Zambezi River Basin showed a similar trend of increasing streamflow under 

RCP 8.5 scenario. However, a slight decrease in annual streamflow of less than 3% under RCP 

4.5 was projected by the model (Ndhlovu and Woyessa, 2021). The White Volta and Pra Basin 

in Ghana however showed a trend of decreasing streamflow for future periods (Kankam-

Yeboah et al., 2017).   A study conducted in Kalihi and Nuuanu watersheds in Hawaii also used 

seven GCMs to project the future streamflow and revealed that there was a general overall 

decline in the daily streamflow, with reduced extreme peak and low flows (Leta et al., 2018). 

Impacts of changing climate were also studied in The Shell Creek and Logan Creek Watersheds 

of Nebraska, a state in USA under A1, B1 and A1B scenario. The results indicated a general 

increase in streamflow for both watersheds, however the increase was more prominent and 

larger for Logan Creek Watershed (Liew et al., 2012). Another study was conducted in USA 

on the Alabama River Basin using GCMs under RCP 4.5 scenario. The monthly streamflow 

under RCP 4.5 scenario increased by as high as 300% for months of summer and spring but 

decreased for the winter months (Quansah et al., 2021). Aparicio et al., (2017) evaluated 

by 6.9 to 0.8 % in 
the future 

 
 

Dakbla River Basin  
 

3 GCMs 
(A2) 

 
WRF model for 

downscaling 

 
Vietnam 

 
40% increase in 
streamflow with 
risk of flooding 

 

 
Raghavan et al. 

(2014) 

 
  

Upper Sind River 
Basin 

 
 

GCM 
(A1B) 

 
 

The use of PRECIS 
RCM for 

downscaling. 

 
 

India 

 
Increase in average 
annual streamflow 
by 16.4 and 93.5% 

over the mid-
entury and end-

century, 
respectively 

 

 
 
 

Narsimlu et al. 
(2013) 

 
Jianzhuangcuan 

River Basin 

 
14 GCMs 
(A1B, B1) 

 
Delta Method of 

downscaling 

 
China 

 

 
Monthly 

streamflow 
increases upto 3.67 
% for 2030 scenario 

 

 
Huo and Li 

(2013) 
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changes in streamflow under RCP 4.5 and RCP 8.5 climate change scenarios in Segura River 

Basin, Spain. The river basin is expected to witness a general decrease in seasonal streamflow 

for both the scenarios. On corelating with the baseline period (1971–2000), future streamflow 

in the Headwaters of the Segura River Basin will experience a considerable change due to 

changing temperature and precipitation. During 2041–2070 time period, a high variability in 

the streamflow was observed under both the scenarios. Maximum variations of about 33%-

54% decrease in streamflow is projected under RCP8.5 for 2071–2100 period. Various studies 

have also assessed the changing hydropower potential due to change in streamflow under 

different climate change scenarios. Thau and the Chiba catchments, located in Southern France 

and North-eastern Tunisia, respectively were also studied to model the climate change impacts 

on hydrological parameters. The projected magnitude of changes indicated a decreased 

streamflow owing to increasing temperature and decreased rainfall in the future periods 

(Sellami et al., 2015).   The changing streamflow and hydropower potential in Grande River 

Basin, Brazil under various RCP scenarios was studied by the researchers. The results showed 

significant reduction in the mean monthly streamflow during the time period (2007–2040) 

under RCP 4.5 for both RCMs, while the largest reductions were observed during the third time 

period (2071–2099) under RCP 8.5 (Oliveira et al., 2017).    It is quite evident from the 

reviewed studies that there exist many discrepancies in the projected streamflow and clear trend 

for a particular country or region is difficult to assess under scenarios of changing climate.         

  Table 2.2: Summary of reviewed publication assessing climate change globally 

 
 

Region 

 
 

Climate Model 

 
Down 

scaling method/ 
Bias Correction 

 
 

Country 

 
 

Key Findings 

 
 

Reference 

Alabama River 
Basin 

GCMs 
(RCP 4.5) 

Statistical 
downscaling 

USA 
 

Increase in 
streamflow for 

spring and summer 
months and 

decrease for winter 
months 

 

Quansah et al. 
(2021) 

 
Zambezi River 

Basin 

 
6 GCMs 

(RCP 4.5, RCP 8.5) 

 
Delta change 

method 

 
Africa 

 

 
Increased 

streamflow under 
RCP 8.5 scenario 

 

 
Ndhlovu and 

Woyessa 
(2021) 

 
Awash River Basin 

 
GCM 

(RCP 2.6, RCP 4.5, 
RCP 8.5) 

 
Statistical 

downscaling  

 
Ethiopia 

 
Increase in 

streamflow by 
more than 34% 

 

 
Gebrechorkos et al. 

(2020) 

Kalihi and Nuuanu 
watersheds 

7 GCMs 
(RCP 4.5 and 8.5) 

Bias corrected Hawaii An overall decline 
in the daily 

streamflow values, 
extreme peak and 

low flows 
 

Leta et al. 
(2018) 
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White Volta and 
Pra River Basins 

 
 

Two GCMs 
(A1FI) 

 
A stochastic 

weather generator 
LARS-WG 

 
 
 

Ghana 

 
Decrease in mean 
annual streamflow 

by 22% in 2020s 
and 50% in the 

2050s for White 
Volta Basin. 

22% and 46% 
decrease in the 

2020s and 2050s 
for Pra Basin 

 

 
 

Kankam-Yeboah 
et al.  

(2017) 

 
Segura 

River Basin  

 
2 RCMs 

(RCP 4.5, RCP RCP 
8.5) 

 
Bias correction 

using distribution 
mapping approach 

 

 
Spain 

 
General decrease 

in streamflow 

 
Aparicio et al 

(2017) 

 
Grande River Basin 

 
 

2 RCM 
(RCP 4.5, RCP RCP 

8.5) 

 
 

Bias Correction 

 
 

Brazil 

 
Reduced 

streamflow, with 
largest reduction in 
(2071-2099) time 
period under RCP 

8.5 scenario 
 

 
 

Oliveira et al. 
(2017) 

 
 

Volta River 
Basin 

 
One RCM, 
boundary 
condition 

from 
one 

GCM 
(A1B) 

 
Dynamic 

downscaling 
(COSMO-CLM). 

 

 
West Africa 

 
River flow will 
decrease up to 

40%. 

 
Sood et al.  

(2017) 

 
Thau and Chiba 

Catchments 

 
4 Climate models 

(A1B) 

 
Multi Fractal 
approach and 

spatial 
interpolation 

 
Southern France 

and North-eastern 
Tunisia 

 

 
Projected decrease 
in streamflow with 
more pronounced 
changes in Chiba 

catchments 
 

 
Sellami et al. 

(2016) 

 
Zenne river basin 

 
RCMs 

(A2, B2) 

 
CCI-HYDR 

perturbation tool 

 
Belgium 

 

 
Increase of 109 % 
in extreme flows 
109% under the 

wet summer 
scenario. 

 

 
Olkeba & Willy 

(2013) 

Shell and Logan 
Creek Watershed 

RCMs 
(A2, A1B, B1) 

Statistical 
Downscaling 

Method 

USA 
 

Overall increase in 
streamflow for 

both watersheds 
 

Liew et al. 
(2012) 

 
Lake Tana Basin 

 
Ensemble 

of nine 
GCMs 
(A1B, 

B1, A2) 

 
The historical 
modification 
approach for 
downscaling 

 
Ethiopia 

 
Five of the nine 

models 
indicate significant 

reductions in 
annual 

streamflow 
 

 
(Setegn et al. 

2011) 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Assessing climate change impact on streamflow: Framework    

Climate change has proven to show adverse significant impacts on all realms of the 

hydrological cycle. Numerous modelling studies have used SWAT to assess and evaluate the 

impacts of climate change on streamflow in different regions (Tehrani et al., 2019). The first 

step involves the streamflow simulation of a particular region in SWAT model by utilizing the 

climate and meteorological data. The accuracy of the simulated streamflow is checked by 

calibration and validation process for the SWAT model using historical observed data. A 

climate model, generally a GCM (General circulation model) is further selected to evaluate 

climate change impacts for current and future time periods. After this, an emission scenario is 

selected to study impacts of climate change on the desired region. Application of bias 

correction along with methods for downscaling data from climate model is the next step which 

is done to so that projections from GCMs can be translated to regional scale for the assessment 

of desired study area. After using methods for downscaling of the GCM data, a simulation 

model is used to obtain river runoff and flow conditions for the study area (Tehrani et al., 2019). 

Land use patterns changes, changes in river morphology, anthropogenic activities and reservoir 

construction and working are some of the designed scenarios which can be used to analyse 

results.       

 

Figure 3.1: Graphical representation of framework for climate change impact on streamflow 

using SWAT 
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 3.2 Study Area   

 3.2.1 Location   

The Narmada, also known as the Rewa, is the longest river in Central India and the sixth largest 

in the Indian subcontinent. It is the third longest river entirely in India after the Godavari and 

the Krishna. It is the historic boundary between northern and southern India, which flows 1,312 

km westward via the Gulf of Khambhat and empties into the Arab Sea. Along with the Tapti 

River & Mahi River, it is one of just three major rivers running from East to West in the 

peninsula of India (longest west flowing river). At an altitude of 1068 metres above sea level 

on the Amarkantak plateau of the Maikala River in the Shahdol area of Madhya Pradesh, the 

river rises at 23°45' latitude north and 80°35' longitude east. The river runs 1,212 kilometers 

into the Arabian Sea in the Cambayan Gulf near Bharuch, Gujarat. The first 1,085 kilometers of its 

trip are home to Madhya Pradesh. For the next 40 kilometers the river marks the boundary between the 

states of Madhya Pradesh and Maharashtra. It then defines for the next 42 kilometers the boundary 

between Maharashtra and Gujarat. The last 165 kilometers of the course are located in Gujarat. This 

study simulates the water resources of the upper Narmada basin, which drains 44,548 km2 from the 

basin's most eastern end to the downstream gauging station at Hoshangabad. Figure 3.2 shows the 

location map of Upper Narmada Basin w.r.t. India. 

 

Figure 3.2: Upper Narmada Basin depicted on map 
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3.2.2 Climate    

The Narmada basin is subject to a tropical monsoon climate.  The basin's climate is humid and 

tropical, while extremes of heat and cold are common in some areas. The basin has four distinct 

seasons throughout the year, (i) winters, (ii) summers, (iii) south west monsoon, and (iv) post 

monsoon. The typical yearly temperature varies from 17˚5 C to 20˚C in the winter and from 

30˚C to 32˚5C in the summer. Temperatures in the monsoon range from 27o 5 C to 30o C. 

Temperatures range from 25 to 27.5 degrees Celsius during the post-monsoon season. During 

the five monsoon months of June to October, the basin receives over 90% of its rainfall. In the 

months of July and August, around 60% of the total is received. The high mountainous and 

upper plains parts of the basin receive a lot of rain. It gradually reduces as you get closer to the 

lower plains and lower hilly sections, before increasing again towards the coast and the basin's 

southwestern extent. The annual rainfall in the upper hilly areas is generally greater than 1400 

mm (55"), but it can reach 1650 mm (65") in some places. The upper plains however receive 

rainfall ranging from 1400 mm (55") to less than 1000 mm (40"). 

3.3 Data sources and input data   

For analysis, SWAT hydrological model requires physiographical data input like Land use land 

cover data, digital elevation model, weather data and soil data. The sorces of various input data 

is shown in Table 3.1     

Table 3.1: Sources and description of the input data for SWAT 
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3.3.1. Digital Elevation Model (DEM)    

A DEM is created to describe the geography and characterizes the rise of each point in a given 

district at a predefined spatial goal. Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) is one of five sensors on board of Terra satellite launched by NASA. The 

ASTER DEM is available freely for users to download and use. ASTER V3 data used in this 

study is latest in this series made available in 2019 for public use. It has a spatial resolution of 

30m. The DEM was utilized to delineate the basin using the ArcSWAT GIS interface's analytic 

approach, as well as to provide topographical parameters for each catchment of the basin, such 

as overland slope, stream network, and slope length. The DEM of the study area used as the 

SWAT input is shown in the figure 3.3. 

 

Figure 3.3: DEM of Upper Narmada Basin 

 3.3.2. Land use land cover map    

In a watershed, land use is one of the most important elements influencing runoff, soil erosion, 

and evapotranspiration. In the present study, LULC of India was obtained from The Oak Ridge 

National Laboratory Distributed Active Archive Center (ORNLDAAC) available at 100m 

resolution for India. The LULC map for the required study area was extracted from the map of 

the India in the ArcGIS interface using shapefile of the study area. India.  Figure 3.4 shows the 

land use map of the study area. The data is originally classified in International Geosphere- 

Biosphere Programme (IGBP) classification scheme which was later classified in SWAT 

format.    
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Figure 3.4: Land use map of Upper Narmada Basin 

3.3.3. Soil Map    

The SWAT model requires varied soil textural and physicochemical properties for multiple 

levels of each soil type, such as soil texture, hydraulic conductivity, organic carbon content. 

Soil map data is taken from Food and Agriculture organization (FAO) soil database. Figure 3.5 

shows soils in the study area with different FAO soil codes. Almost 5000 soils are present in 

SWAT’s database. In this database soils are differentiated at a spatial resolution of 10 

kilometres. 

 

Figure 3.5: Soil Map of Upper Narmada Basin 
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3.3.4. Meteorological Data    

SWAT model requires meteorological datasets of having one day temporal resolution. Indian 

meteorological department provide free grided data for whole India. Rainfall data are provided 

at high resolution of 0.25˚ x 0.25˚ while max. and min. temperature are provided at 1˚ X 1˚ 

resolution. Daily precipitation, maximum and minimum temperature were obtained from this 

data base for a time of 30 years (1985–2015) and utilized in the SWAT hydrological model.    

3.3.5 River discharge data   

Information regarding the water resources of the country in the is one of the most important 

components of water resource management. The fulfilment of this criteria is an initiative of the 

India-WRIS Project with the purpose of disseminating data in the public domain. This data 

base was initiated through MoU signed between CWC, ISRO and Ministry of Jal Shakti and is 

managed by National Water Informatics Center (NWIC). It has continuous data for period 

(1988-2015) without any missing value. This daily data was downloaded and used for 

calibration and validation of SWAT model.       

3.3.6 CORDEX Climate Data    

The output of multiple CMIP5 models is used to address current and future climate challenges 

in the context of global climate change. For the purpose of this study, CORDEX downscaled 

climatic data were received from the Indian Institute of Tropical Meteorology's Centre for 

Climate Change Research in Pune (CCCR-IITM). The resolution of CORDEX data is 0.44° × 

0. 44°. In this study, GCM downscaled on IITM-RegCM4 RCM has been used (Giorgi et al., 

2012) since its performance is satisfactory in the Indian subcontinent (Dubey et al., 2020; Mall 

et al., 2018; Singh & Saravanan, 2020). It can simulate current climate features throughout the 

study region (Gao & Giorgi, 2017). In this study, IITM-RegCM4 (CCCMA-CanESM2), IITM-

RegCM4 (NOAA-GFDL-ESM2), IITM–RegCM4 (CNRM-CM5) has been used, shown in 

Table 3.2, which are especially downscaled for the Asian region by the Indian Institute of 

Tropical Meteorology (IITM-India).    
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Table 3.2: Climate models used in the study 

 

 

3.4 SWAT Model Setup    

The first step in setting up a SWAT project requires the reprojection of the input raster data 

UTM projection. All the input data was hence cross checked to be in UTM projection. The 

study area was identified to be in WGS1984 zone 44 Northern Hemisphere. Further processing 

of the SWAT model requires four major steps- 

     

Figure 3.6: SWAT Model setup flow diagram 

3.4.1 Watershed Delineator   

 ASTER DEM of the study area was used to delineate the watershed. In SWAT, each watershed 

is divided into HRU and each of them is a unique combination of land use, slope and soil 

(Neitschetal.,2011). Watershed delineator is incorporated in SWAT toolbar with the help of 

which watershed was delineated from DEM (Figure 3.7). CWC gauge station Hoshangabad 

was used as outlet point to delineate watershed (Table 3.3). Following steps were used in 

watershed delineation window.  

1. In DEM projection setup option, setting Z unit to m    
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2. Clicking flow direction and accumulation    

3. Giving minimum area value    

4. Clicking create streams and outlet (Figure 3.8) 

5. Removing all automatically generated outlet point    

6. Clicking ‘Add’ in manual edit option to add Hoshangabad (CWC gauge station) as 

outlet    

7. Clicking delineate watershed to generate watershed    

 

Table 3.3: CWC Gauge Station Details 

Outlet Station Location 

Hoshangabad Latitude: 22.4230    

Longitude: 77.4420 

 

 

Figure 3.7: Watershed delineation window in ArcSWAT Interface 
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Figure 3.8: Reach and outlet map of study area 

3.4.2 HRU Analysis   

In SWAT, each watershed can be divided into sub watershed and each sub watershed is divided 

into HRU (hydrological response unit). Each HRU is a unique combination of land use, slope 

and soil (Neitschetal.,2011).   To conduct HRU analysis we need to provide land use data, soil 

data and slope definition and overlay. First step is providing LULC map for the watershed 

which was utilized after reclassifying the SWAT Format with help of lookup table (Figure 3.9).  

 

Figure 3.9: Land use Definition window in ArcSWAT interface 
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After adding soil data, slope classes are added (Figure 3.10). It is up to user how many slope 

classes to add. In this study we have taken 5 slope classes. After overlaying all classes, we need 

to give HRU definition. HRU thresholds needs to be define by user, it merges the lower classes 

with upper one in generated HRU. Lower value gives us lower classes and larger value give us 

more classes but it does not impact on streamflow or discharge result. As our study area is 

small threshold value for land use, soil and slope were given as 5%, 10% and 5%. After giving 

HRU definition land use, slope and soil map of watershed get generated. Total 29 HRUs were 

generated for Narmada River watershed.    

 

Figure 3.10: Soil data definition window                      Figure 3.11: Slope definition window 

 After adding land use, second step is to add soil map. Already prepared and projected soil map 

of district was added as soil data.   After adding soil data, slope classes are added (Figure 3.11). 

It is up to user how many slope classes to add. In this study we have taken 5 slope classes. 

After overlaying all classes, we need to give HRU definition. HRU thresholds needs to be 

define by user, it merges the lower classes with upper one in generated HRU. Lower value 

gives us lower classes and larger value give us more classes but it does not impact on 

streamflow or discharge result. As our study area is small threshold value for land use, soil and 

slope was given as 5%, 10% and 5%. After giving HRU definition land use, slope and soil map 

of watershed get generated. Total 29 HRUs were generated for Upper Narmada watershed.    
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3.4.3 Creating Input Table and Weather data setup     

This stage entails reading weather data as well as creating input tables. Selecting weather 

station files such as rainfall data, temperature data, and the weather generator file allows the 

basin's weather data to be defined. The rain gauge sites are shown in the rainfall data definition 

tab (Figure 3.12). The SWAT-acceptable format for the rain gauge locations table was used. 

The daily time step precipitation data for all of the sites was stored in distinct text files that the 

SWAT database automatically chose from their location.   In the temperature   data tab, the 

temperature locations table was similarly submitted. The (0.25ox0.25°) grid sites in the basin 

were used to determine the precipitation and for temperature (1ox1o) grid sites were used. IMD 

provides only daily rainfall and temperature data. So other data (solar radiation, relative 

humidity, windspeed) were generated using SWAT weather generator during simulation. 

SWAT weather generator uses climate data file containing average climate data of 83 years 

from WGEN user to calculate this missing value. For India it is provided on SWAT official 

website (https://swat.tamu.edu/data/india-dataset/). 

 

Figure 3.12: Weather data definition form 

The next step is the write SWAT input tables which writes the database table into the main 

SWAT database and the project database. The tables need to be written in a specific sequence 

so that some of the related tables could be written. All tables need to have a status of 

‘Completed’ before the SWAT project can be setup and run as shown in figure 3.13. 

https://swat.tamu.edu/data/india-dataset/
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Figure 3.13: The completed SWAT database tables form 

 

3.4.4 SWAT Simulation 

The final step is the setup and run SWAT model simulation. The period of simulation was 

taken for six years from January 2000 to December 2005 for which the observed data was 

sufficiently available. One year of warm up period was given to the model so that it could better 

simulate the results. The model is run for the entire duration of six years but the warm up period 

is not shown in the results. The setup of SWAT Run (Figure 3.14) is necessary before the final 

SWAT Run could be made. The setup generates the final input files for the period of simulation. 
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Figure 3.14: SWAT setup and Run form 

After the successful SWAT Setup, the Run SWAT button becomes active. The final SWAT 

run is allowed which takes time in processing all the information and the message of 

successful model run appears (Figure 3.15). 

 

Figure 3.15: Model execution window 

 

3.4.5 SWAT Output 

The output of the SWAT model is in the format of database files which need to be imported 

to the main SWAToutput.mdb file in the SWAT database (Figure 3.16). These output files 

can be exported into a spreadsheet for further analysis and plotting. For the analysis of the 

entire basin flow, the sub-basin at the outlet is identified and the flow from that sub-basin is 

plotted and checked with the observed flows of the basin. 
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Figure 3.16: SWAT Output Form window 

The current simulation can be saved with a suitable name and made as the default simulation. 

The first simulation was run for (1975–2015) with first three years as warm up period. This 

time period was chosen as for this period continuous streamflow data was available without 

any missing value. 

3.5 Calibration and sensitivity analysis 

The simulated results of the model were checked with the observed streamflow discharge. The 

SWAT model calibration, validation and sensitivity analysis were performed in SWAT- CUP, 

open-source software using the SUFI-2 algorithm (Abbaspour et al., 2004). In SUFI-2 

algorithm, parameter uncertainty accounts for all uncertainties (conceptual model, input, etc.) 

(Abbaspour et al., 2004). Sensitivity analysis is a method for determining how altering input 

parameters affects model outputs. 

To calibrate streamflow, we need to convert observed daily data downloaded from WRIS – 

India website to monthly data as monthly streamflow calibration is found to happen best in 

SWAT-CUP (Srinivasan et al., 2010). It was done using Pivot table in excel. After converting 

to monthly data, it needs to be formatted into form suitable for SWAT – CUP. In order to see 

the impact of parameter on model result 500 simulations were performed for Hoshangabad 

gauging station.  

3.5.1 Parameters 

Global Sensitivity Analysis is used to determine the sensitivity of the parameters utilised in the 

calibration operation in SWAT model. To determine the parameters' sensitivity, a multiple 

regression system is used to regress Latin hypercube generated parameters against the objective 
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function. P-value and t-stat were utilised as statistical metrics. A t-stat is the ratio of a 

parameter's coefficient to its standard error. It's a scale that indicates how accurate the 

regression coefficient is measured. As a result, the parameter is sensitive when the coefficient 

is greater than the standard error. A p-value is produced using the values calculated for the t-

stat for a parameter and the t-distribution student's table, where a greater value indicates less 

parameter sensitivity and vice versa. (Abbaspouri 2015). 

In this study total 14 parameters were selected on basis of sensitivity analysis and literature 

review (Jayanthi & Keesara,2019; Mishra & Lilhare, 2016; Pandeyetal., 2019; Rickardsetal., 

2020) shown in table 3.4. 

Table 3.4: Maximum, minimum and best fitted values of parameters 

 

 

3.5.2 SWAT Model Performance 

The SWAT model performance in this study is determined using the Nash–Sutcliffe Efficiency 

(NSE), coefficient of determination (R2), and percent bias (PBIAS) as shown below in table 

3.5 (Nash and Sutcliffe 1970; Gupta et al. 2009). For flow simulation model performance is 

considered very good if 0.75<NSE<1 and 0.75<R2<1 (D.N. Moriasietal.,2007). 

 

https://link.springer.com/article/10.1007/s40808-021-01145-0#ref-CR3
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Table 3.5: SWAT Model performance parameters 

 

where Xi is the observed data, Yi is the simulated data, Yav is mean of simulated data and Xav is 

the mean of observed data, i is the ith measured or simulated data.  

 

3.6 Selection of climate models and Bias correction 

Assessment of the impact of climate change on the hydrologic response of the study area, 

involves subjecting the calibrated SWAT model of the study area to synthetic climatic data 

predicted by downscaled climate models. Therefore, selection of appropriate climate models 

marks an important step in the assessment.  

For the present study, six GCMs were evaluated for the study area. IITM-Regcm4 RCM has 

data available for six GCM. In this study, top three climate models among six, NOAA-GFDL-

ESM2, CNRM-CM5 and CCCma-CanESM2, having the highest R2 and Nash and Sutcliffe 

efficiency coefficient (NSE) with observed temperature and precipitation for the historical 

period, most accurately representing the study area were chosen for future simulation in 

SWAT. The performance criteria of the GCMs is shown in table 3.6 

Table 3.6: Performance evaluation of climate model data 
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3.6.1 Bias Correction 

Temperature and precipitation simulations from climate models often exhibit significant biases 

due to systemic model errors, limiting the usage of data as direct input for hydrological models. 

On a daily time, step, bias correction procedures are used to reduce the difference between 

observable and simulated climate variables (Teutschbein & Seibert, 2012). In this study, 

CMhyd (Climate Model data for hydrologic modelling) tool is used to bias correct RCM data 

(Rathjens et al., 2016). This tool has different methods embedded in it to perform bias 

correction. Among them, distribution mapping is found better in studies as compared to other 

methods for removing biases for both temperature and precipitation (Teutschbein & Seibert, 

2012). Moreover, distribution mapping has performed well in different studies (Jayanthi & 

Keesara, 2019; Pandey et al., 2019; Smitha et al., 2018). CMhyd tool interface is shown in 

figure 3.17 

 

Figure 3.17:  CMhyd tool interface 
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The basic idea behind distribution mapping is to create a transform function to conform the 

distribution function of raw environment variables (RCM data) to the observed distribution 

function of observed data (Tarekegn et al., 2021; Teutschbein & Seibert, 2012). In this study, 

thirty-year simulated historical data of climate model (1975-2005) was overlapped with IMD 

observed data of the same period for evaluating biases and creating transform function. CMhyd 

tool perform this task and apply same transform function to correct historical and future 

simulations of RCM. For evaluating bias-corrected model performance, NSE and R2 have been 

used in this study.  

In the present study, the R2 and NSE for maximum temperature ranges from 0.81 to 0.6 and 

0.79 to 0.83 respectively. For minimum temperature R2 ranges from 0.88 to 0.90 and NSE 

from 0.89 to 0.92. This signifies that monthly maximum and minimum temperature has very 

good correlation with IMD data for all six-climate models. However, the precipitation does not 

correlate that well. It varies from 0.33 to 0.58 for R2 and NSE from 0.30 to 0.49. Out of three 

selected models, the performance of NOAA-GFDL-ESM2 and CNRM-CM5 is satisfactory for 

precipitation and for CCCma-CanESM2 is low compared to these two. In previous studies, it 

is also seen that regardless of GCM/RCM selection, most of the models fails to capture the 

observed trend of precipitation for the historical period (Mishra & Lilhare, 2016). 

The whole process of the selection of climate and simulation can be summarised as; 

1. Find the existing anomalies between historical observed data and modelled data (CMIP5). 

2. Do the bias correction using CMhyd tool to minimise the anomalies for all the selected 

models. 

3. Select the model showing the best fit or minimum anomalies. 

4. Do the future projections based on this model using Representative Concentration Pathways 

(RCP4.5) scenario. 

3.6.2 RCPs Scenarios (RCP8.5 and RCP4.5)  

Both RCP8.5 and RCP4.5's anticipated increases in climate variable (precipitation) were 

compared to the baseline (observed) and climatic dataset (precipitation). Following that, the 

bias-corrected dataset was used as an input into a hydrological model to forecast probable daily 

stream flows in the Upper Narmada River watershed for the RCP8.5 and RCP4.5 scenarios. 
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CHAPTER 4 

RESULT AND DISCUSSION 

4.1 Calibration and Validation of SWAT model 

The SWAT model calibration was performed on a monthly basis in SWAT - CUP. 

Hoshangabad station of Narmada watershed has continuous discharge data available till 2015. 

So whole period was divided into calibration (1988-2007) and validation period (2008-2015). 

An initial model was set up from 1985 to 2015. The first three years (1985-1987) were 

considered as a warm-up year. Table 3.7 shows the outcome of the calibration and validation 

process. Fig.4.1 shows correlation between observed and simulated flow and fig.4.2 represents 

the relation graphically.  

During calibration (1988-2007) R2 value for streamflow is 0.82 and NSE is 0.78. For validation 

(2008-2015) R2 and NSE obtained are 0.79 and 0.76 respectively. This shows very good 

performance of SWAT model. For flow simulation model performance is considered very good 

if 0.75 < NSE <1 and 0.75 < R2 < 1. Thus, calibrated model can be used for future climate 

change impact studies. 

Table 3.7: Evaluation of SWAT Model Performance 

Station Calibration Validation 

 

Hoshangabad 

R2 NSE R2 NSE 

0.82 0.78 0.79 0.76 

 

 

(a) 
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Figure 4.1: Correlation between monthly observed and simulated streamflow of Narmada 

River in (a) calibration (1988-2007) and (b) validation (2008-2015) 

 

 

Figure 4.2: Graphical representation of observed streamflow with SWAT simulated 

streamflow for calibration (1988-2007) and validation (2008-2015) period 

 

4.2 Projected change in precipitation and temperature  

Upper Narmada Basin receives rainfall only in summer monsoon (June to Sept) (Figure 4.4), 

which is also the case for other watersheds in the Narmada basin. Changes in the future period 

(b) 
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(2025-2052) rainfall and temperature were calculated relative to baseline (1988-2015) data. 

Analysis indicates a decrement in average annual rainfall of watershed in both RCP scenarios 

for all climate models (Figure 4.3). The decrease in rainfall is more significant in RCP 4.5 than 

8.5. The percent change in average annual rainfall is shown in figure 6.3 for both RCP 

scenarios. Under RCP 4.5 scenario, NOAA-GFDL-ESM2 shows highest decrement of 58.83%, 

followed by CCCMA-CanESM2 (43.69%) and CNRM - CM5 (31.58%). In RCP 8.5 scenario, 

decrement ranges from 22.67% to 44.52%. CCCMA-CanESM2 shows highest decrement of 

37.64%, followed by NOAA-GFDL-ESM2 (29.59%) and CNRM-CM5 (24.83%).  

NOAA-GFDL-ESM2 in RCP 8.5 scenario shows a significant increase in precipitation for 

summer (Jan to May) and winter months (Oct to Dec) compared to other models and baseline 

data (Figure 4.4). In summer, the precipitation increased by 63.5% and 48% in winter compared 

to the baseline.  
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Figure 4.3: Average annual rainfall comparison with baseline rainfall for Narmada watershed 

for (a)RCP 4.5 (b) RCP 8.5 
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Figure 4.4: Average monthly rainfall comparison with baseline rainfall for Upper Narmada 

Basin for (a)RCP 4.5 (b) RCP 8.5 

The average annual temperature for both scenarios show an increment in future across all 

models (Figure 4.5 and 4.7). In their annual cycle, both maximum and minimum temperatures 

have two maxima (Figure 4.6 and 4.8). In maximum temperature, first peak was observed in 

the month of May where the temperature reaches around 40˚C, before arrival of monsoon and 

the secondary peak is observed in October, after monsoon has passed. Under RCP 4.5, highest 

increase in maximum temperature is predicted by NOAA-GFDL-ESM2 of +1.31˚C while 

under RCP 8.5 CCCMA-CanESM2 shows highest increase in maximum temperature of 

+1.62˚C. CCCMA – CanESM2 and CNRM- CM5 shows + 0.92˚C and +0.53˚C increase under 

RCP 4.5. Under RCP 8.5 NOAA-GFDL-ESM2 and CNRM-CM5 shows increment of +1.41˚C 

and +0.82˚C (Figure 4.7) 

For minimum temperature both scenario shows increasing trend. RCP 8.5 shows more 

increment in minimum temperature than RCP4.5. For RCP 4.5 increase in minimum 

temperature ranges from +0.73 ˚C to +1.62 ˚C. CCMA-CanESM2, CNRM-CM5 and NOAA-

GFDL-ESM2 predict increment of +1.62 ˚C, +0.73 ˚C and +1.16 ˚C. Under RCP 8.5 increase 

in minimum temperature for CCCMA-CanESM2, CNRM – CM5 and NOAA-GFDL-ESM2 

are +1.86 ˚C, +1.24 ˚C and 0.73 ˚C (Figure 4.7). 
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Figure 4.5: Change in average annual (a) maximum and (b) minimum temperature as 

compared to baseline period for RCP 4.5 
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Figure 4.6:  Average monthly (a) maximum temperature and (b) minimum temperature 

variation for RCP 4.5 
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Figure 4.7: Change in Average annual (a)maximum and (b)minimum temperature as 

compared to baseline period for RCP8.5 scenario 
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Figure 4.8: Average monthly (a) maximum temperature variation (b) minimum temperature 

variation for RCP 8.5 scenario 

 

4.3 Impact on water balance component  

The calibrated hydrological model was run for baseline period (1988-2015) with IMD observed 

data and then for future period (2025-52) using climate model data to analyse how streamflow 
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is impacted by climate variables. The average annual values of different water balance 

components (precipitation, surface runoff, water yield and evapotranspiration) of baseline and 

future period is shown in table 3.8. A wide range of rainfall is projected by climate models. All 

the models show a decrease in precipitation (PRECIP) for future period (table 6). It has resulted 

in a decrease of surface runoff (SURQ) and water yield (WYLD) (table6). WYLD is the net 

amount of water contributing to streamflow (surface runoff + lateral flow + groundwater 

contribution to streamflow – transmission loss). It is one of the critical components that must 

be estimated in order to ensure the long-term management of the investigated area’s water 

resources (Adeogun et al., 2014). For the baseline period, the watershed has annual average 

precipitation (PRECIP) of 1247.20 mm. The average monthly precipitation is shown in 

figure.6.4. Evapotranspiration (ET) is a significant cause of loss of water in watershed. SURQ 

remains the primary source of streamflow during baseline and for future period. 

 

Table 3.8: Average annual water balance component of Upper Narmada River Basin 

Model Scenario PRECIP 

(mm/year) 

SURQ 

(mm/year) 

WYLD 

(mm/year) 

E.T. 

(mm/year) 

Baseline 1480 524.92 769.25 625.2 

 

CCCMA- 

CanESM2 

RCP 4.5 

RCP8.5 

734.4 

802.9 

294.27 

204.76 

352.45 

403. 

465.7 

549.1 

NOAA-

GFDL-

ESM2 

RCP4.5 

RCP8.5 

417 

862.8 

159.2 

125.4 

237.47 

294.25 

338.8 

693.3 

CNRM-CM5 RCP 4.5 

RCP 8.5 

894.2 

981.9 

365.22 

421.97 

451.56 

552.36 

602.5 

512 

 

Under RCP 4.5, future and baseline period minimum ET was observed in May. In RCP 8.5 

also all model except NOAA shows lowest ET in May. The peak of ET was observed in 

September month for the baseline period. For future scenarios it varies from July to September 

for different models. ET begins to build up in the basin when the temperature rises in March 

or April. As peak approaches in May month, the soil becomes too dry to do evaporation, thus 
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all models ET output reach a minimum. Whereas under RCP8.5 NOAA-GFDL-ESM2 shows 

increase in rainfall in summer (Jan to May) and winter month (oct to dec) as compared to other 

model simulation. Thus, providing more water for ET. Average monthly rainfall analysis shows 

it receives the lowest rainfall in the month of Feb (15.32 mm/year), resulting in low water 

availability causing minimum ET in Feb.  

SURQ and WYLD peak for baseline was observed in August month. They both follow similar 

trend as expected. As monsoon, arrive in June SURQ and WYLD start in June reaching their 

maximum value in August.  

Under RCP 4.5 NOAA-GFDL-ESM2 predicts the lowest precipitation. Thus, having low 

availability of water to contribute as streamflow. Under RCP 8.5, its precipitation increases 

significantly but it has an overall maximum ET of 693.3 mm/year resulting in low water for 

WYLD and SURQ. ET is dominating in this case resulting in almost no significant difference 

in WYLD between both scenarios. Thus, NOAA-GFDL-ESM2 under both scenario shows the 

lowest value for Average annual SURQ and WYLD.  

 

4.4 Impact on streamflow  

The calibrated SWAT model was further used to estimate streamflow for a future period (2025-

2052). Figure 4.9 shows the average monthly streamflow comparison of baseline (1988 – 2015) 

with the future period under each scenario RCP4.5 and RCP 8.5. As Narmada watershed 

receives rainfall during the monsoon season (June to Sept), these months are major contributors 

to streamflow. The simulation of streamflow from all three models shows a reduction as 

compared to baseline. This decrease was reasonably expected as precipitation is decreasing in 

the study area for future scenarios.  

CCCMA-CanESM2 shows a decrease of 48.4% in average annual streamflow for RCP 4.5. In 

comparison, RCP 8.5 shows a decrease of 43 % (Figure 4.10) as compared to baseline (Figure 

4.11). For RCP 4.5 the average monthly streamflow study shows a shift in the peak of 

streamflow from month of august to July with peak value of 65m3/s (Figure 4.9). For the 

baseline, peak was observed in August month having a value of 202 m3/s. This shift of peak is 

due to significant increase in precipitation in July month than August. As ET remains same 

during these months, for RCP 4.5 scenarios precipitation was dominating factor. In 

comparison, RCP 8.5 shows approx. peak of 59 m3/s in July and 55 m3/sec in August. 
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Although under RCP 8.5 scenario, month of August receives more rainfall, ET was also 

maximum result in lowering august peak. For RCP 8.5, in September, streamflow remains more 

than the RCP 4.5 as more precipitation occur in month of September for RCP 8.5 scenario as 

compared to RCP 4.5 (figure6.10).  

CNRM-CM5 shows a decrease of 41 % and 32% in average annual streamflow value in 

RCP4.5 and 8.5 (Figure 4.10 and 4.11). In this case, for both RCP scenarios peak is observed 

in August same as baseline period. RCP 4.5 shows a peak value of 78.3 m3/sec and for RCP 

8.5 peak value is 132 m3/sec (Figure 4.9).  

NOAA-GFDL-ESM2 shows a decrease of 56 % in average annual streamflow value under 

RCP4.5 and a decrease of 58.34 % under 8.5 scenarios (Figure 4.10 and 4.11)). A shift of peak 

for streamflow was observed from August to July for RCP 4.5. This shift is due to more 

precipitation in July month (184 mm) than in august (101.6mm). The ET values of 63 mm in 

July and 59 mm in August show no significant difference, so rainfall remains critical. Under 

RCP4.5 July peak has value of 51 m3/s whereas for RCP 8.5 peak remains in August month 

with a value of 39.4m3/sec. 
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Figure 4.9: Average monthly streamflow at outlet of Upper Narmada Basin for (a) CCCMA- 

CanESM2 (b) CNRM – CM5 (c) NOAA-GFDL-ESM2 
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Figure 4.10: Comparison of average annual streamflow with baseline streamflow for RCP 

4.5 scenario 

 

Figure 4.11: Comparison of average annual streamflow with baseline streamflow for RCP 

8.5 scenario 

4.5 DISCUSSIONS  

The results show climate change in future is going to adversely impact SURQ, WYLD and 

hence streamflow. The baseline results of ET, SURQ and WYLD complement with previous 

study done for another watershed in Narmada River basin (Goswami & Kar, 2017). The 

decrease in future SURQ, WYLD and streamflow is due to decrease in rainfall predicted and 
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increase in temperature. The shift in peaks of streamflow in future is due to change in rainfall 

pattern. The decreasing streamflow and precipitation are documented for other regions of India 

such as Phakal lake in basin of Krishna River (Jayanthi & Keesara, 2019) and Brahmani River 

in Odisha (Islam et al., 2012). The identical seasonality of precipitation and streamflow 

indicates a water-limited system in which flow conditions are tightly connected to the 

precipitation regime, as is common in most water-limited systems (Pumo et al., 2016).  

Although this study tries to compensate various uncertainty in climate models and hydrological 

model, there are certain limitations. Future assessment of different water balance component 

and streamflow is done using constant LULC map. The result will be impacted by future 

irrigation schemes and other land use pattern changes in the study area. 

 

4.2.1 Streamflow is observed to be sensitive to changes in rainfall patterns 

The results from the reviewed literature revealed that for most of the study areas, it was 

observed that streamflow changes were more influenced rainfall variations than the changes 

determined by the expected increase in temperatures. For example, in Yellow River Basin, 

China, for example, the projected precipitation observed a general increase under all three 

applied climate change scenarios and the results of the study showed an increasing streamflow 

for the future periods under. Hence, it was analysed from the reviewed literature that the 

combination of climatic scenarios of variations in both temperature and rainfall leads to slight 

or no prominent variations of surface runoff or streamflow as compared to independent 

forecasted rainfall scenario. Thus, the results from the reviewed literature highlighted those 

changes in rainfall regime produces more significant changes in streamflow patterns as 

compared to the modification of temperature regime. 

4.2.2 Evaluation of alternative climate products and various approaches 

Evaluation of future streamflow under changing climate scenarios requires certain tools such 

as hydrological models, outputs from climate models, methods for downscaling and bias 

correction. Different combinations of RCP scenarios and Global climate Models can be used 

to obtain results of the studies. This variation in different tools and approaches has led to 

significant variations in projected streamflow results irrespective of the catchment size and 

characteristics, topographic features, changes in land use pattern, and human activities as 

noticed in the reviewed studies. In order to reduce uncertainty and obtain accurate results, many 
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studies in the reviewed literature multiple climate models and bias correction method. The 

GCM model outputs are able to simulate complex climate aspects and are tested against 

historical observations and hence are commonly used by researchers. 

Different versions of hydrological models, climatic parameters, structural differences in 

applied models, different baseline conditions and downscaling methodologies are all sources 

of uncertainty in climate change studies. The uncertainties linked with climate model 

predictions also leads to variation in streamflow projections. The socioeconomic and 

technological factors are uncertain variables which further impacts the GHGs emission rates, 

leading to ambiguous results in hydrological predictions. These uncertainties led to the 

application of an uncountable number of methodological frameworks. The most efficient 

methodology is difficult to recognise due to insufficient evidence because the same rivers 

showed different trend projections depending on the methodology used. 

Various international efforts, such as the International Precipitation Working Group (IPWG) 

(Maggioni et al., 2016) and the Climate Data Guide (Schneider et al., 2013), have been 

launched to continuously improve open-source climate data for operational and scientific use 

in order to establish certain standards for intercomparison and validation of results data 

used.Although the assessment and evaluation of alternative climate products applied in SWAT 

modelling has increased dramatically in recent times, yet a framework of validation of 

commonly accepted data sources and statistical approaches is still missing. Presence of uniform 

statistical metrics is still lacking across studies. Therefore, identification of the most prevailing 

subset climate products on global and regional scale is critical among researchers and scientific 

communities. This in turn would lead to suitable application and use of climate datasets as well 

as ensure consistent comparisons between studies, allowing for continued improvement of data 

sources and more consistent results. This method could also be beneficial in improving and 

standardising data sets of downscaled and bias corrected general circulation models (GCMs) 

or regional climate models (RCMs). 
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CHAPTER 5 

Conclusion and Recommendations 

5.1  Conclusion 

Variations in hydrological regimes due to changing climate is one of the key issues that 

integrated water resource management faces. Accurate forecasting of future streamflow under 

climate change is critical given the world's dynamic and changing weather conditions, as well 

as the importance of rivers. As evident from the published literature, the application of SWAT 

has grown rapidly in the recent years. Because of its application in a wide range of processes 

linked to water quality, hydrological balance and erosion factors, the SWAT model is one of 

the most extensively used models for environmental studies.   

This study analyses the impact of climate change on streamflow in the Upper Narmada River 

Basin using the hydrological model SWAT. The study incorporated various analysis that dealt 

with trends of weather data and simulation of existing data to assess the possible outcomes in 

the near future. The scenarios of IPCC (CMIP5) have been incorporated for the simulation and 

each of the simulation result witnesses the existence of a considerable decrease in the 

streamflow of the river basin. 

Following are the conclusions drawn from the study: 

[a] The SWAT model worked well for the Upper Narmada River Basin. The calibration and 

validation of the model resulted in R2 values of 0.82, 0.78, and NSE values of 0.79 and 0.76, 

emphasising a very good SWAT model performance.  

[b] The study revealed that NOAA-GFDL-ESM2, CNRM-CM5 and CCMA-CanESM2 climate 

model selected for the study performed better than other downscaled GCM under IITM-

Regcm4 for Upper Narmada region. Also,  

[c] Minimum and maximum temperature is projected to increase across all scenario in future. 

Increase in minimum temperature is more than maximum temperature. RCP 8.5 increase in 

minimum temperature is more significant. The maximum temperature ranges from +0.53 ˚C to 

+1.31 ˚C. for RCP 4.5. Under RCP 8.5 it varies from +0.8 ˚C to +1.1 ˚C. For minimum 

temperature increment varies from +0.82 ˚C to +1.62 ˚C under RCP 4.5 whereas under RCP 

8.5 it varies from +1 to +1.55˚C.  

[d] The hydrology of the Upper Narmada River basin is mostly determined by rainfall. The 

results from the models projected a decrease in precipitation for future scenarios (2025-2052) 
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in the study area. As a result of which the basin is going to be stressed for water availability in 

future.  

[e] NOAA-GFDL-ESM2 resulted in the highest decrement in streamflow by 58.34% as under 

RCP 8.5 scenarios. Under RCP 8.5 for NOAA-GFDL-ESM2, evapotranspiration become key 

factor resulting in large decrease of total water yield and hence streamflow.  

The results of analysis clearly show the evidence of climate change impact on hydrological 

regime of the river basin making it more vulnerable towards global warming. The results of the 

current study could potentially provide useful information to take decision on the trends of 

streamflow changes in the concerned area and hence mitigate and manage the impacts of 

changing climate in the near future. 

 

5.2 Recommendations 

(a) Future studies could focus on accurate calibration and verification of spatial parameters 

in SWAT modelling thereby reducing uncertainty in the calibration of model 

parameters.  

(b) In the future, more applications should include the following aspects: (1) hydro-

meteorological analysis—including extreme events analysis, useful for flood and 

drought management practices; (2) uncertainty analysis for input data—for assessment 

of sensitivity of several input data, such as remote sensing data, on SWAT outputs in 

order to select the most appropriate datasets. 

(c) For regions lacking in availability of ground-based climate observations mainly 

precipitation data, satellite data such as gridded precipitation data can offer as a useful 

source of input for SWAT model. In addition, to obtain more accurate precipitation 

inputs for SWAT modelling, combining global, satellite, and observed precipitation 

data may provide desirable results. 

(d) Future research in impact assessment of climate change using SWAT model in the 

mountainous areas should focus on identifying reliable alternate data sources for SWAT 

modelling in these data scarce regions. 
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