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Abstract
The thesis presents a numerical approach to solving second-order ordinary differential equation

boundary value problems with singularly perturbed convection diffusion, where a small parameter is
multiplied by the largest derivative ϵ with Dirichlet’s boundary conditions. In order to solve these dif-
ferential equation we use the upwind finite difference method including uniform mesh and the piecewise-
uniform mesh introduced by Ivanovich Shishkin. The convergence between the analytic solution and
the solution obtained from the numerical approach of the simple Convection Diffusion Problem are
provided. Also we analyze this problem with delay and advance parameters. This paper presents the
numerical outcomes displayed as tables and graphs, showing that our suggested approach provides a
very accurate approximation of the exact solution.

Keywords: singularly perturbed, convection diffusion equation, shishkin mesh, Dirichlet boundary
condition, numerical scheme, delay and advance
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Chapter 1

Introduction

1.1 Perturbation Theory

Differential equations are frequently in mathematically modelling and illustrate various physical process
in science and engineering. Considering a mathematical model that describes a physical system. In
many cases, finding a exact analytical solution to these equations are not possible, especially when
the equations involves small parameters or the complicated boundary conditions. Perturbation theory
provides a methodology to approximate solution to these equation by breaking the problem into smaller
parts. By introducing a small parameter that reflects a deviation from a known solution to a similar
problem, which is typically referred to as unperturbed problem.

Perturbation parameter is the study of effect of small disturbances in mathematical model of phys-
ical process and these small parameters are known as perturbation parameter. Retaining the small
parameters results in difficulties that we refer to as perturbed parameter, while simplifying degraded
problems to become unperturbed or reduced problems.

The perturbation problems are categorized into two

1. Regular perturbation problems
Perturbation problems, denoted as Lϵ, are the differential equations in which ϵ is a small perturba-
tion parameter multiplied by the highest-order derivative term.If Lϵ has a solution that uniformly
converges to the reduced problem L0 (that is formed by arranging ϵ to zero in the perturba-
tion problem) as ϵ approaches zero, then the perturbation problem Lϵ is referred to as regularly
perturbed.

2. Singular perturbation problems

When some or all of the terms involving the highest-order derivatives multiplied by a small parameter
ϵ, the differential equation are known as a singularly perturbed differential equation (SPDE). The
mathematical characteristics of the solution to an (SPDE) often reflect physical phenomena, including
the presence of boundary layer functions.

1



1.2. DELAY AND ADVANCED DIFFERENTIAL EQUATION CHAPTER 1. INTRODUCTION

Lϵ = −ϵu′′(x) + b(x)u′(x) + c(x)u(x) = j(x)for x ∈ (0, 1), u(0) = u(1) = 0, 0 < ϵ (1.1)

Convection-diffusion problems occur when c(x)= 0, while reaction-diffusion problems occur when
b = 0 and c ̸= 0. As ϵ approaches to zero, the solution of the (3) and it’s derivative will approaches
to a discontinuous limit.The characteristic that divides such problems is that the solution has distinct
asymptotic expansions in distinct subdomains within the given domain. They represent layers in which
there are sudden changes in the solution. It is possible to solve some second-order boundary value
problems using the The finite-difference technique’s classical convergence theory is based on the compli-
mentary concepts of consistency and stability. This method involves difference quotient approximations
for derivatives. Now, we consider a simple model problem of [11]convection diffusion type with dirichlet
condition,

Lϵ = −ϵu′′(x) + b(x)u′(x) = j(x) (1.2)

where both j(x) and u(x) are the smooth functions and b(x) ≥ β > 0.

When a boundary value problem is solved, it shows boundary layer behavior if the condition b(x) +
c(x) < 0 is satisfied. For delay and advance problems, to understand the behavior of the solution in
boundary layers, we first applythe uniform mesh [3]standard upwind finite difference operator. Since
an ϵ-uniform mesh often performs poorly in the boundary layer region, we utilize a Shishkin mesh,
introduced by Russian mathematician Grigorii Ivanovich Shishkin in 1988. This piecewise uniform
mesh is particularly effective for studying boundary layer behavior. To simplify parameters related to
delay and advance, which are of order O(ϵ), we employ Taylor series expansion.

In this study, we examine a model problem of the convection-diffusion type that includes delay pa-
rameters.

1.2 Delay and Advanced Differential Equation

[3]In science and engineering, numerous mathematical models (such those used in control theory, epi-
demiology, and laser optics) take into account a system’s past as well as its present condition. Functional
differential equations called delay differential equations (DDEs) characterise these models. Delays are
frequently used in the biological sciences to take into consideration unobserved factors or procedures
that result in time lags. DDEs are essential in various fields, providing realistic simulations of observed
phenomena.

Initially, DDEs were used in technical fields like control circuits, where delays were measurable
physical quantities. Today, they are widely used in biosciences and control theory, including ecology,
epidemiology, and neural networks. Hutchinson was one of the pioneers in using delays in biological
models, modifying the Verhulst model to include time delays in biological processes.

2



1.3. NUMERICAL APPROACH CHAPTER 1. INTRODUCTION

DDE models are preferred over ordinary differential equations (ODEs) because they better reflect
the nature of underlying processes and provide richer mathematical frameworks. Unlike ODEs, which
assume instantaneous reactions to current conditions, DDEs account for after-effects. Ignoring delays
in favor of ODEs can lead to significant inaccuracies, as small delays can have substantial impacts on
system dynamics. This is particularly evident in applications like the chemostat, where using ODEs
implies instantaneous changes, ignoring the inherent delays in nutrient supply and microbial growth.

1.3 Numerical Approach

1.3.1 Numerical Approach for Singularly Perturbation Problems

The solutions to singularly perturbed differential equation’s often display boundary layer behavior, a
concept from physics describing regions where the solution changes rapidly. Outside these regions, the
solution changes slowly, highlighting a "two-time-scale" property. This dual behavior makes approxi-
mating solutions challenging due to the existence of both "slow" and "fast" incidents, which renders
the problem stiff. To tackle these problems, methods are categorized into numerical and asymptotic
approaches. The numerical approach provides detailed quantitative information about specific prob-
lems, while the asymptotic approach offers qualitative insights and semi-quantitative data for a family
of problems.

The numerical solution of differential equations with singular perturbations has seen significant
research progress, summarized in two notable survey papers. Kadalbajoo and Reddy reviewed numerical
methods from 1968 to 1984, and Kadalbajoo and Patidar extended this review up to 1999. Since then,
several studies have contributed to this field.

For instance, Farrell et al. explored fitted finite difference methods on uniform meshes for semilinear
boundary value problems[2], proving the limitations of such schemes for ϵ-uniform convergence. Other
researchers have developed various schemes to address different aspects of singularly perturbed prob-
lems. Methods like nonstandard upwinded difference schemes, finite element discretization, and spline
approaches have been proposed and analyzed for their effectiveness and convergence properties.

Numerical techniques have been adapted to specific types of boundary value problems, such as
Reaction -Diffusion and Convection -Diffusion problems[2]. Researchers like Kopteva, Stynes, and others
have focused on methods that ensure uniform convergence with relation to the perturbation parameter,
often using specialized meshes like Shishkin-type meshes.

In conclusion, the field has advanced through a combination of theoretical analysis and practical
numerical experiments, providing robust techniques to solve differential equations that are singularly
disturbed with high accuracy and convergence properties.

3



1.3. NUMERICAL APPROACH CHAPTER 1. INTRODUCTION

1.3.2 Numerical Approach for Singularly Perturbation Differential equa-
tions With both Delay and Advance

This thesis delves into a specific category of differential equation problems where the primary focus lies
on equations where a small parameter scales the highest order derivative, denoted as ϵ. While there’sa
rising interest in the numerical investigation of these issues because of its applicability in many other
domains, including optimal control theory and neurobiology, and physiological modeling, literature on
singularly perturbed differential difference equations is limited.

Previous studies on these equations mainly emphasized the existence and uniqueness of problem
to the solutions, neglecting the development of approximate solutions. [4]Boundary Value Problems
(BVPs) to singularly perturbed differential difference equations were first explored in 1982 by Lange
and Miura, who employed asymptotic techniques to approximate solutions[4]. Their work primarily
focused on linear second-order equations with shifts of both positive and negative types, discussing
phenomena like turning points, resonance, and boundary layers.

In 1992, Voulov et al. studied the asymptotic stability of homogeneous systems with unbounded
delay under singular perturbation. Further research by Lange and Miura examined BVPs for linear
second-order equations with fixed-type shifts, extending techniques from classical perturbed ordinary
differential equations.

In 2002, a numerical investigation of Problems with boundary values for differential equations of
second order with small changes and unique perturbations was initiated. This study focused on boundary
layer behavior and employed finite difference methods for numerical solutions, assessing stability and
convergence. Numerical experiments were conducted to illustrate the influence of shifts on boundary
layer behavior.

4



Chapter 2

Problem Description

2.1 Description of Problem

Let’s consider a non-homogeneous boundary value problem involving convection-diffusion, with minor
delays and advances.

ϵu′′(x) + b(x)u′(x− δ) + c(x)u(x+ η) = j(x), (2.1)

on σ = (0, 1) to boundary conditions,

u(x) = b(x) on − δ ≤ x ≤ 0 (2.2)

u(x) = ϕ(x) on 1 ≤ x ≤ (1 + η) (2.3)

Consider the convection-diffusion equation with a small perturbation parameter 0 < ϵ ≪ 1, with
delay and advance parameters δ and η, b(x) and f(x) are presumed to be sufficiently smooth functions.
For the function u(x) to be smooth, it must satisfy continuity on the interval σ = [0, 1] to be differentiably
continuous on σ = (0, 1). The behavior of the solution to exhibits layer behavior depending upon the
sign of b(x) + c(x) + d(x), where c(x) and d(x) are additional terms.

Let’s now simplify by considering a basic Convection-Diffusion Problem[2].

Lϵ = −ϵu”(x) + b(x)u′(x) = j(x) (2.4)

Consider the convection-diffusion equation with a perturbation parameter which is small 0 < ϵ ≪ 1

and b(x) ≥ β ≥ 0. Again by taking b(x) and f(x) which are assumed to be sufficiently smooth
functions. For the function u(x) to be smooth, it must satisfy continuity on the interval σ = [0, 1]

and be continuously differentiable on σ = (0, 1). The solution exhibits boundary layer behavior if the
condition b(x) + c(x) + d(x) < 0 is satisfied.

To analyze the equation’s behavior in boundary layers, both standard upwind finite difference oper-
ator and ϵ-uniform mesh are initially employed. However, the ϵ-uniform mesh typically performs poorly
in boundary layer regions. Therefore, the Shishkin mesh, introduced by Grigorii Ivanovich Shishkin

5
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in 1988, is used. This piecewise uniform mesh helps examine boundary layer behavior effectively. To
expedite the analysis for parameters of O(ϵ), Taylor series expansion is utilized. Analytical results will
investigate the stability, bounds, and convergence of the problem when small delays and advances are
applied.

2.2 Analytical Results

Let’s consider a model problem of convection-diffusion type that includes both delay as well as advance
parameters. We use the Taylor’s series expansion to analyse the boundary value issue (2) since it is
expected to have a sufficiently differentiable solution.

u′(x− δ) ≈ u′(x)− δu′′(x) (2.5)

by placing equation (6) in (1) and (2), we obtain,

Lϵ = (ϵ− δb(x))u′′(x) + b(x)u′(x) = j(x) (2.6)

u(0) = ϕ0, ϕ0 = ϕ(0), u(1) = α (2.7)

The differential operator for problems (2.6) (2.7) above is denoted by Lϵ. It is defined for any
function Π ∈ C2([0, 1])as

LϵΠ(x) = −(ϵ− δb(x))Π′′(x) + b(x)Π′(x) (2.8)

Minimum Principle. If Π(0) ≥ 0 and Π(1) ≥ 0, then LϵΠ(x) ≥ 0 ∀ x ∈ σ = [0, 1],in which Π is a
smooth function.

Proof
Given that x∗ ∈ [0, 1], Letbe such that π(x∗) = minx∈[0,1]ψ, and let Π(x∗) < 0 be taken into considera-
tion. Given that x∗ /∈ {0, 1}, π′(x∗) = 0andπ”(x∗) ≥ 0 have been established.
Now consider

Lϵπ(x) = −(ϵ− δb(x))π′′(x) + b(x)Π′(x) > 0, (2.9)

This leads to an contradiction. Therefore, that follows π′′(x∗) ≥ 0 and π(x) ≥ 0 for all x ∈ σ.

Lemma-1

6
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Assume u(x) denote the solution to the problem (2.6), (2.7).

∥u∥ ≤ θ−1∥f∥+max (|ϕ0|, |γ|)

Proof: Let us define the two Barrier Functions Π±, now

Π±(x) = ω−1∥j∥+max(|ϕ0|, |α|)± u(x) (2.10)

for (x = 0) and since u(0) = ϕ0,We observe:

Π±(0) = ω−1∥j∥+max(|ϕ0|, |α|)± u(0) (2.11)

= ω−1∥j∥+max(|ϕ0|, |α|)± ϕ0 (2.12)

≥ 0 (2.13)

Now, for x = 1andsinceu(1) = α

Π±(1) = ω−1∥j∥+max(|ϕ0|, |α|)± u(1) = ω−1∥j∥+max(|ϕ0|, |α|)± α ≥ 0

and we get
[3]

LεΠ
±(x) = −(ε− δb(x)) (Π±(x))

′′
+ b(x) (Π±(x))

′

= 0(ω−1∥j∥+max(|ϕ0|, |α|))± Lϵu(x)

= 0(ω−1∥j∥+max(|ϕ0|, |α|))± j(x)

Since −ω ≥ 0, we can conclude that 0(−ω) ≤ −1. Utilizing this in the previous inequality, we
deduce that Lϵπ

± ≤ 0 for all x ∈ σ, given |j| ≥ j(x). Thus, from the definition of minimum principle,
we terminate that ω± ≥ 0 for all x ∈ σ, providing the necessary evaluation.

Theorem 2.1 [3]Assume u(x) to be the solution of the problem(2.6) and (2.7). Then, for k = 1, 2, 3,
we have:

∥uk∥ ≤ P (ϵ− δβ)−k

Proof
Create a neighbourhood Nx = (p, p + (ϵ − δ∥b∥)) for each x ∈ σ. p to be a positive constant that is

7
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selected in x ∈ Nx and Nx ⊂ σ. Then, a point y ∈ Nx exists such that, according to the mean value
theorem:

u′(y) =
u(p+ (ϵ− δβ))− u(p)

(ϵ− δβ)

and so
|(ϵ− δβ)u′(y)| ≤ 2∥u|

Integrating the differential equation problem (2.6) we get
(ϵ− δβ)u′(x)− (ϵ− δβ)u′(y) =

∫ x

y
(j − b(t))u′(t) dt

[10]Utilizing the fact that the maximum norm of a function is always greater than or equal to the value
of the function over the domain of consideration, and taking the modulus on both sides, we obtain:

(ϵ− δβ)|u′(x)| ≤ (ϵ− δβ)|u′(y)|+ ∥j∥|x− y|+
∫ x

y

|b(t)u′(t)| dt

here,∫ x

y
b(t)u′(t) dt = b(t)u(t)

∣∣∣∣x
y

−
∫ x

y
b′(t)u(t) dt

By using the fact that the maximum norm and taking modulus on both sides, we obtain [3]:∫ x

y

|b(t)u′(t)| dt ≤ (2∥b∥+ ∥b′∥)∥u∥

Using the inequalities 0 ≤ |x− y| ≤ 1 and Lemma 1 In the inequality above, for the bound on u, we
obtain:

|u′(x)| ≤ P (ε− δβ)−1

which implies:

∥u′∥ ≤ P (ε− δβ)−1

where P = ∥j∥ + (2 + 2∥β∥+ ∥β′∥)
(
σ−1∥j∥+max (|ϕ0| , |α|)

)
is not influenced by ε. The bounds

on u′′ and u′′′ may also be readily found [10]using the differential equation and the bounds on u′ and
u′.

Precise details regarding the behaviour of the specific solution to the problem are required to illustrate
the ϵ-uniformity with relation to the numerical technique. This is achieved by breaking down the solution
u into two parts, the singular component z and the smooth component w:

u = w + z

in which v, the smooth component, can be expressed as:

8
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w(x) = w0(x) + (ϵ− δβ)w1(x) + (ϵ− δβ)2w2(x)

and the following problems’ solutions are what these smooth components, w0, w1, and w2, are defined
as, respectively:

b(x)(w0)
′(x) + c(x)w0(x) = j(x), x ∈ σ, w0(1) = u(1)

b(x)(w1)
′(x) = − (ϵ− δb(x))(w0)

′′(x)

(ϵ− δβ)
, x ∈ σ, w1(1) = 0

Lϵw2(x) = − (ϵ− δb(x))(w1)
′′(x)

(ϵ− δβ)
, x ∈ σ, w2(0) = 0, w2(1) = 0

The component w(x) which are smooth to be obtain solution of:

Lϵ = j(x), x ∈ σ, w(0) = w0(0) + (ϵ− δβ)w1(0), w(1) = u(1)

As so, [1] z(x) singular component represents the homogenous problem’s solution:

Lϵz(x) = 0, x ∈ σ, z(0) = u(0)− w(0), z(1) = 0

Lemma 2: Bounds on w0 and its derivatives for 0 ≤ k ≤ 3 satisfy the following conditions:∥∥∥w(k)
0

∥∥∥ ≤ P

Proof The problem from the Theorem 2.1 that we have used

b(x)(w0)
′(x) + c(x)w0(x) = j(x), x ∈ σ, w0(1) = u(1)

[6]which can be written as

w′
0(t) + q(t)w0(t) = j(t)/b(t), w0(1) = α (2.14)

with q(t) = c(t)/b(t).
The equation (2.14) is a 1st-order linear differential equation in (w0). To solve this problem, we

multiply Eq.(2.14) by (exp(
∫
q(t), dt), which, upon simplification, gives[6]:(

exp

(∫
q(t)dt

)
w0

)′

= j(t) exp

(∫
q(t)dt

)
/b(t) (2.15)

9



2.2. ANALYTICAL RESULTS CHAPTER 2. PROBLEM DESCRIPTION

Now integrating the above equation from x to 1 for some x ∈ (0, 1), we get

(w0(t) exp(

∫
q(t)dt))

∣∣∣∣1
t=x

=

∫
x

1[j(t) exp(

∫
q(t)dt)/b(t)]dt, (2.16)

Let R= exp(
∫
q(t)dt)

∣∣∣∣
t=1

and T(x)= exp(
∫
q(t)d(t))

∣∣∣∣
t=x

, then on simplification equation(15) reduces to

w0(x) = αR/T (x)−
∫ 1

x

[j(t) exp(

∫
q(t)d(t))/b(t)]/T (x), (2.17)

For each t ∈ [0, 1], q(t) = c(t)/a(t) < 0 and j(t) are bounded since b(t) is smooth, that is, bounded
for all t ∈ [0, 1]. Furthermore, for each t ∈ [0, 1], we have b(t) ≥ β > 0 and b(t) ̸= 0 respectively. By
combining these facts, we can determine that the second term the right-hand side and the terms R and
T (x) are bounded, meaning that it is necessary for w0 to be bounded.

Using equation (2.14), we now have: j(x)/b(x) − q(x)v0(x) = (w0)
′(x) Since w0 is bounded, its

derivative (w0)
′ must likewise be bounded. The bounds for these two can be obtained by differentiating

equation (2.14) and applying the boundedness of w0 and (w0)
′. We have for 0 ≤ k ≤ 3:

∥(w0)
(k)∥ ≤ C (2.18)

Theorem- 2.2 [3]Suppose u(x) be the solution to the equations (2.6) and (2.7), and let u = v + z

for 0 ≤ k ≤ 3. For very small ϵ, w and z and their derivatives need to satisfy the following requirements:

∥(w)(k)∥ ≤ P (ϵ− δβ)2−k (2.19)

∥f(x)∥ ≤ P exp (−βx/(ϵ− δβ)), x ∈ σ̄ (2.20)

∥g(x)∥ ≤ C(ϵ− δβ)−k exp

(
− βx

ϵ− δβ

)
, x ∈ σ̄ (2.21)

Proof As per equation (2.18), it’s clear that w1 is the first-order linear differential equation’s solution,
and all the terms on the right-hand side are bounded over the interval [0, 1]. Consequently, the entire
right-hand side term is bounded. Using Lemma 2.2, we can infer:

∥w1∥ ≤ C ,

[10]Where P is a constant. Similarly, using the bound on v1 and equation (2.18), we obtain ∥(w1)
′∥ ≤ P .

After differentiating (18) and using w1 and (w1)
′, we can easily derive the bounds on (w1)

′′ and (w1)
′′′.

[10]The terms (w1)
′′ and (ϵ− δb(x))/(ϵ− δβ) are constrained by a constant separate from ϵ, hence

the term on the right side of equation (18) is bounded by ϵ. Thus, w2 is the solution of the problem
(2.6) with similar boundary value conditions. Hence, by Theorem 2.1, we have for 0 ≤ k ≤ 3:

∥(w2)
k∥ ≤ P (ϵ− δβ)−k (2.22)

10
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This provides the necessary estimate for the regular component w. Now, we introduce two barrier
functions Π± to determine the required bounds on the singular component z and its derivative. These
barrier functions are defined by:

Π±(x) = (|u(0)|+ |(w0)|) exp(−xβ/(ϵ− δβ))± z(x) (2.23)

Then we have
Π±(x) = (|u(0)|+ |w0|) exp(−xβ/(ϵ− δβ))± z(x) (2.24)

then we have Π± (0) = |u(0)|+ |w0(0)| ± (u(0)− w0(0)) ≥ 0

since z(0) = (u(0)− w0(0)) and

Π± (1) = (|u(0)|+ |w0(0)|) exp(−β(ϵ− δβ)−1) ≥ 0

since z(1) =0
and

LϵΠ
±(x) = (ϵ− δb(x))Π±(x) + c(x)Π±(x)

= (|u(0)|+ |v0(0)|)[β2(ϵ− δβ)−1 − b(x)β(ϵ− δβ)−1 + c(x)]. exp(−xβ(ϵ− δβ)−1)

± Lϵz(x)

≤ 0

Therefore by minimum principle, we have

Π±(x) = (|y(0)|+ |w0|) exp(−xβ/(ϵ− δβ))± z(x) ≥ 0, x ∈ σ̄

which, when simplified, yields

|z(x)| ≤ C exp(−xβ(ϵ− β)−1), x ∈ σ̄ (2.25)

where C = (|u(0)|+ |v0(0)|. Let’s find out the bounds on the derivative of the singular component z of
[1]solution u, using the technique of Theorem 2.1 construct a neighbourhood Nx = (p, p+ (ϵ− δβ)), for
some x ∈ σ̄ where p is constant and x ∈ Nx ⊂ σ, so by mean value theorem, there exists a point y∈ Nx

such that

z′(y) =
z(c+ (ϵ− δβ))− z(c)

(ϵ− δβ)
,

which implies that,
|(ϵ− δβ)z′(y)| ≤ 2∥z∥. (2.26)

11
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[1]Now we have, ∫ x

y

z”(t)dt = z′(x)− z′(y),

i.e,

z′(x) = z′(y) +

∫ x

y

z”(t)dt

Using Lϵz(x) = 0, x ∈ σ, z(0) = u(0)− w(0), z(1) = 0

from Theorem 2.1 for z"(t) in above equation, we obtain

|z′(x)| ≤ |z′(y)|+ |
∫ x

y

(ϵ− δb(t))−1(b(t)z′(t) + b(t)z(t))dt|

≤ |z′(y)|+ (ϵ− δβ)−1(|
∫ x

y

b(t)z′(t)dt|+
∫ x

y

|b(t)z(t)|dt)

≤ (ϵ− δβ)−1(|
∫ x

y

b(t)z′(t)dt|+ ∥b∥∥z∥|x− y|).

[10]Maximum norm of a function is always greater than the value of the function over the domain of
consideration and the inequality 0 < |x− y| ≤ 1 followed by

|
∫ x

y

b(t)z′(t)dt| ≤ (2∥b∥+ ∥b′∥)∥z∥ (2.27)

using these inequalities we get,

|z′(x)| ≤ P (ϵ− δβ)−1∥z

For x ∈ Nx,

∥z∥ = sup
x∈Nx

|z(x)|

≤ P exp(−β/(ϵ− δβ))

Using this we obtian

|z′(x)| ≤ P (ϵ− δβ)−1 exp(−β/(ϵ− δβ))

which gives the required result. It is simple to determine the estimate for z” using the differential
equation and the z and z′ bounds.

12



Chapter 3

The Difference Scheme

3.1 Standard Finite Difference Scheme

The scenarios where identifying an analytical solution of a problem proves challenging, the finite differ-
ence method serves as a numerical scheme to approximate the solution of the differential equation. In
this method, finite difference formulas are substituted for the derivative terms in the differential equa-
tion, providing approximations. This leads to an algebraic equation system derived from the differential
equation using these approximated finite difference formulas. This system of algebraic equations can be
represented as AU = B, where U is the set of solutions to the equations and A is a tridiagonal matrix.

When shifting from a differential operator to a difference operator, the error that occurs is determined
by the difference between the numerical solution and the exact solution. The error, often referred to
as "truncation error" or "discretization error," arises from the use ofa Taylor series’ finite portion for
approximation.

In equations (2.6) and (2.7) for discrete optimization, by defining a uniform mesh of size h = 1
N , and

by replacacing u′′ and u′ with central and forward difference approximations. Here, xi = i−1
h represents

the values of mesh points, where i = 1, 2, . . . , N + 1.

LN
1 ui = g(xi)

u0 = ϕ(0)uN = α(1)

u0 = ϕ(0)uN = α(1)

[9]The operator is defined as:

LN
1 = (ϵ− δb(xi))D+D−ui + b(xi)D+ui = g(xi)

13
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where:

D+D−ui =
ui−1 − 2ui + ui+1

h2

D+ui =
ui+1 − ui

h

D−ui =
ui − ui−1

h

[5]
Upon simplification, this yields a three-point difference scheme.

LN
n ui = −Eiu(i− 1) + Fiui +Giu(i+ 1) = Hi (3.1)

where

Ei = (ϵ− δb(x))

Fi = −2ϵ+ b(x)(2δ − h)

Gi = −ϵ− b(x)(h− δ)

Hi = h2J(xi), i = 1, 2, ...N + 1.

The system of equations represented by (Ei, Fi, Gi, Hi) will constitute a system of tridigonal matrix
N + 1 equations with N + 1 unknowns u0, u1, . . . , uN .

3.1.1 Finite Difference Discretization

Let us examine a convection-diffusion situation that is singularly perturbed.

Lϵ = −ϵu”(x) + b(x)u(x) = j(x), for x ∈ (0, 1) (3.2)

with given boundary conditions

u(0) = 0, u(1) = 0

in which b(x) > 0andϵ << 1 Suppose b(x) and f(x) are divided into n subintervals using an equidistant
mesh xi = a+(i−1) ·h for i = 0, 1, 2, . . . , N +1 where h = 1/N . We employ central difference formulas
to approximate the solution at equidistant points.

u”(x) =
u(i− 1)− 2ui + u(i+ 1)

h2
, u′(x) =

u(i+ 1)− u(i− 1)

2h

14
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For i = 1, 2, ...N by using these central difference approximations, we get

u(i− 1)(−ϵ− hb(x)) + ui(2ϵ) + u(i+ 1)(−ϵ+ hb(x)) = h2j(x)

and further we can express it in the form of tridiagonal matrix of N + 1 ∗N + 1 in AU = D form

A =



1 0

−ϵ− hb(x) 2ϵ −ϵ+ hb(x)

0 −ϵ− hb(x) 2ϵ −ϵ+ hb(x)

ϵ− hb(x)
. . . . . .

−ϵ− hb(x) 2ϵ −ϵ+ hb(x)

0 1


, U =


u1

u2
...

un+1



and

D=


h2j(x1)

h2j(x2)
...

h2j(x(n+ 1)



15
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3.1.2 Upwind Finite Difference Method
The Upwind Finite Difference Method is commonly employed to mitigate unnecessary oscillations in
the solutions obtained. Oscillations occur when a one-sided difference is taken on the side that is not
part of the layer, i.e.,

u′(x) =
ui − u(i− 1)

h

In this paper, the difference approach will be utilized to further estimate this solution. The following
graphs depict the disparities between the standard finite difference approach using the upwind scheme
and the standard finite difference method employing forward difference approximation with a uniform
mesh.

Figure 3.1: Finite Difference Method with Forward Difference
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Figure 3.2: Finite Difference Method with upwind Scheme
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3.1.3 Stability Convergence Analysis

Theorem 3.1 Based on the presumptions that (ϵ−δb(x)) > 0, b(x) ≥ β > 0, and c(x) ≤ −γ < 0 for all
x ∈ [0, 1], the system of difference equations (3.1), together with the designated boundary conditions,
exists, is unique, and meets the requirements[9].

∥u∥h,∞ ≤ C−1∥j∥h,∞ + (∥ϕ∥h,∞ + |α|), (3.3)

taking C = β or ∥b∥h,∞. Here ∥.∥h,∞ is the discrete l∞-norm, further given by

∥x∥h,∞ = max
0≤i≤N

|xi|

Proof
Let yi be any mesh function that satisfy the following:

(L1)
Nyi = ji

Combining this with equation (3.1) and on rearranging gives:

Fiyi = −fi + Eiyi−1 +Giyi+1

By using the non-negativity of the coefficients (Ei, Fi, Gi), and taking the modulus on both sides,
we arrive at:

Fi|yi| ≤ |fi|+ Ei|yi−1|+Gi|yi+1|

Substituting the values of Ei, Fi, and Gi into the above defined inequality, we get:

(−2ϵ+ b(x)(2δ − h))|yi| ≤ |ji|(ϵ− δb(x))|yi−1| − (ϵ− b(x)(h− δ))|yi+1|

for i = 1, 2, . . . , N − 1. Rearranging terms in the inequality gives:

(ϵ− δb(x))

h2
(|yi−1| − 2|yi|+ |yi+1|) +

b(x)

h
(|yi+1| − |yi|) + |ji| ≥ 0

Now, to replace the coefficients (ϵ−δbi) and bi with constants, we consider the signs of the expressions
(|yi−1| − 2|yi| + |yi+1|) and (|yi+1| − |yi|). If (|yi−1| − 2|yi| + |yi+1|) ≥ 0, we use the inequality 0 <

(ϵ−δbi) ≤ (ϵ−δβ), and if (|yi−1|−2|yi|+ |yi+1|) < 0, we use the inequality (ϵ−δbi) ≥ (ϵ−δ∥b∥h,∞) > 0.
Similarly, if (|yi+1| − |yi|) ≥ 0, we use the inequality 0 < bi ≤ ∥b∥h,∞, and if (|yi+1| − |yi|) < 0,Using
the inequality bi ≥ β > 0.

Thus, using these facts in the above inequality, gives:

C1(|yi−1| − 2|yi|+ |yi+1|)/h2 + C2(|yi+1| − |yi|)/h+ |ji| ≥ 0

where C1 and C2 are positive constants, C1 = (ϵ− δb(x)) or (ϵ− δβ), and C2 = b(x) or β depending
on the signs of the expressions (|yi−1| − 2|yi|+ |yi+1|) and (|yi+1| − |yi|), respectively.

18
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On rearranging the terms in the inequality and by using this inequality |ji| ≤ ∥j∥h,∞ yields:

C1(|yi+1| − |yi|)/h2 − C1(|yi| − |yi−1|)/h2 + C2(|yi+1| − |yi|)/h+ ∥j∥h,∞ ≥ 0

Let ⟨ui⟩Ni=0 , ⟨vi⟩
N
i=0 be two sets of solutions of the difference equations that meet the boundary

requirements in order to demonstrate uniqueness and existence.
Suppose yi = ui − vi, then zi fulfill:

LN
1 yi = ji

ji = −C1 |y1| /h2 − C1 |yN−1| /h2 − C2 |y1| /h ≥ 0

For inequality continue, we need to have |yi| ≥ 0∀i, i = 1, 2, . . . N − 1, and C1 > 0, C2 ≥ 0,.

yi = 0 ∀i, i = 1, 2, . . . N − 1

This demonstrates that the tridiagonal system of difference equations has a unique solution(3.1).
Uniqueness implies existence for linear equations. Presently, in order in order to get the necessary
constraint on the distinct issue ⟨wi⟩Ni=0, we set:

yi = wi − li

where yi fulfills the difference equations (3.1), the boundary conditions and

Li = (1− ih)ϕ0 + (ih)α,

also

y0 = 0 = yN

and

yi, i = 1, 2, . . . N − 1,which satisfies

LN
1 yi = fi

Now let

|yn| = ∥y∥h,∞ ≥ |yi| , i = 0, 1, 2, . . . N (3.4)

and

zi, i = 1, 2, . . . N − 1, satisfies

LN
1 zi = fi

Now let
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|yn| = ∥y∥h,∞ ≥ |yi| , i = 0, 1, 2, . . . N (3.5)

Adding up equation (3.4) to i = n to N − 1 and utilizing the inequalities b(x) ≥ β > 0 and
0 < b(x) ≤ ∥b∥h,∞ > 0 yields:

−C1 (|yn| − |yn−1|) /h2 − C1 |yN−1| /h2 − C2 |yn| /h+

N−1∑
i=n

bi |yi| + (N − n− 1)∥j∥h,∞ ≥ 0 (3.6)

From inequality (3.6) and the fact that b(x) < 0, we obtain (|yn| − |yn−1|) ≥ 0. As a result, the left
side of inequality (3.6) has negative first, second, and third terms. The inequality simplifies to: when
these terms are removed.

C2|yn| ≤ (N − n− 1)h∥j∥h,∞ ≤ ∥j∥h,∞,

since(N − n− 1)h ≤ 1

i.e., we have

|yn| ≤ C−1
2 ∥j∥h,∞ (3.7)

we get,

wi = yi + Li

∥w∥h,∞ = max
0≤i≤N

|wi|

≤ ∥y∥h,∞ + ∥L∥h,∞
≤ |yn|+ ∥L∥h,∞

(3.8)

We now need to determine the bound on Li in order to finish the estimate.

∥L∥h,∞ = max
0≤i≤N

|Li|

≤ max
0≤i≤N

[(1− ih) |ϕ0|+ ih|α|]

i.e., we have

∥L∥h,∞ ≤ |ϕ0|+ |α|

≤ ∥ϕ∥h,∞ + |α|
(3.9)
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From Eq. (3.7)− (3.9), we obtain the required estimate.
This theorem states that, for any mesh size h and singular perturbation parameter ϵ, to be the so-

lution to the system of differential equations is uniformly limited. As such, all step sizes show stability
in the system.

Corollary-1
The error ei = w(xi)−wi in between the solution w(x) of the continuous problems (2.6) and (2.7) and
the solution wi of the discretized problem would meet the following under the presumptions of Theorem
3.1:

LN
1 = (ϵ− δb(xi))D+D−ui + b(xi)D+ui = j(xi)

which satisfies

∥e∥h,∞ ≤ C−1∥R∥ (3.10)

where C = β or ∥b∥h,∞ and

|Ri| ≤ max
xi−1≤x≤xi+1

[(h/2)b(x) |w′′(x)|] + max
xi−1≤x≤xi+1

[(h/6) |b(x)∥w′′′(x)|]

+ max
xi−1≤x≤xi+1

[(
h2/24

)
{2(ε− δb(x)) + hb(x)}

∣∣wiv(x)
∣∣]

Proof Ri be the truncation error which is given by

Ri = (ε− δbi)
[
(wi−1 − 2wi + wi+1) /h

2 − w′′ (xi)
]

+ bi [(wi+1 − wi) /h− w′ (xi)]

Ri = (h/2)bi
[
w′′(ih) + hw′′′(ih) + h2wiv(ih)/12

]
+ (ε− δbi)h

2wiv(ih)/12

|Ri| ≤ max
xi−1≤x≤xi+1

[(h/2)b(x) |w′′(x)|] + max
xi−1≤x≤xi+1

[(h/6)|b(x)| |w′′′(x)|]

+ max
xi−1≤x≤xi+1

[(
h2/24

)
(2(ε− δb(x)) + hb(x))

∣∣yiv(x)∣∣] (3.11)

It is simple to demonstrate that the mistake ei satisfies

LN
1 e (xi) = LN

1 w (xi)− LN
1 wi = Ri, i = 1, 2, . . . N − 1

e0 = 0 = eN , as well. The mesh function ei can then be used to apply Theorem 3.4, which results in

∥e∥h,∞ ≤ C−1∥R∥h,∞

The estimate determines the convergence of the difference scheme for fixed values of the parameter
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3.2 Method of Fitted Mesh Finite Difference

3.2.1 Piecewise Uniform Shishkin Mesh
The layer behavior cannot be accurately captured by a uniform mesh xi = a+(i−1)h. To address this,
The Shishkin mesh which is a piecewise-uniform mesh was developed by the Russian mathematician
G.I. Shishkin. This mesh adapts its width based on the solution’s characteristics. By concentrating
additional mesh points in the sections of the layer where the solution changes rapidly, the Shishkin mesh
provides a more detailed examination of these regions. This technique is particularly useful for solutions
with sharp gradients, enhancing the accuracy within the layer regions of the solution.

Figure 3.3: Figure:1 Interval Distribution of Shishkin Mesh for convection diffusion
In this section, we employ uniform piecewise mesh and a conventional upwind finite difference operator
by applying the finite difference method under fitted mesh. By discretize the boundary value problems
(8) and (9), we condense the mesh at the boundary points x = 0 and x = 1. There are three subintervals
divided within the interval [0, 1]: (0, λ), (λ, 1−λ), and also (1−λ, 1). These subintervals create a fitted
piecewise uniform mesh xi on the [0, 1].

The intervals (0, λ) and (1 − λ, 1) each contain N
4 + 1 equally spaced mesh points, while the in-

terval (λ, 1 − λ) contains N
2 equally spaced mesh points. The parameter for transition λ defined to be

λ = min
[
1
4 ,
(
2
α

)
ϵ logN

]
. This parameter ensures that the mesh density increases near the boundary

layers, where sharp changes in the solution occur. Additionally, it is assumed that N = 2r with r > 3,
to ensure the border layer contains a enough number of points.

ε.
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(a) Mesh space under Standard Finite Difference Method

(b) Mesh space Under Shishkin Mesh
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3.2.2 Discrete Minimum Principle

Assume Π0 ≥ 0 with ΠN ≥ 0. let (L3)
NΠi ≤ 0 for all xi ∈ Ξ

Proof
Suppose m to be9 Pik = min0≤i≤N Πiandassumeψm < 0. Then we have Πm − ψ−m− 1 ≤ 0,Πm+1 −
Πm ≥ 0 and

LN
1 = (ϵ− δb(xm))D+D−Πm + b(xm)D+Πm

= 2(ϵ− δb(xi))

(
(Πm+1 −Πm)

hm+1
− (Πm −Πm−1)

hm

)/
(hm + hm+1)

+ b(xm)

(
(Πm+1 −Πm)

hm+1

)
Πm

≥ 0

This is contradictory. Consequently, Πm ≥ 0 since our presumption that Πm < 0 is incorrect. Be-
cause m has been set but left open-ended, Πi ≥ 0∀i, 0 ≤ i ≤ N .

Lemma
Any mesh function Qi such that Q0 = QN = 0 can be considered. When 0 ≤ i ≤ N , for every i,

|Qi| ≤ θ−1 max
1≤j≤N−1

∣∣LN
3 Qj

∣∣
Proof Consider the two auxiliary mesh functions Π±

i defined as:

Π±
i = θ−1 max

1≤j≤N−1

∣∣LN
3 Qj

∣∣±Qi

Π±
0 = θ−1 max

1≤j≤N−1

∣∣LN
3 Qj

∣∣±Q0

≥ 0, since Q0 = 0

Π±
N = θ−1 max

1≤j≤N−1

∣∣LN
3 Qj

∣∣±QN

≥ 0, since QN = 0

For 1 ≤ i ≤ N − 1:

LN
3 Π±

i = (ε− δa(xi))D
+D−Π±

i + a(xi)D
+Π±

i + b(xi)Π
±
i

= b(xi)θ
−1 max

1≤j≤N−1

∣∣LN
3 Qj

∣∣± LN
3 Qi

≤ 0, since b(xi)θ−1 ≤ −1

[3]Based on the concept of discrete minimum, we have:

Π±
i ≥ 0 ∀i, 0 ≤ i ≤ N
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This implies:

−θ−1 max
1≤j≤N−1

∣∣LN
3 Qj

∣∣ ≤ Qi ≤ θ−1 max
1≤j≤N−1

∣∣LN
3 Qj

∣∣
Thus, we conclude:

|Qi| ≤ θ−1 max
1≤j≤N−1

∣∣LN
3 Qj

∣∣
which completes the proof.
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Chapter 4

Error Analysis

Error Approximate

Let U(x) denote continuous solution described by equations (8) and (9), and let UM =

⟨ui⟩Mi=0 represent the solution of the corresponding discrete problem.

LM
1 ui = g(xi)

The adapted mesh finite difference technique, employing the conventional upwind op-
erator for finite differences on a piecewise uniform meshᾱM which becomes denser near
the boundary layer at x = 0, achieves ε-uniformity. Additionally, for the solution y and
its discrete counterpart UM = ⟨ui⟩Mi=0, the subsequent error estimation is applicable.

sup
0<ε≤1

∥∥UM − u
∥∥ ≤ KM−1(lnM)2

where K is a constant that is unaffected by ε.
Proof
Similar to the continuous solution UM = ⟨ui⟩Mi=0 of the discrete problem can be split into
the regular and the singular components:

UM = V M + ZM

V M defines the solution of the non-homogeneous problem:

LM
3 V M(xi) = f(xi) ∀xi ∈ αM , V M(0) = v(0), V M(1) = v(1)
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and ZM is the solution of the homogeneous problem [3]:

LM
3 ZM(xi) = 0 for all xi ∈ αM , ZM(0) = z(0), ZM(1) = z(1)

This is one way to express the error:

UM − u = (V M − v) + (ZM − z) (4.1)

Therefore, it is possible to estimate the errors in the solution’s regular and singular
components separately. We examine both the differential and difference equationsin
order to calculate the regular component’s error. We acquire:

LM
ε (V M − v)(xi) = j(xi)− LM

3 v(xi)

This simplifies to:

LM
ε (V M − v)(xi) = (Lε − LM

3 )v(xi)

Substituting Lε and LM
3 :

LM
ε (V M − v)(xi) = (ε− δb(x))

(
d2

dx2
−D+D−

)
v(xi) + b(x)

(
d

dx
−D+

)
v(xi) (4.2)

For xi ∈ αM and operator Π ∈ C2(ᾱ), we have:∣∣∣∣(D+ − d

dx

)
Π(xi)

∣∣∣∣ ≤ (xi+1 − xi)
∥∥Π(2)

∥∥ /2
and for operator Π ∈ C3(ᾱ),∣∣∣∣(D+D− − d2

dx2

)
Π(xi)

∣∣∣∣ ≤ (xi+1 − xi−1)
∥∥Π(3)

∥∥ /3
For the proof of these results, one can see Lemma 1. Using these results, we obtain

[4]

∣∣L3

(
V M − v

)
(xi)

∣∣ ≤ (xi+1 − xi−1)

(
(ε− δb (xi))

3

∥∥v(3)∥∥+
b (xi)

2

∥∥v(2)∥∥)
[10]Using Theorem 3.1 for bounds on v(2) and v(3), we obtain that xi+1−xi−1 ≤ 2M−1.
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∣∣LM
3

(
V M − v

)
(xi)

∣∣ ≤ KM−1, xi ∈ σM (4.3)

Now an application of Lemma 2 for the mesh function
(
V M − v

)
(xi) gives

∣∣(V M − v
)
(xi)

∣∣ ≤ θ−1 max
1≤j≤M−1

∣∣LM
3

(
V M − v

)
(xj)

∣∣ (4.4)

∣∣(V M − v
)
(xi)

∣∣ ≤ KM−1 (4.5)

The reasoning behind estimating the singular component’s error LM
3 (ZM − z) is con-

tingent upon the value assigned to the Whether γ = 1/2 or γ = K(ε− δβ) lnM , where
K = 1/θ, is the transition parameter γ.

Case i) When K(ε − δβ) lnM ≥ 1/2, namely, when the mesh is uniform, we follow
the same line of reasoning as we did when estimating the regular part of the error, leading
to: ∣∣LM

3

(
ZN − z

)
(xi)

∣∣ ≤ K (xi+1 − xi−1)
(
(ε− δb (xi))

∥∥z(3)∥∥+ b (xi)
∥∥z(2)∥∥)

Using Theorem 2 for bounds on z(2) and z(3) and the fact that (xi+1 − xi−1) = 2M−1

for the uniform mesh, we obtain

∣∣LM
3

(
ZM − z

)
(xi)

∣∣ ≤ K(ε− δβ)−1M−1 (4.6)

In this case, we have (ε−δ∥b∥)−1 ≤ 2K lnM . Using this inequality in above inequality
(4.6), we obtain

∣∣LM
3

(
ZM − z

)
(xi)

∣∣ ≤ KM−1(lnM)2 (4.7)

Now an application of Lemma 2.4 for the mesh function
(
ZN − z

)
(xi) gives

∣∣(ZM − z
)
(xi)

∣∣ ≤ ∣∣LM
3

(
ZM − z

)
(xi)

∣∣ ∀xi ∈ σM

Using (4.7) in (4.8), we obtain

∣∣(ZM − z
)
(xi)

∣∣ ≤ KM−1(lnM)2 ∀xi ∈ σM

[10]Case ii) K(ε−δβ) lnM < 1/2, i.e., when the mesh is piecewise uniform with mesh
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spacing 2γ/N in the subinterval [0, γ] and 2(1− γ)/M in the subinterval [γ, 1]
We give separate proofs for the bounds on the singular component of the error in the

coarse and fine mesh subintervals.The bound on the singular component in the outer
area, or in the subinterval, is first obtained. [γ, 1]. Using the triangular inequality, we
have [10]

|(Z − z) (xi)| ≤ |Z (xi)|+ |z (xi)|

From inequality (22), we have

|z (xi)| ≤ K exp (−βxi/(ε− δβ))

for all xi ∈ [γ, 1]. Exp (−βxi/(ε− δβ)) is a decreasing function and xi ≥ γ. [10]Using
these facts in above inequality (4.11) we have

|w (xi)| ≤ K exp(−βγ/(ε− δβ))

In this case we have γi = K(ε − δβ) lnN . [10]Using this value of γ in the above
inequality, we get

|z (xi)| ≤ KM−1

Now to obtain the bound on ZM , we construct a mesh function ẐM
ε defined as the

solution of the following problem

(ε− δb (xi))D
+D−ẐM (xi) + βD+ẐM (xi) = 0

1 ≤ i ≤ M − 1, under the same boundary conditions as for Z

∣∣ZM (xi)
∣∣ ≤ ∣∣∣ẐM (xi)

∣∣∣ , 0 ≤ i ≤ M

ẐM
ε
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gives ∣∣∣ẐM (xi)
∣∣∣ ≤ M−1, M/2 ≤ i ≤ M

Using this estimate for ẐM
ε in inequality (4.14), we obtain

∣∣ZM (xi)
∣∣ ≤ KM−1, N/2 ≤ i ≤ M

Thus from inequalities (4.12) and (4.15), we obtain the bound on the singular com-
ponent of error in the outer region [γ, 1]

∣∣ZM − z (xi)
∣∣ ≤ KM−1, M/2 ≤ i ≤ M

[10]Now it remains to prove the result for xi ∈ [0, γ], i.e., in the boundary layer region.
For i = 0, there is nothing to shown. For xi ∈ (0, γ) the proof follows on the same lines as
for the case i) except that we use the discrete minimum principle on [0, γ] and the already
established bounds Z

(
xM/2

)
≤ KM−1 and z

(
xM/2

)
≤ KM−1. [10]Consequently, by

applying the same reasoning as we did to estimate the error’s regular component, we
obtain ∣∣LM

3

(
ZM − z

)
(xi)

∣∣ ≤ 2γM−1(ε− δ∥b∥)−2∣∣ZM(0)− z(0)
∣∣ = 0

and ∣∣ZM
(
xM/2

)
− z

(
xM/2

)∣∣ ≤ ∣∣ZM
(
xM/2

)∣∣+ ∣∣z (xM/2

)∣∣
≤ KM−1

Now let us introduce comparison functions Π±
i defined by

Π±
i = (α− xi)K1(ε− δ∥b∥)−2αM−1 +K2M

−1 ±
(
ZM − z

)
(xi)

where K1 and K2 are arbitrary constants. Then we have[3]

Π±
0 = C1αM

−1(ε− δ∥a∥)−2 +K2M
−1 ≥ 0

Π±
M/2 = K2M

−1 ±
(
ZM − z

) (
xM/2

)
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We chose K2 such that, in the equation above, the first term predominates over the
second term, resulting in Π±

M/2 ≥ 0 and consider[1]

LM
3 Π±

i = αM−1K1(ε− δ∥b∥)−2LM
3 (γ − xi)

= −γM−1(ε− δ∥b∥)−2 (biC1 ∓ 2) + biγM
−1(ε− δ∥b∥)−2 (γ − xi) (K1 +K2)

Now we choose the constant K1 so that (bi1 ∓ 2) ≥ 0, Consequently, in the inequality
above, every term on the right side is negative, giving[10]

LM
3 Π±

i ≤ 0, 1 ≤ i ≤ M/2− 1

Then by the defination of discrete minimum principle, we get

Π±
i ≥ 0, 0 ≤ i ≤ N/2

which on simplification gives[1]

∣∣(ZM − z
)
(xi)

∣∣ ≤ K1(ε− δβ)−2γ2M−1 +K2M
−1

Since γ = K(ε− δβ) lnM , where K = 1/θ, we obtain

∣∣(ZM − z
)
(xi)

∣∣ ≤ KM−1(lnM)2 (4.17)

Now combining inequalities (4.16) and (4.17) to obtain the bound on the singular
component of error throughout the interval [0, 1], we obtain

∣∣(ZM − z
)
(xi)

∣∣ ≤ KM−1ε(lnM)2, 0 ≤ i ≤ M (4.18)

[10]Combining the two inequalities—inequality (4.5) to bound the regular error com-
ponent and inequality (4.18) to bound the singular error component—allows us to obtain
the required error estimate.[10].
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Chapter 5

Numerical Results

5.1 Numerical Computations

Let us examine a basic convection diffusion model problem.

ϵu′′(x)− (1 + x)u′(x− δ)− e−xu(x) = 1 (5.1)

under the interval with boundary constraints

u(x) = 1,−δ ≤ x ≤ 0, and u(1) = −1

Utilizing Taylor’s series expansion, a function can be approximated as a sum of terms
derived from its derivatives at a specific point.

u(x− δ) ≈ u(x)− δu′(x)

we get,

(ϵ+ (x+ 1)δ)u′′(x)− u′(x)(1 + x)− u(x)e−x = 1 (5.2)

actual solution of the equation(5.1) is given by,

u(x) = c1e
(r+s)x + c2e

(r−s)x − ex (5.3)

where,

r =
(x+ 1)

2(ϵ+ (x+ 1)δ)
, s =

√
(x+ 1)2 + 4e−x(ϵ+ (x+ 1)δ)

2(ϵ+ (x+ 1)δ)
(5.4)
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c2 =
e− 2e(r+s) − 1

e(r−s) − e(r+s)
, c1 = 2− c2

Now, we will show the boundedness, stability and convergence of the problem(37)

5.1.1 5.1.1 Boundedness

Here we consider 2 cases and by using lemma1,
Case 1:- When δ = 0, then using this in equation (5.4), we get,

r − s < 0

Case 2:- When δ ̸= 0 then again using equation (5.4) since magnitude of ’r’ is less than
’s’ so we get,

r − s < 0

So we get that r − s < 0 for each case, then the term er−s → 0asϵ → 0. Therfore,(5.4)
becomes

u(x) ≤ 2e(r+s)x − 2es+r − 1− ex + e

≤ 2e(r+s)x − ex + 2 ≤ 2

so, we get

u(x) ≤ 2

Then, Lemma 1 proved and u(x) is bounded.

5.1.2 Boundedness of Derivatives

Theorem 5.1: Suppose u be the solution of the problem described by equations (2.6)
and (2.7). It states that

∥∥u(k)
∥∥ ≤ Cϵ−k for k = 1, 2, 3. Proof :A neighbourhood Nx =

(c, c + ϵ) for x ∈ σ can be defined as follows: c is a positive constant defined so that
x ∈ Nx and Nx ⊂ σ. The Mean Value Theorem states that z ∈ Nx exists such that

u′(v) =
u(c+ ϵ)− u(c)

ϵ
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This simplifies to:

|u′(v)| ≤ 2ϵ−1∥u∥

By applying Lemma 1 to bound u in the inequality above, we obtain:

|u′(v)| ≤ 2ϵ−1
(
∥j∥θ−1 +max (|ϕ0| , |α1|)

)
Using Equation (5.3), we have:

|u′(v)| ≤ 2ϵ−1(e) ≤ (2e)ϵ−1

Then, by integrating u′′ and We obtain the following by taking the modulus on both
sides and substituting the differential equation’s value for u′′(t) (5.3).

|u′(x)| ≤ C(ϵ+ (x+ 1)δ)−1, x ∈ σ

If δ = 0, then:

|u′(x)| ≤ Cϵ−1

This yields ∥u′∥ ≤ Cϵ−1, where C is a constant. Similarly, by differentiating Equation
(5.3) and utilizing bounds on u(x) and u′(x), we can derive The necessary bounds for
the second and third derivatives of the solution u [7].

5.1.3 Stability and Convergence

On comparing equation (3.3) with equation (2.6) and (2.7), we get,

b(x) = −(x+ 1) and − exp−x = 0, j(x) = 1

and u(x) is given by equation (38).Now,using ∥ · ∥ as The discrete l∞-norm, denoted
as ∥x∥h,∞, is defined as ∥x∥h,∞ = max0≤i≤N |xi|.

∥u∥h,∞ ≤ C−1∥j∥h,∞ + (∥ϕ∥h,∞ + ∥α∥h,∞) while C = ∥β∥

≤ C−1(1) + (1 + 1)

≤ C−1(1) + 2

(5.5)

Since, the solution exist uniquely with the boundary conditions and satisfies (4.17).
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Therefore, the solution of difference equation is "uniformly bounded" indicates that the
values remain constrained regardless h or the parameter ϵ of the mesh size. As such, this
technique is stable for arbitrary step sizes.

and the Corollary1 we have discused states the convergence of this problem type.

5.2 Error and Order of Convergence

If we assume u (xi) as the exact solution and ui as the numerical solution, the error at
each mesh point can be calculated as:

ri = |u (xi)− ui|

The maximum norm error is given by,

RN = max ∥u (xi)− ui∥

[8]and the Order of Convergence is given by,

ON =
log

(
RN

RN+1

)
log 2

Let’s examine the numerical problem defined by equation (5.1), considering the pro-
vided boundary conditions and the true solution. Initially, we’ll create tables illustrating
the maximum norm error and convergence order for various combinations of ϵ, N , and
δ.

Further, we will draw graphs showing convergence between actual solution and nu-
merical solution. in the table each box has two parts for the value of ϵ and N. The
upper part of the box represents the Max. norm error (RN) and the lower part of the
box represents the Order of Convergence (ON)
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Figure 5.1: Solution Plot For ϵ = 2−4 and N = 64
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Figure 5.2: Solution Plot For ϵ = 2−4 and N = 256
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(a) Solution Plot For ϵ = 2−4 and N = 64

Figure 5.3: Solution Plots for Table-2 for N=64

(a) Solution Plot For ϵ = 2−3 and N = 128

Figure 5.4: Solution Plots for Table-2 for N=128
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Chapter 6

Conclusion

In this study we have research on the numerical analysis of singular perturbation bound-
ary value issues for differential difference equations with delay. To solve these boundary
value problems, we have use the delay shift operator with layer behaviour, [7]a stan-
dard finite difference method with uniform mesh and an ϵ piecewise uniform fitted mesh
approach is approved. These kinds of problems with boundary values are often seen
in control theory and the biosciences when modelling a variety of processes in real life
mathematically. Specifically, a general boundary value issue can be presented to deter-
mine the expected time for random synaptic inputs in the dendrites to generate action
potentials in nerve cells. Now, let’s summarize the working of two numerical methods
we have used in this paper.
1. Standard Finite difference Method with uniform mesh
[10]The standard finite difference method is based on the technique of mesh spacing with
evenly spaced mesh points all the way across the interval. Bias towards the boundary
layer region does not exist in the mesh spacing. In this study, we analyse the bound-
edness of the solution, its derivatives, stability and convergence analysis. The standard
finite difference method’s order of convergence and error estimate are displayed using a
number of tables and graphs.
2. Fitted mesh finite difference operator with piecewise uniform mesh The
fitted mesh approach consists of a standard finite difference operator and a piecewise uni-
form mesh condensing in the boundary layer regions to reflect the singularly perturbed
nature of the solution[3].The conventional upwind finite difference operator and a specific
type of mesh are used in this method. We study a piecewise uniform fitted mesh in this
case, which works well for developing the ρ −uniform method. Although more complex
meshes can be used, [4]the piecewise uniform mesh’s simplicity is intended to be one
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CHAPTER 6. CONCLUSION

of its key selling points. The established error estimation shows that the approach is
ρ-uniform. We solve several numerical illustrations to display how little changes impact
the boundary layer solution. Numerical data reported in terms of maximum errors and
solution graphs are provided to demonstrate the approach’s efficiency[4].
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