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Abstract

Logarithmic and inverse logarithmic coefficients are crucial concepts in univalent func-

tions theory. The aim of this work is to provide bounds of the second Hankel determinant

for some starlike functions associated with the petal-shaped domain with respect to the

logarithmic and inverse logarithmic coefficients.
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Chapter 1

Introduction

This chapter covers the definition of several classes of analytic functions as well as some
fundamental terms and ideas that will be used in later chapters.Some basic notations have
also been made along with a snapshot view of the thesis indicating some significant findings
of the present study.

Definition 1.0.1. (Univalent Function) [10] In a domain D ⊂ C, a function f(z) is
considered univalent if it is one-to-one; that is, if z1, z2 ∈ D, then f(z1) = f(z2) implies
that z1 = z2.

Geometrically, this implies that various points in the domain will correspond to various
spots or points on the image domain [14].

Definition 1.0.2. (Analytic Function) [10] When a function f(z) is differentiable in a
neighborhood of z0, i.e., that f

′(z0) ̸= 0, it is considered analytic at a point z0 ∈ D. If f(z)
is analytic at every point in D, then it is considered analytic in a domain D ⊂ C.

When z ∈ D, the Taylor series expansion of an analytic function f ∈ D is as follows:

f(z) =
∞∑
n=0

an(z − z0)
n, a :=

f (n)(z0)

n!

. Let the class of analytic functions defined on D be H(D) [14]. Let H[a, n] be the sub-class
of H(D) that is made up of the following types of functions:

f(z) = a+ anz
n + an+1z

n+1 + . . . .

Additionally, the class A denotes all functions f that are analytic in the open unit
disk D, which is normalized by the factor f ′(0) = 1 and f(0) = 0 [11]. The Taylor series
expansion of a function f ∈ A [10] is as follows:

f(z) = z +
∞∑
n=2

anz
n.
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This function is defined on the open unit disc D := {z ∈ C : |z| < 1} [10]. Furthermore,
the presence of a solution to the coefficient-related problem and its relationship to the
compactness of a certain function space demonstrate the significance of normalization. Since
analytic univalent functions in the domain D maintain angles (both in magnitude and
direction), they are also known as conformal mappings in D.

S is the sub-class of univalent functions within A. The Koebe function [14], which maps
D onto the complex plane with the exception of a slit along the half-line (−∞,−1/4], is the
function k given by:

k(z) =
z

(1− z)2
=

∞∑
n=1

nzn

defined on the open unit disc D := {z ∈ C : |z| < 1} [10]. A surprising conclusion known
as the Riemann Mapping Theorem [11] was announced by Riemann in 1851. It states that
every simply-connected domain that is not the whole complex plane C may be conformally
transferred onto the unit disk D.

Theorem 1.0.3. (Riemann Mapping Theorem) [11] Suppose b ∈ D, D ⊂ D be a
simply-connected domain. A distinct analytic function [14] g : D → C exists, such that

(A.) g(b) = 0 and g′(b) > 0;

(B.) g is univalent;

(C.) g(D) = Ω, where Ω is also a simply-connected domain.

This theorem allows one to restrict the study of analytic univalent functions on a simply-
connected domain to the open unit disk. D [10].

Consequently, it is easy to convert the properties of a univalent function defined on the
simply-connected domain D into the properties of the original function defined on the open
unit disk D [10]. Studying analytic functions inside the unit disk D is therefore adequate.

Since

f1(z) =
f(z)− f(0)

f ′(0)
, f ′(0) ̸= 0

symbolizes the image domain’s f(D) contraction and shifting with rotation and any property
of the function f1(z) is immediately translated into a corresponding property of f(z). Fur-
thermore, the presence of a solution to the coefficient-related problem and its relationship to
the compactness of a certain function space demonstrate the significance of normalization.

Theorem 1.0.4. (Bieberbach’s Conjecture) [35] If f ∈ S, then |an| ≤ n, for n ≥ 2
and equality holds if and only if f is the rotation of the Koebe function k.

Löwner, Garabedian, and Schier, respectively, proved the conjecture for the instances
n = 3 and n = 4. The hypothesis was later proven by Pederson and Schi er for n = 5, then
by Pederson and Ozawa separately for n = 6. For all coeffcients n, Louis de Branges proved
the Bieberbach’s conjecture in 1985 [14].

Theorem 1.0.5. (de Branges Theorem or Bieberbach’s Theorem) [19] If f belongs
to S i.e. f ∈ S then for n ≥ 2, |an| ≤ n.

3



The equality occurs only for the Koebe function and it’s rotation. Several important
features of univalent functions are covered by Bieberbach’s theorem. The well-known cover-
ing theorem is one noteworthy characteristic: If f belongs to the class of S, then the image
of unit disk D under f includes a disk of radius 1/4.

Theorem 1.0.6. (Koebe One-Quarter Theorem) [11] Every function f belongs to the
class of S i.e. f ∈ S has an image that includes the disk z ∈ C : z < 1/4 [14,15].

As an additional result of the Bieberbach theorem, the Distortion theorem provides
precise upper and lower bounds for |f ′(z)| [10].

Theorem 1.0.7. (Distortion Theorem) [11] If a function f belongs to the class of S
i.e. f ∈ S, then

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
; |z| = r < 1.

Growth Theorem can be obtained by applying the Distortion Theorem to determine
exact upper and lower bounds for f(z) [10, 14].

Theorem 1.0.8. (Growth Theorem) [11] If a function f belongs to the class of S i.e.
f ∈ S, then

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
; |z| = r < 1.

The Rotation Theorem is another outcome of Bieberbach’s theorem..

Theorem 1.0.9. (Rotation Theorem) [11] If a function f belongs to the class of S i.e.
f ∈ S, then for |z| = r < 1,

|argf ′(z)| ≤
{

4sin−1r, r ≤ 1/
√
2

π + log r2

1−r2
, r ≥ 1/

√
2

The bound is sharp.

Univalency of analytic functions is also studied using the Fekete-Szegö coefficient func-
tional.

Theorem 1.0.10. (Fekete-Szegö Theorem) [11] If a function f belongs to the class of
S i.e. f ∈ S, then

|a3 − αa22| ≤ 1 + 2e−2α/(1−α); α ∈ (0, 1).

1.1 Classes of univalent and starlike functions

Consider S as the sub-class of A consisting of univalent functions [10]. If f ∈ S, then the
Taylor Series expansion of f is given by [14]:

f(z) = z +
∞∑
n=2

anz
n = z + a2z

2 + a3z
3 + . . . . (1.1.1)
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In the year 1907, Koebe proved that for the class S, there exists an absolute constant k > 0
such that boundary of the image f(D) can not be distorted so far as to come within a
distance less than k of the origin [14, 15]. In 1916, Bieberbach established the beautiful
result that |a2| ≤ 2 for every function f ∈ S and using this, determined the value of k
as 1/4. This shows the geometrical connection of coefficient bounds on the geometry of
functions. Shortly, we shall see the importance of coefficients bounds in the concept of
Bohr phenomenon. Bieberbach also conjectured that |an| ≤ n. Meanwhile, the validity
of this conjecture was found true for many sub-classes of S. In 1925, J. E. Littlewood
proved that |an| ≤ en for all n, showing that Bieberbach conjecture is true up to a factor of
e = 2.718 · · · [11,14]. Finally in 1985, Louis De Branges [19] proved this conjecture, by using
special functions. Before the proof of Bieberbach conjecture, several sub-classes and other
fascinating results appeared to solve it. A systematic study in this direction can be seen
in some known standard books. Books by Nehari [22], Pommerenke [33], Goodman [14,15]
these are excellent sources of information on univalent function theory.

Coming back, we first describe a geometrical property, which further leads to an impor-
tant sub-class of univalent functions.

Definition 1.1.1. (Starlike Function) [10, 11] A domain D is considered starlike with
respect to a point w0 ∈ D if every ray from point w0 crosses the interior of D in a set that
is either a line segment or a ray i.e.

(1− t)w + tw0 ∈ D; t ∈ [0, 1].

If a function f(z) maps the unit disk D onto a starlike domain w.r.t a point w0 = 0 [10],
we classify f(z) as a starlike function.

From an analytical perspective, if f(z) ∈ A and ℜ(zf ′(z)/f(z)) > 0 then the function
f(z) is starlike with respect to origin. The class of starlike functions represented as S∗ [10]
and defined as

S∗ :=

{
f ∈ A : ℜ

(
zf ′(z)

f(z)

)
> 0

}
.

Definition 1.1.2. (Starlike Function of order α) [10,11] A function f belongs to class
of S i.e. f ∈ S is said to be Starlike of order α if and only if

ℜ
(
zf ′(z)

f(z)

)
> α (0 ≤ α < 1, z ∈ D).

The class of starlike functions of order α represented as S∗(α) [10]. If we take α = 0 then
S∗(0) = S∗, the class of starlike functions [14].

Definition 1.1.3. (Convex Function) [10, 11] A set D in the plane C is considered as
convex if for every pair of points w1 and w2, the line connecting w1 and w2 lies entirely
within in D i.e.

tw1 + (1− t)w2 ∈ D; t ∈ [0, 1].

If a function f(z) maps unit disk D onto a convex domain, then the function f(z) is said
to be a convex function [14].
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From an analytical perspective, if f(z) ∈ A and ℜ(1 + zf ′′(z)/f ′(z)) > 0 then the
function f(z) is said to be a convex function [14]. The class of convex functions is represented
as CV or sometimes as K [10, 14] and defined as

CV :=

{
f ∈ A : ℜ

(
1 +

zf ′′(z)

f ′(z)

)
> 0

}
.

It can be seen that for any point in the region f(D), every convex function is starlike,
therefore every convex function is a starlike function though the converse might not always
be true. For this take the example of f(z) = z + z2/2. Later in 1936, Robertson [34]
extended the classes S∗ and CV .

Definition 1.1.4. (Convex Function of order α) [10,11] A function f belongs to class
of S i.e. f ∈ S is said to be Convex function of order α if and only if

ℜ
(
1 +

zf ′′(z)

f ′(z)

)
> α, (0 ≤ α < 1, z ∈ D).

The class of Convex function of order α is denoted by CV(α) [14]. If we take α = 0 then
CV(0) = CV , the class of convex functions.

The well-known Alexander’s transformation given below establishes a two-way bridge
between the classes CV(α) and S∗(α) [11, 14] defined as

f ∈ CV(α) ⇐⇒ zf ′(z) ∈ S∗(α).

Definition 1.1.5. Bounded turning [10, 11] A function f belongs to the class of S i.e.
f ∈ S is said to be bounded turning, R if and only if{

f ′(z) ≺ 1 + z

1− z
; z ∈ D

}
.

A significant connection between convex and starlike functions was initially identified
by Alexander in 1915 and subsequently recognized as Alexander’s theorem [14].

Theorem 1.1.6. (Alexander’s theorem) [11] Let f belongs to the class of S i.e. f ∈ S.
Then f ∈ CV if and only if zf ′ ∈ S∗.

From this theorem we can directly prove that f ∈ CV∗(α) if and only if zf ′ ∈ S∗(α) [14].

The class of close-to-convex functions, which Kaplan established in 1952, is another
subclass of S that is essential to the study of univalent functions.

Definition 1.1.7. (Close-to-convex) [11] A function f belongs to the class of A i.e.
f ∈ A is close-to-convex in a unit disk D if there ∃ a convex function g and a real number
θ ∈ (−π/2, π/2), such that

ℜ
(
eiθ
f ′(z)

g′(z)

)
> 0; z ∈ D.

The class of all close-to-convex functions is represented as CCV . The sub-classes of S namely
convex, starlike and close-to-convex functions are interconnected [11, 14]in the following
manner:

CV ⊂ S∗ ⊂ CCV ⊂ S

6



The renowned Noshiro-Warschawski theorem asserts that a function f ∈ A with positive
derivative in D is univalent [14].

Theorem 1.1.8. (Noshiro-Warschawski theorem) [18] For a real value of α (α ∈ R),
if a function f is analytic in a convex domain D and it satisfies

ℜ
(
eiαf ′(z)

)
> 0,

then f is univalent in D.

Kaplan utilized the Noshiro-Warschawski theorem to demonstrate that every close-to-
convex function is univalent [14,18].

Definition 1.1.9. (Class of starlike functions wrt to symmetric points) [10] A
function f is said to be in the class of starlike function w.r.t. ssymmetric points if for every
Y on the circle |z| < 1, at Y , the angular velocity of f(z) around the point f(−Y ) is positive
as z moves in a positive direction along the circle |z| < r, i.e.,

Re

(
2zf(z)

(f(z)− f(−Y ))

)
> 0; |z| = r, z = Y. (1.1.2)

and we represent this class as S∗
s . Sakaguchi [38] established and studied S∗

s in 1959.
This class is made up of functions that are starlike with respect to symmetric points [10]
and are distinguished by the following

Re

(
2zf(z)

f(z)− f(−z)

)
> 0; z ∈ D. (1.1.3)

Definition 1.1.10. (Carathéodory class) [10, 27] An analytic function p(z) in an open
disk D is said to be in the Carathéodory class P , if it satisfies

p(0) = 1 and ℜp(z) > 0

and p(z) is represented as: p(z) = 1 + p1z + p2z
2 + · · · .

A function in P is referred to as a function with positive real part, also recognized as
Carathéodory function [11,14]. The subsequent lemma is well known for functions in P .

Thus, the classes P and S∗ can now be related to each other as follows [10,14]:

f ∈ S∗ ⇐⇒ zf ′(z)

f(z)
∈ P .

Lemma 1.1.11. If a function p belongs to the Carathéodory class [14] i.e. p ∈ P is defined
by the following series

p(z) = 1 + p1z + p2z
2 + · · · .

then the subsequent precise estimation is valid:

|pn| ≤ 2; n ∈ N.

7



For α ∈ [0, 1), the class of analytic functions p ∈ P [14] with

ℜp(z) > α; z ∈ D.

represented by P(α). In the context of subordination, the analytic criterion for the function
p(z) with positive real part can be expressed as

p(z) ≺ 1 + z

1− z
; z ∈ D

[10,11]. This occurs because the function q(z) = (1+ z)/(1− z) maps D onto the right-half
plane [14].
Ma and Minda have provided a comprehensive approach to various sub-classes containing
starlike and convex functions by substituting the superordinate function q(z) = (1+z)/(1−
z) by a more general analytic function [11, 14]. Beacause of this reason, they examined an
analytic function φ with positive real part on D where φ(0) = 1, φ′(0) > 0 and φ maps
symmetric with respect to the real axis, D onto a region starlike with respect to 1, The
class of Ma-Minda starlike functions is represented by S∗(φ) containing of functions f ∈ A
which satisfies

zf ′(z)

f(z)
≺ φ(z); z ∈ D

and likewise the class of Ma-Minda convex functions represented by CV(φ) containing of
functions f ∈ A satisfies the subordination

1 +
zf”(z)

f ′(z)
≺ φ(z); z ∈ D.

Definition 1.1.12. (Subordination) [10] An analytic function f is subordinate to another
analytic function g, denoted by f ≺ g, if there is an analytic function w with |w(z)| ≤ |z|
such that f(z) = g(w(z)). Further, If g is univalent, then f ≺ g if and only if f(0) = g(0)
and f(D) ⊆ g(D) [11].

The basic defnitions and theorems in the theory of subordination and certain applica-
tions of differential subordinations are stated in this section [10]. The theory of differential
subordination were developed by Miller and Mocanu [25].

let η(r, s, t; z) : C3 × D → C and h be univalent in D. If p is analytic in D and satisfies
the second order differential subordination

η(p(z), zp′(z), z2p”(z); z) ≺ h(z), (1.1.4)

then p is called a solution of the differential subordination [25]. The univalent function q is
called a dominant of the solution of the differential subordination or more simply dominant,
if p ≺ q for all satisfying above condition (1.1.4) [25]. A dominant q1 satisfying q1 ≺ q for all
dominant q of (1.1.4) is said to be best dominant of (1.1.4). The best dominant is unique
up to a rotation of D [25].

8



Definition 1.1.13. (Convolution of Functions) [10, 11]

Let f and g be functions belonging to L(−∞,+∞). The function h defined by the
convolution [15] of f and g is given by:

h(x) =

∫ +∞

−∞
f(x− y)g(y) dy =

∫ +∞

−∞
f(y)g(x− y) dy.

This operation is denoted by the symbol f ∗ g and is defined almost everywhere and also
belongs to L(−∞,+∞) [11, 25].

The convolution has the basic properties of multiplication [15,25], namely:

f ∗ g = g ∗ f,

(α1f1 + α2f2) ∗ g = α1(f1 ∗ g) + α2(f2 ∗ g), α1, α2 ∈ R,

(f ∗ g) ∗ h = f ∗ (g ∗ h).

The convolution of generalized functions also has the commutativity property and is
linear in each argument; it is associative if at least two of the three generalized functions
have compact supports [25].

9



Chapter 2

Hankel-determinant

This chapter explores the definitions of the Hankel- and Toeplitz-determinants as well as
how they differ across various analytic function sub-classes. It also looks at how these de-
terminants alter when logarithmic and inverse logarithmic coefficients are used in lieu of
their original entries. In addition, the discussion of Lie groups and algebra pertains to the
features of Hankel and Toeplitz-matrices.

The rationality of a function with restricted characteristic in D, or a function that is the
ratio of two bounded analytic functions with integral coefficients in its Laurent series around
the origin, may be shown, for example, using Hankel-determinant [10, 31]. Regarding the
application of Hankel-determinant to meromorphic function analysis we can refer to [43].
Several authors discussed Hankel-determinant Hq,n(f), in Fekete-Szegö problem, they dis-
cussed for q = 2 and n = 1 i.e., H2,1 = a3−a22, which is further generalised to H2,1 = a3−µa22
where µ ∈ C. Pommerenke’s study [31] states that the Hankel-determinant of univalent

functions must satisfy the subsequent conditions: |Hq,n(f)| < Kn−( 1
2
+β)q+ 3

2 , β > 1/4000,

where k only relies on q. Later, Hayman [16] proved that |H2(n)| < A
1/2
n (n = 1, 2, . . .); an

absolute constant for areally mean univalent functions. In 1967, Pommerenke [32] investi-
gated the Hankel-determinant of areally mean p-valent functions, univalent functions, and
starlike functions. ElHosh discovered bounds on the Hankel-determinant of univalent func-
tions with a positive Hayman index α and k−fold symmetric, close-to-convex functions [11].

The qth Hankel-determinant for q, n ∈ N, or Hq,n(f), for a function f ∈ A is as follows:

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
. . .

...
an+q−1 an+q . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣ (2.0.1)

The Fekete–Szegö problem is regarded as one of the most significant results concerning
univalent functions [17], [26], [20]. It relates to the coefficients of a function’s Taylor series
[14] and was introduced by Fekete and Szegö [20]. In Fekete-Szegö problem the optimization
of the absolute value of the functional a3 − µa22 is our goal. Numerous researchers have
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carefully examined and analyzed this outcome. For the Koebe function, the equality is valid.
Keogh and Merkes [13] discovered the sharp upper bound of the Fekete-Szegö functional
|a3 − µa22| in 1969 for a few univalent function sub-classes.

The Fekete–Szegö functional is obtained for q = 2 and n = 1 in (2.0.1);

H2,1(f) =

∣∣∣∣a1 a2
a2 a3

∣∣∣∣ = a3 − a22.

Further, sharp bounds for the functional |a2a4 − a23| are obtained in (2.0.1) for q = 2
and n = 2, the second order Hankel-determinant [32]:

H2,2(f) =

∣∣∣∣a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23.

Many writers have concentrated their attention in recent years on estimating an upper
bound for |H2,2(f)|. The precise approximations of |H2,2(f)| for the family of univalent
functions, represented by R,S∗, and K, respectively, are bounded turning, starlike, and
convex.

It was demonstrated by Ye and Lim in 2016 that every n × n matrix over C may be
expressed generically as the product of certain Toeplitz- or Hankel-matrices. With their
many applications, Hankel-matrices and determinants are fundamental elements in many
mathematical fields [8,32]. Toeplitz-matrices and Toeplitz-determinants are also important
in practical and pure mathematics. They can be found in a variety of fields, including
analysis, quantum physics, image processing, integral equations, and signal processing. The
survey paper and its references are consulted for additional applications. The diagonals of
Toeplitz-matrices have identical elements.

For a function f ∈ A, the qth Toeplitz-determinant, Tq,n(f), as:

Tq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an . . . an+q−2
...

...
. . .

...
an+q−1 an+q−2 . . . an)

∣∣∣∣∣∣∣∣∣
Bieberbach approximated H2,1(f) for the class S [31, 32]. For f ∈ A, the qth Hankel-

determinant Hq,n(Ff ), where q, n ∈ N, and entries are logarithmic coefficients [27](refer
Chapter 4) is expressed as:

Hq,n(Ff ) =

∣∣∣∣∣∣∣∣∣
Yn Yn+1 . . . Yn+q−1

Yn+1 Yn+2 . . . Yn+q
...

...
. . .

...
Yn+q−1 Yn+q . . . Yn+2(q−1)

∣∣∣∣∣∣∣∣∣
and Tq,n(Ff ) having logarithmic coefficients as:

Tq,n(Ff ) =

∣∣∣∣∣∣∣∣∣
Yn Yn+1 . . . Yn+q−1

Yn+1 Yn . . . Yn+q−2
...

...
. . .

...
Yn+q−1 Yn+q−2 . . . Yn

∣∣∣∣∣∣∣∣∣
11



Kowalczyk et al. [31] studied about the Hankel-determinant with entries of logarithmic
coefficients. In this we’re going to study about H2,1(Ff ) which can be find this with the
help of H2,1(f) = a2a4 − a23, where f ∈ S (following logarithmic function methodolgy).

Realizing the wide use of these coefficients, Kowalczyk and Lecko recently suggested a
Hankel-determinant whose constituents are the logarithmic coefficients of f ∈ S [27, 31].
Motivated by these concepts, we begin the study of the Hankel-determinant Hq,n(Ff−1/2)
and the Toeplitz-determinant Tq,n(Ff−1/2), in which the logarithmic coefficients of inverse
functions [37] of f−1 ∈ S are the elements. (see Chapter 4).
The determinant Hq,n(Ff−1/2) is expressed as follows:

Hq,n(Ff−1/2) =

∣∣∣∣∣∣∣∣∣
Yn Yn+1 . . . Yn+q−1

Yn+1 Yn+2 . . . Yn+q
...

...
...

...
Yn+q−1 Yn+q . . . Yn+2(q−1)

∣∣∣∣∣∣∣∣∣
and, the determinant Tq,n(Ff−1/2) is expressed as follows:

Tq,n(Ff−1/2) =

∣∣∣∣∣∣∣∣∣
Yn Yn+1 . . . Yn+q−1

Yn+1 Yn . . . Yn+q−2
...

...
...

...
Yn+q−1 Yn+q−2 . . . Yn

∣∣∣∣∣∣∣∣∣
Extensive research has been conducted on the topic of Hankel and Toeplitz-determinants

for various function classes, including starlike, convex, and others, resulting in the estab-
lishment of sharp bounds [28, 31], and [9]. More recently, investigations have focused on
Hankel-determinants with logarithmic coefficients for specific sub-classes of starlike, convex,
close-to-convex, univalent, strongly starlike, and strongly convex functions [10]. Notwith-
standing the importance of these problems, the sharp bounds of Toeplitz-determinants with
logarithmic coefficients for inverse functions remain unexplored. Some progress has been
made in this area, particularly with regard to Toeplitz-determinants for univalent functions
exhibiting specific symmetries or confined to particular domains. A notable contribution
was made in 2021 by Zaprawa, who obtained the sharp bounds for the initial logarithmic
coefficients Yn for functions belonging to the classes S∗

S and KS [11, 27].

With a wide range of useful applications, Toeplitz-matrices and their accompanying de-
terminants have a prominent place in many mathematical fields [8]. For those interested in
a thorough summary of the various uses of Toeplitz-matrices in practical and pure mathe-
matics, the scholarly survey paper by Ye and Lim [44] is a good resource.
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2.1 Hankel and Toeplitz-Matrix

Definition 2.1.1. [12] A Hankel-matrix is a particular kind of matrix in which every ele-
ment is the same along a line that runs parallel to the main anti-diagonal. Alternatively, if
and only if a series of values s1, s2, . . ., exists such that each elementhi,j is equal to si+j−1,
where i and j are positive integers, then a matrix H = (hi,j) can be defined as a Hankel-
matrix. A block Hankel-matrix is the matrix H that results when the sequence sk is made
up of square matrices. Moreover, the representation of Hankel operators, which work on
the Hilbert space of complex sequences that are square summable, is intimately associated
with infinite Hankel-matrices.

Mathematically, A square matrix with constant skew-diagonals, denoted as bi,j = bi+1,j−1

∀ 1 ≤ i, j ≤ n, is known as a Hankel-matrix. The space of Hankel-matrices of size n × n
can be parameterized as follows by (b1, b2, . . . , b2n−1) ∈ R2n−1:

b(b) =


b1 b2 b3 · · · bn
b2 b3 b4 · · · bn+1

b3 b4 b5 · · · bn+2
...

...
...

...
bn bn+1 bn+2 · · · b2n−1


Hankel-matrices are often used in situations where very efficient numerical solution meth-

ods are created by taking advantage of the intimate relationship between matrix and polyno-
mial calculations. The Hilbert-Hankel operator, defined as si+j−1 = (i+ j − 1)−1, and the
Hilbert matrix are well-known examples of special instances. These operations are crucial
to the study of the spectral characteristics of integral operators of Carleman type [11] [16].

2.1.1 Topology of Hankel-matrix

Definition 2.1.2. When a group G is both a differentiable manifold and its group opera-
tions (multiplication and inversion) are smooth mappings on G, the group is called a Lie
group [12, 32].

Definition 2.1.3. The following conditions of a Lie algebra are satisfied by a vector space
v over a field F that is furnished with a bilinear operation [., .] : v × v → v, also known as
the Lie bracket [12, 32]: ∀l,m, n ∈ v and α1, α2 ∈ F

• Skew-symmetry: [l,m] = −[m, l].

• Jacobi identity: [l, [m,n]] + [m, [n, l]] + [n, [l,m]] = 0.

• Bilinearity: α1l+ α2m,n] = α1[l, n] + α2[m,n]and[n, α1l+ α2m] = α1[n, l] + α2[n,m].

Theorem 2.1.4. Over R+, the set of Hankel-matrices under the Hadamard product forms
a Lie group [12].

13



Theorem 2.1.5. With dimension 2n−1, the set H of Hankel-matrices over R+ is an open
connected differentiable manifold [12].

(Which can be easily shown by proofing thatH is smooth submainfold of R× R, its tangent
space at any point will have 2n−1 dimension and lastly by showing connectedness and open
nature of H).

Corollary 2.1.6. Over the Hadamard product, the set of Hankel-matrices over R+ is un-
bounded [12].

Corollary 2.1.7. Over the Hadamard product, the set of Hankel-matrices over R+ is not
compact [12].

Theorem 2.1.8. The vector space of Hankel-matrices Hn over R is isomorphic to the
tangent space at In of Hn, Hn(Hn) [31]. The commutator operation [A,B] = A◦B−B◦A =
0 is a 2n−1 dimensional Lie algebra. ◦ denotes Hadamard pairwise component product [12].

Rebuilding a quantum state from measurements is the goal of quantum state tomog-
raphy. Understanding the interrelations and symmetries of these observations in quantum
mechanics depends on knowledge of the Lie group and algebra structure of certain trans-
formation groups [12].

Definition 2.1.9. An infinite matrix (ωmk),m, k = 1, 2, . . . satisfying the following condi-
tions is called Toeplitz-matrix (T - matrix):

∞∑
k=1

|ωmk| ≤ L, m = 1, 2, . . .

where L have no relation with m;

lim
m→∞

ωmk = 0, k = 1, 2, . . . ;

lim
m→∞

∞∑
k=1

ωmk = 1.

The matrix summation technique described by transmitting a sequence {vm} to a se-
quence {τm} via the matrix (ωmk) is considered regular if these requirements are satisfied;

τm =
∞∑
k=1

ωmkvk.

O. Toeplitz demonstrated the adequacy and need of these requirements for regularity in the
context of triangular matrices.

When referring to (finite or infinite) matrices (ωjk) with the feature that ωjk relies ex-
clusively on the difference j − k, i.e., ωjk = βj−k∀j and k, the phrase Toeplitz-matrix is
also used in the literature. Similar to the Hankel-matrix, we may examine the relationships
and characteristics between Toeplitz and Hankel-matrices. Applications of finite Toeplitz-
matrices in systems theory, signal processing, and statistics are significant.
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2.2 Hankel-determinant for sub-class of analytic fun-

tions

In this section we will look up to the variations in the Hankel-determinant wrt to the sub-
classes of analytic funtions which are M(α) and Mλ(η, ϕη,m).

• [9] For z ∈ D and 0 ≤ α < 1, let f ∈ A be locally univalent, if and only if

Re

(
(1− z2)f(z)

z

)
> α, z ∈ D,

then f ∈M(α).

This class has a great influence on the theory of geometric functions because of its ge-
ometrical features [9]. For each w1, w2 ∈ f(D), a function f ∈M(α) maps univalently
D onto a domain f(D) convex in the imaginary axis direction [36]. Re(w1) = Re(w2),
where [w1, w2] is the line segment.lies in f(D), with the extra property that there
are two points on the border of f(D), namely {w1 + it : t > 0} ⊂ C\f(D) and
{w2 − it : t > 0} ⊂ C\f(D) [1].

Theorem 2.2.1. If f ∈M(α), 0 ≤ α < 1, then

H2(2)| ≤
4(1− α)(64− 37α) + 27

27
.

Also the above inequality is sharp.

Corollary 2.2.2. If f ∈M(1/2), then

H2(2)| ≤
118

27
≈ 4.3703.

Also the above inequality is sharp.

•

Definition 2.2.3. Let η ∈ C \ {0} and the class Mλ(η, ϕη,m) denote the sub-class
of Ap [11], consisting of functions f of the form (1.1), and satisfying the following
subordination condition:

1 + 1
η
(zf ′(z) + λz2f ′′(z))

1− λ (f(z) + λzf ′(z))
− 1 ≤ ϕη,m

for 0 ≤ λ ≤ 1 and ϕη,m is a simple logistic Sigmoid activation function [26].

Definition 2.2.4. Let η ∈ C \ {0} and the class M1(∗)(η, ϕn,m) denote the sub-class
of Ap [11], consisting of functions f of the form (1.1), and satisfying the following
subordination condition:

1 + 1
η
(z(f ∗ g)′(z) + λz2(f ∗ g)′′(z))

(1− λ)(f ∗ g)(z) + λ(f ∗ g)′(z)
− 1 < ϕn,m = 1 +

∞∑
m=1

(−1)m
1

2m

∞∑
n=1

(−1)n
1

n!
z−n

for 0 ≤ λ ≤ 1 and ϕn,m is a simple logistic Sigmoid activation function [26].
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Theorem 2.2.5. Let

ϕn,m(z) = 1 +
∞∑

m=1

(−1)m
1

2m

∞∑
n=1

(−1)n
1

n!
z−n

, where ϕn,m(z) ∈ A is a modified logistic Sigmoid activation function and ϕn,m(0) > 0.
If F (z) = (f ∗ g)(z) given by (1.1) belongs to the class Mλ,(∗)(η, ϕn,m) [26], then,

ap+1 + bp+1 =
(1− λ+ λp)η

2p(1 + λp)

ap+2bp+2 =
(1− λ+ λp)2η2

4p(p+ 1)(1 + λ(p+ 1))

ap+3bp+3 =
η(1− λ+ λp)(3η2 − p(η + 1))

24p(p+ 1)(p+ 2)(1 + λ(p+ 2))

Corollary 2.2.6. For coefficient ap+1, bp+1,

|ap+1bp+1| =
(1− λ+ λp)|η|
2p(1 + λp)

is written and since ϕ(λ) = (1−λ+λp)
(1+λp)

, ϕ′(λ) < 0 in the interval 0 ≤ λ ≤ 1 and ϕ(λ) is
decreasing, it will be

|η|
2(p+ 1)

≤ |ap+1bp+1| ≤
|η|
2p

for 1
2
≤ (1−λ+λp)

(1+λp)
≤ 1 [26].

Similarly, since the coefficients ap+1bp+1, ap+2bp+2 [26] and ap+3bp+3 depend on λ and
are decreasing with respect to λ, the following inequalities can be written easily:

|η|2

4(p+ 1)(p+ 2)
≤ |ap+2bp+2| ≤

|η|2

4p(p+ 1)∣∣∣∣ (η3 − p(p+ 1)η)

24(p+ 1)(p+ 2)(p+ 3)

∣∣∣∣ ≤ |ap+3bp+3| ≤
∣∣∣∣ (η3 − p(p+ 1)η)

24p(p+ 1)(p+ 2)

∣∣∣∣
Similarly, we can derive analogous results for the Toeplitz-determinant.
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Chapter 3

Petal-shaped Domain

The chapter focuses on the introduction of the petal-shaped domain and its distinctive ge-
ometric properties and results. Additionally, sharp coefficient bounds are examined. The
application of the petal-shaped domain is explored to enhance understanding through prac-
tical examples.

A family of star-like functions connected with the petal-shaped domain ρ(D) was intro-
duced by Arora and Kumar [6]. They are stated as follows [21]:

S∗
ρ = {f ∈ A :

zf ′(z)

f(z)
≺ 1 + sinh−1(z), z ∈ D}. (3.0.1)

Clearly, with its branch cuts around the line segments (−i∞,−i)∪ (i, i∞) on the imag-
inary axis, the function ρ is obviously a multivalued function and holomorphic in D [2].
Ωρ := {w ∈ C : |sinh(w − 1)| < 1} [21, 42], the petal-shaped area that defines our class,
characterized as the Ma-Minda function ρ(z) = 1 + sinh−1(z). An analytic univalent func-
tion f is said to be a Ma-Minda function with f ′(0) > 0 such that Ref(x) > 0 where x ∈ D
and f(x) symmetric about the real axis and starlike with respect to f(0) = 1 [36].
Refer Fig. 1 for better understanding of the domain of ρ(D).

From the definition of the class of starlike functions associated with the petal-shaped
domain, we concluded that f ∈ S∗

ρ if and only if we obtain a regular function r(z) where
r(z) ≺ ρ(z) [42] such that

f(z) = z exp

(∫ z

0

r(t)− 1

t
dt

)
. (3.0.2)

As ρ is observed to be univalent in D, rk(⌈) ⊂ ρ(D) and qk(0) = ρ(0) for k = 1, 2, 3,
then it follows that for each k, we get qi ≺ ρ. Therefore, fk(z) ∈ S∗

ρ where fk(z) is obtained
using (4.0.2) [21].

Now after taking r(z) = 1 + sinh−1(z) we conclude the following (4.0.2) [40] follows:

fo(z) = z exp

(∫ z

0

1 + sinh−1(t)

t
dt

)
= z + z2 +

1

2
z3 +

1

9
z4 − 1

72
z5 − 1

225
z6 + . . . , (3.0.3)
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Figure 3.1: Petal shaped domain ρ(D)

the function mentioned above serve as extremal function for the class S∗
ρ helping in obtaining

the sharp results.

We know that sinh−1 = ln(ϕc(z)), where ϕc(z) = z +
√
1 + z2. So, if we assume

that f ∈ S∗
ρ satisfies w = zf ′(z)/f(z).Next, we note that S∗

ρ can also be expressed as
exp(w − 1) ≺ ϕc(z). Here, ϕc(z) denotes the Crescent-shaped domain, bounded by two
circular arcs with common end-points, Γ1 ⊂ T (1,

√
2), and Γ2 ⊂ T (−1,

√
2), as well as i

and −i. Within the closed right half-plane lie Γ1 and Γ2. Starlike with respect to 1, ϕc(D
is a symmetric set with respect to the real axis [36]. Therefore, an exponential relation can
be between the classes S∗

ρ and ∆∗. For a more comprehensive understanding of the research
on crescent-shaped domains related to higher order starlike functions, one can refer to [5].

3.0.1 Certain properties around ρ(z):

The following section outlines some observed geometric property of 1 + sinh−1z [6, 21]:

1. The function ρ(z) is a convex univalent function, which can shown easily using the
concept of subordination around the Carathéodory class.

2. The domain Ωρ = ρ(D), where ρ′(0) > 0 and ϕc(z) = ϕc(z) is symmetric about the

real axis. Further we obtain ρ(z) = ρ(z).

3. The line Re(w) = 1 serves as the center of symmetry in the domain Ωρ.

4. Within ρ(|z| ≤ r), there is a maximal disk contained i.e., {w : |w − 1| ≤ sinh−1(r)}.

5. ρ(−r) ≤ Reρ(z) ≤ ρ(r); (|z| ≤ r < 1).

6. |Imρ(z)| ≤ 2, where (|z| ≤ 1).

7. ρ(−r) ≤ |ρ(z)| ≤ ρ(r), where (|z| ≤ r < 1).

8. |arg(ρ(z))| ≤ tan−1(1/t), where t = 4/π
√
sinh−1(1)(1− sinh−1(1)).
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3.0.2 Inclusion Relations

Researchers are usually drawn to the use of special functions in geometric function the-
ory because they have a wide range of applications in analytic univalent functions. Some
researchers introduce operators (e.g., Carlson-Shaffer operator, Hohlov operator, Dziok-
Srivastava operator [15, 41]) and get intriguing results by employing specific functions.
Driven by the same, we derive several inclusion relations that correspond to the classes
M(β), k − ST , and S∗

p .

The expression

M(β) :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
< β, z ∈ D, β > 1

}
,

describes the classM(β), which was initially examined by Uralegaddi et al [2]. Additionally,
Kanas and Wísniowska created the k − ST class of k-starlike functions [4], which may be
stated as follows:

k − ST :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> k

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ , z ∈ D, k ≥ 0

}
.

Theorem 3.0.1. The following relationships are satisfied by the class S∗
p [6, 21]:

1. S∗
p ⊂ S∗ ∩ C∗; 0 ≤ α ≤ 1− sinh−1(1);

2. S∗
p ⊂M(β); β ≥ 1 + sinh−1(1);

3. S∗
p ⊂ CS∗(γ); (2/π) tan−1(1/t) ≤ γ ≤ 1, t = 4

π
sinh−1(1)(1− sinh−1(1));

4. k − ST ⊂ S∗
p ; k ≥ 1 + sinh−1(1).

3.0.3 Sharp Coefficient Problems for the Class S∗
ρ

According to Kumar and Verma’s 2022 [6] discussion of coefficient difficulties, there exists
a Schwarz function w(z) =

∑∞
n=1wnz

n where f ∈ S∗
ρ , such that

zf ′(z)

f(z)
= 1 + sinh−1(w(z)). (3.0.4)

Now let us assume
(p(z) + 1)w(z) = (p(z)− 1)

where

p(z) = 1 +
∞∑
n=1

cnz
n ∈ P .
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In (3.0.4) comparing the corresponding coefficients of the equation after putting the values
of p(z), w(z) and f(z), we get the following relation between an and pn [21]:

a2 =
1

2
p1, a3 =

1

4
p2, a4 =

1

144

(
−p31 − 6p1p2 + 24p3

)
(3.0.5)

a5 =
1

1152

(
5p41 − 6p21p2 − 36p22 − 48p1p3 + 144p4

)
(3.0.6)

a6 =
−54p51 + 355p31p2 + 150p1p

2
2 − 1680p2p3 − 1080p1p4 + 2880p5
28800

(3.0.7)

a7 =
1

2073600

(
1031p61 − 17220p41p2 + 26100p21p

2
2 + 9000p32 + 19200p31p3 + 33120p1p2p3

(3.0.8)

−57600p23 + 4320p21p4 − 108000p2p4 − 69120p1p5
)

(3.0.9)

Theorem 3.0.2. Let f(z) be an analytic function ∈ S∗
ρ , then the sharpness of following

bounds can been seen |a2| ≤ 1, |a3| ≤ 1/2, |a4| ≤ 1/3, and |a5| ≤ 907/1632 ≈ 0.55576.

3.0.4 Application

Petal-shaped domains have far-reaching applications across various fields, from statistical
mechanics, probability theory, dynamical systems, quantum field theory,signal processing,
image detection and processing. These domains help model, analyze, and understand com-
plex systems and their behaviors in real-world scenarios.

Image edge detection

A key component in the creation of complex analysis is GFT. While many scholars have
examined the geometrical characteristics of different sub-classes of analytic functions, very
few have examined the use of GFT in image processing [29]. Therefore, this work aims
to develop a novel approach for improving edge recognition in pictures by utilizing the
coefficients found for the SCt,ρ sub-class (CSKP model) [29].Five quality metrics—contrast,
correlation, energy, homogeneity, and entropy have been applied in our method. We have
displayed the metrics values for a number of photographs using these quality measures [29]:

1. A measurement of the minute differences that comprise an image is called Contrast.

2. Correlation examines the linearity of the picture.

3. The GLCM’s squared element sum is measured by Energy.

4. The co-occurrence matrix of a homogeneous picture, or Homogeneity, will have both
broad and narrow k[i, j] values.

5. The unit of measurement for information content is Entropy. It measures the volatility
of the intensity distribution.
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Such a matrix, where the distance vector d contains no preferred pairs of gray levels, is
used to represent an image [29] . When the magnitudes of all the k[i, j] entries are the same,
entropy is at its highest, and when the magnitudes of the k[i, j] entries differ, it is at its
lowest. One method for locating the picture edges needed to calculate the approximate ab-
solute gradient magnitude at each location in a grayscale input image is edge detection [29].
The technique being employed makes it difficult to determine the proper absolute gradient
magnitude for edges. The Sobel measures a two-dimensional spatial gradient applied to im-
ages.A statistically uncorrelated dataset is used to transmit a two-dimensional pixel array in
order to minimize the amount of data needed to represent a digital image. This edge detec-
tor uses two 3× 3 convolution masks, one for estimating gradients in the x-orientation and
one for estimating gradients in the y-orientation [29]. The Sobel detector’s great sensitivity
to noise allows it to efficiently show noise as edges in photographs. As such, this operator is
suggested in talks involving huge volumes of data that are detected during data transfer [29].

The image is convolued with each of the masks.At every pixel point, there are two numbers:
Q1 and Q2, which stand for the row’s and column’s respective outputs from the mask. After
applying equations (3.0.10) and (3.0.11) to those values, two matrices—the edge magnitude
and orientation—are calculated:

Edge magnitude =
√
Q2

1 +Q2
2 (3.0.10)

Edge direction = tan−1Q1

Q2

(3.0.11)

We have developed a novel edge detection improvement technique in this work by utilizing
the ideas of convolution, kernels, and coefficient limits. To improve the outcomes, the
parameter values were changed [29]. It is clear from a comparison of the other outcomes
that the suggested strategy yields satisfactory results. The suggested method’s limitation
is that it won’t yield a better image if we select an image with a lot of noise. We want to
address this weakness in the future and create a modified edge detecting method.

Borel distribution

Numerous academics have thoroughly examined distributions including the binomial, Pois-
son, Pascal, logarithm, and hyper-geometric, as well as their applications to the class of
univalent functions, from a variety of angles [30]. The application of the Borel distribution
to the function class RKsinh(β) outcomes is now covered [30].

Definition 3.0.3. [30] Let ∆ be a unit disk and 0 ≤ θ ≤ 1. If a function f ∈ A meets the
following subordination requirement, it is said to be in the class RKsinh(θ) [36].(

f ′(z)

f ′(z)

)θ (
f ′′(z)

f ′(z)

)1−θ

≤ 1 + sinh−1 z, z ∈ ∆.

Note that

RKsinh(0) = Ksinh =

{
f ∈ A :

f ′′(z)

f ′(z)
≤ 1 + sinh−1 z, z ∈ ∆

}
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and
RKsinh(1) = BTs =

{
f ∈ A : f ′(z) ≤ 1 + sinh−1 z, z ∈ ∆

}
.

Theorem 3.0.4. [30] If f be an analytic function ∈ RKsinh(θ). Then, for any ν ∈ C, we
have

|a3 − νa2| ≤
1√

3(2− θ)
max

{
1,

3(2− θ)ν − 4(1− θ)

4

}
.

Theorem 3.0.5. [30] If f be an analytic function ∈ RKsinh(θ), then for any ν ∈ R, we
have

|a3 − νa2| ≤


√

4(1−θ)3−3(2−θ)2

12(2−θ)
if ν ≤ −4θ

3(2−θ)
,

1√
3(2−θ)

if − 4θ
3(2−θ)

< ν ≤ 4
3
,√

3(2−θ)ν−4(1−θ)
12(2−θ)

if ν > 4
3
.

If p(x) for a discrete random variableX has the formula p(x = r) = (υr)r−1e−υr/r!, r =
1, 2, 3, . . ., then X is said to follow a Borel distribution with parameter υ [30].

A power series whose coefficients reflect the probabilities of the Borel distribution was
recently developed by Wanas and Khuttar [30] [36]. It looks like this:

M(υ, z) = z +
∞∑
n=2

(υ(n− 1))n−2 e−υ(n−1)zn/(n− 1)!

In this case, 0 ≤ υ. It is possible to demonstrate that the radius of convergence of the
aforementioned series is infinite by applying the ratio test. We will now provide the linear
operator Iυ : A → A

Iυ(f)(z) =M(υ, z) ∗ f(z)

= z +
∞∑
n=2

(υ(n− 1)n−2e−υ(n−1

(n− 1)!
anz

n

= z +
∞∑
n=2

αn(υ)anz
n

= z + α2a2z
2 + α3a3z

3 + · · · , (3.0.12)

where αn = αn(υ).

The following is how we define the class RKυ
sinh:

RKυ
sinh(θ) = {f ∈ A : Iυ(f) ∈ RKυ

sinh(θ)}

.

The Fekete-Szegö functional and coefficient bounds for the class RKυ
sinh may be obtained

from the equivalent estimates for the function of the class RKυ
sinh in the same manner as

in Theorems 3.0.4 and 3.0.5 [30].
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Theorem 3.0.6. [30] Let 0 ≤ θ ≤ 1 and Iυf given by (3.0.12). If f ∈ RKυ
sinh(θ), then for

any ν ∈ C, we have

|a3 − νa22| ≤
1

3(2− θ)α3

max

{
1,

(θα3 − 4α2)
2 + 3(2− θ)να3

4α2
2

}
.

Theorem 3.0.7. [30] Let 0 ≤ θ ≤ 1 and Lυf given by (3.0.12). For any ν ∈ R, we have

∣∣a3 − νa22
∣∣ ≤


4α2

2(1−α3)−3(2−θ)α3ν

12α2
2(2−θ)α3

, ν ≤ −4θα2
2

3(2−θ)
,

1
3(2−θ)α3

, − 4θα2
2

3(2−θ)
≤ ν ≤ 4α2

2(2−θα3)

3(2−θ)α3
,

3(2−θ)α3ν−4α2
2(1−α3)

12α2
2(2−θ)α3

, ν > 4(2−θα3)2

3(2−θ)α3
.

The use of (p, q)−calculus, or more precisely q−calculus, has become more important in
the theory of geometric function theory of complex analysis in recent years [30]. The class
RKsinh(θ) may be altered by researchers using q−calculus, and all of this paper’s findings
can be expanded to the study of analytic or meromorphic functions [15, 30].
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Chapter 4

Logarithmic Coefficient and Inverse Logarithmic

Coefficient

The aim of this chapter to study about Logarithmic coefficients and Inverse Logarithmic co-
efficients. Additionally we’ll also see the theorems on logarithmic and Inverse Logarithmic
coefficients bounds for second order Hankel Dterminant.

Definition 4.0.1. (Logarithmic coefficients) [27] The logarithmic coefficients γn of the
function f ∈ S are defined with the help of given power series:

Ff (z) := log
f(z)

z
= 2

∞∑
n=1

γn(f)z
n z ∈ D \ {0} (4.0.1)

In the above equation γn(f) are refered to as logarithmic coefficients of f . We mostly
use γn instead of γn(f).

Theorem 4.0.2. (Milin’s conjecture) [10] [11] According to Milin’s conjecture , if f ∈ S,
then

n∑
m=1

n∑
k=1

k|Yk|2 −
1

k
≤ 0.

where the equivalence is valid only in the case that f is the Koebe function’s rotation.
The Milin hypothesis, which supported the well-known Bieberbach conjecture, was demon-
strated by De Branges. One of the reasons that logarithmic coefficients came into light
was estimation of the sharp bound for the class S. Since the Koebe function k plays the
role of extremal function for most of the extremal problems in the class S, it is expected
that |γn| ≤ 1/n holds for functions in S. But this is not true in general, even in order of
magnitude.
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Theorem 4.0.3. (Logarithmic Coefficients sharp bounds for class S) [27] For the
class S, sharp logarithmic coefficients for n = 1 and n = 2 are given below:

|Y1| ≤ 1, |Y2| ≤ 1/2 + 1/e2.

Until now it is known for only Y1 and Y2. The challenge of finding Sharp bounds of
Yn, n ≥ 3, remains unsolved.

Theorem 4.0.4. (Lemma) [27,37] By differentiating (4.0.1) and the equating coefficients
we obtain Logarithmic coefficients:

Y1 =
1

2
a2,

Y2 =
1

2

(
a3 −

1

2
a22

)
,

Y3 =
1

4

(
a4 − a2a3 +

1

3
a32

)
.

Y4 =
1

2

(
a5 − a2a4 + a22a3 −

1

2
a23 −

1

4
a42

)
Y5 =

1

2

(
a6 − a2a5 − a3a4 + a2a

2
3 + a22a4 − a32a3 +

1

5
a52

)
For f ∈ S, it is easy to show that |γ1| ≤ 1.

Then for f ∈ S:

H2,1(Ff ) = Y1Y3 − Y 2
2 =

1

4

(
a2a4 − a23 +

1

12
a42

)
.

Observing that under rotation, H2,1(Ff/2) is invariant, so at this point it is appropriate
because for fθ(z) := e−iθf(eiθz), θ ∈ R when f ∈ S [10, 36], we obtain

H2,1(Ffθ/2) =
e4iθ

4

(
a2a4 − a23 +

1

12
a42

)
= e4iθH2,1(Ff/2).

Theorem 4.0.5. (Fekete-Szegö inequality) [17] The Fekete-Szegö inequality states that
if

f(z) = z +
∞∑
n=2

anz
n

is a univalent analytic function on the unit disk and λ ∈ [0, 1) then

|a3 − λa22| ≤ 1 + 2exp(−2λ/(1− λ)).

Definition 4.0.6. Koebe 1/4 theorem [7, 37] Let f : D → C be a univalent map. If
f(0) = 0 and |f ′(0)| = 1, then the image f(D) contains the disk D(0, 1/4) [15] i.e.

{w; |w| < 1/4} ⊂ f(D).
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This constant 1/4 is sharp. This value is achieved by the Koebe function k(z) =
z/(1 − z)2 which conformally maps D onto the slit plane C \ (−∞,−1/4]. In fact, this
function serves as the extremal function in many other results in geometric function the-
ory [14].
The 1/4-theorem put forward by Köebe allows us to define the inverse function F of f in a
specific neighborhood of origin [15].

Definition 4.0.7. (Inverse Logarithmic coefficients) [37] Inverse function F of f in a
specific neighborhood of origin as follows:

F (w) := f –1(w) = w +
∞∑
n=2

Anw
n; |w| < 1. (4.0.2)

The logarithmic inverse coefficients Γs, s ∈ N, of F are determined by the equation

log

(
F (z)

z

)
= 2

∞∑
s=1

Γsw
s; |w| < 1

4
.

Ponnusamy examined the logarithmic coefficients of the inverses of univalent functions
that if f ∈ S, then

|Γs(F )| ≤
1

2s

(
2s

s

)
and it was shown that equality for the above expression holds only either Köebe function
or its rotations.

4.1 Estimation of the Hankel-determinant on Loga-

rithmic coefficients

The estimation of the Hankel-determinant on logarithmic coefficients for starlike functions
in the petal-shaped domain ρ(D) will be the main part of this section [39]. Some significant
lemmas that are crucial to the estimate of the theorems are provided in this section.

Lemma 4.1.1. [23, 27, 32]: If p ∈ P of the form p(z) = 1 + c1z + c2z
2 + c3z

3 + . . ., with
c1 ≥ 0, then

c1 = 2η1 (4.1.1)

c2 = 2η21 + 2(1− η21)η2 (4.1.2)

c3 = 2η31 + 4(1− η21)η1η2 − 2(1− η21)η1η
2
2 + 2(1− η21)(1− |η2|2)η3 (4.1.3)

for some η1 ∈ [0, 1] and η2, η3 ∈ D̄ := {z ∈ C : |z| < 1}. For η1 ∈ D and η2 ∈ T then
z ∈ C; |z| = 1, there is a unique function p ∈ P with c1 and c2 as in (4.1.1), (4.1.2), and
(4.1.3),

p(z) =
1 + (η̄1η2 + η1)z + η2z

2

1 + (η̄1η2 − η1)z − η2z2
(4.1.4)
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where z ∈ D.
For η1, η2 ∈ D and η3 ∈ T ∃ a unique p ∈ P with c1, c2 and c3 as in (4.1.1), (4.1.2),

(4.1.3), namely,

1 + η̄1η2 + η̄2η3 + η1)z + η̄1η3 + η1 + η1η̄2η3 + η2)z
2 + η3z

3

1 + (η̄1η2 + η̄2η3 − η1)z + (η̄1η3 − η1η̄2η3 − η2)z2 − η3z3
(4.1.5)

where z ∈ D̄.

Lemma 4.1.2. [24]: If A, B, C ∈ R, let us consider

Y (A,B,C) := max{|A+Bz + Cz2|+ 1− |z|2 : z ∈ D}

1. If AC ≥ 0, then

Y (A,B,C) :=


|A|+ |B|+ |C|, |B| ≤ 2(1− |C|),

1 + |A|+ B2

4(1−|C|) , |B| < 2(1− |C|).

2. If AC < 0, then

Y (A,B,C) :=



1− |A|+ |B|
4(1−|C|) , −4AC(C−2 − 1) ≤ B2|B| < 2(1− |C|),

1 + |A|+ B2

4(1+|C|) , B2 < min{4(1 + |C|2),−4AC(C−2 − 1)}

R(A,B,C), else.

where

R(A,B,C) :=



|A|+ |B| − |C|, |C|(|B|+ 4|A|) ≤ |AB|,

−|A|+ |B|+ |C|, |AB| ≤ |C|(|B| − 4|A|),

(|C|+ |A|)
√
1− B2

4AC
, else.

Now we’ll estimate the Hankel-determinant on logarithmic coefficients for starlike func-
tions in the petal-shaped domain ρ(D).

Theorem 4.1.3. [3] If we assume that f ∈ S∗
s and Ff be given by (1.1), then the Hankel-

determinant bound for Ff is proposed by the following inequality

|H1,2(Ff )| ≤
1

16
. (4.1.6)

Above inequality is sharp.
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Proof. Let us suppose that f ∈ A [36] satisfying ithe following equation,

2zf ′(z)

f(z)− f(−z)
= p(z), (4.1.7)

where p ∈ P is provided by [27]. Since it is known that class P is invariant under
rotation, we take c1 ∈ [0, 2]. We express the coefficients of f(z), a

′
is (i = 1, 2, 3, 4) in the

form of p
′
is (i = 1, 2, 3) using the (4.1.7) equation in the following manner,

a2 =
1

2
p1, a3 =

1

4
p2, a4 =

1

144

(
−p31 − 6p1p2 + 24p3

)
. (4.1.8)

The following expression of η
′
is, where ηi ∈ D̄ (i = 1, 2, 3, 4) is obtained by using the

Lemma (4.1.1).

L := γ1γ3 − γ22

=
1

2
a2

1

4
(a4 − a2a3 +

1

3
a32)−

1

2
(a3 −

1

2
a22)

2

=
1

576
(−p41 + 3p21p2− 9p22 + 6p1p3)

=
1

144
(−η41 − 9η22 + 12η21η

2
2 − 3η41η

2
2 + 6η1η2 − 6η31η3 − 6η1η3|η22|+ 6η31η3|η2|2)

Above Expression leads to,

|L| =


1
16
, η1 = 0,

1
144
, η1 = 1,

For η1 ∈ (0, 1) and inequality |η3| ≤ 1, using Lemma (4.1.1) and the expression for L ,
the following inequality is obtained.

|L| = 1

24
η1(1− η21)Ψ(A,B,C) (4.1.9)

where

A =
−η31

6(1− η21)
, B = 0, C =

η21 − 3

2η1
. (4.1.10)

We now examine the following cases in the context of Lemma 4.1.2 [27], based on the
compositions of A, B, and C given in (4.1.10).

I. Suppose η1 ∈ X = (0, 1). Clearly, we can observe that AC is greater than 0 and
equality holds when η1 approaches to 0.
Since |B| − 2(1− |C|) is an increasing function on X, which is equal to (4− η1(2 + η1))/η1.
Therefore, by using Lemma 1.1 to solve inequality (4.1.9), we will arrive at

|L| ≤ 1

24
η1(1− η21)(1 + |A|+ B2

4(1− |C|)
)
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here, onwards

=
1

144
(6η1 − 6η31 + η41)

So from above result we can see that inequality (4.1.6) holds.

Finally, the bound’s sharpness is need to be shown. If we consider the function defined in
(4.2.7) with a3 = 1/8 and a2 = a4 = 0, then it is simply demonstrated by a straightforward
computation that |H2,1(Ff )| = 1/16.

4.2 Estimation of the Hankel-determinant on Inverse

Logarithmic coefficients

Now we’ll do the estimation of the Hankel-determinant on coefficients of inverse logarithmic
starlike functions in the petal-shaped domain ρ(D) [39].

Theorem 4.2.1. If we assume that f ∈ S∗
s and Ff be given by (1.1) [3], then the Hankel-

determinant bound for Ff is proposed by the following inequality

|H1,2(Ff )| ≤
1

9
. (4.2.1)

Above inequality is sharp [39].

Proof. Let us suppose that f ∈ A satisfying the following equation,

2zf ′(z)

f(z)− f(−z)
= p(z), (4.2.2)

where p ∈ P . Since it is known that class P is invariant under rotation, we take c1 ∈ [0, 2] [3].
We express the coefficients of f(z), a

′
is (i = 1, 2, 3, 4) in the form of p

′
is (i = 1, 2, 3) using

the (4.1.7) equation in the following manner,

a2 =
1

2
p1, a3 =

1

4
p2, a4 =

1

144

(
−p31 − 6p1p2 + 24p3

)
. (4.2.3)

Ponnusamy et al. [17] examined the logarithmic coefficients of the inverses of univalent
functions.

ζ1 =
−1

2
a2, ζ2 =

−1

2
a3 +

3

4
a22, ζ3 =

−1

2
a4 + 2a2a3 −

5

3
a32. (4.2.4)

The following expressions is given in terms of η
′
is using Lemma 4.1.1, where ηi ∈ D̄ (i =

1, 2, 3, 4).

29



here, onwards

L : = γ1γ3 − γ22

=
−1

2
a2

−1

2
(a4 − 4a2a3 +

10

3
a32)−

−1

2
(a3 −

3

2
a22)

2

=
1

576
(−p41 + 3p21p2− 9p22 + 6p1p3)

=
1

2304
37p41 − 48p21p2 − 36p22 + 48p1p3

=
1

144
(6ζ21 (−3 + ζ2)ζ2 − 9ζ22 + ζ41 (16 + 18ζ2 + 3ζ22 ) + 12ζ1ζ3 − 12ζ31ζ3

+12ζ1(−1 + ζ21 )ζ3|ζ2|)2

Above expression leads to,

|L| =


11
144
, ζ1 = 0,

1
9
, ζ1 = 1.

Using the above computation of L along with the help of Lemma 4.1.1 we achieve the
subsequent inequality for ζ1 ∈ (0, 1) and |ζ3| ≤ 1:

|L| = 1

24
ζ1(1− ζ21 )Ψ(A,B,C) (4.2.5)

where

A =
−ζ31

6(1− ζ21 )
, B = 0, C =

ζ21 − 3

2ζ1
. (4.2.6)

We now examine the following cases in the context of Lemma 4.1.2 [27], based on the com-
positions of A, B, and C given in (4.2.6).
Suppose ζ1 ∈ X = (0, 1). Clearly, we can observe that AC is less than 0. This case demands
the following subcases:

(a) Simply for each ζ1 ∈ X

T1(ζ1) := |B| − 2(1− |C|) = −2

(
1− 3

4∥ζ1|

)
< 0

implies
|B| < 2(1− |C|)

T2(ζ1) := −4AC

(
1

C2
− 1

)
−B2 =

4ζ21
1 = ζ2

(
16ζ21
9

− 1

)
> 0

implies

= −4AC

(
1

C2
− 1

)
≤ B2.
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Here, onwards We can infer from the above computations that there is only empty
set that belongs to T1(X∗) ∩ T2(X∗). Consequently, for every ζ1 ∈ X, this case does
not occur, as stated by Lemma 4.1.2.

(b) In view of ζ1 ∈ X, [27] the relation 4(1 + |C|)2 and −4AC
(

1
C2 − 1)

)
become

T3(ζ1) := 4(1 + |C|)2 = 4

(
1 +

3

4ζ1

)2

T4(ζ1) := −4AC

(
1

C2
− 1

)
= T2(ζ1) =

4ζ21 (16ζ
2
1 − 9)

9(1− ζ21

T3(x) = 4

(
1 +

3

4x

)2

=
9 + 24x+ 16x2

4x2
, x ∈ (0, 1)

T3(1) =
49

16

T
′

3(x) =
24 + 32x

4x2
− 9 + 24x+ 16x2

2x3

Therefore, T
′
3(x) is non vanishing as, T

′
3(1) = −21/2 and T3(x) < 49/4.

T4(x) =
4x2(16x2 − 9)

9(1− x2)
> 0

Thus inequality below holds for any ζ1 ∈ X,

B2 = 0 < min{4T3(x), T4(x)} = 4T3(x).

Due to Lemma 4.1.1 and value of L in terms of ζ1, ζ2, ζ3, and (4.2.5),

L =
1

24
ζ1(1− ζ21 )

(
1 + |A|+ B2

4(1− |C|)

)
=

1

144
.

(c) The inequality does not hold for any ζ1 ∈ X, as |C|(|B|+ 4|A| − |AB|) = 4(ζ21 )/(1−
ζ21 ) ≥ 0.

(d) The inequality does not hold for any ζ1 ∈ X, as |AB| − |C|(|B| − 4|A|) which is equal
to |AB| − |C|(|B| − 4|A|) = 4(ζ21 )/(1− ζ21 ≥ 0.

So from above result we can see that inequality (4.2.1) follows. Finally, the bound’s sharp-
ness is need to be shown. If we consider the function defined as:

fo(z) = z exp

(∫ z

0

1 + sinh−1(t)

t
dt

)
= z + z2 +

1

2
z3 +

1

9
z4 − 1

72
z5 − 1

225
z6 + . . . , (4.2.7)

with a2 = a4 = 0 and a3 = 2/9, then it is simply demonstrated by a straightforward
computation that |H2,1(Ff )| = 1/9.

31



Chapter 5

Conclusion

This conclusion chapter summarizes the work carried out in this dissertation and sug-
gests possible directions for future research. Utilizing the methodology of coefficient prob-
lems and leveraging known results from the Carathéodory class, this dissertation investigates
the variation in bounds of the Hankel-determinant when its entries correspond to logarith-
mic and inverse logarithmic coefficients within the domain of petal-shaped ρ(D). These
findings are detailed in Chapter 4.
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