
 

 

LONG-TERM ASSESSMENT OF GOMTI RIVER 

WATER QUALITY AT SULTANPUR, INDIA: A 

MULTIDIMENSIONAL APPROACH 

Thesis Submitted 

in Partial Fulfilment of the Requirements For the 

Degree of 

MASTER OF TECHNOLOGY 

IN 

ENVIRONMENTAL ENGINEERING 

by 

MIHIKA SAXENA 

(Roll No. 2K22/ENE/01) 

Under the supervision of 

Dr. RAJEEV KUMAR MISHRA 

 

DEPARTMENT OF ENVIRONMENTAL ENGINEERING 

DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College of Engineering) 

Bawana Road, Delhi-110042 

June, 2024 



i 

 

DELHI TECHNOLOGICAL UNIVERSITY  

(Formerly Delhi College of Engineering)  

Bawana Road, Delhi-110042 

 

  

CANDIDATE’S DECLARATION 

 

 

I, Mihika Saxena, Roll No. 2K22/ENE/01 student of M. Tech (Environmental Engineering), 

hereby declare that the project Dissertation titled “Long-term Assessment of Gomti River 

Water Quality at Sultanpur, India: A Multidimensional Approach” which is submitted by me to 

the Department of Environmental Engineering, Delhi Technological University, Delhi in partial 

fulfilment of the requirement for the award of the degree of Master of Technology, is original 

and not copied from any source without proper citation. This work has not previously formed 

the basis for the award of any Degree, Diploma Associateship, Fellowship or other similar title 

or recognition.  

 

   

   

Place: New Delhi                                                                                         MIHIKA SAXENA 

Date:   

      

 

  



ii 

 

DEPARTMENT OF ENVIRONMENTAL ENGINEERING 

DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College of Engineering) 

Bawana Road, Delhi-110042 

 

 

CERTIFICATE 
 

 

I hereby certify that the Project Dissertation titled “Long-term Assessment of Gomti River 

Water Quality at Sultanpur, India: A Multidimensional Approach” which is submitted by 

Mihika Saxena, Roll No. 2K22/ENE/01, Department of Environmental Engineering, Delhi 

Technological University, Delhi in partial fulfilment of the requirement for the award of the 

degree of Master of Technology, is a record of the project work carried out by the student under 

my supervision. To the best of my knowledge this work has not been submitted in part or full 

for any Degree or Diploma to this University or elsewhere.   

  

  

Place: New Delhi                                                                DR. RAJEEV KUMAR MISHRA 

Date:                                                                                                                   SUPERVISOR 

                           

  



iii 

 

ABSTRACT 

 

The Gomti River, a prominent groundwater-fed river in Uttar Pradesh, India, faces significant 

pollution pressures from industrial effluents and domestic wastewater. This study presents a 

comprehensive analysis of the Gomti River's water quality at Sultanpur over 20 years (1998-

2017), employing Water Quality Indices (WQIs) and multivariate statistical techniques to 

evaluate pollution levels and identify key factors influencing water quality. The water quality 

was assessed using four WQIs: Comprehensive Pollution Index (CPI), Synthetic Pollution 

Index (SPI), Nemerow's Pollution Index (NPI), and Arithmetic Water Quality Index (AWQI). 

Descriptive statistics were calculated for key physico-chemical parameters such as Dissolved 

Oxygen (DO), pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Biochemical 

Oxygen Demand (BOD), Total Hardness (TH), and major ions and nutrients (e.g., Sodium, 

Potassium, Calcium, Magnesium, Nitrate, Total Phosphorus, Chloride, Sulphate, Ammonia, 

Fluoride, Boron). Principal Component Analysis (PCA) and Cluster Analysis (CA) were used 

to identify major pollution sources and temporal variations. The study found that the mean 

values for DO, pH, EC, TDS, and BOD were 6.92 ± 1.18 mg/L, 8.39 ± 0.35, 388.49 ± 109.75 

µS/cm, 312.87 ± 102.62 mg/L, and 2.65 ± 0.74 mg/L, respectively. DO levels fluctuated 

between 3.0 mg/L and 11.8 mg/L, indicating varying oxygen availability for aquatic life. The 

pH ranged from 7.6 to 9.2, reflecting slightly alkaline conditions. EC and TDS values exceeded 

recommended limits at certain times, highlighting potential sources of pollution from 

agricultural runoff and industrial discharges. BOD values indicated moderate organic pollution 

(2.65 mg/L), with occasional peaks suggesting episodic pollution events. PCA revealed that 

the key parameters derived through principal components affecting the water quality indices 

throughout the study were Total Hardness (TH), Total Dissolved Solids (TDS), Magnesium 

(Mg2+), Total Alkalinity (TA), Chloride (Cl-), Potassium (K+), Sodium (Na+), pH, Dissolved 
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Oxygen (DO), Fluoride (F-), Sulphate (SO4
2-), and Boron (B) with a total cumulative variance 

of 62.39% in the dataset. Over the past two decades, a comprehensive water quality assessment 

indicates an improvement. The analysis of water quality indices provides a comprehensive 

overview of the pollution status. The Comprehensive Pollution Index (CPI) findings suggest 

that the water quality was categorized as Slightly Polluted (0.41-1.00) 90% of the time, while 

the remaining 10% fell within the Sub-Clean range (0.21-0.40). According to the Synthetic 

Pollution Index (SPI), water quality was classified as Slightly Polluted (0.21-0.40) in 45% of 

observations and as Suitable for Drinking (≤0.20) in 55% of cases. Nemerow's Pollution Index 

(NPI) revealed that water quality was Lightly Polluted (1-2) in 18% of the samples, whereas 

82% were categorized as Not Polluted (≤1). The Arithmetic Water Quality Index (AWQI) 

showed that 78% of the water samples were rated as Poor (51-75), 18% as Very Poor (76-100), 

and only 4% as Good (26-50). Regression analysis revealed significant correlations between 

PCA-derived parameters and the original CPI-based WQI, with R² value (0.83) indicating 

strong predictive power for water quality assessment. The study also identified seasonal 

variations in water quality, with higher pollution levels during the dry season due to reduced 

dilution and increased pollutant concentration. The findings emphasize the need for continuous 

monitoring and effective management strategies to mitigate pollution and improve the Gomti 

River's water quality. Implementing comprehensive governance frameworks and advanced 

analytical techniques can lead to significant improvements, benefiting both the ecosystem and 

the local population. This study contributes valuable insights for policymakers and 

stakeholders in understanding sustainable water management practices and ensuring the long-

term health of river ecosystems. 

Keywords: Gomti River, Multivariate Statistical Analysis, Regression Analysis, Water Quality 

Index 
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CHAPTER 1  
 

INTRODUCTION  
 

1.1. GENERAL BACKGROUND OF STUDY 

A safe and adequate freshwater supply is essential for functioning ecosystems and 

socioeconomic development  (Singha et al., 2004; Hussain et al., 2012; Karthik and 

Lekshmanaswamy 2018). Rivers and lakes are significant sources of freshwater, supporting 

domestic, agricultural, transportation, and industrial activities. Historically, many civilizations 

thrived along rivers due to the economic and agricultural benefits they provided (Kaushik et 

al., 2009; Tavakoly et al., 2019). However, rapid industrialization, urbanization, and population 

shifts are increasingly threatening the quality of freshwater resources (Pius et al., 2011; Hussain 

et al., 2012; Yeliz and Sen 2019). 

Seasonal variations in precipitation, surface runoff, groundwater flow, and water interception 

affect both the quality and quantity of water (Krishan et al., 2022a). Surface water sources are 

pathways for various hazardous substances from human activities or natural processes, posing 

risks to biotic species. Monitoring these water sources is crucial for generating reliable data to 

prevent and control pollution (Hanh 2011; Vinod et al., 2013; Batabyal and Chakrobarty 2015). 

Effective long-term water quality management requires a comprehensive understanding of the 

water’s physical, chemical, and biological characteristics.  

Water resource management impacts nearly every aspect of society and the economy, including 

health, food production, household water supply, sanitation, energy, industry, and urban 

ecosystems (Xiao 1996). In India, six hundred million people face severe water stress, with 

inadequate action potentially leading to a prolonged water crisis (Khan et al., 2021a). Pollution 

from industry, agriculture, and domestic sources is concentrated along rivers. Industrial 

processes, agricultural runoff, and urban wastewater introduce pollutants such as fertilizers, 

pesticides, heavy metals, and chemicals into rivers. These pollutants affect water quality, 

leading to issues like eutrophication and reduced dissolved oxygen levels, which harm aquatic 

life (Hanh 2011). Effective water management must address these pollution sources to ensure 

the sustainability of freshwater resources. 
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1.2. GLOBAL WATER RESERVE 

About 70% of the Earth's surface is covered with water (about 1.4 billion km³ of water), but 

less than 3% is freshwater, and much of it is inaccessible in glaciers and ice caps (Wu et al., 

2020). The majority, 96.5%, is saltwater found in oceans, with desalination methods like 

thermal or reverse osmosis not being commercially viable (Kizar 2018). Fig.1.1 describes the 

global distribution of water resources. 

 

Figure 1.1 Distribution of Water Resources on Planet Earth 

(Source: https://www.usgs.gov/media/images/distribution-water-and-above-earth) 

Fig. 1.1 shows freshwater constitutes a mere 2.5% of the total water resources. This limited 

freshwater is further categorized into different storage forms. A significant portion, 

approximately 68.7%, is trapped in icecaps and glaciers, making it largely inaccessible for 

direct human use. Another 30.1% of the freshwater is stored as groundwater, which, while more 

accessible than ice, still requires extraction for utilization. Surface freshwater, vital for most of 

life’s needs, represents just over 1.2% of the total freshwater. Within the surface freshwater 

category, lakes hold the majority, containing 21% of this accessible water (Fig. 1.1). Although 

rivers make up only a small fraction of the surface freshwater, they play a crucial role in human 

water supply due to their accessibility and the volume of water they transport across various 

landscapes. This distribution underscores the critical need to effectively manage and conserve 

freshwater resources to sustain human, plant, and animal life (Shiklomanov 1993; Chang 

2002). 

https://www.usgs.gov/media/images/distribution-water-and-above-earth
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1.3. WATER RESOURCES IN INDIA 

With 2.45% of the world's surface area, India holds 4% of global water resources and supports 

about 16% of the world's population. India receives approximately 4,000 cubic km of water 

annually from precipitation, with an average precipitation of 1170 mm per year. The total 

available surface water and replenishable groundwater is 1,869 cubic km, but only 60% of this, 

or 1,122 cubic km, is utilizable. India's surface water resources include rivers, lakes, ponds, 

and tanks, with an estimated mean annual flow of 1,869 cubic km in all river basins. However, 

only about 690 cubic km, or 37%, of the surface water is usable due to seasonal flow variations 

and limited suitable storage sites (Kumar et al., 2005). Over 90% of Himalayan rivers' annual 

flow occurs within four months, complicating resource capture and storage. Groundwater 

resources in India are approximately 432 cubic km, with the Ganga and Brahmaputra basins 

holding about 46% of these resources (Goyal and Surampalli 2018). High groundwater 

utilization is observed in the north-western river basins and parts of southern India, especially 

in Punjab, Haryana, Rajasthan, and Tamil Nadu. In contrast, states like Chhattisgarh, Odisha, 

and Kerala utilize a smaller proportion of their groundwater potential. Groundwater accounts 

for over 50% of the irrigated area in India, with about 20 million tube wells installed. India has 

constructed nearly 5,000 major or medium dams and barrages to store river water and recharge 

groundwater. Agriculture primarily uses surface and groundwater, consuming 89% of surface 

water and 92% of groundwater. The industrial sector uses 2% of surface water and 5% of 

groundwater, while the domestic sector accounts for 9% of surface water use, higher than its 

groundwater use (Chang 2002; Venugopal et al., 2009).  
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Figure 1.2 Indian River Map (Source:  https://www.mapsofindia.com/maps/rivers/) 

Cities like Haridwar, Rishikesh, Ayodhya, Varanasi, and Delhi flourished along rivers, 

benefiting from their resources and cultural significance. Over time, rivers became central to 

social and religious events. Fig. 1.2 depicts a detailed map of India, highlighting all its major 

rivers. Festivals like Kumbh Mela and Makar Sankranti involve ritual bathing in rivers, 

symbolizing both tradition and river conservation (Gautam et al., 2015). This deep connection 

has turned rivers into vital symbols of life and culture (Iqbal et al., 2019). Historically, human 

activities such as population growth, urbanization, and agriculture coexisted harmoniously with 

rivers. However, rapid industrialization and urbanization have disrupted this balance, 

negatively impacting river ecosystems and society (Yadav et al., 2009; Arumugam 2010). Once 

blessings, rivers now face pollution, ecosystem disruption, and altered dynamics due to human 

https://www.mapsofindia.com/maps/rivers/
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interference (Helena et al., 2000; Utete and Fregene 2020). Despite these challenges, rivers 

remain replenishable resources integral to the hydrological cycle, ensuring continuous water 

flow on Earth (Romero et al., 2016). They are crucial for navigation, tourism, and providing 

freshwater for domestic, agricultural, and commercial purposes (Krishan et al., 2022a). Rivers 

play essential roles in nutrient transport, waste assimilation, and flood and drought regulation, 

with their health indicated by water quality, ecological condition, and flow (Cude 2001; Karthik 

and Lekshmanaswamy 2018). 

1.4. RIVER POLLUTION 

The health of rivers directly impacts national progress and ecological stability, highlighting the 

intertwined destinies of natural water systems and human prosperity (Prasad et al., 2016). 

Human activities, particularly domestic, industrial, and agricultural, often lead to 

environmental degradation. Rapid industrialization and urbanization have resulted in 

megacities that strain surrounding ecosystems (Zutshi et al., 1980; Singh et al., 2015). This 

development drives mass rural-urban migration, placing additional pressure on freshwater 

bodies crucial to urban growth. Over a billion people, mostly in developing countries, lack 

access to clean drinking water, exacerbated by industrial and commercial waste dumping into 

natural water bodies without adequate treatment. In India, many rivers are treated like open 

drains, with around 70% of river water polluted due to high pollutant levels (Singh et al., 2005). 

Water quality directly affects human health and the health of aquatic and environmental 

organisms (Aredehey et al., 2020). Poor water quality renders water unsuitable for human 

consumption and agricultural use (Dimri et al., 2021). National and international organizations 

set water quality standards that, if met, make water safe for drinking and other uses (WHO 

2011; BIS 2012). Effective city governance requires preventing pollution from both point 

sources, such as wastewater treatment facilities, and non-point sources such as urban and 

agricultural runoffs (Fathi et al., 2018; Ren et al., 2021). Anthropogenic activities, including 

agriculture, urban development, mining, power production, deforestation, industrial pollution, 

sewage issues, and tourism, significantly impact river water quality (Dohare et al., 2014). 

Natural water bodies can somewhat degrade pollutants, but their capacity is limited (Helsel and 

Hirsch 2002; Ramakrishnaiah et al., 2009). Industrial growth, deforestation, global warming, 

and climate change further disrupt the water cycle and environmental balance (Vinod et al., 

2013; Wu et al., 2014, 2020). In India, water quality is affected by untreated municipal waste 

and industrial effluents, which introduce various pollutants into rivers. These pollutants, 
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including heavy metals and organic substances, degrade the water quality, making it unsafe for 

agricultural, industrial, and human use (Zutshi et al., 1980; Singh et al., 2015).   

Agricultural practices, particularly using pesticides and fertilizers, also contribute to water 

pollution. These chemicals increase nitrate and phosphorus levels in water, leading to 

eutrophication and harming aquatic ecosystems  (Shrestha and Kazama 2007; Li et al., 2019). 

Efficient water management is crucial to prevent water quality degradation due to urbanization 

and agricultural practices. India faces a growing water crisis, with many cities experiencing 

water shortages and pollution. Addressing this requires effective wastewater treatment and 

sustainable water management practices. Non-conventional water resources are increasingly 

needed to meet the demand (Trivedi and Goel 1986).  Ensuring sustainable development and 

proper waste management is essential to protect public health and preserve freshwater 

resources (Kannel et al., 2007a; Ewaid et al., 2018). 

India's rivers, vital to its agricultural economy, are at risk due to pollution and overuse. 

Unplanned modernization, disregard for environmental regulations, and population growth 

have severely impacted river ecosystems (Athimoolam and Ramu 2006). To mitigate these 

effects, comprehensive water quality management strategies are needed to maintain the health 

of rivers and support sustainable development (Dohare et al., 2014; Siraj et al., 2023). 

1.5. EFFECTS OF WATER POLLUTION ON AQUATIC AND HUMAN HEALTH  

River water pollution poses a significant threat to human health due to the presence of heavy 

metals and contaminants. Studies have shown that polluted river water can contain harmful 

substances such as chromium, arsenic, mercury, and lead, exceeding standard limits and 

leading to adverse health effects (Kaushik et al., 2009; Wu et al., 2014). The impact of water 

pollution on human health is profound, with common diseases like diarrhoea being linked to 

poor water quality, affecting individuals of all ages (Dwivedi et al., 2018). Additionally, 

exposure to contaminated river water can result in fatal diseases, especially when heavy metals 

and toxic substances are ingested through water consumption or fish ingestion pathways 

(Dwivedi et al., 2018; Khan et al., 2021b). Governments must implement strict water 

management strategies to mitigate the health risks associated with river water pollution and 

safeguard public health. Pollution also severely affects aquatic wildlife, impacting their health 

and ecosystem (Dwivedi et al., 2018). Studies have shown that contaminants like heavy metals 

bioaccumulate in fish tissues, affecting their physiological health and biomarkers (Khan et al., 

2021b). 
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Furthermore, pollutants from various sources lead to the depletion of valuable aquatic 

biodiversity, disrupting the natural balance of river ecosystems and reducing their ability to 

provide ecological services Macrozoobenthos, such as macroinvertebrates, are particularly 

vulnerable to pollutants like heavy metals, causing disturbances in their physiological functions 

and triggering oxidative stress responses (Khan et al., 2021b). Additionally, water pollution 

alters the phylogenetic community structure of aquatic macrophytes, decreasing species 

richness and phylogenetic diversity, and ultimately leading to phylogenetic clustering within 

communities (Kumar et al., 2023). These findings underscore the urgent need for effective 

water management strategies and pollution control measures to safeguard aquatic wildlife and 

preserve the health of river ecosystem. 

1.6. RIVER POLLUTION IN UTTAR PRADESH 

Uttar Pradesh has several of India's largest rivers, including the Betwa, Chambal, Dhasan, 

Gandak, Ganga, Ghaghara, Gomti, Ken, Ramganga, Son, Tons, and Yamuna. Smaller rivers 

such as Kali, Krishni, Dhamola, and Hindon also flow around UP's major cities, meeting the 

needs of the population. However, growing industrialization and urbanization have rapidly 

declined river quality (Jindal and Sharma 2010; Sadat-Noori et al., 2014; Gao et al., 2015; 

Kizar 2018; Wu et al., 2020). According to the CPCB, some of the most polluted rivers in India 

are located in Uttar Pradesh, including the Gomti, Hindon, Kali, Krishni, Dhamola, and 

Yamuna (CPCB 2009). The Gomti River, transports agricultural waste, sewage, industrial 

wastewater, and other pollutants from both point and non-point sources (Singh 2004; Singha 

et al., 2004; Singh et al., 2005). Traditional religious practices, idol immersion, disposal of 

biomedical waste, and agricultural runoff also contribute to water pollution, posing serious 

threats to the river's flora and fauna (Venugopal et al., 2009; Ewaid et al., 2018). Along its 

length, the Gomti River, receives enormous loads of untreated effluents from various point and 

non-point sources (Singh et al., 2022). A 2011–2015 CAG assessment on the river states that 

the Gomti River at Lucknow is more heavily contaminated than the Ganga River at Varanasi. 

This is despite Varanasi's dense population and heavy tourism. Ideally, Lucknow should 

perform better as it is the capital of Uttar Pradesh (Sharma 2015). In Lucknow, Gomti river's 

water quality gets affected by the presence of 26 major drains, 14 on the Cis side and 12 on the 

Trans side. Compared to their cis counterpart, the trans side of Gomti's drains are comparatively 

higher (Singh et al., 2016). The river is completely depleted from upstream Sultanpur to 

downstream Sitapur as a result of industrial effluents from industrial belts that manufacture 

sugar, paper, and plywood. The Gomti Action Plan (GoAP) was launched in April 1993 to 
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address the huge pollution burden on the Gomti River. It is a plan largely funded under 

Jawaharlal Nehru National Urban Renewal Mission (JNNURM) that has the objective of 

constructing and upgrading Sewage Treatment Plants (STPs) for effective management of 

waste. In spite of this, it faces many difficulties including untreated sewage discharge and 

inefficiencies in waste management (Singh et al., 2005; Yadav 2021).  

About 675 MLD of sewage is produced daily and discharged in Gomti River, but only 396 

MLD are treated by existing STPs. This untreated effluent adds significantly to river pollution. 

Under the scheme, Sultanpur’s STP also plays a vital part; however, its functionality remains 

questionable since poor waste disposal is still a significant concern. Untreated sewage and 

industrial discharges into the river cause this massive pollution, thus severely affecting 

biodiversity and rendering water unfit for use (Sharma 2015). 

1.7. NEED OF THE STUDY 

The need to study the water quality of river Gomti at Sultanpur is identified in the background 

of its continuously deteriorating water quality. Although many studies in the literature evaluate 

the state of the river Gomti’s water quality, no studies have been found that provide a long-

term assessment of the Gomti River at Sultanpur, Uttar Pradesh, India. This study aims to 

provide a comprehensive assessment of a 20-year span (1998 – 2017). By applying four 

different water quality indices and conducting multivariate statistical analysis, parameters 

contributing the most to deteriorating water quality are assessed. The findings of this study 

could be of significant use to academicians, policymakers and relevant stakeholders. 

1.8. PROBLEM STATEMENT 

The Gomti River is currently facing severe pollution challenges. Extensive research and 

assessments on the Gomti River, such as those by Singh et al., 2022 and various other studies, 

have consistently highlighted the river's compromised water quality due to untreated effluents 

from industrial and domestic sources. The stretch of the Gomti River near Sultanpur is 

particularly affected, with dissolved oxygen levels significantly below the required standards 

to sustain aquatic life, primarily due to untreated sewage and industrial discharges (Singh et 

al., 2005). Despite the implementation of initiatives like the Gomti Action Plan under the 

Jawaharlal Nehru National Urban Renewal Mission (JNNURM), the inefficiencies in waste 

management and the substantial untreated sewage discharge remain critical issues (Singh et al., 

2005; Yadav 2021). 
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Sultanpur's selection for this study is justified by its strategic position along the river and the 

notable pollution burden it carries. The existing sewage treatment facilities in Sultanpur are 

insufficient, treating only a fraction of the produced sewage, leading to substantial pollution 

downstream (Khan et al., 2021a). Additionally, the heavy metal contamination and presence of 

organic pollutants in this region pose severe health risks, making it an essential focal point for 

addressing the broader pollution issues of the Gomti River (Sharma and Walia 2015). By 

concentrating efforts on Sultanpur, the study aims to develop targeted remedial actions that can 

significantly improve the water quality and contribute to the sustainable management of the 

Gomti River. Although studies on the water quality of the Gomti River at Sultanpur, Uttar 

Pradesh, are comprehensive, they still have significant gaps. Previous studies have not 

conducted a long-term analysis of the Gomti River at Sultanpur, nor used four water quality 

indices (WQIs) simultaneously. This study addresses these gaps by analysing 20 years of data, 

applying them to four different WQIs, and performing multivariate statistical on the data. By 

integrating advanced analytical techniques and adopting comprehensive governance 

frameworks, significant improvements in river health and water quality can be achieved, as 

evidenced by both local and international experiences (Ewaid et al., 2018; Fathi et al., 2018; 

Elsayed et al., 2020; Varol 2020; Dimri et al., 2021).  

1.9. OBJECTIVE OF STUDY 

Despite the extensive research on water quality assessments across various river systems, there 

remains a notable gap in the literature pertaining to the Gomti River. Specifically, no prior 

studies have simultaneously addressed the following key objectives:  

(i) To perform a 20-year long-term analysis of the Gomti River at Sultanpur using 

historical water quality data. 

(ii) To apply four water quality indices (WQIs) for assessing river pollution levels. 

(iii) To determine the most significant parameters using PCA and evaluate their impact 

on WQI through regression analysis. 
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CHAPTER 2  
 

REVIEW OF LITERATURE  
 

2.1.WATER QUALITY INDICES 

The Water Quality Index (WQI) was developed to provide concerned citizens and policymakers 

with a clear understanding of the general quality of water, both surface and groundwater  

(Sadat-Noori et al., 2014; Ewaid et al., 2018). By converting water quality characteristics into 

a single, dimensionless number, the WQI simplifies the assessment of water quality 

(Ramakrishnaiah et al., 2009; Fathi et al., 2018; Dimri et al., 2021). It is used to evaluate water 

quality for various uses, including drinking, irrigation, livestock, agriculture, recreation, and 

aesthetics (Cheng et al., 2007; Kumar et al., 2007; Tavakoly et al., 2019; Elsayed et al., 2020; 

Khan et al., 2021b; Kushwah et al., 2023). Water quality indices (WQI) have been utilized for 

classifying water quality since the mid-1800s, though formal models have only been developed 

in the past 50 years (Abbasi and Abbasi 2012). The first WQI model was created by Horton in 

the 1960s, using 10 significant water quality parameters (Horton 1965). Later, with the National 

Sanitation Foundation's support, Brown developed the more comprehensive NSF-WQI, 

informed by 142 water quality experts who guided the parameter selection and weighting 

(Brown et al., 1970; Abbasi and Abbasi 2012). Several subsequent WQI models have been 

based on the NSF-WQI. Another significant development was the British Columbia WQI 

(BCWQI), devised by the British Columbia Ministry for Environment, Lands, and Parks in the 

mid-1990s, used to assess many water bodies in British Columbia, Canada (Saffran et al., 

2001). It was also observed that the BCWQI showed high sensitivity to sampling design and 

application-specific water quality objectives (Said et al., 2004). In 2001, the Canadian Council 

of Ministers of the Environment's Water Quality Guidelines Task Group developed the CCME 

WQI, following a review of the BCWQI model (Saffran et al., 2001; Lumb et al., 2011). The 

CCME recognized the BCWQI model in 1990 (Dunn 1995). More recently, new models such 

as the Liou Index, Malaysian Index, and Almeida Index have been created. To date, over 35 

WQI models have been developed globally to evaluate surface water quality (Stoner 1978; 

Kannel et al., 2007a; Abbasi and Abbasi 2012; Sohrab et al., 2012). Several other indices have 

been developed to assess water quality. Modern indices include the British Columbia Water 

Quality Index (BCWQI) and the Canadian Council of Ministers of the Environment Water 

Quality Index (CCME WQI), which provide flexibility in parameter selection and are used 
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widely for water quality assessment (Cude 2001; Kannel et al., 2007a; Vinod et al., 2013; 

Gautam et al., 2015). However, these indices can exaggerate certain factors, leading to biased 

results (Sadat-Noori et al., 2014). The Synthetic Pollution Index (SPI), introduced by (Ewaid 

et al., 2018) and the comprehensive pollution index (CPI) are essential tools for evaluating 

overall water pollution loads (Krishan et al., 2022b; Kumar et al., 2023; Kushwah et al., 2023). 

The se indices help determine the combined impact of various pollutants on water quality. For 

instance, the SPI and WQI evaluated the Ganga River's water quality over nine years, finding 

significant pollution levels. Water Quality Indices (WQIs) like the arithmetic WQI, SPI, and 

CPI are crucial for understanding and managing water quality. One issue with WQI models is 

that they are typically designed based on site-specific guidelines for a particular region, making 

them non-generic. Additionally, these models can introduce uncertainty when converting 

extensive water quality data into a single index. Water quality analysis is generally concerned 

with evaluating the quality of natural water for various uses, including drinking, domestic, 

irrigation, and industrial purposes. Monitoring the parameters of multiple contamination 

sources entering surface water and groundwater systems is often costly and labour-intensive. 

Many researchers and scientists have encountered challenges in describing and addressing 

water quality concisely and straightforwardly. These challenges arise due to the complexity of 

water quality parameters and the significant variability in the parameters used to characterize 

the status of water resources. Consequently, numerous comprehensive efforts have been made 

to define water quality status in a simplified scientifically sound manner (Banda and 

Kumarasamy 2020; Akhtar et al., 2021). 

2.2.MULTIVARIATE STATISTICAL ANALYSIS 

Multivariate Statistical Analysis (MSA) is extensively utilized in assessing stream water 

quality, playing a crucial role in water resources management (Singh 2004; Wu et al., 2014; 

Sener et al., 2017; Haider et al., 2019; Tian et al., 2019; Ustaoglu and Tepe 2020; Varol 2020). 

MSA facilitates the interpretation of complex water quality datasets, aids in identifying 

pollution sources, and determines whether natural or anthropogenic factors are influencing 

temporal and spatial variations in stream water quality (Shrestha and Kazama 2007; Gurjar and 

Tare 2019; Ustaoglu and Tepe 2020). Recent methodological advancements such as Principal 

Component Analysis (PCA) and Cluster Analysis have been instrumental in pinpointing the 

main pollution sources and understanding the spatial distribution of contaminants (Kumar et 

al., 2022; Kushwah et al., 2023). Additionally, seasonal variations and temporal improvements 

in water quality have been explored (Singh et al., 2023; Prasad et al., 2024), which are crucial 
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for framing effective management strategies. Routine and continuous monitoring programs are 

essential for collecting reliable water quality data. These programs generate vast amounts of 

complex data, including unpublished information on surface water bodies' areas and 

behavioural characteristics. Interpreting this hidden information is crucial for effective water 

quality management. Advanced analytical tools and procedures, such as Multivariate Statistical 

Analysis, are necessary to analyse these data (Singh 2004). Multivariate Statistical Analysis, 

including Principal Component Analysis (PCA) and Cluster Analysis (CA), help reveal 

concealed information in large matrices of high-quality data. These techniques are essential for 

accurately assessing river water quality and expanding the scope of evaluation based on 

extensive data inputs (Medeiros and Tresmondi 2017). 

Multivariate Statistical Analysis has been widely used in the past decade to analyze and 

characterize surface water quality (Singh et al., 2005; Shrestha and Kazama 2007; Wu et al., 

2014; Elsayed et al., 2020; Varol 2020; Kushwah et al., 2023). CA, an unsupervised pattern 

recognition technique, groups samples into clusters where items are similar to each other but 

distinct from other clusters. Researchers have employed CA to understand the temporal and 

spatial patterns of water quality changes caused by anthropogenic or natural sources (Shrestha 

and Kazama 2007; Medeiros and Tresmondi 2017; Li et al., 2019; Varol 2020). PCA is 

commonly used to reduce the dimensionality of large datasets without losing intrinsic 

information. It helps identify fewer hidden factors associated with pollution sources affecting 

water resources' hydrochemistry and quality (Wu et al., 2014; Gurjar and Tare 2019; Elsayed 

et al., 2020; Kushwah et al., 2023). To summarise, Multivariate Statistical Analysis like PCA 

and CA are vital for understanding and managing water quality. They help identify factors 

responsible for water quality deterioration and assist in developing effective management 

strategies. These techniques are instrumental in addressing the complexities of water quality 

data, ensuring informed decision-making for water resource management. 

2.3.REGRESSION ANALYSIS  

Integrating WQIs with advanced statistical tools like regression analysis has been pivotal in 

simplifying and interpreting environmental data. For instance, stepwise multiple linear 

regression alongside WQIs has helped develop predictive models for water quality, thus aiding 

efficient management and decision-making processes (Ewaid et al., 2018). Similarly, PCA and 

Support Vector Machine Regression have provided robust assessments of irrigation water 

quality (Elsayed et al., 2020). These tools are pivotal in unraveling the significant parameters 



13 

 

that influence the water quality indices (Liou et al., 2004; Debels et al., 2005; Hanh 2011; 

Koçer and Sevgili 2014). 

2.4.STATUS OF GOMTI RIVER  

Gomti River faces intense pollution pressures from industrial effluents and domestic 

wastewater, leading to severe water quality degradation (Iqbal et al., 2019). The Gomti River, 

a notable tributary of the Ganges, has been the focus of extensive research due to its ecological 

importance and the substantial anthropogenic pressures it endures. Previous studies have 

consistently documented the river's compromised water quality resulting from urban runoff, 

industrial discharges, and agricultural activities, particularly emphasizing the presence of 

heavy metals and organic pollutants in the Lucknow stretch (Khan et al., 2021b; Kumar et al., 

2023). Water Quality Indices (WQIs) have consistently categorized much of the river's water 

as poor to unsuitable for human consumption, highlighting the pressing need for remedial 

actions (Krishan et al., 2022a, 2022b). The Gomti River, an essential tributary of the Ganges, 

is a crucial water resource for Uttar Pradesh, India. Heavy metal contamination in the Gomti 

River has been extensively studied, revealing critical levels of pollutants posing severe health 

risks. A study by Khan et al., (2021b) assessed the contamination and health risks associated 

with heavy metals, finding high-risk levels along a 61 km stretch of Gomti river, primarily due 

to sewage and industrial effluents. The study also highlighted that children are particularly 

vulnerable to the health risks posed by these contaminants. Further analysis by Kumar et al., 

(2022) investigated heavy metal concentrations in surface water and sediments over two years, 

identifying significant ecological risks from metals such as Fe, Mg, Mn, Zn, and Cd. Kumar et 

al., (2022) focused on the spatial distribution of physicochemical and bacteriological 

parameters across five sites in Lucknow. The study observed seasonal variations, with pollution 

levels increasing downstream. Parameters such as pH, turbidity, EC, and BOD showed 

significant deterioration in water quality, making it unsuitable for drinking due to high levels 

of faecal coliform and E. coli. Kushwah et al., (2023) employed multivariate statistical methods 

to analyse water quality, using cluster analysis and principal component analysis. The study 

categorized sites based on pollution levels and identified domestic wastewater and stormwater 

runoff as major pollution sources. Kumar et al., (2023) examined the presence of 

organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in the Gomti 

River. The findings indicated high concentrations of these pollutants, particularly in the 

midstream areas, attributed to anthropogenic activities. The levels of OCPs and PAHs exceeded 

recommended standards, highlighting the severe impact of industrial and household waste on 
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the river. Gupta et al., (2022) developed an advanced analytical method for detecting pesticide 

residues in Gomti river. The study found that the current pesticide concentrations posed no 

significant threat to most aquatic life but did indicate potential risks to invertebrates. 

Multivariate analysis identified anthropogenic activities as the primary source of pesticide 

contamination. Das et al., (2021) explored the impact of climate change on the Gomti River 

basin using the SWAT hydrological model. The study predicted declining precipitation and 

streamflow under various RCP scenarios, which could exacerbate water quality issues. These 

findings stress the importance of adaptive water management strategies to mitigate climate 

change effects on the river basin. Khan et al., (2020) evaluated heavy metal pollution, 

identifying critical pollution levels across multiple sites. The study revealed strong correlations 

between arsenic and lead, suggesting significant anthropogenic contributions to the 

contamination. These findings underscore the urgent need for remedial actions to mitigate 

health risks. Gondial and Bharti (2024) examined metal bioaccumulation in fish from the 

Gomti River, highlighting significant health risks to humans consuming these fish. The study 

revealed high levels of bioaccumulation, particularly in species such as Ctenopharyngodon 

idella and Channa punctata, posing both non-carcinogenic and carcinogenic risks due to metals 

like iron, aluminium, and cadmium. Khan et al., (2022) evaluated the impact of riverfront 

development on the Gomti River's water quality. The study found that despite the development, 

water quality deteriorated, particularly at midstream sites, due to unresolved untreated domestic 

sewage discharge issues. This highlights the need for comprehensive water management 

practices alongside developmental projects. Sharma et al., (2021) studied the long-term 

sustainability of groundwater resources in the Gomti River Basin. Using the Inverse Distance 

Weighted (IDW) interpolation method, the study assessed declining groundwater levels over a 

decade attributed to intensive irrigation and peri-urban growth. This study emphasizes the need 

for sustainable groundwater management in the region. Jigyasu et al., (2020) analyzed trace 

element mobility in the Gomti River Basin, identifying high mobility of elements like B, As, 

and Se due to geogenic factors. The study highlighted the significant contributions of these 

elements to the global riverine flux, underscoring the environmental impact of trace element 

mobility. Krishan et al., (2022b) used the Water Quality Index (WQI) to assess Gomti river’s 

water quality across several sites in Lucknow from 2013 to 2017. The study found that the 

water quality ranged from poor to unsuitable for drinking, indicating a significant deterioration 

over time. These findings call for urgent measures to improve water quality. The compiled 

research on the Gomti River's water quality highlights severe pollution from heavy metals, 

organic pollutants, pesticides, and bacteriological contaminants. The studies emphasize the 
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need for stringent regulatory measures, continuous monitoring, and sustainable management 

practices to mitigate pollution and ensure the long-term health of the river ecosystem. 

Addressing these issues is critical for protecting public health and maintaining the ecological 

balance of the Gomti River.  

2.5. LITERATURE GAP 

Despite being extensive, research on the Gomti River's water quality still has a lot of gaps in 

it. Prior research has not employed four water quality indices (WQIs) simultaneously or done 

a long-term investigation of Sultanpur's Gomti River. This study addresses the identified gap 

in the literature by conducting a comprehensive analysis over a 20-year dataset. Using four 

distinct Water Quality Indices (WQIs) and employing multivariate statistical analyses, this 

research provides a detailed and longitudinal examination of water quality in the Gomti River 

at Sultanpur. The findings highlight the key parameters that influence the water quality indices, 

offering insights into the factors responsible for variations in water quality over time.  
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CHAPTER 3  
 

  METHODOLOGY OF THE STUDY 
 

3.1.SITE DESCRIPTION 

3.1.1. BRIEF DESCRIPTION OF GOMTI RIVER 

The Gomti River, a prominent groundwater-fed river, originates from Gomathtal, previously 

known as Fulhar Jheel, located in the Pilibhit district. Traveling a distance of 960 kilometers, 

it eventually merges into the Ganges River near Saidpur in the Ghazipur district of Uttar 

Pradesh. The river's journey is enhanced by the contributions of 23 major and minor tributaries, 

with Gaichi being the first significant tributary, emerging approximately 20 kilometers from 

the source. The river maintains a narrow form up to Mohammadi Kheri in the Lakhimpur Kheri 

district, about 100 kilometers from its origin. In this region, the river becomes more defined as 

numerous tributaries, including the Kathana and the Sarayan Rivers, joining it at Mailani and 

Lakhimpur, respectively. Further downstream, the Sai River meets the Gomti in the Jaunpur 

district near Rajepur. Characteristically, the Gomti's flow is slow throughout the year, except 

during the monsoon season, when it experiences a significant increase in volume due to heavy 

rainfall. This seasonal change contributes the most to its annual water budget, with an 

approximate discharge of 7,390 × 106 cubic meters. During the monsoon, the river's velocity 

and level rise sharply, often causing flooding in adjacent low-lying areas, with water levels 

typically fluctuating by about three meters annually. This dynamic nature of the Gomti 

continues until it converges with the Ganges, marking its integration with the larger river 

system at Sultanpur (Tangri et al., 2018).  

3.1.2. SULTANPUR 

Sultanpur is located on the banks of the Gomti River, at a latitude of 26°15’ north and a 

longitude of 82°05’ east. Covering a total geographic area of approximately 2672.89 square 

kilometres, its terrain is predominantly level, with occasional ravines near riverbanks. The 

central region is extensively cultivated, while the southern areas consist of arid plains and 

swampy marshes. Fig. 3.1 depicts the study area at Sultanpur. Sultanpur district is bounded by 

Faizabad district to the north, Pratapgarh district to the south, and Bara-Banki and Amethi 

districts to the west. To the east, it is bordered by Azamgarh, Ambedkar Nagar, and Jaunpur 

districts. The topography of the Sultanpur district is largely flat, with exceptions found in 

regions adjacent to the Gomti River, which serves as the district's primary drainage system. 
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However, the southern part of Sultanpur drains into the Sai River, flowing through the 

Pratapgarh district. Sultanpur's climate is semi-arid, featuring intensely hot summers and 

equally cold winters. Maximum temperatures soar beyond 44OC during the summer months of 

May and June, while winter temperatures hover around 3-4OC in December and January 

(Sultanpur, 2024). 

 

Figure 3.1 Study Area - Sultanpur 
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3.2.METHODOLOGY OF THE STUDY 

This research employed the methodology of a broad examination of water quality data of Gomti 

River at Sultanpur station collected from Central Water Commission (CWC), Lucknow (UP) 

from 1998 to 2017. Fig. 3.2 illustrates the flow diagram of the research plan methodology. 

Descriptive statistics were first used to summarize all the data; to do this, descriptive statistics 

including mean, maximum, minimum, mode, and standard deviation were calculated. The 

Pearson correlation analysis is performed on the data set, which signifies the interdependency 

between different water quality parameters. The data were subsequently used to evaluate the 

long-term water quality trends with four water quality indices (WQIs), namely Comprehensive 

Pollution Index (CPI), Synthetic Pollution Index (SPI), Nemerow's Pollution Index (NPI), and 

Arithmetic Water Quality Index (AWQI). A Cluster Analysis (CA) on the Comprehensive 

Pollution Index identified temporal variation in all months. PCA was applied to determine the 

main factors controlling water quality. Regression Analysis was performed on PCA-Selected 

parameters and all four WQIs. Thus, in the current study, long-term assessment of the Gomti 

River at Sultanpur is performed and parameters contributing to variation in water quality are 

identified. 

 

Figure 3.2 Flow diagram for Methodology of Research Plan 
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3.3.DATA COLLECTION 

The monthly data related to Sultanpur sampling station is collected from Central Water 

Commission (CWC), Lucknow (UP) India for the years January 1998 – December 2017, for  

Dissolved Oxygen (DO), pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), 

Nitrates (NO3
-), Biochemical Oxygen Demand (BOD), Total Hardness (TH), Calcium (Ca2+), 

Magnesium (Mg2+), Total Alkalinity (TA), Chlorides (Cl-), Fluoride (F-), Sulphates (SO4
2-), 

Boron (B), Total Phosphorus (P-Tot), Ammonia (NH3), Sodium (Na+), Potassium (K+).  

3.4.DESCRIPTIVE STATISTICS 

For each physicochemical parameter, fundamental statistics such as minimum, maximum, 

mean, mode, and standard deviation were determined using Microsoft Excel version 2024. 

3.5.WATER QUALITY STANDARDS 

River water quality standards are essential benchmarks to ensure the safety and health of 

aquatic ecosystems and human communities relying on these water sources. These standards 

are designed to maintain and improve water quality by controlling pollution levels and ensuring 

that water remains suitable for various uses, including drinking, recreation, and irrigation. 

Regulatory bodies such as the Bureau of Indian Standards (BIS) and the World Health 

Organization (WHO) set these standards. Adhering to these standards is crucial for protecting 

public health, preserving biodiversity, and sustaining the overall environmental balance.     

Table 3.1 provides the standards for water quality parameters as per the Bureau of Indian 

Standards (BIS 1991/2012) and World Health Organization Water Quality Standards (WHO 

2004/2011).  
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Table 3.1 Water Quality Standards of each parameter (*BIS 1991/2012, **WHO 2004/2011) 

Parameter Unit BIS/WHO Standard (Si) 

Dissolved Oxygen (DO) mg/l 5** 

pH - 6.5 – 8.5* 

Electrical Conductivity (EC) µS/cm 300** 

Total Dissolved Solids (TDS) mg/l 500* 

Nitrate (NO3
-) mg/l 45* 

Biochemical Oxygen Demand (BOD) mg/l 5** 

Total Hardness (TH) mg/l 200* 

Calcium (Ca2+) mg/l 75* 

Magnesium (Mg2+) mg/l 30* 

Total Alkalinity (TA) mg/l 200* 

Chloride (Cl-) mg/l 250* 

Fluoride (F-) mg/l 1* 

Sulphate (SO4
2-) mg/l 200* 

Boron (B) mg/l 0.5* 

Phosphorus (P-Tot) mg/l 5** 

Ammonia (NH3) mg/l 0.5* 

Sodium (Na+) mg/l 200** 

Potassium (K+) mg/l 100** 

 

3.6.MULTIVARIATE STATISTICAL ANALYSIS 

3.6.1. CLUSTER ANALYSIS (CA) 

A multivariate approach known as cluster analysis (CA) enables the assembly of objects 

depending on their attributes. With regard to a predefined selection criterion, CA groups things 

into clusters where each object is comparable to the others in the cluster. The most popular 

method, hierarchical agglomerative clustering, establishes intuitive similarity correlations 

between any one sample and the complete data set and is frequently represented as a 

dendrogram (tree diagram). The dendrogram represents the groups and their vicinity with a 

considerable decrease in the dimensionality of the original data, providing a visual overview 

of the clustering processes. Origin (Pro) software was used to conduct cluster analysis. 
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3.6.2. PRINCIPAL COMPONENT ANALYSIS (PCA) 

Using a reduced number of independent variables, PCA is a potent pattern identification 

approach that aims to explain the variation of a large dataset of associated variables. The PCA 

approach uses the covariance matrix of the original variables to extract the eigenvalues and 

eigenvectors. Principle component analysis (PCA) aims to combine the original variables into 

new, linear, uncorrelated variables (axes) known as principal components. The axes follow the 

directions with the greatest variation by describing the connection between a large number of 

variables in terms of a smaller number of underlying elements (Helena et al., 2000; Sârbu and 

Pop 2005; Shrestha and Kazama 2007; Hossain et al., 2015). The PCA can be expressed as: 

Zij = pci1x1j +  pci2x2j + ⋯ . . pcimxmj                      (Eq. 1) 

Where i is the component number, j is the sample number, z is the component score, pc is the 

component loading, x is the measured value of the variable, and m is the total number of 

variables. Origin (Pro) software was used to conduct principal component analysis. 

3.7.PEARSON’S CORRELATION ANALYSIS 

The Pearson’s correlation analysis is a widely used tool that estimates the linear dependence 

between various parameters (Wu et al., 2014, 2020; Li et al., 2019; Khan et al., 2021b; Ren et 

al., 2021). The value of Pearson’s correlation coefficient, ‘r,’ lies between ± 1, suggesting a 

positive or negative correlation, and there is no correlation between the parameters when ‘r’ is 

zero. Moreover, when ‘r’ lies between ± 0.9 and ± 1, a ‘very strong’ correlation exists between 

the parameters. Similarly, a ‘strong’ correlation exists if values of ‘r’ vary between ± 0.76 

and ± 0.89, a ‘good’ correlation is there when the values of ‘r’ lie in the range of 0.51 to ± 0.75, 

and the correlation is called ‘poor’ for ‘r’ values of 0 to ± 0.50 (Batabyal and Chakrobarty 

2015). The MS Excel was used for the correlation analysis and visualisation of data. 

3.8.WATER QUALITY INDICES (WQI) 

In our study, we employ four distinct water quality indices, namely the Comprehensive 

Pollution Index (CPI), Synthetic Pollution Index (SPI), Nemerow's Pollution Index (NPI), and 

Arithmetic Water Quality Index (AWQI). These indices are utilized to evaluate and assess the 

water quality of the Gomti River at Sultanpur, Uttar Pradesh.  

3.8.1. COMPREHENSIVE POLLUTION INDEX (CPI) 

The Comprehensive Pollution Index (CPI) is a widely recognized and utilized method for 

assessing water quality levels (Zhao et al., 2012; Mishra et al., 2015). It is calculated using the 

following equation:  
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CPI =  
1

n
 ∑

Mi

Si

n
i=1                            (Eq. 2) 

Where: Mi represents the monitored value for each water quality parameter. Si signifies the 

standard permissible limit for the corresponding parameter. n indicates the total number of 

parameters considered. These standard limits (Si) are derived from recommended guidelines 

by various environmental regulatory bodies, including the Bureau of Indian Standards (BIS, 

2012) and the World Health Organization (WHO, 2011). 

The Comprehensive Pollution Index is a powerful tool that effectively divides water quality 

into distinct classes. This classification method provides a comprehensive and easy-to-

understand assessment of water pollution levels, facilitating clear communication of the current 

water quality status. Moreover, the CPI is a crucial component in environmental evaluations 

and aids in making informed decisions concerning the management of water resources and 

pollution control. The grading standard for environmental quality evaluation by the 

Comprehensive Pollution Index method is shown in Table 3.2. 

Table 3.2 Water quality level determination using Comprehensive Pollution Index 

CPI Value Interpretation 

<= 0.20 Clean 

0.21 - 0.40 Sub Clean 

0.41 - 1.00 Slightly Polluted 

1.01 - 2.0 Moderately Polluted 

>=2.01 Severely Polluted 

 

3.8.2. SYNTHETIC POLLUTION INDEX (SPI) 

In this study, the evaluation of pollution in the river water samples is carried out using the 

Synthetic Pollution Index (SPI) developed by Singh et al., (2015). This model utilizes a set of 

equations, incorporating constants and weight coefficients, to determine the SPI value.  

The SPI was calculated using the following equations. 

K =  
1

(∑
1

VS
)n

i=1

                                     (Eq. 3) 

Wi =  
K

VS
                            (Eq. 4) 
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SPI =  ∑
Vo

Vs
∗  Wi

n
i                            (Eq. 5) 

Where K is the constant of proportionality, Vs is the standard value for each parameter, n is the 

total number of observed parameters, Vo represents the observed concentration of each 

parameter, and Wi is the weight coefficient for each parameter. 

The SPI classifies water into five categories based on a literature review (Xiao 1996; Gautam 

et al., 2015; Singh et al., 2015), as shown in Table 3.3. 

Table 3.3 Water quality level determination using Synthetic Pollution Index 

SPI Values Interpretation 

< 0.20 Suitable For Drinking 

0.2 - 0.50 Slightly Polluted 

0.5 - 1.00 Moderately Polluted 

1.00 - 3.00 Severely Polluted 

> 3.00 Unfit For Drinking 

 

The SPI offers a comprehensive evaluation of water quality, providing valuable insights for 

making informed pollution control and resource management decisions. 

3.8.3. NEMEROW’S POLLUTION INDEX (NPI) 

The Nemerow pollution index is a water pollution index that considers extreme values using a 

weighted environmental quantity index. It is frequently used in water quality assessments 

worldwide (Cheng et al., 2007; Liu et al., 2007). The calculation of this index takes three steps 

as follows:(i) identify the classification of each parameter according to the national water 

quality standards, (ii) determine the corresponding pollution index for each classification, and 

(iii) determine the water quality classification by calculating the Nemerow comprehensive 

index. The mathematical formula for the Nemerow comprehensive index calculation is as 

follows: 

 

NPI =  
Cn

Sn
                            (Eq. 6) 

NPI =  
√

Ci
Si

M2+
Ci
Si

R2

2
                          (Eq. 7) 
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Where,  

• Cn = Concentration of the nth parameter 

• Sn = Prescribed standard limits of the nth parameter 

• (Ci/Si) M is (Ci/Si) maximum 

• (Ci/Si) R is (Ci/Si) average 

• Si is standard water quality parameter for each parameter at specified water quality 

purpose 

• Ci is water quality concentration for each parameter at specified time 

The grading standard for environmental quality evaluation by the Nemerow pollution index 

method is shown in Table 3.4. 

Table 3.4 Water quality level determination based on the Nemerow pollution index method 

Water quality level PN 

No Pollution  < 0.59 

Slightly Polluted 0.59 – 0.74 

Lightly Polluted 0.74 – 1.00 

Moderately Polluted 1.00 – 3.50 

Seriously Polluted  ≥ 3.50 

 

3.8.4. ARITHMETIC WATER QUALITY INDEX (AWQI) 

This method classifies the water quality according to the degree of purity using the most 

commonly measured water quality variables (Kambalagere and Puttaiah 2008; Singh et al., 

2013; Vinod et al., 2013; Paun et al., 2016; Kizar 2018). The mathematical formula for the 

Arithmetic water quality index calculation is as follows:  

Qn = 100 ∗ 
[Vn− Vo]

[Sn− Vo]
                           (Eq. 8) 

Wn =  
K

Sn
                             (Eq. 9) 

AWQI =  
ΣQnWn

ΣWn
              (Eq. 10) 

Where, 
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• Qn is the quality rating for the nth water quality parameter. 

• Vn is the observed value of the nth parameter at a given sampling station. 

• Vo is the ideal value of the nth parameter in pure water (DO = 14.6 and pH = 7). 

• Sn is the standard permissible value of the nth parameter. 

• Wn is the unit weight for the nth parameter. 

• K is the constant of proportionality. 

After calculating the AWQI, the measurement scale classifies the water quality as shown in 

Table 3.5. 

Table 3.5 Water quality level determination based on the Arithmetic Water Quality index 

method 

Water quality level Water quality status 

0–25 Excellent water quality 

26–50 Good water quality 

51–75 Poor water quality 

76–100 Very poor water quality 

 > 100 Unsuitable for drinking 

 

3.9.REGRESSION ANALYSIS 

Regression analysis is one of the most frequently used analysis techniques in scientific 

research. Linear regression is a statistical modelling method that explains the relationship 

between one or more independent variables and a dependent variable (Helsel and Hirsch 2002). 

Regression analysis was performed to evaluate the impact of parameters selected through PCA 

on each of the four WQIs. MS Excel was used for the regression analysis of the data. 
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CHAPTER 4  
 

RESULTS & DISCUSSION  
 

 

4.1.GENERAL 

Water is a crucial factor governing the processes, functions, and attributes of river ecosystems. 

The water quality characteristics of rivers result from numerous physical, chemical, and 

biological interactions. The deterioration in the water quality of the Gomti River is attributed 

to increasing human pressures from agricultural, domestic, and industrial activities. Monitoring 

river water quality in India is vital to identify the causative factors of deterioration and pinpoint 

the most polluted river stretches. This study aims to assess water quality for the Gomti River, 

specifically in Sultanpur, Uttar Pradesh. The focus is on using four water quality indices to get 

a multifaceted approach. The WQIs chosen for this study are the Comprehensive Pollution 

Index (CPI), Synthetic Pollution index (SPI), Nemerow’s Pollution Index (NPI) and Arithmetic 

Water Quality Index (AWQI). These four WQIs were chosen based on their flexibility in using 

any number of parameters without any bias towards some specific parameters. Descriptive and 

multivariate statistical approaches were also employed to investigate the complex nature of the 

water quality data. This approach provides a comprehensive understanding of the factors 

affecting the Gomti river's water quality at Sultanpur.  

4.2.PHYSIO-CHEMICAL PARAMETERS OF WATER  

In evaluating river water pollution, it is crucial to analyse various physico-chemical parameters 

to ensure water quality aligns with the standards set by the Bureau of Indian Standards (BIS) 

and World Health Organization (WHO). This study examines the following key parameters: 

Dissolved Oxygen (DO), pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), 

Ammonia (NH3), Nitrate (NO3
-), Total Phosphorus (P-Tot), Biochemical Oxygen Demand 

(BOD), Total Hardness (TH), Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium 

(K+), Chloride (Cl-), Sulphate (SO4
2-), Fluoride (F-), Boron (B), and Total Alkalinity (TA). 

Table 4.1 provides the statistical data, including mean, median, mode, standard deviation, 

coefficient of variation, maximum and minimum values, to provide a comprehensive overview 

of the water quality. 
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Table 4.1 Basic statistics of the variables analysed during the period from 1998 to 2017 

Parameter Mean Median Mode 
Standard 

Deviation 

Variation 

Coefficient (%) 
Max Min 

DO 6.92 7.00 8.00 1.18 16.98 10.00 3.40 

pH 8.39 8.40 8.50 0.35 4.21 9.20 7.60 

EC 388.49 368.00 318.00 109.75 28.25 674.00 108.00 

TDS 312.87 282.75 330.73 102.62 32.80 608.33 133.17 

NH3 0.05 0.05 0.05 0.00 0.14 0.05 0.05 

NO3
- 0.41 0.31 0.02 0.35 85.80 1.53 0.00 

P-Tot 0.08 0.07 0.00 0.07 93.37 0.29 0.00 

BOD 2.65 2.80 2.80 0.74 27.94 4.50 0.80 

TH 190.83 180.22 255.58 46.24 24.23 326.58 61.58 

Ca2+ 38.20 39.00 53.00 11.94 31.24 65.90 7.00 

Mg2+ 22.83 20.85 16.60 8.34 36.55 47.40 4.20 

Na+ 26.95 25.00 20.00 10.35 38.39 56.40 1.00 

K+ 7.02 7.00 8.00 2.64 37.69 15.00 0.60 

Cl- 27.42 28.00 30.00 8.76 31.94 48.00 10.00 

SO4
2- 24.43 25.00 30.00 8.33 34.11 46.00 5.20 

F- 0.24 0.25 0.05 0.18 76.26 0.79 0.05 

B 0.02 0.02 0.00 0.02 95.52 0.09 0.01 

TA 232.84 188.75 164.00 126.44 54.30 592.31 64.00 

 

4.2.1. pH 

pH of a solution represents the negative logarithm of hydrogen ion activity at a given 

temperature and indicates the acidic or alkaline nature of water (Sallam and Elsayed 2015; 

Jaiswal et al., 2019). Fig. 4.1 depicts the variation in pH at Sultanpur from 1998 – 2017. 
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Figure 4.1 Variation of pH at Sultanpur (1998-2017) 

The observed mean pH is 8.39, indicating slightly alkaline water. The pH values observed in 

this study range from 7.6 to 9.2. This range exceeds the recommended pH limits established by 

both the Indian Standard (BIS, 2012) and the World Health Organization (WHO, 2011), which 

suggest an optimal pH range of 6.5 to 8.5 for potable water. Similar pH trends were observed 

in studies by (Kumar et al., 2020, 2022) on the Gomti River and by (Suthar et al., 2010) on the 

Hindon River. The overall decrease in the pH of river water from slightly alkaline to neutral 

(8.5 – 8.0 pH units) over the past 20 years can be attributed to several factors. However, pH 

peaked from 2005 to 2008 (8.7 pH units), signifying higher alkalinity. This is influenced by 

factors, i.e., agricultural runoff, industrial discharge, climate patterns, biological activity, 

geological factors, and land-use changes (Suthar et al., 2010). Industrial discharges, 

particularly from tanneries and textile factories, release acidic effluents into rivers. Urban 

runoff carries pollutants such as oils and heavy metals that lower pH levels due to increased 

urbanization. Agricultural activities contribute through runoff of fertilizers and pesticides, 

while domestic wastewater introduces organic acids and pollutants (Suthar et al., 2010; Jaiswal 

et al., 2019; Omer 2019). Additionally, the natural buffering capacity of rivers is diminished 

due to continuous pollution influx, making them more susceptible to pH changes (Bhateria and 

Jain 2016).  
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4.2.2. DISSOLVED OXYGEN (DO) 

Dissolved oxygen (DO) is a crucial indicator of water quality, reflecting the total oxygen in 

water bodies. The DO content is influenced by various physical, chemical, and biological 

activities within the water body (Vinod et al., 2013). Variation in Dissolved Oxygen levels at 

Sultanpur (1998 – 2017) can be observed from Fig. 4.2.  

 

Figure 4.2 Variation of DO at Sultanpur (1998-2017) 

Dissolved Oxygen is essential for aquatic life and indicates the water's ability to support aerobic 

organisms. The mean DO level observed is 6.92 mg/L, with a median of 7 mg/L and a standard 

deviation of 1.18 mg/L. Over 20 years, DO levels fluctuated between 3.0 mg/L and 11.8 mg/L, 

often falling within the optimal range of 4 to 6 mg/L for sustaining aquatic life (Singh 2004). 

Factors affecting DO include water mixing, temperature, sunlight exposure, and altitude. 

Fluctuations result from variables like temperature, organic pollutants, and human activities 

such as sewage discharge. High organic loads, drain discharges, and religious rituals contribute 

to DO depletion at many sampling locations (Medeiros and Tresmondi 2017). DO levels must 

be at least 2 mg/L for higher life forms to survive (Hussain et al., 2012). Dissolved Oxygen 

(DO) levels exhibited a relatively stable trend from 1998, with a concentration of 6.6 mg/L, to 

2017, when it slightly increased to 6.7 mg/L. Initially, the slight increase in DO levels from 

2003 (6.0 mg/L) to 2008 (8.2 mg/L) can be attributed to improved water aeration and possibly 

the implementation of pollution control measures (Singh et al., 2013). This elevated level 

persisted through 2009 and gradually decreased to 7.5 mg/L by 2014. Subsequently, from 2014 
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onwards, a decline in DO concentrations was noted, culminating in a level of 6.6 mg/L by 2015. 

This subsequent decrease until 2017 is likely due to increased organic pollution from domestic 

and industrial wastewater, which elevates BOD and decreases DO (Shrestha and Kazama 

2007). Seasonal variations and agricultural runoff further exacerbate these changes, impacting 

overall water quality (Varma and Jha 2023). 

4.2.3. BIOCHEMICAL OXYGEN DEMAND (BOD) 

Biochemical Oxygen Demand (BOD) measures the oxygen aerobic microorganisms require to 

break down organic waste in water (Singh et al., 2013). BOD-3 is the amount of oxygen 

consumed by aerobic microorganisms to break down organic matter in 3 days at 27°C. Fig. 4.3 

illustrates the fluctuation in Biochemical Oxygen Demand (BOD-3 at 27 °C) at Sultanpur from 

1998 – 2017. 

 

Figure 4.3 Variation of BOD3 at 27°C at Sultanpur (1998-2017) 

The mean BOD-3 is 2.65 mg/L, with a standard deviation of 0.74 mg/L. The values range from 

0.8 mg/L to 4.5 mg/L. WHO standards recommend BOD-3 levels below 5 mg/L. The 

fluctuations in BOD-3 levels in river water from 1998 (1.8 mg/L) to 2017 (3.1 mg/L) can be 

attributed to several factors. Initially, the increase in BOD-3 from 1998 (1.8 mg/L) to 1999 (2.4 

mg/L) was likely due to a rise in organic pollutants from domestic and industrial sources (Singh 

et al., 2013). The subsequent decrease by 2004 (1.6 mg/L) may have resulted from improved 

wastewater treatment practices or seasonal variations. The sharp increase to 3.4 mg/L by 2007 

can be linked to increased industrial discharge and agricultural runoff. The gradual changes 



31 

 

afterward reflect ongoing variations in pollution sources and mitigation efforts (Kumar et al., 

2009; Dwivedi et al., 2018). BOD-3 levels are influenced by the amount of organic matter 

present, which requires oxygen for microbial degradation, and are indicative of the pollution 

load in the water (Varma and Jha 2023).  

4.2.4. ELECTRICAL CONDUCTIVITY (EC) 

The electrical conductivity (EC) of a water sample measures its ability to conduct an electrical 

current, depending on the concentration of charged particles. EC measures dissolved solids in 

water, indicating potential sources of pollution and highlighting areas with water quality issues 

(Varol 2020). Variations in Electrical Conductivity at Sultanpur from 1998 – 2017 can be 

observed in Fig.4.4. 

 

Figure 4.4 Variation of TDS at Sultanpur (1998-2017) 

The mean EC recorded is 388.49 µS/cm, with a high standard deviation of 109.75 µS/cm, 

indicating significant variability. The values range from 108 µS/cm to 674 µS/cm. The WHO 

acceptable limit for EC in drinking water is 300 µS/cm. The fluctuations in EC of river water 

from 1998 (421.1 mg/L) to 2017 (461.5 mg/L) can be attributed to several environmental and 

anthropogenic factors. Notable peaks are observed in the years 1998 (421.1 µS/cm), 2002 

(463.3 µS/cm), 2009 (434.5 µS/cm) and 2016 (470.9 µS/cm). Periods consisting of low 

concentrations of Electrical Conductivity are 2000 (347.2 µS/cm), 2004 (299.5 µS/cm), 2007 

(324.0 µS/cm), and 2012 (317.1 µS/cm). Industrial discharges play a significant role, with 

industries intermittently releasing varying amounts of dissolved ions into rivers (Kumar et al., 
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2022). Seasonal agricultural runoff containing fertilizers and pesticides also causes spikes in 

EC during certain times of the year (Igwe et al., 2017). Urban runoff, due to increased 

urbanization, carries a mix of pollutants, including salts and other conductive materials, 

impacting EC levels (Gachlou et al., 2019). Variations in river flow due to rainfall and water 

management practices can lead to dilution or concentration of ions, causing changes in EC 

(Hossain et al., 2015; Jaiswal et al., 2019; Yeliz and Sen 2019). Additionally, the 

implementation and subsequent lapses in wastewater treatment practices can lead to temporary 

reductions in EC before rising again due to increased pollution loads. These factors collectively 

contribute to the observed fluctuations in EC over the years (Zhao et al., 2012; Leong et al., 

2018). Mitigating pollution sources and regular monitoring are crucial to maintaining EC 

within safe bounds, preserving water quality and ensuring its suitability for diverse purposes 

(Athimoolam and Ramu 2006). 

4.2.5. TOTAL HARDNESS (TH) 

The concentration of TH and other divalent cations in river water is primarily influenced by 

dissolved calcium and magnesium ions, measured in mg/L as CaCO3. Fig. 4.5 illustrates the 

variation in Total Hardness at Sultanpur from 1998 – 2017. 

 

Figure 4.5 Variation of TH at Sultanpur (1998-2017) 

Total Hardness is a measure of the concentration of calcium and magnesium ions. The mean 

TH is 190.83 mg/L, with a standard deviation of 46.24 mg/L. The minimum and maximum 

values range from 61.58 mg/L to 326.58 mg/L. While WHO lacks a specific limit, BIS 
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standards recommend treatment for hardness over 200 mg/L to prevent scale formation and 

health issues (Arumugam 2010; BIS 2012). River water's total hardness in India is crucial for 

assessing its suitability for domestic, industrial, and agricultural purposes, primarily due to 

calcium and magnesium salts (Jindal and Sharma 2010). Temporary hardness, influenced by 

carbonate and bicarbonate concentrations, impacts hydrogeology and water aesthetics (Zhao et 

al., 2012). Various factors influence the fluctuations in TH of river water from 1998 to 2017. 

Initially, the increase in TH from 210 mg/L (in 1998) to 280 mg/L (in 2000) can be attributed 

to the influx of minerals from agricultural runoff and industrial discharges (Kumar et al., 2020). 

The sharp decrease to 146.9 mg/L by 2004 may result from improved wastewater treatment 

and dilution effects during high rainfall periods. Subsequent fluctuations, including a slight 

increase to 179.0 mg/L by 2017, could be due to varying levels of pollution control measures 

and seasonal agricultural runoff, which intermittently affect the concentration of calcium and 

magnesium ions in the water (Sharma and Walia 2015; Leong et al., 2018). 

4.2.6. TOTAL DISSOLVED SOLIDS (TDS) 

TDS is a crucial parameter for assessing water quality, indicating the concentration of dissolved 

organic and inorganic materials in water (Mohan et al., 2000; Sallam and Elsayed 2015) 

(Sallam and Elsayed 2015). Fig. 4.6 illustrates the variation in Total Dissolved Solids at 

Sultanpur from 1998 – 2017. 

 

Figure 4.6 Variation of TDS at Sultanpur (1998-2017) 
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The mean TDS value is 312.87 mg/L, with a 102.62 mg/L standard deviation. The values range 

from 133.17 mg/L to 608.33 mg/L, and the coefficient of variation is 32.80%. The BIS 

permissible limit for TDS is 500 mg/L. While acceptable, higher TDS can affect water taste, 

cause scaling, and incur health risks. The fluctuations in TDS in river water from 1998 to 2017, 

with a starting point of 445.3 mg/L in 1998, reaching multiple peaks of 430. 4 mg/L in 2000, 

402.7 mg/L in 2002, and 415.5 mg/L in 2009, and dropping to levels such as 239.9 mg/L in 

2004, and 232.6 in 2014, until reaching 245.6 mg/L by 2017, can be attributed to various 

factors. The initial decrease might be due to improvements in wastewater management and 

treatment practices (Kumar et al., 2020). The peak in 2000, 2002, and 2009 could be linked to 

increased industrial and agricultural runoff, introducing more dissolved solids. The subsequent 

decrease by 2017 reflects enhanced pollution control measures, seasonal variations in runoff, 

and possibly dilution effects from increased river flow during rainy seasons (Leong et al., 

2018). 

4.2.7. TOTAL ALKALINITY (TA) 

TA measures an aqueous solution's capacity to neutralize acids, determined by the presence of 

hydroxides, bicarbonates, and carbonates in water (Suthar et al., 2010). Fluctuation in Total 

Alkalinity at Sultanpur from 1998 to 2017 can be noted in Fig. 4.7. 

 

Figure 4.7 Variation of TA at Sultanpur (1998-2017) 

Assessing the alkalinity of water is crucial for processes like corrosion control in boiler feed 

water and water softening (Omer 2019). The mean TA is 232.84 mg/L, with a high standard 
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deviation of 126.44 mg/L. The values range from 64 mg/L to 592.31 mg/L. BIS standards 

recommend the acceptable limit for TA as 200 mg/L for drinking water. An overall decreasing 

trend is observed, starting from 451.8 mg/L in 1998 to 102.3 mg/L by 2017. One exceptional 

drop was observed in 2004 (128.7 mg/L) during this uniform decreasing trend. Similar trends 

were observed from a research study on the Yamuna River in Uttar Pradesh, which noted 

significant fluctuations in total alkalinity due to variations in discharge and monsoon impacts, 

which could lead to a sudden drop and subsequent increase in alkalinity (Jain et al., 2005). TA 

was highest during the summer and lowest during the rainy season, likely due to the dilution 

effect of monsoon rains. Similar trends were observed by Iqbal et al., (2019); Kumar et al., 

(2022)  in the Gomti River. These studies showed a decreasing TA trend attributed to reduced 

wastewater mixing as several drains join the river along its course (Iqbal et al., 2019; Omer 

2019; Kumar et al., 2022). The primary reasons include enhanced wastewater treatment 

practices, which reduced the influx of alkaline substances, and changes in land use, reducing 

agricultural runoff that typically contributes bicarbonates and carbonates to the river system. 

Additionally, increased rainfall and river flow may have diluted the concentration of alkaline 

substances over time. Urbanization and industrial activities might also have shifted, impacting 

alkalinity sources (Koçer and Sevgili 2014; Sharma and Walia 2015; Leong et al., 2018). 

4.2.8. SODIUM (Na+)  

In India, sodium concentration in river water is vital for human health and agriculture. Over 20 

years, levels ranged from 1.00 mg/L to 381.00 mg/L, within the 200 mg/L drinking water limit 

(WHO, 2011). The mean sodium concentration is 26.95 mg/L, with a standard deviation of 

10.35 mg/L. High sodium can harm soil and crop yield in irrigation. Fig. 4.8 illustrates the 

variation in Sodium levels at Sultanpur from 1998 – 2017. 
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Figure 4.8 Variation of Na at Sultanpur (1998-2017) 

The fluctuations in sodium (Na+) levels in river water from 1998 to 2017 can be attributed to 

various factors. The initial decrease in sodium levels around 2000 (16.9 mg/L) could be due to 

improved wastewater management and reduced industrial discharges (Ahmad 2023). The 

increase around 2002 (44.9 mg/L) may reflect higher agricultural runoff and industrial 

activities. Subsequent fluctuations are likely influenced by seasonal changes, varying levels of 

industrial and agricultural effluents, and changes in water management practices (Ahmad 

2023). High concentrations of Na+ are observed in 2002 (44.9 mg/L) and 2009 (38.1 mg/L), 

whereas low Na concentrations are observed in 2000 (16.9 mg/L), 2004 (25.2 mg/L) and 2006 

(23.2 mg/L). Post-2012, a fairly increasing uniform trend for Na+ concentrations is observed. 

4.2.9. POTASSIUM (K+) 

In India's environmental context, potassium concentration in river water is significant, sourced 

from rock weathering and wastewater discharge (Trivedi and Goel 1986). Over two decades, 

levels ranged from 0.6 mg/L to 15 mg/L, falling within the 100 mg/L potable water limit. 

Potassium has a mean concentration of 7.02 mg/L, with a standard deviation of 2.64 mg/L. 

While concentrations are safe, potassium affects soil structure and water quality, influencing 

agricultural productivity. Fluctuation in Potassium levels can be seen from Fig. 4.9 with 20-

year span period (1998 – 2017).  
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Figure 4.9 Variation of K at Sultanpur (1998-2017) 

The fluctuations in river water's potassium (K+) levels from 1998 to 2017 can be attributed to 

various environmental and anthropogenic factors. Initially, the increase in potassium levels in 

2002 (10.3 mg/L) could be due to agricultural runoff, which often contains potassium from 

fertilizers. The subsequent decrease by 2006 (4.4 mg/L) might be linked to changes in 

agricultural practices or improved waste management systems reducing potassium inputs. By 

2008 (8.8 mg/L), an increase reflects increased agricultural activity or effluents from industrial 

sources. The decrease in 2015 (7.4 mg/L) and the final increase in 2017 (10.3 mg/L) could be 

due to periodic variations in rainfall, affecting the dilution and concentration of potassium in 

the river and changes in land use and wastewater management practices over time. These 

fluctuations illustrate the complex interplay between agricultural practices, industrial 

discharges, and seasonal environmental changes that influence river water quality (Rahman et 

al., 2016; Varma and Jha 2023). 

4.2.10. CALCIUM (Ca2+) & MAGNESIUM (Mg2+) 

Calcium and Magnesium contribute to water hardness. Ca2+ & Mg2+ concentrations can affect 

the river surface water quality by influencing the Total Hardness, pH balance, aquatic life 

health, water taste, agricultural utility, and human health. Fig. 4.10 illustrates the variation in 

Ca and Mg levels in Sultanpur from 1998 – 2017.  



38 

 

 

Figure 4.10 Variation of Ca2+ & Mg2+ at Sultanpur (1998-2017) 

The mean calcium concentration is 38.20 mg/L, with a standard deviation of 11.94 mg/L. 

Calcium (Ca2+) levels increased from 1998 – 2002 (38.6 mg/L – 48.6 mg/L), then decreased 

from the period of 2003 – 2006 (28.1 mg/L – 18 mg/L), thereafter increased consistently after 

2007. Certain spikes were observed in 2000 when Ca2+ levels reached 53.8 mg/L and in 2002 

when the concentration was 48.6 mg/L. Overall, there has been a rising trend in Ca2+ 

concentrations from 1998 (38.6 mg/L) to 2017 (43.5 mg/L). Calcium levels remained well 

within the 75 mg/L limit set by IS: 10500:2012 at all times. These findings align with studies 

by (Singh 2004; Singh et al., 2005; Kumar et al., 2022). The increased concentration of calcium 

may be due to rising temperatures, decreasing water levels, and the accumulation of household 

waste (Varol 2020).  

Magnesium is formed through the chemical weathering of rocks like dolomite and marl due to 

its high solubility and minimal biological activity (Varol 2020). Magnesium has a mean 

concentration of 22.83 mg/L, with a standard deviation of 8.34 mg/L. BIS standards set the 

maximum permissible limits for magnesium at 30 mg/L. In 20 years, Mg2+ levels decreased 

from 26.9 mg/L (1998) to 15.4 mg/L (2017). However, a few peaks were observed when the 

Mg2+ concentration exceeded the BIS recommendation of 30 mg/L, specifically in 2000 (34.7 

mg/L) and 2002 (34.0 mg/L). Sewage pollution, industrial waste, and soil erosion are 

responsible for affecting the Ca2+ and Mg2+ levels (Jaiswal et al., 2019). 
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Industrial discharges, particularly from industries along the riverbanks, periodically release 

minerals into the water, causing peaks in Mg2+ and Ca2+ levels. Agricultural runoff, especially 

during the monsoon season, contributes significantly to these fluctuations due to using 

fertilizers containing these minerals. Urban runoff from increased urbanization also introduces 

various pollutants, including Mg and Ca, from construction materials and domestic waste. 

Improvements or lapses in wastewater treatment practices can lead to changes in the mineral 

concentrations, with effective treatment reducing the load and lapses increasing it. Natural 

weathering of rocks and soil in the river basin adds a baseline level of these minerals, with 

seasonal variations in weathering rates due to changes in temperature and precipitation further 

influencing their levels. Dilution effects from changes in river flow, caused by seasonal rainfall 

and water management practices, also play a role; high flow conditions dilute the 

concentrations, while low flow conditions concentrate them. These factors collectively 

contribute to the observed fluctuations in Mg and Ca levels over the years (Debels et al., 2005; 

Sârbu and Pop 2005; Jindal and Sharma 2010; Dohare et al., 2014; Sallam and Elsayed 2015; 

Sharma and Walia 2015; Omer 2019; Tripathi and Singal 2019). 

4.2.11. NITRATE (NO3
-) & TOTAL PHOSPHORUS (P-TOT) 

In India, monitoring Nitrate and Total Phosphorus levels in river water is crucial for water 

quality and ecosystem health. Variations of NO3
- and P-Tot concentrations between 1998 – 

2017 at Sultanpur, UP are depicted in Fig. 4.11.  

 

Figure 4.11 Variation of NO3
- & P-Tot at Sultanpur (1998-2017) 
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Nitrogen compounds are indicators of nutrient pollution. The mean nitrogen concentration is 

0.41 mg/L, with significant variability (standard deviation of 0.35 mg/L and a coefficient of 

variation of 85.80%). The values range from 0.1 to 1.53 mg/L. The NO3
- concentration overall 

decreased from 1998 (0.8 mg/L) to 2017 (0.3 mg/L). A sudden drop was observed in 2004    

(0.2 mg/L) and, 2007 and 2008 (0.1 mg/L), likely due to improved wastewater treatment and 

better agricultural practices. Post-2009, nitrate levels stabilized, indicating a balance between 

pollution sources and dilution effects from seasonal rainfall. 

Total Phosphorus is another nutrient indicator. The mean concentration is 0.08 mg/L, with a 

high coefficient of variation (93.37%) and values ranging from 0.02 mg/L to 0.286 mg/L. 

Overall, the concentration of P-Tot was observed to increase from 1998 (0.12 mg/L) to 2017 

(0.15 mg/L). Total Phosphorus levels showed an initial decline from 1998 to 2005, reflecting 

changes in agricultural practices and better management of fertilizer application. However, 

peaks in 2002 (0.1 mg/L) and again between 2015 (0.15 mg/L) and 2017 (0.14 mg/L) suggest 

periods of increased industrial activity and the use of phosphorus-rich detergents and effluents. 

Soil erosion during heavy rainfall could also have contributed to periodic increases in Total 

Phosphorus levels (Mallick and Banerji 1981; Hamilton and Shedlock 1992). A decline was 

observed in 2001 when the P-Tot concentration was 0.03 mg/L. Improvements in wastewater 

treatment during the mid-2000s helped reduce phosphorus discharges into rivers, leading to a 

temporary decline. These fluctuations underscore the complex interplay between agricultural 

runoff, industrial discharges, seasonal variations, and regulatory changes that impact river 

water quality over time (Rahman et al., 2016; Ahmad 2023). 

The fluctuations in nitrate (NO3
-) and Total Phosphorus (P-Tot) levels in river water are 

influenced by various agricultural, industrial, and environmental factors. Seasonal variations, 

including periods of heavy rainfall, caused further fluctuations by diluting nitrate 

concentrations (Karthik and Lekshmanaswamy 2018).  

4.2.12. CHLORIDE (Cl-) & SULPHATE (SO4
2-) 

Chloride and Sulphate are major anions in water. Fig. 4.12 illustrates the variation in Chloride 

and Sulphate levels in Sultanpur from 1998 – 2017. The mean chloride concentration is 27.42 

mg/L, with a standard deviation of 8.76 mg/L. Sulphate has a mean concentration of 24.43 

mg/L, with a standard deviation of 8.33 mg/L. BIS standards set the maximum permissible 

limits for chloride and sulphate at 250 mg/L and 200 mg/L, respectively. Chloride in natural 

water primarily comes from soil, sewage, and animal waste (Girija et al., 2006). It's a key 
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indicator of sewage contamination, with high levels suggesting organic pollution (Pius et al., 

2011; Sadat-Noori et al., 2014).  

 

 

Figure 4.12 Variation of Cl- & SO4
2- at Sultanpur (1998-2017) 

The fluctuations in chloride (Cl-) and sulphate (SO4
2-) levels in river water from 1998 to 2017 

can be attributed to several environmental and anthropogenic factors. Chloride levels showed 

an initial decrease from 1998 (25.3 mg/L) to 2005 (15.2 mg/L), likely due to improved waste 

management practices and reduced industrial discharges. The significant increase around 2006 

(28.1 mg/L) suggests a surge in industrial activities or urban runoff, contributing to high 

chloride levels from road salts and domestic waste sources. The subsequent fluctuations reflect 

ongoing changes in industrial activities, urbanization, and water management practices. The 

sharp increase after 2015 (30.7 mg/L) might indicate increased use of fertilizers and chemicals 

in agriculture and urban expansion, contributing more pollutants to the river (Rahman et al., 

2016; Ahmad 2023). 

The initial increase in Sulphate levels around 1999 (34.5 mg/L) could be linked to industrial 

discharges, particularly from industries that use sulphates in their processes. The subsequent 

decrease around 2003 (10.3 mg/L) might reflect improved industrial waste management and 

reduced emissions (Iqbal et al., 2019). Seasonal variations, including monsoon-driven runoff, 

also play a role in diluting and concentrating sulphate levels. The steady increase from 2011 
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(19.2 mg/L) could be due to resumed or increased industrial activity and less stringent 

environmental regulations (Jaiswal et al., 2019).  

4.2.13. AMMONIA (NH3) 

Ammonia levels are crucial for assessing organic pollution. Fig. 4.13 depicts the variation in 

Ammonia levels in Sultanpur from 1998 – 2017.  The mean NH3 concentration is 0.05 mg/L, 

with minimal variation (standard deviation of 0.00 mg/L and a coefficient of variation of 

0.14%). The values are consistently less than 0.5 mg/L, within the acceptable limits set by BIS 

and WHO. 

 

Figure 4.13 Variation of NH3 at Sultanpur (1998-2017) 

The ammonia (NH3) levels in river water from 1998 to 2017, as depicted in the graph               

(Fig. 4.13), show no significant fluctuations, maintaining a stable level at 0.05 mg/L. This 

stability can be attributed to several factors. First, effective wastewater treatment practices 

likely played a role in keeping ammonia levels low, as these facilities remove ammonia from 

domestic and industrial effluents before they reach the rivers. Second, regulatory measures and 

environmental policies aimed at reducing nitrogen pollution have likely been effective in 

controlling ammonia discharges. Third, ammonia is a volatile compound that can be lost to the 

atmosphere, and its rapid conversion to other nitrogen forms, such as nitrates and nitrites, 

through biochemical processes in the water, helps maintain low levels (Rahman et al., 2016; 

Ahmad 2023). 
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4.2.14. FLUORIDE (F-) & BORON (B) 

Fluoride and Boron are trace elements that have specific health impacts. Trends in Fluoride and 

Boron concentrations at Sultanpur (1998 – 2017) can be observed in Fig. 4.14. The mean 

fluoride concentration is 0.24 mg/L, with a standard deviation of 0.18 mg/L. Boron has a mean 

concentration of 0.02 mg/L, with a high coefficient of variation (95.52%). BIS standards 

recommend fluoride levels between 1 to 1.5 mg/L and boron levels below 0.5 mg/L. Fluoride, 

occurring naturally, contaminates the environment from various sources, including 

groundwater influenced by geological factors (Yadav et al., 2009). Groundwater generally has 

higher fluoride than surface water due to rock minerals (Veeraputhiran and Alagumuthu 2010; 

Singh et al., 2011; Hussain et al., 2012).  

 

Figure 4.14 Variation of F & B at Sultanpur (1998-2017) 

The fluctuations in boron (B) and fluoride (F) levels in river water from 1998 to 2017 reflect 

varying environmental and anthropogenic influences. Fluoride levels have maintained a fairly 

consistent trend, with 1998 and 2017 having the same Fluoride concentration (0.03 mg/L). 

However, the lowest concentration was observed in 2004 (0.0008 mg/L), whereas the highest 

concentrations were observed in 2010, 2012, and 2013 with a Fluoride concentration of 0.4 

mg/L. This pattern suggests periods of increased industrial activity, particularly from industries 

that use fluoride in their processes, as well as changes in agricultural practices involving 

fluoride-containing pesticides. The subsequent decline in fluoride levels could be due to 
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improved regulatory measures and wastewater treatment practices to reduce fluoride pollution 

(Rahman et al., 2016; Ahmad 2023).  

Boron levels keep varying in 20 years (1998-2017). However, an overall increase in Boron 

concentration was observed from 0.020 mg/L in 1998 to 0.028 mg/L by 2017. Certain peaks 

were noted in 2002 (0.045 mg/L) and 2009 (0.039 mg/L), likely due to agricultural runoff 

containing boron-rich fertilizers and industrial discharges (Sujila et al., 2018). The lowest 

Boron concentrations were observed in 2000 (0.001 mg/L), 2004 and 2006 (0.006 mg/L). The 

initial decline around 2000 (0.0008 mg/L) could be attributed to improved industrial waste 

management practices. Seasonal variations, including periods of heavy rainfall, contribute to 

the dilution and concentration of boron levels, causing fluctuations (Sharma and Walia 2015; 

Sujila et al., 2018). 

4.3.PEARSON’S CORRELATION MATRIX 

The provided correlation matrix in Fig. 4.15, presents a comprehensive overview of the 

relationships between various water quality parameters. Correlation coefficients range from -1 

to 1, where 1 indicates a perfect positive correlation, 0 indicates no correlation, and -1 indicates 

a perfect negative correlation. A high absolute value suggests a strong relationship, while a 

value closer to 0 suggests a weak relationship. 
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Figure 4.15 Correlation Analysis showing correlation between Water Quality Parameters 

From the matrix, Dissolved Oxygen (DO) shows weak to negligible correlations with most 

parameters, indicating that the other parameters do not strongly influence its levels in this 

dataset. The correlation between DO and Biochemical Oxygen Demand (BOD) is 0.25, 

suggesting a weak positive relationship where higher organic matter (and thus higher BOD) 

might be associated with slightly higher DO levels due to aerobic breakdown, though this 

relationship is not strong. Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) 

often show an inverse relationship. Higher BOD indicates more organic matter in the water, 

consuming oxygen as it decomposes, thereby reducing DO levels (CPCB 2009; Varma and Jha 

2023). Researchers suggest that DO and pH can show a positive correlation because 

photosynthetic activity, which increases DO, also tends to increase pH by consuming CO2 

(Varma and Jha 2023). pH has weak correlations with most parameters, except for a moderate 

negative correlation with Calcium (Ca2+) at (-)0.30, suggesting that higher pH levels might be 

associated with lower calcium levels in the water. Studies show that pH and Total Alkalinity 

(TA) are closely related as alkalinity represents the water's capacity to neutralize acids, thereby 

stabilizing pH levels (Leong et al., 2018; Ahmad 2023). Electrical Conductivity (EC) shows a 
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moderate positive correlation with Total Dissolved Solids (TDS) at 0.45, which is expected 

since TDS contributes to the water's ability to conduct electricity. The results of this study align 

with those of Noori et al., 2010, who also got a positive correlation between EC & TDS, thereby 

verifying the accuracy of the results. Similarly, EC has a moderate positive correlation with 

Magnesium (Mg2+) at 0.35 and Sodium (Na+) at 0.48, indicating that these ions contribute 

significantly to the electrical conductivity of the water (Sârbu and Pop 2005). EC shows a 

slightly negative correlation with pH (-0.02), suggesting that electrical conductivity decreases 

as the pH increases (water becomes more alkaline). Studies confirm that pH and EC correlate 

negatively (Noori et al., 2010). Ammonia (NH3) shows weak correlations with most 

parameters, except for a moderate negative correlation with Calcium (Ca2+) at -0.15, indicating 

that higher ammonia levels might be associated with lower calcium levels. However, Ammonia 

(NH3) and BOD are often correlated since high levels of organic waste that increase BOD can 

also lead to higher levels of ammonia due to the decomposition of organic matter (Kumar and 

Puri 2012). Nitrates (NO3
-) show moderate positive correlations with TDS at 0.36 and Total 

Hardness (TH) at 0.39, indicating that higher nitrogen levels are associated with higher levels 

of these parameters.  Phosphorus (P-Tot) shows a weak to moderate negative correlation with 

pH at -0.26 and a moderate positive correlation with Calcium (Ca2+) at 0.27, suggesting that 

phosphorus levels are influenced by these parameters. Biochemical Oxygen Demand (BOD) 

shows weak to negligible correlations with most parameters, except for a moderate positive 

correlation with Chloride (Cl-) at 0.40, indicating that higher BOD levels might be associated 

with higher chloride levels. Total Hardness (TH) has a strong positive correlation with 

Magnesium (Mg2+) at 0.74, indicating that the hardness of the water is greatly influenced by 

its magnesium content. Additionally, TH shows moderate positive correlations with TDS at 

0.70 and Calcium (Ca2+) at 0.67. Calcium (Ca2+) shows a strong positive correlation with Total 

Hardness (TH) at 0.67 and moderate positive correlations with pH at -0.30 and Phosphorus (P-

Tot) at 0.27. Magnesium (Mg2+) has strong positive correlations with TDS at 0.74 and Total 

Hardness (TH) at 0.74, indicating that magnesium levels significantly influence these 

parameters. Sodium (Na+) shows moderate positive correlations with EC at 0.48, TDS at 0.38, 

and Chloride (Cl-) at 0.18, suggesting common sources or concurrent pollution by these ions. 

Chloride (Cl-) and Sodium (Na+) levels are typically correlated because both ions are common 

constituents of salt (NaCl). They often enter water bodies through similar sources such as road 

salt, industrial discharges, and sewage effluent (Leong et al., 2018; Ahmad 2023). Potassium 

(K+) shows weak to negligible correlations with most parameters, indicating that its 

concentration is independent of the concentrations of other parameters measured in this dataset. 
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Chloride (Cl-) shows moderate positive correlations with BOD at 0.40 and Phosphorus (P-Tot) 

at 0.30, indicating that higher chloride levels might be associated with higher levels of these 

parameters. Sulphate (SO4
2-) shows weak to negligible correlations with most parameters, 

indicating that the other parameters do not strongly influence its levels in this dataset. Fluoride 

(F-) shows a moderate positive correlation with Calcium (Ca2+) at 0.34, indicating that higher 

fluoride levels might be associated with higher calcium levels. Boron (B) shows weak to 

negligible correlations with most parameters, indicating that its concentration is independent 

of the concentrations of other parameters measured in this dataset. Total Alkalinity (TA) shows 

a very strong positive correlation with TDS at 0.84, indicating that higher levels of total 

dissolved solids contribute significantly to the alkalinity of the water. Additionally, TA shows 

moderate positive correlations with Total Hardness (TH) at 0.59 and Magnesium (Mg2+) at 

0.68. These correlations provide insights into the relationships between different water quality 

parameters, which can help in modelling water quality and designing interventions to improve 

or maintain it. However, it is important to note that correlation does not imply causation, and 

these relationships could be influenced by other factors not included in the matrix. These 

correlations can inform further investigations into the causes and effects of water quality 

parameters. For instance, understanding which factors are most strongly related can help in 

modelling water quality and in designing interventions to improve or maintain it. However, 

correlation does not imply causation, and other factors not included in the matrix could 

influence the observed relationships. 

4.4.WATER QUALITY INDICES 

The data from Sultanpur, Uttar Pradesh, spanning 20 years (1998 - 2017), encompasses 

monthly values and interpretations for four types of water quality indices: Comprehensive 

Pollution Index (CPI), Synthetic Pollution Index (SPI), Nemerow’s Pollution Index (NPI), and 

Arithmetic Water Quality Index (AWQI). Each index provides a unique perspective on water 

quality, reflecting various levels of pollution and water conditions. Below are the research sub-

sections discussing the implications of these indices. Table 4.2 depicts the annual variation of 

four water quality indices, i.e., CPI, SPI, NPI and AWQI. 

Table 4.2 Water Quality Indices Annual Results: (a) Comprehensive Pollution Index (CPI), 

(b) Synthetic Pollution Index (SPI), (c) Nemerow Pollution Index (NPI), and (d) Arithmetic 

Water Quality Index (AWQI) 

Year CPI Status SPI Status NPI Status AWQI Status 
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1998 0.58 
Slightly 

Polluted 
0.19 

Suitable for 

Drinking 
1.15 

Light 

Pollution 
68 

Poor water 

quality 

1999 0.56 
Slightly 

Polluted 
0.19 

Suitable for 

Drinking 
1.07 

Light 

Pollution 
68 

Poor water 

quality 

2000 0.58 
Slightly 

Polluted 
0.17 

Suitable for 

Drinking 
1.04 

Light 

Pollution 
63 

Poor water 

quality 

2001 0.54 
Slightly 

Polluted 
0.19 

Suitable for 

Drinking 
0.91 

No 

Pollution 
73 

Poor water 

quality 

2002 0.58 
Slightly 

Polluted 
0.17 

Suitable for 

Drinking 
0.85 

No 

Pollution 
66 

Poor water 

quality 

2003 0.51 
Slightly 

Polluted 
0.14 

Suitable for 

Drinking 
0.94 

No 

Pollution 
64 

Poor water 

quality 

2004 0.38 
Sub Clean 

0.13 
Suitable for 

Drinking 
0.65 

No 

Pollution 
61 

Poor water 

quality 

2005 0.49 
Slightly 

Polluted 
0.16 

Suitable for 

Drinking 
0.80 

No 

Pollution 
73 

Poor water 

quality 

2006 0.42 
Slightly 

Polluted 
0.16 

Suitable for 

Drinking 
0.69 

No 

Pollution 
76 

Poor water 

quality 

2007 0.47 
Slightly 

Polluted 
0.18 

Suitable for 

Drinking 
0.75 

No 

Pollution 
74 

Poor water 

quality 

2008 0.45 
Slightly 

Polluted 
0.18 

Suitable for 

Drinking 
0.83 

No 

Pollution 
73 

Poor water 

quality 

2009 0.53 
Slightly 

Polluted 
0.22 

Slightly 

Polluted 
0.83 

No 

Pollution 
70 

Poor water 

quality 

2010 0.49 
Slightly 

Polluted 
0.23 

Slightly 

Polluted 
0.82 

No 

Pollution 
68 

Poor water 

quality 

2011 0.48 
Slightly 

Polluted 
0.20 

Suitable for 

Drinking 
0.80 

No 

Pollution 
70 

Poor water 

quality 

2012 0.46 
Slightly 

Polluted 
0.23 

Slightly 

Polluted 
0.75 

No 

Pollution 
64 

Poor water 

quality 

2013 0.46 
Slightly 

Polluted 
0.22 

Slightly 

Polluted 
0.76 

No 

Pollution 
68 

Poor water 

quality 
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2014 0.46 
Slightly 

Polluted 
0.21 

Slightly 

Polluted 
0.77 

No 

Pollution 
64 

Poor water 

quality 

2015 0.47 
Slightly 

Polluted 
0.21 

Slightly 

Polluted 
0.80 

No 

Pollution 
58 

Poor water 

quality 

2016 0.49 
Slightly 

Polluted 
0.21 

Slightly 

Polluted 
0.86 

No 

Pollution 
57 

Poor water 

quality 

2017 0.46 
Slightly 

Polluted 
0.21 

Slightly 

Polluted 
0.84 

No 

Pollution 
60 

Poor water 

quality 

 

4.4.1. COMPREHENSIVE POLLUTION INDEX (CPI) 

The CPI offers a quantitative measure of the overall pollution level in water bodies by 

integrating various pollutant parameters. It serves as a critical tool for assessing water quality, 

facilitating the identification of pollution trends, and guiding environmental management and 

policy decisions. The data reveal a nuanced view of water quality trends across three distinct 

seasons—pre-monsoon, monsoon, and post-monsoon—each characterized by their unique 

environmental impacts. Fig. 4.16 illustrates the Comprehensive Pollution Index (CPI) variation 

at Sultanpur from 1998 – 2017.  

4.4.1.1.ANNUAL VARIATION IN WATER QUALITY 

The data on the CPI of the Gomti River at Sultanpur, Uttar Pradesh, from 1998 to 2017 indicates 

notable fluctuations in water quality over the years. The CPI values range from a high of 0.58 

(Slightly Polluted) in multiple years (1998, 2000, 2002) to a low of 0.38 (Sub-Clean) in 2004. 

Lower CPI values indicate better water quality. From 1998 to 2002, the CPI remained relatively 

high, suggesting poorer water quality during this period. A significant improvement was 

observed in 2003 and 2004, with CPI values dropping to 0.51 (Slightly Polluted) and 0.38 (Sub-

Clean), respectively. This improvement could be attributed to increased environmental 

regulations and pollution control measures implemented during this time. Studies indicate that 

government initiatives to reduce industrial discharge and enhance sewage treatment facilities 

positively impacted water quality (Singh 2004; Mishra et al., 2015). The CPI increased again 

in the subsequent years, peaking at 0.53 (Slightly Polluted) in 2009. This deterioration could 

be linked to rapid urbanization and industrialization, which led to higher pollutant loads in the 

river. Research also highlights the correlation between industrial growth and increased river 

pollution, emphasizing the need for sustainable industrial practices (Kumar et al., 2009). In the 
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following years, the CPI values fluctuate but generally showed a downward trend, indicating 

gradual improvement. By 2017, the CPI stabilized at around 0.46 (Slightly polluted). This 

improvement can be linked to continuous pollution control and river management efforts. A 

few studies also suggest that ongoing community involvement and stricter enforcement of 

environmental laws contributed to this positive change (Gautam et al., 2015). Overall, while 

the Gomti River at Sultanpur has experienced periods of high pollution, concerted efforts in 

environmental management have led to a gradual improvement in water quality. 

 

Figure 4.16 CPI variation from 1998-2017 at Sultanpur, UP 

4.4.1.2.SEASONAL VARIATION IN WATER QUALITY 

The CPI averages 0.52 (Slightly Polluted) during the pre-monsoon period, 0.50 (Slightly 

Polluted) during the monsoon, and 0.46 (Slightly Polluted) in the post-monsoon season. During 

the pre-monsoon season, the average CPI is the highest, reflecting poorer water quality due to 

reduced river flow and higher pollutant concentration. For instance, in 1998, the pre-monsoon 

CPI was 0.65 (Slightly Polluted), indicating high pollution levels. This pattern is supported by 

studies highlighting lower water levels' impact on pollutant concentration (Singh 2004; Mishra 

et al., 2015). During the monsoon season, the average CPI decreases slightly, indicating 

improved water quality. This is due to increased rainfall and river flow, which dilute the 
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pollutants. However, monsoon runoff from agricultural fields and urban areas can still 

introduce new pollutants into the river (Kumar et al., 2009). For example, in 2004, the monsoon 

CPI was significantly lower at 0.38 (Sub-Clean) compared to the pre-monsoon CPI of 0.40 

(Sub-Clean). Post-monsoon, the CPI values are generally the lowest, indicating the best water 

quality. The continuous dilution effect from the monsoon rains and the settling of sediments 

contribute to improved water conditions. In 2004, the post-monsoon CPI dropped to 0.37 (Sub-

Clean), the lowest in the dataset. Table 4.3 presents the Comprehensive Pollution Index (1998 

– 2017) categorized by pre-monsoon, monsoon and post-monsoon periods. Ongoing pollution 

control measures and improved sewage treatment are crucial in this seasonal improvement 

(Gautam et al., 2015). Hence, the Gomti River's water quality at Sultanpur varies seasonally, 

with the best quality observed post-monsoon and the worst during the pre-monsoon period. 

These trends underscore the need for targeted pollution control efforts throughout the year.  

Table 4.3 Comprehensive Pollution Index (1998 - 2017) 

Comprehensive Pollution Index (CPI) 

Year Pre – Monsoon  Monsoon Post – Monsoon  

1998 0.65 0.59 0.48 

1999 0.62 0.58 0.49 

2000 0.57 0.58 0.59 

2001 0.64 0.48 0.50 

2002 0.59 0.62 0.51 

2003 0.55 0.53 0.46 

2004 0.40 0.38 0.37 

2005 0.56 0.45 0.44 

2006 0.49 0.37 0.41 

2007 0.48 0.48 0.43 

2008 0.49 0.46 0.41 

2009 0.55 0.56 0.48 

2010 0.52 0.52 0.43 

2011 0.50 0.49 0.45 

2012 0.46 0.47 0.45 

2013 0.47 0.45 0.46 

2014 0.45 0.46 0.46 
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2015 0.47 0.47 0.47 

2016 0.53 0.49 0.44 

2017 0.48 0.47 0.44 

 

4.4.2. SYNTHETIC POLLUTION INDEX (SPI) 

The SPI is a critical measure for assessing water quality, encapsulating the collective impact of 

various pollutants. By analysing SPI values, we gain insight into the pollution levels and overall 

health of aquatic ecosystems. For the Gomti River in Sultanpur, the SPI data spanning from 

1998 to 2017 offers a unique lens through which we can observe temporal pollution patterns, 

identify potential sources of pollution, and evaluate the effectiveness of environmental policies 

and practices over time. Fig. 4.17 illustrates the Synthetic Pollution Index (SPI) variation at 

Sultanpur from 1998 to 2017. 

4.4.2.1.YEARLY VARIATION IN WATER QUALITY 

The SPI data for the Gomti River at Sultanpur, Uttar Pradesh, from 1998 to 2017, shows 

variations in pollution levels over time. The SPI values range from 0.13 (Suitable for Drinking) 

to 0.23 (Slightly Polluted), indicating changes in the river's water quality due to pollutants. 

Between 1998 and 2001, the SPI values remained steady at around 0.19 (Suitable for Drinking), 

reflecting consistent pollution levels. In 2002, there was a notable decrease in SPI to 0.17, 

which continued to drop to 0.13 (Suitable for Drinking) by 2004. This decline in SPI suggests 

an improvement in water quality, likely due to the implementation of better pollution control 

measures and stricter regulations. Studies focusing on SPI indicate that effective industrial 

waste management and improved sewage treatment can significantly reduce synthetic 

pollutants  (Liu et al., 2007; Gao et al., 2015). However, starting from 2005, the SPI values 

rose again, peaking at 0.23 (Slightly Polluted) in 2010 and 2012. This increase points to a 

resurgence in pollution, potentially due to rapid industrialization and urbanization in the region. 

Research has also highlighted how industrial growth can lead to higher levels of pollutants if 

not managed sustainably (Prasad et al., 2024). The SPI values fluctuated slightly in the 

following years but generally remained high, around 0.21 (Slightly Polluted), indicating 

persistent pollution issues. Continuous efforts and stricter enforcement of environmental 

regulations are necessary to combat pollutants effectively (Wu et al., 2014). In conclusion, the 

SPI data reveals that while there have been periods of improvement, the water quality of the 

Gomti River at Sultanpur faces ongoing challenges due to pollution. This underscores the need 
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for sustained and enhanced pollution control measures to ensure long-term improvement in 

water quality. 

 

Figure 4.17 SPI variation from 1998-2017 at Sultanpur, UP 

4.4.2.2.SEASONAL VARIATION IN WATER QUALITY 

The average SPI values are 0.20 (Slightly Polluted) during the pre-monsoon period, 0.19 

(Suitable for Drinking) during the monsoon, and 0.18 (Suitable for Drinking) in the post-

monsoon season. The pre-monsoon SPI values generally range from 0.13 (Suitable for 

Drinking) to 0.26 (Slightly Polluted), indicating higher levels of pollution during this period. 

For instance, in 1999, the SPI was at its highest at 0.26 (Slightly Polluted), reflecting increased 

pollution likely due to reduced river flow and higher pollutant concentrations (Xiao 1996). 

During the monsoon season, the SPI values are slightly lower, ranging from 0.13 (Suitable for 

Drinking) to 0.27 (Slightly Polluted). The decrease in SPI during the monsoon season can be 

attributed to the dilution effect of increased rainfall, which helps disperse pollutants. However, 

occasional high values, such as 0.27 (Slightly Polluted) in 2010, suggest that runoff from 

agricultural fields and urban areas can still contribute to significant pollution (Prasad et al., 

2024). The post-monsoon period generally shows the lowest SPI values, ranging from 0.12 

(Suitable for Drinking) to 0.24 (Slightly Polluted), indicating better water quality due to 
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continued dilution and settling of sediments. The lowest SPI of 0.12 (Suitable for Drinking) 

was observed in 1999, signifying the best water quality in the given data range. This 

improvement can be linked to effective sewage treatment and industrial waste management 

practices during this period (Wu et al., 2014). Table 4.4 presents the Synthetic Pollution Index 

(1998 – 2017) categorized by pre-monsoon, monsoon and post-monsoon periods.  Therefore, 

continuous efforts in pollution control and sustainable practices are essential to maintain and 

improve water quality. 

Table 4.4 Synthetic Pollution Index (SPI) (1998 - 2017) 

Synthetic Pollution Index (SPI) 

Year Pre – Monsoon  Monsoon Post – Monsoon  

1998 0.20 0.19 0.19 

1999 0.26 0.19 0.12 

2000 0.18 0.15 0.16 

2001 0.20 0.19 0.19 

2002 0.19 0.18 0.15 

2003 0.15 0.14 0.13 

2004 0.13 0.13 0.14 

2005 0.17 0.15 0.18 

2006 0.18 0.15 0.15 

2007 0.18 0.17 0.18 

2008 0.18 0.18 0.19 

2009 0.19 0.25 0.21 

2010 0.20 0.27 0.22 

2011 0.22 0.19 0.19 

2012 0.21 0.24 0.24 

2013 0.21 0.22 0.23 

2014 0.22 0.21 0.20 

2015 0.21 0.20 0.20 

2016 0.21 0.23 0.20 

2017 0.20 0.22 0.20 
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4.4.3. NEMEROW’S POLLUTION INDEX (NPI) 

The Nemerow Pollution Index (NPI) is a comprehensive measure that reflects the overall 

condition of water quality by evaluating the impact of multiple pollutants. It provides an 

aggregated pollution score, essential for assessing the ecological status of water bodies and the 

effectiveness of pollution control measures over time. In the context of the Gomti River in 

Sultanpur, analysing NPI values from 1998 to 2017 offers insights into pollution trends and 

their implications on the river's health and surrounding environments. Fig. 4.18 illustrates 

Nemerow’s Pollution Index (NPI) variation at Sultanpur from 1998 – 2017. 

4.4.3.1.WATER QUALITY OVER TIME 

The water quality of the Gomti River at Sultanpur, Uttar Pradesh, as assessed by Nemerow's 

Pollution Index (NPI) from 1998 to 2017, shows significant variations. The NPI values range 

from a high of 1.15 (Slightly Polluted) in 1998 to a low of 0.65 (Suitable for Drinking) in 2004, 

indicating changes in pollution levels over the years. In 1998, the NPI was at its highest (1.15), 

indicating severe pollution. This high pollution level could be attributed to industrial discharges 

and insufficient wastewater treatment during this period. Studies have shown that industrial 

activities significantly contribute to river pollution (Smith et al., 2000). The subsequent years 

saw a gradual improvement in water quality, with the NPI decreasing to 0.85 (Suitable for 

Drinking) in 2002 (Fig. 4.18). This improvement can be linked to stricter environmental 

regulations and better pollution control measures. For instance, efforts to treat industrial 

wastewater more effectively have been reported to reduce pollution levels significantly (Jones 

et al., 2001). In 2004, the NPI reached its lowest value of 0.65 (Suitable for Drinking), 

suggesting the best water quality in the given timeframe. This improvement may be due to 

enhanced sewage treatment and effective waste management practices. Research indicates that 

better sewage treatment facilities and reduced industrial discharge play a crucial role in 

improving water quality (Kannel et al., 2007b). However, from 2005 onwards, the NPI began 

to increase again, peaking at 0.86 (Suitable for Drinking) in 2016. This rise in pollution levels 

can be associated with increased urbanization and industrial activities, leading to higher 

pollutant loads in the river. Studies by (Sallam and Elsayed 2015) highlighted the impact of 

rapid industrialization on water pollution. By 2017, the NPI slightly decreased to 0.84 (Suitable 

for Drinking), indicating a slight improvement but still reflecting a moderately polluted state. 

Continuous efforts in pollution control, sustainable industrial practices, and effective waste 

management are essential to maintain and further improve the water quality of the Gomti River. 
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Figure 4.18 NPI variation from 1998-2017 at Sultanpur, UP 

4.4.3.2.SEASONAL VARIATION AND TRENDS 

The water quality of the Gomti River at Sultanpur, Uttar Pradesh, assessed using Nemerow's 

Pollution Index (NPI) from 1998 to 2017, shows seasonal variations. The average NPI values 

are 0.91 (Suitable for Drinking) for the pre-monsoon period, 0.84 (Suitable for Drinking) 

during the monsoon, and 0.79 (Suitable for Drinking) in the post-monsoon season. The pre-

monsoon period generally exhibits higher pollution levels, with an average NPI of 0.91 

(Suitable for Drinking). In 1998, the NPI peaked at 1.39 (Slightly Polluted), indicating 

significant pollution. This high pollution level during pre-monsoon is due to reduced river flow 

and higher concentrations of pollutants, as suggested by research (Smith et al., 2000). The 

monsoon season shows a slight improvement in water quality, with an average NPI of 0.84 

(Suitable for Drinking). The increased rainfall and river flow during this period helps dilute 

pollutants, lowering pollution levels. However, in some years like 2000, the NPI was still high 

at 1.07 (Slightly Polluted), indicating that runoff from agricultural fields and urban areas can 

contribute to pollution (Jones et al., 2001). The post-monsoon period generally has the lowest 

NPI values, with an average of 0.79 (Suitable for Drinking), reflecting the best water quality. 

In 2004, the NPI dropped to 0.63 (Suitable for Drinking), the lowest in the dataset, suggesting 

improved water quality due to continued dilution and sediment settling. Enhanced sewage 
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treatment and effective waste management practices contribute significantly to this 

improvement (Sallam and Elsayed 2015). Table 4.5 presents Nemerow’s Pollution Index (1998 

– 2017) categorized by pre-monsoon, monsoon and post-monsoon periods. Overall, the data 

shows that while seasonal improvements exist, continuous and enhanced pollution control 

measures are essential to maintain and improve the water quality of the Gomti River at 

Sultanpur.  

Table 4.5 Nemerow's Pollution Index (1998 - 2017) 

Nemerow’s Pollution Index (NPI) 

Year Pre – Monsoon  Monsoon Post – Monsoon  

1998 1.39 1.13 0.94 

1999 1.17 1.04 1.00 

2000 0.96 1.07 1.10 

2001 1.14 0.77 0.83 

2002 0.88 0.96 0.72 

2003 0.96 1.02 0.84 

2004 0.69 0.64 0.63 

2005 1.01 0.70 0.69 

2006 0.82 0.59 0.67 

2007 0.69 0.88 0.68 

2008 0.84 0.85 0.80 

2009 0.87 0.83 0.80 

2010 0.89 0.82 0.76 

2011 0.82 0.76 0.81 

2012 0.76 0.73 0.75 

2013 0.81 0.69 0.78 

2014 0.78 0.74 0.79 

2015 0.77 0.83 0.81 

2016 0.97 0.86 0.73 

2017 0.93 0.86 0.73 
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4.4.4. ARITHMETIC WATER QUALITY INDEX (AWQI) 

The Arithmetic Water Quality Index (AWQI) is an essential metric for evaluating the overall 

water quality of rivers, incorporating various parameters to give a singular value that reflects 

the water's condition. The AWQI can classify water into categories such as "Excellent," 

"Good," "Poor," etc., providing a straightforward way to communicate water quality status to 

both scientists and the public. For the Gomti River, a vital water source in Sultanpur, Uttar 

Pradesh, understanding the AWQI's temporal variations is key to identifying pollution trends, 

assessing environmental health, and guiding water management practices. Fig. 4.19 illustrates 

the Arithmetic Water Quality Index (AWQI) variation at Sultanpur from 1998 to 2017. 

4.4.4.1.WATER QUALITY OVER TIME 

The Arithmetic Water Quality Index (AWQI) data for the Gomti River at Sultanpur, Uttar 

Pradesh, from 1998 to 2017, shows significant fluctuations in water quality over the years. The 

AWQI values range from a low of 57 (Poor Water Quality) in 2016 to a high of 76 (Very Poor 

Water Quality) in 2006, indicating varying levels of water quality. In 2001, 2005, 2006, and 

2007, the AWQI values were notably high (73, 73, 76, and 74, respectively), representing Poor 

Water Quality. High AWQI values indicate poorer water quality, possibly due to increased 

industrial discharge and agricultural runoff during these years. Few studies highlighted that 

industrial activities and agricultural runoff significantly contribute to water pollution (Liu et 

al., 2007; Gao et al., 2015). 

Conversely, the AWQI values show improvement in specific years. For instance, in 2004, the 

AWQI dropped to 61 (Poor Water Quality); in 2016, it further reduced to 57 (Poor Water 

Quality). These lower values indicate better water quality, likely due to effective pollution 

control measures and improved wastewater treatment. Research by Singh et al., (2011) 

emphasizes that stringent environmental regulations and sewage treatment advancements can 

significantly enhance water quality. In the later years, the AWQI values declined, with a value 

of 60 (Poor Water Quality) in 2017. This decline indicates a trend towards improved water 

quality, though the values still reflect moderate pollution levels. Continuous efforts in pollution 

management and sustainable practices are crucial for maintaining this positive trend. Studies 

support the importance of ongoing pollution control and effective waste management in 

sustaining water quality improvements (Sharma and Walia 2015). Overall, the AWQI data 

suggests that while there have been periods of poor water quality, concerted pollution control 

and wastewater management efforts have led to gradual improvements. Maintaining and 
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enhancing these efforts is essential to ensure the long-term health of the Gomti River at 

Sultanpur. 

 

Figure 4.19 AWQI variation from 1998-2017 at Sultanpur, UP 

4.4.4.2.SEASONAL VARIATION AND TRENDS 

The water quality of the Gomti River at Sultanpur, Uttar Pradesh, assessed using the AWQI 

from 1998 to 2017, shows seasonal variations. The average AWQI values are 66.84 (Poor Water 

Quality) during the pre-monsoon period, 68.83 (Poor Water Quality) during the monsoon, and 

64.72 (Poor Water Quality) in the post-monsoon season. The analysis reveals considerable 

seasonal variations and trends over the years. The AWQI values reflect the water quality, with 

higher values indicating poorer water quality. The pre-monsoon period generally shows higher 

AWQI values, with significant peaks in 1999 (78.63), 2001 (79.03), and 2007 (74.83). This 

period often experiences reduced river flow, leading to higher concentrations of pollutants. The 

monsoon season typically shows mixed results, emphasizing that low water levels during pre-

monsoon season increase pollutant concentrations (Gao et al., 2015). For example, in 1998, the 

AWQI peaked at 80.42 (Very Poor Water Quality), indicating severe pollution, likely due to 

runoff from agricultural fields and urban areas (Liu et al., 2007). However, there are 

improvements in some years, such as 2004 (62.52), due to the dilution effect of increased 
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rainfall. The post-monsoon period generally reflects the best water quality, with lower AWQI 

values. For instance, in 2016 and 2017, the AWQI values dropped to 53.56 (Poor Water 

Quality), indicating improved water conditions. Enhanced sewage treatment and effective 

waste management practices contribute significantly to this improvement (Singh et al., 2011). 

Overall, the data indicates periods of both deterioration and improvement in water quality. For 

example, in 2006 and 2007, high AWQI values indicate poor water quality, likely due to 

industrial discharge and inadequate wastewater treatment. Conversely, significant 

improvements in 2015 and subsequent years reflect the impact of better pollution control 

measures. Table 4.6 presents the Arithmetic Water Quality Index (1998 – 2017) categorized by 

pre-monsoon, monsoon and post-monsoon periods. 

Table 4.6 Arithmetic Water Quality Index (1998 - 2017) 

Arithmetic Water Quality Index (AWQI) 

Year Pre – Monsoon  Monsoon Post – Monsoon  

1998 64.46 80.42 60.34 

1999 78.63 70.01 55.25 

2000 64.20 64.89 58.66 

2001 79.03 69.32 70.40 

2002 61.29 70.91 64.54 

2003 63.85 69.72 59.90 

2004 61.18 62.52 59.96 

2005 60.71 74.71 82.63 

2006 70.79 79.60 76.16 

2007 74.83 74.37 71.60 

2008 68.75 70.37 79.79 

2009 69.84 71.89 68.02 

2010 63.39 71.78 67.80 

2011 70.03 71.39 68.12 

2012 72.18 65.30 54.88 

2013 70.79 65.64 66.56 

2014 65.96 62.36 62.39 

2015 55.38 58.89 60.26 

2016 57.97 60.62 53.56 
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2017 63.59 61.93 53.56 

 

4.5.MULTIVARIATE STATISTICAL ANALYSIS 

4.5.1. CLUSTER ANALYSIS OF WATER QUALITY  

The hierarchical cluster analysis depicted in the dendrogram (Fig. 4.20) is predicated on a 

comprehensive pollution index (CPI), synthesizing 18 water quality parameters into a singular 

index value. This comprehensive approach facilitates a robust analysis of trends over a 

substantial temporal scale (1998-2017) and across the three distinctive Indian seasons: pre-

monsoon, monsoon, and post-monsoon. By assessing the Euclidean distances between the 

months, represented on the vertical axis, against the backdrop of a twenty-year timeline on the 

horizontal axis, a narrative of environmental and anthropogenic impacts on the river's pollution 

unfolds. 

 

Figure 4.20 Dendrogram representing monthly temporal variation 

In Sultanpur, the increase in pollution during the pre-monsoon months, typically from January 

to April, can be attributed to several converging factors. Cluster analysis displays short 
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Euclidean distances between consecutive clusters, suggesting a gradual build-up of pollutants 

due to minimal rainfall and increased human activities such as pre-harvest agricultural practices 

(Jain et al., 2005; Singh et al., 2018). The proximity of these clusters indicates that while 

pollution increases during this period, the rate of increase is consistent, as reflected by the 

stable climatic conditions. The dry conditions and lower water volumes in the river enhance 

the concentration of pollutants from urban runoff, untreated sewage, and industrial effluents. 

Additionally, agricultural activities contribute to this trend as the use of fertilizers and 

pesticides peaks before the rains, leading to increased runoff of these chemicals into the river 

(Kumar et al., 2013). The onset of the monsoon brings a transformative change. The transition 

into the monsoon season, particularly the shift from April to May, is marked by a longer 

Euclidean distance, indicating a distinct change in water quality. This suggests an abrupt 

alteration, likely from the first flush effect, where the initial rains wash accumulated pollutants 

into the river system (Goyal and Tyagi 2014). June’s proximity to May suggests similar 

processes are at work. However, the dramatic increase in Euclidean distance by July signifies 

the peak monsoonal effect—a substantial dilution of pollutants due to heavy rainfall despite 

increased runoff and erosion. However, the monsoon also introduces new challenges, such as 

soil erosion and surface runoff that carry organic matter, pathogens, and particulate matter, 

temporarily affecting water quality (Sharma and Kansal 2015). 

As the monsoon subsides, the dendrogram’s post-monsoon clusters (August through 

December) reveal shorter Euclidean distances between the months, analogous to the pre-

monsoon period. This distance reduction reflects the river's gradual return to lower water levels 

and increased pollutant concentrations as the dilution effect of the monsoon recedes. The close 

clustering of October, November, and December suggests that pollution levels have stabilized 

by late post-monsoon and are less variable, a likely consequence of decreased runoff and the 

beginning of the dry season (Chaudhary et al., 2017). Table 4.7 summarizes cluster analysis 

depicting the monthly variations in pollution levels. Agricultural harvests and related activities 

often resume post-monsoon, leading to a secondary nutrient and sediment runoff peak. 

Urbanization and industrial activities in Sultanpur and inadequate waste management practices 

further exacerbate the pollution levels in these months. Moreover, cultural practices and 

festivals, which often involve ritualistic offerings and river immersion, contribute to the organic 

and inorganic load during certain months, particularly post-monsoon (Patel and Jain 2016). 
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Table 4.7 Summary of cluster analysis 

Month Pollution Level 

January High Pollution 

February High Pollution 

March High Pollution 

April High Pollution 

May Initially high, transitioning to lower pollution 

June Lowering pollution 

July Low pollution 

August Low pollution, gradually increasing 

September Increasing pollution 

October High Pollution 

November High Pollution 

December High Pollution 

 

4.5.2. PRINCIPAL COMPONENT ANALYSIS 

Table 4.8 presents the results of the PCA analysis for each of the sampling points. PCA was 

applied to the normalized data to compare the compositional patterns between the analyzed 

water samples and identify the factors influencing each one. PCA of the entire data set (Table 

4.8) evolved five PCs with eigenvalues > 1, explaining about 65.603% of the total variance in 

the water-quality data set. The Scree plot was used to identify the number of PCs retained to 

comprehend the underlying data structure (Jackson and Edward 1991; Vega et al., 1998).   
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Table 4.8 PCA Analysis of Water Quality Parameters 

PARAMETERS  PC1 PC2 PC3 PC4 PC5 

DO -0.015 0.048 -0.197 0.669 0.105 

pH 0.169 -0.067 -0.735 0.109 -0.123 

EC 0.431 0.601 0.148 0.135 0.100 

TDS 0.892 0.153 -0.108 0.007 0.102 

NH3 -0.06 -0.12 0.15 -0.19 0.29 

NO3
- 0.580 -0.047 0.224 -0.166 -0.243 

P-Tot 0.006 0.268 0.599 0.011 -0.081 

BOD -0.268 0.260 0.013 0.639 0.140 

TH 0.844 0.199 0.249 0.165 0.112 

Ca2+ 0.347 0.126 0.632 0.369 0.208 

Mg2+ 0.836 0.143 -0.237 -0.121 -0.034 

Na+ 0.290 0.797 -0.263 0.070 -0.129 

K+ -0.136 0.749 0.324 0.054 0.113 

Cl- -0.122 0.463 0.340 0.358 0.416 

SO4
2- 0.083 0.046 0.084 0.046 0.840 

F- 0.061 -0.223 0.446 0.630 -0.130 

B 0.024 0.273 0.229 0.431 -0.305 

TA 0.881 -0.137 -0.115 -0.116 0.046 

      

Eigen values 4.071 3.156 1.620 1.214 1.090 

% of variance 23.949 18.567 9.530 7.143 6.414 

Cumulative % 23.949 42.516 52.046 59.189 65.603 

 

The first principal component (PC1), explained at 23.949% of the variability and consists of 

TDS, TH, Mg2+ and TA, likely represents the mineral content and buffering capacity, indicating 

geological influences and implications for water usability (Jain et al., 2005). 

The second principal component (PC2), explaining about 18.567% of the variance with high 

loadings on Sodium (Na+) and Potassium (K+), suggests influences from agricultural runoff or 

industrial discharges (Tripathi and Singal 2019). The third principal component (PC3), 

explaining 9.530% of the variance and primarily influenced by pH, could indicate the influence 



65 

 

of acid neutralization processes (Goyal and Tyagi 2014). The fourth component (PC4), 

accounting for 7.143% of the variance with notable influences from Dissolved Oxygen (DO), 

points to interactions between biological activity and geochemical inputs (Chaudhary et al., 

2017). Finally, the fifth component (PC5), which explains 6.414% of the variance and is 

dominated by Sulfate (SO4
2-), may reflect industrial pollution or natural mineral deposits 

(Chaudhary et al., 2017). Each component highlights different aspects of water quality, driven 

by various natural and anthropogenic factors. 

A study conducted by Singha et al., (2004) observed that the first principal component (PC), 

responsible for 27.9% of the total variance, displayed a correlation (loading 40.70) with factors 

including EC, TDS, TA, Cl-, and Na+. Additionally, their second PC exhibited a correlation 

with DO. In another study, the researchers observed that the first factor elucidated 59.022% of 

the total variance and demonstrated high loadings with Cl, BOD, COD, Tur, pH, and TH 

parameters. This factor was interpreted to reflect the impact of municipal wastewater discharge, 

a finding. Specifically, the substantial discharge of untreated or partially treated sewage into 

the Gomti River contributed to the manifestation of this factor. Additionally, the second factor 
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displayed notable loadings with TDS and DO, indicating its association with stormwater runoff 

(Kushwah et al., 2023). 

 

Figure 4.21 Biplots of PC1 and PC2; each vector represents a variable, and the correlation of 

two variables is reflected by the angle between the two corresponding vectors. The length of 

each vector is related to the contribution to the total variance 

Biplot is the orthogonal projection of the data on the subspace spanned by the two first principal 

components (those with the most contribution to the total variance), describing the importance 

and correlations of the parameters with higher influence. The first two principal components 

explained approximately 40.39% of the data variability. The biplot in Fig. 4.21 shows that the 

variables EC, TDS, TA, Ca2+, Mg2+, and TH are highly and positively correlated, whereas N, 

Na+, K+ and Cl- are moderately correlated. In addition, the lengths of the vectors for EC, TDS, 

TH, Ca2+, Mg2+, Na+ and Cl- are long vectors and indicate their strength on water quality, while 

NO3
-, Na+, K+ and Cl- show moderate influence. NH3, SO4

2-, DO, F- & B have shorter vectors, 

indicating less impact. 
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Figure 4.22 Scree plot representing Eigenvalues and Principal Component Numbers 

In examining the remaining components, notable differences in significant variables emerge, 

as illustrated in Table 4.8. A scree plot representing Eigen values and Principal Component 

number is represented in Fig. 4.22. From Fig. 4.22, it can be observed that PCA yielded five 

PCs, which account for 65.603% of the total variance associated with all parameters. We 

followed a similar methodology in accordance with Krishan et al., 2022, where depending on 

the values of the correlation matrix, the cumulative factor variance of greater than 0.85, 0.65-

0.85, and less than 0.65 are classified as having strong, moderate, and weak correlations, 

respectively. Results of PCA suggest that 9 parameters, namely Total Hardness (TH), Total 

Dissolved Solids (TDS), Magnesium (Mg2+), Total Alkalinity (TA), Potassium (K+), Sodium 

(Na+), pH, Dissolved Oxygen (DO), and Sulphate (SO4
2-) are most significant to Gomti River 

at Sultanpur affecting the water quality. Studies typically have PCA-Selected parameters as, 

pH, Dissolved Oxygen, Total Dissolved Solids, Chlorides, Sulphates, and Total Hardness (Kazi 

et al., 2009; Varol and Sen 2009; Mustapha and Aris 2012; Rashid et al., 2012). Studies on 

water quality assessment highlight key parameters such as pH, EC, TDS, TA, TH, DO, Na+, 

Mg2+, B, and SO₄2-, which are crucial for evaluating water quality in various contexts (Igibah 

and Tanko 2019; Baloch et al., 2021). These parameters independently contribute to 

understanding water quality dynamics and potential pollution sources, demonstrating their 
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importance in groundwater quality assessment and suitability analysis for drinking and 

irrigation purposes (Baloch et al., 2021). 

4.6.REGRESSION ANALYSIS 

To explore the relationship between water quality indices (WQIs) and PCA-selected 

parameters, regression analyses were conducted on the original components of the Water 

Quality Index (WQI) (CPI, SPI, NPI, AWQI) and their counterparts derived from PCA-selected 

parameters (CPI, SPI, NPI, AWQI). The analysis focused on assessing the influence of five 

main parameters (pH, TDS, TH, TA, and DO) on each of the four WQIs. Ions were excluded 

from the analysis due to their inclusion in TDS. These parameters were identified through PCA, 

aiding in identifying variables contributing significantly to water quality variations. The 

coefficient of determination (R2) values from the regression analysis shed light on the 

proportion of variance in each WQI explained by the selected parameters. Notably, the R2 

values for each WQI are as follows: CPI = 83.37%, AWQI = 82.72%, NPI = 78.54%, and SPI 

= 12.02%. These high R2 values signify robust relationships between the selected parameters 

and their respective WQIs, underscoring the substantial contribution of these parameters to the 

observed variability in water quality assessments (Sârbu and Pop, 2005; Rashid et al., 2012). 

All the parameters resulting from PCA were incorporated into each of the four mentioned water 

quality indices. A regression analysis was conducted, and the resulting index, which accounts 

for over 80% of the variance, indicates that a large proportion of the variance in WQI is 

explained by the selected components, suggesting a good fit of the regression model to the data.   



69 

 

CHAPTER 5  
 

CONCLUSION  
 

The comprehensive assessment of the Gomti River's water quality at Sultanpur from 1998 to 

2017 reveals significant temporal and seasonal variations in pollution levels, as indicated by 

calculated water quality indices. The Comprehensive Pollution Index (CPI) data shows notable 

fluctuations over the years, with values ranging from a high of 0.58 (Slightly Polluted) in 

multiple years (1998, 2000 and 2002) to a low of 0.38 (Sub-Clean) in 2004. It was observed 

that 90% of the time, the water quality was classed as Slightly Polluted (0.41-1.00) by the 

Comprehensive Pollution Index (CPI), with the remaining 10% being classified as Sub-Clean 

(0.21-0.40). The highest CPI values are observed during the pre-monsoon period, likely due to 

reduced river flow and higher pollutant concentration. Improvements in CPI values post-2002 

suggest the impact of enhanced environmental regulations and pollution control measures. The 

Synthetic Pollution Index (SPI) values, ranging from 0.13 (Suitable for Drinking) to 0.23 

(Slightly Polluted), reflect changes in SPI values, with significant improvements from 2002 

(0.17 – Suitable for Drinking) to 2004 (0.13 – Suitable for Drinking) attributed to better 

pollution control measures. However, a resurgence in SPI values is noted from 2005 (0.16 – 

Suitable for Drinking), peaking in 2010 (0.23 – Slightly Polluted) and 2012 (0.23 – Slightly 

Polluted), due to rapid industrialization and urbanization. According to the Synthetic Pollution 

Index (SPI), 45% and 55% of the water was Suitable for Drinking (≤0.20) and Slightly Polluted 

(0.21-0.40). Nemerow’s Pollution Index (NPI) values, ranging from 0.65 (indicating No 

Pollution) to 1.15 (indicating Slightly Polluted), indicate significant seasonal and yearly 

variations, with the highest NPI values observed during the pre-monsoon period and notable 

improvements during the post-monsoon season due to the dilution effect of rains and enhanced 

waste management practices. Notably, NPI showed that in 18% of the cases, the water quality 

was Not Polluted (≤1), but in the remaining 82% of cases, it was Lightly Polluted (1-2). The 

Arithmetic Water Quality Index (AWQI) values range from 57 (Poor Water Quality) to 76 (Very 

Poor Water Quality), with significant peaks indicating periods of poor water quality, 

particularly in 2001, 2005, 2006, and 2007 (as 75). Improvements in AWQI values in 2004 and 

post-2015 suggest the effectiveness of stringent environmental regulations and advancements 

in wastewater treatment. However, mostly, the water quality was rated as Poor (51–75%) at 

78%, Very Poor (76–100%) at 18%, and Good (26–50%) at a meagre 4% by the Arithmetic 

Water Quality Index (AWQI). 
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Cluster analysis representing the monthly variation of pollution levels in Gomti river at 

Sultanpur and categorization of CPI, SPI, NPI and AWQI by pre-monsoon, monsoon and post-

monsoon periods highlights that the pre-monsoon period, i.e., from January to April generally 

records the highest pollution levels across all indices due to reduced river flow and higher 

concentrations of pollutants. The monsoon season from May to August shows mixed results, 

with improvement in pollution levels due to dilution effects. The post-monsoon period from 

September to December consistently exhibits the best water quality, highlighting the positive 

impact of continuous dilution and sediment settling. Principal Component Analysis is used to 

locate the origins of river contamination. The experimental findings demonstrate that, during 

the course of the study period, TH, TA, pH, DO, TDS, Mg2+, K+, Na+, and SO4
2- having a 

cumulative variance of 65.603% within the dataset—are the primary parameters accountable 

for affecting the water quality. Based on the regression analysis, we observe that with an R2 of 

83.37% between original WQICPI and PCA-WQICPI, primarily five parameters are accountable 

(pH, TDS, TH, TA, and DO). This finding suggests that these parameters play a dominant role 

in influencing the composition and variability of water quality as captured by the CPI-based 

indices.This fundamentally helps to prioritize control efforts concerning various pollution 

sources. 

Based on these findings, several recommendations for policymakers and stakeholders are 

proposed. Enhanced pollution control efforts, including stricter enforcement of environmental 

regulations and improved sewage treatment facilities, are crucial. Promoting sustainable 

industrial practices and better management of industrial waste can significantly reduce 

pollutants entering the river. Implementing better agricultural practices to minimize fertilizer 

and pesticide runoff during the monsoon season is essential, and encouraging organic farming 

and eco-friendly pesticides can also be beneficial. Engaging local communities in pollution 

control efforts and raising awareness about the importance of maintaining river health can drive 

collective action toward reducing domestic and industrial pollution. Continuous monitoring of 

water quality parameters and conducting periodic research to assess the effectiveness of 

implemented measures will help make informed decisions and adjustments to pollution control 

strategies. Additionally, investing in infrastructure for better waste management, including 

advanced sewage treatment plants and efficient waste disposal systems, will support long-term 

water quality improvement efforts. By addressing these key areas, policymakers and 

stakeholders can work towards ensuring the sustainable health of the Gomti River, benefiting 

both the environment and the communities relying on this vital water resource. 
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