
A THESIS  

ON 

DEVELOPMENT OF HYBRID EVOLUTIONARY 

ALGORITHMS 
 

BY 

 

MS. TEJNA KHOSLA 
(2K17/PHDCO/07) 

 

 

 
UNDER THE SUPERVISION OF 

 

PROF. O. P. VERMA 

HEAD OF DEPARTMENT  

DEPARTMENT OF ELECTRONICS & COMMUNICATION 

 

 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE  
 

DOCTOR OF PHILOSOPHY 

IN 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 
 

 

 

 

 

 

 
DELHI TECHNOLOGICAL UNIVERSITY, DELHI  

INDIA 

 
2024 

 



DECLARATION

I hereby declare that the thesis entitled “Development of Hybrid Evolution-

ary Algorithms”, submitted by Tejna Khosla for the award of the degree of Doctor of

Philosophy to Delhi Technological University is a record of bonafide work carried out

under the supervision of Dr. O. P. Verma, Professor, Department of Electronics and

Communication, Delhi Technological University, Delhi.

I further declare that the work reported in this thesis has not been submitted

and will not be submitted, either in part or in full, for the award of any other degree or

diploma in this institute or any other institute or university.

Tejna Khosla

Roll No. 2k17/Ph.DCO/07

Department of Computer Science and Engineering

Delhi Technological University

Date:



CERTIFICATE

This is to certify that the thesis entitled “Development of Hybrid Evolutionary

Algorithms” submitted by Ms. Tejna Khosla, Roll no. 2k17/Ph.DCO/07 as a part-time

scholar in the Department of Computer Science and Engineering, Delhi Technological

University, for the award of the Doctor of Philosophy degree, is a record of bonafide

work carried out by her under my supervision. The content of this report has not been

submitted and will not be submitted in part or in full for the award of any other degree

or diploma in this institute or any other institute or university. The thesis fulfills the

requirements and regulations of the University and, in my opinion, meets the necessary

standards for submission.

Place: Delhi, India

Date:

Dr. O.P. Verma

Professor

Delhi Technological University



ABSTRACT

Evolutionary Algorithms (EA), particularly swarm-based algorithms, have demonstrated

their adaptability and efficacy in optimization across various domains. Although there

are several algorithms inspired by nature, each with advantages and disadvantages, they

are all highly effective. These algorithms provide faster convergence and global opti-

mum solutions in complex problems, but they sometimes become stuck in local optima,

which reduces their overall effectiveness.

This research work contributes to the optimization of real-world problems by modifying

and hybridizing conventional swarm-based EA. To address various optimization issues,

four algorithms are created.

Firstly, by combining features of the traditional Bacterial Foraging Algorithm (BFA)

and the Firefly Algorithm (FA), a hybrid algorithm known as the Bacterial Foraging

Algorithm-Firefly Algorithm (BFA-FA) is developed. The performance of the BFA-FA

algorithm has been evaluated using traditional, noisy nonlinear, single-peak, multipeak,

and contemporary CEC benchmark functions. The algorithm also combines adaptive

and leadership strategies. Furthermore, the BFA-FA algorithm successfully addressed

two structural design problems: the cantilever beam design problem and the three-bar

truss design problem.

Secondly, a parameter-free algorithm called the particle swarm optimization-butterfly

optimization Algorithm (PSOBOA) is developed to deal with constraints. Using a

parameter-free penalty function, the PSOBOA algorithm successfully manages con-

straint violations, guaranteeing robustness throughout the search process. The PSOBOA

algorithm also incorporates a self-adaptive strategy in both the particle swarm optimiza-

tion algorithm (PSO) and the butterfly optimization algorithm (BOA) to enable a smooth

transition from exploration to exploitation without requiring user intervention. A con-

ditional approach is added to BOA’s local and global searches to improve convergence

rates and counteract local optima stagnation. The PSOBOA algorithm is successfully

applied to structural optimization problems with various objectives, decision variables,

and constraints, such as pressure vessel design and welded-beam design. A compre-

hensive comparison has been conducted with six conventional algorithms using perfor-

mance indicators such as mean, standard deviation, rank, and time.
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Thirdly, PSO and the Chameleon Search Algorithm (CSA) are combined to create a

hybrid algorithm called the Chameleon Search Algorithm-Particle Swarm Optimiza-

tion (CSAPSO). To improve optimization efficiency, the CSAPSO algorithm integrates

Opposition-Based Learning with Hybrid. The proposed CSAPSO algorithm has been

evaluated on twelve chest X-ray (CXR) and COVID-19 CXR images. CSAPSO’s

performance is assessed by contrasting its outcomes with other state-of-the-art opti-

mization algorithms and other deep learning models using measures like Root Mean

Square Error (RMSE), Peak signal-to-noise ratio (PSNR), and Structure Similarity In-

dex (SSIM), Classification Accuracy, Area Under Curve (AUC).

Finally, a hybrid optimization algorithm called the Opposition-based Particle Swarm

Algorithm-Grey Wolf Optimization algorithm (Opp-PSOGWO) is developed by inte-

grating Figurate Opposition-Based Learning (OBL) into the hybridization of PSO and

Grey Wolf Optimizer (GWO). Opp-PSOGWO generates solutions in opposite direc-

tions, in the Fibonacci sequence, leading to an optimal initial population with increased

diversity. The resultant hybrid algorithm can escape local optima traps, and Figurate

Opposition-based Learning speeds up the search for the best solutions. Nine traditional

benchmark functions (unimodal and multimodal) were used to test the Opp-PSOGWO

model. Then, it has been compared to its parent algorithms, PSO and GWO, taking into

account performance metrics, including mean, standard deviation, and CPU time.

In conclusion, this research provides four unique algorithms that contribute to swarm-

based EA techniques. Compared to traditional algorithms, the hybrid BFA-FA, parameter-

free PSOBOA, hybrid CSAPSO, and Opp-PSOGWO algorithms enhance optimization

performance in various real-world applications.
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CHAPTER 1

INTRODUCTION

1.1 Background

Evolutionary Algorithms (EA), also called Nature-Inspired Optimization Algorithms

(NIOA), are a group of optimization algorithms that draw inspiration from natural phe-

nomena. The optimization process involves selecting the optimal solution from a set

of alternative ones. The objectives for optimization can vary, ranging from maximizing

performance, sustainability, and efficiency, to minimizing cost, time, and energy con-

sumption. EA employs heuristics along with learning strategy, memory, and solution

history. They are also called Global Optimizers because of their ability to explore the

solution space effectively without getting trapped in local optima.

Fig. 1.1 shows the transformation model of the nature-inspired optimization approach.

It emphasizes the essential steps in modeling and using these algorithms for real-world

applications. The process begins by observing any natural phenomenon that inspires

the development of mathematical functions and equations. Finally, the model-based

optimization approach is used to solve real-world applications.

EA provides a powerful way to handle challenging optimization problems by drawing

on knowledge of nature. They offer an adaptable and flexible framework to address

various issues in fields such as engineering, business, logistics, and healthcare. EA has

been shown to have a lot of potential to improve system efficiency, resource use, and

decision-making.

1.2 Characteristics of evolutionary algorithms

EA possesses several qualities and features that contribute to its strength and wide ap-

plicability. The following are the main characteristics of EA:

i Global optimizers: EA can identify the actual global optimum solution to opti-

mization problems. EA investigates the whole solution space, in contrast to local

optimization techniques, increasing the possibility of discovering the ideal solution.

ii Black-box approach: EA works on problems without needing explicit problem-
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Figure 1.1: Model of evolutionary algorithms

specific information or specialized knowledge. They approach problems as ”black-

box”, which means that they do not require an in-depth understanding of the prob-

lem structure, making them adaptable and useful for a variety of problem domains.

iii Dealing with nonlinear and multimodal situations: EA is very good at dealing with

non-linear and multimodal optimization issues. They are not constrained by the

smoothness of the objective function or the presence of multiple optimal solutions

because of their gradient-free nature. As a result, EA can discover global optima

even in challenging environments and manage complex scenarios with discontinu-

ities.

iv Stochastic components: Random walks and random numbers are examples of stochas-

tic components included in the EA. EA can avoid the trap of local minima and ex-

plore a wider range of the solution space due to their random behavior. The stochas-

tic nature of EA results in a variety of solutions for different runs or iterations from

the same initial conditions.

v Exploration and exploitation: EA has a global and local search component that

balances exploration and exploitation. The global search component allows for a

thorough examination of potential solutions by examining new locations within the

solution space. The local search element focuses on enhancing and taking advantage

of potential areas close to previously found solutions. Using a variety of strategies,

EA strikes a balance between exploration and exploitation, improving its ability to

find the most effective solutions.

These features make evolutionary algorithms effective tools for solving optimization

2



problems in a variety of fields. Their effectiveness and extensive applicability are a

result of their ability to function globally, adapt to various problem structures, manage

complexity, and strike a balance between exploration and exploitation.

1.3 General framework of evolutionary algorithms

With the study of various EA, a general framework can be developed that mainly all

algorithms under the category follow. The step-by-step framework is as follows:

i Initialization: Begin with a population of solutions drawn at random. Since EA

are mostly multi-agent systems, this step is essential since the initial population

establishes the framework for the optimization procedure.

ii Fitness evaluation: Using a fitness function, determine the fitness of each solution

in the population. The fitness function directs the search for ideal solutions by

quantifying the fitness or objective value of each agent.

iii Generation update: Moving on to the next iteration or generation. In most circum-

stances, increase a counter that records the generation number.

iv Population evolution: Create a new population of solutions through multiple evo-

lutionary processes at every generation. These processes encourage a balance be-

tween exploration and exploitation, including mutation, crossover, parent selection,

randomization, and other techniques. By increasing variation and promoting the

search for better solutions, these operations transform the population.

v Population replacement: In each generation, replace the current population with the

newly generated population. Keep track of the best global solution found so far

during the optimization process.

vi Termination criteria: Continue the procedure until a certain set of conditions are

satisfied. These requirements can be to attain a predetermined number of gener-

ations, to reach a desirable degree of fitness, or to satisfy particular convergence

conditions.

By following this step-by-step framework, EA can systematically explore and refine

the population of solutions, gradually improving the performance and convergence of

the optimization process. It offers a structured methodology that makes it feasible to

efficiently explore the solution space while maintaining the goal of identifying the best

solutions. It is crucial to remember that, while this framework captures the typical EA

phases, different algorithms may have different implementation details and variants.

Depending on the different traits and goals of various algorithms, the framework is

modified and improved.
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1.4 Hybrid evolutionary algorithms

A basic evolutionary algorithm may be sufficient to find the appropriate answer for a

number of issues. However, it may not always be able to provide an efficient (opti-

mal) solution for a given problem, as seen from the literature. It is evident from this

that hybridizing evolutionary algorithms with other optimization algorithms, machine

learning methods, heuristics, etc., is necessary. The following are some potential causes

of hybridization:

i To enhance the evolutionary algorithm’s performance (for instance, its speed of

convergence).

ii Enhance the performance of the evolutionary algorithm.

iii Including the evolutionary algorithm in a more comprehensive system.

Some evolutionary algorithms focussed on for this work are described in the following

section.

1.5 Preliminaries

This work mainly focuses on proposing hybrid algorithms using the following state-of-

the-art algorithms.

i Bacterial foraging algorithm

ii Particle swarm optimization

iii Firefly algorithm

iv Salp swarm algorithm

v Grey wolf optimization

vi Butterfly optimization algorithm

vii Chameleon swarm algorithm

1.5.1 Bacterial foraging algorithm

BFA is an EA technique that works on the foraging nature of Escherichia coli abbrevi-

ated as E. Coli bacteria (1). It is designed to handle complex objective functions that are

nondifferentiable and nongradient optimization problems. The four main mechanisms,

viz, chemotaxis step, reproduction step, swarming, and elimination dispersal step are as

follows:
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i Chemotaxis

Two basic locomotive operations involved in chemotaxis are: Swim and tumble.

The bacteria tumble when the flagella rotate clockwise. In this motion, there is the

least displacement and, after completion, the bacteria are aligned along a random

direction. On the other hand, the bacteria swim in a counterclockwise rotation. In

this motion, the bacteria move forward in a particular direction. Let us consider the

qth chemotactic step for pth bacteria of the rth reproduction step of the elimination-

dispersion kth of BFA. After each movement, the bacteria change their position

according to Eq. (1.1) as given below.

pos(p, q + 1, r, k) = pos(p, q, r, k) + C(p)
∆(p)√

∆T (p)∆(p)
(1.1)

where ∆(p) is the direction vector of the movement of the pth bacteria in the current

chemotactic step, and C(p) is the size of the step in each chemotactic swim or

tumble.

ii Reproduction

In this step, healthy bacteria remain, whereas the least healthy bacteria die. The

global fitness value is updated in each reproduction step. Each bacterium that sur-

vives is split into two so that the total number of bacteria remains constant. The

criteria for deciding the bacteria that will survive are decided by calculating the

total health compared to the preceding reproduction, given by Eq. (1.2) below.

Jhealth =
∑

F (p, q, r, k) (1.2)

where F(p,q,r,k) is the fitness value of pth bacteria for qth chemotactic step, rth re-

production step of the kth elimination-dispersion step. The bacteria with minimum

accumulated health function get selected for elimination.

iii Elimination and dispersion

This step occurs after a predefined number of reproduction steps with the intent of

improving the global search. In this step, the bacteria are eliminated and dispersed

in random positions to avoid getting trapped in the local optima. This happens

according to the probability Neldis, probability of elimination and dispersion.

iv Swarming

It has been noticed that several bacteria species including E.Coli form a stable

spatio-temporal ring-shaped swarm in the presence of a semisolid nutrient medium.

E. coli cells when stimulated by a high level of succinate release an attractive com-

pound called aspartate that helps them aggregate in such groups. This cell-cell
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attraction can be mathematically represented as the Eq. (1.3) below.

Jcc(pos) =
s∑

p=1

Jcc(pos(p, q, r, k))

=
s∑

p=1

(−dattractant ∗ exp(−wattractant

D∑
d=1

(posd − pos(p, q, r, k)d)
2))

+
s∑

p=1

(hrepellant ∗ exp(−wrepellant

D∑
d=1

(posd − pos(p, q, r, k)d)
2))

(1.3)

where Jcc(pos) is the fitness offset in the qth chemotaxis or the cost function that

is added to the original cost function; dattractant, wattractant, hrepellant, wrepellant are

the coefficients which determine the depth and width of attractant and height and

width of repellant, which is to be selected properly; D is the number of dimensions;

posd means the population coordinates in d-dimension; pos(p, q, r, k)d means the

pth bacterium coordinates in d-dimension.

1.5.2 Particle swarm optimization

The PSO algorithm was created by Kennedy and Eberhert and was motivated by the

swarming behavior of a flock of birds (2). Usually, a set of potential solutions evolves

until it finds the optimal one. The population of particles in the search space is randomly

initialized at the beginning of this method. The position and velocity formulas are

used to move the particles in the search space. During each iteration, each particle is

influenced by its local best solution and directed toward the global best solution.

The particles try to modify their position and velocity as per Eq. (1.4) and Eq. (1.5).

vt+1
i = wvti + c1 × r1 × (Pbesti − posti) + c2 × r2 × (Gbest− posti) (1.4)

post+1
i = posti + vt+1

i (1.5)

where w is the weighting function (inertia), vti is the velocity of the ith particle at itera-

tion t, c1and c2 are the acceleration coefficients, r1 and r2 are the random coefficients

between [0,1], posti is the position of particle at iteration t, Pbesti is the best previous

position concerning ith particle, and Gbest is the best global solution so far for all par-

ticles.

The first element of Eq. (1.4) i.e., wvti offers the opportunity of exploration while simul-

taneously maintaining the current direction, the second part i.e., c1×r1×(Pbesti−posti)
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provides the cognitive component (private thinking), and the last part i.e., c2 × r2 ×
(Gbest − posti) offers the social component (collaborative approach). The sequence

continues until the stopping criterion. Algorithm 1 provides a summary of the PSO

steps.

Algorithm 1 Particle Swarm Optimization Algorithm

1. Set the control parameters

2. Do

3. For each particle

4. Calculate the fitness of the particle

5. As required, update Pbest

6. Update Gbest as necessary

7. End for

8. Adjust the value of w

9. For each particle

10. Use Eq. (1.4) to update the velocity

11. Use Eq. (1.5) to update the position

12. End for

13. While the end condition is not satisfied

14. Return Gbest as the global optimum value

1.5.3 Firefly algorithm

FA (3) is a successful nature-inspired optimization algorithm. In this algorithm, there

are three main rules; 1) Fireflies get attracted to each other, independent of their sex, 2)

Attractiveness is proportional to Brightness and vice versa, and for any two Fireflies, the

movement takes place from less bright firefly to brighter firefly. If no firefly is brighter

than a specific Firefly, it will randomly travel in any direction, 3) The brightness of a

Firefly is evaluated by the objective function. The distance between any two Fireflies

i and j whose positions are xi and xj , respectively, for dimensions D is given by the
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Cartesian distance as in Eq. (1.6).

distij = ||xi − xj|| =

√√√√ D∑
k=1

(xi,k − xj,k)2 (1.6)

The Firefly’s attractiveness is proportional to the intensity of light seen by the adjacent

firefly. The attractiveness is determined as Eq. (1.7).

B(r) = β0e
−γdist2 (1.7)

where β0 means the attractiveness at dist = 0 and γ is the light absorption coefficient at

the source. The movement of a firefly i to another more attractive Firefly j is determined

by Eq. (1.8):

xnew
i = xcurrent

i + β0e
−γdist2ij(xcurrent

i − xj) + α(rand− 1

2
) (1.8)

where the second term is due to attraction and the third term is due to randomization,

α = [0, 1] being the randomization parameter, rand is a random generator of uniform

distribution between 0 and 1, xnew
i is the new position of firefly xi, and xcurrent

i is the

current position of firefly xi. In this study, we set the light absorption coefficient γ = 1

and β0 = 1.

1.5.4 Salp swarm algorithm

A novel Salp Swarm Algorithm (SSA) (4) takes inspiration from the foraging behavior

of salp in chains using harmonized movements. This movement was mathematically

modeled and tested in various optimization functions. SSA is a population-based ap-

proach that divides the population into two groups, Leader and followers. The leader

salps are the pioneers in the chain and guide the remaining salps, who become the fol-

lowers. In this way, the salps move together towards the global best position. A swarm

X consisting of n salps in a space of dimensions d can be represented in the matrix as

given in Eq. (1.9).

Xi =


x1
1 x1

2 . . . x1
d

x2
1 x2

2 . . . x2
d

...
... . . .

...

xn
1 xn

2 . . . xn
d

 (1.9)
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The leader salp updates its position while moving towards the food source according to

Equation Eq. (1.10).

x1
j =

{
Fj + c1((ubj − lbj)× c2 + lbj) c3 ≤ 0

Fj − c1((ubj − lbj)× c2 + lbj) c3 > 0
(1.10)

where x1
j denotes the position of the leader in jth dimension. Fj is the food source

that influences the movement of the salp lbj refers to the lower bound, and ubj refers

to the upper bound, c2, c3are the random variables between the range [0,1]. c1 is the

controlling parameter to balance the exploration and exploitation phase and is calculated

in Eq. (1.11).

c1 = 2e−( 4t
max Iter

)
2

(1.11)

where t is the current iteration and max Iter is the maximum number of iterations.

After updating the position of the leader, the followers update their positions according

to Eq. (1.12).

xi
j =

1

2
(xi

j + xi−1
j ) (1.12)

where i ≥ 2 and xi
j is the position of ithfollower along j dimension. The steps of the

SSA algorithm are summarized in Algorithm 2.

Algorithm 2 Salp Swarm Algorithm

1. Initialize the controlling parameters.

2. While t = 1 : max Iter

3. Evaluate the fitness of the salp

4. Set F as the best salp

5. Update c1 using Eq. (1.11)

6. For each salp xi

7. if (i==1)

8. The position of the leader salp is updated using Eq. (1.10)

9. else

10. The position of the follower salp is updated using Eq. (1.12)

11. endif

12. End for
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13. End while

14. The best solution F is returned

1.5.5 Grey wolf optimization

GWO is another metaheuristic developed by Mirjalili (5). It is inspired by the social

hierarchy and the hunting mechanism of the grey wolves. Among the grey wolves, the

leader is taken as alpha (α), the second level of wolves is called beta (β) which supports

the leader wolves, the third level is called delta (δ), and the last level of wolves that have

the lowest rank is called omega (ω).

Grey wolves hunt in three stages: (i) tracking, chasing, and approaching the prey; (ii)

pursuing, encircling, and harassing the prey until it stops moving; and (iii) attacking the

prey. Xp (the prey’s position), X (grey wolf position at instantaneous iteration t), the

vector coefficients A and C are calculated from (5).

The prey is located by alpha wolves. The beta and delta wolves support the alpha wolf

in this process. The best solution is represented by alpha wolves, while the second and

third best solutions are, respectively, shown by beta and delta wolves. The alpha, beta,

and delta positions of other wolves are determined. This is formulated in Eq. (1.13).

Dα = |C1 ×Xα −X(t)|

Dβ = |C1 ×Xβ −X(t)| (1.13)

Dδ = |C1 ×Xδ −X(t)|

where Xα, Xβ , and Xδ are the best three positions during each iteration, respectively.

they are defined in Eq. (1.14) below.

X1 = |Xα − a1Dα|

X2 = |Xβ − a2Dβ| (1.14)

X3 = |Xδ − a3Dδ|

The new position of prey is calculated in terms of X1, X2 and X3 as Eq. (1.15).

Xp (t+ 1) =
X1 +X2 +X3

3
(1.15)

where the mean of the positions of the top three wolves is used to compute the new

location of the prey, indicated by Xp (t+ 1).
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To attach the prey, the value of |A| should be less than 1. If it is more than 1, the wolves

tend to diverge, showing exploration (6). However, when it is less than 1, it shows the

exploitation ability of wolves leading to attack. Generally, the value of A lies in the

range [-2a,2a], as the value decreases from 2 to 0.

The steps of GWO are summarized in Algorithm 3.

Algorithm 3 Grey Wolf Optimization Algorithm

1. Initialize the controlling parameters (α, A and C)

2. Do

3. For each wolf

4. Calculate the fitness of all wolves

5. Calculate the values of Xα, Xβ and Xδ

6. Calculate X1, X2 and X3 using Eq. (1.14).

7. Update the position of grey wolves

8. Update α, A and C values

9. End for

10. Calculate the new position of the prey using Eq. (1.15).

11. While the end condition is not achieved

12. Return the best global optima.

1.5.6 Butterfly optimization algorithm

BOA is a recent metaheuristic developed by Satvir and Arora (7). The source of in-

spiration for this method is the foraging behavior of butterflies in search of food. The

butterflies are the search agents used during the optimization process. Butterflies have

sense receptors through which they sense the fragrance of food and move in that direc-

tion. This fragrance defines the fitness function of the BOA. Furthermore, the fragrance

generated by a butterfly is carried to other butterflies around in the same search space.

When the butterfly senses the fragrance from the best butterfly and starts moving to-

ward it, this is known as the global search phase of the BOA. Also, when the butterfly

is unable to sense the fragrance of any other butterfly and starts moving randomly, it is

known as the local search phase of BOA.

11



The fragrance is updated with each movement of the butterfly. It depends mainly on

three parameters, that is, the power exponent (a), stimulus intensity (I), and sensory

modality (c). Sensory means measuring the energy form, and the modality is the raw

input to the sensors. Modalities can be of different types such as light, smell, sound,

temperature. However, in BOA, the fragrance modality is used. Intensity is the magni-

tude of the actual stimulus. In BOA, it is the value of the fitness function. The power

exponent is the value at which the intensity is raised. It is responsible for regular ex-

pression, linear response, and response compression.

The fragrance is formulated as a function of the intensity of the stimulus in BOA, as

shown in Eq. (1.16)

fri = cIa (1.16)

where fri is the perceived magnitude of fragrance by i-th butterfly, c is the sensory

modality, I is the stimulus intensity, and a is the power exponent which tells the degree

of absorption.

During the global phase, the butterfly moves towards the fittest butterfly according to

Eq. (1.17).

posnt+1
i = posnt

i +
(
r2 × gb − posnt

i

)
× fri (1.17)

Where posnt
i is the solution vector posni for the i-th butterfly during iteration t, gb is

the best solution so far in the current iteration, fri is the fragrance of the i-th butterfly,

r is the random number in the range [0,1].

During the local phase, the butterfly moves randomly according to Eq. (1.18).

posnt+1
i = posnt

i +
(
r2 × posnt

j − posnt
k

)
× fri (1.18)

where posnt
jand posnt

k are the solution vectors for the j-th and k-th butterfly. If they

belong to the same swarm, the Eq. (1.18) becomes a random local walk. A switch

probability p is used to switch between the global and local search phases. The steps of

the BOA algorithm are summarized in Algorithm 4.

Algorithm 4 Butterfly Optimization Algorithm

1. Initialize the population of butterflies and controlling parameters

2. Evaluate the fitness of the butterflies and find the best solution

3. Define the switch probability p

4. Do

5. For each butterfly

6. Calculate the fragrance of the butterfly using Eq. (1.16)
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7. Generate a random number rand in the range [0,1]

8. If rand < p

9. Perform global search using Eq. (1.17)

10. Else

11. Perform local search using Eq. (1.18)

12. Endif

13. Evaluate new solutions

14. Update better solutions

15. End for

16. While the end condition is not fulfilled

17. Return the best global optima

1.5.7 Chameleon swarm algorithm

CSA is the nature-inspired algorithm developed by Braik et al. (8). It is inspired by

the hunting behavior of chameleons in forests to sustain themselves. The chameleons

have the capability of rotating their eyes 360 degrees and work independently of each

other. The hunting mechanism of the chameleon consists of three distinct steps, namely;

(i) tracking the prey, (ii) pursuing the prey with their eyes, and (iii) attacking the prey

with the use of the tongue. Chameleons can roam the entire search space in search of

prey and use their globular eyes to get a panoramic view of their surroundings. They

use their long sticky tongue to catch the prey by the phenomenon of wet adhesion and

entanglement. Their suction cup-like tongue traps the prey.

Initialization of chameleons (number and dimension) in the search space is done using

Eq. (1.19).

Ai = lj + r ∗ (uj − lj) (1.19)

where Ai represents the initial vector of the ith chameleon, lj , and uj are the lower

and upper bounds of the space along the jth dimension, respectively, r is a uniformly

generated random number in the range [0, 1]. The position update strategy can be math-

ematically modeled using Eq. (1.20).

Ai,j
t+1 =


Ai,j

t + p1(BP i,j
t −GP j

t )r2 + p2(GP j
t − Ai,j

t )r1 ri ≥ Pp

Ai,j
t + µ((uj − lj)r3 + ldj )sgn(rand− 0.5) ri < Pp

(1.20)

where Ai,j
t+1 is the new position of ith chameleon in dimension jth for the iteration

number t + 1, Ai,j
t is the position in the tth iteration, BP i,j

t is the best position of ith
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chameleon so far, GP j
t is the best global position in dimension jth by any chameleon,

p1,p2 are two positive numbers to control the exploration; r1, r2, r3 are the random

uniform numbers in the range [0,1], Pp is the probability of perceiving the prey. The

balance between exploration and exploitation is achieved by tuning the adaptive param-

eters of µ according to Eq. (1.21).

µ = γ(−αt
T

)β (1.21)

where γαβ are the exploration-exploitation control parameters, t is the current iteration,

T is the maximum iteration.

Eq. (??) gives the new position update after detecting the prey by eye rotation.

Ai
t+1 = Arit + A

i

t (1.22)

where Ai
t+1 is the new position of the chameleon, Arit is the center of the current posi-

tion before rotation and A
i

t is the rotating centered coordinates.

The velocity of the chameleon’s tongue when it attacks the prey is according to Eq.

(1.23).

vi,jt+1 = ωvi,jt + c1(GP j
t − Ai,j

t )r1 + c2(BP i,j
t − Ai,j

t )r2 (1.23)

where ω is the inertia weight and defined in Eq. (1.24)

ω = (1− t

T

(ρ
√

t
T
)

) (1.24)

where ρ is a positive no. to manage exploitation, vi,jt is the current velocity of the

chameleon along jth dimension.

Eq. (5.7) shows the position of the chameleon’s tongue when it attacks the prey.

Ai,j
t+1 = Ai,j

t +
(vi,jt )2 − (vi,jt−1)

2

2a
(1.25)

where vi,jt−1 being the previous velocity, a is the acceleration rate of the tongue’s projec-

tion and is represented as Eq. (5.8).

a = 2590 ∗ (1− e−log(t)) (1.26)

Algorithm 5 summarizes the steps of CSA.
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Algorithm 5 Chameleon Swarm Algorithm

1. Parameter definition: Pp: position update probability; r1, r2, r3, ri: random

numbers between [0,1]; u: upper bound; l: lower bound; d: dimension; A
i

t

centre of the current position of chameleon i at iteration t; Arit : rotating

centred coordinates of chameleon i at iteration t; T : max iteration.

2. Initialize the controlling parameters.

3. Initialize the swarm of n chameleons, A
i

ti , and Arit , velocity of chameleon’s

dropping tongue.

4. Calculate the position of chameleons.

5. While t < T

6. Define µ, ω, and a

7. For i = 1 to n

8. For j = 1 to d

9. If ri ≥ Pp then

10. Update the position using equation

11. Ai,j
t+1 = Ai,j

t + p1(BP i,j
t −GP j

t )r2 + p2(GP j
t − Ai,j

t )r1

12. Else

13. Update the position using equation

14. Ai,j
t + µ((uj − lj)r3 + ldj )sgn(rand− 0.5)

15. End if

16. End for

17. End for

18. For i = 1 to n

19. Ai
t+1 = Arit + A

i

t

20. End for

21. For i=1 to n

22. For j=1 to d

23. Update velocity using Equation (1.23)

24. Update position using Equation (5.7)

25. End for

26. End for
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27. Use u and l to limit the position of chameleons

28. Evaluate and update the new position of chameleons

29. t = t+ 1

30. end while

1.6 Classification of evolutionary algorithms

Based on inspiration from nature, EA is classified into three classes, namely, a) Evolution-

based Algorithms, b) Bioinspired algorithms, c) other algorithms (9).

1.6.1 Evolution-based algorithms

Evolution-based Algorithms (10) take inspiration from the Darwinian theory of evolu-

tion. The main components of this algorithm are Representation (definition of individu-

als), Evaluation function (or fitness function), Population, Parent selection mechanism,

Variation operators, recombination, and mutation, and Survivor selection mechanism

(replacement). It is further categorized into 1) Genetic Algorithm (GA), 2) Evolution-

ary Strategies (ES), 3) Evolutionary Programming (EP), and 4) Genetic Programming

(GP). John Holland developed the GA in 1975 (11), and it uses a binary representation

of people. However, differential evolution (DE) and ES represent individuals using real

values. Like GA, ES, and DE also employ mutation and crossover operators. Instead of

using real numbers to represent an individual, GP uses the program (12). However, indi-

viduals are finite-state machines in EP, a system with several states and state transitions

(13).

1.6.2 Bio-inspired algorithms

These algorithms take inspiration from biological systems and therefore constitute the

major percentage of nature-inspired algorithms. They include two subcategories: 1)

Swarm Intelligence algorithms, and 2) Nature-based algorithms.

Swarm intelligence (SI) (14) was developed by using the aggregate, promising behavior

of many interacting agents that follow some simple principles. The collective behavior

of social insects like ants, fireflies, and bees as well as other animal societies like flocks

of birds or fish like the cuckoo, bat, etc. served as the basis for all SI-based algorithms,

which are multi-agent/population-based. Many algorithms have been developed using

SI systems, for instance, PSO was inspired by the swarming behavior of fish and birds,

while the development of the FA was based on the flashing behavior of swarming fire-

flies, the Cuckoo Search (CS) was based on the brooding parasitism of some cuckoo

species, and the Bat Algorithm (BA) utilized the echolocation of bat foraging. While

the Artificial Bee Colony (ABC) algorithm and other bee algorithms are all based on
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the foraging behavior of honey bees, Ant Colony Optimization (ACO) utilizes the in-

teraction of social insects (such as ants). Among the most popular and successful EA

are SI-based algorithms. This class of algorithms’ success may be attributed to its ten-

dency to distribute information among the population’s individuals, which enables self-

organization, coevolution, and learning to take place while searching and contribute to

more accurate and ideal outcomes. Another reason is to do parallelism, and as a result,

large-scale optimization is more feasible from an implementation standpoint.

1.6.3 Other algorithms

Recently, certain optimization algorithms that are neither bioinspired nor based on evo-

lution have been developed employing various qualities, such as emotional and social

ones. As a result, these algorithms fall under a different class. Differential search al-

gorithm, social-emotional optimization, league championship algorithm, etc. are a few

examples of these algorithms (15).

1.7 Principles, advantages, and limitations of conventional EA

1.7.1 Principles

The principles of EA can be summarized as follows:

i Nature as Inspiration: Biological, ecological, physical, or social systems in nature

are the sources of inspiration for EA. They seek to mimic the collective, adaptive

behavior, and survival techniques seen in diverse natural systems.

ii Population-Based Search: Instead of focusing on a single agent in the solution

space, EA frequently uses a population of potential solutions. This population-

based strategy allows for parallel and dispersed exploration, allowing the algorithm

to effectively cover a larger portion of the solution space.

iii Stochastic and Probabilistic Elements: To introduce randomness in the search pro-

cess, EA typically uses stochastic elements, such as randomization and probabilistic

transitions. The algorithms can avoid local optima and more thoroughly explore the

solution space because of these factors, which encourage exploration.

iv Balance Between Exploration and Exploitation: EA work to achieve a balance be-

tween exploration, finding new regions in the solution space, and exploitation, im-

proving the already promising regions. This balance ensures an in-depth assessment

of potential solutions while quickly advancing to the most optimal one.
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v Self-Organizing and Adaptive: EA frequently includes adaptive features that allow

the optimization algorithms to change their search techniques as needed. The algo-

rithms can effectively optimize under changing situations because of self-organizing

behaviors.

vi Global Search Capabilities: EAs are intended to be global optimizers, searching the

solution space for the real global optimal solution as opposed to becoming stuck in

local optima. They are suitable for resolving challenging multimodal optimization

issues because of this capability.

vii Scalability: EA can effectively handle complex, high-dimensional optimization

challenges. Due to their distributed and parallel architecture, they can successfully

address complex optimization problems.

1.7.2 Advantages

Evolutionary Algorithms have a number of distinctive characteristics that make them

both highly effective and desirable for solving challenging optimization problems. One

of their main advantages is that they can perform global optimization, which enables

them to look for the optimal solutions throughout the whole solution space without be-

ing stuck in local optima. Due to its stochastic nature and population-based search, EA

demonstrate versatility and robustness, enabling them to tackle a variety of problem

types, restrictions, and solution spaces. Furthermore, they work well for issues involv-

ing nondifferentiable or discontinuous objective functions due to their derivative-free

nature. Additionally, EA exhibits scalability and parallelism, enabling them to suc-

cessfully handle high-dimensional and massive optimization jobs. In EA, the balance

between exploration and exploitation enables them to efficiently converge towards the

best answer while exploring a wide range of potential solutions. Additionally, their

imitation of heuristics derived from nature enables creative and effective optimization

techniques. Due to these multiple benefits, EAs have grown significantly in popularity

and are frequently utilized in a variety of industries to effectively and efficiently address

problems in the real world.

1.7.3 Challenges

There are many problems in real-world problems where efficient searches have to be

performed in complex spaces to attain an optimal solution.

i Problem definition: Despite the effectiveness and popularity of EA, there are still

numerous challenges with these algorithms, especially from a theoretical point of

view. Although researchers are aware of the fundamental principles underlying how

these algorithms operate in reality, it is unclear why and exactly how they operate.
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ii Building the right mathematical model: All evolutionary algorithms must be math-

ematically analyzed within a unified model to fully understand their convergence,

rate of convergence, stability, and robustness. This framework requires the fusion

of many mathematical, stochastic, and numerical methodologies to enable us to

examine algorithms from a variety of angles.

iii Parameter Adaptation: The number of parameters in different EA vary greatly de-

pending on the algorithm. These parameters affect the performance of the algo-

rithm. If the parameter adaptation is done using brute-force technique, it takes

longer. Self-adaptation is always a good idea to improve performance. However,

specifying the rules for parameter adaption is always challenging.

iv Benchmarking: Benchmark functions are a set of test functions that are used to

test the performance of any novel EA compared to other state-of-the-art algorithms.

They are used mainly to study the efficacy of the algorithm with respect to its con-

vergence behavior, exploration ability, exploitation ability, stability, and robustness.

However, to decide which benchmark function to use, is difficult. The main point is

that the benchmark functions are generally smooth and defined on regular domains,

and they are unconstrained or with simple constraints. Therefore, by validating the

algorithm using the benchmark function, there is no guarantee that the algorithm

will perform equally well on real-world problems as well. Some algorithms are

better at benchmark test functions but do not give good results in real-world appli-

cations, and vice versa.

v Performance Measures: Deciding the performance measures that are appropriate

for the algorithm is equally important. The performance results give the conclu-

sive statement about the behavior of any algorithm. Mostly the EA are concerned

with achieving accurate global optimum, computational time, convergence, success

rates, mean value, standard deviation, and so on. Another consideration here is

that, due to the stochastic nature, the algorithm does not give the same results every

time, so the performance metrics are observed for a large number of runs, keeping

the population size constant for all the comparative algorithms.

vi Scalability of the Algorithm: The algorithm is considered effective and efficient if

it can be used to solve a variety of real-world problems. As per the no-free-lunch

theorem, it is known that an algorithm cannot deal with all the real-world problems

in the same way. Another consideration is that if the scale of the problem changes

from low-dimensional to higher dimensions, the algorithm loses its efficiency. So,

it is a bigger challenge to deal with a wider range of applications and with different

dimensions.
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vii Hybridization: Hybridizing has always been the best practice for solving opti-

mization problems where the features of two algorithms are incorporated and the

resultant hybrid algorithm overcomes the weaknesses of both parent algorithms.

However, choice of conventional algorithms for the hybrid is an important task and

should be in such a way that the time complexity does not increase exponentially.

1.8 Motivation

The research presented in this thesis focuses on the development and evaluation of four

hybrid evolutionary algorithms: BFAFA, PSOBOA, CSAPSO, and Opp-PSOGWO.

The motivation behind this research comes from the existing challenges faced by con-

ventional optimization algorithms. Although conventional methods have made valuable

contributions, they often have trouble dealing with complex issues that include con-

straints as well as nonlinear and multimodal objective functions. Additionally, these

algorithms can suffer from premature convergence or get stuck in local optima, which

limits their optimization effectiveness.

The algorithms proposed in this thesis are modifications and hybridization of traditional

evolutionary techniques to overcome the above-mentioned limitations. These algo-

rithms improve optimization performance, improve convergence rates, improve search

space exploration, and address the difficulties of real-world problems by combining the

advantages of different evolutionary algorithms and introducing unique strategies. By

creating innovative hybrids and adaptations, the main goal of research is to advance in

the field of optimization algorithms. These algorithms are made to be more flexible, to

reach convergence more quickly, and to be more effective in handling a variety of real-

world optimization problems. The goal of this research is to advance the state-of-the-art

in optimization and give practitioners strong tools for handling challenging problems in

a variety of fields by examining the possibility of hybridization and innovative methods.

This thesis aims to solve the drawbacks of standard optimization techniques by propos-

ing and evaluating four hybrid evolutionary algorithms. They are driven by the need

to improve the performance of optimization, overcome difficulties, and provide effi-

cient solutions to problems encountered in the real world. This research advances the

field of evolutionary algorithms through the development and analysis of these hybrid

algorithms and offers useful knowledge for future optimization studies.

1.9 Problem statement

Even though evolutionary algorithms have shown promising results in addressing the

optimization problems, more work is needed to develop and refine them so that they

perform better and are more widely applicable. Many evolutionary algorithms find it
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difficult to adequately explore the search space, which limits their performance to find

globally optimal solutions. The search capabilities of the algorithms need to be im-

proved by providing the approaches that encourage deeper exploration.

In optimization algorithms, slow convergence is a frequent problem that lengthens the

optimization process and increases the computation time. The goal of this research is

to improve and adjust the algorithms’ parameter settings to accelerate convergence and

solve the performance-related issues.

Multiple constraints and large-scale dimensions are common components of real-world

optimization issues. It may be too complex for current algorithms to handle it correctly.

The goal of this study is to investigate and validate how well the suggested algorithms

perform when applied to complex and constrained optimization issues.

Benchmarks are required to assess the effectiveness and adaptability of optimization

algorithms. It is necessary to create hybrid evolutionary algorithms with robust opti-

mization performance that can be adjusted to a variety of generic test scenarios. The

goal of the research is to hybridize and modify evolutionary algorithms that show better

performance and suitability in handling common test scenarios.

This research aims to expand the field of evolutionary algorithms, overcome existing

constraints, and provide practitioners with better tools to handle complicated optimiza-

tion problems more effectively and efficiently by addressing these issues through the

models presented.

1.10 Research objectives

The research objectives of this thesis are as follows:

i To enhance search capabilities of NIOA by exploring search space effectively.

ii Modifying/Enhancing the existing state-of-art by Parameter Tuning.

iii Exploring and validating the performance over Large scale and Constrained Opti-

mization.

iv Hybridizing/Developing the evolutionary algorithms and substantiating their suit-

ability in general test problems.

The objectives are achieved through the effective implementation of the following:

i The algorithm’s search capabilities are improved by enhancing the search space ex-

ploration.

The algorithms are developed to incorporate innovative strategies and hybridiza-

tion to improve the algorithms’ search exploration, leading to a more comprehen-

sive exploration of potential solutions. The development of the BFAFA, PSOBOA,
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CSAPSO, and Opp-PSOGWO algorithms, which seek to enhance the search ex-

ploration of the algorithms through various hybridization and modifications, have

addressed this issue.

ii The convergence speed of algorithms is optimized through parameter tuning.

The research aimed to modify and optimize the parameter settings to achieve faster

convergence. The convergence speed was measured based on the average mean

of individual fitness over successive generations. The BFAFA and PSOBOA algo-

rithms, which focus on parameter adjustment to achieve quick convergence, explic-

itly targeted this goal.

iii The performance of algorithms is validated on large-scale and constrained optimiza-

tion problems.

This objective was aimed at assessing the suitability, robustness, and effectiveness

of these hybrid algorithms in solving real-world optimization problems with com-

plex characteristics. The BFAFA and PSOBOA algorithms, which are evaluated on

difficult scenarios to gauge their applicability, robustness, and efficiency in solving

real-world optimization problems, addressed this issue.

iv The EA is improved and hybridized to enhance their suitability for general test

problems.

The improved suitability and performance of the novel hybrid approach to solving

a wide range of general test problems, highlighting its adaptability and robustness,

was demonstrated using Opp-PSOGWO and CSAPSO.

1.11 Thesis organization

This thesis is organized into seven chapters, each focused on specific aspects of the

research and contributing to the understanding and evaluation of the proposed nature-

inspired optimization models. The organization of the thesis is as follows:

• Chapter 1: Introduction
Chapter 1 reports the general description of the research topic, motivation, and

objectives. It reviews the principles, advantages, and limitations of conventional

optimization algorithms. It outlines the problem statement and research objective

and introduces the proposed hybrid evolutionary algorithms. Finally, the layout

of the thesis is also discussed.

• Chapter 2: Literature review
Chapter 2 reviews the existing literature related to the topic of research. The

study discusses the background and significance of EA and provides an overview
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of relevant studies and research work in the field. It also identifies the research

gap and justifies the need for the proposed hybrid algorithms and modifications.

• Chapter 3: Hybrid bacterial foraging algorithm-firefly algorithm (BFAFA)
Chapter 3 presents a hybrid EA with parameter adaptation. Two algorithms

named BFA and FA are used along with the leadership and adaptation strategy.

After extensive testing and comparison with methodologies from the relevant lit-

erature, conclusions are drawn.

• Chapter 4: Hybrid particle swarm optimization-butterfly optimization algo-
rithm (PSOBOA)
Chapter 4 illustrates a hybrid algorithm to handle constrained optimization prob-

lems. It uses a self-adaptation strategy and a parameter-free penalty function with

substantial experiments and comparisons with other techniques.

• Chapter 5: Hybrid chameleon search algorithm-particle swarm optimiza-
tion (CSAPSO)
Chapter 5 discusses image segmentation using a hybrid EA. Several medical

image data sets, including COVID-19 chest X-rays, are used to validate perfor-

mance.

• Chapter 6: Opposition-based particle swarm optimization-grey wolf opti-
mization algorithm (Opp-PSOGWO)
Chapter 6 discusses the modified approach to improving search space exploration

and exploitation using the combination of PSO and GWO and Opposition-based

Learning. In the end, an analysis of the results and a comparison with other

strategies are made.

• Chapter 7: Conclusion and future scope
The final chapter discusses and summarizes the findings of the proposed study

along with possible future possibilities.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview of relevant studies and research work done

Various EA have been created by modeling the behavior of natural and biological sys-

tems. EA have several characteristics, like, Exploration, Exploitation, Diversity, Adap-

tation, Key Operators, etc. However, the efficiency of EA can be increased using various

ways. Some common strategies can be seen from the literature as follows:

2.1.1 Hybridization methods in EA

Hybridization means the fusion of two independent algorithms with their unique set of

characteristics to form a better version of the algorithm. Many BFA hybrids were de-

veloped to enhance the convergence characteristics and had good results. In (16), fuzzy

bacterial foraging was used for harmonic estimation, where the Takagi-Sugeno fuzzy

scheme was considered as a cost function. The algorithm worked well in estimation

problems that had multimodal landscapes. Khodabakhshian et al. in (17) proposed a

smart BFA where the tumble was done using a smart unit of length and the new cost

function would specify the direction of movement after the tumble. The performance of

smart BFA was superior to conventional BFA over different optimization functions. In

(18), a hybrid of GA and BFA was developed by incorporating mutation and crossover

phenomena in BFA. The algorithm was very effective when tested on benchmark func-

tions, and the application was done on PID parameter tuning.

In (19), a simple hybrid of BFA and PSO was proposed where BFA performed the local

search and PSO performed the global search in the search domain. Due to accuracy

and good convergence, the hybrid was used to detect bundle branch blocks from ECG

patterns. The chemotaxis movement of BFA was incorporated into the ABC exploita-

tion process (20). The hybrid was validated on benchmark functions and was found to

be superior compared to its classical counterparts in terms of the convergence rate. DE

was hybridized with BFA and named chemotactic DE. The equation of DE was used

as the mutation operator in BFA to improve its efficiency (21). The algorithm was ap-

plied to calculate the similarity between two indexes. In (22), the exploration ability
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of spiral dynamics and the exploitation ability of BFA were utilized to make a novel

hybrid. The authors had given a simple structure and could achieve better performance

on the benchmark models in lesser function evaluations. Gravitational search strategy

and swarm search strategy was introduced in BFA to enhance exploration-exploitation

ability.

PSO is the most used variant in the hybrid. It is because PSO is simple to implement

and has better convergence and good exploitation capability, although it has poor ex-

ploration and high chances of local optima stagnation. Hence, the other algorithm used

along with PSO in hybrids needs to have a high exploration capability to reduce the

chances of local optima traps. Several attempts have been made to develop a hybrid of

PSO with other metaheuristic algorithms such as particle swarm optimization with dif-

ferential evolution (PSODE) (23), particle swarm optimization with genetic algorithm

(PSOGA) (24), and Particle Swarm Optimization with Gravitational Search Algorithm

(PSOGSA) (25). These algorithms attempt to reduce the local optima trap and achieve

the correct balance between exploration and exploitation. These hybrid variants are

tested against several benchmark functions and have been proven to perform better than

the original PSO. Vikram et al. in (26) proposed a hybrid PSOGWO where the posi-

tion is updated twice, once using the swarm equation and then again using the GWO

equation. However, it leads to an increase in complexity and becomes computationally

expensive. Similarly, the authors in (27) also proposed a hybrid PSOGWO, where the

exploration and exploitation of the search for grey wolves was controlled using the in-

ertia constant. In this algorithm, the exploitation of PSO and the exploration of GWO

improved, but the convergence rate increased.

Chopra et al. (28) also proposed PSOGWO to solve load dispatch problems, where

the GWO first generates all the minimum-valued individuals and they are passed to

PSO which then returns the updated values. The drawback of this methodology is

that for each iteration, both algorithms run completely to give the result. This leads

to instability of the results. In recent studies, analytical approaches and metaheuristic

approaches were combined for parameter estimation to outperform conventional algo-

rithms approach (29). However, there remains much scope for validation. A hybrid

of bio-inspired and physics-based metaheustic algorithm was developed by researchers

in (30), and a through validation was conducted for performance evaluation. It has

been shown to be better than other state-of-the-art algorithms and has better conver-

gence. Therefore, there is much scope for more research on this aspect as well. In (31),

Golden Jackal and GWO were hybridized to enhance the performance of GWO. It was

applied on a high-dimensional dataset for dimensionality reduction and proved good.
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2.1.2 Parameter tuning and adaptation methods in EA

In Parameter tuning, tweaking one parameter at a time is done since parameters fre-

quently interact in complex ways. However, the simultaneous tweaking of more pa-

rameters results in a huge number of experiments. The following is a summary of the

technical issues with parameter tweaking based on experimentation.

i Even if parameters are tuned one at a time, regardless of their interactions, parame-

ter tuning takes time.

ii Although the parameters are not independent of each other, it is nearly impossible

to try every potential combination.

iii Despite the tremendous effort put into setting the parameter values, they may not

always be the best ones for a given problem.

So, to overcome these problems, Self-Adaptive Parameter Tuning techniques have emerged

in recent years. Self-adaptation means modifying the setting of control parameters of

the algorithm with each iteration to improve the performance and balance the exploration-

exploitation. In terms of the impact of adaptation, the authors in (32) had stated that

in the chemotaxis step, if the step size was too large, bacteria would reach the vicinity

of the optimum point very quickly and the precision was low. In contrast, if the step

size was too small, a lot of steps would be required to reach the convergence, and thus

the performance would decrease. So, it was concluded that step size was an important

parameter for determining the convergence and error in the output. In this regard, many

researchers have explored this area, where the key parameter for adaptation was step

size. The principle of adaptive delta modulation was proposed by Tanumay et al. (33)

to control the step size in BFA. It was successfully applied to the problem of null steer-

ing and synthesizing patterns. Majhi et al. (34) introduced another version of adaptive

BFA where the cost function or the fitness value was used to change the step size value

after each iteration. It was successfully applied in a stock prediction model; however,

there were a lot of parameters involved in the execution of the algorithm.

In (35), an adaptive step size was introduced based on the mathematical analysis of

the fitness function of the bacteria. The main aim of the proposed algorithm was to

accelerate the convergence of bacteria to the global optimum value and avoid oscilla-

tion around it. It was tested against other state-of-the-art methods and proved effective

due to no additional computations in terms of function evaluations. The roulette wheel

selection was introduced in the BFA reproduction step along with adaptive change of

step size during the chemotaxis movement (36). To enhance the quality of convergence

results, serial heterogeneous cooperative search techniques were applied in BFA where

different BFA algorithms run sequentially and the output of one algorithm works as the
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input for the other algorithm with a smaller step size value (36). The results were much

better than those of other comparative algorithms and were proven to be superior.

To enhance exploration-exploitation ability, two chaotic search strategies, namely chaotic

initialization and chaotic local search, were incorporated in BFA along with the shrink-

ing strategy (37), and the convergence rate was high in most cases. The quality of

the results was enhanced using the gravitational search strategy and the swarm search

strategy in the equations of BFA (38). The resultant algorithm was extensively tested

on benchmark functions, and the performance was quite good in terms of exploration

and exploitation of search space. In (39), the researchers have enhanced the arithmetic

optimization algorithm by its conjunction with harris hawk optimizer. It has been able

to reduce the local optima trap, however, the time taken for convergence is higher. Re-

cently, hybrid of DE and flower pollination was proposed and it was enhanced using

self-adaptation and mutation operator (40). It was tested thoroughly on complex bench-

mark functions to test its efficiency. However, we observe a limitation of increased time

complexity.

2.1.3 Constrained handling methods in EA

A lot of work has been done in recent years to refine the results and develop an efficient

algorithm that can solve Constrained Optimization Problems (COP) with quicker con-

vergence. In (41), chaotic maps were used to tune the parameters of GWO and tested

on COP. The results were effective in comparison to other algorithms. Trivedi et al.

proposed Unified Differential Evolution (UDE) (42) by using the static penalty method

within improved DE based local search operation. The problem of the local optima trap

was solved to a larger extent, but due to the complexity of the algorithm, the time taken

was more. Another variant of PSO was used in case of high dimensional problems, by

implementing a dynamic boundary search procedure to handle constraints and proved

better than other algorithms (43). Another work in this direction was the Gradient-based

Genetic Algorithm (GGA) (44), which exploited the capabilities of gradient-descent

algorithms for constraint handling and enhancing the local solutions and gave more

favourable starting points in the GA. It gave better results than others in terms of so-

lution precision. In (45), constrained optimization was performed using ABC where

the problem was taken as a bi-objective function, one being the objective function itself

and the second being the degree of constraint violations. This algorithm was highly

effective but the function evaluations were comparatively more so the convergence was

a bit slower. So, the well-known algorithms discussed in the literature were able to

solve COPs. However, not much was done to effectively explore and exploit the search

space. Hence, the scope of better methodology is there which can effectively estab-

lish a balance between exploration and exploitation, thereby avoiding local optima trap
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and also able to give better results with quick convergence. Authors in (46) proposed

the solution to constrained optimization problem using improved multiobjective based

evolutionary algorithms. The limitation of the method is that the applicability is shown

only on limited problems, so its performance on general test problems is still a doubt. In

(47), the non-linear constraint optimization problem is solved using double track PSO

by identifying the fesing and non-feasible solutions.

2.1.4 Opposition based learning methods in EA

Opposition based learning can prove effective to improve the quality of the solution and

increasing the population diversity. Some authors have used OBL along with GWO as

well as PSO. In (48), OBL is applied with different hybrid variants of PSO and tested on

optimization functions and proved to improve the performance. In Wen Long’s “random

opposition based GWO” (49), the random opposition is applied to help the population

avoid local optima, which is controlled using a C-parameter. In elite-opposition based

learning GWO (EOGWO) (50), opposition is done using the limits of the wolves. Apart

from OBL alone, a combination of OBL and chaotic technique is also used to further

improve the results. Ibrahim et al. (51) introduced chaotic opposition based GWO with

Differential Evolution, where the GWO was first enhanced using chaotic opposition

learning and then updated repeatedly using Differential Evolution operators. This algo-

rithm is tested against several benchmark functions and gives significant results. OBL

and GWO are applied together in task area as well (52).

2.1.5 Multilevel image thresholding in medical imaging applications using EA

Researchers in the medical domain have used multi-level thresholding with nature-

inspired algorithms in diverse ways. In a study (53), researchers proposed a novel

method of updating the context vector during the cooperation process in a dynamic

way where they used Otsu as an objective function. The testing was done on the CT

scans of the stomach and was found effective. However, the computational complex-

ity of the method may limit its scalability to large datasets or real-time applications.

In 2012, three-level thresholding of human head CT images was done using improved

Biogeography-Based Optimization (BBO) technique, where the fuzzy entropy was the

objective measure to be maximized (54). The comparison was with original BBO,

PSO, and other state-of-the-art methods. The improved BBO proved superior and more

flexible than its original algorithm and other methods. However, a careful selection of

parameters is required. Abbas et al. (55) proposed a refined segmentation method based

on pixel-probability density function and edge detection. The technique was applied to

High-Resolution Computed Tomography (HRCT) of lungs, and compared with other

segmentation methods. Brain Magnetic Resonance (MR) has been a targeted area for
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many researchers. However, it lacked generalization and validation on other datasets.

In (56), the author proposed multi-level thresholding of brain MR images by computing

the 2-d histogram-based grey gradient to preserve the edges of the brain, using Shallow

Swarm Optimization (SSO). The comparisons were done with other soft computing

approaches. The complexity of the algorithm was high, although it was effective in

performance and gave good results. But, the proposed method is not compared to the

state-of-the-art segmentation techniques to demonstrate its superiority. Also, in (57),

Brain MR image segmentation was done using an enhanced Shuffled Frog Leaping Al-

gorithm. It gave good results and was qualitatively and quantitatively better than other

competitive approaches but the sample size used was very small so effectiveness cannot

be claimed. BA was used in tsallis entropy-based thresholding for image segmentation

(58). It used the region growing segmentation method and extracted the texture features

to final abnormalities in MR images of the brain and breast. Li et al. used partitioned

and cooperative quantum-behaved PSO to optimize the Otsu thresholding parameters

and applied them to optimize complex benchmark functions and four stomach CT im-

ages (59). The results were better in terms of inter-class variance. The approach has

a high computational cost, which could make it challenging to use in real-time or in

circumstances where resources are few. The dataset used was limited and the algorithm

lacked analysis of the parameters. Wang et al. (60) used Otsu as the objective function

and tried optimizing the thresholds using improved Flower Pollination Algorithm with

a random location operator. The performance was evaluated using gray-scale medical

images and gave robust and effective output as compared to other algorithms.

Several multi-level thresholding techniques have been proposed so far that employ dif-

ferent criteria functions, such as Otsu’s between-class variance (61), minimum error

thresholding (62), and entropy-based thresholding (63). Researchers have explored all

of these methods over the last decades. However, entropy-based thresholding has gained

much popularity. Some common entropy measures used as objective functions include

Kapur’s entropy (64)(65), fuzzy entropy (66), cross-entropy (67), Tsallis entropy (68),

Shannon entropy (69), and Masi entropy (70). Among these, the Minimum Cross-

Entropy Thresholding (MCET) function is widely utilized. An optimal threshold value

segments the image based on the difference between the original image and the ideal

segmented image. The challenge of increased complexity still prevails when performing

multi-level thresholding. To address this, researchers have incorporated metaheuristic

algorithms to enhance threshold accuracy. In (71), bi-level and multi-level image seg-

mentation was done by maximizing Otsu’s between-class variance, using the firefly al-

gorithm, Brownian distribution, levy flight, and the Gaussian distribution. Color image

segmentation based on multi-level MCET using the cuckoo search algorithm was used

in (72), where authors compared the proposed approach with other metaheuristic-based
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image segmentation techniques, and the proposed approach proved highly effective. For

complex image analysis, PSO was incorporated into MCET to find the optimal thresh-

olds during multi-level image segmentation (73). Another metaheuristic called grey

wolf optimizer was applied to thresholding problems with Otsu and Kapur’s entropy

as its objective function (74). After an extensive experimental process, this approach

proved to be better than thresholding done using PSO and BFA. In (75), DE was applied

to Tsallis-fuzzy entropy-based image thresholding, showing statistical significance over

other state-of-the-art methods using Shannon entropy or fuzzy entropy.

These studies highlight the advancements in utilizing metaheuristic algorithms to im-

prove the accuracy and effectiveness of multi-level thresholding in image segmentation.

However, there is always a limitation where some optimization algorithms are good in

exploring the search space and some are good in exploitation. Several hybrid meta-

heuristics are proposed in the related field to strike an exploration-exploitation balance,

avoid premature convergence, and have shown superior performance. A hybrid GSA

and the GA were used in multi-level thresholding where between-class variance and

entropy functions were used as fitness functions. In this approach, a novel method of

evaluating the standard deviation after fitness function calculation was employed to en-

sure diversity (76). Otsu thresholding was optimized using a hybrid firefly algorithm

and social spider optimization, where processing time was significantly reduced, along

with good results (77). In (78), Ewees et al. gave a hybrid of ABC and the Sine Cosine

Algorithm (SCA), where SCA improved the local search ability of ABC to enhance its

performance in image thresholding. It is imperative to note that hybrid optimization

algorithms have shown better performance than individual optimization algorithms.

Firefly Algorithm (FA) was used to segment lung CT images (79) and brain MRI (80).

The paper proposes emphysema classification in lung tissue CT images using Support

Vector Machine (SVM) optimized by the FA. The proposed approach’s computational

time and complexity are not fully analysed in the research, which is crucial for real-

world applications. The GWO was used in an artificial neural network for the clas-

sification of the MRI images dataset (81). The hybrid approach of using grey wolf

optimizer and artificial neural network improves the accuracy of classification for MR

brain images. But, the scope of the algorithm is limited incase of general test problems.

Moreover, Soham et al. (82) gave the concept of multi-level thresholding using a multi-

objective evolutionary algorithm where two entropies namely, minimum cross-entropy

and Renyi entropy, were used as the objective function. It is an effective technique to

segment brain tumors. In this regard, automatic segmentation of MR images was done

using Crow Search Algorithm (83). This method used minimum cross entropy as its ob-

jective function. The performance was evaluated on general as well as medical images.

Ultrasound image segmentation was carried out using a multi-level Otsu thresholding
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method optimized using Differential Evolution Algorithm (84). The proposed differen-

tial search algorithm-based method achieves higher segmentation accuracy compared

to other methods, as demonstrated by experiments on real ultrasound images.

A detailed comparison of different optimization techniques in the field of multilevel

thresholding is discussed in (85). For the analysis and classification of diseases in

healthcare systems, machine learning and data mining approaches have become increas-

ingly popular in recent years. In (86), authors give a review of various machine learning

methods used in health care, the challenges and the possible solutions. In a manner

similar, (87) investigated sub-features for classification in data mining, which was help-

ful for enhancing the precision of disease classification models. Analytic methods for

e-Health data have also been deployed using soft computing and machine learning ap-

proaches. (88) suggested a framework for applying these methods to healthcare data

analysis and patient outcomes improvement. A machine learning and medical stuff

model was also used by (89) to analyse classification-based projected disease, which

could be useful for diagnosing and forecasting diseases in patients. However, the sam-

ple size used was small.

We noticed a significant gap in the literature in the above-mentioned areas, and we

identified the need for a dataset of sufficient size to address this issue. Additionally, we

found that previous studies lacked proper descriptions of the parameters used for tuning

and measures of accuracy.
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CHAPTER 3

HYBRID BACTERIAL FORAGING ALGORITHM-FIREFLY
ALGORITHM (BFAFA)

Global optimization involves finding the global optimal values for the objective func-

tions that contain local optima. The optimization algorithms search the entire input

space and get closer to the extrema of the function to give the accurate value. Among

these optimization algorithms, swarm-based algorithms have gained a lot of importance

over the years in solving global optimization problems. They are extensively used to

solve engineering and scientific problems. Some swarm-based algorithms are PSO (2),

BFA (1), SSA (4), etc.

3.1 Introduction

Among the bio-inspired optimization algorithms, BFA is based on the Escherichia Coli

(E. Coli) bacteria’s foraging behavior i.e., the food-seeking and reproductive behav-

ior. The bacteria search in the nutrient medium to increase the energy per unit of

time. It is a random searching algorithm that finds the global optimum value using

the process of chemotaxis, reproduction, elimination, and dispersion. In the compu-

tational community, BFA has received a great deal of attention due to its exceptional

performance in finding global optima. It was successfully applied in optimal control

(90), machine learning (91), transmission loss reduction (92), harmonic estimation (93),

multi-objective optimization problems (94), image enhancement (95) and edge detec-

tion (96)(97)(98)(99), optimal multilevel thresholding (100), vehicle routing problems

(101), numerical optimization (102), optimal placement of distributed generation (103),

and so many other areas. However, BFA has poor convergence as compared to other

swarm-based algorithms over multimodal and rough landscape problems (104). This is

because they follow the local search through the chemotaxis movement. On the other

hand, the firefly algorithm is a successful nature-inspiring optimization algorithm. In

this algorithm, there are three main rules; 1) Fireflies get attracted to each other, inde-

pendent of their sex, 2) Attractiveness is proportional to Brightness and vice-versa, and

for any two fireflies, the movement takes place from less bright firefly to brighter firefly.

32



If no firefly is brighter than a specific Firefly, it will randomly travel in any direction, 3)

The brightness of a Firefly is evaluated by the objective function.

To improve the performance of BFA, a lot of modifications have already been made,

which can be broadly categorized as Hybridization and Self-Adaptation. Hybridization

means the fusing of two independent algorithms with their unique set of characteristics

to form a better version of the algorithm. Self-adaptation means the setting of control

parameters of the algorithm with each iteration to improve the performance and balance

exploration-exploitation.

Although the literature mentioned above had improved BFA, they were effective in

specific problems and lacked universality. As observed, there were still many open

problems that needed to be addressed. They can be defined as follows.

i It was learned from the literature that some algorithms involved too many control

parameters to balance exploration-exploitation, which made the problem more com-

plex. There was a need for improving the convergence using fewer parameters and

achieving effective parameter-tuning based on adaptation. Until now, all adaptation

strategies are based only on the fitness values of the bacteria or the iteration number.

ii In multimodal or any other complex landscape where the search space is rough and

has multiple local optima, the algorithm got stuck in the local optima trap and gave

poor results.

iii From the related works, it was observed that mostly, very few evaluation param-

eters such as convergence rate, multidimensional landscape, Wilcoxon rank test,

etc. were used to prove the superiority of the algorithm. There was a dire need for

extensive analysis of the algorithm with other comparative algorithms to prove the

quality of the results.

In addition, Wolpert et al. (105) had mentioned the no free lunch theorem where no

algorithm was better on all problems, and so there was always a scope for a new algo-

rithm that outperforms other algorithms. These points are the motivation of this work

to optimize real-world problems. Unlike other works mentioned in the literature, this

study proposes adaptation of the step size based on the success rate of the swarm. Fur-

thermore, the leadership strategy is proposed in BFA for the first time to update the

positions of weak bacteria and move toward a strong bacterium.

The main aim of this chapter is to improve the BFA for solving real-world problems.

For this purpose, two novel improvements are proposed in conventional BFA, namely

adaptation and hybridization. In adaptation, the dynamic step size is proposed using

the success percentage of the swarm of bacteria. A higher success value means that

the swarm is moving closer to the optimum, whereas a lower value of success means

the swarm is far from the optimum. This step prevents the user-based initialization of
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key parameters; hence, the algorithm is free from parameter-tuning. It leads to better

exploration-exploitation balance, prevents local optima traps, and works well even on

complex optimization problems. In hybridization, the leadership strategy is proposed

where the bacterium with the least fitness value (most healthy) is the leader and the

other bacteria in the swarm follow the leader using the FA position equation. This lead-

ership approach is used instead of the elimination and dispersion step. In this way, the

weak bacteria are not eliminated, rather they are moved to a position of a high food

source that is close to the best bacteria resulting in the rejuvenation of the population of

bacteria. FA (3) has a fast convergence rate and involves fewer computations; hence it

is most appropriate to hybridize FA with BFA and improve its convergence speed. It is

interesting and promising to study the capability of leadership strategy and the success

percentage of the swarm in optimizing results. BFAFA is tested against classical, single-

peak, multi-peak, and noisy nonlinear benchmark functions and CEC 2017 benchmark

functions and compared to other well-established and recent metaheuristics. Scalability

analysis is done by testing the algorithm in a multidimensional environment. The sig-

nificance of the algorithm is validated using the Wilcoxon rank sum and Friedman rank

tests. The results are verified by addressing the two classical engineering problems i.e.

Cantilever beam design and three-bar truss design.

3.2 Strategies employed in the BFAFA algorithm

The proposed algorithm introduces two novel improvements in BFA, namely adaptation

and hybridization, to improve convergence and accuracy, avoid local optima, and free

the algorithm from parameter tuning.

3.2.1 Adaptation

In the chemotaxis step of classical BFA, step-size C is a constant parameter and de-

termines the amount of movement. However, it is observed that if there is a dynamic

change in step size the convergence is affected greatly. In this chapter, we dynamically

determine the chemotactic step size during a run, to strike a balance in their exploration

and exploitation behavior. A bacterium with a small step size has the capability of ex-

ploitation, and one with a large step size has the capability of exploration. The large

value of the step size accelerates the movement of the bacteria towards the optimal

point, while the small value of step size slows the bacteria to converge to the optimal

point.

To achieve the adaptation, the situation of the swarm is first determined at each iteration

for which the success percentage is introduced in this chapter. If the success percentage

is high, it means the swarm of bacteria is converging towards the global optimum. On

the contrary, the low value of success percentage means there is not much improvement
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in the bacteria.

The steps of adaptation are as follows:

1. The success of pth bacteria at the qth chemotactic step and rth reproduction step

is defined in a minimization problem according to Eq. (3.1).

success count(p) =

{
1 ifF (p, q, r) < Flast

0 ifF (p, q, r) ≥ Flast

(3.1)

where F (p, q, r) is the fitness function to be optimized and Flast is the best fitness

value of the bacteria obtained so far.

2. The success percentage of the bacteria using the success values is computed ac-

cording to Eq. (3.2):

PS(p) =

∑s
p=1 success count(p)

s
(3.2)

where s is the total number of bacteria, and PS is the percentage of pth bacteria

that had an improvement in their fitness value during the last iteration.

3. A linear function is used to map PS values to the possible range of step size as

shown in Eq. (3.3)

C = (Cmax − Cmin)PS(p) + Cmin (3.3)

To determine the range of C, multiple values between 0 and 1 were tried experi-

mentally. It was found that the values of C between 0.2 to 0.5 give good results.

So the lower range of C, Cmin is taken to be 0.2 and the upper range Cmax to be

0.5.

In this way, the step size is regulated and adaptively changed from high value (explo-

ration) to low value (exploitation) to reach the global optimum. This ensures the best

possible exploration-exploitation balance. This way, user interference is avoided to ini-

tialize the key parameter; hence the algorithm is free from key parameter-tuning. Since

the situation of the swarm is considered at every step, and not the single bacterium,

therefore, the chances of local optima trap are reduced significantly. This makes it

perform better in rough landscapes also, like in the case of multimodal optimization

algorithms. To the best of our knowledge, the success rate of the swarm of bacteria to

determine the step size is used for the first time in BFA.
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3.2.2 Hybridization

In the conventional elimination and dispersion stage, every bacterium is mapped to a

random value between 0 and 1. If the random value is less than Neldis, the bacterium

is eliminated. An equal number of fresh bacteria are introduced at random locations to

maintain the total count. However, in this event, the biological diversity is lost and a

potential optimal bacterium can be killed. This chapter proposes a new strategy to over-

come this situation. The standard elimination and dispersion step is avoided altogether

for this. To achieve this, the steps are as follows:

1. The bacteria are sorted in descending order, according to their health. The health

of bacteria is calculated using the below code.

For p = 1, 2, ..s

Jp
health =

∑Nc+1
j=1 F (p, q, r) be the health of bacterium p

end for

Sort bacteria with Jhealth in descending order

2. The bacterium with the least fitness value is considered most healthy (for mini-

mization problems) and is termed as Lead.

Lead=Last bacterium of the sequence

3. The positions of the weaker set of bacteria (first half of the sorted population)

are then modified using the position update equation of the FA, where the weaker

bacteria move towards the strongest bacterium.

For i = 1, 2. . . , s
2

pos(i, q + 1, r) = pos(i, q + 1, r) + β0e
−γdist2iLead

(pos(i, q + 1, r)− Lead) + α(rand− 1
2
)

end For

where distiLead is the distance between ith bacterium and Lead bacterium and is

calculated using Eq. (1.6); Nc is the number of chemotactic steps.

By introducing the randomness in the position of weak bacteria, we diversify the search

space. In this way, exploration is improved several times. So, rather than killing the

weak bacteria, an attempt to make them closer to nutrients is done by changing their

position and rejuvenating them. Since we know that fireflies change position when they

get attracted to brighter firefly, in our case, the weak bacteria (followers) are attracted

to the strongest bacterium (Leader), which is most close to the nutrient medium, and

update their positions accordingly. The strategy of leadership to find the best food

resource works excellent (106)(107). In this way, search efficiency (or convergence)

is improved greatly, and diversity is also achieved leading to better exploration. The

chances of missing the global optimal solution are reduced. As compared to other

36



nature-inspired algorithms, FA gives quick convergence in fewer computations, hence

it is most suitable to fuse with BFA, reduce the total runtime, and give good results with

quick convergence. From the literature, it is seen that other swarm-based optimization

algorithms were used for hybridization with BFA; however, FA is used for hybridization

with BFA for the first time.

3.3 Development of the BFAFA algorithm

The overall structure of the novel BFAFA algorithm with adaptation and hybridization

is shown in Algorithm 6. The population is randomly initialized and all the parameters

are set. During the chemotaxis movement (swim or tumble), the step size is dynam-

ically adjusted according to the success percentage of the swarm. The bacteria move

ahead and the new fitness value of the entire swarm is evaluated. If the current fitness

value of the bacteria at the new position is smaller than the previous value, the bacteria

update its position. For reproduction process, the health of the bacterium is determined.

In the proposed algorithm, the elimination and dispersion step is not used. So, the

bacterium with the best health (least value of fitness), which is determined in the repro-

duction step, is defined as the lead, and the rest of the bacteria become the followers

and update their position according to the firefly equation and move towards the healthy

bacteria. So, the overall number of bacteria remains constant. Once the bacteria move

closer to the lead, the health (fitness value) of the bacteria is improved. In this way,

potentially strong bacteria are not eliminated and biological diversity is increased. The

overall health of the swarm is also improvised.

By encouraging constant fitness value improvement as bacteria converge towards the

lead, this novel strategy maintains diversification, strengthens potentially robust bacte-

ria, and improves the general health of the swarm. Moreover, the lack of processes for

dispersal and elimination shields potentially potent bacteria from early extinction, pro-

moting long-term diversity. This unique adaptability, in line with dynamics inspired by

fireflies, guarantees a balance between optimizing the health of each individual and the

entire swarm. The resulting approach emphasizes dynamic adaptation and robustness,

providing an innovative perspective on swarm-based optimization.

Algorithm 6 The proposed BFAFA algorithm

1. Parameter definition: BFA parameters: D: the dimension of search space;
s: population of bacteria; Nc: number of chemotactic steps; Ns: number of
swims after tumble; Nre: number of reproductive steps; pos: position of each
member in the population of s bacteria; C: step size; Cmin: minimum step
size; Cmax: maximum step size; PS : Success percentage. FA parameters: α:
randomization parameter; β: attractiveness; γ: light absorption coefficient
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2. Initialize all the parameters defined above

3. success count = 0, PS = 0

4. Reproduction Loop: while r < Nre

5. Chemotaxis Loop: while q < Nc

(a) PS = success count
s

(b) C = (Cmax − Cmin)PS + Cmin

(c) for p = 1, . . . ., s

(d) Compute Fitness cost, F (p, q, r)

(e) F (p, q, r) = F (p, q, r) + Jcc(pos), where Jcc(pos) is calculated using
(1.3)

(f) Flast = F (p, q, r)

(g) Tumble: Generation of a random vector ∆(p)ϵRD with each element
∆d(p), d = 1, 2, ...D, a random number [−1, 1] where R is a real num-
ber.Computing pos for p = 1, 2. . . , s (number of bacteria) pos(p, q +

1, r) = pos(p, q, r) + C
∆(p)√

∆T (p)∆(p)

(h) Swim: Set swim length counter, m = 0

(i) While m < Ns

(j) If F (p, q + 1, r) < Flast (if there is any improvement)
(k) success count = success count+ 1

(l) PS = success count
s

(m) C = (Cmax − Cmin)PS + Cmin

(n) let Flast = F (p, q + 1, r)

(o) pos(p, q + 1, r) = pos(p, q, r) + C
∆(p)√

∆T (p)∆(p)

(p) Use pos(p, q + 1, r) to calculate the new fitness function F (p, q, r)

(q) else
(r) m = Ns

(s) End if
(t) m = m+ 1

(u) End While
(v) End for

6. End while (Chemotaxis loop ends here)

7. Reproduction: For given r, and For p = 1, . . . ., s

(a) Jp
health =

∑Nc+1
j=1 F (p, q, r) be the health of bacterium p

(b) end for
(c) Sort bacteria with Jhealth in descending order
(d) Select Lead=Last bacterium of the sequence
(e) computing new positions of follower bacteria using the firefly algorithm

for i = 1, 2. . . , s
2

pos(i, q+1, r) = pos(i, q+1, r)+β0e
−γdist2iLead(pos(i, q+1, r)−Lead)+

α(rand− 1
2
)

(f) end for

8. End while (Reproduction loop ends here)
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3.4 Experimental results and analysis

3.4.1 Evaluation methodology

An experimental analysis of the proposed approach is done using MATLAB R2010a

on 64-bit Windows to validate its performance. Classic benchmark functions, including

unimodal, multimodal, and composite functions, are used from (108) to test the pro-

posed algorithm. Along with standard benchmark functions, the experimental analysis

is performed on single-peaks, multi-peaks (109), noisy nonlinear benchmark functions

(110) and modern numerical optimization problems from IEEE CEC 2017 (111)(112).

The CEC 2017 functions have features such as shifting, rotating, and expanding the

basic functions or a variant of these. To verify the results of the proposed BFAFA algo-

rithm, it is compared with some well-established and recent metaheuristic algorithms.

The well-established algorithms include BFA (1), FA (3), ABC (113), and the recent

algorithms used are Monarch Butterfly Optimization (MBO) (114), SSA (4), Hybrid

BFA and PSO (BF-PSO) (115). In all the experiments, the population size is set to 50,

the number of iterations to 100, and the evaluation is taken for 30 different runs. The

parameters of the proposed approach are set as follows: s = 50; Nc = 100; Ns = 4;

Nre = 4; Cmin = 0.2; Cmax = 0.5; γ = 1;β0 = 1; α = 1. The rest of the parameters of

the other algorithms used in the comparison are the same as those used in the literature.

Performance is evaluated as follows:

• Qualitative Analysis – Analyzing the convergence curves of the proposed method

and other algorithms.

• Quantitative Analysis Validating the proposed method against other comparing

algorithms by evaluating the fitness function over classic, noisy nonlinear, single

peak, multi-peak, and modern CEC benchmark functions, comparing the time

complexity, performing the scalability analysis, and performing Wilcoxon statis-

tical analysis at a 5% significance level, and Friedman rank test.

3.4.2 Qualitative results and discussion

The first set of experiments is performed by observing the Convergence Curve of the

proposed approach and comparing it with the convergence curves of other metaheuris-

tic algorithms. The main aim of conducting this experiment is to observe the behavior

of BFAFA qualitatively. The benchmark functions used are listed in Table 3.1, where

Dim shows the dimension of the function, the range is the limit of the search space,

and the value fmin gives the optimal value.
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Fig. 3.1 shows the 2D versions of the benchmark functions that are used in this

chapter for testing purposes. These minimization functions can be simply categorized

as unimodal, multimodal, and multimodal (fixed dimension). Studying the pattern of

the proposed algorithm on these functions helps to generalize the results for other uni-

modal and multimodal functions as well. Exploitation can be benchmarked using uni-

modal benchmark functions (f1 to f5). In contrast, multimodal functions (f6 to f11)

have a lot of local optima, which can be used to benchmark exploration. From f12,

which is a composite function, the capability of exploration and exploitation can be si-

multaneously benchmarked, along with the capability of local optima avoidance. The

convergence curves of the proposed algorithm and various other metaheuristic algo-

rithms are depicted in Fig. 3.2, for all the benchmark functions. From the convergence

curves, it is clear that BFAFA performs well over other metaheuristic algorithms in

terms of convergence speed. For most of the unimodal functions (except f3), BFAFA

shows significant results which means that they have merit in exploitation. As per the

curves for the function f7 to f11 (except f6), BFAFA gave superior results which makes

it capable of good exploration, although BF-PSO gave competitive performance. It can

be derived that BFAFA performs well on multimodal optimization functions and, at the

same time ensures quick convergence. The proposed approach is fairly competitive to

other algorithms in terms of convergence speed for composite functions as well, show-

ing a good balance between exploration and exploitation. This shows that it balances

exploration-exploitation effectively to drive the bacteria to the global optima. From the

convergence trend, it is further noticeable that BFAFA is better than its counterparts

BFA and FA. The convergence of BFA is superior to FA, however, the convergence of

BFAFA outperforms both of them. In most cases, convergence is slow at the initial iter-

ations in the exploration phase, however, it picks up the speed and converges faster at a

later stage. This is possible due to adaptation which ensures efficiency in search space

during exploration, and acceleration in convergence later. The fusion of FA into BFA

assists in ensuring fast convergence in a few computational steps, so it contributes to

increasing the convergence rate, which is validated in the quantitative analysis section.
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Figure 3.1: 2-D versions of the unimodal and multimodal benchmark functions

42



Figure 3.2: Convergence curves of the proposed BFAFA and other algorithms on the
benchmark functions
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Table 3.2: Fitness values of functions using a different range of step size

Range of step size C f1 f8 f12 C1 NL1

Cmin Cmax

0.1 0.3 0.0055e+00 3.6200e-11 3.2400e+00 1.8892e-15 1.982

0.2 0.5 8.8818e-16 0.0000e+00 3.0000e+00 0.0000e+00 1.4789

0.3 0.8 4.8743e-02 1.59239e-01 3.6183e+00 5.3847e-20 12.9137

0.4 0.9 4.8021e-01 1.2365e-01 3.6900e+00 3.8473e-44 13.8373

3.4.3 Quantitative results and discussion

The second experiment was based on evaluating the fitness value, mean, standard devia-

tion, root mean square, mean absolute error, mean absolute percentage error, normalized

root mean square error, and convergence time obtained by the proposed algorithm and

comparing it with BFA, FA, ABC, MBO, SSA, Hybrid BF-PSO.

To achieve the best results for any optimization problem, the control parameters of the

algorithm should be tuned appropriately. This could provide more robustness and adapt-

ability when solving a general set of problems. For our algorithm, the range of step-size

C was selected using the Design of Experiments approach. The sensitivity of the algo-

rithm was analyzed by trying various ranges of C between 0 and 1 and then performing

the experiment. The values varied until a decent solution was obtained. The analysis

was done on benchmark functions f1, f8, f12, CEC 2017 function C1, noisy nonlinear

function NL1. Each function was solved for 30 different runs. The results of some of

the ranges of step sizes are shown in Table 3.2. From the sensitivity analysis done in

Table 3.2, it is evident that too small or too large a difference between the range of step

size gives inaccurate results, and the performance is much better for a reasonable range

when tested for 30 independent runs. Hence Cmin was taken as 0.2 and Cmax was taken

as 0.5.

Table 3.3 shows the evaluation results of optimal values for different algorithms. The

best results of the global optima are highlighted. The evaluation parameter here was

the fitness function values obtained by the various algorithms over 30 different runs.

As discussed, the functions f1 to f5 benchmarks exploitation, it can be observed from

the table that BFAFA outperformed all comparative algorithms in almost all the func-

tions except f5. The results for the function f5 were slightly better given by BFA and

MBO. For the function f1, BFAFA as well as BF-PSO gave the same results which

shows that these two algorithms are competitive. It can therefore be generalized that
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Table 3.3: Fitness function f(.) evaluation on various optimization functions

Function
Optimum Value, f(.)

BFA FA ABC BF-PSO MBO SSA Proposed BFAFA

f1 0.4021e+00 0.0066e+00 0.0065e+00 8.8818e-16 5.7119e-05 4.8613e-06 8.8818e-16

f2 1.9645 e+00 8.1553e-04 0.9986e+00 8.8818e-16 3.6200e-11 5.4306e-07 0.0000e+00

f3 1.4950e-09 9.8998e-06 1.0276e-05 1.3298e-32 5.6500e-09 1.8418e-14 1.4998e-34

f4 0.1471e+00 3.0002e-02 1.0044e-07 5.0339e-04 3.0012e-08 1.0018e-03 3.0076e-09

f5 0.0000e+00 1.5393e-04 0.0122e+00 1.4998e-32 0.0000e+00 3.8327e-04 0.0067e+00

f6 -1.1260e+03 -5.8275e+07 -7.2783e+04 -4.0327e+03 -7.3423e+03 -5.4306e+04 -6.0024e+03

f7 0.1100e+00 7.8730e-06 2.6951e-05 0.0000e+00 0.0000e+00 3.2110e-14 0.0000e+00

f8 0.1680e+00 4.7375e-07 4.2123e-08 0.0000e+00 0.0000e+00 3.1326e-07 0.0000e+00

f9 -1.0020e+00 2.5908e-06 9.1240e-06 8.8818e-16 4.1240e-11 3.2110e-14 0.0000e+00

f10 1.3584e-02 0.9999e-07 0.8110e-06 8.8395e-17 -1.0000e+00 8.7289e-01 8.8261e-30

f11 -1.8074e+00 -1.6633e+00 -1.3860e+00 -1.5660e+00 –1.7309e+00 -1.5819e+00 -1.0230e+00

f12 3.0300e+00 3.9285e+00 3.3700e+00 6.3890e+00 3.8013e+00 3.6400e+00 3.0000e+00

BFAFA can solve unimodal optimization functions with nearly accurate global opti-

mum values. So, the proposed algorithm exhibits good exploitation capability. The

functions f7-f11 are suitable for benchmark exploration since these are multimodal and

have multiple local optima. From the table, it was observed that for the functions f7,

and f8, BFAFA showed competitive performance with BF-PSO. However, the results

were outperformed for all other functions which showed that BFAFA was able to reach

the global optimum solutions for almost all multimodal functions. In this manner, the

proposed algorithm exhibits good exploration capability as well. The balance of ex-

ploration and exploitation was tested when a composite function was solved using all

algorithms. Here, BFA- FA proved to be the best optimizer for solving the function f12.

So, it can be concluded that BFAFA can establish exploration-exploitation balance and

give nearly accurate values of global optima.

Table 3.4 shows the single-peak and multi-peak functions. The results of the compara-

tive analysis are shown in Table 3.5. It can be learned from the table that BFAFA gives

smaller values for MAE, MAPE, RMSE, and NRMSE as compared to its classical al-

gorithms BFA and FA. This proved the stability of the proposed technique since the

error percentage is quite low. The strategy of adaptation and leadership in BFAFA con-

tributes to improving the performance in terms of accuracy since the results of BFAFA

outperform BFA.

Another benchmarking model used to test the performance of BFAFA was noisy non-
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linear benchmark functions shown in Table 3.6. The evaluation parameter was the pro-

cessing time (in seconds) for solving the function through the mentioned comparative

algorithms. The results of the algorithms when applied over noisy nonlinear functions

are shown in Table 3.7. It is quite clear from the results that BFAFA seems to solve

noisy functions in less time, hence it is potentially more powerful in solving nonlinear

functions. The accuracy index parameters for evaluation were the mean absolute error

(MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and

the normalized root mean square (NRMSE). These parameters are evaluated as follows:

MAE =
∑s

i=1

∣∣yi−fi
s

∣∣
RMSE =

√∑s
i=1(yi−fi)2

s

NRMSE =
√

s
∑s

i=1(yi−fi)2∑s
i=1 y

2
i

where s is the total population, yi is the obtained fitness value, fi is the actual fitness

value for the ith iteration.
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Table 3.5: Accuracy indexes of BFAFA and other algorithms on single peak and multi-
peak functions

Algorithm Benchmark functions MAE MAPE RMSE NRMSE

BFA SP1 52.237 3.9621 71.231 0.0748

FA SP1 57.328 4.2886 75.965 0.0748

BFAFA SP1 50.013 3.1385 59.893 0.0367

BFA SP2 62.434 4.3892 65.937 0.0447

FA SP2 64.329 5.9327 60.332 0.0632

BFAFA SP2 57.047 4.2037 60.023 0.0334

BFA MP3 80.328 9.3208 90.328 0.0932

FA MP3 99.327 8.3289 110.094 0.0863

BFAFA MP3 71.943 6.2647 85.392 0.0632

BFA MP4 89.394 6.3727 98.438 0.0847

FA MP4 65.048 5.6304 74.731 0.0743

BFAFA MP4 60.322 4.6533 69.329 0.0614

BFA MP5 75.348 9.4389 79.439 0.0463

FA MP5 74.243 8.4663 74.482 0.0623

BFAFA MP5 74.0127 7.0456 71.958 0.0418

BFA MP6 92.473 9.3921 75.923 0.0958

FA MP6 89.431 8.3947 73.042 0.0963

BFAFA MP6 87.839 8.2894 73.385 0.0762
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Table 3.7: Performance of BFAFA and other algorithms when applied on noisy nonlin-
ear benchmark functions in terms of processing time (in sec)

Function Proposed BFAFA FA ABC BF-PSO MBO SSA BFA

NL1 51.47 51.49 51.74 51.68 52.68 51.53 51.87

NL2 52.73 52.63 52.81 52.17 52.79 52.74 52.65

NL3 52.39 52.39 52.73 52.94 53.04 53.02 53.23

NL4 53.23 53.23 56.24 56.34 53.48 54.28 54.29

NL5 53.11 53.58 53.82 53.67 53.18 53.12 54.23

NL6 54.01 54.85 54.26 54.83 54.94 54.23 54.39

NL7 51.93 52.43 52.23 51.98 52.49 51.99 52.95

To test the robustness, effectiveness, and stability of the proposed BFAFA, the al-

gorithms were compared over modern IEEE CEC 2017 Benchmark functions, since it

is quite a challenging test suite and involves unimodal, multimodal, composite, and hy-

brid functions. The description of benchmark functions in detail is mentioned in Table

3.8. The comparison among algorithms is taken over 30 independent runs for all the

algorithms. The average and standard deviation are used as performance measures. The

evaluation results are shown in Table 3.9. It can be observed that BFAFA showed im-

proved average results in comparison to other algorithms for modern benchmark func-

tions. The average scores by BFAFA were better than other comparative algorithms

for the functions C01, C02, C05, C07, C08, C10, C13, C16, C18, C19, C22, and C23.

The functions C05, C8, and C10 were solved accurately using BFA- FA, BF-PSO, and

SSA. The second rank was achieved by BF-PSO for its good performance over 9 CEC

functions, followed by BFA. Also, another interesting observation was that the stan-

dard deviation of BFAFA is least for most of the CEC functions. It can be learned that

the algorithm is quite stable in solving the problems, besides being stochastic. These

observations proved the superiority of the algorithm.
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The third experiment was comparing the time complexities of the proposed ap-

proach concerning the standard classical counterparts, i.e., BFA and FA. Table 3.10

shows the time complexity of BFAFA, BFA, and FA. The convergence rate tells the

time taken by the algorithm to reach the global optima. From the table, it was con-

cluded that BFAFA converges faster as compared to BFA and FA in most cases except

the functions f2, f7, f9, and f10, where FA performed better than BFAFA. Another ob-

servation was that for the composite function f12, BFAFA outperformed BFA and FA. It

is important to note the performance of such functions since most of the algorithms fail

or face difficulty in optimizing the composite functions on time. Hence, BFAFA can be

used to give optimal results for composite functions in less time. It is interesting to note

that generally after the hybridization process, the time taken generally increases due to

additional function evaluations, however, the time taken by BFAFA is less or compa-

rable. This is because the elimination and dispersion steps were removed in BFAFA.

This step in classical BFA involved the complexity of eliminating some parts of the

swarm of bacteria and dispersing some other parts of the swarm to a random location.

But in BFAFA, when BFA is hybridized with FA, which has a randomness component,

the overall function evaluations are less compared to classical BFA. The fourth ex-

periment is performed by testing the scalability in the multi-dimensional environment.

Sometimes, it is observed that the algorithms perform well in lower dimensions, but

give an absurd performance in higher dimensions. To test the performance of BFAFA

over higher and lower dimensions, a comparison of BFAFA is done with BFA and

FA over 20, 30, 50, and 100 dimensions in Table 3.11. The results demonstrate that

BFAFA outperforms the other two algorithms and offers feasible results for 20, 30, and

50 dimensions. For 100-D, the results are slightly improved giving scope for more im-

provement in the future. However, they are still better than the traditional BFA and FA

for the optimization functions taken.

53



Table 3.10: Convergence time of BFAFA compared to traditional BFA and FA

Function
Time (sec)

BFA FA Proposed BFAFA

f1 58.44 56.58 56.36

f2 57.49 57.45 57.78

f3 58.69 56.97 56.32

f4 57.82 56.85 56.21

f5 57.58 58.75 55.63

f6 58.68 57.45 56.67

f7 56.69 55.22 57.40

f8 56.25 57.08 53.44

f9 59.04 57.42 57.83

f10 59.62 56.22 56.49

f11 58.41 52.36 52.12

f12 55.87 59.53 55.40

Table 3.11: Experimental results with higher dimensions and their comparison with
conventional algorithm

Optimization function Dimensions
Optimum Value, f(.)

BFA FA BFAFA

f1

20-D 9.887e-01 1.4833e-04 7.1293e-16

30-D 0.1582e-01 2.9127e-03 8.8004e-06

50-D 0.9923e-02 3.3939e-01 1.7175e-03

100-D 2.4123e-01 2.0834e-01 5.7119e-02

f5

20-D 0.3478e-01 1.8241e-01 0.01604e-04

30-D 0.8432e+00 2.9127e+00 0.1184e+00

50-D 0.5461e+00 2.2342e+00 0.1427e+00

100-D 0.6923e+00 0.8982e+00 0.3133e+00

f8

20-D 5.237e-05 1.3421e-07 6.3287e-18

30-D 0.5933e-04 1.1284e-03 0.4438e-10

50-D 0.2321e-01 0.8756e02 0.455e-05

100-D 7.8673e+00 6.9223e+00 5.4312e+00

f10

20-D 9.3735e-11 2.4833e-13 5.133e-30

30-D 0.01258e-08 0.8762e-10 0.3622e-18

50-D 0.3552e-05 2.2398e-06 1.1732e-11

100-D 2.7724e-01 2.8923e-01 1.7193e-02

f12

20-D 3.03e+00 3.9230e+00 3.0000e+00

30-D 3.9730e+00 4.1730e+00 3.7600e+00

50-D 4.1277e+00 4.2873e+00 4.1700e+00

100-D 4.8123e+00 4.7662e+00 4.6124e+00
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The fifth experiment is performed by testing the significance of the results (Wilcoxon

rank-sum test at 5% significance level and friedman rank test) (116)(117). Wilcoxon test

is a non-parametric statistical test that verifies whether or not both sets of solutions are

significant. It returns a p-value that defines the degree of significance. If the p-value

is less than 0.05, an algorithm is statistically significant. This is done by choosing the

best algorithm in each run and comparing it with other algorithms independently. Also,

since the best algorithm cannot be compared to itself, hence N/A (Not Applicable) is

written. Since the metaheuristic algorithms are stochastic, therefore it is required to test

the significance. The wilcoxon test results are shown in 3.12. It can be observed from

the table that the BFAFA algorithm was able to perform well for the test functions C01,

C02, C04, C06, C07, C09, C11, C14, C15, C17, C20, C21, C22, C24, C25, and C28.

After BFAFA, the algorithms BF-PSO and SSA were ranked second since they gave

good performance on three test functions each. From the statistical results, it can be

said that BF-PSO and SSA were able to give good results and outperform other algo-

rithms, however, BFAFA gave outstanding performance and proved superior. Friedman

test is also a non-parametric test, which is based on the average ranked value. If the

p-value level of significance) is less than or equal to 0.05, then the null hypothesis is

rejected. This means that the statement that all the algorithms perform equally well, is

not true. This verifies whether the proposed algorithm performs statistically significant

than other algorithms or not. The average rankings of all the algorithms used in this

study on the test suites unimodal, multi-modal, composite, and CEC 2017 functions

using the friedman rank test are shown in Table 3.13. The statistical value of the test

came out to be 108.10, and the p-value of BFAFA was 4.923E-06 which proved that

there was a significant difference between BFAFA and other algorithms. BFAFA was

followed by BF-PSO, SSA, MBO, BFA, FA, and ABC. The results show the superior

and significant performance of BFAFA over others for most of the functions. Hence,

the proposed approach can solve problems efficiently and stands at the first rank for this

benchmark suite.

By observing the discussions and findings, it is evident that BFAFA edged over most

algorithms taken in this study in terms of efficiency, significance, and attaining global

optima results. The convergence curve showed a smooth transition from exploration

to exploitation within the search space. As compared to its classical part-and-parcels,

the proposed approach BFAFA possesses superior convergence capability for all opti-

mization problems. The results for multimodal functions are superior when solved by

BFAFA, hence local optima avoidance is ensured to a much larger extent. The time

taken by PSO-BOA is comparable and not more than its components, i.e., BFA and FA.

The proposed algorithm is significantly better and stands on a better rank than other

algorithms taken in this study.
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Table 3.12: Statistical Analysis using P-values obtained from the wilcoxon rank-sum
test

CEC Functions BFA FA ABC BF-PSO MBO SSA Proposed BFAFA

C01 4.380e-04 1.089e-03 7.260e-02 5.4002e-01 7.182e-03 3.251e-04 N/A

C02 1.145e-03 4.513e-03 1.0528e-04 3.14292e-01 1.674e-06 6.180e-04 N/A

C03 3.022e-02 4.506e-03 1.748e-11 N/A 9.668e-02 4.603e-03 4.502e-03

C04 1.592e-03 3.886e-03 1.083e-04 2.6104e-04 2.2121e-10 6.219e-02 N/A

C05 8.126e-03 1.091e-03 5.138e-01 N/A 1.868e-03 5.4725e-02 1.093e-03

C06 2.566e-02 4.084e-02 7.410e-05 7.837e-05 9.437e-02 5.218e-15 N/A

C07 4.001e-01 3.0614e-01 0 7.13e-03 3.424e-02 7.85e-03 N/A

C08 1.110e-16 N/A 2.887e-15 0 4.273e-02 4.60e-03 7.74e-03

C09 1.568e-02 4.281e-02 0 8.089e-02 0 0 N/A

C10 9.83e-02 N/A 2.162e-04 7.332e-02 9.915e-02 7.832e-02 4.325e-02

C11 3.234e-02 0 8.862e-02 1.996e-08 0 6.6e-04 N/A

C12 1.243e-02 6.31e-03 0 8.184e-02 N/A 9.977e-02 9.960e-02

C13 6.6502e-01 3.3162e-05 4.160e-02 0 1.65e-03 N/A 6.745e-02

C14 3.214e-02 0 1.197e-04 0 0 6.523e-02 N/A

C15 3.4e-04 6.320e-02 3.226e-02 2.36e-03 6.3e-04 2.260e-02 N/A

C16 4.672e-02 6.4e-03 3.54e-02 0 7.3e-04 N/A 6.320e-02

C17 1.372e-02 8.376e-01 1.026e-02 0 0 0 N/A

C18 1.026e-02 5.412e-02 5.0685e-12 N/A 9.732e-02 5.408e-02 1.026e-02

C19 N/A 8.672e-02 9.069e-02 8.4095e-01 6.6e-04 9.977e-02 9.960e-02

C20 1.231e-02 6.968e-02 4.441e-16 0 0 0 N/A

C21 2.172e-02 8.278e-13 6.472e-13 0 1.716e-08 0 N/A

C22 3.423e-02 4.500e-02 1.903e-02 5.012e-01 2.9089e-01 2.21e-03 N/A

C23 N/A 0 1.981e-04 0 1.112e-16 0 5.001e-02

C24 3.428e-02 0 2.0096e-02 0 0 0 N/A

C25 2.133e-02 0 1.009e-02 0 2.01e-03 2.276e-05 N/A

C26 5.323e-02 4.367e-02 5.306e-01 8.96e-03 2.411e-02 N/A 7.400e-02

C27 N/A 1.112e-15 0 0 2.348e-02 9.985e-06 2.722e-02

C28 4.382e-02 2.018e-13 4.008e-01 5.792e-02 3.023e-02 1.009e-02 N/A
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Table 3.13: Average rankings of algorithms using friedman’s test

Algorithm standard functions f1-f12 CEC 2017 functions

BFAFA 1.894735 2.30

BFA 5.284942 3.63

FA 5.928479 4.29

ABC 6.023848 3.49

BF-PSO 2.024725 4.20

MBO 3.928472 5.80

SSA 3.283682 4.78

3.5 Application of the BFAFA algorithm to structural design problems

This section applies the proposed BFAFA algorithm to solve two structural design prob-

lems: The Cantilever beam design problem and the Three-bar truss design problem. The

below section will show the best-obtained design and the function evaluations required

to achieve it, during 10 runs.

3.5.1 Cantilever beam design problem

A Cantilever beam (118) consists of five elements that are hollow and have a square-

shaped cross-section. As shown in Fig. 3.3, there are 5 structural parameters, each

element being defined by a variable. Node 1 is rigidly supported and a vertical load is

applied on Node 6. The optimization problem is formulated as follows:

Consider x⃗ = [x1x2x3x4x5]

Minimize f(x⃗) = 0.0624(x1 + x2 + x3 + x4 + x5)

Subject to g(x⃗) = 61
x3
1
+ 27

x3
2
+ 19

x3
3
+ 7

x3
4
+ 1

x3
5
− 1 ≤ 0,

Variable range 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

Table 3.14 shows the solution to the problem using the proposed approach and its

comparison with other techniques like Symbiotic Organisms Search (SOS) (119), CS

(120), Method of Moving Asymptotes (MMA) (121), Generalized Convex Approxima-

tion (GCA) first and second derivatives- GCA I (122), GCA II (122), ABC (113), MBO

(114), SSA (4). The optimum weights given by the algorithms SOS, ABC, MBO, and

SSA were similar, however, BFAFA gave lesser value, which give an edge to its per-

formance. Similarly, it can be seen that the functions evaluations required to reach the

global optimum were optimum in the case of BFAFA, followed by SSA, MBO, ABC,
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and SOS. CS gave the output in least function evaluations i.e., 2500, but the optimal

weight was higher. So, BFAFA proves to be a good optimizer that delivers optimal

value in reasonable function evaluations.

Figure 3.3: Cantilever beam design problem

Table 3.14: Results for cantilever design problem using proposed approach and other
algorithms

Algorithm
Optimal value for variables

Optimum weight Max. function evaluations

x1 x2 x3 x4 x5

BFAFA 6.014752 5.30716 4.48352 3.49965 2.15327 1.33995 12000

SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 15000

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 2500

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 NA

GCA I 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 NA

GCA II 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 NA

ABC 6.01812 5.31142 4.48836 3.49751 2.158329 1.33996 14000

3.5.2 Three-bar truss design problem

The three-bar truss design problem (118) is a highly constrained problem where one has

to minimize its weight. The problem is formulated as follows: Consider x⃗ = [x1x2] =

[A1A2],

Minimize f(x⃗) = (2
√
2x1 + x2) ∗ l
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Subject to g1(x⃗) =
√
2x1+x2√

2x2
1+2x1x2

P − σ ≤ 0,

g2(x⃗) =
x2√

2x1+2x1x2
P − σ ≤ 0,

g3(x⃗) =
1√

2x2+x1
P − σ ≤ 0,

Variable range 0 ≤ x1, x2 ≤ 1,

Where l = 100cm, P = 2(KN)/(cm2), σ = 2(2KN)/(cm2)

The three-bar truss is shown in Fig. 3.4, and the solution is shown in Table 3.15,

which shows the solution using the proposed approach and other techniques. The other

techniques used are Differential evolution with dynamic stochastic selection (DEDS)

(123), BF-PSO (115), Mine blast algorithm (MBA) (124), Ray and Sain (125), Tsa

(126), CS (120), ABC (113). MBO (114), and SSA (4). It is clear from the results that

BFAFA stood first in optimizing the three-bar truss problem with minimum weight. The

function evaluations were also reasonably less. Between ABC and BFAFA, although

the function evaluations were lower for ABC, the global optimum value was better

delivered by BFAFA. CS gave the optimal value in the least function evaluations but the

value was a little higher. Overall, a good deal would be to get the minimum optimization

value in reasonable function evaluations. Although BFAFA was competitive with other

state-of-art techniques, its overall performance was better.

Figure 3.4: Three-bar truss design problem
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Table 3.15: Results for three-bar truss design problem using proposed approach and
other algorithms

Algorithm
Optimal value for variables

Optimum Weight Max. Function evaluations

x1 x2

BFAFA 0.7886715 0.4084389 263.89582382 12000

DEDS 0.78867513 0.40824828 263.8958434 15000

BF-PSO 0.7886751 0.4082482 263.8958433 17600

MBA 0.7885650 0..4085597 263.8958522 20000

Ray and Sain 0.795 0.395 264.3 NA

Tsa 0.788 0.408 263.68 NA

CS 0.78867 0.40902 263.9716 15000

ABC 0.7886628160 0 0317 0.408283133832901 263.8958434 11800

MBO 0.788897555578973 0.407619570115153 263.895881496069 13000

SSA 0.788665414258065 0.408275784 4 4 4547 263.8958434 12500

3.6 Conclusion

This chapter proposes two novel improvements in the conventional BFA for solving

multi-modal optimization problems and convex landscapes with fast convergence, scal-

ability, and efficiency, in less time. Also, the main goal is to achieve the global optimum

value while balancing exploration as well as exploitation. To achieve this, firstly, a self-

adaptive strategy is proposed where the step size of the bacteria is dynamically changed

using the success percentage of bacteria and examining their state after each iteration,

to reach the global optima. It leads to better exploration-exploitation balance, improved

convergence time, accuracy close to the global optimal value, and good results for mul-

timodal optimization problems. Secondly, in place of the elimination and dispersion

step, the leadership strategy is applied where the bacterium with the least fitness value

(most healthy) is the leader and the other bacteria in the swarm follow the leader us-

ing the firefly algorithm position equation. It leads to lesser time complexity, fewer

computations, and fast convergence since FA is known for its ability to converge faster.
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Also, therefore there is no addition of newer calculations, so it leads to decreased time

complexity.

To benchmark the performance of the proposed algorithm, a series of tests were con-

ducted. The convergence curves were studied and compared with other algorithms.

The proposed algorithm was tested on 12 standard, 7 nonlinear, 2 single peaks, and 4

multi peaks, as well as 28 CEC 2017 benchmark functions, and compared to the clas-

sic as well as recent nature-inspired algorithms to validate its performance. For this

several evaluation parameters were used like optimal value, mean, standard deviation,

processing time, MAE, MAPE, RMSE, and NRMSE. The performance was tested on

a multi-dimensional landscape as well to test its scalability. The significance of the re-

sults was determined under Wilcoxon Statistical as well as Friedman rank test analysis

at a 5% significance level. The overall result was that BFAFA performed better than

other well-known algorithms in the literature, were able to converge quickly, exhibited

stability, gave good results on multi-modal functions, was scalable in multi-dimensional

cases, and was statistically significant. BFAFA was applied to two classical engineer-

ing problems (a Cantilever design problem and a three-bar truss design problem) and

the results were compared to other algorithms that are efficient in solving the problem.

The results proved that BFAFA can solve real-world problems also with lesser function

evaluations.

The main contributions of the proposed BFAFA are as follows:

i To increase the convergence and establish exploration-exploitation balance, a novel

hybrid of BFA and FA is proposed, where adaptive strategy and leadership strategy

are implemented.

ii The proposed method has been extensively tested on benchmark functions (stan-

dard, single peak, multi-peak, noisy non-linear, and CEC 2017). The results out-

perform the other competitive algorithms in terms of convergence speed, time, mean

absolute error, mean square error, mean, standard deviation, and other related pa-

rameters. It works well in multi-dimensional and multi-modal environments.

iii The algorithm has been successfully implemented on real-world engineering prob-

lems, and the results are better than other optimization algorithms.

To summarize, BFAFA finds a better solution without getting trapped in local optima.

Due to its stochastic nature, they can search a complicated and uncertain area as well.

FA improves the search strategy of BFA and makes it more reliable to provide global op-

tima within reasonable computation time and with better exploration. The performance

of the proposed approach has proved to be better than some of the well-established and

recent metaheuristic algorithms and can be generalized for other metaheuristics in the

literature.
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The proposed BFAFA is proven to produce the best results among various large-scale

real-world problems. But, in some cases, the improvement is not shown or does not

produce higher accuracy. It is due to a lot of parameters, lack of constraints, and lack

of adaptation, which will be solved by our next proposed model, explained in our next

chapter.
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CHAPTER 4

HYBRID PARTICLE SWARM OPTIMIZATION-BUTTERFLY
OPTIMIZATION ALGORITHM (PSOBOA)

Most real-world problems have a lot of constraints that need to be satisfied. Also, when

using EA to solve constrained-based problems, parameter tuning plays an important

role. In this regard, Self-adaptation of parameters plays a key role in giving good results.

4.1 Introduction

Nature-inspired algorithms have a tremendous ability to solve complex real-world prob-

lems in reasonable time and cost. Due to this, a lot of researchers have given much

attention to this area. Till now, several such algorithms have been used to solve global

optimization or real-world combinatorial problems. Some of them are ABC, GA, BFA,

Grasshopper Optimization Algorithm (GOA), SSA (4), etc. These metaheuristic algo-

rithms provide global optima and converge faster. However, whenever the problem is

complex with several local optima, the algorithm often gets trapped in the local opti-

mum (127). To solve this problem, many hybrid metaheuristic algorithms are devel-

oped. These hybrids are more efficient and robust compared to the individual standard

algorithms as they have the advantages of both. Also, it has been observed that most

real-world applications are subjected to different types of constraints. Such problems

are called COP. Many nature-inspired algorithms, as well as their hybrids, have been

used to solve such problems and provide high precision, quick convergence, robustness,

and maximum performance. However, the problem of premature convergence, poor ex-

ploration, or exploitation remains.

For these reasons, we propose a novel hybrid algorithm based on PSO (2) and BOA

(7). The main aim of our work is to provide a solution that is better than other algo-

rithms used in the literature in terms of reaching global optimum, convergence speed,

and balancing exploration-exploitation. While PSO has been used in solving several

COP, BOA has never been used for such problems. This makes it promising and inter-

esting to see its capabilities for solving COP. Both these algorithms have their strengths

and weaknesses. PSO has good exploitation ability and rapid convergence but doesn’t
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explore search space effectively and suffers from premature convergence. On the other

hand, BOA has good exploration ability but converges slowly. So, the main objective of

this chapter is to develop a hybrid of PSO and BOA where the advantages of both PSO

and BOA can be utilized effectively and the global optimum is reached quickly.

The proposed algorithm aims to provide better convergence results, avoid the local op-

tima trap, and make the working adaptive, free from parameter tuning. It also promises

to establish a balance between exploration and exploitation abilities by using the key

features of both the algorithms, PSO and BOA. Firstly, the objective function is re-

defined by adding the parameter-free penalty function for handling the constraints and

converting the constrained problem into an unconstrained one. This reduces the overall

complexity of the problem and helps to solve it in fewer function evaluations. Secondly,

a self-adaptive approach has been adopted in PSO and BOA to ensure a smooth transi-

tion from exploration to exploitation and no user-based initialization of key parameters.

This makes the algorithm free of parameter tuning. Thirdly, to improve the convergence

rate and avoid local optima stagnation, a conditional approach has been used in the local

and global search of BOA. The proposed algorithm is verified by addressing the COP

like pressure vessel design and welded-beam design problem. The numerical results

and the convergence curves show that PSOBOA demonstrates outstanding performance

as compared to other state-of-the-art and current algorithms.

4.2 Strategies employed in the PSOBOA algorithm

4.2.1 Constrained optimization parameter free penalty function for handling constraints

Non-linear constrained optimization problem is formulated as follows:

Minimize f (x)

Subject to

hk (x) = 0; k = 1, 2, . . . , p

gj (x) ≤ 0; j = 1, 2, . . . , q

lbi ≤ xi ≤ ubi; i = 1, 2, . . . , n (4.1)

where x =represents the decision variables along n-dimensions; f is the objective func-

tion, lbi and ubi are the lower and upper bounds for the ith variable respectively; p being

the number of equality constraints and q is the number of inequality constraints. If any

solution ‘x’ satisfies the constraints hk or gj , then gj is considered to be an active con-

straint at x. Let Xbe the feasible solution set such that X = {xϵR ∨ gj (x) ≤ 0; j =

1, 2, . . . , p+ q (M)}. So, Eq. (4.1) can be rewritten as

Minimize f (x)
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Subject to

gj (x) ≤ 0; j = 1, 2, . . . ,M

lbi ≤ xi ≤ ubi; i = 1, 2, . . . , n (4.2)

The main aim of the COP is to minimize the objective function and simultaneously

satisfy the constraints. According to (128), constraint handling can be done using five

methods: penalty functions, repair algorithms, hybrid methods, separation of objective

functions and constraints, and special operators. Out of these, penalty functions are

most commonly used, however, it has a few drawbacks. There is no guarantee for

global optima. Also, a lot of parameters are required to be adjusted which increases the

problem complexity and increases the number of evaluations. So, to overcome this, a

parameter-free penalty function is used in this work. The modified objective function is

defined as given in Eq. (4.3).

F (x) =


f(x) if x ∈ X

fw +
∑M

j=1 gj(x) if x /∈ X

(4.3)

where x is the set of solutions and fw is the objective function value of the worst feasible

solution in the entire population. So, the fitness of the infeasible solution depends on

the amount of constraint violation and the population of solutions at hand. On the other

hand, the fitness of the feasible solution is fixed and equal to the value of the objective

function.

In our algorithm, the objective function is redefined by incorporating the parameter-

free penalty function and is determined as given in Eq. (4.3). The idea is to make the

constrained problem into an unconstrained one. When COPs are solved using penalty

functions, the complexity increases due to the addition of a new set of parameters to the

objective function. However, in this work, no additional parameters are added, so this

step reduces the complexity of the algorithm, and the number of function evaluations

will be less, as compared to the general penalty-function approach taken while solving

COPs.

4.2.2 Self-adaptive approach in PSOBOA

To overcome poor exploration in PSO, the self-adaptive approach is used on the control-

ling parameter, w since the first term of the velocity update equation, i.e., wvti controls

the exploration ability of PSO. By trying multiple values of w, we found that values

between 0.2 and 0.9 give good results. So, the lower range of w, wmin is taken to be
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0.2 and the upper range wmax to be 0.9. The inertia weight w, therefore, is given by the

following Eq. (4.4).

w (t) = wmax + (wmin − wmax)× log10

(
rand+

10t

maxIter

)
(4.4)

where, t and maxIter are the current iteration and the maximum number of iterations

respectively, rand is a random number between [0,1]. A similar adaptation for the

power exponent a in BOA is conducted, where the lower range of a, aminis taken to be

0.1 and the upper range amax to be 0.3. The value of a is updated after each iteration as

following Eq. (4.5).

a (t) = amax + (amin − amax)× log10

(
rand+

10t

maxIter

)
(4.5)

The logarithmic decrement of inertia weight and power exponent ensures a smooth

transition from exploration in the first few iterations to exploitation in the remaining

iterations. Hence, a balance is established. There is no need for the user to tune the

parameters at any stage. Hence, it works independently of user interference, when the

change of parameter is to be done.

4.2.3 Conditional approach for convergence enhancement

To expedite the convergence phenomenon and avoid the trap of local optima, a con-

ditional approach is used in the local and global search phenomenon of BOA. In this,

rather than just moving the butterflies randomly towards the best solution, a check is

done to validate if the new position is better than the previous position. If yes, then only

the movement will take place, else avoided. The global search phase of BOA will be

formulated according to Eq. (4.6).

post+1
i = posti +

(
r2 ×Gbest− posti

)
× fri (4.6)

The local search phase is formulated according to Eq. (4.7)

post+1
i = posti +

(
r2 × postj − postk

)
× fri (4.7)

where postj and postk are the j-th and k-th search agents chosen randomly from the

solution space, respectively.

For conditional check in BOA, the Pbest and Gbest values in BOA are updated if

the new solution is better than the previous one, as shown in Eq. (4.8) and Eq. (4.9)

Pbesti ← postiifF (Pbesti) > F
(
posti

)
(4.8)
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Gbest← postiifF (Gbest) > F
(
posti

)
(4.9)

4.3 Development of the PSOBOA algorithm

PSO is simple to implement, flexible, robust algorithm, and good at exploitation, but

suffers from local optimum trapping. BOA has good exploration but is slow in conver-

gence. However, to avoid premature convergence, global and local search operators of

BOA are used. It leads to minimal addition of computational cost. An attempt is made

to use the strengths of both the algorithms and accelerate the convergence along with

updating the poor solutions. The algorithm aims at giving better solutions for various

COPs by following the above-mentioned strategies.

The algorithm starts with the random initialization of particles in the swarm between the

bounds of the variables. The objective function is simplified by using a parameter-free

penalty function. A random variable rand1 is taken based on which the model of the

algorithm is chosen. If rand1 < 0.5, BOA is implemented, else PSO is implemented.

In BOA implementation, to avoid the butterfly changing a position that is not better

than the previous position, a conditional approach is taken, where a check is made to

find whether the new position is better than the previous position. If it is better, then

update the results. After each iteration, the power exponent is updated logarithmically.

This assists in moving towards the solution and improving the convergence. After each

iteration, one gets a better solution. Therefore, this condition improves the quality of

the solution.

In PSO implementation, the value of inertia weight w decreases logarithmically after

each iteration. This ensures a smooth transition from exploration to exploitation and no

parameter-tuning is required by the user. After meeting the stopping condition, the best

solution is the global optima value. The proposed algorithm is shown in Algorithm 7.

Algorithm 7 PSOBOA Algorithm

1. Initialize the population xi(i=1,2...,n) randomly; Objective function F (x)
from Eq. (4.3); the maximum number of iterations maxIter; inertia weight
w; switch probability p; power exponent a; and sensor modality c

2. For each search agent i

3. Initialize posi randomly

4. Initialize vi randomly
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5. Evaluate the fitness of the search agents F (posi) using Eq. (4.3)

6. Initialize Pbest with a copy of posi
7. Initialize Gbest with a copy of posi with the best fitness

8. End for

9. While t = 1 : maxIter

10. For each search agent i in swarm

11. Generate random numbers rand1 and rand2

12. If rand1 < 0.5 then

13. Evaluate the fragrance of butterfly using Eq. (1.16)

14. If rand2 < p then

15. Perform global search using Eq. (1.17) and evaluate the new position

16. Else

17. Perform local search using Eq. (1.18) and evaluate the new position

18. Endif

19. Perform conditional check using Eq. (4.8) and Eq. (4.9) and update the values
of Pbest and Gbest

20. Update the power exponent using Eq. (4.5)

21. Evaluate the new solution and update

22. Else

23. Update vti and posti according to the Eq. (1.4) and Eq. (1.5)

24. Evaluate the fitness F (posti)

25. Pbesti ← posti if F (Pbesti) > F (posti)

26. Gbest← posti if F (Gbest) > F (posti)

27. Update the inertia weight using Eq. (4.4)

28. Evaluate the new solution and update

29. End if

30. End for

31. End While

32. Output the best solution found
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4.4 Application of the PSOBOA model to structural optimization prob-
lems and performance comparison with conventional algorithms

To verify the performance of PSOBOA, it is tested on two constrained optimization

problems. These problems are: (i) pressure vessel design (129) and (ii) welded beam

design (129). These problems have linear as well as non-linear constraints. For each

problem, 30 independent runs are performed and the mean and standard deviation (SD)

are taken. Also, the comparison with the other algorithms mentioned in the literature

is done to verify the quality of solutions given by the proposed approach. Experiments

are performed in Matlab. The values of the parameters used are the same as those used

in the literature. However, the values of the parameters of our proposed approach are

set as follows.

c1 = 2, c2 = 2, wmax = 0.9, wmin = 0.2,

amax = 0.3, amin = 0.1, p = 0.8,maxIter = 100, n = 20

4.4.1 Pressure vessel design problem

Pressure Design is a classical problem in which the cost related to three sections of

a cylindrical pressure vessel, namely formation, material, and welding, must be mini-

mized. Four variables are shell thickness Ts, head thickness Th, inner radius R, and

length of the vessel L. The mathematical equation, along with the constraints, is men-

tioned as follows:

Consider −→x = (x1x2x3x4] = (TsThRL] ,

Minimize f (−→x ) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3,

Subject to

g1 (
−→x ) = −x1 + 0.0193x3 ≤ 0,

g2 (
−→x ) = −x2 + 0.00954x3 ≤ 0,

g3 (
−→x ) = −πx2

3x4 −
4

3
πx3

3 + 1296000 ≤ 0,

g4 (
−→x ) = x4 − 240 ≤ 0 (4.10)

Variable range

0 ≤ x1 ≤ 100,

0 ≤ x2 ≤ 100,

10 ≤ x3 ≤ 200,

10 ≤ x4 ≤ 200

The statistical results of the proposed algorithm PSOBOA and its comparison with
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ABC (130), GGA (131), PSO (2), UDE (132), BOA (7), and GWO (5) are shown in Ta-

ble 4.1 for 30 independent runs. The friedman rank test (133) is performed on the mean

values to test the significance of PSOBOA over other algorithms. The convergence rate

was also noted to see the time taken by the algorithms to reach the global optima. It can

be verified that the results of optimization using PSOBOA are better than other algo-

rithms in terms of their mean values. The lower value of SD indicates consistent results

over different runs, which makes the algorithm more robust. PSOBOA gives a substan-

tially lower value of SD compared to other algorithms, hence it can be concluded that

it is a more robust algorithm. This approach outperforms other well-known classical

algorithms in solving COP. The mean and SD of PSO and BOA are generally higher

than other algorithms. However, when their hybrid is developed, it gives significant

results. This is because the hybrid improvises the results by overcoming the drawbacks

of its classical algorithm components. This was a very interesting observation from the

results. From the Friedman rank test, the order of all the algorithms based on their rank

is PSOBOA > ABC > BOA > GGA > GWO > UDE > PSO. From the results, we

can see that the rank of PSOBOA is better than other algorithms, especially its coun-

terparts. This indicates that the proposed work is statistically significant in comparison

to other works. The convergence rates are in the order ABC > GGA > PSOBOA >

PSO > UDE > BOA > GWO. This shows that due to the hybridization process and

other significant improvements, the time taken is a little higher in the case of PSOBOA.

So, there is a scope for improving the time taken by reducing the complexity of the

algorithm.

In addition, the convergence curves of all these algorithms are shown in Fig. 4.1. It

is observed in the convergence curve graph that the proposed algorithm converges very

quickly than other recent algorithms towards the global optimum value, however, the

graphs for individual components PSO and BOA converge at a slower rate for the same

problem. Statistical results of BOA are comparative with the proposed approach, but

convergence curve analysis shows that due to the addition of local and global search

features of BOA in PSO, the convergence phenomenon is much enhanced.

4.4.2 Welded beam design problem

Welded beam design is another minimization problem with four variables namely, the

thickness of the weld h, the length of barl, the height of bar t, thickness of bar b.

The mathematical equation along with the constraints is mentioned in the following

equation.

Consider −→x = (x1x2x3x4] = (hltb] ,

Minimize f (−→x ) = 1.10471x2
1x2 + 0.04811x3x4 (14.0 + x2) ,
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Table 4.1: Statistical results of the pressure vessel design problem

Method
Design Variables

Mean SD Rank Time
x1 x2 x3 x4

ABC 0.8821 0.4372 42.4298 168.3288 6286.2369 6.8124 1.27 3.23

GGA 0.8125 0.4375 42.0984 176.6365 6329.8352 20.8361 3.63 4.25

PSO 0.8363 0.4837 43.2184 175.2749 6136.2321 102.3312 5.29 5.39

UDE 0.8125 0.4375 42.0984 176.6365 6328.1267 46.1281 4.85 6.98

BOA 0.7832 0.3921 41.3128 170.6217 6672.3271 150.31766 2.19 7.21

GWO 0.8125 0.4375 42.0984 176.6365 6441.9832 83.3126 3.67 10.32

PSOBOA 0.7781 0.3852 40.8743 198.2316 5913.4328 3.8323 1.18 4.81

Figure 4.1: Convergence curves of different algorithms for pressure vessel design prob-
lem
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Subject to

g1 (
−→x ) = τ (x)− τmax ≤ 0,

g2 (
−→x ) = σ (x)− σmax ≤ 0,

g3 (
−→x ) = δ (x)− δmax ≤ 0,

g4 (
−→x ) = x1 − x4 ≤ 0,

g5 (
−→x ) = P − Pc (

−→x ) ≤ 0,

g6 (
−→x ) = 0.125− x1 ≤ 0,

g7 (
−→x ) = 0.10471x2

1 + 0.04811x3x4 (14.0 + x2)− 5.0 ≤ 0 (4.11)

Variable range

0.1 ≤ x1 ≤ 2,

0.1 ≤ x2 ≤ 10,

0.1 ≤ x3 ≤ 10,

0.1 ≤ x4 ≤ 2,

Table 4.2: Statistical results of the welded beam design problem

Method
Design Variables

Mean SD Rank Time

x1 x2 x3 x4

ABC 0.2057 3.4701 9.0417 0.2103 1.7225 1.73E-02 5.32 3.84

GGA 0.2057 3.4703 9.2719 0.2057 1.7294 9.72E-02 4.74 7.99

PSO 0.2059 3.4327 9.3128 0.2046 1.9372 8.73E-01 2.38 6.34

UDE 0.2382 3.4684 9.0472 0.2076 1.7391 7.37E-05 3.55 5.75

BOA 0.2058 3.3294 9.4723 0.2103 1.7294 8.24E-04 2.19 3.12

GWO 0.2059 3.7324 9.3826 0.2013 1.7063 2.18E-03 1.90 3.52

PSOBOA 0.2057 3.2612 9.0321 0.2011 1.6992 1.83E-06 1.26 3.84
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The statistical results of the proposed algorithm PSOBOA and its comparison with ABC

(130), GGA (131), PSO (2), UDE (132), BOA (7), and GWO (5) are shown in Table 4.2

for 30 independent runs. The rank of algorithms is depicted to test the significance, and

the time taken by the algorithm is also noted. It can be observed that PSOBOA gives

the best global optima results compared to other algorithms. PSOBOA has better mean

values and SD is lowest as compared to other works. The rank of all the algorithms is in

the order PSOBOA > GWO > BOA > PSO > UDE > GGA > ABC and the conver-

gence time is in the order BOA > GWO > PSOBOA = ABC > UDE > PSO > GGA.

The results show that PSOBOA gives significant results in comparison to the other al-

gorithms mentioned in the literature. The convergence time is compromised to some

extent; however, the algorithm is statistically significant. It is interesting to note that

GWO gives equally competitive results for the Welded beam design problem, unlike

the Pressure vessel design problem, where the results were quite inefficient. ABC and

PSOBOA are competitive in their convergence phenomenon, but the rank of PSOBOA

is much higher than that of ABC.

The convergence curves of all these algorithms are shown in Fig. 4.2. It is observed

in the convergence curve graph that PSOBOA performs better than other algorithms,

especially its counterparts i.e. PSO and BOA. The transition from exploration to ex-

ploitation is quite smoothly exhibited by PSOBOA, however, the overall convergence

time taken is more, as seen from the statistical analysis. This is possible because, as

compared to the conventional algorithms, more parameters are processed in PSOBOA

due to hybridization. Hence, additional calculations lead to the consumption of more

time in solving the same problem.

Overall, PSOBOA was able to solve COPs effectively as can be seen from the results

obtained in both the COP i.e., Pressure vessel design and welded beam design prob-

lem. In terms of efficiency, significance, and attaining global optima results, PSOBOA
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edged over most algorithms taken in this study. The convergence curve shows a smooth

transition from exploration to exploitation within the search space. However, the con-

vergence time taken is slightly higher in PSOBOA. Therefore, the performance of the

algorithm in terms of convergence time needs to be improved in future work.

Figure 4.2: Convergence curves of different algorithms for welded beam design prob-
lem

4.5 Conclusion

This chapter proposes a novel hybrid of PSO and BOA by incorporating the key features

of both PSO and BOA with three improvement strategies, as follows: (1) Redefining the

objective function by incorporating a parameter-free penalty function. This simplifies

the approach by converting the constrained problem into an unconstrained problem; (2)

Use of the adaptive inertia weight and power exponent in the hybrid PSOBOA. This

balances exploration and exploitation and makes the algorithm completely free from

parameter-tuning; (3) Use of conditional approach in local and global phases of BOA

to improve the convergence rate and avoid local optima trap.

To test the performance of the algorithm, it was subjected to two well-known COPs,

namely pressure vessel design and welded-beam design problem, and the results were
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compared with other well-known algorithms in the literature that were successfully used

for COPs. The algorithm significantly outperformed others in terms of efficiency, local

optima avoidance, exploration-exploitation balance, and reaching the global optimum.

In the Friedman rank test, the proposed algorithm is statistically significant as compared

to other algorithms.

Our new algorithm is efficient in solving real-world problems with constraints and tun-

ing the parameters using an adaptive process. In the next chapter, we will focus on

other techniques of tuning parameters of optimization algorithms and substantiating

their suitability in other real-world problems.
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CHAPTER 5

HYBRID CHAMELEON SWARM OPTIMIZATION-PARTICLE
SWARM OPTIMIZATION ALGORITHM (CSAPSO)

An important consideration in evolutionary algorithms is testing their efficacy in real-

world applications. In real-world problems, a lot of constraints are involved. However,

to increase the accuracy of finding the best possible solution, it is always a good idea

to increase the effective search space. For this, opposition-based learning plays an

important role.

5.1 Introduction

Image Segmentation forms the basis of many real-world applications like computer vi-

sion, video applications, and medical imaging. In the context of medical imaging, the

CXR of the patients who are ill with respiratory symptoms is indicative of pneumonia.

Pneumonia causes an increase in lung density, which can be seen as whiteness in the

lungs when examining the CXR. The degree of whiteness in CXR is directly propor-

tional to the severity of pneumonia (134). Effective segmentation of CXR images into

regions of interest (ROI) is crucial for accurate detection. Among different image seg-

mentation techniques like thresholding, edge-detection, region-based, and graph-based

(135; 136), the thresholding-based method is used widely due to its simple implemen-

tation (137; 138). The thresholding-based segmentation method divides the image into

two (bi-level) or multiple (multi-level) classes based on the number of thresholds, where

all the elements in a region share common properties like brightness, grey level, con-

trast, texture, color, etc. The Threshold segmentation method uses the gray probability

and gray value to divide the image into different regions. Since the results rely purely

on the threshold values, it’s important to choose the right optimal value in segmenta-

tion. In multi-level thresholding, as the number of thresholds increases, the complexity

of the model increases exponentially. Also, there are many challenges when perform-

ing thresholding, like, finding a proper objective function, applying the technique over

the medical image, appropriate evaluation criteria, etc. Therefore, to produce a good

quality segmented image, there is a need to deal with the discussed challenges.
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In this work, we propose an efficient segmentation approach based on MCET, called

CSAPSO, that utilizes the two algorithms at different stages to improve the conver-

gence of CSA, namely; 1) OBL (139) and 2) PSO. OBL calculates the solution on the

opposite side of the ordinary solutions and chooses the best solution for each search

agent. Thus, it assists in improving the convergence of the algorithm to reach the global

optima value. Afterward, PSO, which exploits the search space well, is used in paral-

lel with the CSA to take care of the exploitation feature and avoid local optima, since

CSA tends to give false optimal thresholds and high complexity due to the local optima

trap. To avoid this, PSO is incorporated along with CSA to ensure an optimal balance

between the exploration and the exploitation of the resultant hybrid algorithm. The

implementation of the proposed methodology consists of three phases: 1) the Initializa-

tion and pre-processing phase, 2) the updating phase, and 3) the segmentation phase.

In the initialization and pre-processing phase, OBL generates a random population of

agents in the opposite direction. The cross-entropy function is then minimized to select

the best solutions for the next phase. In the updating phase, the population is divided

into unequal sub-populations and assigned to CSA and PSO in parallel to bring pop-

ulation diversity, overcome the potential local optima trap, and find the global optima

value. The global optima value becomes the optimal threshold value. Finally, in the

segmentation phase, the image is segmented using the optimal thresholds. The pro-

posed CSAPSO algorithm demonstrates excellent performance in image thresholding,

particularly in segmenting complex medical images. It outperforms CSA, PSO, and

other classical and hybrid-based segmentation approaches. The performance evaluation

includes comparisons using RMSE, Peak Signal-to-Noise Ratio (PSNR), and Struc-

tural Similarity (SSIM) metrics, and the statistical analysis confirms the effectiveness of

CSAPSO. Additionally, the algorithm’s applicability is tested on a large dataset related

to COVID-19, and comparisons are made with popular Data Learning Algorithms like

U-Net (140), SegNet (141), and DeepLab (142). Overall, the CSAPSO algorithm pro-

vides an efficient and competitive image segmentation method, specifically for medical

image analysis, with promising results for pneumonia detection and potential applica-

tions in other domains.

The main contributions of this work are as follows:

i A new method of multi-level image thresholding has been proposed based on MCET

by evaluating the optimal threshold values based on opposition-based learning,

CSA, and PSO.

ii The local and global search operators of both CSA and PSO are applied in parallel

to the subpopulations, after refining the search space using OBL.

iii The performance has been tested on popular gray-scale images and real-time chest
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X-ray images for the detection of pneumonia. Comparison is done with other state-

of-the-art nature-inspired algorithms.

iv To test the robustness and generalization, the algorithm is further tested on COVID-

19 images and compared with other Deep Learning Algorithms based on classifica-

tion accuracy, area under the curve, etc.

5.2 Strategies employed in the CSAPSO algorithm

5.2.1 Minimum cross-entropy

The formulation of multi-level thresholding using minimum cross-entropy is presented

here. Minimum cross-entropy was proposed by Kullback et al. (143). Consider two

probability distributions, P = p1, p2, ..., pN and Q = q1, q2, ..., qN . The cross-entropy

between the two distributions is given as Eq. (5.1).

D(P,Q) =
N∑
k=1

pklog(
pk
qk
) (5.1)

where D(P,Q) is the information-theoretic distance between the two distributions P

and Q.

Li et al. (144) have implemented minimum cross-entropy in image segmentation for

bilevel thresholding. Later, it extended to multi-level thresholding. Let the original im-

age, I with gray levels L and histogram h. For multi-level thresholding with m number

of thresholds namely th1, th2, th3,... thm, the cross-entropy is minimized between the

original and segmented image. m + 1 classes are formed, namely, C0, C1, C2, . . . , Cm,

where the intensity values range between [0, th1], [th1 +1, th2], .., and [thm +1, L− 1]

respectively. The multi-level segmented image is denoted as I ′ and defined as Eq. (5.2).

I ′ =

{
µ0, I(x, y) ≤ th1

µ1, th1 ≤ I(x, y) ≤ th2

.

.

µm, I(x, y) ≥ thm

(5.2)

where µ0, µ1, µ2,.., µm is the average mean of the classes C0, C1, C2, . . . , Cm, and
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is given as Eq. (5.3).

µ0 =

∑th1

i=1 ih(i)∑th1

i=1 h(i)
, µ1 =

∑th2

i=th1+1 ih(i)∑th2

i=th1+1 h(i)
, ..............µm =

∑L
i=thm+1 ih(i)∑L
i=thm+1 h(i)

(5.3)
For multi-level thresholding, the cross-entropy function is calculated as per Eq. (5.4).

D(th1, th2, ..., thm) =
∑L

i=1 ih(i)log(i)−
∑th1

i=1 ih(i)log(µ0)−
∑th2

i=th1+1 ih(i)log(µ1)− ...−
∑L

i=thm+1 ih(i)log(µm)

(5.4)

The first term of the equation is generally constant for each image; hence the function

can be modified as per Eq. (5.5).

D(th1, th2, ..., thm) = −
∑th1

i=1 ih(i)log(µ0)−
∑th2

i=th1+1 ih(i)log(µ1)− ...−
∑L

i=thm+1 ih(i)log(µm)

(5.5)

The time complexity of the multi-level thresholding increases exponentially with the

increase in the number of thresholds. Since the time complexity for bilevel thresholding

is O(L), the time complexity for multi-level thresholding would be O(Lm).

5.2.2 Opposition-based learning mechanism

OBL was proposed by Tizhoosh in 2005 (139). The estimates and their counter-estimates

form the basis of this model. Let x ∈ [l, u] be a real number. Eq. (5.6) formulates the

opposite number x̆.

x̆ = l + u− x (5.6)

This technique effectively improves the performance of the metaheuristic algorithms by

enhancing population diversity. It deals with evaluating the current solutions as well as

the opposition solutions along with their fitness functions. The better one participates

in the next generation. This approach applies not only to the initial solution but to the

subsequent generations of search agents as well. This is extremely helpful in cases

when the current solution tends to go away from the optimal solution, especially when

it is in the opposite direction.

5.3 Development of the CSAPSO algorithm

Due to stochastic behavior, there is always a scope for improvement in evolutionary

algorithms. For the same reason, CSA sometimes fails to give optimum thresholds

during the image segmentation process. To utilize its advantages to the fullest and

avoid its limitations, we have improvised CSA in this paper by using two algorithms,

namely the Opposition-based algorithm and the Particle swarm optimization algorithm,
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and therefore it is named CSAPSO. Our proposed method has three phases, namely; 1)

Initialization and pre-processing phase, 2) updating phase, and 3) segmentation phase.

These phases are described below in more detail.

5.3.1 Initialization and pre-processing phase

Initialization is an important step in an optimization algorithm since it determines the

convergence of the algorithm and the final results. OBL strategy has proved its superi-

ority in improving the convergence and quality of the solutions. The proposed CSAPSO

algorithm begins by creating a population of threshold values X in dimensions n and N

solutions. Eq. (5.7) gives the opposite solutions for the values.

X̆ = l + u−X (5.7)

where u is the upper bound, and l is the lower bound of the search space. The minimum

of X and X̆ is selected for each search agent to find the best values among the popula-

tion. This is shown in Eq. (5.8).

Xi = minimum(Xi, X̆i) ∀i = 1, 2, ..., N (5.8)

After the best threshold values are selected for the initial population, the objective func-

tion i.e. minimum cross-entropy function is applied to them to evaluate the performance

of these thresholds, using Eq. (5.9).

F (Xi) = −
X1∑
i=1

ih(i)log(µ0)−
X2∑

i=X1+1

ih(i)log(µ1)− ...−
XN∑

i=Xm+1

ih(i)log(µm) (5.9)

The search agent with the minimum cross-entropy value is considered the best agent.

So, OBL boosts the convergence mechanism and achieves the global optima faster.

5.3.2 Updating phase

In this phase, two subpopulations are created from the population by applying the mod-

ulus function to the iteration number. If the current iteration is odd, the population is

divided into 1
3

rd and 2
3

rd subpopulations. If the current iteration is even, the popula-

tion is divided into 2
3

rd and 1
3

rd subpopulations. In either case, the first subpopulation

is assigned to CSA and the second sub-population is assigned to PSO respectively and

passed through the fitness function, i.e., the minimum cross-entropy function. The other

fitness functions that are possible for image threhsolding are Otsu, Fuzzy entropy, Ranyi

entropy, wavelet entropy, and Kapur’s entropy function. However, in this paper, we use

the minimum cross-entropy function since this function uses the mean values which
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remains steady and limited. So, it becomes easy to analyse the results and draw con-

clusions out of them. Now, the respective CSA and PSO algorithms update the position

and velocity of all search agents. For the first subpopulation, i.e., the one with CSA, the

position and velocity are updated using Eq. (5.10) and Eq. (5.11) respectively.

X i
t+1 = Xrit +X

i

t (5.10)

Vi,j
t+1 =


V i,j
t + p1(local best

i,j
t −Global bestjt)r2 + p2(Global bestjt − V i,j

t )r1 ri ≥ Pp

V i,j
t + µ((uj − lj)r3 + ldj )sgn(rand− 0.5) ri < Pp

(5.11)

where Global best and local best are the best global and local positions of the search

agents respectively. Also, for the second subpopulation, i.e. the one with PSO, the

velocity and the position are updated using Eq. (5.12) and Eq. (5.13) respectively.

V t+1
i = wV t

i + c1 ∗ r1 ∗ (local besti −X t
i ) + c2 ∗ r2 ∗ (Global best−X t

i ) (5.12)

X t+1
i = X t

i + V t+1
i (5.13)

We obtain a single set of solutions by merging two solutions. The process repeats

till the termination condition. In this way, the solutions received using CSA and PSO

are diverse and can be explored and exploited well. So, we can utilize their powerful

search abilities by giving them a major and minor part of the population in an alternate

way. This ensures population diversity since the population is updated in every run

differently. By assigning an unequal population, we also prevent the candidate solutions

from having almost the same values after every run. PSO ensures the local optima trap

avoidance, and CSA retains high computational speed. In unison, both algorithms work

on improving the segmentation results.

5.3.3 Segmentation phase

After specified iterations, or until the termination condition, the final position is consid-

ered the global optimal solution for the given problem. This global optima solution sets

out the threshold values used in image segmentation. The solutions of the algorithm

are the final threshold values. The original image uses these threshold values to form

multiple segments based on the levels of thresholds. The segmentation of the image

leads to dividing the image into multiple sections based on similar intensity values. The

efficiency of segmentation is decided by computing the PSNR, SSIM, etc. The run-time

depends on the number of iterations and the population size used for finding the opti-

mal thresholds. the number of thresholds impacts the segmentation results and plays
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less role in deciding the run-time of the proposed algorithm.

5.4 Application of CSAPSO algorithm to segmentation of chest x-ray im-
ages for detection of pneumonia

The image segmentation using thresholding gives the classification of the image into

different segments based on their similarity among them. The number of segments

varies with different levels of thresholding. For distinct observations, we take a higher

number of thresholds. This method proves effective for the chest x-ray images since

the main criteria are to separate the affected areas of the chest from the normal ones. It

could help diagnose pneumonia at an early stage and prevent the further growth of the

disease. The steps for the implementation of the proposed algorithm for the segmenta-

tion of CXR images for the detection of pneumonia are shown in Algorithm 8.

Algorithm 8 Steps for CXR image segmentation using CSAPSO

1. Input the CXR image.

2. Compute the histogram.

3. Set the initial values of the parameters of the algorithms CSA and PSO.

4. Construct the population and its opposite population using OBL.

5. Select the best population based on the values.

6. Apply the objective function and calculate the fitness value.

7. Perform CSA and PSO on unequally divided subpopulations.

8. Perform position and velocity updates on each search agent and merge the final

solution set.

9. When the termination condition is met, the final position is the best global optimal

threshold value.

10. Segment CXR image based on the optimal thresholds.

The framework of the proposed CSAPSO algorithm for image thresholding using

the concept of opposition-based learning, CSA, and PSO is shown in Fig. 5.1.
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Figure 5.1: Framework of the proposed CSAPSO algorithm for image thresholding
using the concept of opposition-based learning, CSA, and PSO
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5.5 Experimental results and analysis

In this section, the performance of the proposed CSAPSO algorithm was tested on

twelve chest x-ray images. The images were taken from (145) (146), curated by Paul

Mooney, and are available on Kaggle. This dataset has 5,863 images in total, 4,387

of which are training images, 585 of which are validation images, and 1,091 of which

are test images. The photos are in grayscale and have a 1,024 x 1,024 pixel resolu-

tion. The dataset is separated into the ”normal” and ”pneumonia” classes. In contrast to

the ”pneumonia” class, which contains X-ray images of patients with pneumonia, the

”normal” class has images of healthy patients. These Chest x-ray images along with

their histogram are shown in Fig. 5.2. The figure shows different characteristics of the

images based on their histograms.

The comparison was done with ten algorithms consisting of some popular classical as

well as hybrid metaheuristics, namely; CSA, PSO, Hybrid Particle Swarm Optimization

Firefly Algorithm (HFPSO) (147), SSA(4), GA (148), Whale Optimization Algorithm

(WOA) (149), GOA (150), Gravitational Search Algorithm-Genetic Algorithm (GSA-

GA) (76), Salp Swarm Optimization-Moth Flame Optimization (SSAMFO) (151), Par-

ticle Swarm Optimization-Artificial Bee Colony-Ant Colony Optimization algorithm

(PSO+ABC+ACO) (152). All the test images used for experimental evaluation were

simulated thirty times using each multi-level thresholding algorithm. We experimented

with the level=5, 10, 15, and 20, and the objective function to be minimized was the

cross-entropy function. The results are analyzed visually as well as statistically. Visual

results give the qualitative analysis and statistical results give the quantitative analysis.

The experiments were done using Matlab.

The parameter settings were the same for all the algorithms as mentioned in their re-

spective papers. The number of candidate solutions considered in each iteration is based

on the population size. The search space can be better explored with a larger popula-

tion, but the computational cost may go up. New candidate solutions are produced from

the current population using the mutation rate and crossover rate in CSA. The crossover

rate regulates the likelihood of joining two solutions to produce a new one, whereas the

mutation rate regulates the likelihood of each parameter in a solution being randomly

modified. The balance between the particle’s previous velocity and the social and cog-

nitive factors in the current iteration is controlled by the inertia weight. The attraction

of the particle toward its personal best solution and the best solution discovered by the

swarm are controlled, respectively, by the particle’s cognitive and social components.

Depending on how difficult the problem is that needs to be addressed, different val-

ues for these parameters may be considered ideal. In both CSA and PSO, parameter

tuning is frequently carried out by a trial-and-error process in which various parameter

settings are evaluated on the problem at hand, and the best-performing one is chosen.
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(a) I1 (b) Histogram of image I1 (c) I2 (d) Histogram of image I2

(e) I3 (f) Histogram of image I3 (g) I4 (h) Histogram of image I4

(i) I5 (j) Histogram of image I5 (k) I6 (l) Histogram of image I6

(m) I7 (n) Histogram of image I7 (o) I8 (p) Histogram of image I8

(q) I9 (r) Histogram of image I9 (s) I10 (t) Histogram of image I10

(u) I11 (v) Histogram of image I11 (w) I12 (x) Histogram of image I12

Figure 5.2: Original chest x-ray images and their histograms
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The selection of parameters impacts how well these algorithms perform in contrast to

other optimization algorithms like the SSA, GA, WOA, GOA, etc. Finding the ideal

collection of parameters is essential for getting good results because each algorithm

has its own set of variables that can be tuned. To choose the optimal algorithm for a

particular optimization problem, it is important to carefully set the parameters of each

method and compare their performances. For transparency and better result compari-

son, the two main parameters, i.e., population size and maximum iteration are set to 30

and 500, respectively for all the algorithms. The other parameter values for CSAPSO

are mentioned as follows: -

Pp = 0.1, γ = 1.0, α = 3.5, β = 3.0, p1 = 0.25, p2 = 1.50, ρ = 1

5.5.1 Evaluation methodology

The main aim of this paper is quality segmentation results and consistency. There are

several parameters used to test the quality of segmentation. We have used the following

parameters as performance indicators:

1. Root Mean Square Error (RMSE) works on the intensity values and gives the

strength of the final constructed image, defined as per Eq. 5.14.

RMSE =

√∑Nr

i=1(Ii,j − Isi,j)2

Nr ∗Nc

(5.14)

where I and Is refers to the original and segmented images of size Nr ∗Nc.

2. Peak Signal-to-Noise ratio (PSNR) gives the accuracy of the final segmented im-

age, defined as per Eq. 5.15.

PSNR = 20 ∗ log10(
255

RMSE
) (5.15)

3. Structural Similarity Index (SSIM) gives the resemblance between original image

and the thresholded image. It denotes the structural information degradation and

is defined as per Eq. 5.16.

SSIM(I, Is) =
(2µIµIs+ c1)(2σI, Is+ c2)

(µ2
I + µ2

Is + c1)(σ2
I + σ2

Is + c2)
(5.16)

where µI and µIs are the mean intensities of I and Is, respectively, and σI and

σIs are the standard deviations of the original image I and segmented image Is,
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respectively. The co-variance between I and Is is denoted by σ(I, Is). Constants

c1 and c2 are set to 6.5025 and 58.52252, respectively (153).

Apart from these performance indicators, the Friedman rank-sum test at a 5% signif-

icance level was performed to see the difference between the proposed algorithm and

other algorithms.

5.5.2 Performance analysis over general and COVID-19 CXR images

Fig. 5.3 shows the segmentation results on CXR images at threshold levels 5,10,15, and

20. The proposed CSAPSO algorithm successfully segmented the chest X-rays at vari-

ous threshold levels. The results at threshold levels 10, 15, and 20 are better at threshold

level 5. At each threshold level, the degree of whiteness in the X-rays is compared to

normal chest X-rays to detect the severity of Pneumonia. As discussed, Pneumonia is

identified by the degree of whiteness in the CXR. The proposed CSAPSO algorithm

gave appropriate thresholds for segmentation as perceived visually from the figure.

Fig. 5.4 shows the segmented images for image I11 by CSAPSO and other algorithms

used for comparison at threshold level 20. From the comparative analysis, it is observed

that all the algorithms successfully segment the images. However, for the same thresh-

old level (in this case, 20), CSAPSO gives better image quality as compared to other

metaheuristics. The dark and light regions of the chest images are clearer. The thoracic

area of the chest is accurately perceived, and the identification of affected areas in X-

ray images becomes distinct. Hence, from the visual analysis, CSAPSO proves to be

a better algorithm as compared to its counterparts and other state-of-the-art algorithms

for the effective segmentation of the images.

To exhibit Pneumonia, two CXR images I5 and I11 were taken at threshold level 10

and segmented using CSAPSO as shown in Fig. 5.5. Both I5 and I11 are the CXR of

persons affected by Pneumonia. The grey-colored section, denoted by the red arrow,

is the affected area, whereas the black-colored section, denoted by the green arrow, is

the unaffected area. The segmented image created using the thresholding technique

displays the infected portions and the severity. From the figure, it is seen that there are

multiple lesions or gray portions in image I11 that show how severe the disease is. Im-

age I5 has fewer lesions due to the blacker portion and less grey portion, which shows

the beginning of Pneumonia. Hence by segmenting the images using optimal thresh-

old values, we can quickly know the impact of the disease on the lungs. However, the

consideration is that the threshold levels chosen should be such that the affected and

unaffected areas are distinctly visible. Hence, depending on the type of problem, we

choose an appropriate threshold level.

To analyze the efficiency and accuracy of the proposed algorithm, fitness values, PSNR,

SSIM, and CPU time are considered. Table 5.1 shows the fitness function values ob-
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CXR image Threshold level=5 Threshold level=10 Threshold level=15 Threshold level=20

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

Figure 5.3: The segmented CXR images (I1-I12) using CSAPSO for threshold level
5,10,15, and 20
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(a) CSAPSO (b) PSO (c) HFPSO (d) SSA

(e) GA (f) WOA (g) GOA (h) GSA-GA

(i) SSAMSO (j) PSO+ABC+ACO (k) CSA

Figure 5.4: Segmented CXR images obtained by each algorithm for image I11 at thresh-
old level 20

tained using the proposed CSAPSO algorithm and other state-of-the-art algorithms. The

best results are marked in bold. The fitness results give the quality of the threshold val-

ues and the accuracy of the results. It is observed from the table that CSAPSO stood first

in delivering the best fitness values for most of the cases. The ranking was followed by

SSAMFO and HFPSO. For some cases of lower threshold levels, SSAMFO gave better

results than CSAPSO. The quality of the algorithm at higher dimensions is accessed

using the higher threshold values. It is significant since real-world applications may

contain several objects. One observation is that for higher threshold levels, the perfor-

mance of CSAPSO was much better than at lower threshold levels. It shows that CSPSO

proves to be a better optimizer than other algorithms for real-world applications.

(a) I5 (b) I11

Figure 5.5: Illustration of pneumonia-affected and unaffected areas in CXR images I5
and I11 segmented using CSAPSO
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Table 5.2 shows the results of the average PSNR results for all the images. From the

detailed analysis of the performance at each threshold level, CSAPSO performs great

for threshold levels 15 and 20. For threshold level 5, CSAPSO gave the best PSNR

values for 4 cases, followed by GOA which gave the best values in 3 cases, followed

by SSAMFO for 2 cases. For threshold level 10, CSAPSO gave the best PSNR values

in 8 cases, followed by GOA for 4 cases. For threshold level 5, the performance of

GOA and HFPSO was similar. However, it is outperformed by CSAPSO which gave

the best values in 10 cases. Similar results were shown for threshold level 20, where

the performance of GOA, SSAMFO, and PSO was the same, while CSAPSO outper-

formed others in 9 cases. Therefore, from the detailed analysis of the PSNR results, it

can be seen that the performance of CSAPSO was the best, followed by GOA, and then

SSAMFO. The other comparative algorithms like CSA, PSO, SSA, and WOA proved

the worst for these cases. The impact of balanced exploration and exploitation can also

be found in the quality of results. Since the local trap is avoided, therefore, the quality

of results is significantly improved. Table 5.3 shows the average SSIM values for the

images obtained using the proposed algorithm and other comparative algorithms. SSIM

tells the similarity between the original image and the corresponding segmented image,

hence it is an important quality parameter to validate the segmentation. The results were

analyzed in detail and it was found that for threshold level 5, CSAPSO and SSAMFO

were highly competitive and gave the best results in 6 and 5 cases respectively. For

level 10, CSAPSO stood first with the best values in 6 cases, followed by SSAMFO

and HFPSO. For level 15, CSAPSO gave the best results in 5 cases out of 12, fol-

lowed by HFPSO, and then SSAMFO. The proposed approach gave the best results for

58% of cases in threshold level 20, and the rest of the best results were divided among

SSAMFO (17%), GA (8%), SSA (8%), and HFPSO (8 %). Overall, it was observed

that CSAPSO is competitive with SSAMFO for lower threshold levels. However, in to-

tality, CSAPSO stood first, followed by SSAMFO, and then HFPSO. The performance

of CSA is improved by using PSO and OBL. Fig. 5.6 shows the comparison of the

average CPU taken by each algorithm for the first 5 CXR images over 30 runs and 500

iterations. It can be seen from the figure that the CPU time taken by CSAPSO was

nearly 0.5 seconds, followed by PSO with 1 second execution time, SSAMFO which

was nearly 1.3 seconds, and HFPSO with 1.5 seconds. SSA gave good results with

nearly 3 seconds of execution. The algorithms like GA, GOA, and CSA took nearly

4 seconds of execution time. GSA-GA and WOA took around 5 seconds. The maxi-

mum CPU time was taken by PSO+ABC+ACO with nearly 6 seconds. The results of

CDAPSO are achieved in less CPU time due to decreased complexity. Since PSO is

a simple-to-implement algorithm, therefore when it is hybridized with CSA, it reduces

the complexity of the algorithm and makes the function evaluations quicker. One more
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Table 5.1: Fitness values obtained using each algorithm for the CXR images

Test images Levels CSAPSO PSO HFPSO SSA GA WOA GOA GSA-GA SSAMFO PSO+ABC+ACO CSA

I1

5 16.84 17.79 17.65 17.67 17.72 17.08 17.66 17.41 17.83 17.69 17.28

10 19.99 20.65 20.81 20.66 20.28 20.32 20.14 20.07 20.46 20.87 20.15

15 28.01 20.98 28.75 28.05 28.55 28.63 28.37 28.54 27.77 28.52 28.06

20 31.88 31.12 30.97 31.96 31.24 31.62 31.06 31.65 31.27 31.29 31.83

I2

5 17.99 18.65 18.57 18.58 18.12 18.16 18.98 18.51 18.28 18.34 18.45

10 22.03 22.78 21.96 22.09 22.91 22.73 22.59 22.18 22.06 22.13 22.52

15 26.87 27.26 27.65 27.71 27.56 27.77 27.68 27.48 27.15 27.82 27.59

20 29.94 30.25 30.64 30.92 30.48 30.83 30.79 30.45 30.47 30.34 30.86

I3

5 15.83 15.23 15.69 15.16 15.77 15.31 15.41 15.37 14.86 15.02 15.12

10 18.95 19.27 19.89 19.12 19.21 19.24 19.63 19.91 19.36 19.72 19.28

15 26.95 27.75 27.63 27.04 27.73 27.94 27.28 27.61 27.22 27.15 27.53

20 31.88 32.04 32.87 32.45 32.27 32.41 32.11 32.56 32.14 32.19 32.12

I4

5 10.19 10.48 9.87 10.76 10.32 10.27 10.74 10.22 10.18 10.59 10.86

10 15.97 16.74 16.35 16.83 16.22 16.25 16.79 16. 32 16.45 16.56 16.28

15 28.97 29.53 29.11 29.15 29.34 29.78 29.67 29.52 29.68 29.22 29.18

20 35.61 35.32 34.95 35.77 35.04 35.11 35.89 35.01 35.64 35.19 35.26

I5

5 16.43 15.91 16.83 16.12 16.72 16.88 16.39 16.09 16.11 16.84 16.49

10 23.97 24.51 24.69 24.45 24.35 24.27 24.26 24.86 24.92 24.23 24.62

15 29.81 30.31 30.44 30.67 30.11 30.25 30.67 30.47 30.17 30.29 30.56

20 39.33 39.24 39.26 39.74 39.45 39.38 39.85 39.61 38.92 39.88 39.25

I6

5 14.92 15.13 15.22 15.72 15.84 15.46 15.63 15.85 15.55 15.17 15.51

10 19.96 20.46 20.16 20.41 20.07 20.27 20.39 20.89 20.35 20.08 20.63

15 28.49 27.99 28.37 28.34 28.15 28.24 28.76 28.85 28.31 28.29 28.67

20 32.31 32.14 32.29 32.13 32.66 32.29 32.86 32.47 31.95 32.36 32.21

I7

5 17.98 18.11 18.33 18.52 18.94 18.83 18.77 18.57 18.09 18.29 18.39

10 22.11 22.17 22.86 22.67 22.47 22.06 22.73 22.55 21.89 22.79 22.83

15 27.95 28.46 28.24 28.74 22.16 22.29 22.94 22.55 22.68 22.96 22.71

20 33.72 34.47 34.66 34.59 34.64 34.23 34.13 34.53 34.14 34.18 34.28

I8

5 18.85 19.08 19.57 19.11 19.73 19.33 19.36 19.68 19.06 19.29 19.29

10 26.03 27.33 27.45 27.87 27.59 27.06 27.29 27.67 27.95 27.24 27.86

15 36.92 37.23 37.19 37.51 37.25 37.72 37.28 37.67 37.01 37.24 37.87

20 40.08 40.05 40.39 40.76 40.15 40.17 40.26 40.85 39.97 40.83 40.24

I9

5 16.89 17.35 17.38 17.53 17.05 17.24 17.48 17.23 17.61 17.13 17.41

10 18.88 19.23 19.12 19.35 19.04 19.11 19.78 19.45 19.09 19.26 19.79

15 21.95 22.79 22.57 22.33 22.14 22.57 22.49 22.12 22.18 22.45 22.69

20 28.45 28.18 27.97 28.23 28.55 28.38 28.79 28.23 28.15 28.91 28.16

I10

5 20.58 20.01 20.55 20.29 20.11 19.94 20.42 20.23 20.31 20.17 20.38

10 26.97 27.03 27.65 27.49 27.07 27.28 27.13 27.41 27.27 27.64 27.86

15 34.95 35.08 35.56 35.13 35.38 35.15 35.23 35.11 35.29 35.74 35.44

20 39.99 40.58 40.67 40.78 40.16 40.94 40.08 40.83 40.17 40.14 40.76

I11

5 15.96 16.84 16.05 16.58 16.12 16.17 16.44 16.23 16.52 16.63 16.31

10 24.18 24.61 24.64 23.87 24.06 24.76 24.42 24.28 24.15 24.23 24.45

15 28.88 29.59 29.22 29.07 29.16 29.16 29.01 29.22 29.38 29.27 29.55

20 31.99 32.27 32.19 32.56 32.85 32.33 32.05 32.74 32.69 32.56 32.79

I12

5 18.93 19.36 19.27 19.55 19.68 19.21 19.17 19.78 19.03 19.88 19.75

10 22.19 22.49 22.64 22.22 22.57 22.27 22.08 22.47 21.96 22.11 22.84

15 28.98 29.97 29.33 29.81 29.64 29.32 29.35 29.17 29.48 29.43 29.82

20 40.95 41.02 41.22 41.95 41.83 41.92 41.24 41.19 41.38 41.66 41.62
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Table 5.2: Results of the PSNR values obtained using each algorithm for the CXR
images

Test images Levels CSAPSO PSO HFPSO SSA GA WOA GOA GSA-GA SSAMFO PSO+ABC+ACO CSA

I1

5 14.0628 10.8354 13.9534 11.7352 12.2131 12.7482 13.1128 10.1836 12.7384 11.2848 11.1242

10 19.8747 18.8356 16.2821 15.6273 15.4823 17.3293 17.8495 18.3342 17.2434 18.1243 17.1233

15 21.6753 20.1729 20.1243 19.3826 18.3863 17.3864 19.1284 18.7239 18.2173 17.1294 19.3284

20 22.4947 20.2361 21.2924 21.1287 20.2193 19.1282 21.1283 22.1923 20.2123 19.9875 19.3947

I2

5 6.0044 5.2328 8.2322 7.1294 4.2354 10.3217 3.2734 6.2353 9.3728 8.3758 8.3748

10 19.4746 18.8273 18.2383 16.1739 15.0363 20.2381 24.2739 22.1836 19.9256 21.0982 22.1293

15 21.931 20.9237 23.2378 20.9273 19.7389 18.8271 19.7637 18.7382 20.1294 21.1947 18.095

20 20.5011 24.8492 22.6943 22.2848 21.1859 21.5826 19.9356 20.4537 19.8363 18.8537 19.7517

I3

5 8.0064 7.9204 7.8263 5.1523 6.284 6.1893 7.1729 6.284 7.2383 7.293 5.2398

10 19.9724 11.2838 19.0009 18.3789 17.8365 12.7496 15.2398 13.2739 15.284 18.9475 17.8446

15 22.1094 21.1813 21.3819 20.8361 19.9371 21.2817 22.0961 21.2819 20.1297 19.9172 19.6601

20 22.7307 21.0128 20.1299 21.8123 20.1281 18.1289 17.1297 18.1289 19.128 20.1298 11.0372

I4

5 8.0182 10.9372 10.6384 10.1128 9.1738 5.1389 11.979 11.1238 10.1829 11.1289 5.5568

10 22.0849 21.281 21.0119 20.0893 15.2173 17.4463 19.0263 18.9354 16.4583 18.3749 20.9371

15 21.6611 21.0368 20.9364 20.1284 19.2179 18.1279 19.1278 20.1289 21.2379 20.1283 16.1289

20 21.7592 20.1289 19.2178 18.1289 20.1289 20.9464 19.1289 20.1299 20.9623 20.9172 20.6152

I5

5 13.4419 10.9217 8.1289 9.8261 9.8127 12.8124 13.8217 14.1281 14.9836 11.8736 9.7362

10 13.8327 15.9238 15.1289 12.1289 10.9217 12.9837 16.0939 14.3782 15.9462 15.8329 14.2367

15 19.1451 18.8462 17.8372 17.3658 16.2178 16.3278 18.9438 18.4367 17.4832 17.9384 16.3742

20 17.8841 16.7328 15.8543 15.7384 10.74328 13.3438 12.7388 11.9584 10.0043 12.8291 13.9321

I6

5 10.3729 10.8329 11.0942 10.8452 9.6839 9.2654 11.4773 10.7491 9.3376 8.2653 10.6382

10 17.2738 18.9472 15.2378 15.9462 17.3682 17.2356 19.339 15.7294 16.9372 18.7378 19.0328

15 22.4181 21.8923 22.0128 20.9832 19.7823 17.7237 17.0449 19.7823 20.0129 19.2389 18.3374

20 21.374 20.0219 19.2189 19.4378 18.8329 17.7348 18.7438 19.4839 19.1193 18.7328 19.3278

I7

5 10.4958 11.7382 11.3829 10.8329 9.3728 10.3829 10.0992 11.8491 12.7329 9.5849 11.5748

10 17.1655 16.9548 16.6237 15.8943 16.8473 17.0473 17.1431 16.8437 15.2479 16.6237 15.7238

15 23.0606 21.3879 20.0573 20.8337 20.8462 19.3278 18.3782 18.0684 21.7492 22.8362 22.0582

20 21.9988 20.0438 20.0582 19.9974 19.7294 18.3728 17.3759 16.34649 16.4826 19.3729 18.2749

I8

5 9.8493 8.3682 9.4378 9.2327 6.3482 8.2382 10.738 8.4389 8.3278 8.4389 9.9562

10 16.3492 15.4832 13.9347 15.9582 15.8352 16.2857 15.2834 15.9274 15.9248 15.9284 16.10934

15 19.6393 18.3283 18.3278 16.0678 18.0473 17.4926 19.5493 18.9326 19.1837 18.4337 17.3278

20 18.4268 19.2857 18.3281 17.3659 18.9472 18.4652 17.4822 18.4825 19.5135 18.9362 19.1736

I9

5 7.2372 5.8731 6.0288 6.8803 5.9438 6.3278 7.5934 7.1107 7.3728 6.2301 7.1901

10 16.1167 15.3728 15.8392 15.7382 16.0483 15.4378 15.9663 14.3735 15.9261 14.2368 15.9272

15 19.8327 18.3628 18.3725 19.4382 19.1378 18.1389 18.9363 19.7462 18.37682 17.8366 18.3725

20 23.8867 22.8563 22.4826 22.8741 23.6382 23.8462 22.4926 22.9472 21.9461 20.4392 20.3641

I10

5 9.1063 8.6472 8.9472 8.2834 9.0173 8.1268 8.3634 8.1635 8.9371 7.2718 6.1562

10 18.2437 17.3728 17.1832 16.4735 16.5724 15.3619 18.4707 17.37619 16.3289 15.3826 15.3715

15 18.3795 19.3867 19.3712 18.3712 20.0163 18.8462 20.1308 17.0562 16.9462 17.8526 18.8472

20 19.7059 18.6381 19.0431 18.3728 18.8462 18.9371 19.4381 18.6482 18.4527 18.3268 17.3692

I11

5 12.4645 10.7362 11.9562 11.2545 10.2548 9.5282 10.5241 12.1835 11.7361 10.1356 11.5731

10 16.546 16.2644 15.3108 15.0388 14.0931 14.0162 14.2673 13.6395 15.3687 15.3216 15.8534

15 18.7655 17.3261 17.9654 17.6435 16.6432 16.3405 15.2549 14.8452 17.7352 17.3561 14.0351

20 22.0763 21.8239 21.9463 20.7129 19.8351 21.9456 21.8831 21.5593 20.6691 21.8274 21.4374

I12

5 9.1733 8.6271 8.3627 8.2738 7.2562 8.56281 9.6599 8.1994 7.1763 7.237 8.3287

10 18.9142 16.6342 17.6581 16.9473 16.5098 15.7459 16.6392 16.4262 17.6372 17.9435 18.2849

15 20.4071 19.3487 19.3748 18.3728 18.3946 17.3657 18.3265 17.3267 17.9462 18.4825 17.3711

20 20.7885 19.8462 19.3649 18.3906 18.4628 17.0462 17.4474 18.3628 17.9846 18.8361 19.8437
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Table 5.3: Results of the SSIM values obtained using each algorithm for the CXR
images

Test images Levels CSAPSO PSO HFPSO SSA GA WOA GOA GSA-GA SSAMFO PSO+ABC+ACO CSA

I1

5 0.5058 0.4378 0.4312 0.4639 0.4915 0.3715 0.4829 0.4871 0.4123 0.3821 0.2634

10 0.6839 0.6283 0.6812 0.6245 0.6477 0.6245 0.5892 0.6182 0.6934 0.6528 0.6539

15 0.7058 0.7037 0.7894 0.7363 0.7152 0.7637 0.7193 0.7473 0.7542 0.7079 0.7024

20 0.8947 0.8827 0.8884 0.8007 0.8292 0.8057 0.8615 0.8633 0.8284 0.8259 0.8813

I2

5 0.4765 0.4623 0.4387 0.4225 0.4264 0.4923 0.4885 0.4916 0.4219 0.4657 0.4685

10 0.6913 0.5528 0.5764 0.5025 0.5764 0.5174 0.5122 0.5172 0.6182 0.5336 0.5981

15 0.6987 0.6364 0.6139 0.6036 0.6842 0.6652 0.6837 0.6208 0.6715 0.6759 0.6843

20 0.7893 0.7665 0.7563 0.7126 0.7943 0.7677 0.7615 0.7201 0.7943 0.7842 0.7684

I3

5 0.5242 0.5061 0.5525 0.5308 0.5521 0.5582 0.5652 0.5224 0.5934 0.5226 0.5202

10 0.6937 0.6784 0.6761 0.6768 0.6166 0.6777 0.6311 0.6876 0.6743 0.6527 0.6587

15 0.7372 0.7803 0.7149 0.7505 0.7002 0.7226 0.7016 0.7544 0.7951 0.7783 0.7943

20 0.8934 0.8458 0.8325 0.8177 0.8912 0.8687 0.8162 0.8292 0.8446 0.8422 0.8401

I4

5 0.3969 0.3002 0.3266 0.3142 0.3562 0.3774 0.3205 0.3422 0.3568 0.3476 0.3499

10 0.4329 0.4539 0.4964 0.4804 0.4068 0.4182 0.4562 0.4775 0.4852 0.4049 0.4225

15 0.5173 0.5268 0.5153 0.5182 0.5139 0.5073 0.5155 0.5698 0.5741 0.5525 0.5237

20 0.6316 0.6121 0.6013 0.6544 0.6899 0.6139 0.6703 0.6748 0.6987 0.6561 0.601

I5

5 0.4866 0.4722 0.4663 0.4315 0.4145 0.4813 0.4703 0.4525 0.4317 0.4322 0.4474

10 0.5943 0.5299 0.5736 0.5609 0.5365 0.5231 0.5465 0.5273 0.5468 0.5358 0.5317

15 0.6908 0.6906 0.6115 0.6465 0.6172 0.6302 0.6434 0.6356 0.6562 0.6848 0.6207

20 0.7745 0.7954 0.7565 0.7956 0.7006 0.7727 0.7664 0.7163 0.7115 0.7661 0.7435

I6

5 0.5989 0.5647 0.5208 0.5432 0.5743 0.5008 0.5054 0.5471 0.5817 0.5746 0.5671

10 0.6989 0.6082 0.6101 0.6095 0.6187 0.6706 0.6832 0.6099 0.6204 0.6318 0.6955

15 0.7906 0.7887 0.7895 0.7852 0.7001 0.7239 0.7263 0.7271 0.7266 0.7242 0.7154

20 0.8211 0.8213 0.8716 0.8529 0.8263 0.8402 0.8332 0.8314 0.8416 0.8391 0.8088

I7

5 0.4299 0.4622 0.4805 0.4687 0.4741 0.4599 0.4201 0.4463 0.4922 0.4308 0.4897

10 0.5577 0.5803 0.5093 0.5635 0.5149 0.5856 0.5644 0.5253 0.5366 0.5009 0.5153

15 0.5849 0.5181 0.5386 0.5437 0.5301 0.5246 0.5129 0.5532 0.5329 0.5246 0.5336

20 0.7765 0.7201 0.7502 0.7108 0.7302 0.7298 0.7695 0.7175 0.7481 0.7533 0.7135

I8

5 0.4382 0.4442 0.4279 0.4725 0.4174 0.4131 0.4708 0.4533 0.4991 0.4205 0.4831

10 0.5914 0.5807 0.5103 0.5719 0.5276 0.5578 0.5269 0.5325 0.5363 0.5421 0.5568

15 0.6628 0.6297 0.6366 0.6297 0.6202 0.6814 0.6207 0.6408 0.6807 0.6998 0.6191

20 0.7822 0.7811 0.7155 0.7454 0.7152 0.7138 0.7814 0.7602 0.7429 0.7505 0.7596

I9

5 0.4953 0.4733 0.4368 0.4205 0.4172 0.4205 0.4763 0.4724 0.4836 0.4759 0.4625

10 0.5109 0.5772 0.5665 0.5744 0.5394 0.5139 0.5485 0.5564 0.5805 0.5496 0.5579

15 0.6124 0.6403 0.6805 0.6957 0.6444 0.6179 0.6198 0.6613 0.6051 0.6133 0.6446

20 0.7872 0.7277 0.7306 0.7817 0.7152 0.7375 0.7274 0.7802 0.7673 0.7715 0.7335

I10

5 0.5998 0.5366 0.5287 0.5029 0.5907 0.5001 0.5502 0.5918 0.5295 0.5572 0.5925

10 0.6215 0.6113 0.6516 0.6839 0.6627 0.6814 0.6167 0.6756 0.6941 0.6319 0.6396

15 0.7782 0.7811 0.7857 0.7816 0.7412 0.7679 0.7104 0.7397 0.7619 0.7841 0.7273

20 0.8395 0.8401 0.8363 0.8618 0.8234 0.8323 0.8179 0.8328 0.8788 0.8361 0.8274

I11

5 0.3957 0.3179 0.3234 0.3244 0.3359 0.3485 0.3285 0.3829 0.3369 0.3239 0.3328

10 0.4996 0.4371 0.4219 0.4916 0.4782 0.4286 0.4957 0.4972 0.4835 0.4301 0.4731

15 0.5983 0.5373 0.5978 0.5083 0.5514 0.5708 0.5077 0.5798 0.5947 0.5073 0.5419

20 0.6988 0.6782 0.6388 0.6956 0.6671 0.6238 0.6073 0.6869 0.6144 0.6445 0.6627

I12

5 0.5431 0.5447 0.5365 0.5671 0.5579 0.5398 0.5712 0.5301 0.5876 0.5663 0.5498

10 0.6124 0.6892 0.6399 0.6983 0.6255 0.6519 0.6204 0.6463 0.6291 0.6395 0.6291

15 0.7313 0.7505 0.7538 0.7477 0.7305 0.7531 0.7345 0.7467 0.7176 0.7498 0.7485

20 0.8693 0.8342 0.8477 0.8191 0.8279 0.8669 0.8691 0.8528 0.8357 0.8283 0.8242
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interesting observation was that the graph of CPU execution time was almost a straight

line which shows that the CPU time did not change much with the change in threshold

levels. The results are the same with all the algorithms.

We tested the significance and efficiency of the proposed algorithm by using the fried-

Figure 5.6: Comparison of average CPU time by each algorithm for first five images

man test. This test ranks the algorithms and studies the algorithm’s robustness by us-

ing the median values. The higher the value, the better the rank. Also, the chief ad-

vantage is that it does not require the distribution of the dataset to be known. Table

5.4 presents the results of the Friedman rank-sum test. Our proposed approach ob-

tained the best rank in the measures PSNR as well as SSIM, followed by SSAMFO

and then HFPSO. The overall ranking of all the algorithms for both the measures is

CSAPSO > SSAMFO > HFPSO > PSO + ABC + ACO > PSO > CSA >

SSA > GSA − GA > WOA > GOA > GA. Therefore, CSAPSO proves to be sta-

tistically significant as compared to other algorithms for solving real-world problems.

Table 5.4: Results of the friedman test obtained using each algorithm for the CXR
images

CSAPSO PSO HFPSO SSA GA WOA GOA GSA-GA SSAMFO PSO+ABC+ACO CSA

PSNR 8.63 6.98 7.94 6.39 4.97 5.54 5.14 5.72 8.12 7.56 6.75

SSIM 7.28 6.19 6.97 5.93 3.42 5.13 3.95 5.52 7.01 6.68 6.05
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5.5.3 Performance analysis over deep learning classifiers

Another series of experiments was conducted on a large data set on COVID-19 1. In

this series, the three deep learning models, namely U-Net (140), SegNet (141), and

DeepLab (142) were trained over several parameters. Fig. 5.7 shows the graphical

evaluation of all proposed X-ray image classifiers with four metrics of precision, recall,

specificity, and f1-score. The positive cases of pneumonia and COVID-19 are confirmed

while using U-Net and CSAPSO. The misclassification chances are more in the case of

DeepLab and SegNet. So, from the figure, it can be concluded that the right classifi-

cation is achieved in the case of U-Net and CSAPSO. Four expected outcomes of the

confusion matrix are defined as follows by comparing the true labels of tested images

and predicted outcomes of deep learning: The term True Positive (TP) demonstrated

the accurate identification of chest diseases. A count of healthy instances is referred

to as true negatives (TN). False positive (FP) refers to an error in which a test result

falsely suggests the existence of a chest disease when the disease is not present. False

negative (FN) refers to an error in which a test result fails to reveal the presence of a

chest disease. From the results of the confusion matrix, the following five fundamental

performance measures for deep image classifiers are as follows:

Accuracy: This measure evaluates the performance of the classifier. It is calculated as

follows:

Accuracy = TP+TN
TP+FP+TN+FN

The precision recall or sensitivity, specificity, and f1-score are calculated as follows:

Precision = TP
TP+FP

Recall = Senstivity = TP
TP+FN

Specificity = TN
TN+FP

F1− Score = 2(PrecisionXRecall)
Precision+Recall

The comparative training and testing time analysis is shown in Fig. 5.8. The training

time ranges from 900 seconds for CSAPSO to 7800 seconds for SegNet. On the other

hand, the testing time ranges from 2 seconds for CSAPSO to 8 seconds for DeepLab.

It shows an advantage of using CSAPSO with a minimum training time of 900 seconds

and a testing time of 2 seconds. A higher training and testing time results in increased

complexity.

Fig. 5.9 shows the testing accuracy and area under the curve for all the image

classifiers. The best scores of accuracy and area under the curve are achieved by

CSAPSO, i.e. 0.9, followed by U-Net. SegNet and DeepLab followed the performance

of CSAPSO and U-Net. The tabular comparison of different deep learning classifiers is

1The images were taken from https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-
9e640421-6711 and https://github.com/ieee8023/covid-chestxray-dataset
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(a) U-Net (b) SegNet

(c) DeepLab (d) CSAPSO

Figure 5.7: Evaluation results of deep learning classifiers to identify positive cases of
pneumonia and COVID-19 diseases

(a) Training time (b) Testing time

Figure 5.8: Computation times including training and testing times for the deep learning
classifiers
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shown in Table 5.5. From the table, it is seen that U-Net and CSAPSO, both classify

Pneumonia with 99.98% accuracy. However, when the dataset of COVID-19 is consid-

ered, CSAPSO outperforms U-Net with a classification accuracy of 99.93% whereas

U-Net has an accuracy of 76.45%. The classifiers SegNet and DeepLab showed an

average performance for both datasets.

Table 5.5: Comparative analysis of different deep learning classifiers

Classifier Total Parameters(10ˆ6) Trainable Parameters(10ˆ6) Non-Trainable Parameters(10ˆ6)
Classification Accuracy

Pneumonia COVID-19

U-Net 14.93 14.93 0 99.98 76.45

SegNet 20.76 20.71 0.05 56.14 83.23

DeepLab 58.12 58.1 0.02 81.34 75.12

CSAPSO 3.54 3.51 0.03 99.98 99.93

(a) Accuracy (b) Area under curve

Figure 5.9: Classification accuracy and area under curve (AUC) for the deep learning
classifiers

From the above series of experiments, we confirm the superiority of the proposed al-

gorithm over other state-of-the-art algorithms. Our hybrid method, CSAPSO, combines

the CSA, PSO, and OBL, allowing for quick convergence to the global optimum. This

helps in reducing the amount of computation needed for image segmentation. CSAPSO

utilizes the parallel execution of CSA and PSO on different sub-populations, which en-

hances optimization and improves computational efficiency. This ensures population

diversity, which helps in avoiding local optima traps and produces superior segmenta-

tion outcomes. Medical image analysis is only one of the many image segmentation

jobs that CSAPSO can be used for. It has been evaluated for the detection of pneu-

monia on CXR pictures, and it has demonstrated promising outcomes on COVID-19-

related datasets. The Friedman test results proved that CSAPSO is statistically signifi-

cant as compared to other algorithms. While our proposed method, CSAPSO, combines

metaheuristic algorithms rather than deep learning techniques, however, our study also

compared three deep learning techniques with our suggested method to segment med-

ical images, and the results based on Accuracy, Precision, Recall, Specificity, and F-1
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score, revealed that all four techniques were effective on the datasets we evaluated.

There were some variations in performance, with CSAPSO outperforming U-Net, Seg-

Net, and Deep Lab. Our approach does, however, have a few drawbacks that need to

be addressed in further research. First, the existing architecture relies on time-intensive

manual annotations for training. Second, a rather small dataset was used to train and

test the suggested network, which would have limited its potential to generalize to other

data sets or real-world events. Finally, the suggested method may not be appropriate

for other medical imaging tasks because it is created specifically for the detection and

localization of pneumonia in CXR images. The findings imply that deep learning meth-

ods for medical image segmentation show considerable promise, but further study is

required to choose the most appropriate method for particular imaging modalities and

applications. The study also emphasizes the need for larger data sets and standardized

evaluation measures to enable reliable comparisons of various approaches.

5.6 Conclusion

In this work, we present the improvement of the CSA algorithm, named CSAPSO,

through the integration of two other algorithms: PSO and OBL. The resultant algorithm,

namely CSAPSO, is a multi-level thresholding-based image-segmentation method based

on the minimum cross-entropy principle. CSAPSO minimizes the cross-entropy func-

tion by utilizing optimal threshold values obtained using CSA and PSO in a hybrid

fashion. OBL is employed to enhance convergence towards the global optimal solu-

tion. Additionally, CSAPSO incorporates the division of the population into unequal

sub-populations to ensure population diversity. The two sub-populations are run in par-

allel, with one using the CSA algorithm and the other utilizing the PSO algorithms.

This allows the algorithm to leverage the global and local features of both algorithms

simultaneously.

The proposed CSAPSO algorithm is implemented for the segmentation of twelve real-

time CXR images and COVID-19 X-ray images. The experimental results are com-

pared with state-of-the-art algorithms such as CSA, PSO, HFPSO, SSA, GA, WOA,

GOA, GSA-GA, SSAMFO, PSO+ABC+ACO, as well as various deep learning algo-

rithms including U-Net, SegNet, and DeepLab. Performance indicators such as RMSE,

PSNR, SSIM, accuracy, and area under the curve are used for evaluation. The statistical

significance of the results is tested using the Friedman rank test at a significance level

of 5%.

The experimental results demonstrate that the proposed approach is highly competitive

at the 5-threshold level and outperforms other algorithms at the threshold levels of 10,

15, and 20. The segmentation accuracy achieved, as indicated by the high PSNR and

SSIM values, further highlights the effectiveness of the proposed method. The lower
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values of standard deviation indicate the stability of the algorithm, which is a crucial

measure as many algorithms exhibit instability by producing different results with each

iteration. The results of the Friedman rank-sum test also confirm the significance of

CSAPSO in comparison to other methods. Moreover, the proposed algorithm success-

fully applies to real-life applications by producing optimal thresholds and generating

high-quality segmented images of CXR for pneumonia detection. Therefore, it proves

to be valuable in the field of medical imaging, enhancing the diagnostic performance of

radiologists.

In future works, CSAPSO can be further utilized to optimize other image segmentation

methods. Additionally, the development of a multiobjective version of the CSAPSO-

based image thresholding technique could potentially improve its performance in seg-

menting CXR images.

The performance of the optimization algorithm is improved by performing various

techniques like OBL. In the next chapter, improvement in the opposition-based EA

is achieved using a Figurate strategy. A new framework for selective OBL is introduced

to refine the quality of the solution and explore search space effectively.

99



CHAPTER 6

FIGURATE OPPOSITION-BASED PARTICLE SWARM
OPTIMIZATION-GREY WOLF OPTIMIZER (Opp-PSOGWO)

The prime challenge behind different swarm-optimization approaches is to strike a

proper balance between exploration and exploitation. The effectiveness of the algorithm

comes when the search space is explored appropriately. Most of the existing algorithms

use OBL for greater exploration features. However, it leads to an increase in compu-

tational complexity. This chapter aims to improve the search space exploration using

Figurate OBL where the dimensions of particles that fall in the Fibonacci sequence po-

sitions are generated in opposite directions to achieve an optimal initial population with

increased population diversity.

6.1 Introduction

The main idea behind different Swarm-based algorithms is to ensure a proper balance

between exploration and exploitation while finding the global optimal value. However,

according to (23), increasing exploration capability weakens exploitation capability and

vice versa. The no-free lunch theory also establishes that no approach can effectively

address all optimization problems. In this regard, GWO was developed by Mirjalili and

is a recent meta-heuristic that takes inspiration from hunting techniques and the social

hierarchy of grey wolves. It has better convergence in comparison to other metaheuris-

tics. In addition, it has a better exploration-exploitation balance. There is a need to

improve the convergence rate and strike an optimal exploration-exploitation balance.

This motivates researchers to make improvements to the hybrid.

Based on the above analysis, this chapter aims to develop an efficient fusion of PSO

and GWO, that is enhanced using Figurate Opposition-based Learning. Firstly, Figu-

rate Opposition is used during initialization, where, the dimensions of the particles are

selected on which the opposition is applied using OBL. To select the dimensions, the

Fibonacci sequence is used which determines the position of particles that fall in the

series, i.e., first, second, third, fifth, eighth positions, etc. This results in fast conver-

gence and avoids unnecessary computation of all dimensions of particles. Second, a
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new hybrid variant combining Figurate Opposition-based PSO and GWO is combined,

named Opp-PSOGWO. The main idea is to enhance the exploitation of PSO and the

exploration of GWO. This is done by updating the particle’s position of the PSO par-

ticles using the position update equation of the wolves in GWO. The performance of

the proposed method is demonstrated by testing it against nine standard benchmark

functions and comparing the results with those of conventional PSO, GWO, and other

comparative algorithms. The algorithm is tested for higher dimensions, which proves

its stability. The analysis of convergence curves and the time required also reveals a

clear distinction between the convergence of the proposed algorithm and that of other

traditional methods.

6.2 Opposition based learning

OBL was proposed by Tizhoosh in 2005 (139) and is based on the estimates and its

counter estimates. For higher dimensions, let P (x1, x2, . . . , xn) be a point in the n-

dimensional space with x1, x2, . . . , xn as real numbers where each xi lies in the range

[li, ui]. The opposite point,
v

P is defined in Eq. (6.1)

v
xi = li + ui − xi (6.1)

The advantages of this technique are discussed in Section 5.2.2.

6.3 Strategies employed in the Opp-PSOGWO algorithm

6.3.1 Figurate opposition-based learning

In this strategy, the opposite population is generated for the search agents using the

Fibonacci sequence. This means that the opposition points for particles at positions

1,2,3,5,8,13,21,34. . . .. and so on is selected. The candidates for new positions are cho-

sen from the union of the present population and the opposite population based on the

jumping rate JR, or jumping probability. The jumping rate is set at 0.1 since a high

jumping rate can distort the search phenomena and skip the actual solution to the prob-

lem. Additionally, the leaping rate provides a new way to determine the optimum and

break from the local optimum. The jumping rate aids in this process when the optimum

is in the opposite direction of the present solution, which happens sometimes. By us-

ing the Fibonacci sequence to define the positions, we avoid unnecessary calculations

for all opposite positions. It quickens the search process and leads to global optima

convergence quickly.
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6.3.2 Integration of GWO

In the second strategy, GWO is integrated into PSO. The main idea is to initially update

the position of search agents using PSO, which is further processed by the position

update equation of GWO in the remaining iterations. In this way, the equations of

GWO enhance the exploitation ability of PSO.

6.4 Development of the Opp-PSOGWO algorithm

In this section, Figurate opposition is done to the novel hybrid PSO-GWO to improve

the convergence and achieve a better exploration-exploitation balance. Among the nu-

merous state-of-the-art techniques, classical PSO is the most popular, since it is an easy

algorithm to implement. However, from experimental analysis, it has been observed that

it tends to fall into the local optima, which leads to premature convergence. Addition-

ally, it has a low rate of convergence during iterations. To reduce this possibility, GWO

is incorporated. To swiftly reach the global optimum, the exploration and exploitation

capabilities of GWO and PSO, respectively, are coupled. The hybrid provides new ad-

vantages to the classical algorithm, along with the diversity of the newer problems to be

resolved. We thereby propose an efficient hybrid by incorporating two strategies into

PSO as follows:

Algorithm 9 presents the proposed methodology Opp-PSOGWO and Fig. 6.1 provides

the associated flow chart. The process begins by initializing the particles in the search

space at random. The fitness of each particle (or search agent) is assessed. A random

value is generated by a random generator. Figurate opposition-based learning is used

if the random value is smaller than the jumping rate; otherwise, GWO is used. Thus,

the combination of Fibonacci-based opposition learning and GWO into PSO helps to

increase diversity and avoid skipping real solutions.

6.5 Experimental results and analysis

The efficiency of the suggested OBL-PSOGWO algorithm has been demonstrated in

several experiments. The other state-of-the-art algorithms used for comparisons are

PSODE (24), PSOGA (25), and PSOGSA (26), along with its parent algorithms PSO

(2) and GWO (5). The population size is set to 50, the maximum number of iterations

is 500 and the algorithm is run independently 30 times on each benchmark function.

The parameters of algorithms used for comparison are the same as those used in the

literature. The experiments are carried out on MATLAB R2014a.

We use a collection of 9 well-known scalable problems with different difficulty levels,

such as unimodal (F1-F3), multimodal (F4-F6) and fixed-dimensional multimodal func-

tions (F7-F9). The sources for these problems are (154) and (149). Unimodal functions
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Figure 6.1: Flow chart of Opp-PSOGWO algorithm
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Algorithm 9 The Proposed Opp-PSOGWO Algorithm

1. Initialize the swarm within the search space and the algorithm parameters- noP
(number of particles), maxIter (maximum number of iterations), JR (jumping rate)
=0.1.

2. Evaluate the initial fitness of each particle.

3. Update the Pbest and Gbest.

4. Calculate the new velocity and position of the particles using Eq. (1.4) and Eq.
(1.5), respectively.

5. While stopping criteria are met

6. Generate a random number rand.

7. If rand< JR.

8. The opposite population of solutions OPS is evaluated on the search agents at the
Fibonacci positions i.e. 1,2,3,5,8, . . . , etc.

9. Evaluate each solution of OPS’s fitness.

10. Select the noP best solutions from the list of P U OPS .

11. The best solution is updated.

12. Else

13. Select the values of Xα, Xβ and Xδ as the first three best positions and apply
GWO.

14. Calculate X1, X2 and X3using Eq. (1.14) and update the positions of Grey
wolves.

15. Update the values of a, A, and C.

16. Evaluate the fitness of the Grey wolves and update the leaders Xα, Xβ , and Xδ.

17. Endif.

18. Calculate the new position of the prey using Eq. (1.15).

19. End While

20. Return the best global optima.
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have a single optimum. These functions test the exploitation and convergence capabil-

ity of the algorithm. The multimodal functions have several optima in which only one

solution is the global optimal solution, the other solutions are the local optima. These

functions test the exploration ability of the algorithm.

The qualitative analysis of the proposed algorithm is carried out by plotting the conver-

gence curves of the Opp-PSOGWO algorithm and its parent PSO and GWO algorithms.

Fig. 6.2 shows the curves for unimodal,multimodal, and composite benchmark func-

tions. The proposed algorithm performs well in all cases. The curves demonstrate that,

during the course of iterations, the proposed algorithm significantly increases the accu-

racy of the approximated optimum on the test functions. So, the proposed technique has

merits in exploitation and exploration, respectively, and the performance on composite

functions shows that the algorithm can solve complex functions with ease.

For quantitative analysis, the algorithm is run on 9 standard benchmark functions

mentioned before. The mean, standard deviation (std) value, and CPU time are taken

as evaluation criteria. The results are mentioned in Table 6.1. It is seen from the ta-

ble that Opp-PSOGWO finds the best optimal solutions for unimodal functions, which

shows that it has a strong exploitation ability as compared to other algorithms. Also, it

outperforms the conventional PSO and GWO algorithms proving that it is better than

its counterparts. For the multimodal functions, Opp-PSOGWO is highly competitive

and gives the best result for almost all test functions. This helps us to conclude that the

proposed solution can avoid the local minima trapping problem. For the functions (F7-

F9), the dimension of the multimodal function is fixed, and the optima are more than

one, so it requires a good amount of exploration and exploitation ability to find the so-

lution. Opp-PSOGWO is found to provide the best optimal solution in every one of the

composite situations. The lower std values show that the algorithm is stable in giving

optimal values and the results obtained are almost the same in each run. However, in

terms of CPU Time, the suggested approach is not dominating, as seen. The algorithm

takes longer to run than other algorithms. This is due to the reason that opposition-

based learning and GWO are introduced into a simple PSO algorithm. Increasing the

search landscape using opposition-based learning leads to increased CPU time.

The scalability analysis of the proposed algorithm is done by increasing the limits of

dimensions and testing them on the same benchmark functions. The results are shown

in Table 6.2. The dimensions are set to 30, 50, and 100. The results of Opp-PSOGWO

are competitive with its counterparts in some cases, like, F2, F8, and F9. However, it

stands out in totality when considering the results for all the dimensions.

To perform the statistical analysis, we performed the Wilcoxon rank-sum test between

Opp-PSOGWO and other comparative methods at a 5% significance level. The results
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1(a) Search space of F1 1(b) Convergence curve of F1 2(a) Search space of F2 2(b) Convergence curve of F2 3(a) Search space of F3 3(b) Convergence curve of F3

4(a)Search space of F4 4(b) Convergence curve of F4 5(a)Search space of F5 5(b) Convergence curve of F5 6(a) Search space of F6 6(b) Convergence curve of F6

7(a)Search space of F7 7(b) Convergence curve of F7 8(a)Search space of F8 8(b) Convergence curve of F8 9(a) Search space of F9 9(b) Convergence curve of F9

Figure 6.2: 1-9(a) Search landscapes of function F1-F9 and 1-9(b) Convergence curves
of the proposed Opp-PSOGWO algorithm and comparison with conventional PSO and
GWO algorithms
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Table 6.1: Results and comparison among different algorithms on standard benchmark
functions

Function PSO GWO PSODE PSOGA PSOGSA Opp-PSOGWO

F1

Mean 4.054e-05 2.471e-28 1.389e-07 1.608e-08 6.023e-51 0.000e+00

Time 1.37e-01 5.23e-01 8.43e-01 2.48e-01 9.32e-01 9.76e-01

Std 4.72e-02 7.36e-02 2.42e-02 6.35e-03 1.32e-02 6.36e-01

F2

Mean 4.019e-03 6.852e-17 6.884e-06 1.005e-11 1.524e-47 0.000e+00

Time 1.13e-01 1.38e-01 3.72e-01 2.91e-01 1.34e-01 2.47e-01

Std 1.32e-03 4.85e-02 2.94e-03 6.67e-03 9.37e-02 3.85e-01

F3

Mean 7.585e-17 7.409e-08 1.093e-08 4.172e-23 5.347e-18 0.000e+00

Time 2.31e-01 8.23e-01 3.23e-01 9.38e-01 7.85e-01 5.22e-01

Std 5.32e-02 1.78e-02 4.65e-01 3.67e-03 9.78e-03 4.45e-01

F4

Mean -3.073e+03 -6.047e+03 -2.686e+03 -1.463e+03 -7.073e+03 -8.234e+03

Time 1.09e-01 2.83e-01 2.75e-01 2.95e-01 1.90e-01 2.61e-01

Std 9.72e-02 1.65e-01 2.52e-02 6.35e-02 1.69e-02 6.45e-01

F5

Mean 45.7954 1.1369e-13 9.949e+00 1.404e+01 7.042e+00 0.000e+00

Time 4.01e+00 2.42e+00 1.35e+00 1.71e+00 2.13e+00 2.45e+00

Std 9.91e-02 7.25e-02 1.32e-03 8.36e-03 8.23e-01 2.13e-01

F6

Mean 7.692e-11 1.110e-13 1.6462e-03 2.995e-05 5.235e-10 8.882e-16

Time 1.84e-01 7.23e-01 4.23e-01 2.19e-01 6.23e-01 6.88e-01

Std 4.36e-01 3.16e-01 5.55.42e-01 1.42e-01 4.23e-02 1.43e-01

F7

Mean 1.992e+00 9.992e-01 1.992e+00 9.983e-01 1.831e+00 9.981e-01

Time 1.26e-01 1.52e-01 1.02e-01 1.83e-01 1.55e-01 1.37e-01

Std 1.72e-02 4.946e-02 3.48e-03 8.27e-03 3.29e-03 1.38e-01

F8

Mean 1.665e-04 3.861e-04 2.386e-04 8.699e-04 3.123e-05 7.521e-06

Time 8.23e-02 2.48e-02 2.87e-02 3.66e-02 1.43e-02 4.19e-02

Std 3.31e-01 2.42e-01 5.34e-01 1.31e-03 3.13e-02 6.24e-01

F9

Mean -1.032e+00 -1.031e+00 -1.032e+00 -1.032e+00 -1.031e+00 -1.047e+00

Time 1.36e-01 1.16e-01 4.24e-01 1.84e-01 1.86e-01 1.69e-01

Std 1.342e-02 2.33e-02 2.09e-02 3.89e-03 9.93e-02 7.38e-01
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are shown in Table 6.3. It is observed from the table that Opp-PSOGWO significantly

outperforms other algorithms and, therefore, proves its applicability in real-world ap-

plications.

In conclusion, the suggested algorithm not only performs well in global searches but

is also capable of avoiding local optima traps and producing superior outcomes. It sig-

nificantly outperforms other comparative algorithms as well. Hence it proves that the

fusion of Opposition-Based Learning with the hybrid of PSO and GWO is effective.

Table 6.2: Scalability analysis of the proposed Opp-PSOGWO and its comparison with
counterparts

Function Algorithm Dim 30 Dim 50 Dim 100

F1

PSO 3.328e-53 1.733e+00 6.382e+00

GWO 2.136e-55 6.382e-01 8.372e-01

Opp-PSOGWO 0.00e+00 5.235e-01 8.235e-01

F2

PSO 7.384e-13 3.946e-27 9.362e-11

GWO 5.327e-32 4.173e-32 7.435e-11

Opp-PSOGWO 4.273e-49 8.125e-36 7.301e-27

F3

PSO 1.624e-27 3.173e-20 5.458e+00

GWO 7.253e-30 9.236e-21 1.317e+00

Opp-PSOGWO 6.236e-25 8.423e-18 1.943e+00

F4

PSO -2.734e+16 -4.283e+15 -6.327e+12

GWO -6.270e+13 -2.128e+0e4 -7.638e+13

Opp-PSOGWO -7.123e+11 -2.439e+12 -5.274e+18

F5

PSO 7.638e-01 4.283e-01 2.183e-01

GWO 3.823e-04 9.374e-11 7.378e+00

Opp-PSOGWO 0.00e+00 1.373e-01 1.885e-01

F6

PSO 4.242e+01 8.632e+01 1.231e+01

GWO 8.273e+01 3.128e-01 4.122e+01

Opp-PSOGWO 0.00e+00 5.465e-15 7.348e-18

F7

PSO 2.314e-01 9.324e+00 6.345e+01

GWO 2.488e-01 9.993e+00 4.234e+02

Opp-PSOGWO 0.00e+00 1.673e-88 0.00e+00

F8

PSO 1.342e-08 8.435e-05 9.232e-11

GWO 7.364e-11 3.478e-05 5.343e-10

Opp-PSOGWO 1.399e-11 6.956e-08 8.994e-13

F9

PSO 3.545e+00 6.665e+00 4.345e+01

GWO 7.348e-01 6.367e-01 2.372e-01

Opp-PSOGWO 2.469e-01 1.975e-01 9.871e-02
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Table 6.3: Wilcoxon rank-sum test of the proposed approach with other state-of-art
techniques

Opp-PSOGWO

H p-value

PSO 28.0 0.000548297821

GWO 97.0 0.496322168437

PSODE 109.0 0.698465420658

PSOGA 82.0 0.184926374492

PSOGSA 54.0 0.063418399379

6.6 Conclusion

The proposed hybrid of PSO and GWO methods in this work combines the benefits of

both algorithms. Opposition-based learning is integrated into the hybrid to prevent local

optima traps and increase population diversity. A population is generated in the oppo-

site direction in Fibonacci positions to achieve this. This fusion of opposition-based

learning in the hybrid PSO-GWO improves the efficiency and exploration-exploitation

balance of the search agents.

The experimental results are performed on 9 benchmark functions and the mean, stan-

dard deviation, and CPU time results are compared to other state-of-art methods. The

results provide evidence that the proposed Opp-PSOGWO is better than its counterparts,

as well as other related techniques. The proposed algorithm is scalable and gives good

results on higher dimensions. Lastly, the Wilcoxon rank-sum test validates the proposed

technique and proves its statistical significance. For the future scope, we will improve

the technique for resolving multi-objective optimization issues in real scenarios.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary of the research work

To solve challenging real-world optimization problems, this thesis has concentrated

on improving Evolutionary Algorithms. The study addressed the drawbacks of tra-

ditional algorithms and identified EA research gaps. BFAFA, PSOBOA, CSAPSO,

and Opp-PSOGWO were presented as four unique hybrid algorithms and modifica-

tions to fill these gaps. Each algorithm was developed to enhance search capabili-

ties, handle constraints, and improve optimization performance. On a variety of test

challenges, including structural design, classification, and benchmark functions, the re-

search was conducted through experimental assessments. The findings showed that the

suggested algorithms performed better than the state-of-the-art algorithms in terms of

convergence speed, solution quality, and robustness, significantly advancing the field of

nature-inspired optimization.

7.2 Contributions and findings

In this thesis, the algorithms developed have been compared with existing state-of-the-

art algorithms and shown significant results for different performance measures such

as global optimum value, accuracy, mean, standard deviation, time, etc. The proposed

algorithms perform well quantitatively and qualitatively. The development and valida-

tion of new hybrid algorithms and modifications to solve critical problems in EA are

the research’s main achievements.

• To improve the exploration of the search area, the hybrid of BFA and FA us-

ing the levy equation is developed. The performance is validated over standard,

non-linear, and CEC 2017 functions, and compared with different state-of-the-art

techniques that confirm the algorithm efficiency. The algorithm has been proved

scalable over larger dimensions.

• To solve the Constrained Optimization Problem, we proposed a hybrid of PSO

and BOA that uses self-adaptation, does not slacken the search process, and han-
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dles constraints by using a parameter-free penalty function. We have tested the

proposed algorithm on structural optimization problems, such as pressure vessel

design and welded-beam design problems, where the objectives, decision vari-

ables, and constraints are different. The experimental results and the convergence

curves demonstrate better optimization performance of PSOBOA compared with

state-of-the-art algorithms.

• Another hybrid is proposed to test the suitability of the optimization algorithm in

general test problems. We have proposed a hybrid of CSA algorithm and PSO

algorithm that combines OBL strategy and unequal division of population. To

study the effectiveness, the proposed algorithm is used to investigate pneumonia

by finding optimal segmentation of CXR of normal and COVID-19 patients. The

performance metrics used are RMSE, PSNR, SSIM, accuracy, AUC, and Fried-

man rank test.

• The hybrid Opp-PSOGWO by combining PSO, GWO, and OBL is proposed that

avoid the unnecessary calculations of OBL solutions by investigating the solu-

tions on solutions at Fibonacci positions. To explore the search space effectively,

OBL is applied to the hybrid of PSO and GWO. The proposed technique is com-

pared with other state-of-the-art algorithms available in the literature on a variety

of benchmark functions. The algorithm produces better results as compared to

other algorithms. The results were compared in terms of efficiency, scalability,

and reaching the global optimum.

7.3 Limitations and challenges

Despite its successes, this research had some restrictions and difficulties. The perfor-

mance of the algorithms presented largely depended on the selection of their parame-

ters, making it difficult to optimize the parameters for various domains of the problem.

Additionally, the hybrid algorithms’ computational complexity rose in comparison to

some standard algorithms, which would limit their ability to be applied to complicated

issues. Additionally, the experimental evaluations concentrated on particular problem

domains, allowing room for additional research across a variety of other domains.

7.4 Future directions for research

• The future work will include extending the EA to multi-objective and binary prob-

lems.

• Extending EA to solve different real-world and nonlinear algorithms like biotech-

nology, risk management, process control, and environmental management.
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• Improving the Convergence time of the hybrid-based EA with respect to its parent

algorithms.

7.5 Conclusion

This research has successfully advanced optimization algorithms that are inspired by

nature by suggesting new hybrid algorithms. The effectiveness and superiority of the

suggested algorithms in solving challenging real-world situations have been confirmed

by the experimental results. Although there are certain difficulties and restrictions, the

research has established a strong framework for additional studies and advancements in

this area. The developed algorithms and findings discussed in this thesis show promise

for improving optimization methods in a variety of areas, giving academics and practi-

tioners the tools they need to take on difficult real-world optimization tasks more suc-

cessfully and effectively.
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flight firefly algorithm,” Computers and Electrical Engineering, vol. 70, pp. 476–

495, 2018.

[67] C. H. Li and C. Lee, “Minimum cross entropy thresholding,” Pattern recognition,

vol. 26, no. 4, pp. 617–625, 1993.

118



[68] A. K. Bhandari, A. Kumar, and G. K. Singh, “Tsallis entropy based multilevel

thresholding for colored satellite image segmentation using evolutionary algo-

rithms,” Expert systems with applications, vol. 42, no. 22, pp. 8707–8730, 2015.

[69] T. Pun, “Entropic thresholding, a new approach,” Computer graphics and image

processing, vol. 16, no. 3, pp. 210–239, 1981.

[70] F. Nie, P. Zhang, J. Li, and D. Ding, “A novel generalized entropy and its appli-

cation in image thresholding,” Signal Processing, vol. 134, pp. 23–34, 2017.

[71] V. Rajinikanth and M. Couceiro, “Rgb histogram based color image segmen-

tation using firefly algorithm,” Procedia Computer Science, vol. 46, pp. 1449–

1457, 2015.

[72] S. Pare, A. Kumar, V. Bajaj, and G. K. Singh, “An efficient method for multi-

level color image thresholding using cuckoo search algorithm based on minimum

cross entropy,” Applied Soft Computing, vol. 61, pp. 570–592, 2017.

[73] P.-Y. Yin, “Multilevel minimum cross entropy threshold selection based on parti-

cle swarm optimization,” Applied mathematics and computation, vol. 184, no. 2,

pp. 503–513, 2007.

[74] A. K. M. Khairuzzaman and S. Chaudhury, “Multilevel thresholding using grey

wolf optimizer for image segmentation,” Expert Systems with Applications,

vol. 86, pp. 64–76, 2017.

[75] A. Raj, G. Gautam, S. N. H. S. Abdullah, A. S. Zaini, and S. Mukhopadhyay,

“Multi-level thresholding based on differential evolution and tsallis fuzzy en-

tropy,” Image and Vision Computing, vol. 91, p. 103792, 2019.

[76] G. Sun, A. Zhang, Y. Yao, and Z. Wang, “A novel hybrid algorithm of grav-

itational search algorithm with genetic algorithm for multi-level thresholding,”

Applied Soft Computing, vol. 46, pp. 703–730, 2016.

[77] M. Abd El Aziz, A. A. Ewees, and A. E. Hassanien, “Hybrid swarms optimiza-

tion based image segmentation,” in Hybrid soft computing for image segmenta-

tion, pp. 1–21, Springer, 2016.

[78] A. A. Ewees, M. Abd Elaziz, M. A. Al-Qaness, H. A. Khalil, and S. Kim, “Im-

proved artificial bee colony using sine-cosine algorithm for multi-level thresh-

olding image segmentation,” IEEE Access, vol. 8, pp. 26304–26315, 2020.

[79] E. Tuba, M. Tuba, and D. Simian, “Support vector machine optimized by firefly

algorithm for emphysema classification in lung tissue ct images,” Digital Library,

University of West Bohemia, 2017.

119



[80] N. S. M. Raja, P. V. Lakshmi, and K. P. Gunasekaran, “Firefly algorithm-assisted

segmentation of brain regions using tsallis entropy and markov random field,”

in Innovations in Electronics and Communication Engineering, pp. 229–237,

Springer, 2018.

[81] H. M. Ahmed, B. A. Youssef, A. S. Elkorany, A. A. Saleeb, and F. Abd El-Samie,

“Hybrid gray wolf optimizer–artificial neural network classification approach for

magnetic resonance brain images,” Applied optics, vol. 57, no. 7, pp. B25–B31,

2018.

[82] S. Sarkar, S. Das, and S. S. Chaudhuri, “Multi-level thresholding with a

decomposition-based multi-objective evolutionary algorithm for segmenting nat-

ural and medical images,” Applied Soft Computing, vol. 50, pp. 142–157, 2017.

[83] D. Oliva, S. Hinojosa, E. Cuevas, G. Pajares, O. Avalos, and J. Gálvez, “Cross en-

tropy based thresholding for magnetic resonance brain images using crow search

algorithm,” Expert Systems with Applications, vol. 79, pp. 164–180, 2017.

[84] D. Shao, C. Xu, Y. Xiang, P. Gui, X. Zhu, C. Zhang, and Z. Yu, “Ultrasound

image segmentation with multilevel threshold based on differential search algo-

rithm,” IET Image Processing, vol. 13, no. 6, pp. 998–1005, 2019.

[85] L. Abualigah, K. H. Almotairi, and M. A. Elaziz, “Multilevel thresholding image

segmentation using meta-heuristic optimization algorithms: Comparative anal-

ysis, open challenges and new trends,” Applied Intelligence, vol. 53, no. 10,

pp. 11654–11704, 2023.

[86] H. K. Bhuyan, V. Ravi, B. Brahma, and N. K. Kamila, “Disease analysis us-

ing machine learning approaches in healthcare system,” Health and Technology,

vol. 12, no. 5, pp. 987–1005, 2022.

[87] H. K. Bhuyan and V. Ravi, “Analysis of subfeature for classification in data min-

ing,” IEEE Transactions on Engineering Management, 2021.

[88] B. Brahma and H. K. Bhuyan, “Soft computing and machine learning techniques

for e-health data analytics,” in Connected e-Health: Integrated IoT and Cloud

Computing, pp. 83–104, Springer, 2022.

[89] H. K. Bhuyan, T. A. Sai, M. Charan, K. V. Chowdary, and B. Brahma, “Analy-

sis of classification based predicted disease using machine learning and medical

things model,” in 2022 Second International Conference on Advances in Elec-

trical, Computing, Communication and Sustainable Technologies (ICAECT),

pp. 1–6, IEEE, 2022.

120



[90] D. H. Kim and J. H. Cho, “Adaptive tuning of pid controller for multivariable

system using bacterial foraging based optimization,” in International Atlantic

Web Intelligence Conference, pp. 231–235, Springer, 2005.

[91] H. Chen, Q. Zhang, J. Luo, Y. Xu, and X. Zhang, “An enhanced bacterial foraging

optimization and its application for training kernel extreme learning machine,”

Applied Soft Computing, vol. 86, p. 105884, 2020.

[92] M. Tripathy, S. Mishra, L. L. Lai, and Q. Zhang, “Transmission loss reduction

based on facts and bacteria foraging algorithm,” in Parallel Problem Solving from

Nature-PPSN IX, pp. 222–231, Springer, 2006.

[93] S. Banerjee and S. S. Chaudhuri, “Bacterial foraging-fuzzy synergism based im-

age dehazing,” Multimedia Tools and Applications, vol. 80, no. 6, pp. 8377–8421,

2021.

[94] B. Niu, H. Wang, J. Wang, and L. Tan, “Multi-objective bacterial foraging opti-

mization,” Neurocomputing, vol. 116, pp. 336–345, 2013.

[95] M. Hanmandlu, O. P. Verma, N. K. Kumar, and M. Kulkarni, “A novel opti-

mal fuzzy system for color image enhancement using bacterial foraging,” IEEE

Transactions on Instrumentation and Measurement, vol. 58, no. 8, pp. 2867–

2879, 2009.

[96] O. P. Verma, M. Hanmandlu, P. Kumar, S. Chhabra, and A. Jindal, “A novel bac-

terial foraging technique for edge detection,” Pattern recognition letters, vol. 32,

no. 8, pp. 1187–1196, 2011.

[97] O. P. Verma, M. Hanmandlu, A. K. Sultania, and A. S. Parihar, “A novel fuzzy

system for edge detection in noisy image using bacterial foraging,” Multidimen-

sional Systems and Signal Processing, vol. 24, no. 1, pp. 181–198, 2013.

[98] O. P. Verma and A. S. Parihar, “An optimal fuzzy system for edge detection in

color images using bacterial foraging algorithm,” IEEE Transactions on Fuzzy

Systems, vol. 25, no. 1, pp. 114–127, 2016.

[99] O. P. Verma, R. Sharma, and D. Kumar, “Binarization based image edge detec-

tion using bacterial foraging algorithm,” Procedia Technology, vol. 6, pp. 315–

323, 2012.

[100] K. Tang, X. Xiao, J. Wu, J. Yang, and L. Luo, “An improved multilevel thresh-

olding approach based modified bacterial foraging optimization,” Applied Intel-

ligence, vol. 46, no. 1, pp. 214–226, 2017.

121



[101] L. Tan, F. Lin, and H. Wang, “Adaptive comprehensive learning bacterial forag-

ing optimization and its application on vehicle routing problem with time win-

dows,” Neurocomputing, vol. 151, pp. 1208–1215, 2015.

[102] B. Hernández-Ocana, E. Mezura-Montes, and P. Pozos-Parra, “A review of the

bacterial foraging algorithm in constrained numerical optimization,” in 2013

IEEE congress on evolutionary computation, pp. 2695–2702, IEEE, 2013.

[103] M. Kowsalya et al., “Optimal size and siting of multiple distributed generators

in distribution system using bacterial foraging optimization,” Swarm and Evolu-

tionary computation, vol. 15, pp. 58–65, 2014.

[104] A. Biswas, S. Dasgupta, S. Das, and A. Abraham, “Synergy of pso and bacte-

rial foraging optimization—a comparative study on numerical benchmarks,” in

Innovations in hybrid intelligent systems, pp. 255–263, Springer, 2007.

[105] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”

IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67–82, 1997.

[106] Q. Zhou and Y. Zhou, “Wolf colony search algorithm based on leader strategy,”

Application Research of Computers, vol. 30, no. 9, pp. 2629–2632, 2013.

[107] D. Wang, X. Qian, K. Liu, X. Ban, and X. Guan, “An adaptive distributed size

wolf pack optimization algorithm using strategy of jumping for raid (september

2018),” IEEE Access, vol. 6, pp. 65260–65274, 2018.

[108] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE

Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82–102, 1999.

[109] M.-W. Li, Y.-T. Wang, J. Geng, and W.-C. Hong, “Chaos cloud quantum bat

hybrid optimization algorithm,” Nonlinear Dynamics, vol. 103, no. 1, pp. 1167–

1193, 2021.

[110] S. K. Pal, C. Rai, and A. P. Singh, “Comparative study of firefly algorithm and

particle swarm optimization for noisy non-linear optimization problems,” Inter-

national Journal of intelligent systems and applications, vol. 4, no. 10, p. 50,

2012.

[111] R. Cheng, M. Li, Y. Tian, X. Zhang, S. Yang, Y. Jin, and X. Yao, “Benchmark

functions for cec’2017 competition on evolutionary many-objective optimiza-

tion,” in Proc. IEEE Congr. Evol. Comput., pp. 1–20, 2017.

122



[112] G. Wu, R. Mallipeddi, and P. N. Suganthan, “Problem definitions and evaluation

criteria for the cec 2017 competition on constrained real-parameter optimiza-

tion,” National University of Defense Technology, Changsha, Hunan, PR China

and Kyungpook National University, Daegu, South Korea and Nanyang Techno-

logical University, Singapore, Technical Report, 2017.

[113] D. Karaboga and B. Basturk, “On the performance of artificial bee colony (abc)

algorithm,” Applied soft computing, vol. 8, no. 1, pp. 687–697, 2008.

[114] G.-G. Wang, S. Deb, and Z. Cui, “Monarch butterfly optimization,” Neural com-

puting and applications, vol. 31, no. 7, pp. 1995–2014, 2019.

[115] P. Kora, A. Abraham, and K. Meenakshi, “Heart disease detection using hybrid of

bacterial foraging and particle swarm optimization,” Evolving Systems, vol. 11,

no. 1, pp. 15–28, 2020.

[116] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods.

John Wiley and Sons, 2013.

[117] Z. Zhang and W.-C. Hong, “Application of variational mode decomposition and

chaotic grey wolf optimizer with support vector regression for forecasting elec-

tric loads,” Knowledge-Based Systems, vol. 228, p. 107297, 2021.

[118] H. Chickermane and H. C. Gea, “Structural optimization using a new local ap-

proximation method,” International journal for numerical methods in engineer-

ing, vol. 39, no. 5, pp. 829–846, 1996.

[119] M.-Y. Cheng and D. Prayogo, “Symbiotic organisms search: a new metaheuristic

optimization algorithm,” Computers and Structures, vol. 139, pp. 98–112, 2014.

[120] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Cuckoo search algorithm: a meta-

heuristic approach to solve structural optimization problems,” Engineering with

computers, vol. 29, no. 1, pp. 17–35, 2013.

[121] M. Zhang, W. Luo, and X. Wang, “Differential evolution with dynamic stochastic

selection for constrained optimization,” Information Sciences, vol. 178, no. 15,

pp. 3043–3074, 2008.

[122] H. Chickermane and H. C. Gea, “Structural optimization using a new local ap-

proximation method,” International journal for numerical methods in engineer-

ing, vol. 39, no. 5, pp. 829–846, 1996.

[123] M. Zhang, W. Luo, and X. Wang, “Differential evolution with dynamic stochastic

selection for constrained optimization,” Information Sciences, vol. 178, no. 15,

pp. 3043–3074, 2008.

123



[124] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi, “Mine blast algo-

rithm: A new population based algorithm for solving constrained engineering

optimization problems,” Applied Soft Computing, vol. 13, no. 5, pp. 2592–2612,

2013.

[125] T. Ray and P. Saini, “Engineering design optimization using a swarm with an

intelligent information sharing among individuals,” Engineering Optimization,

vol. 33, no. 6, pp. 735–748, 2001.

[126] J.-F. Tsai, “Global optimization of nonlinear fractional programming problems

in engineering design,” Engineering Optimization, vol. 37, no. 4, pp. 399–409,

2005.

[127] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas, “Standard particle swarm op-

timisation 2011 at cec-2013: A baseline for future pso improvements,” in 2013

IEEE congress on evolutionary computation, pp. 2337–2344, IEEE, 2013.

[128] C. A. C. Coello, “Theoretical and numerical constraint-handling techniques used

with evolutionary algorithms: a survey of the state of the art,” Computer methods

in applied mechanics and engineering, vol. 191, no. 11-12, pp. 1245–1287, 2002.

[129] F.-z. Huang, L. Wang, and Q. He, “An effective co-evolutionary differential

evolution for constrained optimization,” Applied Mathematics and computation,

vol. 186, no. 1, pp. 340–356, 2007.
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