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Abstract
In this paper , we undertake numerical approaches to solve singularly perturbed reaction diffusion
problems ,with Dirichlet boundary conditions. To analyze the layer behaviour of such problems , we
will use standard finite difference scheme with uniform mesh and fitted mesh method with a piecewise
uniform mesh introduced by Ivanovich Shishkin. A numerical example of reaction-diffusion type with
delay as well as advance is solved to show the effect of standard finite difference method and fitted mesh
finite difference method to show the convergence between the actual solution and the solution obtained
by these numerical approaches. The boundedness, stability and convergence analysis for the numerical
problem are discussed. Several graphs and tables are used to show the Error and Order of Convergence
of the numerical methods.

Keywords:- Piecewise uniform mesh , Fitted mesh , Boundary layer , Singularly perturbed ,
Reaction-Diffusion
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Chapter 1

Introduction

1.1 Perturbation Theory

Differential equations are widely used in mathematical modeling to explain a wide range of physical
phenomena in engineering and science. Differential equations are a useful tool for comprehending and
forecasting how systems change over time and place by articulating the link between a variable’s rate
of change and the variable itself. Their application enables us to tackle and evaluate intricate issues
related to the fundamental physical phenomena and offers valuable understanding of the actions and
movements of the related systems. Their importance cuts across many academic fields, making them a
vital resource for technology development and scientific research.

Perturbation theory in differential equations is used to approximate the solutions of equations that
can’t be solved exactly.For example ,

ϵu′′(x) +Au′(x) +Bu(x) = 0

where, ϵ is a small parameter . If ϵ = 0 , then the differential equation reduces to simpler equation that
might be easily solvable. The aim of perturbation theory is to find the solution of original equation by
treating ϵ as small perturbation.

Perturbation theory is classified in two parts:-

1. Regularly Perturbed Differential Equation

2. Singular Perturbed Differential Equation

1.2 Regularly Perturbed Differential Equation

The perturbation problem in differential equations, Dϵ refers to the situation where the derivative with
the greatest order term is multiplied by a very small perturbation parameter ϵ. If the solution of Dϵ as
ϵ → 0 converges uniformly to the solution of the reduced problem D0, which is accomplished by making
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1.3. SINGULARLY PERTURBED DIFFERENTIAL EQUATION CHAPTER 1. INTRODUCTION

ϵ equal to zero in the perturbation problem, then the perturbation problem Dϵ is known to be regularly
disturbed.

Example:-
Dϵ = u′′(x)− 2ϵu′(x) + u(x) = 1 , u(0) = 0, u(1) = 0 (1.1)

Actual Solution of equation (1):-

u(x) = c1e
(ϵ+

√
ϵ2+1)x + c2e

(ϵ−
√

ϵ2+1)x − 1

where,

c1 =
1− eϵ−

√
ϵ2+1

eϵ+
√
ϵ2+1 − eϵ−

√
ϵ2+1

; c2 = 1− c1

When ϵ → 0,

D0 = u′′(x)− u(x) = 1 (1.2)

Actual Solution of equation (2):-

u(x) = c1e
x + c2e

x − 1

where,

c1 =
1− e−1

e− e−1
; c2 = 1− c1

Hence , Dϵ uniformly converges to D0 when ϵ → 0.

1.3 Singularly Perturbed Differential Equation

The perturbation problem is known to be singularly perturbed if the solution of Dϵ as ϵ → 0 does not
converges uniformly to the solution of the reduced problem D0 , which is achieved by setting ϵ equal
to zero in the perturbation problem Dϵ [21]. Such a breakdown of singular perturbation problems is
limited to short time or restricted space intervals. The solution quickly transforms and separates into
layers in these confined areas. These slender areas are commonly known as Strokes lines, transition
points in quantum mechanics, boundary layers in fluid mechanics, edge layers in solid mechanics, skin
layers in electrical applications, and shock layers in fluid and solid mechanics [8].

The singular perturbation parameter’s drop to zero in the limit situation entirely alters the nature of
the differential equations, which justifies the term "singular perturbation." For instance, the equations
for the conservation of energy and momenta become nonlinear hyperbolic equations from nonlinear
parabolic equations.

In engineering, biology, economics, and physics, singularly perturbed boundary value problems are
widely used to mathematically characterize and model a wide range of real-world phenomena. These in-
clude fluid dynamics, thermodynamics, magnetohydrodynamics, rarefied gas dynamics, chemical reactor
theory, elasticity, quantum mechanics, oceanography, plasticity, meteorology, and radiating flows. The
Michelis-Menten theory for enzyme reactions is another common application of singularly perturbed

9



1.4. DELAY AND ADVANCED DIFFERENTIAL EQUATION CHAPTER 1. INTRODUCTION

boundary value problems. With a considerable amount of history, singular perturbation is currently a
fairly developed mathematics topic [5]. These days, the topic is frequently covered in graduate programs
in applied mathematics and various engineering domains.

[12]This paper deals with singularly perturbed differential difference equation which contains ϵ (where
ϵ is a small positive value such that 0 < ϵ <<< 1 ) [31]as perturbed parameter multiplied with the
highest order derivative term. When ϵ → 0, the solution of the equation form layers in a narrow region
called boundary layers. Since, the classical approaches fails to give exact behaviour of solution for each
value of perturbed parameter ϵ , we will use standard finite difference method to study the boundary
layer behaviour.

Generally, a singularly perturbed differential difference equation is of the type ,

Dϵ = −ϵu′′(x) + a(x)u′(x) + b(x)u(x) = f(x)

[24] with Dirichlet boundary conditions,

u(0) = 0, u(1) = 0

Here , if a(x) = 0 and b(x) ̸= 0 then it becomes Reaction- diffusion problem and if b(x) = 0 and a(x) ̸= 0

then it becomes Convection- diffusion problem.
In this paper,we consider a model problem of reaction diffusion type with delay as well as advance

parameters.

1.4 Delay and Advanced Differential Equation

When the derivative of an unknown function at one point in time is stated in terms of the values
of the function at earlier times, a mathematical differential equation known as a delay differential
equation (DDE) arises. Systems with aftereffect or dead time, equations with delay arguments, time-
delay systems, hereditary systems, and systems with delay arguments are some terms used in the
literature to refer to DDEs.[3]

In many branches of the biological sciences, including population dynamics, epidemiology, immunol-
ogy, physiology, and neural networks, mathematical modeling utilizing DDEs is employed for analysis
and forecasting [2]. Considering that the current state of the model depends on its prior history, the
temporal delays amplify the memory effects of these models. The length of some hidden processes, such
as life cycle stages, the interval between virus infection and viral replication, the length of the infectious
and immunological periods, and so on, may be connected to the delay.

Advanced differential equations (ADEs) find widespread application in situations where the evolution
rate is dependent on both the present and the future. Advances in ADEs, which account for the influence
of potential future actions that are currently available on the system, indicate the prospective memory
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1.5. NUMERICAL METHODS CHAPTER 1. INTRODUCTION

of the future, whereas delays in DDEs represent the retrospective memory of the past [2]. Fields such
as population dynamics, mechanical control engineering, and economic challenges are common places
where such phenomena are believed to occur.

Compared to the delay differential equation, the differential difference equation is more broadly
applicable. It is possible for a differential difference equation to concurrently have advance and delay
terms. The differential equation u′(x) + u(x− δ) + u(x+ η) = g(x) is a differential difference equation
with both delay as well as advance.

1.5 Numerical Methods

1.5.1 Numerical Methods of Singularly Perturbed Problems

For issues that are usually not solvable using closed-form solutions, numerical approaches are used to
provide an approximate solution. These approaches provide quantitative information about the problem
and are intended to tackle a broad variety of issues. These approaches’ quantitative nature means that
the qualitative answers they produce are very different from those of asymptotic methods.

Researchers have created a number of numerical methods for handling solitary perturbation issues
during the past few decades. These techniques fall into two main categories: computational methods and
parameter uniform numerical methods. The standard finite difference, finite element, or finite volume
methods—collectively, known as classical computational methods [11]—are found to be inadequate on
uniform meshes and require an extraordinarily high number of mesh points in order to produce accurate
numerical solutions when the perturbation parameter is set to a critically small value.

The presence of steep gradients in the boundary layer(s) of the analytical solution is the cause of
this computational approach constraint. It is not possible for these methods to minimize the maximum
point-wise error until the singular perturbation parameter and the mesh size are of the same order of
magnitude [36]. Conversely, increasing the number of mesh points and associated processing overhead
results from refining the mesh size to the order of the perturbation parameter. Therefore, the primary
limitation of the computational approach is the reliance of the domain discretization on the perturbation
parameter. It is therefore desirable to develop robust computational approaches that are independent
of the perturbation parameter with respect to order of convergence, error, and discretization. We refer
to these techniques as parameter uniform numerical techniques.The fitted mesh method and the fitted
finite difference operator are the two basic categories into which parameter uniform approaches can be
roughly classified.

1.5.2 Numerical Treatment for Singularly Perturbed Differential Difference
Equations with Delay as well as Advance [17]

This thesis focuses on a particular class of differential equation problems where the highest order deriva-
tive is multiplied by a minor parameter called ϵ [15]. For differential difference equations perturbed
singularly, very little literature has been reported. The numerical study of such problems has attracted
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1.5. NUMERICAL METHODS CHAPTER 1. INTRODUCTION

more attention in recent years due to its applications in fields such as optimal control theory, neurobi-
ology, the study of an optically bistable device, describing the so-called human pupil-light reflex, and
various models for physiological processes or diseases.Prior research on singularly perturbed differential
difference equations has mostly focused on the existence and uniqueness of the solutions to the problems,
giving the problem of creating approximate solutions far less attention.

The study of boundary value problems (BVPs) for singularly perturbed differential difference equa-
tions individually was started in 1982 by Lange and Miura [16]. The authors used the asymptotic
approach to find an approximate solution to these boundary value problems (BVPs) and published a
number of research articles on the subject. The highest order derivative of a class of BVPs for linear
second order differential difference equations, in which[35] shifts of both positive and negative types
are multiplied by a tiny parameter, was examined by the authors. The words "positive shift" for "ad-
vance" and "negative shift" for "delay" were employed by the writers. These works concentrated on
solving problems whose solutions display turning point behavior, resonance behavior, fast oscillations,
and boundary layer and inner layer phenomena.

A study on asymptotic stability for a homogeneous singularly perturbed system of differential equa-
tions with unbounded delay was published in 1992 by Voulov et al. The authors of this study derive
necessary requirements for the null solution of a homogeneous system of differential equations with
unbounded delay to be equiasymptotically stable under singular perturbation [34].

The BVPs for singularly perturbed linear second order differential difference equations [23] were the
subject of further investigation by Lange and Miura. The authors examined shifts of a fixed type in
their earlier research on such BVPs. They also examined modified versions of classical singly perturbed
ordinary differential equations. Matching asymptotic expansions is a technique that is extended to the
analysis of BVPs for linear differential equations with minor shifts whose solutions show layer behavior.
Analyses of analogous boundary value issues with oscillatory behavior in their solutions are presented
in the companion paper.

In 2002, a numerical investigation of boundary value problems for second order differential difference
equations with minor shifts and unique perturbations was started [1]. The authors of this paper examine
the situation in which boundary layer behavior is displayed by the solutions of such BVPs. To get the
numerical solution for these BVPs, a difference technique based on finite differences is developed. The
stability and convergence of the given difference scheme are examined. The authors use a number of
numerical experiments to show how shifts affect the behavior of the boundary layer in the solution.

12



Chapter 2

Singularly Perturbed Reaction
Diffusion Problems with Delay and
Advance

Boundary layer behavior is typically seen in the solution of the singularly perturbed differential equation.
The singular perturbation parameter ϵ generally does not behave consistently well for all values of the
traditional numerical methods, and in particular, the results are not satisfactory when the singular
perturbation parameter ϵ is small.[30] There are primarily two methods based on the fitted mesh and
the fitted operator to solve this issue.[15] First, a finite difference operator that reflects the differential
operator’s singularly perturbed nature is used in place of the standard finite difference operator. The
numerical techniques using such difference operators on a uniform mesh are known as fitted operator
methods, and these difference operators are generally referred to as fitted finite difference operators
[30].In most of the cases, the fitted finite difference operator is used at all points of the mesh [15].
However, Farrell demonstrated that, in some circumstances, the mesh points in the boundary layer
region might employ the fitted finite difference operator, while the remainder of the domain uses the
normal finite difference operator.

However, some issues cannot be solved with an ϵ-uniform fitted mesh approach; instead, an ϵ-uniform
finite difference operator on a uniform mesh can be used to solve the problem. The finite mesh approach
consists of a standard finite difference operator as well as a unique kind of piecewise uniform mesh
condensed in the boundary layer regions to reflect the singularly perturbed nature of the solution [15].
These kinds of meshes were introduced by Shishkin. The fitted mesh method is a numerical technique
that uses a piecewise uniform mesh and a typical finite difference operator. Miller et al. published the
first numerical findings obtained with a fitted mesh approach.

We establish two numerical schemes in this chapter to solve boundary value problems for a class
of differential difference equations[32] that are singularly perturbed and have small delay and advance
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CHAPTER 2. SINGULARLY PERTURBED REACTION DIFFUSION PROBLEMS WITH DELAY
AND ADVANCE

with layer behavior. These schemes are based on two different approaches: (i) the standard upwind
finite difference scheme on a uniform mesh; (ii) the fitted mesh finite difference method, which consists
of a standard finite upwind difference scheme on a piecewise-uniform mesh[13]. We apply Taylor’s series
expansion to the terms that contain advance or delay, given that both the advance and the delay are of
order o(ϵ).

The coeffcient of the reaction term in the differential equation obtained after applying Taylor’s series
for the terms comprising both advance and delay is also of o(ϵ) because both the advance and delay are
of small order of ϵ.

14



2.1. PROBLEM DESCRIPTION
CHAPTER 2. SINGULARLY PERTURBED REACTION DIFFUSION PROBLEMS WITH DELAY

AND ADVANCE

2.1 Problem Description

Here, we consider a boundary value problem of reaction diffusion type with small delay as well as
advance,

ϵu′′(x) + p(x)u(x− δ) + s(x)u(x) + q(x)u(x+ η) = g(x)

on ξ = (0, 1) subject to the discrete boundary conditions,

u(0) = ρ(x) = 1

u(1) = σ(x) = 1 (2.1)

here , p(x) , q(x) ,s(x) , ρ(x) and σ(x)[14] are smooth functions.
Here, 0 < ϵ <<< 1 is perturbation parameter with δ and η [29]as delay and advance parameter

respectively. For the solution u(x) to be smooth . It must be continuous on [0,1] and continuously
differentiable on (0,1) [18]. The layer behavior or oscillatory behavior of the problem depends on the
sign of p(X) + q(X) + s(X). The problem shows layer behavior if p(X) + q(X) + s(X) < 0.

Now, we consider a simple model problem of reaction diffusion type with dirichlet condition[30]

Dϵ = −ϵu′′(x) + p(x)u(x) = g(x) (2.2)

where , both g(x) and p(x) are smooth functions and p(x) ≥ p > 0.
The solution of a boundary value problem shows boundary layer behaviour if the condition p(x) +

q(x) + s(x) < 0 is satisfied.
In both cases , (2.1) and (2.2) , to understand the behaviour of solution in boundary layers, we

first use standard upwind finite difference operator with uniform mesh. Since, ϵ- Unifrom mesh doesn’t
work well in most of the cases in the boundary layer region, we will use Shishkin mesh introduced by
a Russian mathematician Grigorii Ivanovich Shishkin in 1988 , which is a piecewise uniform mesh, to
study boundary layer behaviour. To simplify the delay and advance parameter which are of O(ϵ) , we
will use taylor series expansion.

2.2 Analytical Results

The solution of the problem (1.1),(1.2) is suffciently differentiable and the delay as well as advance are
very small,[30] therefore by using Taylor’s series expansion approximate the terms containing delay and
advance [17],

u(x− δ) ≈ u(x)− δu′(x)

and
u(x+ η) ≈ u(x) + ηu′(x) (2.3)

15
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using equation (2.2) in equation (1.1),(1.2), we obtain [19],

⇒ ϵu′′(x) + p(x)(u(x)− δu′(x)) + q(x)(u(x) + ηu′(x)) + s(x)u(x) = g(x)

⇒ ϵu′′(x) + (q(x)η − p(x)δ) + (p(x) + q(x) + s(x))u(x) = g(x) (2.4)

and
u(0) = ρ0, ρ0 = ρ(0)

u(1) = σ1, σ1 = σ(1) (2.5)

The differential operator Dϵ corresponding to the problem (2.4), (2.5) for any smooth function is defined
as ϕ ∈ C2(ξ) is defined as,

Dϵϕ(x) = ϵu′′(x) + (q(x)η − p(x)δ) + (p(x) + q(x) + s(x))u(x)

Minimum Principle:- Assume ϕ ∈ C2(ξ) is a smooth function satisfying ϕ(0) ≥ 0 , ϕ(1) ≥ 0 and
Dϵϕ(t) ≤ 0 for all x ∈ ξ. Then ϕ(t) ≥ 0 for all t ∈ ξ.

Proof:- Let t∗ ∈ ξ be such that ϕ(t∗) = minx∈ξϕ(t) an.d assume that ϕ(t∗) < 0.
Clearly t∗ /∈ {0, 1}, therefore ϕ′ (t∗) = 0 and ϕ′′ (t∗) ≥ 0. We have

Dϵϕ(t
∗) = ϵϕ

′′
(t∗) + (q(t∗)η − p(t∗)δ)ϕ

′
(t∗) + (p(t∗) + q(t∗) + s(t∗))ϕ(t∗) > 0

which contradicts the hypothesis. Therefore ϕ (t∗) ≥ 0 and thus ϕ(t) ≥ 0∀t ∈ ξ̄ [16].

Lemma 1. Let u(x) be the solution of the problem (6), (7), then we have

∥u∥ ≤ θ−1∥g∥+max (|ρ0| , |σ1|) .

Proof:- Let us consider the barrier functions [34] ϕ±defined by

ϕ±(x) = θ−1∥g∥+max (|ρ0| , |σ1|)± u(x)

Then we have

ϕ±(0) = θ−1∥g∥+max (|ρ0| , |σ1|)± u(0)

= θ−1∥g∥+max (|ρ0| , |σ1|)± ρ0, since u(0) = ρ0

≥ 0,

16



2.2. ANALYTICAL RESULTS
CHAPTER 2. SINGULARLY PERTURBED REACTION DIFFUSION PROBLEMS WITH DELAY

AND ADVANCE

ϕ±(1) = θ−1∥g∥+max (|ρ0| , |σ1|)± u(1)

= θ−1∥g∥+max (|ρ0| , |σ1|)± σ1, since u(1) = σ1

≥ 0

(2.6)

and we have from [34]

Dϵϕ
±(x) = ϵ

(
ϕ±)′′ (x) + (q(x)η − p(x)δ)

(
ϕ±)′ (x) + (p(x) + q(x)

+ s(x))ϕ±(x)

= (p(x) + q(x) + s(x))
(
θ−1∥g∥+max (|ϕ0| , |σ1|)

)
±Dϵu(x)

(2.7)

Since (p(x)+ q(x)+ s(x)) ≤ −θ < 0, so (p(x)+ q(x)+ s(x))θ−1 ≤ −1. Using this inequality and the
Eq. (2.4) for Dϵu(x) in the above equation, we get

Dϵϕ
±(x) = −∥g∥+ (p(x) + q(x) + s(x))max (|ρ0| , |σ1|)

]
± g(x)

Dϵϕ
±(x) ≤ 0 ∀x ∈ ξ, since (p(x) + q(x) + s(x)) < 0 and ∥g∥ ≥ g(x)

(2.8)

Therefore by the minimum principle, we get,

ϕ±(x) = θ−1∥g∥+max (|ρ0| , |σ1|)± u(x) ≥ 0 ∀ x ∈ ξ̄

which gives the required bound of the solution u.

Result 1. If u is the solution of the problem (2.4) , (2.5). Then,

∥u(k)∥ ≤ Cϵ−2k where k = 1, 2, . . .

Result 2. Let u = sϵ + tϵ, sϵ = s0 + ϵs1 and tϵ = tl + tτ be the decomposition of the solution of the
problem (2.4), (2.5) and assume that (q(x)η − p(x)δ) > 0. For all 0 ≤ k ≤ 3 and for sufficiently small
ϵ, the functions s0, s1, tl, tr and their derivatives satisfy the following bounds,[34]∥∥∥s(k)0

∥∥∥
ξ
≤ C,∥∥∥s(k)1

∥∥∥
ξ̄
≤ Cϵ−k,∣∣∣t(k)l (x)
∣∣∣ ≤ Cϵ−k exp(−x

√
θ/ϵ), x ∈ ξ̄∣∣∣t(k)r (x)

∣∣∣ ≤ Cϵ−k exp(−(1− x)
√
θ/ϵ), x ∈ ξ̄
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2.3 Standerd Finite Difference Scheme

In some cases, it is difficult to find the analytic solution of the problem. [7] So finite difference method
is a numerical technique use to find the approximate solution of differential equation. In finite difference
method, we replace the derivative term of differential equation with some approximated finite difference
formulas. These approximated finite difference formulas will transform the differential equation into
system of algebraic equation. This system of algebric equations can be written into AU = B where A

is tridiagonal matrix and U is the set of solutions of equation.

The error that arises when a differential operator is converted to a difference operator determines
the discrepancy between the exact and numerical answers. This type of error is called a "truncation
error" or a "discretization error." The term "truncation error" describes how a limited part of a Taylor
series is used in the approximation.

In equation (2.3) and (2.4), for discrete approximation , we use a uniform mesh of size h = 1
N and

replace u′′ and u′ by central and forward difference approximations. xi = (i − 1)h denote the value of
mesh points. Where i = 1, 2 . . . N + 1

DN
1 ui = g (xi) (2.9)

u0 = ρ0, ρ0 = ρ(0),

uN = σ1, σ1 = σ(1),
(2.10)

where the discrete operator DN
1 is defined as

DN
1 ui = ϵD+D−ui + (q (xi) η − p (xi) δ)D+yi + (p (xi) + q (xi) + s (xi))ui

D+D−ui = (ui−1 − 2ui + ui+1) /h
2, D+ui = (ui+1 − ui) /h and

D−yi = (yi − yi−1) /h

,

on simplification,

DN
1 ui = Eiui−1 − Fiui +Giui+1 = Hi (2.11)

where
Ei = ϵ/h2,

Fi = 2ϵ/h2 + (qiη − piδ) /h− (pi + qi + si) ,

Gi = ϵ/h2 + (qiη − piδ) /h,

Hi = gi, i = 1, 2, . . . N + 1.

(2.12)

The system of equations given by equation (2.12) will form a tridiagonal system of N + 1 equations
(two equations are given by the boundary points) with N + 1 unknowns uo, u1, . . . uN
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2.3.1 Finite Difference Discretization

Let us consider a singularly perturbed reaction diffusion problem .

Dϵ = −ϵu′′(x) + p(x)u(x) = g(x) , for x ∈ (0, 1) (2.13)

with boundary conditions
u(0) = 0 , u(1) = 0

where , p(x) > 0 , ϵ <<<< 1. [25]
Assume that p(x) and g(x) lies in the interval [0,1] into n subintervals by an equidistant mesh

xi = a+ (i− 1) ∗ h for i = 1, 2, .........., N + 1 and h = 1/N .
To approximate the solution at these equidistant points we used central difference formulas or ap-

proximations,

u′′(x) =
ui−1 − 2ui + ui+1

h2
, u′(x) =

ui+1 − ui−1

2h

For i = 1, 2, .........., N by using these central difference approximations in equation (10),we get,

ui−1(−ϵ) + ui(2ϵ+ h2α) + ui+1(−ϵ) = h2f(x)

and further ,we can express it in the form of N +1 ∗N +1 tridiagonal matrix form AU = D where,

A=



1 0

-ϵ 2ϵ+ h2p -ϵ

0 -ϵ 2ϵ+ h2p -ϵ

. . . . . . . . .

-ϵ 2ϵ+ h2p -ϵ

0 1



U=



u1

u2

u3

...
un+1


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and

D=


h2g(x1)
h2g(x2)

...
h2g(xn+1)



2.3.2 Upwind Finite Difference Scheme
[10]Upwind Finite Difference Scheme is generally used to avoid the unnecessary oscillations form the
obtained solutions.
upwinding occurs when the one sided difference taken on the side away from the layer i.e.,

u′(x) =
ui − ui−1

h

in this paper , upwind finite difference scheme will be used for further approximation of solution.
The difference between standard finite difference method using forward difference approximation with
uniform mesh and standard finite difference method using upwind scheme can be seen by the graphs given

below,

Figure 2.1: Finite Difference Method with Forward Difference
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Figure 2.2: Finite Difference Method with upwind Scheme

2.3.3 Stability and Convergence Analysis
Theorem 1. Let (q(x)η − p(x)δ) ≥ K > 0 and (p(x) + q(x) + s(x)) < −θ < 0∀x ∈ [0, 1], then the
solution of the system of difference equation (13) together with the boundary conditions exists, is unique
and satisfies,

∥u∥h,∞ ≤ C−1∥g∥h,∞ + (∥ρ∥h,∞ + ∥σ∥h,∞) (2.14)

where ,C = M or ∥qη− pδ∥h,∞,is a constant independent of h and ε. ∥.∥h,∞ is the discrete l∞− norm,
given by

∥x∥h,∞ = max
0≤i≤N

|xi|

Proof:- Let vi be any mesh function satisfying

DN
1 vi = gi

Combining this with Eq. (13) followed by a rearrangement of terms gives

Fivi = −gi + Eivi−1 +Givi+1

Taking modulus on both the sides and using the non-negativity of the coefficients (Ei, Fi and Gi), we
obtain

Fi |vi| ≤ |gi|+ Ei |vi−1|+Gi |vi+1|
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Using Eq. (2.12), for Ei, Fi and Gi, the above inequality becomes,(
2ϵ/h2 + (qiη − piδ) /h− (pi + qi + si)

)
|vi| ≤ |gi|+

(
ϵ/h2

)
|vi−1|

+
(
ϵ/h2 + (qiη − piδ) /h

)
|vi+1|

(2.15)

i = 1, 2, . . . N + 1. A rearrangement in the above inequality (2.15) yields

ϵ (|vi−1| − 2 |vi|+ |vi+1|) /h2 + (qiη − piδ) (|vi+1| − |vi|) /h

+(pi + qi + si)) |vi|+ |gi| ≥ 0.
(2.16)

To replace the coefficient (qiη − piδ) in above inequality(2.16), the sign of the expression (|vi+1| − |vi|)
to be noted.If (|vi+1| − |vi|) ≥ 0, we use the inequality 0 < (qiη − piδ) ≤ ∥(qη − pδ)∥h,∞ and if
(|vi+1| − |vi|) < 0, we use the inequality (qiη − piδ) ≥ K > 0.Thus using the above results in above
inequality (18), we get,

ϵ (|vi−1| − 2 |vi|+ |vi+1|) /h2 + C (|vi+1| − |vi|) /h+ (pi + qi + si) |vi|+ |gi| ≥ 0 (2.17)

where ,C = M or ∥(βη−αδ)∥h,∞,is a positive constant which depends on the sign of the expression
(|zi+1| − |zi|). Now,on rearrangement of the terms in the inequality (19) gives,

ϵ (|vi+1| − |vi|) /h2 − ϵ (|vi| − |vi−1|) /h2 + C (|vi+1| − |vi|) /h

+ |fi|+ (pi + qi + si) |vi| ≥ 0.
(2.18)

[27]To prove the existence and uniqueness of the solution of the system of linear difference equations
(2.11), suppose ⟨ui⟩Ni=0 and ⟨vi⟩Ni=0 be two sets of solutions to the system of linear difference equations
(2.11) satisfying the boundary conditions. Let vi = ci − di. This satisfies

DN
1 (vi) = gi

where
gi = 0 and v0 = 0 = N.

On taking summation (2.18) from 1 to N + 1 and using v0 = 0 = vN , we obtain

−
(
ϵ/h2

)
|v1| −

(
ϵ/h2

)
|vN−1| − (C/h) |v1|+

N−1∑
i=1

(pi + qi + si) |vi| ≥ 0. (2.19)

Since C > 0, (pi + qi + si) < 0 and |zi| ≥ 0, i = 1, 2, . . . N +1, therefore for inequality (2.19) to hold,
we must have

vi = 0, i = 1, 2, . . . N + 1.
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Thus, the uniqueness of the solution of the tridiagonal system is proved. The solution of the tridi-
agonal system of difference equatiuon exist and is unique(the existance is implied by uniqueness in case
on linear equation). Now to establish the estimate, let

vi = ui − li

where ui satisfies the difference equations (2.11) and the boundary conditions and

li = (1− ih)ρ0 + (ih)σ1

Then v0 = 0 = vN and vi satisfy [28]

DN
1 (vi) = gi, i = 1, 2, . . . N + 1

Now let
|vn| = ∥v∥h,∞ ≥ |vi| , i = 1, 2, . . . N + 1 (2.20)

Then summing (2.17) from i = n to N + 1 gives, [22]

− ϵ (|vn| − |vn−1|) /h2 − ϵ2 |vN−1| /h2 − C |vn| /h

+

N−1∑
i=n

(pi + qi + si) |vi|+
N−1∑
i=n

|gi| ≥ 0.
(2.21)

From the above inequality (2.20), we have (|vn| − |vn−1|) > 0 and (pi + qi + si) < 0. After removing
the first, second and fourth terms from these inequalities, we get by (2.21),

C |vn| ≤ h

N−1∑
i=n

|gi|

≤ h

N∑
i=0

|gi|

≤ ∥g∥h,∞,

i.e., we have

|vn| ≤ C−1∥g∥h,∞.

∥u∥h,∞ = max
0≤i≤N

|ui|
(2.22)

Using ui = vi + li, we obtain

∥u∥h,∞ ≤ ∥v∥h,∞ + ∥l∥h,∞
= |vn|+ ∥l∥h,∞, from Eq. (23).

(2.23)
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Now, we shall find out the bound on ∥l∥h,∞,

∥l∥h,∞ = max
i∈[0,N ]

[|li |]

≤ max
i∈[0,N ]

[|(1− ih)ρ0 + (ih)σ1|]

≤ max
i∈[0,N ]

[(1− ih) |ρ0|+ (ih) | σ1∥] ,

i.e., we have
∥l∥h,∞ ≤ |ρ0|+ |σ1|

≤ ∥ρ∥h,∞ + ∥σ∥h,∞.
(2.24)

Now using the inequalities (2.22) and (2.24) in the inequality (2.23), we obtain the required estimate
(2.14)

∥u∥h,∞ ≤ C−1∥g∥h,∞ + (∥ρ∥h,∞ + ∥σ∥h,∞) .

Thus , The theorem has demonstrated that the solution to the system of difference equations (2.11),
regardless of the mesh size h and parameter ϵ, is uniformly limited. The scheme is therefore stable for
all step sizes.[12]

2.4 Fitted Mesh Finite Difference method

2.4.1 Piecewise Uniform Shishkin Mesh

The uniform mesh xi = a+(i−1)∗h could not determine the layer behaviour accurately. So to capture
the sharp edges in the layer region. Russian mathematician G.I. Shishkin gave a piecewise uniform mesh
called shishkin mesh.The width of Shishkin mesh can be adjust by the nature of solution.

The mesh spacing is always chosen in such a way that the layer region get maximum number of
solution points and more the number of solution points in the layer region more final will be the region
of interest can be studied. Shishkin mesh is generally used when the solution exhibits sharper edges and
this strategy of using piecewise uniform mesh helps to get the important features in the layer region of
the solution.

[30]In this part, The fitted mesh finite difference method is employed, comprising of a conventional
upwind finite difference operator applied to a piecewise uniform mesh that condenses at the boundary
points x = 0 and x = 1., to discretize the boundary value problems (2.4), (2.5). In order to create the
fitted piecewise-uniform mesh ξ

N
on the interval [0,1], the interval is divided into three subintervals:

(0, λ), (λ, 1−λ), and (1−λ, 1).[6] A uniform mesh is created on each of these subintervals, i.e., N
4 +1equal

mesh points are created from the intervals (0, λ) and (1 − λ, 1), and N
2 equal mesh points are created

from the interval (λ, 1−λ). One parameter, known as the transition parameter, determines the piecewise
uniform mesh that is produced λ = min

[
1
4 , (

2
α )ϵlogN

]
. In order to ensure that there is at least one

point in the boundary layer, we assume that N = 2r with r ≥ 3.
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Figure 2.3: Interval Distribution of Shishkin Mesh for Reaction-Diffusion

The difference in mesh spacing between standard finite difference method with uniform mesh and fitted
finite difference scheme under piecewise uniform mesh is shown by the figures 2.4 and 2.5 below,

Figure 2.4: Mesh spacing under Standard Finite Difference Method
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Figure 2.5: Mesh spacing under Shishkin Mesh

2.4.2 Discrete Minimum Principle
Suppose ϕ0 ≥ 0 and ϕN ≥ 0. The DN

3 ϕi ≤ 0 for all xi ∈ ξN implies that ϕi ≥ 0 for all x ∈ ξ̄N . [34]
Proof:- Let k be such that ϕk = min0≤i≤N ϕi and assume ϕk < 0. Then we have ϕk − ϕk−1 ≤
0, ϕk+1 − ϕk ≥ 0 and

DN
3 ϕk =ϵD+D−ϕk + (q (xk) η − p (xk) δ)D

+ϕk

+ (p (xk) + q (xk) + s (xk))ϕk

=2ϵ

(
(ϕk+1 − ϕk)

hk+1
− (ϕk − ϕk−1)

hk

)
/ (hk + hk+1)

+ (q (xk) η − p (xk) δ) (ϕk+1 − ϕk) /hk+1

+ (p (xk) + q (xk) + s (xk))ϕk

>0

[16] which is a contradiction to the fact that ϕk < 0, Hence ϕk ≥ 0.Choosing k as a fixed arbitrary
number. We have ϕi ≥ 0 for all i, 0 ≤ i ≤ N .

Result 3. Suppose Hi be any mesh function such that H0 = HN = 0. Then for all i, 0 ≤ i ≤ N

|Hi| ≤ θ−1 max
1≤j≤N−1

∣∣DN
3 Hj

∣∣ .
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2.4.3 Error Estimaste

Theorem 2. The solution UN = ⟨ui⟩Ni=0 of the discrete problem (2.9), (2.10) and the solution u(x) of
the problem (2.4), (2.5) satisfy the following ϵ-uniform error estimate [16]

∥∥UN − u
∥∥ ≤ CN−1 lnN,

where C is a constant independent of ϵ.
Proof:-In the same way that we broke down the solution u of the continuous problem (2.4), (2.5),

we do the same for the solution UN of the discrete problem (2.09), (2.10).. Thus [34]

UN = SN
c + TN

c

where SN
ϵ is the solution of the inhomogeneous problem

DN
3 SN

ε (xi) = g (xi) for all xi ∈ ξN, SNc (0) = sϵ(0), SNε (1) = sϵ(1)

and TN
ϵ is the solution of the homogeneous problem

DN
3 TN

c (xi) = 0 for all xi ∈ ξN, SNc (0) = sc(0), SNϵ (1) = sc(1).

Then the error can be written in the form

UN − u =
(
SN
ϵ − sϵ

)
+

(
TN
ϵ − tϵ

)
. (2.25)

Now, the error in the regular and singular components will be estimated separately [9].For estimating
the error for the regular component from the differential and difference equations, we have

DN
3

(
SN
ϵ − sϵ

)
(xi) = g (xi)−DN

3 sϵ (xi) =
(
Dk −DN

3

)
sϵ (xi)

= ϵ

(
d2

dx2
−D+D−

)
sϵ (xi) + (q(x)η − p(x)δ)

(
d

dx
−D+

)
sϵ (xi) .

(2.26)

Let xi ∈ ξN . Then for any ϕ ∈ C2(ξ),∣∣∣∣(D+ − d

dx

)
ϕ (xi)

∣∣∣∣ ≤ (xi+1 − xi)
∥∥∥ϕ(2)

∥∥∥ /2
and for any ϕ ∈ C3(ξ̄), [13]∣∣∣∣(D+D− − d2

dx2

)
ϕ (xi)

∣∣∣∣ ≤ (xi+1 − xi−1)
∥∥∥ϕ(3)

∥∥∥ /3
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Using above results in Eq. (2.26) and after a simplification, we get,

∣∣Dϵ

(
SN
ϵ − sϵ

)
(xi)

∣∣ ≤ C (xi+1 − xi−1)
(
ϵ
∥∥∥s(3)ϵ

∥∥∥+ ∥qη − pδ∥
∥∥∥s(2)ϵ

∥∥∥) , xi ∈ ξN .

[34]Since xi+1 − xi−1 ≤ 2N−1, η, δ are of o
(
ϵ2
)

and using Result(2) to estimate s
(2)
ϵ and s

(3)
c , we

get,

∣∣Dϵ

(
SN
ϵ − sϵ

)
(xi)

∣∣ ≤ CN−1, xi ∈ ξN . (2.27)

An application of Result 3 ,the mesh function
(
SN
c − sk

)
(xi) gives

∣∣(SN
ϵ − sϵ

)
(xi)

∣∣ ≤ θ−1 max
j∈[1,N−1]

∣∣Dϵ

(
V N
ϵ − sϵ

)
(xj)

∣∣ (2.28)

Using inequality (2.27) in the above inequality (2.28), we get

∣∣(SN
c − sc

)
(xi)

∣∣ ≤ CN−1, xi ∈ ξN . (2.29)

The estimates of the singular component of the error DN
3

(
TN
c − tc

)
rely on the transition parameter

λ, and can be determined by either λ = 1/4 or λ = Cϵ lnN , where C = 1/
√
θ.

Case i) Cϵ lnN ≥ 1/4, i.e., when the mesh is uniform [16]
When the smooth component of the error is estimated using classical method, it results in,

∣∣DN
3

(
TN
ϵ − tϵ

)
(xi)

∣∣ ≤ C (xi+1 − xi−1)
(
ϵ
∥∥∥t(3)ϵ

∥∥∥+ ∥(qη − pδ)∥
∥∥∥t(2)ϵ

∥∥∥) , xi ∈ ξN

Using the bounds for the derivatives of t (Result 2), the fact that (xi+1 − xi−1) = 2N−1 and the
restriction on η, δ (η, δ are of o (ϵ)), we get, [34]

∣∣DN
ϵ

(
TN
ε − tϵ

)
(xi)

∣∣ ≤ Cϵ−1N−1, xi ∈ ξN .

Using ε−1 ≤ 4C lnN in the above inequality, we get,

∣∣DN
3

(
TN
ϵ − tϵ

)
(xi)

∣∣ ≤ CN−1 lnN, xi ∈ ξN . (2.30)

Now by usinf Result 3 for the mesh function
(
TN
ϵ − tϵ

)
(xi), we get

∣∣(TN
ϵ − tϵ

)
(xi)

∣∣ ≤ θ−1 max
1≤j≤N−1

∣∣DN
3

(
TN
ε − tϵ

)
(xj)

∣∣ . (2.31)

Combining (2.30) with (2.31), we get

∣∣(TN
ϵ − tϵ

)
(xi)

∣∣ ≤ CN−1 lnN, xi ∈ ξN . (2.32)
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Case ii)[34] Cϵ lnN < 1/4, i.e., when the mesh is piecewise uniform with mesh spacing
4λ/N in the subintervals [0, λ], [1− λ, 1] and 2(1− λ)/N in the subinterval [λ, 1− λ]

We will now estimate the error’s singular component in each subinterval independently. In the
boundary layer regions, that is, in the subintervals [0, λ] and [1 − λ, 1], we first estimate the singular
component. We apply comparable classical reasoning to xi lying in the open subintervals (0, λ) and
(1− λ, 1), as we did in the first example, and get,

∣∣DN
3

(
TN
ϵ − tϵ

)
(xi)

∣∣ ≤ CλN−1ϵ−1

In the above inequality using λ = Cϵ lnN , we get,

∣∣DN
3

(
TN
c − ts

)
(xi)

∣∣ ≤ CN−1 lnN (2.33)

On estimating the singular component of the error in the smooth region, i.e., for xi ∈ [λ, 1− λ]. We
have [16] ∣∣DN

3

(
TN
ϵ − tc

)
(xi)

∣∣ ≤ϵ
∣∣(D+D−tc − t′′c

)
(xi)

∣∣
+ ∥qη − pδ∥

∣∣(D+tϵ − t′ϵ
)
(xi)

∣∣ (2.34)

But we have

∣∣D+D−tc (xi)
∣∣ ≤ max

xi−1≤xi≤xi+1

|t′′c | and
∣∣D+tc (xi)

∣∣ ≤ max
xi−1≤xi≤xi+1

|t′c|

Using these results in the above inequality (2.34), we get,

∣∣DN
3

(
TN
ϵ − tϵ

)
(xi)

∣∣ ≤ 2ϵ max
xi−1≤xi≤xi+1

|t′′ϵ |+ 2∥qη − pδ∥ max
xi−1≤xi≤xi+1

|t′ϵ|

Using the fact that η, δ are of o (ϵ) and the bounds for t′′ϵ and t′e from Result 2, we get,[34]

∣∣DN
ϵ

(
TN
ϵ − tϵ

)
(xi)

∣∣ ≤ C exp
(
−xi−1

√
θ/ϵ

)
if xi ≤ 1/2∣∣DN

ϵ

(
TN
ε − tϵ

)
(xi)

∣∣ ≤ C exp
(
− (1− xi)

√
θ/ϵ

)
if xi ≥ 1/2

(2.35)

Case When xi ≤ 1/2; Since xi ∈ [λ, 1− λ], either xi > λ or xi = λ.
a) For xi > λ, we have xi−1 ≥ λ since xi ∈ [λ, 1− λ].
[4]Since exp(−x) is a decreasing function for allx ∈ R+, therefore from this fact we have

exp
(
−xi−1

√
θ/ε

)
≤ exp(−τ

√
θ/ϵ)

= exp(− lnN), since λ = ϵ lnN/
√
θ

= N−1

(2.36)
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b) For xi = λ, we have xi−1 = xi − hi. But hi = 4τ/N for i = 1, 2, . . . N/4. Thus

exp
(
−xi−1

√
θ/ϵ

)
= exp(−(λ− 4λ/N)

√
θ/ϵ)

= exp(−λ
√
θ/ϵ) exp

(
4N−1

√
θ/ϵ

)
= exp(− lnN) · exp

(
4N−1 lnN

)
, since λ = ϵ lnN/

√
θ

= N−1(N)4/N

Since we have N1/N ≤ C ′∀N ≥ 1, where C ′ is constant, using this inequality into the above equation,
we get

exp
(
−xi−1

√
θ/ϵ

)
≤ C ′N−1 (2.37)

Using inequalities (2.36), (2.37) in the inequality (2.35) for xi ≤ 1/2, we have

∣∣DN
3

(
TN
ϵ − tϵ

)
(xi)

∣∣ ≤ CN−1 lnN. (2.38)

Similarly the same result can be obtained when xi ≥ 1/2 Now, combining the inequalities (2.38) with
the inequality (2.33), we get,

∣∣DN
3

(
TN
ϵ − tϵ

)
(xi)

∣∣ ≤ CN−1 lnN ∀xi ∈ ξN (2.39)

Now an application of Result 3 for the mesh function, (Tϵ − tϵ) (xi) gives,

∣∣(tNϵ − tϵ
)
(xi)

∣∣ ≤ θ−1 max
1≤j≤N−1

∣∣DN
3

(
TN
ϵ − tϵ

)
(xj)

∣∣ (2.40)

Using inequality (41) in the inequality (42), we get the estimate for the singular component of the
error in whole domain,[13] i.e., for all xi ∈ ξN

∣∣(WN
ε − tϵ

)
(xi)

∣∣ ≤ CN−1 lnN (2.41)

Hence the inequalities (2.29) and (2.40) gives the required error estimate.
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Chapter 3

Numerical Computations

Consider a simple model problem of reaction diffusion type ,

ϵ2u′′(x)− u(x− δ) + u(x)− 1.25u(x+ η) = 1 (3.1)

with boundary conditions[20],
u(x) = 1 ,−δ ≤ x ≤ 0

and
u(x) = 1 , 1 ≤ x ≤ 1 + η

Using Taylor’s series expansion, [17]

u(x− δ) ≈ u(x)− δu′(x)

and
u(x+ η) ≈ u(x) + ηu′(x)

we get,
ϵ2u′′(x) + (δ − 1.25η)u′(x)− 1.25u(x) = 1 (3.2)

the actual solution of the problem is given by,

u(x) = c1e
(s+t)x + c2e

(s−t)x − 0.8 (3.3)

where,

c1 =
1.8(1− es−t)

es+t − es−t
, c2 = 1.8− c1

s =
−(δ − 1.25η)

2ϵ2
, t =

√
(δ − 1.25η)2 + 5ϵ2

2ϵ2
(3.4)

Now , we show the Boundedness, Stability and Convergence for the model problem (3.1).
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3.1 Boundedness

Here we consider mainly three cases, and by using Lemma 1,

Case 1:- When δ = 0 and η ̸= 0, then using this information in (3.4) ,we get,

s− t < 0

Case 2:- When δ ̸= 0 and η = 0, and since, the magnitude of "s" is less then the magnitude of "t " ,
then using this information in (3.4), we get,

s− t < 0

Case 3:- When δ = η,
s− t < 0

So. we get that s− t < 0 for each of three cases, then the term es−t → 0 as ϵ → 0. Therefore, (3.3)
becomes,

u(x) ≤ 1.8e[(s+t)(x−1)] − 0.8 ≤ 1.8

so, we get
u(x) ≤ 1.8

Then , Lemma 1 proved and u(x) is bounded.

3.2 Boundedness of Derivatives

Theorem 3. [33]Let u be the solution of the problem (2.4), (2.5). Then for k = 1, 2, 3∥∥∥u(k)
∥∥∥ ≤ Cϵ−k.

Proof:- For x ∈ ξ, construct a neighborhood Nx = (c, c+ ϵ), where c is a positive constant chosen
so that x ∈ Nx and Nx ⊂ Ω. [13] Then by the Mean Value Theorem, for some z ∈ Nx, we have

u′(v) =
y (c+ ϵ)− u(c)

ϵ

which on simplification gives
|u′(v)| ≤ 2ϵ−1∥u∥

Using Lemma 1 for the bound on u in the above inequality, we get [13]

|u′(v)| ≤ 2ϵ−1
(
∥g∥θ−1 +max (|ρ0| , |σ1|)

)
. (3.5)
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using equation (3.1),
|u′(v)| ≤ 2ϵ−1(1.8)

≤ 3.6ϵ−1
(3.6)

We have, ∫ x

v
u′′(t)dt = u′(x)− u′(z)

i.e., u′(x) = u′(v) +
∫ x

v
u′′(t)dt

(3.7)

Using the differential equation (3.1) for substituting the value of u′′(t) in the above Eq. (3.7) and
then taking modulus on both the sides , we get,

|u′(x)| ≤ |u′(v)|+ ϵ−1

∫ x

v

[1− (δ − 1.25η)u′(t) + 1.25u(t)]dt

Using the fact that the maximum norm of a function is always greater than or equal to the function
value on the domain of consideration in the above inequality, we get [32]

|u′(x)| ≤ |u′(v)|+ ϵ−1|x− v|+ ϵ−1(δ − 1.25η)

∣∣∣∣∫ x

z

u′(t)dt

∣∣∣∣
+ 1.25ϵ−1∥u(t)∥|x− v|

Using Lemma 1 for the bound on u and inequality (3.5) in the above inequality, we get ,

|u′(x)| ≤ 3.6ϵ−1 + ϵ−1|x− v|+ ϵ−1(δ − 1.25η) |u(x)− u(v)|

+ 1.25ϵ−1 ∗ 1.8 ∗ |x− v|

Using the inequality 0 < |x− v| ≤ 1 followed by a simplification we use,

|u′(x)| ≤ Cϵ−1, x ∈ ξ

which gives ∥u′∥ ≤ Cϵ−1, where C is a constant and [13]

C = 3.6 + (δ − 1.25η) |u(x)− u(v)|+ 3.25|x− v|

Thus we have obtained the result for k=1 . Similarly , by differentiating equation (3.1) and using
bounds on u(x) and u′(x) we can obtain the required bounds of the second and third derivatives of the
solution u

3.3 Stability and Convergence

On comparing equation (3.2) with equation (2.4), we get,

q(x)η − p(x)δ = −1.25η + δ
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p(x) + q(x) + s(x) = −1.25; g(x) = 1

and u(x) is given by equation (3.3).Now,using ∥.∥ as the discrete l∞- norm i.e. ∥x∥h,∞ = max0≤i≤N |xi|

∥u∥h,∞ ≤ C−1∥g∥h,∞ + (∥ρ∥h,∞ + ∥σ∥h,∞) where,C = ∥qη − pδ∥

≤ C−1(1) + (1 + 1)

≤ C−1(1) + 2

(3.8)

Since , the solution exist uniquely with the boundary conditions and satisfies (3.5). Therefore , the
solution of difference equation is uniformly bounded and independent of mesh size h as well as parameter
ϵ. Hence, the scheme is Stable for all step sizes.[12] and the Convergence is given by the theorem below,

Theorem 4. Under the conditions for Theorem 1, the error ei = u (xi)−ui between the solution u(x) of
the continuous problem (2.4), (2.5) and the solution ui of the discretized problem (2.11) with boundary
conditions, satisfies the estimate

∥e∥h,∞ ≤ K−1∥W∥ (3.9)

where
|Wi| ≤ max

x′∈[xi−1,xi+1]

[
h

2
|(q(x)η − p(x)δ)| |u′′(x)|

]
+ max

x∈[xi−1,xi+1]

[
h2

6
|(q(x)η − p(x)δ)∥u′′′(x)|

]
+ max

x∈[xi−1,xi+1]

[
h2

24
{2ϵ+ h|(q(x)η − p(x)δ)|}

∣∣uiv(x)
∣∣] .

Proof:- The truncation error Wi is defined as

Wi =ϵ
[
(ui−1 − 2ui + ui+1) /h

2 − u′′ (xi)
]

+ (q(x)η − p(x)δ) [(ui+1 − ui) /h− u′ (xi)] .

|Wi| ≤ max
x∈[xi−1,xi+1]

[
h

2
|(q(x)η − p(x)δ)∥|u′′(x)

∣∣∣∣ ]
+ max

x∈[xi−1,xi+1]

[
h2

6
|(q(x)η − p(x)δ)∥u′′′(x)|

]
+ max

x∈[xi−1,xi+1]

[
h2

24

{
2ϵ2 + h|(q(x)η − p(x)δ)|

} ∣∣uiv(x)
∣∣] .

now thw error ei satisfy,

DN
1 e (xi) = DN

1 u (xi)−DN
1 ui = Wi i = 1, 2, . . . N + 1

and e0 = 0 = eN . Using an application of Theorem 1 for the mesh function ei gives

∥e∥h,∞ ≤ C−1∥W∥h,∞.

For fixed values of parameter ϵ,convergence of the difference scheme is established by estimate (3.6).
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3.4 Error and Order of Convergence

Consider u(xi) is the exact solution and ui is the numerical solution. Then the Error at each mesh point
is given by,

ei = |u(xi)− ui|

The maximum norm error is given by,

EN = max∥u(xi)− ui∥

and the Order of Convergence is given by,

CN =
log( EN

EN+1 )

log2

Consider the numerical problem (3.1) with given boundary conditions and actual solution. First we
will draw tables showing maximum norm error and order of convergence for different values of ϵ, N , δ
and η.

Further, we will draw graphs showing convergence between actual solution and numerical solution.
in the table each box has two parts for the value of ϵ and N. The upper part of the box represents the
Max. norm error (EN ) and the lower part of the box represents the Order of Convergence (CN )

Table 3.1: The maximum norm error and Order of Convergence for δ = η = 0.5ϵ under
Standard finite difference method.

ϵ/N 32 64 128 256 512

2−1
0.000192 0.0000481 0.000012 0.00000301 0.00000075
1.94 2.00 1.99 2.00 2.05

2−2
0.000684 0.000171 0.000042 0.0000107 0.0000026
2.00 2.02 1.97 2.04 1.97

2−3
0.0022 0.000563 0.000141 0.0000353 0.0000088
1.96 1.99 1.99 2.00 2.00

2−4
0.0087 0.0022 0.00056 0.000140 0.000035
1.98 1.97 2.00 2.00 2.00

2−5
0.0325 0.0087 0.0022 0.000560 0.00014
1.90 1.98 1.97 2.00 2.00

2−6
0.0781 0.0325 0.0087 0.0022 0.00056
1.26 1.90 1.98 1.97 2.00
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(a) Solution plot for ϵ = 2−2 and N = 64

(b) Solution plot for ϵ = 2−4 and N = 256

Figure 3.1: Solution Plots for Table 3.1
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Table 3.2: The maximum norm error and Order of Convergence for δ = 0, η = 0.5ϵ under
Standard finite difference method.

N/ ϵ 32 64 128 256 512

2−1 0.000136 0.0000341 0.0000085 0.0000021 0.00000053
1.99 2.00 2.01 1.98 2.02

2−2 0.000582 0.000146 0.000036 0.0000091 0.0000092
1.99 2.01 1.98 2.04 1.94

2−3 0.0022 0.00055 0.00014 0.000035 0.0000087
2.00 1.97 2.00 2.01 2.05

2−4 0.0086 0.0022 0.00055 0.000140 0.000035
1.97 2.00 1.99 2.00 2.01

2−5 0.0320 0.0086 0.0022 0.00055 0.00014
1.89 1.97 2.00 1.97 2.00

2−6 0.0933 0.0320 0.0086 0.0022 0.00055
1.54 1.89 1.97 2.00 1.97

Figure 3.2: Solutin plot for ϵ = 2−2 and N = 128 , For table 3.2
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Figure 3.3: Solutin plot for ϵ = 2−5 and N = 256 , For table 3.2

Table 3.3 : The maximum norm error and Order of Convergence for δ = 0.5ϵ, η = 0 under
Standard finite difference method.

N/ ϵ 32 64 128 256 512

2−1 0.00015 0.000039 0.0000098 0.0000024 0.00000061
1.94 1.99 2.02 1.97 1.99

2−2 0.00062 0.00015 0.000038 0.0000097 0.0000024
2.04 1.98 1.96 2.01 2.00

2−3 0.0023 0.00057 0.000143 0.000035 0.0000089
2.01 1.99 2.03 1.97 2.01

2−4 0.0089 0.0023 0.00057 0.000143 0.0000555
1.95 2.01 1.99 2.03 1.97

2−5 0.0329 0.0089 0.0023 0.00057 0.000143
1.88 1.95 2.01 1.99 2.03

2−6 0.0917 0.0329 0.00089 0.0023 0.00057
1.47 1.88 1.95 2.01 1.99
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(a) Solution plot for ϵ = 2−4 and N = 256

(b) Solution plot for ϵ = 2−5 and N = 512

Figure 3.4: Solution Plots for Table 3.3

39



3.4. ERROR AND ORDER OF CONVERGENCE CHAPTER 3. NUMERICAL COMPUTATIONS

Table 3.4 : The maximum norm error and Order of Convergence for δ = η = 0.5ϵ under
Fitted mesh finite difference method with Shishkin mesh.

N/ ϵ 32 64 128 256 512

2−1 0.0021 0.0009828 0.0004797 0.0002369 0.0001177
1.09 1.03 1.02 1.01 1.02

2−2 0.0041 0.0019 0.0008937 0.0004366 0.0002157
0.11 1.08 1.03 1.02 1.01

2−3 0.0074 0.0032 0.0015 0.0007189 0.0003517
1.20 1.09 1.06 1.03 1.04

2−4 0.0147 0.0073 0.0032 0.0015 0.0007133
1.01 1.18 1.09 1.07 1.06

2−5 0.0223 0.0078 0.0040 0.0021 0.0011
1.51 0.96 0.92 0.93 0.85

2−6 0.0280 0.0115 0.0057 0.0029 0.0014
1.28 1.01 0.97 1.05 1.17

2−7 0.0295 0.0127 0.0069 0.0037 0.0018
1.21 0.84 0.86 0.92 1.03

2−8 0.0298 0.0131 0.0073 0.0040 0.0021
1.18 0.84 0.86 0.92 1.07

Figure 3.5: Solutin plot for ϵ = 2−1 and N = 64 , For table 3.4
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Figure 3.6: Solutin plot for ϵ = 2−6 and N = 128 , For table 3.4

Table 3.5 : The maximum norm error and Order of Convergence for δ = 0, η = 0.5ϵ under
Fitted mesh finite difference method with Shishkin mesh. [30]

N/ ϵ 32 64 128 256 512

2−1 0.0092 0.0046 0.0023 0.0012 0.0005762
1.00 1.00 0.94 1.05 1.00

2−2 0.0193 0.0097 0.0048 0.0024 0.0012
0.99 1.01 1.00 1.00 1.00

2−3 0.0327 0.0165 0.0083 0.0042 0.0021
0.98 0.99 0.98 1.00 1.07

2−4 0.0536 0.0312 0.0162 0.0082 0.0041
0.78 0.94 0.98 1.00 1.03

2−5 0.0527 0.0331 0.0196 0.0113 0.0064
0.67 0.75 0.79 0.82 0.87

2−6 0.0524 0.0330 0.0195 0.0113 0.0064
0.66 0.78 0.78 0.82 0.87

2−7 0.0523 0.0330 0.0195 0.0113 0.0064
0.66 0.78 0.78 0.82 0.87

2−8 0.0523 0.0330 0.0195 0.0121 0.0072
0.66 0.78 0.68 0.74 0.87
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(a) Solution plot for ϵ = 2−3 and N = 64

(b) Solution plot for ϵ = 2−7 and N = 256

Figure 3.7: Solution Plots for Table 3.5
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Table 3.6 : The maximum norm error and Order of Convergence for δ = 0.5ϵ, η = 0 under
Fitted mesh finite difference method with Shishkin mesh. [30]

N/ ϵ 32 64 128 256 512

2−1 0.0073 0.0037 0.0018 0.0009259 0.0004633
0.98 1.03 0.95 0.99 1.00

2−2 0.0148 0.0075 0.0037 0.0019 0.0009394
0.98 1.01 0.96 1.02 0.99

2−3 0.0252 0.0127 0.0064 0.0032 0.0016
0.99 0.99 1.00 1.00 1.00

2−4 0.0420 0.0249 0.0125 0.0063 0.0031
0.75 0.99 0.98 1.02 0.95

2−5 0.0618 0.0258 0.0152 0.0087 0.0049
1.26 0.76 0.80 0.82 0.86

2−6 0.0763 0.0379 0.0180 0.0087 0.0049
1.01 1.07 1.04 0.82 0.86

2−7 0.0797 0.0420 0.0127 0.0109 0.0055
0.92 0.95 0.99 0.98 0.97

2−8 0.0805 0.0431 0.0229 0.0120 0.0063
0.90 0.91 0.93 0.92 0.97

Figure 3.8: Solutin plot for ϵ = 2−5 and N = 128 , For table 3.6
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Figure 3.9: Solutin plot for ϵ = 2−8 and N = 512 , For table 3.6
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Chapter 4

Conclusion

We addressed a singularly perturbed differential difference equation in this paper. Two methods are
offered to solve boundary-value problems for singularly perturbed differential-difference equations: a
standard finite difference method with uniform mesh and an ϵ-piecewise uniform fitted mesh approach.
Both methods account for delay and advance changes with layer behavior. These BVPs are found in
the literature in several situations, such as the variational problem in control theory and the estimation
of the expected time for the formation of nerve cell action potentials. We can summarize the working
of the two numerical methods in the following manner.

1. Standard finite Difference method with uniform mesh :- This technique of standard finite
difference method is based on a mesh spacing with equidistant mesh points throughout the interval.
The mesh spacing is not biased towards the boundary layer region.The boundedness of the solution
as well as the derivatives of the solution along with stability and convergence analysis is discussed
in this paper [26].Several graphs and tables are used to show the error estimate and the order of
convergence for the standard finite difference method.

2. Fitted mesh finite difference method with piecewise uniform mesh :- The method makes
use of the conventional upwind finite difference operator and a specific type of mesh. Here, we
investigate a piecewise uniform fitted mesh, which works well enough to construct the ρ-uniform
method. The piecewise uniform mesh is intended to be primarily desirable due to its simplicity,
while more complex meshes can be utilized. The established error estimate demonstrates the
ρ-uniformity of the approach. We show how small changes impact the boundary layer solution by
solving several numerical cases. Graphs illustrating the solution and numerical data reported in
terms of maximum mistakes are supplied to demonstrate the approach’s effectiveness.
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