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ABSTRACT

Android is the most popular operating system for mobile devices which has dominated
the smartphone industry. Traditional signature-based malware detection approaches have
been in use for a long time. Yet their technology falls far short of being completely secure.
Modern malware detection tools are used by major mobile application distributors, official
stores, and marketplaces to analyze uploaded programs and eliminate any dangerous ones.
Unfortunately, until they are taken off the market, malicious software has a long window
of opportunity. In this paper, we studied different research papers based on graphical
techniques and learned about static and dynamic malware detection approaches. We
presented a new and unique method for detection of Android malware that uses apk
function analysis and app-similarity graph in conjunction with ensemble techniques. This
work uses graph neural networks and similarity graph, in which relationships are depicted
as edges based on semantic similarities, while apps are represented as nodes. The study
shows how well the suggested technique works to recognize malicious apps by comparing
their functional and structural characteristics. The results improve the field of mobile app
security and present an effective strategy of action to protect against threats that are
constantly evolving within the Android app ecosystem. The proposed model provided

reasonable accuracy and hence served to aid and maintain a user-safe environment.
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CHAPTER 1
INTRODUCTION

1.1 GENERAL

Due to their portability, high processing power, accessibility to the Internet, and
usability, smartphones, tablets, and other mobile platforms have been an
integral part of our everyday lives for a long time and are now considered
essential tools in our society. Currently, sales of personal computing devices
like tablets or smartphones reached to 1433 million units in 2021 [1], which
leads to the encouragement to develop more and advanced mobile malwares.
New online dangers appear every year. The Atlas VPN team revealed data
showing that over 34.76 million new malware samples have been found so far
this year. This indicates that in 2022, hackers have produced more than 316

thousand new malware threats every day on average [2].

According to data provided by AV-TEST GmbH, an independent provider of
services in the areas of IT Security and Anti-virus Research, the analysis was

conducted. The information was last updated on April 20, 2022.

New malware samples by month (Year-to-date)
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Fig 1.1 Number of new malware samples in 2022.


https://www.av-test.org/en/

1.2 ANDROID MARKET SURVEY

With Android being the most used mobile operating system (OS), with roughly 71%
of the global market share as of November 2022 [3].

.
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71.94%  27.49%  0.33% 0.11% 0.07% 0.02%

Mobile Operating System Market Share Worldwide - November 2022

Fig. 1.2 Mobile OS Market Share Worldwide

Android has an open-source philosophy and offers developers a free
integrated programming environment (IDE) that makes it easier for them to use
its platform. On the other side, iOS has a higher entrance hurdle for those
looking to build for the iOS ecosystem because of its strict approval rules and
need that developers utilise proprietary hardware and software to create and

publish i0OS apps.

The Android operating system also enables users to download programmes
from unreliable sources that could be found online and via third-party app

stores.

Latest survey says, in 2022 there were more than 5 million apps available in
top application markets (Google Play, iOS AppStore, and Amazon Appstore)

[41[5].
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1.3 ANDROID MALWARE DETECTION APPROACHES

Mobile devices, particularly smartphones and tablets, have become a crucial part
of modern life, especially in developed countries. Their widespread use and
sophisticated features make them attractive targets for attackers. As a result,
protecting private user information and sensitive data requires strong security
measures in the digital age. Android applications are classified as harmful or
benign, with harmful ones posing security risks. The increasing use of Android by
cybercriminals has led to the development of harmful apps that steal data. Users
can install apps from untrusted sources, increasing the risk of malware infection.
Recent studies show that 97% of mobile malware infections occur on Android
devices. Malware can lower system performance, scan OS vulnerabilities, and
perform undesired operations, making malware analysis a critical cyber-security
issue.The Android platform is susceptible to malicious applications, leading to
various studies to develop methods for detecting and removing them. These
methods include static and dynamic analysis, as well as a hybrid analysis approach
that combines both methods.

Android platform is vulnerable to malicious applications. Various Studies have
been carried out to develop the method to detect such malware in android
platforms. Performing the analysis after determining which features can be taken
out of the apps. Static and dynamic analysis are the two primary categories into
which these analytic approaches fall. There is a hybrid analysis approach also,

which is a mixture of both other approaches.
1. Static analysis

Static analysis is a method of learning about software without running the
application, utilizing information such as opcode sequences and control flow
graphs obtained from disassembling binary files [1]. These feature sets can be
combined or used singly to identify malware [2]. Extensive static testing of
manifest about the app and internal commands is done by the Drebin [3],
DroidMat [4], DroidAPIMiner [5], DroidSieve [6], and DroidDet [7] methods in



order to gather sensitive permissions, API calls, and other distinguishing aspects.
Later, Drebin [3] also produces vectors for each app using the features that have

been gathered.

2. Dynamic analysis

We must run the software, frequently in a virtual environment, in order to do
dynamic analysis. Substantial information on a variety of topics, including
memory writes, registry modifications, API calls, system calls, and instruction
traces is provided by dynamic analysis [1]. In a fake environment that mimics a
real device, Andlantis [8] does dynamic analysis. To find anomalous activity,
forensic imprints of malware families, runtime behaviors, and system calls are
gathered. [1].

3. Hybrid methods

The pros of both static testing and dynamic testing are combined in hybrid
approaches. We talk about two recent instances of this kind of work in this
section. The authors suggest a system for categorising malware using static and
dynamic analysis. They use a method they call Malware DNA to characterise the
characteristics of malware (Mal-DNA). This method's core component is a
behaviour monitor and analyzer based on debugging that pulls out dynamic
features. A hybrid system called IntelliDroid [9] combines static and dynamic
analysis and creates inputs tailored to a dynamic analysis tool. The process of
generating input improves code coverage, which raises the likelihood of
identifying whether the functionality that was performed was benign or malicious
[10].

Hybrid analysis combines static and dynamic analysis, removing compromise
signs and refining malware properties. This approach offers a comprehensive
understanding of malware but has higher resource needs and the need to adapt to

malware's ongoing development. Combining these techniques allows security



experts to build multi-layered protection and conduct in-depth analysis of

potential threats.

Based on the facts provided above, it is evident that an efficient way to identify
Android malware is desperately needed in order to shield Android users from

harmful assaults.
This work makes six distinct contributions:

e One of the tasks is creating a relationship graph that shows the
relationships between various apps and their functionalities.

e This study makes use of effective methods to determine how similar
different applications are to one another, which helps to provide a more
thorough knowledge of their features and attributes.

e We offer a scalable technique for assessing app-function correlations
using mature and well efficient recommender system modules.

e The suggested method does not need expert-based feature extraction.
Automatic feature generation involves semantic node embedding of the
ASG.

e Our work is experimented on CIC-AndMal2017 dataset which is an
extensive compilation of both malicious and benign android apps.

e This study makes use of the CIC-AndMal2017 dataset. This dataset
provides the experimental basis for evaluating the suitability and efficacy

of the suggested approaches.

The remaining sections of the paper are separated as, the second section gives
introductory information and a review of the literature; the third section explains
the suggested methodology for app categorization; the fourth section discusses

datasets, implementation, and results; and the fifth section concludes the whole

paper.



CHAPTER 2
RELATED WORK

This research [3] proposes a machine learning-based Android malware detection
system to enhance smartphone users' security and privacy. This system
categorizes Android programs as malware or goodware, using permission-based
features and events. The framework uses a dataset, extracts attributes from
Android.apk files, and empirically tests machine learning algorithms for high

accuracy rates.

This research [4] introduces DL-Droid, a deep learning system that uses stateful
input generation and dynamic analysis to detect harmful Android applications.
Experiments on genuine devices with over 30,000 malicious apps showed DL-
Droid outperforms traditional machine learning methods with recognition rates of
up to 97.8% for dynamic characteristics and 99.6% for combining dynamic and
static data. The study emphasizes the need for enhanced input generation for

dynamic analysis in Android malware detection systems.

This study [5] presents a classification model for Android malware apps that uses
permission requests and API calls. The model categorizes apps into disruptive,
dangerous, and ambiguous, based on their use of API calls and risky permissions.
The model, built on 27,891 Android applications from a malware dataset, has an
F-measure of 94.3%, making it useful for malware analysis and forensic
investigations. The method uses statistical tests to automatically assess and
evaluate applications, revealing that permissions and API calls significantly
impact malware variant classification. The technique also provides valuable

insights into virus activity.

This study [6] introduces a new malware detection method that separates a
function call graph into community structures for malware detection. It uses
machine learning categorization instead of subgraph similarity comparison and
reduces computing time. The method outperformed three well-known anti-virus

software and two earlier control flow graph-based methods in various malware



families. It uses reverse engineering to retrieve an Android application's function
call graph, weights it based on permissions and APIs, and detects malware using

machine learning classification.

This study [7] for malware vetting tools presents a deep learning-based hybrid
analysis strategy that combines the benefits of static and dynamic analysis to
improve accuracy. The approach generates a number of artifacts using
lightweight static and dynamic analysis procedures. These are then trained to
create separate models, which are merged to form a hybrid classifier. Using
hybrid analysis, the best deep learning model has an AUC (area under the
precision-recall curve) of 0.9998. The study also examines the performance
indicators of several deep learning framework modifications, demonstrating that
the system is scalable and adaptable to imbalanced data sets. The paper also
includes a comparison of the performance indicators for several deep learning

framework versions.

This study [8] tells that a 2011 study found 211 harmful Android applications on
the official Android market. Detecting malware using machine learning-based
classifiers faces challenges in collecting feature representations and selecting a
classifier that can only be trained in one category. To overcome these, a diverse
feature set is retrieved and processed separately by kernels. A One-Class Support
Vector Machine is trained on benign applications, using a server's computational

capability.

This study [9] explores how mobile malware bypasses detection by replicating
security-sensitive activities of innocuous programs and reducing their payload.
The authors introduce AppContext, a static program analysis tool that helps
distinguish between benign and malicious behavior by collecting contexts for
security-sensitive actions. Tested on 633 benign applications and 202 malicious
apps, the results show that the purpose of a security-sensitive action significantly
impacts its maliciousness. The key contributions include an abstraction to
describe security-sensitive activity contexts, a static-analysis approach for context
extraction, and three assessments of 846 Android apps.



This work [10] introduces a new dynamic analysis approach called Component
Traversal, which uses weighted directed graphs and a deep learning architecture
to detect unknown An-droid malware. This method, which has been integrated
into a commercial Android anti-malware application, outperforms other
alternative strategies, as attackers are increasingly using tactics like repackaging

and obfuscation to avoid signatures.

This study [11] presents a framework for dividing Android APKSs into benign or
harmful families using a model-based semi-supervised (MBSS) classification
approach. MBSS outperforms traditional malware detection classifiers like SVM,
KNN, and LDA under ideal classification settings. Its accuracy is 98% in-sample
and has minimal false positive rate. Out-of-sample testing shows MBSS and
SVM maintain a 90% detection rate, while KNN and LDA perform significantly

worse. MBSS continues to outperform other classifiers.

This research [12] proposes a deep learning method called CDGDroid, which
uses semantic graph representations like control flow graph and data flow graph.
Android malware poses a threat to digital lives, necessitating effective detection
and security. Recent machine learning algorithms often lack the complexity
needed for Android applications. The model uses a convolutional neural network
to build a classification model. Tests on various datasets show optimal accuracy

when combined horizontally. CDG-Droid outperforms other anti-virus tools.

The growing amount of malware programs on Android, the leading smartphone
operating system, poses a serious danger to consumer privacy and security. In this
study [11] we studied about Classification algorithms using a single feature
frequently have poor detection performance. To improve detection, the FAMD
framework (Fast Android Malware Detector) is suggested in this work. The
framework reduces feature dimensionality by using permissions and Dalvik
opcode sequences from samples that have been preprocessed using the N-Gram
approach and the FCBF algorithm. The dimensionality-reduced features are then
fed into the CatBoost classifier for malware detection and family categorization.
The findings demonstrate that the combined characteristics increase malware
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detection accuracy by 97.4% on the Drebin dataset [3] and 97.4% on malware
family classification accuracy. This framework surpasses other cutting-edge

approaches in terms of accuracy and time consumption.

In this paper [12] researchers have developed new approaches for detecting
Android malware based on syntactic traits and machine learning techniques. This
study describes a novel technique to Android malware classification based on
deep learning and OpCode-level Function Call Graph (FCG) [13]. The method
employs a Long Short-Term Memory (LSTM) deep learning model and was
evaluated on a dataset of 1796 Android malware samples and 1000 benign
Android applications [13]. The findings revealed that the suggested methodology
beats state-of-the-art approaches with 97% and 91% accuracy, respectively, while
taking up less time.

In this study [14] four different malware detection techniques that use the
Hamming distance to measure sample similarity are presented. These approaches
include the K-Medoid Based Closest Neighbors (KMNN), Weighted All Nearest
Neighbors (WANN), All Nearest Neighbors (ANN), and First Nearest Neighbors
(FNN). Their objective is to alert users about an Android app's possible risks,
reducing the possibility of malware spreading widely. The algorithms are
evaluated on three datasets, which include both benign and malicious Android
applications such as Drebin [3], Contagio, and Genome. Performance
comparisons with cutting-edge algorithms such as Mixed and Separated
solutions, PDME, and FalDroid demonstrate that the suggested methods achieve

equivalent accuracy rates to existing solutions.

The study's [15] goal is to develop malware detection algorithms for Android
applications due to their widespread use and harmful variations. The authors
employ API call graphs to precisely represent application activity, however
similarity detection and classification techniques can be sluggish and imprecise.
They incorporate API call graphs in a deep neural network, which detects
similarities between binary functions. By evaluating different embedding

methodologies and altering network setup variables, the research aims to
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optimize network performance. The results of the experiment show that the
malware classification achieved 98.8% precision, 98.4% recall, 98.6% F-

measure, and accuracy.

The paper [16] proposes, creating behavior characteristics of Android
applications using complete, multi-view information using the apk2vec
semisupervised Representation Learning (RL) framework. This method can
considerably enhance downstream analytics activities such as app classification,
recommendation, and virus detection. For effective online learning, the system
includes information from numerous semantic perspectives, employs app-specific
labels, and combines RL with feature hashing. The generated semi-supervised
multi-view hash embeddings can be utilized for a variety of subsequent tasks.
Experiments with almost 42k applications demonstrate that apk2vec's app
profiles beat cutting-edge approaches in four app analytics tasks: virus

identification, family grouping, app clone detection, and app recommendation.

This study [17] This paper suggests DLGraph, a novel graph embedding and deep
learning-based malware detection method. The system learns computer program
function-call graphs and Windows API calls using two stacked denoising
autoencoders. It then merges latent representations to provide a feature vector for
malware detection. Experiments on diverse datasets show that the strategy is

effective and superior to a comparable method.

This study [18] presents a framework for detecting fraudulent applications for
Android that is built on the concepts of Active Learning technologies and SVM
(Support Vector Machine). The method captures application execution activity
and translates them into a feature set, assigning timestamps to select features. The
use of time-dependent activity tracking increases malware detection accuracy.
The model was created using the Expected error reduction query approach and
adaptive online learning. Experiments on the DREBIN benchmark [3] malware
dataset demonstrate that the technique accurately detects harmful apps and

improves updateability against new infections.
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In this paper [6] we studied that current machine learning classification
algorithms rely on lightweight syntactic cues; however, they may be ineffective
for identifying obfuscated Android malware. In the paper DroidSieve is presented
which is an Android malware classification system. It employs static testing to
detect malicious apps and group them into virus families based on similarities.
DroidSieve employs obfuscation-invariant characteristics and artifacts, achieving
up to 99.8% accuracy for malware detection and 99.2% accuracy for obfuscated

malware family detection.

This research [19] describes a machine learning approach based on n-opcode
analysis for classifying and grouping Android malware. This method eliminates
the requirement for expert knowledge to describe required features, and it has
been tested on 2520 samples with up to 10-gram opcode features. The technique
produced an f-measure of 98%, underlining the rising challenge of malware
detection on the Android mobile platform, which is popular and accessible

through third-party app stores.

The paper [7] provides a low-cost, high-efficiency strategy for detecting Android
malware that involves extracting permissions, sensitive APIs, monitoring system
events, and permission rates. The Ensemble Rotation Forest (RF) model is used
to identify fraudulent Android applications. The approach yields 88.26%
accuracy, 88.40% sensitivity, and 88.16% precision. The suggested strategy
outperforms the state-of-the-art Support Vector Machine (SVM) model by
3.33%. The findings indicate that the suggested approach is extremely promising
and might provide a cost-effective option for Android virus detection.
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CHAPTER 3
METHODOLOGY

Our suggested Android app analysis and categorization approach consists of eight

basic components.

1. Function extraction. The Android application archive (.apk/APK)
contains the app's whole bytecode [1]. The bytecode is first converted into
the source code of the application, after which all specified and utilized
functions are extracted and saved.

2. ASG formation. The retrieved functions are processed to generate an app
similarity graph (ASG). The ASG uses recommender system-based item
similarity approaches to connect apps with comparable functionalities.

3. SVM: In high-dimensional spaces, SVMs function well. SVMs only need
a subset of training data points known as support vectors to identify the
ideal hyperplane also they are memory efficient.

4. Gradient Boost: XGBoost is an effective and versatile tool that can
handle complex correlations and patterns in data because of its efficiency
and adaptability.

5. AdaBoost: AdaBoost enhances model performance by prioritizing
relevant features, making it beneficial for high-dimensional datasets and
capturing complex relationships, making it suitable for weak learners like
decision trees.

6. Ensemble technique by MaxVoting - Applying the max voting approach
to combine the forecasts of the three models. This means deciding the
majority vote from the forecasts of the individual models for each data
point.

7. Ensemble technique by Stacking - Stacking is the process of training a
meta-model that combines base model predictions. In this work, we are
using Random Forest, SVM, and AdaBoost as basic models before

training a meta-model to create the final predictions.
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8. Ensemble technique by Bagging - Bagging (also known as Bootstrap
Aggregating) is the process of training numerous instances of the same
basic model on different subsets of training data and then merging their

predictions.
3.1 Function extraction

Androguard's feature extraction includes examining Android application
packages (APKSs) to extract various characteristics or features. These features
may be related to the app's structure, behavior, or functionality. Androguard is a
well-known Python library that analyzes Android apps and provides utilities for
working with APK files.

Here's an overview of the feature extraction process with Androguard:

¢ Loading APK: Load the APK file using Androguard's APK class. This
class allows access to APK-specific information such as the manifest,
resources, and classes.

e Loading Dalvik Bytecode: After loading the APK, locate the Dalvik
bytecode in the DEX (Dalvik Executable) files. Androguard provides the
DalvikVMFormat class to interact with DEX files.

e Class and Method Extraction: Extract app structure information by
iterating through Dalvik bytecode classes and functions.

e Feature Representation: The obtained features may vary based on the
analysis's specific needs. Depending on the analysis objectives, the
features may include permissions, API calls, intent filters, and other APK
components.

e Error Handling: During feature extraction, errors may occur. It is vital to
handle exceptions gracefully. This prevents the script from crashing and

allows you to identify and fix specific issues.
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Fig. 3.1. Overall app analysis and classification.

3.2 App-Similarity Graph formation

We created the App Similarity Graph (ASG) to better app representation. To
begin, we generate a bipartite graph using the popular methods from the previous
step. The bipartite graph is indicated by GAF = (A, F, E), where A represents
apps, F represents the important functions found in the previous step, and E
represents the edges connecting each function to its own app. The GAF apps-

functions network is evaluated using an ISR model to determine item similarity.

In recommender systems, an ISR model assesses the similarity of two items
based on user actions. Pearson correlation, Jaccard similarity, and cosine
similarity are three commonly used methods for measuring item similarity. In this

paper, we employ the Cosine similarity approach.

A metric for comparing two non-zero vectors defined in an inner product space is
called cosine similarity. The cosine of the angle between the vectors, or the dot
product of the vectors divided by the product of their lengths, is what is known as
cosine similarity. As a result, the cosine similarity solely depends on the angle of
the vectors rather than their magnitudes. The equation for cosine similarity is

given as:

cos(®)=A-B/|A||B]
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Fig. 3.2. App similarity graph creation process

3.3 ASGnode2vec + SVM classification

After ASG is created, we use a two-step classification process that consists of
applying an SVM classifier to the automatically generated feature vectors and

utilizing a node2vec to construct features on the ASG (ASGnode2vec).

An approach for feature learning in networks based on neural networks is called
Node2vec [20]. Node2vec, which draws inspiration from word2vec [21], employs
the wordcontext concept to provide a low-dimensional features representation for
nodes. The acquired characteristics often maintain node network neighborhoods,
which arranges the nodes in accordance with their functions within the network
and the communities in which they are a part of.
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Every app in the ASG has a continuous vector representation as the result of
node2vec applied to the ASG. ASGnode2vec retrieves the semantic context for
programs from the App Similarity Graph architecture by using the node2vec
options [1]. The feature vectors produced by ASGnode2vec, which include both
less and more comparable applications, are influenced by the ASG structure when

intermediate q = 1.

After that, we build a relational dataset in which applications are instances and A
SGnode2vec automatically generates feature vectors.

On the acquired vectors, a supervised machine learning algorithm is performed.
3.4 ASGnode2vec + Gredient boost classifier

A machine learning model called XGBoost creates embeddings for every app in a
dataset using Node2Vec characteristics. Each app's connections with other
applications in the graph are captured by these embeddings, which show each app
as a dense vector. The process of feature extraction yields a feature matrix that is
used as the XGBoost classifier's input. Each program is given a label according to
its kind, resulting in a labeled dataset. The XGBoost model is trained on the
training set of the dataset, while the testing set is used to assess the model's

performance.

XGBoost successively constructs an ensemble of decision trees while training the
model with the training data. To determine which Node2Vec properties are most
important for the model's prediction performance during training, XGBoost
computes feature importance. Apps may be categorized as benign or malicious
using the trained XGBoost model, which generates probabilities for each class

and makes predictions on the testing set.

Metrics including accuracy, precision, recall, F1-score, and ROC-AUC are used
to assess performance. In order to differentiate between malicious and benign
applications, the significance of the model is examined, offering insights into the
specific elements of the Node2Vec embeddings that are critical for classification.
Hyperparameters or settings are adjusted as needed to maximize the performance

of the model.
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3.5 ASGnode2vec + AdaBoost classification

Adaboost is an ensemble learning technique that builds a powerful classifier by
combining several weak classifiers. It represents each app with a dense vector of
characteristics by embedding nodes into a high-dimensional vector space using
Node2Vec embeddings. The app's relationships with other nodes in the network
are captured by these characteristics, which stand in for the structural and
contextual information that Node2Vec learnt. These characteristics are used as
input by Adaboost during training, and the related labels (benevolent or

malevolent) are used as output.

Adaboost begins with a subpar classifier, frequently a straightforward decision
tree, which might not function effectively by itself. By giving misclassified
instances a larger weight, it enables weaker classifiers to concentrate on cases
that are challenging to classify. By training each weak classifier on a portion of
the data, Adaboost builds an ensemble of them. By giving each poor classifier a
weight determined by its accuracy, each one adds to the final result. Weak
classifiers that do well on challenging cases are given preference in the final
classification, which is a weighted mixture of their individual outputs. Adaboost

determines the final classification using a weighted majority vote.
3.6 Ensemble technique by MaxVoting

The integration of node2vec with ensemble learning via a max voting approach
enhances app similarity predictions by combining the advantages of multiple
machine learning models. The project begins with the graph em-bedding
technique node2vec, which extracts features from Android APK files. The
bipartite graph is formed by app interactions and node embeddings, efficiently
capturing context and structural details. An ensemble learning strategy is then
used, using three base models: Random Forest, Support Vector Machine (SVM),
and Ada-Boost. The labels and node embeddings are trained using the cosine
similarity matrix. The ensemble is then aggregated using the max voting

approach.
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The max voting ensemble gathers individual predictions from each base model,
with the class that occurs most frequently for each data point selected as the final
prediction. This technique enhances app similarity predictions by utilizing diverse
viewpoints and capabilities. The ensemble uses Random Forest, SVM, and Ada-
Boost models to capture intricate interactions in the bipartite graph. This
integrated approach uses graph-based embeddings from node2vec for nuanced
representation of app-function relationships and ensemble learning to enhance
predictive accuracy. Max voting ensures a robust decision-making process,
making final predictions more reliable and robust in capturing patterns of
similarity between different Android apps. This comprehensive workflow

showcases a holistic approach to app similarity analysis.
3.7 Ensemble technique by Stacking

After the node2vec embedding is generated, ensemble learning methods—
specifically, stacking and bagging—are utilized to improve the model's predictive
power. For this ensemble, three unique base models are selected: Random Forest,
Support Vector Machine (SVM), and AdaBoost. Using the labels produced from
the cosine similarity matrix, which indicate the similarity scores between various
applications, each model is trained on the node embeddings. In stacking, the
predictions of the three underlying models are combined by training a meta-
model—in this example, another Random Forest. The ensemble may assess and
learn from the advantages and disadvantages of each model through the stacking
process, resulting in a more sophisticated and knowledgeable decision-making

process.
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3.8 Ensemble technique by Bagging

Bagging is applied to each base model, resulting in an ensemble of models that
are trained on various training data subsets. Every model used in this procedure is
trained on a bootstrapped sample of data, and several instances of each model are
involved. The final ensemble forecast is derived from the sum of the predictions
made by different models. This scenario applies the bagging technique to
Random Forest, SVM, and AdaBoost separately.

This combined strategy, which combines stacking and bagging ensemble methods
with node2vec embeddings, highlights a complete methodology for encapsulating
the complex interactions seen in the bipartite network of Android functions and
apps. The model's prediction accuracy is enhanced by the synergy between
ensemble learning algorithms and graph-based embeddings, which also makes the
model more resilient and flexible in capturing the complex nature of app

similarity.
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CHAPTER 4
RESULTS AND DISCUSSION

In this section, first we will discuss about the dataset we have used for our study,
CIC-AndMal2017 Android Malware Dataset.

4.1 Dataset

These experiments were performed on the CIC-AndMal2017 dataset which is an
extensive compilation of both malicious and safe Android apps that have been
hand-picked to give users a more accurate picture of the threat environment on
Android smartphones. The dataset uses a novel methodology that runs both
malware and benign applications on actual cellphones, in contrast to conventional
methodologies. This method seeks to avoid the runtime behavior change used by
sophisticated malware strains that have the ability to identify emulation

environments.

The collection consists of 10,854 samples in total, of which 6,500 are classified as
benign and 4,354 as malware. The safe examples were from the Google Play store
and included applications released in 2015, 2016, and 2017. Five thousand samples
were chosen, of which 4,26 were malicious and 5,065 were benign, and were
installed on real devices in order to verify the dataset's legitimacy and applicability

in the real world.

The CIC-AndMal2017 dataset's malware samples are divided into four groups that
offer a thorough understanding of the variety of Android threats:

e Adware is malicious software that pretends to be useful apps in order to
display intrusive adverts.

e Malware that locks or encrypts a victim's device and demands a payment to
unlock it is known as ransomware.

e Scareware is malicious software that deceives users into thinking their

device is contaminated and causes them to take action that is not necessary.
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e Malicious software that modifies or uses the Short Message Service's (SMS)
capability for improper purposes is known as SMS malware.

Table 4.1. Summary of dataset.

CIC- Both benign #10854 #25685647 #1059767
AndMal2017 and malicious

4.2 Performance evaluation

In this work, we test the effectiveness of the Android malware classifiers using
three standard metrics such as: accuracy, F1 score, and AUC [22] [1]. We then go
over these metrics in brief [1]. The description outlines a classification system
where TN (true negative) signifies the count of accurately predicted benign apps,
FP (false positive) denotes benign apps mistakenly classified as malware, TP (true
positive) represents the count of accurately predicted malware apps, and FN (false
negative) indicates malware apps incorrectly classified as benign. Accuracy (acc.)
emerges as the most logical performance metric, representing the proportion of
correctly identified applications. [1] .

acc = TP+TN / TP+TN+FP+FN.
The formula for calculating the F1 score (F1) is:
F1=2TP/2TP+FP+FN.

In imbalanced datasets, both the accuracy and F1 measurements are deceptive. For
example, let's say that just 5% of the applications are harmful. The accuracy of a
basic classifier that consistently yields the majority class is 0.95.

In the field of machine learning, the Area Under the Receiver Operating
Characteristic Curve (AUC) [22] serves as a performance metric, remaining
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insensitive to imbalanced datasets. Regardless of the percentage of malicious
applications in the dataset, a perfect classifier will always have an AUC of 1, but a
random classifier would always have an AUC close to 0.5. Therefore, when
evaluating classifier performance on datasets with varying percentages of
dangerous applications, the AUC [22] is the most crucial factor to consider.

4.3 Results
4.3.1 Results of Machine Learning Models

On the test dataset, the SVM model had an accuracy of 86%, meaning that 86% of

the instances were correctly identified. This points to a generally solid performance.

With an accuracy of 80%, the XGBoost model meant that 80% of the cases were
properly identified. Even though this accuracy is noteworthy, more research is
necessary to fully comprehend the behavior of the model.

With an accuracy of 89%, AdaBoost demonstrated strong performance and a high

percentage of accurate classifications on the test data.

Classifier Comparison

1.0

0.8 1

0.6 1

Accuracy

0.4 A

0.2 1

0.0 -

T
SVM XGBoost AdaBoost
Classifier

Fig. 4.1. Accuracy result of all three classifier
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Receiver Operating Characteristic (ROC) Curve
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Fig. 5.2. ROC Curve for all three classifiers.

It is discovered that the SVM model's ability to distinguish between classes, as
measured by the AUC score, was 0.33. A score of 0.33 indicates that the model's

ability to discriminate between classes is restricted and verges on chance.

With an AUC of 0.83, XGBoost has a far higher score. With larger values closer to
1, the model performs better, indicating a strong capacity to differentiate between

classes.

AdaBoost's AUC score was a startling 0.5. This implies that the model's class
distinction abilities are no more accurate than chance. To determine the cause of

this unanticipated outcome, more research is required.
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Table 4.2. Summary of Test Accuracies of Three Machine Learning Models.

Model Test accuracy
SVM Classifier 86%
XG Boost 80%
ADA Boost 89%

4.3.2 Results of Ensemble Models

The node2vec embeddings were used to train each model, and the Max Voting,
Stacking, and Bagging techniques were used to combine their predictions.

In this work, we test the effectiveness of the Android malware ensemble classifiers

using standard metrics that is accuracy.

Ensemble Learning Techniques Comparison

85.3
82.2 84.4

80 1

70 7

60

50

Accuracy (%)

30 1

20 1

10 4

Max Voting Stacking Bagging

Fig. 4.3. Accuracy result of all three ensemble learning techniques.
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The assessment of the group models showed impressive performances, offering
information on how well the selected methods worked. Max Voting worked
admirably with an accuracy of 82.2%, Bagging was better with an accuracy of

85.3%, and Stacking was noteworthy with an accuracy of 84.4%.

Table 4.3. Summary of Test Accuracies of Three Ensemble Learning Models.

Model Test accuracy
Ensemble technique by MaxVoting 82.2%
Ensemble technique by Stacking 84.4%

Ensemble technique by Bagging 85.3%
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CHAPTER S
CONCLUSION

This study utilized apk function analysis, node2vec embeddings, and ensemble
learning to analyze the links between Android apps (APKs) and their related
functions. The process involved extracting a list of distinct APKs from a directory,
extracting the functions connected to each APK, and creating a bipartite graph
representing the associations. The node2vec technique was used to create node
embeddings, capturing the structural details of the graph. Cosine Similarity's
similarity ratings were used to quantify app similarities based on common
functionalities, providing valuable insights into app relationships. The App
Similarity Graph (ASG) was constructed using similarity scores across applications

based on their function sets, making it easier to identify related apps.

The group models evaluated performed well, with Max Voting having an
impressive 82.2% accuracy rate, bagging outperforming it with an even greater
accuracy of 85.3% and stacking with an accuracy of 84.4%. The study highlights
the potential of ensemble learning techniques in improving predictive performance.

The study evaluated the performance of machine learning models, specifically
Support Vector Machine (SVM), XGBoost, and AdaBoost, in classifying apps into
malicious and benign categories using Node2Vec embeddings. The models showed
varying levels of accuracy, with SVM achieving 86%, XGBoost achieving 80%,
and AdaBoost achieving 89%. However, the AUC scores provided insights into
their discriminative abilities, with XGBoost demonstrating a high AUC score of
0.83, indicating strong class separation. The discrepancy between accuracy and
AUC scores for SVM and AdaBoost suggests further investigation into their
behavior and training challenges. Future analysis should include examination of
feature importance, confusion matrices, and precision-recall curves to gain a
comprehensive understanding of model behavior. XGBoost emerged as the most
promising model, and further fine-tuning and optimization of hyperparameters

could enhance its performance.
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FUTURE WORK

The categorization of applications will be part of future development, and whether
or not the apps are harmful or benign will be determined by the similarity score and
app similarity graph. Models may be created utilizing the bipartite graph, similarity
scores, and other pertinent information to categorize applications into harmful and
benign categories with the use of machine learning techniques. The automatic
identification and categorization of potentially hazardous apps using this

technology can assist to increase user security.
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organized by Department of Electronics and Communication Engineering, National Institute of
Technology kurukshetra on May 09-11, 2024.
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715124, 1:06 PM Gmail - Decision on Paper ID 2080 of INDISCON 2024.

M Gma” Monish Sahu <99monishsahu@gmail.com>

Decision on Paper ID 2080 of INDISCON 2024.

Microsoft CMT <email@msr-cmt.org> 7 June 2024 at 21:41

Reply-To: Arun Kumar Singh <ieeeindiscon2024@gmail.com>
To: Monish Kumar Sahu <99monishsahu@gmail.com>

Dear Author,

We are pleased to inform you that your Paper ID 2080 Titled "Android Malware Detection Using Graphical
Technique" has been accepted for oral/poster presentation at the INDISCON 2024. Further details can be
found on conference website (https://ieeeindiscon.org). The detailed reviews/comments given by the
reviewers are available in your Microsoft CMT Account.

Please consider the comments provided by the reviewers and revise your paper based on the comments.

Please note the following:

1. At least one of the authors of every accepted paper must register for the conference as author and
present the paper in order for it to be included in the conference proceedings of INDISCON 2024, and
subsequent submission to IEEE Xplore digital library.

2. For the paper to be accepted in the Final programme, it is expected that at least one author is
registered, and Camera Ready Paper is submitted. Non-presented papers will not be submitted to IEEE
Xplore digital library as per IEEE no-show policy.

3. Papers presented in the Conference will be eligible for submission for further consideration of
publishing in the IEEE Xplore, subject to maintenance of quality, and post-conference scrutiny of
response of Conference Organizers to Technical Program of Questionnaire (TPQ) on the Conference.

4. Instructions for submission of Camera Ready Paper will be notified shortly on conference website.

Looking forward to seeing you at INDISCON 2024 at PEC Chandigarh.

Best Wishes,
TPC Chairs, INDISCON 2024

To stop receiving conference emails, you can check the 'Do not send me conference email' box from your
User Profile.

Microsoft respects your privacy. To learn more, please read our Privacy Statement.
Microsoft Corporation

one Microsoft Way
Redmond, WA 98052

https://mail.google.com/mail/u/0/?ik=bf019c529f&view=pt&search=all&permmsgid=msg-f: 180121942764 1112683&simpl=msg-f:180121942764111...
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CALL FOR PAPERS [EXTENDED DEADLINE]

5th IEEE India Council International Subsections Co

ference

INDISCON 2024

August 22-24, 2024,

Venue- Punjab Engineering College (Deemed to be University), Chandigarh, India

Theme- Science, Technology and Society

Patron:

Prof. Baldev Setia, Director PEC Chandigarh
Prof. Debabrata Das, Chair IEEE India
Council

Co-Patron:

Prof. Prerna Gaur, Chair-Elect, IEEE India
Council

Prof. A. Q. Ansari, Chair, IEEE Delhi Section

Honorary Chair:

Prof. Rudra Pratap, VC Plaksha University
Prof. Lalit Awasthi, Director NIT UK

Prof. Anupam Shukla, Director NIT Surat
Prof. B. K. Panigrahi, /IT Delhi

Mr. B. A. Sawale, DG, CPRI, Bengaluru

General Chair:

Prof. Arun Kumar Singh, PEC Chandigarh
Prof. Manish Hooda, SCL Mohali

Dr. Puneet Mishra, URSC Bengaluru

Organizing Secretary:

Dr. Padmavati, PEC Chandigarh

Dr. Simranjit Singh, PEC Chandigarh
Dr. Manohar Singh, PEC Chandigarh

TPC Chair:

Prof. Sudeb Das Gupta, //T Roorkee

Prof. N. S. Chaudhari, /IT Indore

Prof. G. Bhuvaneswari, Mahindra University

Finance Chair:

Dr. Vijayalata Yellasiri, Treasurer, IEEE
Dr. Sneha Kabra, Delhi University

Mr. Mayank Gupta, PEC Chandigarh

Publication Chair:

Prof. Jawar Singh, /IT Patna

Prof. Jagdish Kumar, PEC Chandigarh
Prof. Balwinder Raj, NIT Jalandhar

Executive Steering Committee:

Sh. Deepak Mathur, 2024 IEEE VP MGA
Prof. Preeti Bajaj, VC-SA IEEE India Council
Dr. K. R. Suresh Nair, /EEE India Council
Prof. M. N. Hooda, VC IEEE Delhi Section

*other committees are mentioned on the conference
website .

About the Conference

INDISCON is the flagship International Conference organised by IEEE India Council and IEEE
Subsections in India to bring together researchers from academia and industries on various
aspects of Sciences, Engineering and Technology. The Conference provides an excellent
international platform for sharing of state-of-the-art research/technologies in the field of
Electronics, Electrical, Information Technology etc., wherein many national/international
eminent personalities will share their vision, expertise and knowledge.

INDISCON 2024 is organised by IEEE Chandigarh Subsection and hosted by Punjab
Engineering College (Deemed to be University), Chandigarh along with IEEE India Council.
INDISCON 2024 will include a wide range of technical sessions, invited talks, workshops,
tutorials, special sessions, industry sessions, exhibits etc.

Technical Tracks

Track 1: Power and Energy Systems

Track 2: Power Electronics, Drives and Intelligent Control
Track 3: Instrumentation, Control and Signal processing
Track 4: Artificial Intelligence and Data Science

Track 5: Communication, Networks & IOT

Track 6: Next Generation Computing and applications
Track 7: Security & Privacy

Track 8: RF/Microwave/Terahertz Technologies

Track 9: Semiconductor Devices

Track 10: VLSI & Embedded Systems

Track 11 : Nanotechnology Materials and Devices

Track 12 : Education Technologies

Track 13 : Women in Engineering

Submission Guidelines

Paper submission instructions and template will be available at http://ieeeindiscon.org/
Pai bindsslon Tinkeh : <

Papers (upto 6 pages in .pdf) presented in the Conference, duly accepted after peer review, will
be eligible for submission for further consideration of publishing in the IEEE Xplore, subject to
maintenance of quality, and post-conference scrutiny of response of Conference Organizers to
Technical Program of Questionnaire (TPQ) on the Conference.

Note: Based on the significance of the work, novelty and technical contents, papers will be selected
for the Best Poster Award and Best Paper Award. Travel grant will be awarded to a limited number of
applicants on a highly competitive basis, for more details visit conference website.

Important Dates

« Last Date of Paper Submission [Extended]
« Notification of Acceptance

« Camera Ready/Final Paper Submission

« Last Date of Registration

April 15, 2024
May 15, 2024

June 10, 2024
June 15, 2024

+91-7814171121

® ieeeindiscon2024@gmail.com http://ieeeindiscon.org/
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About us

INDISCON is a flagship annual international conference of the IEEE India Council organized by an IEEE Subsection in INDIA.
INDISCON 2024 scheduled during August 22-24, 2024, is being organized by IEEE Chandigarh Subsection along with IEEE India
Council. The conference will be hosted by Punjab Engineering College (Deemed to be University), Chandigarh. The
conference aims to provide an interdisciplinary platform for the academicians, researchers, industry professionals and research

scholars to exchange and share their knowledge, experience & research.
Proceedings of previous versions of the conference are available here &

Previous
. Dates Venue Theme
Edition
IEEE INDISCON August 5-7, GSSS Institute of Engincering & Technology for Computational Intelligence and Learning
2023 2023 Women, Mysuru Systems
|EEE INDISCON July 15-17, . ; Impactful Innovations for Banefits of Socisty
2022 2022 KIIT Deemed to be University, Bhubaneswar and Industry
IEEE INDISCON August 27-29, Visvesvaraya National Institute of Technology, Impectful innovations for the benefit of
2021 2021 Nagpur industry and society
IEEE INDISCON ‘October 34, Gayatri Vidya Parishad College of Engineering, Smart and Sustainzble Systems - Decade
2020 2020 Viszkhzpatnam Ahead

IEEE India Council

IEEE is the world's largest professional association dedicated to advancing technological innovation and excellence for the
benefit of humanity. IEEE and its members inspire a global community through IEEE's highly cited publications, conferences,
technology standards, and professional & educational activities. |IEEE India Council is the umbrella organisation which
coordinates IEEE activities in India. Its primary aim is to assist and coordinate the activities of local “Sections”, in order to benefit
mutually, and avoid duplication of effort and resources. IEEE India Council was established on May 20, 1976 and is one of the
five councils in the Asia Pacific Region (Region #10 of |EEE).

Details &£

IEEE Chandigarh Subsection

IEEE Chandigarh Subsection is a technical society that was established on June 18, 2005, under IEEE Delhi Section of IEEE India
Council. It provides a platform for the students to enhance their technical skills and professional growth. The subsection
organizes various events and technical extravaganzas, such as Techadroit, which is an annual event organized by IEEE PEC
Student Branch in association with IEEE Chandigarh Subsection for students. In 2020, the subsection organized the first-ever
Chandigarh Subsection Congress with the participation of more than 1700 delegates.

Details £
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S5TH IEEE INDIA COUNCIL
INTERNATIONAL SUBSECTIONS
CONFERENCE 1 (INDISCON 2024)

IEEE India Council, Bangalore & IEEE
Chandigarh Sub-section,
Chandigarh

Date Issued: 2024-06-29
Invoice to: Monish Kumar Sahu

DESCRIPTION QUANTITY AMOUNT

Event: IEEE

INDISCON 2024

Early Bird Non-IEEE 1 INR 6000.00
Student Members

(Indian)

Discount INR 0.00
Processing Fee INR 300.00
Surcharge Fee INR 0.00
GRAND TOTAL INR 6300.00

Six Thousand, Three Hundred Rupees, Zero Paise
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ANNEXURE-IV

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Thesis ANDROID MALWARE DETECTION USING GRAPHICAL
TECHNIQUES Total Pages 34 Name of the Scholar Monish Kumar Sahu

Supervisor (s)

(1) Mr. Rahul Gupta
2)
A3)

Department INFORMATION TECHNOLOGY, DELHI TECHNOLOGICAL UNIVERSITY

This is to report that the above thesis was scanned for similarity detection. Process and outcome

is given below:

Software used: Turnitin Similarity Index: 14% , Total Word Count:
6981

Date:_30/05/2024

Candidate's Signature Signature of Supervisor(s)



Similarity Report

PAPER NAME AUTHOR

MonishThesis.pdf Monish Sahu

WORD COUNT CHARACTER COUNT

6985 Words 40450 Characters

PAGE COUNT FILE SIZE

34 Pages 610.6KB

SUBMISSION DATE REPORT DATE

May 31, 2024 9:36 AM GMT+5:30 May 31, 2024 9:37 AM GMT+5:30

® 14% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

* 7% Internet database » 10% Publications database
« Crossref database « Crossref Posted Content database

* 8% Submitted Works database

@® Excluded from Similarity Report

« Bibliographic material + Small Matches (Less then 8 words)

Summary



