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ABSTRACT 

 
Android is the most popular operating system for mobile devices which has dominated 

the smartphone industry. Traditional signature-based malware detection approaches have 

been in use for a long time. Yet their technology falls far short of being completely secure. 

Modern malware detection tools are used by major mobile application distributors, official 

stores, and marketplaces to analyze uploaded programs and eliminate any dangerous ones. 

Unfortunately, until they are taken off the market, malicious software has a long window 

of opportunity. In this paper, we studied different research papers based on graphical 

techniques and learned about static and dynamic malware detection approaches. We 

presented a new and unique method for detection of Android malware that uses apk 

function analysis and app-similarity graph in conjunction with ensemble techniques. This 

work uses graph neural networks and similarity graph, in which relationships are depicted 

as edges based on semantic similarities, while apps are represented as nodes. The study 

shows how well the suggested technique works to recognize malicious apps by comparing 

their functional and structural characteristics. The results improve the field of mobile app 

security and present an effective strategy of action to protect against threats that are 

constantly evolving within the Android app ecosystem. The proposed model provided 

reasonable accuracy and hence served to aid and maintain a user-safe environment. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 GENERAL 

Due to their portability, high processing power, accessibility to the Internet, and 

usability, smartphones, tablets, and other mobile platforms have been an 

integral part of our everyday lives for a long time and are now considered 

essential tools in our society. Currently, sales of personal computing devices 

like tablets or smartphones reached to 1433 million units in 2021 [1], which 

leads to the encouragement to develop more and advanced mobile malwares. 

New online dangers appear every year. The Atlas VPN team revealed data 

showing that over 34.76 million new malware samples have been found so far 

this year. This indicates that in 2022, hackers have produced more than 316 

thousand new malware threats every day on average [2]. 

According to data provided by AV-TEST GmbH, an independent provider of 

services in the areas of IT Security and Anti-virus Research, the analysis was 

conducted. The information was last updated on April 20, 2022. 

 

 

       

 

 

 

 

 

 

 

Fig 1.1 Number of new malware samples in 2022. 

https://www.av-test.org/en/
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1.2 ANDROID MARKET SURVEY 
 

With Android being the most used mobile operating system (OS), with roughly 71% 

of the global market share as of November 2022 [3]. 

 

Fig. 1.2 Mobile OS Market Share Worldwide 

 

Android has an open-source philosophy and offers developers a free 

integrated programming environment (IDE) that makes it easier for them to use 

its platform. On the other side, iOS has a higher entrance hurdle for those 

looking to build for the iOS ecosystem because of its strict approval rules and 

need that developers utilise proprietary hardware and software to create and 

publish iOS apps. 

The Android operating system also enables users to download programmes 

from unreliable sources that could be found online and via third-party app 

stores. 

Latest survey says, in 2022 there were more than 5 million apps available in 

top application markets (Google Play, iOS AppStore, and Amazon Appstore) 

[4][5]. 
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           Fig. 1.3 Number of available applications in the Google Play Store 

 

 

 

Fig. 1.4 Number of available apps in the Apple App Store from 2008 to October 2022. 
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1.3 ANDROID MALWARE DETECTION APPROACHES 

Mobile devices, particularly smartphones and tablets, have become a crucial part 

of modern life, especially in developed countries. Their widespread use and 

sophisticated features make them attractive targets for attackers. As a result, 

protecting private user information and sensitive data requires strong security 

measures in the digital age. Android applications are classified as harmful or 

benign, with harmful ones posing security risks. The increasing use of Android by 

cybercriminals has led to the development of harmful apps that steal data. Users 

can install apps from untrusted sources, increasing the risk of malware infection. 

Recent studies show that 97% of mobile malware infections occur on Android 

devices. Malware can lower system performance, scan OS vulnerabilities, and 

perform undesired operations, making malware analysis a critical cyber-security 

issue.The Android platform is susceptible to malicious applications, leading to 

various studies to develop methods for detecting and removing them. These 

methods include static and dynamic analysis, as well as a hybrid analysis approach 

that combines both methods. 

Android platform is vulnerable to malicious applications. Various Studies have 

been carried out to develop the method to detect such malware in android 

platforms. Performing the analysis after determining which features can be taken 

out of the apps. Static and dynamic analysis are the two primary categories into 

which these analytic approaches fall. There is a hybrid analysis approach also, 

which is a mixture of both other approaches. 

1. Static analysis 

Static analysis is a method of learning about software without running the 

application, utilizing information such as opcode sequences and control flow 

graphs obtained from disassembling binary files [1]. These feature sets can be 

combined or used singly to identify malware [2]. Extensive static testing of 

manifest about the app and internal commands is done by the Drebin [3], 

DroidMat [4], DroidAPIMiner [5], DroidSieve [6], and DroidDet [7] methods in 
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order to gather sensitive permissions, API calls, and other distinguishing aspects. 

Later, Drebin [3] also produces vectors for each app using the features that have 

been gathered. 

 

2. Dynamic analysis 

We must run the software, frequently in a virtual environment, in order to do 

dynamic analysis. Substantial information on a variety of topics, including 

memory writes, registry modifications, API calls, system calls, and instruction 

traces is provided by dynamic analysis [1]. In a fake environment that mimics a 

real device, Andlantis [8] does dynamic analysis. To find anomalous activity, 

forensic imprints of malware families, runtime behaviors, and system calls are 

gathered.  [1]. 

3. Hybrid methods 

The pros of both static testing and dynamic testing are combined in hybrid 

approaches. We talk about two recent instances of this kind of work in this 

section. The authors suggest a system for categorising malware using static and 

dynamic analysis. They use a method they call Malware DNA to characterise the 

characteristics of malware (Mal-DNA). This method's core component is a 

behaviour monitor and analyzer based on debugging that pulls out dynamic 

features. A hybrid system called IntelliDroid [9] combines static and dynamic 

analysis and creates inputs tailored to a dynamic analysis tool. The process of 

generating input improves code coverage, which raises the likelihood of 

identifying whether the functionality that was performed was benign or malicious 

[10].  

Hybrid analysis combines static and dynamic analysis, removing compromise 

signs and refining malware properties. This approach offers a comprehensive 

understanding of malware but has higher resource needs and the need to adapt to 

malware's ongoing development. Combining these techniques allows security 
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experts to build multi-layered protection and conduct in-depth analysis of 

potential threats. 

Based on the facts provided above, it is evident that an efficient way to identify 

Android malware is desperately needed in order to shield Android users from 

harmful assaults. 

This work makes six distinct contributions: 

• One of the tasks is creating a relationship graph that shows the 

relationships between various apps and their functionalities.  

• This study makes use of effective methods to determine how similar 

different applications are to one another, which helps to provide a more 

thorough knowledge of their features and attributes.  

• We offer a scalable technique for assessing app-function correlations 

using mature and well efficient recommender system modules. 

• The suggested method does not need expert-based feature extraction. 

Automatic feature generation involves semantic node embedding of the 

ASG. 

• Our work is experimented on CIC-AndMal2017 dataset which is an 

extensive compilation of both malicious and benign android apps. 

• This study makes use of the CIC-AndMal2017 dataset. This dataset 

provides the experimental basis for evaluating the suitability and efficacy 

of the suggested approaches. 

The remaining sections of the paper are separated as, the second section gives 

introductory information and a review of the literature; the third section explains 

the suggested methodology for app categorization; the fourth section discusses 

datasets, implementation, and results; and the fifth section concludes the whole 

paper. 
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CHAPTER 2 

RELATED WORK 

 

This research [3] proposes a machine learning-based Android malware detection 

system to enhance smartphone users' security and privacy. This system 

categorizes Android programs as malware or goodware, using permission-based 

features and events. The framework uses a dataset, extracts attributes from 

Android.apk files, and empirically tests machine learning algorithms for high 

accuracy rates. 

This research [4] introduces DL-Droid, a deep learning system that uses stateful 

input generation and dynamic analysis to detect harmful Android applications. 

Experiments on genuine devices with over 30,000 malicious apps showed DL-

Droid outperforms traditional machine learning methods with recognition rates of 

up to 97.8% for dynamic characteristics and 99.6% for combining dynamic and 

static data. The study emphasizes the need for enhanced input generation for 

dynamic analysis in Android malware detection systems. 

This study [5] presents a classification model for Android malware apps that uses 

permission requests and API calls. The model categorizes apps into disruptive, 

dangerous, and ambiguous, based on their use of API calls and risky permissions. 

The model, built on 27,891 Android applications from a malware dataset, has an 

F-measure of 94.3%, making it useful for malware analysis and forensic 

investigations. The method uses statistical tests to automatically assess and 

evaluate applications, revealing that permissions and API calls significantly 

impact malware variant classification. The technique also provides valuable 

insights into virus activity. 

This study [6] introduces a new malware detection method that separates a 

function call graph into community structures for malware detection. It uses 

machine learning categorization instead of subgraph similarity comparison and 

reduces computing time. The method outperformed three well-known anti-virus 

software and two earlier control flow graph-based methods in various malware 
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families. It uses reverse engineering to retrieve an Android application's function 

call graph, weights it based on permissions and APIs, and detects malware using 

machine learning classification. 

This study [7] for malware vetting tools presents a deep learning-based hybrid 

analysis strategy that combines the benefits of static and dynamic analysis to 

improve accuracy. The approach generates a number of artifacts using 

lightweight static and dynamic analysis procedures. These are then trained to 

create separate models, which are merged to form a hybrid classifier. Using 

hybrid analysis, the best deep learning model has an AUC (area under the 

precision-recall curve) of 0.9998. The study also examines the performance 

indicators of several deep learning framework modifications, demonstrating that 

the system is scalable and adaptable to imbalanced data sets. The paper also 

includes a comparison of the performance indicators for several deep learning 

framework versions. 

This study [8] tells that a 2011 study found 211 harmful Android applications on 

the official Android market. Detecting malware using machine learning-based 

classifiers faces challenges in collecting feature representations and selecting a 

classifier that can only be trained in one category. To overcome these, a diverse 

feature set is retrieved and processed separately by kernels. A One-Class Support 

Vector Machine is trained on benign applications, using a server's computational 

capability. 

This study [9] explores how mobile malware bypasses detection by replicating 

security-sensitive activities of innocuous programs and reducing their payload. 

The authors introduce AppContext, a static program analysis tool that helps 

distinguish between benign and malicious behavior by collecting contexts for 

security-sensitive actions. Tested on 633 benign applications and 202 malicious 

apps, the results show that the purpose of a security-sensitive action significantly 

impacts its maliciousness. The key contributions include an abstraction to 

describe security-sensitive activity contexts, a static-analysis approach for context 

extraction, and three assessments of 846 Android apps. 
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This work [10] introduces a new dynamic analysis approach called Component 

Traversal, which uses weighted directed graphs and a deep learning architecture 

to detect unknown An-droid malware. This method, which has been integrated 

into a commercial Android anti-malware application, outperforms other 

alternative strategies, as attackers are increasingly using tactics like repackaging 

and obfuscation to avoid signatures. 

This study [11] presents a framework for dividing Android APKs into benign or 

harmful families using a model-based semi-supervised (MBSS) classification 

approach. MBSS outperforms traditional malware detection classifiers like SVM, 

kNN, and LDA under ideal classification settings. Its accuracy is 98% in-sample 

and has minimal false positive rate. Out-of-sample testing shows MBSS and 

SVM maintain a 90% detection rate, while kNN and LDA perform significantly 

worse. MBSS continues to outperform other classifiers. 

This research [12] proposes a deep learning method called CDGDroid, which 

uses semantic graph representations like control flow graph and data flow graph. 

Android malware poses a threat to digital lives, necessitating effective detection 

and security. Recent machine learning algorithms often lack the complexity 

needed for Android applications. The model uses a convolutional neural network 

to build a classification model. Tests on various datasets show optimal accuracy 

when combined horizontally. CDG-Droid outperforms other anti-virus tools. 

The growing amount of malware programs on Android, the leading smartphone 

operating system, poses a serious danger to consumer privacy and security. In this 

study [11] we studied about Classification algorithms using a single feature 

frequently have poor detection performance. To improve detection, the FAMD 

framework (Fast Android Malware Detector) is suggested in this work. The 

framework reduces feature dimensionality by using permissions and Dalvik 

opcode sequences from samples that have been preprocessed using the N-Gram 

approach and the FCBF algorithm. The dimensionality-reduced features are then 

fed into the CatBoost classifier for malware detection and family categorization. 

The findings demonstrate that the combined characteristics increase malware 
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detection accuracy by 97.4% on the Drebin dataset [3] and 97.4% on malware 

family classification accuracy. This framework surpasses other cutting-edge 

approaches in terms of accuracy and time consumption. 

In this paper [12] researchers have developed new approaches for detecting 

Android malware based on syntactic traits and machine learning techniques. This 

study describes a novel technique to Android malware classification based on 

deep learning and OpCode-level Function Call Graph (FCG) [13]. The method 

employs a Long Short-Term Memory (LSTM) deep learning model and was 

evaluated on a dataset of 1796 Android malware samples and 1000 benign 

Android applications [13]. The findings revealed that the suggested methodology 

beats state-of-the-art approaches with 97% and 91% accuracy, respectively, while 

taking up less time.  

In this study [14] four different malware detection techniques that use the 

Hamming distance to measure sample similarity are presented. These approaches 

include the K-Medoid Based Closest Neighbors (KMNN), Weighted All Nearest 

Neighbors (WANN), All Nearest Neighbors (ANN), and First Nearest Neighbors 

(FNN). Their objective is to alert users about an Android app's possible risks, 

reducing the possibility of malware spreading widely. The algorithms are 

evaluated on three datasets, which include both benign and malicious Android 

applications such as Drebin [3], Contagio, and Genome. Performance 

comparisons with cutting-edge algorithms such as Mixed and Separated 

solutions, PDME, and FalDroid demonstrate that the suggested methods achieve 

equivalent accuracy rates to existing solutions. 

The study's [15] goal is to develop malware detection algorithms for Android 

applications due to their widespread use and harmful variations. The authors 

employ API call graphs to precisely represent application activity, however 

similarity detection and classification techniques can be sluggish and imprecise. 

They incorporate API call graphs in a deep neural network, which detects 

similarities between binary functions. By evaluating different embedding 

methodologies and altering network setup variables, the research aims to 
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optimize network performance. The results of the experiment show that the 

malware classification achieved 98.8% precision, 98.4% recall, 98.6% F-

measure, and accuracy. 

The paper [16] proposes, creating behavior characteristics of Android 

applications using complete, multi-view information using the apk2vec 

semisupervised Representation Learning (RL) framework. This method can 

considerably enhance downstream analytics activities such as app classification, 

recommendation, and virus detection. For effective online learning, the system 

includes information from numerous semantic perspectives, employs app-specific 

labels, and combines RL with feature hashing. The generated semi-supervised 

multi-view hash embeddings can be utilized for a variety of subsequent tasks. 

Experiments with almost 42k applications demonstrate that apk2vec's app 

profiles beat cutting-edge approaches in four app analytics tasks: virus 

identification, family grouping, app clone detection, and app recommendation. 

This study [17] This paper suggests DLGraph, a novel graph embedding and deep 

learning-based malware detection method. The system learns computer program 

function-call graphs and Windows API calls using two stacked denoising 

autoencoders. It then merges latent representations to provide a feature vector for 

malware detection. Experiments on diverse datasets show that the strategy is 

effective and superior to a comparable method. 

This study [18] presents a framework for detecting fraudulent applications for 

Android that is built on the concepts of Active Learning technologies and SVM 

(Support Vector Machine). The method captures application execution activity 

and translates them into a feature set, assigning timestamps to select features. The 

use of time-dependent activity tracking increases malware detection accuracy. 

The model was created using the Expected error reduction query approach and 

adaptive online learning. Experiments on the DREBIN benchmark [3] malware 

dataset demonstrate that the technique accurately detects harmful apps and 

improves updateability against new infections. 
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In this paper [6] we studied that current machine learning classification 

algorithms rely on lightweight syntactic cues; however, they may be ineffective 

for identifying obfuscated Android malware. In the paper DroidSieve is presented 

which is an Android malware classification system. It employs static testing to 

detect malicious apps and group them into virus families based on similarities. 

DroidSieve employs obfuscation-invariant characteristics and artifacts, achieving 

up to 99.8% accuracy for malware detection and 99.2% accuracy for obfuscated 

malware family detection. 

This research [19] describes a machine learning approach based on n-opcode 

analysis for classifying and grouping Android malware. This method eliminates 

the requirement for expert knowledge to describe required features, and it has 

been tested on 2520 samples with up to 10-gram opcode features. The technique 

produced an f-measure of 98%, underlining the rising challenge of malware 

detection on the Android mobile platform, which is popular and accessible 

through third-party app stores. 

The paper [7] provides a low-cost, high-efficiency strategy for detecting Android 

malware that involves extracting permissions, sensitive APIs, monitoring system 

events, and permission rates. The Ensemble Rotation Forest (RF) model is used 

to identify fraudulent Android applications. The approach yields 88.26% 

accuracy, 88.40% sensitivity, and 88.16% precision. The suggested strategy 

outperforms the state-of-the-art Support Vector Machine (SVM) model by 

3.33%. The findings indicate that the suggested approach is extremely promising 

and might provide a cost-effective option for Android virus detection. 

. 
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CHAPTER 3 

METHODOLOGY 

 

Our suggested Android app analysis and categorization approach consists of eight 

basic components. 

1. Function extraction. The Android application archive (.apk/APK) 

contains the app's whole bytecode [1]. The bytecode is first converted into 

the source code of the application, after which all specified and utilized 

functions are extracted and saved. 

2. ASG formation. The retrieved functions are processed to generate an app 

similarity graph (ASG). The ASG uses recommender system-based item 

similarity approaches to connect apps with comparable functionalities. 

3. SVM: In high-dimensional spaces, SVMs function well. SVMs only need 

a subset of training data points known as support vectors to identify the 

ideal hyperplane also they are memory efficient. 

4. Gradient Boost: XGBoost is an effective and versatile tool that can 

handle complex correlations and patterns in data because of its efficiency 

and adaptability. 

5. AdaBoost: AdaBoost enhances model performance by prioritizing 

relevant features, making it beneficial for high-dimensional datasets and 

capturing complex relationships, making it suitable for weak learners like 

decision trees. 

6. Ensemble technique by MaxVoting - Applying the max voting approach 

to combine the forecasts of the three models. This means deciding the 

majority vote from the forecasts of the individual models for each data 

point. 

7. Ensemble technique by Stacking - Stacking is the process of training a 

meta-model that combines base model predictions. In this work, we are 

using Random Forest, SVM, and AdaBoost as basic models before 

training a meta-model to create the final predictions. 
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8. Ensemble technique by Bagging - Bagging (also known as Bootstrap 

Aggregating) is the process of training numerous instances of the same 

basic model on different subsets of training data and then merging their 

predictions. 

3.1 Function extraction 

Androguard's feature extraction includes examining Android application 

packages (APKs) to extract various characteristics or features. These features 

may be related to the app's structure, behavior, or functionality. Androguard is a 

well-known Python library that analyzes Android apps and provides utilities for 

working with APK files.  

 

Here's an overview of the feature extraction process with Androguard: 

• Loading APK: Load the APK file using Androguard's APK class. This 

class allows access to APK-specific information such as the manifest, 

resources, and classes. 

• Loading Dalvik Bytecode: After loading the APK, locate the Dalvik 

bytecode in the DEX (Dalvik Executable) files. Androguard provides the 

DalvikVMFormat class to interact with DEX files. 

• Class and Method Extraction: Extract app structure information by 

iterating through Dalvik bytecode classes and functions. 

• Feature Representation: The obtained features may vary based on the 

analysis's specific needs. Depending on the analysis objectives, the 

features may include permissions, API calls, intent filters, and other APK 

components. 

• Error Handling: During feature extraction, errors may occur. It is vital to 

handle exceptions gracefully. This prevents the script from crashing and 

allows you to identify and fix specific issues. 
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Fig. 3.1. Overall app analysis and classification. 

 

3.2 App-Similarity Graph formation 

We created the App Similarity Graph (ASG) to better app representation. To 

begin, we generate a bipartite graph using the popular methods from the previous 

step. The bipartite graph is indicated by GAF = (A, F, E), where A represents 

apps, F represents the important functions found in the previous step, and E 

represents the edges connecting each function to its own app. The GAF apps-

functions network is evaluated using an ISR model to determine item similarity. 

In recommender systems, an ISR model assesses the similarity of two items 

based on user actions. Pearson correlation, Jaccard similarity, and cosine 

similarity are three commonly used methods for measuring item similarity. In this 

paper, we employ the Cosine similarity approach. 

A metric for comparing two non-zero vectors defined in an inner product space is 

called cosine similarity. The cosine of the angle between the vectors, or the dot 

product of the vectors divided by the product of their lengths, is what is known as 

cosine similarity. As a result, the cosine similarity solely depends on the angle of 

the vectors rather than their magnitudes. The equation for cosine similarity is 

given as: 

cos(Ɵ) = A · B / || A || || B || 
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Fig. 3.2. App similarity graph creation process 

 

3.3 ASGnode2vec + SVM classification 

After ASG is created, we use a two-step classification process that consists of 

applying an SVM classifier to the automatically generated feature vectors and 

utilizing a node2vec to construct features on the ASG (ASGnode2vec). 

An approach for feature learning in networks based on neural networks is called 

Node2vec [20]. Node2vec, which draws inspiration from word2vec [21], employs 

the wordcontext concept to provide a low-dimensional features representation for 

nodes. The acquired characteristics often maintain node network neighborhoods, 

which arranges the nodes in accordance with their functions within the network 

and the communities in which they are a part of. 
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Every app in the ASG has a continuous vector representation as the result of 

node2vec applied to the ASG. ASGnode2vec retrieves the semantic context for 

programs from the App Similarity Graph architecture by using the node2vec 

options [1]. The feature vectors produced by ASGnode2vec, which include both 

less and more comparable applications, are influenced by the ASG structure when 

intermediate q ≈ 1. 

After that, we build a relational dataset in which applications are instances and A

SGnode2vec automatically generates feature vectors. 

On the acquired vectors, a supervised machine learning algorithm is performed. 

3.4 ASGnode2vec + Gredient boost classifier 

A machine learning model called XGBoost creates embeddings for every app in a 

dataset using Node2Vec characteristics. Each app's connections with other 

applications in the graph are captured by these embeddings, which show each app 

as a dense vector. The process of feature extraction yields a feature matrix that is 

used as the XGBoost classifier's input. Each program is given a label according to 

its kind, resulting in a labeled dataset. The XGBoost model is trained on the 

training set of the dataset, while the testing set is used to assess the model's 

performance. 

XGBoost successively constructs an ensemble of decision trees while training the 

model with the training data. To determine which Node2Vec properties are most 

important for the model's prediction performance during training, XGBoost 

computes feature importance. Apps may be categorized as benign or malicious 

using the trained XGBoost model, which generates probabilities for each class 

and makes predictions on the testing set. 

Metrics including accuracy, precision, recall, F1-score, and ROC-AUC are used 

to assess performance. In order to differentiate between malicious and benign 

applications, the significance of the model is examined, offering insights into the 

specific elements of the Node2Vec embeddings that are critical for classification. 

Hyperparameters or settings are adjusted as needed to maximize the performance 

of the model. 
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3.5 ASGnode2vec + AdaBoost classification  

Adaboost is an ensemble learning technique that builds a powerful classifier by 

combining several weak classifiers. It represents each app with a dense vector of 

characteristics by embedding nodes into a high-dimensional vector space using 

Node2Vec embeddings. The app's relationships with other nodes in the network 

are captured by these characteristics, which stand in for the structural and 

contextual information that Node2Vec learnt. These characteristics are used as 

input by Adaboost during training, and the related labels (benevolent or 

malevolent) are used as output. 

Adaboost begins with a subpar classifier, frequently a straightforward decision 

tree, which might not function effectively by itself. By giving misclassified 

instances a larger weight, it enables weaker classifiers to concentrate on cases 

that are challenging to classify. By training each weak classifier on a portion of 

the data, Adaboost builds an ensemble of them. By giving each poor classifier a 

weight determined by its accuracy, each one adds to the final result. Weak 

classifiers that do well on challenging cases are given preference in the final 

classification, which is a weighted mixture of their individual outputs. Adaboost 

determines the final classification using a weighted majority vote. 

3.6 Ensemble technique by MaxVoting 

The integration of node2vec with ensemble learning via a max voting approach 

enhances app similarity predictions by combining the advantages of multiple 

machine learning models. The project begins with the graph em-bedding 

technique node2vec, which extracts features from Android APK files. The 

bipartite graph is formed by app interactions and node embeddings, efficiently 

capturing context and structural details. An ensemble learning strategy is then 

used, using three base models: Random Forest, Support Vector Machine (SVM), 

and Ada-Boost. The labels and node embeddings are trained using the cosine 

similarity matrix. The ensemble is then aggregated using the max voting 

approach. 
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The max voting ensemble gathers individual predictions from each base model, 

with the class that occurs most frequently for each data point selected as the final 

prediction. This technique enhances app similarity predictions by utilizing diverse 

viewpoints and capabilities. The ensemble uses Random Forest, SVM, and Ada-

Boost models to capture intricate interactions in the bipartite graph. This 

integrated approach uses graph-based embeddings from node2vec for nuanced 

representation of app-function relationships and ensemble learning to enhance 

predictive accuracy. Max voting ensures a robust decision-making process, 

making final predictions more reliable and robust in capturing patterns of 

similarity between different Android apps. This comprehensive workflow 

showcases a holistic approach to app similarity analysis. 

3.7 Ensemble technique by Stacking 

After the node2vec embedding is generated, ensemble learning methods—

specifically, stacking and bagging—are utilized to improve the model's predictive 

power. For this ensemble, three unique base models are selected: Random Forest, 

Support Vector Machine (SVM), and AdaBoost. Using the labels produced from 

the cosine similarity matrix, which indicate the similarity scores between various 

applications, each model is trained on the node embeddings. In stacking, the 

predictions of the three underlying models are combined by training a meta-

model—in this example, another Random Forest. The ensemble may assess and 

learn from the advantages and disadvantages of each model through the stacking 

process, resulting in a more sophisticated and knowledgeable decision-making 

process. 
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Fig. 3.3. Stacking Process 

 

3.8 Ensemble technique by Bagging 

Bagging is applied to each base model, resulting in an ensemble of models that 

are trained on various training data subsets. Every model used in this procedure is 

trained on a bootstrapped sample of data, and several instances of each model are 

involved. The final ensemble forecast is derived from the sum of the predictions 

made by different models. This scenario applies the bagging technique to 

Random Forest, SVM, and AdaBoost separately. 

This combined strategy, which combines stacking and bagging ensemble methods 

with node2vec embeddings, highlights a complete methodology for encapsulating 

the complex interactions seen in the bipartite network of Android functions and 

apps. The model's prediction accuracy is enhanced by the synergy between 

ensemble learning algorithms and graph-based embeddings, which also makes the 

model more resilient and flexible in capturing the complex nature of app 

similarity. 
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Fig. 3.4. Bagging Process 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

In this section, first we will discuss about the dataset we have used for our study, 

CIC-AndMal2017 Android Malware Dataset.  

4.1 Dataset 

These experiments were performed on the CIC-AndMal2017 dataset which is an 

extensive compilation of both malicious and safe Android apps that have been 

hand-picked to give users a more accurate picture of the threat environment on 

Android smartphones. The dataset uses a novel methodology that runs both 

malware and benign applications on actual cellphones, in contrast to conventional 

methodologies. This method seeks to avoid the runtime behavior change used by 

sophisticated malware strains that have the ability to identify emulation 

environments. 

The collection consists of 10,854 samples in total, of which 6,500 are classified as 

benign and 4,354 as malware. The safe examples were from the Google Play store 

and included applications released in 2015, 2016, and 2017. Five thousand samples 

were chosen, of which 4,26 were malicious and 5,065 were benign, and were 

installed on real devices in order to verify the dataset's legitimacy and applicability 

in the real world. 

The CIC-AndMal2017 dataset's malware samples are divided into four groups that 

offer a thorough understanding of the variety of Android threats:  

• Adware is malicious software that pretends to be useful apps in order to 

display intrusive adverts.  

• Malware that locks or encrypts a victim's device and demands a payment to 

unlock it is known as ransomware. 

• Scareware is malicious software that deceives users into thinking their 

device is contaminated and causes them to take action that is not necessary. 
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• Malicious software that modifies or uses the Short Message Service's (SMS) 

capability for improper purposes is known as SMS malware. 

 

Table 4.1. Summary of dataset. 

Dataset Type of  

Applications 

Number 

of Apps 

Number of  

functions 

Popular  

functions 

CIC-

AndMal2017 

Both benign 

and malicious 

#10854 #25685647 #1059767 

 

4.2 Performance evaluation 

In this work, we test the effectiveness of the Android malware classifiers using 

three standard metrics such as: accuracy, F1 score, and AUC [22] [1]. We then go 

over these metrics in brief [1]. The description outlines a classification system 

where TN (true negative) signifies the count of accurately predicted benign apps, 

FP (false positive) denotes benign apps mistakenly classified as malware, TP (true 

positive) represents the count of accurately predicted malware apps, and FN (false 

negative) indicates malware apps incorrectly classified as benign. Accuracy (acc.) 

emerges as the most logical performance metric, representing the proportion of 

correctly identified applications. [1] . 

acc = TP+TN / TP+TN+FP+FN. 

The formula for calculating the F1 score (F1) is:  

F1 = 2TP / 2TP+FP+FN. 

In imbalanced datasets, both the accuracy and F1 measurements are deceptive. For 

example, let's say that just 5% of the applications are harmful. The accuracy of a 

basic classifier that consistently yields the majority class is 0.95. 

In the field of machine learning, the Area Under the Receiver Operating 

Characteristic Curve (AUC) [22] serves as a performance metric, remaining 
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insensitive to imbalanced datasets. Regardless of the percentage of malicious 

applications in the dataset, a perfect classifier will always have an AUC of 1, but a 

random classifier would always have an AUC close to 0.5. Therefore, when 

evaluating classifier performance on datasets with varying percentages of 

dangerous applications, the AUC [22] is the most crucial factor to consider. 

4.3 Results 

4.3.1 Results of Machine Learning Models 

On the test dataset, the SVM model had an accuracy of 86%, meaning that 86% of 

the instances were correctly identified. This points to a generally solid performance. 

With an accuracy of 80%, the XGBoost model meant that 80% of the cases were 

properly identified. Even though this accuracy is noteworthy, more research is 

necessary to fully comprehend the behavior of the model. 

With an accuracy of 89%, AdaBoost demonstrated strong performance and a high 

percentage of accurate classifications on the test data. 

 

Fig. 4.1. Accuracy result of all three classifier 
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Fig. 5.2. ROC Curve for all three classifiers. 

 

It is discovered that the SVM model's ability to distinguish between classes, as 

measured by the AUC score, was 0.33. A score of 0.33 indicates that the model's 

ability to discriminate between classes is restricted and verges on chance. 

With an AUC of 0.83, XGBoost has a far higher score. With larger values closer to 

1, the model performs better, indicating a strong capacity to differentiate between 

classes. 

AdaBoost's AUC score was a startling 0.5. This implies that the model's class 

distinction abilities are no more accurate than chance. To determine the cause of 

this unanticipated outcome, more research is required. 
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Table 4.2. Summary of Test Accuracies of Three Machine Learning Models. 

Model Test accuracy 

SVM Classifier 86% 

XG Boost 80% 

ADA Boost 89% 

 

4.3.2 Results of Ensemble Models 

The node2vec embeddings were used to train each model, and the Max Voting, 

Stacking, and Bagging techniques were used to combine their predictions. 

In this work, we test the effectiveness of the Android malware ensemble classifiers 

using standard metrics that is accuracy. 

 

Fig. 4.3. Accuracy result of all three ensemble learning techniques. 
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The assessment of the group models showed impressive performances, offering 

information on how well the selected methods worked. Max Voting worked 

admirably with an accuracy of 82.2%, Bagging was better with an accuracy of 

85.3%, and Stacking was noteworthy with an accuracy of 84.4%. 

 

Table 4.3. Summary of Test Accuracies of Three Ensemble Learning Models. 

Model Test accuracy 

Ensemble technique by MaxVoting 82.2% 

Ensemble technique by Stacking 84.4% 

Ensemble technique by Bagging 85.3% 
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CHAPTER 5 

CONCLUSION 

 

This study utilized apk function analysis, node2vec embeddings, and ensemble 

learning to analyze the links between Android apps (APKs) and their related 

functions. The process involved extracting a list of distinct APKs from a directory, 

extracting the functions connected to each APK, and creating a bipartite graph 

representing the associations. The node2vec technique was used to create node 

embeddings, capturing the structural details of the graph. Cosine Similarity's 

similarity ratings were used to quantify app similarities based on common 

functionalities, providing valuable insights into app relationships. The App 

Similarity Graph (ASG) was constructed using similarity scores across applications 

based on their function sets, making it easier to identify related apps.  

The group models evaluated performed well, with Max Voting having an 

impressive 82.2% accuracy rate, bagging outperforming it with an even greater 

accuracy of 85.3% and stacking with an accuracy of 84.4%. The study highlights 

the potential of ensemble learning techniques in improving predictive performance. 

The study evaluated the performance of machine learning models, specifically 

Support Vector Machine (SVM), XGBoost, and AdaBoost, in classifying apps into 

malicious and benign categories using Node2Vec embeddings. The models showed 

varying levels of accuracy, with SVM achieving 86%, XGBoost achieving 80%, 

and AdaBoost achieving 89%. However, the AUC scores provided insights into 

their discriminative abilities, with XGBoost demonstrating a high AUC score of 

0.83, indicating strong class separation. The discrepancy between accuracy and 

AUC scores for SVM and AdaBoost suggests further investigation into their 

behavior and training challenges. Future analysis should include examination of 

feature importance, confusion matrices, and precision-recall curves to gain a 

comprehensive understanding of model behavior. XGBoost emerged as the most 

promising model, and further fine-tuning and optimization of hyperparameters 

could enhance its performance. 
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FUTURE WORK 

 

The categorization of applications will be part of future development, and whether 

or not the apps are harmful or benign will be determined by the similarity score and 

app similarity graph. Models may be created utilizing the bipartite graph, similarity 

scores, and other pertinent information to categorize applications into harmful and 

benign categories with the use of machine learning techniques. The automatic 

identification and categorization of potentially hazardous apps using this 

technology can assist to increase user security. 
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