
ANDROID MALWARE DETECTION USING

GRAPHICAL TECHNIQUES

A MAJOR PROJECT-II REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

INFORMATION SYSTEMS

Submitted by:

MONISH KUMAR SAHU

2K22/ISY/09

Under the supervision of

MR. RAHUL GUPTA

 DEPARTMENT OF INFORMATION AND TECHNOLOGY

 DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi-110042

May, 2024

ii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude towards my supervisor Mr. Rahul Gupta

for providing her invaluable guidance, comments, and suggestions throughout the

course of the project.

The results of this thesis would not have been possible without support from all who

directly or indirectly, have lent their hand throughout the course of the project. I would

like to thank my parents and faculties of the Department of Information Technology,

Delhi Technological University, for their kind cooperation and encouragement which

helped me complete this thesis. I hope that this project will serve its purpose to the

fullest extent possible.

MONISH KUMAR SAHU

2K22/ISY/09

DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLEGE OF ENGINEERING)

Bawana Road, Delhi-110042

iii

CANDIDATE’S DECLARATION

I, Monish Kumar Sahu, 2K22/ISY/09 student of M.Tech in Information Systems,

hereby declare that the Major Project-II dissertation titled “ANDROID

MALWARE DETECTION USING GRAPHICAL TECHNIQUES” which is

submitted by me to the Department of Information Technology, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the degree

of Master of Technology, is original and not copied from any source without proper

citation. This work has not previously formed the basis for the award of any degree,

Diploma Associateship, Fellowship, or other similar title or recognition.

Place: Delhi MONISH KUMAR SAHU

Date: 20/05/2024 2K22/ISY/09

DEPARTMENT OF INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLEGE OF ENGINEERING)

Bawana Road, Delhi-10042

v

 CERTIFICATE

I hereby certify that the Major Project-II dissertation titled “ANDROID MALWARE

DETECTION USING GRAPHICAL TECHNIQUES” which is submitted by

Monish Kumar Sahu, 2K22/ISY/09, Department of Information Technology, Delhi

Technological University, Delhi in partial fulfillment of the requirement for the award

of the degree of Master of Technology, is a record of the project work carried out by

the student under my supervision. To the best of my knowledge, this work has not

been submitted in part or full for any degree or diploma to this University or

elsewhere.

 Place: Delhi MR. RAHUL GUPTA

Date: 20/05/2024 SUPERVISOR

 Asst. Professor

 Department of Information Technology

 DELHI TECHNOLOGICAL UNIVERSITY

vi

ABSTRACT

Android is the most popular operating system for mobile devices which has dominated

the smartphone industry. Traditional signature-based malware detection approaches have

been in use for a long time. Yet their technology falls far short of being completely secure.

Modern malware detection tools are used by major mobile application distributors, official

stores, and marketplaces to analyze uploaded programs and eliminate any dangerous ones.

Unfortunately, until they are taken off the market, malicious software has a long window

of opportunity. In this paper, we studied different research papers based on graphical

techniques and learned about static and dynamic malware detection approaches. We

presented a new and unique method for detection of Android malware that uses apk

function analysis and app-similarity graph in conjunction with ensemble techniques. This

work uses graph neural networks and similarity graph, in which relationships are depicted

as edges based on semantic similarities, while apps are represented as nodes. The study

shows how well the suggested technique works to recognize malicious apps by comparing

their functional and structural characteristics. The results improve the field of mobile app

security and present an effective strategy of action to protect against threats that are

constantly evolving within the Android app ecosystem. The proposed model provided

reasonable accuracy and hence served to aid and maintain a user-safe environment.

vii

TABLE OF CONTENTS

Acknowledgement…...……...………..………………………………… ii

Candidate’s Declaration…………… ………………………………... iii

Certificate……………...………………..……………………………… iv

Abstract………….…...……...………….…………………………….... v

Table of Contents.…...……...………….……………………………… vi

List of Figures…...…...……...…………….…………………………… vii

List of Tables.…...…...……...…………….…………………………… viii

 CHAPTER 1 INTRODUCTION……………………………….…….. 1

 1.1 General ………………………...……………………………. 1

1.2 Android Market Survey……………………………………. 2

1.3 Android Malware Detection approaches….…………….…. 4

 CHAPTER 2 RELATED WORK………………………………….…. 7

 CHAPTER 3 METHODOLOGY………………………………….…... 13

 3.1 Function Extraction……………………………………….…. 14

 3.2 ASG Formation…………………………………………….… 15

 3.3 ASGnode2vec + SVM classification……………………….... 16

3.4 ASGnode2vec + XGBoost classification…………………….. 17

3.5 ASGnode2vec + ADA Boost classification ………………….. 18

3.6 Ensemble technique by MaxVoting ………………………….. 18

3.7 Ensemble technique by Stacking ……………………………… 19

3.8 Ensemble technique by Bagging ……………………………… 20

 CHAPTER 4 RESULTS AND DISCUSSION………………………… 22

 4.1 Dataset………………………….……………………………… 22

4.2 Performance Evaluation ...…….……………………………… 23

 4.3 Results………………………….……………………………… 24

 4.3.1 Results of Machine Learning Models ……………… 24

4.3.2 Results of Ensemble Models ………………………… 26

CHAPTER 5 CONCLUSION AND FUTURE WORK ………………… 28

REFERENCES……………………………...…..…………………………. 30

PUBLICATIONS………………………..…………………………………. 34

viii

 LIST OF FIGURES

FIGURE CONTENT PAGE NO

1 Number of new malware samples in 2022 1

2 Mobile OS Market Share Worldwide 2

3 Number of available applications in the Google

Play Store

3

4 Number of available apps in the Apple App Store 3

5 Overall app analysis and classification 15

6 App similarity graph creation process 16

7 Stacking Process 19

8 Bagging Process 20

9 Accuracy result of all three classifier 23

10 ROC Curve for all three classifiers 24

11 Accuracy result of all three ensemble learning

techniques.

25

ix

LIST OF TABLES

FIGURE CONTENT PAGE NO

1 Summary of dataset. 22

2 Summary of Test Accuracies of Three Machine

Learning Models.

25

3 Summary of Test Accuracies of Three

Ensemble Learning Models.

26

1

CHAPTER 1

INTRODUCTION

1.1 GENERAL

Due to their portability, high processing power, accessibility to the Internet, and

usability, smartphones, tablets, and other mobile platforms have been an

integral part of our everyday lives for a long time and are now considered

essential tools in our society. Currently, sales of personal computing devices

like tablets or smartphones reached to 1433 million units in 2021 [1], which

leads to the encouragement to develop more and advanced mobile malwares.

New online dangers appear every year. The Atlas VPN team revealed data

showing that over 34.76 million new malware samples have been found so far

this year. This indicates that in 2022, hackers have produced more than 316

thousand new malware threats every day on average [2].

According to data provided by AV-TEST GmbH, an independent provider of

services in the areas of IT Security and Anti-virus Research, the analysis was

conducted. The information was last updated on April 20, 2022.

Fig 1.1 Number of new malware samples in 2022.

https://www.av-test.org/en/

2

1.2 ANDROID MARKET SURVEY

With Android being the most used mobile operating system (OS), with roughly 71%

of the global market share as of November 2022 [3].

Fig. 1.2 Mobile OS Market Share Worldwide

Android has an open-source philosophy and offers developers a free

integrated programming environment (IDE) that makes it easier for them to use

its platform. On the other side, iOS has a higher entrance hurdle for those

looking to build for the iOS ecosystem because of its strict approval rules and

need that developers utilise proprietary hardware and software to create and

publish iOS apps.

The Android operating system also enables users to download programmes

from unreliable sources that could be found online and via third-party app

stores.

Latest survey says, in 2022 there were more than 5 million apps available in

top application markets (Google Play, iOS AppStore, and Amazon Appstore)

[4][5].

3

 Fig. 1.3 Number of available applications in the Google Play Store

Fig. 1.4 Number of available apps in the Apple App Store from 2008 to October 2022.

4

1.3 ANDROID MALWARE DETECTION APPROACHES

Mobile devices, particularly smartphones and tablets, have become a crucial part

of modern life, especially in developed countries. Their widespread use and

sophisticated features make them attractive targets for attackers. As a result,

protecting private user information and sensitive data requires strong security

measures in the digital age. Android applications are classified as harmful or

benign, with harmful ones posing security risks. The increasing use of Android by

cybercriminals has led to the development of harmful apps that steal data. Users

can install apps from untrusted sources, increasing the risk of malware infection.

Recent studies show that 97% of mobile malware infections occur on Android

devices. Malware can lower system performance, scan OS vulnerabilities, and

perform undesired operations, making malware analysis a critical cyber-security

issue.The Android platform is susceptible to malicious applications, leading to

various studies to develop methods for detecting and removing them. These

methods include static and dynamic analysis, as well as a hybrid analysis approach

that combines both methods.

Android platform is vulnerable to malicious applications. Various Studies have

been carried out to develop the method to detect such malware in android

platforms. Performing the analysis after determining which features can be taken

out of the apps. Static and dynamic analysis are the two primary categories into

which these analytic approaches fall. There is a hybrid analysis approach also,

which is a mixture of both other approaches.

1. Static analysis

Static analysis is a method of learning about software without running the

application, utilizing information such as opcode sequences and control flow

graphs obtained from disassembling binary files [1]. These feature sets can be

combined or used singly to identify malware [2]. Extensive static testing of

manifest about the app and internal commands is done by the Drebin [3],

DroidMat [4], DroidAPIMiner [5], DroidSieve [6], and DroidDet [7] methods in

5

order to gather sensitive permissions, API calls, and other distinguishing aspects.

Later, Drebin [3] also produces vectors for each app using the features that have

been gathered.

2. Dynamic analysis

We must run the software, frequently in a virtual environment, in order to do

dynamic analysis. Substantial information on a variety of topics, including

memory writes, registry modifications, API calls, system calls, and instruction

traces is provided by dynamic analysis [1]. In a fake environment that mimics a

real device, Andlantis [8] does dynamic analysis. To find anomalous activity,

forensic imprints of malware families, runtime behaviors, and system calls are

gathered. [1].

3. Hybrid methods

The pros of both static testing and dynamic testing are combined in hybrid

approaches. We talk about two recent instances of this kind of work in this

section. The authors suggest a system for categorising malware using static and

dynamic analysis. They use a method they call Malware DNA to characterise the

characteristics of malware (Mal-DNA). This method's core component is a

behaviour monitor and analyzer based on debugging that pulls out dynamic

features. A hybrid system called IntelliDroid [9] combines static and dynamic

analysis and creates inputs tailored to a dynamic analysis tool. The process of

generating input improves code coverage, which raises the likelihood of

identifying whether the functionality that was performed was benign or malicious

[10].

Hybrid analysis combines static and dynamic analysis, removing compromise

signs and refining malware properties. This approach offers a comprehensive

understanding of malware but has higher resource needs and the need to adapt to

malware's ongoing development. Combining these techniques allows security

6

experts to build multi-layered protection and conduct in-depth analysis of

potential threats.

Based on the facts provided above, it is evident that an efficient way to identify

Android malware is desperately needed in order to shield Android users from

harmful assaults.

This work makes six distinct contributions:

• One of the tasks is creating a relationship graph that shows the

relationships between various apps and their functionalities.

• This study makes use of effective methods to determine how similar

different applications are to one another, which helps to provide a more

thorough knowledge of their features and attributes.

• We offer a scalable technique for assessing app-function correlations

using mature and well efficient recommender system modules.

• The suggested method does not need expert-based feature extraction.

Automatic feature generation involves semantic node embedding of the

ASG.

• Our work is experimented on CIC-AndMal2017 dataset which is an

extensive compilation of both malicious and benign android apps.

• This study makes use of the CIC-AndMal2017 dataset. This dataset

provides the experimental basis for evaluating the suitability and efficacy

of the suggested approaches.

The remaining sections of the paper are separated as, the second section gives

introductory information and a review of the literature; the third section explains

the suggested methodology for app categorization; the fourth section discusses

datasets, implementation, and results; and the fifth section concludes the whole

paper.

7

CHAPTER 2

RELATED WORK

This research [3] proposes a machine learning-based Android malware detection

system to enhance smartphone users' security and privacy. This system

categorizes Android programs as malware or goodware, using permission-based

features and events. The framework uses a dataset, extracts attributes from

Android.apk files, and empirically tests machine learning algorithms for high

accuracy rates.

This research [4] introduces DL-Droid, a deep learning system that uses stateful

input generation and dynamic analysis to detect harmful Android applications.

Experiments on genuine devices with over 30,000 malicious apps showed DL-

Droid outperforms traditional machine learning methods with recognition rates of

up to 97.8% for dynamic characteristics and 99.6% for combining dynamic and

static data. The study emphasizes the need for enhanced input generation for

dynamic analysis in Android malware detection systems.

This study [5] presents a classification model for Android malware apps that uses

permission requests and API calls. The model categorizes apps into disruptive,

dangerous, and ambiguous, based on their use of API calls and risky permissions.

The model, built on 27,891 Android applications from a malware dataset, has an

F-measure of 94.3%, making it useful for malware analysis and forensic

investigations. The method uses statistical tests to automatically assess and

evaluate applications, revealing that permissions and API calls significantly

impact malware variant classification. The technique also provides valuable

insights into virus activity.

This study [6] introduces a new malware detection method that separates a

function call graph into community structures for malware detection. It uses

machine learning categorization instead of subgraph similarity comparison and

reduces computing time. The method outperformed three well-known anti-virus

software and two earlier control flow graph-based methods in various malware

8

families. It uses reverse engineering to retrieve an Android application's function

call graph, weights it based on permissions and APIs, and detects malware using

machine learning classification.

This study [7] for malware vetting tools presents a deep learning-based hybrid

analysis strategy that combines the benefits of static and dynamic analysis to

improve accuracy. The approach generates a number of artifacts using

lightweight static and dynamic analysis procedures. These are then trained to

create separate models, which are merged to form a hybrid classifier. Using

hybrid analysis, the best deep learning model has an AUC (area under the

precision-recall curve) of 0.9998. The study also examines the performance

indicators of several deep learning framework modifications, demonstrating that

the system is scalable and adaptable to imbalanced data sets. The paper also

includes a comparison of the performance indicators for several deep learning

framework versions.

This study [8] tells that a 2011 study found 211 harmful Android applications on

the official Android market. Detecting malware using machine learning-based

classifiers faces challenges in collecting feature representations and selecting a

classifier that can only be trained in one category. To overcome these, a diverse

feature set is retrieved and processed separately by kernels. A One-Class Support

Vector Machine is trained on benign applications, using a server's computational

capability.

This study [9] explores how mobile malware bypasses detection by replicating

security-sensitive activities of innocuous programs and reducing their payload.

The authors introduce AppContext, a static program analysis tool that helps

distinguish between benign and malicious behavior by collecting contexts for

security-sensitive actions. Tested on 633 benign applications and 202 malicious

apps, the results show that the purpose of a security-sensitive action significantly

impacts its maliciousness. The key contributions include an abstraction to

describe security-sensitive activity contexts, a static-analysis approach for context

extraction, and three assessments of 846 Android apps.

9

This work [10] introduces a new dynamic analysis approach called Component

Traversal, which uses weighted directed graphs and a deep learning architecture

to detect unknown An-droid malware. This method, which has been integrated

into a commercial Android anti-malware application, outperforms other

alternative strategies, as attackers are increasingly using tactics like repackaging

and obfuscation to avoid signatures.

This study [11] presents a framework for dividing Android APKs into benign or

harmful families using a model-based semi-supervised (MBSS) classification

approach. MBSS outperforms traditional malware detection classifiers like SVM,

kNN, and LDA under ideal classification settings. Its accuracy is 98% in-sample

and has minimal false positive rate. Out-of-sample testing shows MBSS and

SVM maintain a 90% detection rate, while kNN and LDA perform significantly

worse. MBSS continues to outperform other classifiers.

This research [12] proposes a deep learning method called CDGDroid, which

uses semantic graph representations like control flow graph and data flow graph.

Android malware poses a threat to digital lives, necessitating effective detection

and security. Recent machine learning algorithms often lack the complexity

needed for Android applications. The model uses a convolutional neural network

to build a classification model. Tests on various datasets show optimal accuracy

when combined horizontally. CDG-Droid outperforms other anti-virus tools.

The growing amount of malware programs on Android, the leading smartphone

operating system, poses a serious danger to consumer privacy and security. In this

study [11] we studied about Classification algorithms using a single feature

frequently have poor detection performance. To improve detection, the FAMD

framework (Fast Android Malware Detector) is suggested in this work. The

framework reduces feature dimensionality by using permissions and Dalvik

opcode sequences from samples that have been preprocessed using the N-Gram

approach and the FCBF algorithm. The dimensionality-reduced features are then

fed into the CatBoost classifier for malware detection and family categorization.

The findings demonstrate that the combined characteristics increase malware

10

detection accuracy by 97.4% on the Drebin dataset [3] and 97.4% on malware

family classification accuracy. This framework surpasses other cutting-edge

approaches in terms of accuracy and time consumption.

In this paper [12] researchers have developed new approaches for detecting

Android malware based on syntactic traits and machine learning techniques. This

study describes a novel technique to Android malware classification based on

deep learning and OpCode-level Function Call Graph (FCG) [13]. The method

employs a Long Short-Term Memory (LSTM) deep learning model and was

evaluated on a dataset of 1796 Android malware samples and 1000 benign

Android applications [13]. The findings revealed that the suggested methodology

beats state-of-the-art approaches with 97% and 91% accuracy, respectively, while

taking up less time.

In this study [14] four different malware detection techniques that use the

Hamming distance to measure sample similarity are presented. These approaches

include the K-Medoid Based Closest Neighbors (KMNN), Weighted All Nearest

Neighbors (WANN), All Nearest Neighbors (ANN), and First Nearest Neighbors

(FNN). Their objective is to alert users about an Android app's possible risks,

reducing the possibility of malware spreading widely. The algorithms are

evaluated on three datasets, which include both benign and malicious Android

applications such as Drebin [3], Contagio, and Genome. Performance

comparisons with cutting-edge algorithms such as Mixed and Separated

solutions, PDME, and FalDroid demonstrate that the suggested methods achieve

equivalent accuracy rates to existing solutions.

The study's [15] goal is to develop malware detection algorithms for Android

applications due to their widespread use and harmful variations. The authors

employ API call graphs to precisely represent application activity, however

similarity detection and classification techniques can be sluggish and imprecise.

They incorporate API call graphs in a deep neural network, which detects

similarities between binary functions. By evaluating different embedding

methodologies and altering network setup variables, the research aims to

11

optimize network performance. The results of the experiment show that the

malware classification achieved 98.8% precision, 98.4% recall, 98.6% F-

measure, and accuracy.

The paper [16] proposes, creating behavior characteristics of Android

applications using complete, multi-view information using the apk2vec

semisupervised Representation Learning (RL) framework. This method can

considerably enhance downstream analytics activities such as app classification,

recommendation, and virus detection. For effective online learning, the system

includes information from numerous semantic perspectives, employs app-specific

labels, and combines RL with feature hashing. The generated semi-supervised

multi-view hash embeddings can be utilized for a variety of subsequent tasks.

Experiments with almost 42k applications demonstrate that apk2vec's app

profiles beat cutting-edge approaches in four app analytics tasks: virus

identification, family grouping, app clone detection, and app recommendation.

This study [17] This paper suggests DLGraph, a novel graph embedding and deep

learning-based malware detection method. The system learns computer program

function-call graphs and Windows API calls using two stacked denoising

autoencoders. It then merges latent representations to provide a feature vector for

malware detection. Experiments on diverse datasets show that the strategy is

effective and superior to a comparable method.

This study [18] presents a framework for detecting fraudulent applications for

Android that is built on the concepts of Active Learning technologies and SVM

(Support Vector Machine). The method captures application execution activity

and translates them into a feature set, assigning timestamps to select features. The

use of time-dependent activity tracking increases malware detection accuracy.

The model was created using the Expected error reduction query approach and

adaptive online learning. Experiments on the DREBIN benchmark [3] malware

dataset demonstrate that the technique accurately detects harmful apps and

improves updateability against new infections.

12

In this paper [6] we studied that current machine learning classification

algorithms rely on lightweight syntactic cues; however, they may be ineffective

for identifying obfuscated Android malware. In the paper DroidSieve is presented

which is an Android malware classification system. It employs static testing to

detect malicious apps and group them into virus families based on similarities.

DroidSieve employs obfuscation-invariant characteristics and artifacts, achieving

up to 99.8% accuracy for malware detection and 99.2% accuracy for obfuscated

malware family detection.

This research [19] describes a machine learning approach based on n-opcode

analysis for classifying and grouping Android malware. This method eliminates

the requirement for expert knowledge to describe required features, and it has

been tested on 2520 samples with up to 10-gram opcode features. The technique

produced an f-measure of 98%, underlining the rising challenge of malware

detection on the Android mobile platform, which is popular and accessible

through third-party app stores.

The paper [7] provides a low-cost, high-efficiency strategy for detecting Android

malware that involves extracting permissions, sensitive APIs, monitoring system

events, and permission rates. The Ensemble Rotation Forest (RF) model is used

to identify fraudulent Android applications. The approach yields 88.26%

accuracy, 88.40% sensitivity, and 88.16% precision. The suggested strategy

outperforms the state-of-the-art Support Vector Machine (SVM) model by

3.33%. The findings indicate that the suggested approach is extremely promising

and might provide a cost-effective option for Android virus detection.

.

13

CHAPTER 3

METHODOLOGY

Our suggested Android app analysis and categorization approach consists of eight

basic components.

1. Function extraction. The Android application archive (.apk/APK)

contains the app's whole bytecode [1]. The bytecode is first converted into

the source code of the application, after which all specified and utilized

functions are extracted and saved.

2. ASG formation. The retrieved functions are processed to generate an app

similarity graph (ASG). The ASG uses recommender system-based item

similarity approaches to connect apps with comparable functionalities.

3. SVM: In high-dimensional spaces, SVMs function well. SVMs only need

a subset of training data points known as support vectors to identify the

ideal hyperplane also they are memory efficient.

4. Gradient Boost: XGBoost is an effective and versatile tool that can

handle complex correlations and patterns in data because of its efficiency

and adaptability.

5. AdaBoost: AdaBoost enhances model performance by prioritizing

relevant features, making it beneficial for high-dimensional datasets and

capturing complex relationships, making it suitable for weak learners like

decision trees.

6. Ensemble technique by MaxVoting - Applying the max voting approach

to combine the forecasts of the three models. This means deciding the

majority vote from the forecasts of the individual models for each data

point.

7. Ensemble technique by Stacking - Stacking is the process of training a

meta-model that combines base model predictions. In this work, we are

using Random Forest, SVM, and AdaBoost as basic models before

training a meta-model to create the final predictions.

14

8. Ensemble technique by Bagging - Bagging (also known as Bootstrap

Aggregating) is the process of training numerous instances of the same

basic model on different subsets of training data and then merging their

predictions.

3.1 Function extraction

Androguard's feature extraction includes examining Android application

packages (APKs) to extract various characteristics or features. These features

may be related to the app's structure, behavior, or functionality. Androguard is a

well-known Python library that analyzes Android apps and provides utilities for

working with APK files.

Here's an overview of the feature extraction process with Androguard:

• Loading APK: Load the APK file using Androguard's APK class. This

class allows access to APK-specific information such as the manifest,

resources, and classes.

• Loading Dalvik Bytecode: After loading the APK, locate the Dalvik

bytecode in the DEX (Dalvik Executable) files. Androguard provides the

DalvikVMFormat class to interact with DEX files.

• Class and Method Extraction: Extract app structure information by

iterating through Dalvik bytecode classes and functions.

• Feature Representation: The obtained features may vary based on the

analysis's specific needs. Depending on the analysis objectives, the

features may include permissions, API calls, intent filters, and other APK

components.

• Error Handling: During feature extraction, errors may occur. It is vital to

handle exceptions gracefully. This prevents the script from crashing and

allows you to identify and fix specific issues.

15

Fig. 3.1. Overall app analysis and classification.

3.2 App-Similarity Graph formation

We created the App Similarity Graph (ASG) to better app representation. To

begin, we generate a bipartite graph using the popular methods from the previous

step. The bipartite graph is indicated by GAF = (A, F, E), where A represents

apps, F represents the important functions found in the previous step, and E

represents the edges connecting each function to its own app. The GAF apps-

functions network is evaluated using an ISR model to determine item similarity.

In recommender systems, an ISR model assesses the similarity of two items

based on user actions. Pearson correlation, Jaccard similarity, and cosine

similarity are three commonly used methods for measuring item similarity. In this

paper, we employ the Cosine similarity approach.

A metric for comparing two non-zero vectors defined in an inner product space is

called cosine similarity. The cosine of the angle between the vectors, or the dot

product of the vectors divided by the product of their lengths, is what is known as

cosine similarity. As a result, the cosine similarity solely depends on the angle of

the vectors rather than their magnitudes. The equation for cosine similarity is

given as:

cos(Ɵ) = A · B / || A || || B ||

16

Fig. 3.2. App similarity graph creation process

3.3 ASGnode2vec + SVM classification

After ASG is created, we use a two-step classification process that consists of

applying an SVM classifier to the automatically generated feature vectors and

utilizing a node2vec to construct features on the ASG (ASGnode2vec).

An approach for feature learning in networks based on neural networks is called

Node2vec [20]. Node2vec, which draws inspiration from word2vec [21], employs

the wordcontext concept to provide a low-dimensional features representation for

nodes. The acquired characteristics often maintain node network neighborhoods,

which arranges the nodes in accordance with their functions within the network

and the communities in which they are a part of.

17

Every app in the ASG has a continuous vector representation as the result of

node2vec applied to the ASG. ASGnode2vec retrieves the semantic context for

programs from the App Similarity Graph architecture by using the node2vec

options [1]. The feature vectors produced by ASGnode2vec, which include both

less and more comparable applications, are influenced by the ASG structure when

intermediate q ≈ 1.

After that, we build a relational dataset in which applications are instances and A

SGnode2vec automatically generates feature vectors.

On the acquired vectors, a supervised machine learning algorithm is performed.

3.4 ASGnode2vec + Gredient boost classifier

A machine learning model called XGBoost creates embeddings for every app in a

dataset using Node2Vec characteristics. Each app's connections with other

applications in the graph are captured by these embeddings, which show each app

as a dense vector. The process of feature extraction yields a feature matrix that is

used as the XGBoost classifier's input. Each program is given a label according to

its kind, resulting in a labeled dataset. The XGBoost model is trained on the

training set of the dataset, while the testing set is used to assess the model's

performance.

XGBoost successively constructs an ensemble of decision trees while training the

model with the training data. To determine which Node2Vec properties are most

important for the model's prediction performance during training, XGBoost

computes feature importance. Apps may be categorized as benign or malicious

using the trained XGBoost model, which generates probabilities for each class

and makes predictions on the testing set.

Metrics including accuracy, precision, recall, F1-score, and ROC-AUC are used

to assess performance. In order to differentiate between malicious and benign

applications, the significance of the model is examined, offering insights into the

specific elements of the Node2Vec embeddings that are critical for classification.

Hyperparameters or settings are adjusted as needed to maximize the performance

of the model.

18

3.5 ASGnode2vec + AdaBoost classification

Adaboost is an ensemble learning technique that builds a powerful classifier by

combining several weak classifiers. It represents each app with a dense vector of

characteristics by embedding nodes into a high-dimensional vector space using

Node2Vec embeddings. The app's relationships with other nodes in the network

are captured by these characteristics, which stand in for the structural and

contextual information that Node2Vec learnt. These characteristics are used as

input by Adaboost during training, and the related labels (benevolent or

malevolent) are used as output.

Adaboost begins with a subpar classifier, frequently a straightforward decision

tree, which might not function effectively by itself. By giving misclassified

instances a larger weight, it enables weaker classifiers to concentrate on cases

that are challenging to classify. By training each weak classifier on a portion of

the data, Adaboost builds an ensemble of them. By giving each poor classifier a

weight determined by its accuracy, each one adds to the final result. Weak

classifiers that do well on challenging cases are given preference in the final

classification, which is a weighted mixture of their individual outputs. Adaboost

determines the final classification using a weighted majority vote.

3.6 Ensemble technique by MaxVoting

The integration of node2vec with ensemble learning via a max voting approach

enhances app similarity predictions by combining the advantages of multiple

machine learning models. The project begins with the graph em-bedding

technique node2vec, which extracts features from Android APK files. The

bipartite graph is formed by app interactions and node embeddings, efficiently

capturing context and structural details. An ensemble learning strategy is then

used, using three base models: Random Forest, Support Vector Machine (SVM),

and Ada-Boost. The labels and node embeddings are trained using the cosine

similarity matrix. The ensemble is then aggregated using the max voting

approach.

19

The max voting ensemble gathers individual predictions from each base model,

with the class that occurs most frequently for each data point selected as the final

prediction. This technique enhances app similarity predictions by utilizing diverse

viewpoints and capabilities. The ensemble uses Random Forest, SVM, and Ada-

Boost models to capture intricate interactions in the bipartite graph. This

integrated approach uses graph-based embeddings from node2vec for nuanced

representation of app-function relationships and ensemble learning to enhance

predictive accuracy. Max voting ensures a robust decision-making process,

making final predictions more reliable and robust in capturing patterns of

similarity between different Android apps. This comprehensive workflow

showcases a holistic approach to app similarity analysis.

3.7 Ensemble technique by Stacking

After the node2vec embedding is generated, ensemble learning methods—

specifically, stacking and bagging—are utilized to improve the model's predictive

power. For this ensemble, three unique base models are selected: Random Forest,

Support Vector Machine (SVM), and AdaBoost. Using the labels produced from

the cosine similarity matrix, which indicate the similarity scores between various

applications, each model is trained on the node embeddings. In stacking, the

predictions of the three underlying models are combined by training a meta-

model—in this example, another Random Forest. The ensemble may assess and

learn from the advantages and disadvantages of each model through the stacking

process, resulting in a more sophisticated and knowledgeable decision-making

process.

20

Fig. 3.3. Stacking Process

3.8 Ensemble technique by Bagging

Bagging is applied to each base model, resulting in an ensemble of models that

are trained on various training data subsets. Every model used in this procedure is

trained on a bootstrapped sample of data, and several instances of each model are

involved. The final ensemble forecast is derived from the sum of the predictions

made by different models. This scenario applies the bagging technique to

Random Forest, SVM, and AdaBoost separately.

This combined strategy, which combines stacking and bagging ensemble methods

with node2vec embeddings, highlights a complete methodology for encapsulating

the complex interactions seen in the bipartite network of Android functions and

apps. The model's prediction accuracy is enhanced by the synergy between

ensemble learning algorithms and graph-based embeddings, which also makes the

model more resilient and flexible in capturing the complex nature of app

similarity.

21

Fig. 3.4. Bagging Process

22

CHAPTER 4

RESULTS AND DISCUSSION

In this section, first we will discuss about the dataset we have used for our study,

CIC-AndMal2017 Android Malware Dataset.

4.1 Dataset

These experiments were performed on the CIC-AndMal2017 dataset which is an

extensive compilation of both malicious and safe Android apps that have been

hand-picked to give users a more accurate picture of the threat environment on

Android smartphones. The dataset uses a novel methodology that runs both

malware and benign applications on actual cellphones, in contrast to conventional

methodologies. This method seeks to avoid the runtime behavior change used by

sophisticated malware strains that have the ability to identify emulation

environments.

The collection consists of 10,854 samples in total, of which 6,500 are classified as

benign and 4,354 as malware. The safe examples were from the Google Play store

and included applications released in 2015, 2016, and 2017. Five thousand samples

were chosen, of which 4,26 were malicious and 5,065 were benign, and were

installed on real devices in order to verify the dataset's legitimacy and applicability

in the real world.

The CIC-AndMal2017 dataset's malware samples are divided into four groups that

offer a thorough understanding of the variety of Android threats:

• Adware is malicious software that pretends to be useful apps in order to

display intrusive adverts.

• Malware that locks or encrypts a victim's device and demands a payment to

unlock it is known as ransomware.

• Scareware is malicious software that deceives users into thinking their

device is contaminated and causes them to take action that is not necessary.

23

• Malicious software that modifies or uses the Short Message Service's (SMS)

capability for improper purposes is known as SMS malware.

Table 4.1. Summary of dataset.

Dataset Type of

Applications

Number

of Apps

Number of

functions

Popular

functions

CIC-

AndMal2017

Both benign

and malicious

#10854 #25685647 #1059767

4.2 Performance evaluation

In this work, we test the effectiveness of the Android malware classifiers using

three standard metrics such as: accuracy, F1 score, and AUC [22] [1]. We then go

over these metrics in brief [1]. The description outlines a classification system

where TN (true negative) signifies the count of accurately predicted benign apps,

FP (false positive) denotes benign apps mistakenly classified as malware, TP (true

positive) represents the count of accurately predicted malware apps, and FN (false

negative) indicates malware apps incorrectly classified as benign. Accuracy (acc.)

emerges as the most logical performance metric, representing the proportion of

correctly identified applications. [1] .

acc = TP+TN / TP+TN+FP+FN.

The formula for calculating the F1 score (F1) is:

F1 = 2TP / 2TP+FP+FN.

In imbalanced datasets, both the accuracy and F1 measurements are deceptive. For

example, let's say that just 5% of the applications are harmful. The accuracy of a

basic classifier that consistently yields the majority class is 0.95.

In the field of machine learning, the Area Under the Receiver Operating

Characteristic Curve (AUC) [22] serves as a performance metric, remaining

24

insensitive to imbalanced datasets. Regardless of the percentage of malicious

applications in the dataset, a perfect classifier will always have an AUC of 1, but a

random classifier would always have an AUC close to 0.5. Therefore, when

evaluating classifier performance on datasets with varying percentages of

dangerous applications, the AUC [22] is the most crucial factor to consider.

4.3 Results

4.3.1 Results of Machine Learning Models

On the test dataset, the SVM model had an accuracy of 86%, meaning that 86% of

the instances were correctly identified. This points to a generally solid performance.

With an accuracy of 80%, the XGBoost model meant that 80% of the cases were

properly identified. Even though this accuracy is noteworthy, more research is

necessary to fully comprehend the behavior of the model.

With an accuracy of 89%, AdaBoost demonstrated strong performance and a high

percentage of accurate classifications on the test data.

Fig. 4.1. Accuracy result of all three classifier

25

Fig. 5.2. ROC Curve for all three classifiers.

It is discovered that the SVM model's ability to distinguish between classes, as

measured by the AUC score, was 0.33. A score of 0.33 indicates that the model's

ability to discriminate between classes is restricted and verges on chance.

With an AUC of 0.83, XGBoost has a far higher score. With larger values closer to

1, the model performs better, indicating a strong capacity to differentiate between

classes.

AdaBoost's AUC score was a startling 0.5. This implies that the model's class

distinction abilities are no more accurate than chance. To determine the cause of

this unanticipated outcome, more research is required.

26

Table 4.2. Summary of Test Accuracies of Three Machine Learning Models.

Model Test accuracy

SVM Classifier 86%

XG Boost 80%

ADA Boost 89%

4.3.2 Results of Ensemble Models

The node2vec embeddings were used to train each model, and the Max Voting,

Stacking, and Bagging techniques were used to combine their predictions.

In this work, we test the effectiveness of the Android malware ensemble classifiers

using standard metrics that is accuracy.

Fig. 4.3. Accuracy result of all three ensemble learning techniques.

27

The assessment of the group models showed impressive performances, offering

information on how well the selected methods worked. Max Voting worked

admirably with an accuracy of 82.2%, Bagging was better with an accuracy of

85.3%, and Stacking was noteworthy with an accuracy of 84.4%.

Table 4.3. Summary of Test Accuracies of Three Ensemble Learning Models.

Model Test accuracy

Ensemble technique by MaxVoting 82.2%

Ensemble technique by Stacking 84.4%

Ensemble technique by Bagging 85.3%

28

CHAPTER 5

CONCLUSION

This study utilized apk function analysis, node2vec embeddings, and ensemble

learning to analyze the links between Android apps (APKs) and their related

functions. The process involved extracting a list of distinct APKs from a directory,

extracting the functions connected to each APK, and creating a bipartite graph

representing the associations. The node2vec technique was used to create node

embeddings, capturing the structural details of the graph. Cosine Similarity's

similarity ratings were used to quantify app similarities based on common

functionalities, providing valuable insights into app relationships. The App

Similarity Graph (ASG) was constructed using similarity scores across applications

based on their function sets, making it easier to identify related apps.

The group models evaluated performed well, with Max Voting having an

impressive 82.2% accuracy rate, bagging outperforming it with an even greater

accuracy of 85.3% and stacking with an accuracy of 84.4%. The study highlights

the potential of ensemble learning techniques in improving predictive performance.

The study evaluated the performance of machine learning models, specifically

Support Vector Machine (SVM), XGBoost, and AdaBoost, in classifying apps into

malicious and benign categories using Node2Vec embeddings. The models showed

varying levels of accuracy, with SVM achieving 86%, XGBoost achieving 80%,

and AdaBoost achieving 89%. However, the AUC scores provided insights into

their discriminative abilities, with XGBoost demonstrating a high AUC score of

0.83, indicating strong class separation. The discrepancy between accuracy and

AUC scores for SVM and AdaBoost suggests further investigation into their

behavior and training challenges. Future analysis should include examination of

feature importance, confusion matrices, and precision-recall curves to gain a

comprehensive understanding of model behavior. XGBoost emerged as the most

promising model, and further fine-tuning and optimization of hyperparameters

could enhance its performance.

29

FUTURE WORK

The categorization of applications will be part of future development, and whether

or not the apps are harmful or benign will be determined by the similarity score and

app similarity graph. Models may be created utilizing the bipartite graph, similarity

scores, and other pertinent information to categorize applications into harmful and

benign categories with the use of machine learning techniques. The automatic

identification and categorization of potentially hazardous apps using this

technology can assist to increase user security.

30

REFERENCES

[1] T. Frenklach, D. Cohen, A. Shabtai and R. Puzis, "Android malware

detection via an app similarity graph," Computers & Security, vol. 109, p.

102386, 2021.

[2] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yuksel,

S. A. Camtepe and S. Albayrak, "Static Analysis of Executables for

Collaborative Malware Detection on Android," in 2009 IEEE International

Conference on Communications, 2009.

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck and C. E. R. T.

Siemens, "Drebin: Effective and explainable detection of android malware

in your pocket.," in Ndss, 2014.

[4] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee and K.-P. Wu, "DroidMat:

Android Malware Detection through Manifest and API Calls Tracing," in

2012 Seventh Asia Joint Conference on Information Security, 2012.

[5] Y. Aafer, W. Du and H. Yin, "DroidAPIMiner: Mining API-Level Features

for Robust Malware Detection in Android," in Security and Privacy in

Communication Networks, Cham, 2013.

[6] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto and L.

Cavallaro, "DroidSieve: Fast and Accurate Classification of Obfuscated

Android Malware," in Proceedings of the Seventh ACM on Conference on

Data and Application Security and Privacy, New York, NY, USA, 2017.

[7] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen and L. Cheng,

"DroidDet: Effective and robust detection of android malware using static

analysis along with rotation forest model," Neurocomputing, vol. 272, pp.

638-646, 2018.

[8] M. Bierma, E. Gustafson, J. Erickson, D. Fritz and Y. R. Choe, Andlantis:

Large-scale Android Dynamic Analysis, 2014.

[9] M. Y. Wong and D. Lie, "IntelliDroid: A Targeted Input Generator for the

31

Dynamic Analysis of Android Malware," in #NDSS16#, 2016.

[10] A. Amin, A. Eldessouki, M. T. Magdy, N. Abdeen, H. Hindy and I. Hegazy,

"AndroShield: Automated Android Applications Vulnerability Detection, a

Hybrid Static and Dynamic Analysis Approach," Information, vol. 10, 2019.

[11] H. Bai, N. Xie, X. Di and Q. Ye, "FAMD: A Fast Multifeature Android

Malware Detection Framework, Design, and Implementation," IEEE

Access, vol. 8, pp. 194729-194740, January 2020.

[12] W. Niu, R. Cao, X. Zhang, K. Ding, K. Zhang and T. Li, "OpCode-Level

Function Call Graph Based Android Malware Classification Using Deep

Learning," Sensors, vol. 20, 2020.

[13] Q.-D. Ngo, H.-T. Nguyen, H.-A. Tran, N.-A. Pham and X.-H. Dang,

"Toward an approach using graph-theoretic for IoT botnet detection," in

Proceedings of the 2021 2nd International Conference on Computing,

Networks and Internet of Things, New York, NY, USA, 2021.

[14] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian and M.

Conti, "Similarity-based Android malware detection using Hamming

distance of static binary features," Future Generation Computer Systems,

vol. 105, pp. 230-247, 2020.

[15] A. Pektaş and T. Acarman, "Deep learning for effective Android malware

detection using API call graph embeddings," Soft Computing, vol. 24, p.

1027–1043, 2020.

[16] A. Narayanan, C. Soh, L. Chen, Y. Liu and L. Wang, "Apk2vec: Semi-

Supervised Multi-view Representation Learning for Profiling Android

Applications," in 2018 IEEE International Conference on Data Mining

(ICDM), 2018.

[17] H. Jiang, T. Turki and J. T. L. Wang, "DLGraph: Malware Detection Using

Deep Learning and Graph Embedding," in 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA), 2018.

[18] B. Rashidi, C. Fung and E. Bertino, "Android malicious application

detection using support vector machine and active learning," in 2017 13th

32

International Conference on Network and Service Management (CNSM),

2017.

[19] B. Kang, S. Y. Yerima, K. Mclaughlin and S. Sezer, "N-opcode analysis for

android malware classification and categorization," in 2016 International

Conference On Cyber Security And Protection Of Digital Services (Cyber

Security), 2016.

[20] A. Grover and J. Leskovec, "node2vec: Scalable Feature Learning for

Networks," in Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY,

USA, 2016.

[21] T. Mikolov, K. Chen, G. Corrado and J. Dean, Efficient Estimation of Word

Representations in Vector Space, 2013.

[22] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal and M. Data, "Practical

machine learning tools and techniques," in Data mining, 2005.

[23] M. Bierma, E. Gustafson, J. Erickson, D. Fritz and Y. R. Choe, Andlantis:

Large-scale Android Dynamic Analysis, 2014.

[24] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yuksel,

S. A. Camtepe and S. Albayrak, "Static analysis of executables for

collaborative malware detection on android," in 2009 IEEE International

Conference on Communications, 2009.

[25] W. Z. Zarni Aung, “Permission-based android malware detection,”

International Journal of Scientific & Technology Research, vol. 2, p. 228–

234, 2013.

[26] M. K. Alzaylaee, S. Y. Yerima and S. Sezer, “DL-Droid: Deep learning

based android malware detection using real devices,” Computers &

Security, vol. 89, p. 101663, 2020.

[27] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh and A. Awajan,

“Intelligent mobile malware detection using permission requests and API

calls,” Future Generation Computer Systems, vol. 107, pp. 509-521, 2020.

[28] Y. Du, J. Wang and Q. Li, “An Android Malware Detection Approach

33

Using Community Structures of Weighted Function Call Graphs,” IEEE

Access, vol. 5, pp. 17478-17486, 2017.

[29] D. Chaulagain, P. Poudel, P. Pathak, S. Roy, D. Caragea, G. Liu and X. Ou,

“Hybrid Analysis of Android Apps for Security Vetting using Deep

Learning,” in 2020 IEEE Conference on Communications and Network

Security (CNS), 2020.

[30] J. Sahs and L. Khan, “A Machine Learning Approach to Android Malware

Detection,” in 2012 European Intelligence and Security Informatics

Conference, 2012.

[31] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie and W. Enck, “AppContext:

Differentiating Malicious and Benign Mobile App Behaviors Using

Context,” in 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, 2015.

[32] S. Hou, A. Saas, L. Chen and Y. Ye, “Deep4MalDroid: A Deep Learning

Framework for Android Malware Detection Based on Linux Kernel System

Call Graphs,” in 2016 IEEE/WIC/ACM International Conference on Web

Intelligence Workshops (WIW), 2016.

[33] L. Chen, M. Zhang, C.-y. Yang and R. Sahita, “POSTER: Semi-supervised

Classification for Dynamic Android Malware Detection,” in Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications

Security, New York, NY, USA, 2017.

[34] Z. Xu, K. Ren, S. Qin and F. Craciun, "CDGDroid: Android Malware

Detection Based on Deep Learning Using CFG and DFG," in Formal

Methods and Software Engineering, Cham, 2018.

34

PUBLICATIONS

[1] M. K. Sahu and R. Gupta, " Android Malware Detection Using Function

Analysis in Conjunction with Ensemble Techniques" 4th International Conference

on Machine Learning and Big Data Analytics (ICMLBDA), Kurukshetra, India,

2024.

[2] M. K. Sahu and R. Gupta, " Android Malware Detection Using Graphical

Techniques" 5th IEEE India Council International Subsections Conference

(INDISCON 2024), Chandigarh, India, 2024.

