A MAJOR PROJECT II REPORT
ON

WORKOUT POSE RECOGNITION

Submitted in Partial Fulfillment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE AND ENGINEERING

By

AMAN REHMAN
2K22/CSE/02

Under the Supervision of

PROF. SHAILENDER KUMAR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India

MAY, 2024

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

I, Aman Rehman, Roll No. 2K22/CSE/02, student of M.Tech Computer Science and Engineering, hereby
declare that the Major Project - II titled “WORKOUT POSE RECOGNITION” which is submitted to the
Department of Computer Science and Engineering, Delhi Technological University, Delhi in partial
fulfilment of the requirement for the award of degree of Master of Technology, carried out during the
period from 2022 to 2024, is original and not copied from any source without proper citation. This work
has not previously formed the basis for the award of any Degree, Diploma Associateship, Fellowship or

other similar title or recognition.

Place: Delhi Aman Rehman

Date: 20/05/2024

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

- Z

5
&

CanemP
*(DeLTECH)

i
%

& 2
*
£

&

N 22

CERTIFICATE

| hereby certify that the Major Project - 1I titled “WORKOUT POSE RECOGNITION” which is
submitted by Aman Rehman, Roll No. 2K22/CSE/02, to the Department of Computer Science and
Engineering, Delhi Technological University, Delhi in partial fulfilment of the requirement for the
award of the degree of Master of Technology, carried out during the period from 2022 to 2024, is a
record of the project work carried out by the student under my supervision. To the best of my
knowledge this work has not been submitted in part or full for any Degree or Diploma to this

University or elsewhere.

Place: Delhi Prof. Shailender Kumar

Date: 20/05/2024 SUPERVISOR

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

o 75

5
&

CanemP
*(DeLTECH)

i
%

& 2
*

'

= &

ACKNOWLEDGEMENT

I wish to express my sincerest gratitude to Prof. Shailender Kumar for his continuous guidance and
mentorship that he provided during the project. He showed the path to achieve the targets associated
with this project by explaining all the tasks to be done and the importance of this project as well as its
industrial relevance. He was always ready to help and clear my doubts regarding any hurdles in this

project. Without his constant support and motivation, this project would not have been successful.

Place: Delhi Aman Rehman

Date: 20/05/2024

Abstract

Physical exercise is a key part of a healthy lifestyle, encompassing a wide array of
activities from dance to weightlifting and sports. Proper form and posture are critical to
the ensure the safety of these exercises and making them effective. Accurate assessment
of workout poses can provide invaluable feedback to individuals and fitness professionals
alike, enabling adjustments for optimal performance. Performing exercises correctly also
reduces the risk of injury, especially for people new to exercises. Additionally, fitness
professionals can utilize this to remotely guide clients in virtual training sessions.

The emergence and evolution of deep learning techniques has revolutionized computer
vision tasks, offering excellent performance in various tasks. In the context of workout
pose estimation, this can be used for automating the process of assessing body positions
during exercises. Multiple machine and deep learning techniques have been used in this
domain with excellent results. Although a comparative study has not been performed,
and the datasets chosen have seen extreme variety. Our approach involves leveraging
advanced architectures, machine learning methods, and ensemble learning methods like
Random Forest, XGBoost, to develop an efficient and accurate system capable of precise
pose estimation across a diverse range of exercises with quick inference.

Further objectives of the research include implementing and comparing the perfor-
mance of the above mentioned models with fine-tuning for workout pose estimation, eval-
uating their performance to understand the strengths and weaknesses of each architecture,
collect and present the information gained, and suggest models that give high performance
and quick inference. We also aim to shed light of some of the less utilized methods to
explore the above problem.

Our approach also captures the difference in using plain deep learning networks, as

opposed to keypoint based machine learning and ensemble methods.

v

List of Publications

1. Aman Rehman, Shailender Kumar, ” A Comparison of Transfer Learning Inspired
CNN Architectures for 2D Image Workout Recognition”, presented at IEEE 9th
International Conference for Convergence in Technology (I2CT) 2024,
Pune, Maharashtra, India.

2. Aman Rehman, Shailender Kumar, ”Leveraging MediaPipe and YOLO Keypoint
Detection in Ensemble Approaches for Workout Pose Recognition”, accepted at
IEEE International Conference on Advancement in Computation & Com-
puter Technologies (InCACCT) 2024, Chandigarh, Punjab, India.

Contents

Candidate’s Declaration i
Certificate ii
Acknowledgement iii
Abstract iv
List of Publications \%
Contents vii
List of Tables viii
List of Figures ix
List of Symbols, Abbreviations X
1 INTRODUCTION 1
1.1 Problem statement 1
1.2 Benefits of exercise 1
1.3 Technological intervention in workouts 2

2 LITERATURE REVIEW 4
2.1 CNN & Transfer Learning 4
2.2 Sensor-Based Methods 6
2.3 Keypoints e 7
2.4 Hybrid CNN Architecture 7
2.5 Machine learning techniqueso 8
2.6 Gaps in existing research work 9

3 METHODOLOGY 10
3.1 Toolsused 10
3.1.1 Python 3.10 10

3.1.2 Tensorflow 11

3.1.3 Pandas. 11

3.1.4 Scikit-Learn 11

3.1.5 Google Colab 11

3.2 Proposed Approach: Phase 1., 12
3.2.1 Dataset Collection 13

3.2.2 Data Processing and Augmentation 14

vi

3.2.3 Model Architecture and Training 15

3231 VGGI6 15

3.2.3.2 ResNetbO 16

3.23.3 DenseNet oL 17

3.2.3.4 MobileNetV2 17

3.2.3.5 InceptionV3 18

3.23.6 Xception 19

3.2.3.7 EfficientNet 20

3.2.4 Model Evaluation and Fine-Tuning 20

3.2.5 Comparative Study 21

3.2.6 Model deployment o0 21

3.3 Proposed Approach: Phase 2. 22
3.3.1 Dataset Collection, 22

3.3.2 Keypoint Detection L 22

3.3.3 Data Preprocessing Lo 23

3.3.4 Model Training 23

3.3.4.1 K-Nearest Neighbors(KNN) 23

3.34.2 GaussianNB. oo 24

3.34.3 Linear SVM 24

3.3.4.4 Decision Treeo 25

3.3.4.5 Random Forest 25

3.3.4.6 LightGBM o0 26

3.3.4.7 XGBoost 27

3.34.8 Bagging 27

3.3.5 Model Evaluation o0 28

4 RESULTS and DISCUSSION 29
4.1 Phase 1l e 29
4.1.1 Outputso 35

4.2 Phase2 37
4.2.1 Hyperparameter tuningo 37

4.3 Experimental results 38
4.3.1 Outputs e 43

5 CONCLUSION AND FUTURE SCOPE 44
Bibliography 45
Conference Details 49

vii

4.1
4.2
4.3
4.4
4.5
4.6

List of Tables

Benchmark result of 9 T-Lmodels 29
Pose-wise accuracy of EfficientNetBO model 33
Best Hyperparameters Found Using GridSearchCV 38
Test Accuracies of All Classifiers. 39
Precision, Recall and F1 score for Mediapipe models 39
Pose-wise accuracy for Light GBM+MediaPipe model 41

viil

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

List of Figures

Workflow 12
Sample images from dataset o oL 13
Sample images from dataseto 14
Train-test-split 15
VGG16 architectureo 16
ResNetb0 architecture 16
Dense blocks in DenseNet’s architecture 17
MobileNetV2 key feature 18
InceptionV3’s key feature. 19
XceptionNet architecture oL 19
EfficientNet’s key feature: Compound Scaling 20
Proposed Approach: Phase 2. 22
Keypoint detection in an exercise image 23
KNN . e 24
GaussianNB 24
SVM explanation 25
Decision Tree working o 25
Random Forest working 26
Light GBM vs XGBoost: Leafwise splitting 27
Bagging explanationo oL 28
Detailed architecture of EfficientB0: the best model found 31
Accuracy curve of EfficientNetBO model 32
Loss curve of EfficientNetBO model 32
AUC-ROC curve of EfficientNetBO model 34
Confusion-matrix for EfficientNetBO model 35
Actual vs Predicted pose of some test images 35
Gradio interface 36
Gradio interface showing output for an image 36
Confusion matrix of Light GBM model with MediaPipe landmarks 40
Cross-validation score vs number of samples 42
AUC-ROC curve for each class Mediapipe+LightGBM) 42
True vs Predicted pose of a few test samples 43

1X

CNN
SVM
ROC
AUC
GBM
MLP
YOLO
NB
XG
KNN
LSTM
PAF
RGB
STDCNN
VGG

List of Symbols, Abbreviations

Convolutional Neural Networks
Support Vector Machine

Receiver Operating Characteristic
Area Under Curve

Gradient Boosting Machine

Multi Layer Perceptron

You Only Look Once

Naive Bayes

eXtreme Gradient

K Nearest Neighbors

Long Short Term Memory

Part Affinity Fields

Red Green Blue

Semi Transfer Deep Convolutional Neural Network
Visual Geometry Group

Chapter 1

INTRODUCTION

Pose identification means determining the way a person positions their body when per-
forming any activity. That position is then associated with that of a particular exercise,
given the context learned from the image or video or real-time camera. Accurate identifi-
cation of exercises is necessary for a variety of use cases, for example, supporting virtual
personal trainers in guiding users through exercises with individualized recommendations,
allows fitness tracking programs [1] to monitor workout routines and provide real-time
feedback on form, and help with rehabilitation monitoring [2]. It also improves gesture
detection in fitness games for immersive experiences, makes it easier to analyse athletes’
actions for sports performance analysis [3], and can also connect with health monitoring
devices to track physical activity levels and offer personalized recommendations.

1.1 Problem statement

The accurate assessment of workout poses is essential for ensuring the safety and ef-
fectiveness of physical exercises. Despite the advances in deep learning techniques for
computer vision tasks, there have been 2 particular shortcomings identified. One, there
has not been a comprehensive comparative research on the effectiveness of various ma-
chine learning models for workout pose estimation. Second, the lack of ensemble learning
approaches in this task is surprising. This research aims to leverage advanced architec-
tures and ensemble learning methods to develop an quick and effective system for precise
pose identification/classification across diverse exercises, with the goal of understanding
and comparing the performance of different models.

1.2 Benefits of exercise

One of the most crucial things for the human health is exercising. It is also necessary
for all aspects of life. It is even more important than ever, especially for today’s youth
because the junk food they eat on a daily basis may negatively impact their quality of
life.

It is hard to function well when we are ill. If we stretch it over a longer period, then
exercise is one of those long term treatments to avoid many potential helath issues later.
Exercise is therefore necessary to overcome all of these issues. Also, it is something that
everyone should do, not just the young generation. For instance, a desk job necessitates
lengthy hours without breaks in a single sitting position. This makes for an extremely
unhealthy lifestyle. They sit all day and then return home to sleep, so we can see their

physical activity is minimal. As a result, exercise is crucial to living a healthy lifestyle.

But it is also important to perform exercises correctly. Adjustments are usually nec-
essary for any workout, especially if you are new to exercising, whether it is a squatting,
hinging, or other type of action. There are many reasons for using the right technique. Al-
though it may seem that all of the minor tweaks are unnecessary, but performing incorrect
movements over a long term can have lasting impact.

When exercises are performed correctly, the weight load is applied to the correct
muscles and joints we want to target. Performing the same exercises improperly, we would
fail to load the joints and muscles completely thereby reducing the effectiveness. Moreover,
it is possible that one is overstretching other muscles and this can put a significant amount
of strain on the body, increasing the risk of injury. If we execute an exercise improperly
for a long time, we are instilling negative habits in our body that might result in injuries
as well as subpar training results, particularly in the early stages.

Anything less than perfect execution increases the likelihood of accidents or injury.
This is particularly true for lifting weights. It is important to get the exercises right
as early as possible so that we minimize the risk of injury. Exercises like deadlifts and
other heavy weighted exercises exert a fair amount of force on the body, so we need to
always perform them with proper form. People who maintain perfect form also find that
workouts are easier. This is because it is highly possible that poor technique makes the
individual perform more work than necessary. This is only going to make the exercise
more difficult in addition to giving subpar results. It is known fact that people exercise
to improve their bodies, in terms of strength, flexibility and mobility. Also, it is the
desire of every individual that the results are fast and visible. There are many factors
that go into this. One of these factors include performing exercises optimally with the
correct posture. So, it is also important to realize the benefit and need of such systems.
This is also because many gyms do not have adequately trained or qualified trainers, and
people are often slightly apprehensive about going to the gym because of insecurities or
body-image issues. These solutions are not meant to discourage anyone from going to a
gym, but act as a motivator to begin or continue exercising. It is also our belief that such
systems can be integrated with professionals and in professional setting to augment the
training regime.

1.3 Technological intervention in workouts

Many exercise image recognition implementations use deep learning solutions, like CNNs,
that is, Convolutional Neural Networks which are well-known for their effectiveness in
classification and keypoint identification tasks [4]. The efficiency of these hinges signifi-
cantly on the variety of the dataset. Ensuring that the model can represent the subtleties
present in the given setting requires a strong dataset that covers a broad range of ex-
ercises, and environemental characteristics. Further, many applications of exercise pose
recognition may require fast inference and analysis, for example real-time analysis [5]. In
such cases, the processing capacity of the underlying hardware is also an important con-
sideration. This is because some people may prefer working out themselves with the help
of a mobile application. Or they may be unable to hire a personal trainer. As a result, it
is essential to find stability within accuracy of the model and computing resource limits
because the application should be efficient for the given context.

Architecturally, implementing popular CNN architectures, specifically VGG16, VGG19,
ResNet50, DenseNet121, DenseNet201, MobileNetV2, InceptionV3, Xception and Effi-
cientNetB0 are used in the form of transfer learning to extract important features from
images. All of these models and possibly more, have been used extensively for classifica-
tion. Each one comes with its own pros and cons, but in general all of these are quite
popular and have performed extremely well on large datasets. The same models men-
tioned above have also been used in the area of action recognition or classification. Next,
the models are adjusted to the subtleties of pose identification by training, hyperparame-
ter tuning, and fine-tuning specific layers or the network as a whole. The introduction of
all these techniques, along with engineering the models to cater to specific contexts of use
allows for great performance and reduced overfitting. It is also possible that the optimal
models are chosen to be deployed for large-scale use.

Deploying the best model and continuously checking its performance allows possible
improvement in accuracy and reliability in real-world applications. Because people may
use the model in a variety of scenarios, it is important for the model to generalize and be
able to perform optimally in all the use cases and environments. Deep learning techniques
have not been the only methods used for this task. Machine learning extensively has been
used, like Decision Tree, Linear SVM, Multi-Layer Perceptron, KNN and GaussianNB
have also been used previously in the domain of action recognition, as will be detailed
later in the literature review. Further, it is also clear that the domain of exercise pose
recognition has a lot of variety in it. The variety comes from the type of exercises that
are being performed, the location where they are being performed, the people performing
those exercises. There is also variation in the lighting condition and angles in which the
image has been taken. Based on this knowledge, we observed that the exploration of
ensemble learning methods was slightly limited.

Chapter 2

LITERATURE REVIEW

A thorough literature review was conducted into the techniques that have been previously
used for the problem of workout pose detection and similar use cases. The use cases
include physical activity recognition or monitoring, activity recognition, sports image
classification, etc. All the solutions require identifying the pose being performed in the
image and hence caters to our use as well. Since there are a lot of techniques that previous
research has used, a categorization of the techniques used has been done. Under each
technique, the relevant papers have been mentioned. This is done to show the variety of
techniques that have been used in this domain, and also to easily discern which paper has
used which technique. It can also help to identify if certain techniques are more popular
than others. We have attempted to review recently published papers only. However, we
acknowledge that it is obvious that many more techniques may have been used for the
same problem. But, since those techniques have not been used in the recent window of
1-4 years within our publication, we have not considered those in our review.

2.1 CNN & Transfer Learning

Research on the identification of actions in still photos has regularly been conducted.
Every study that pertains to the following makes use of still pictures. A residual neural
network is used in Sreela et al. [6]’s image action recognition model to extract features
efficiently. Succeeding in 15 Pascal VOC action courses, the model showed sensitivity
to contextual changes and real-world imagery. By utilizing a residual neural network
and a support vector machine classifier, the enhanced model achieved 66.1% accuracy
in identifying human activities in a two-layer classification model. The research [7] uses
ResNet as a feature extractor to identify human actions in still photos with accuracy of
61.07%. Activity recognition is augmented by approximating postures, and classification
is handled by SVM. But these systems suffer in nuanced positions, truncations, and
occlusions in complex situations.

The two-stream convolutional neural network described in study [8] improves action
recognition by using long-term fusion pooling to capture the temporal complexity of ac-
tions. Their method, called STDDCN, combines a knowledge distillation module with
dense connectivity and multiscale information. Though it is successful in comprehend-
ing actions, it suffers from difficulties with computational load and large memory needs
because of frame processing, even though it achieves great performance with fewer pa-
rameters. Their model yields an accuracy of 92.1%.

Singh et al. [9] put forth a novel approach to position estimation and identification
which did not require wearable technology. To reliably categorize different postures, two

pre-trained models’ performances were compared with those of a bespoke CNN called
DeepPose, which was trained using both image and keypoint datasets. The outcome
demonstrated that the suggested model performed better than the image dataset when
using the keypoint dataset.

Pose identification and correction using machine learning methods has been extensively
researched. It involves either entering exercises manually before performing them or
automatically identifying and classifying user motion into an activity. There are studies
that have used either images, or videos or both. In paper [10], the authors evaluated the
motion quality of the workout performed by a user against the known correct motion.
The authors used the HPTE dataset consisting of eight exercises performed by 5 different
people from different backgrounds and angles. The proposed approach used PoseNet
model in the backend which used two-dimensional data that has confidence linked to the
body’s important points and produces a heatmap for stance assessment. The system
reached an overall accuracy of 80%. The user received feedback upon the completion of
the task.

Jose et al. [11] achieved 85% accuracy using the VGG-16 model to recognize 10 distinct
yoga poses in still photos. Podgorelec et al. [12] presented a CNN architecture based on
the VGG-19 model with differential evolution method for classifying images. The CNN
model’s hyperparameters are optimized using the DE (differential evolution) approach
after the training data has been fine-tuned using the TL method prior to classification.
With 4 sports categories in their unique dataset, they achieved 81.31% accuracy. There
is room for improvement in accuracy. Farhad et al. [13] used a pre-trained VGG-16
model to classify 18 sports in a custom sports picture dataset. With this approach, they
successfully classified the images in the dataset with 93% accuracy.

The study [14] used a neural network for sports picture classification across 6 categories
using a pre-trained InceptionV3 for feature extraction. In sports picture categorization,
their method yielded 96.64% accuracy rate. Joshi et al. [14] attempted to classify six
different sports categories with respect to athlete’s body movement. Inception V3 was
used for derivation of feature and then neural networks for pose categorization. On
comparison with other machine learning classifiers, it validated the framework’s efficacy.
The suggested method successfully detected and classified a variety of sports data, evident
by its remarkable 96.64% average accuracy.

Bhat et al. [15] used a technique for detecting joints for which adjustment was needed
while the exercise was being performed. For this, joint angles’ distribution of dataset’s
exercises was found. Then detecting poses in which some joint angles witness aberration.
The researchers created skeleton layouts using a variety of datasets based upon Yoga,
Kungfu and Pilates. With the Kungfu-7 dataset, the DenseNet+Random Forest classifier
delivered the best result, 86% validation accuracy.

Bhat et al. [15] detected joints that needed adjustment during exercise. This was done
by finding the distribution in joint angles of exercises in the dataset. Then detecting poses
in which some joint angles witness aberration. The researchers created skeleton layouts
using a variety of datasets based upon Yoga, Kungfu and Pilates. With the Kungfu-7
dataset, the DenseNet+Random Forest classifier delivered the best result, 86% validation
accuracy.

2.2 Sensor-Based Methods

Das et al. [16] developed a system that counts repetitions, analyzes comfort using heart
rate data, and recognizes activities performed at home and at the gym. For indoor exercise
recognition, they employed k-NN, SVM, and decision trees. They achieved remarkable
accuracy of 99.4% for counting repetitions and 95.3% for activity detection. This tech-
nique is effective for usage in the gym or at home since it assists in selecting the proper
weights for workouts. Decision trees were used as the classifier in this case,

Zhou et al. [17] used AdaBoost, a confidence-based algorithm. They used inertial
pressure sensors to detect motion during multiple sports activities. More emphasis was
put on leg exercises. A total of six participants participated in twenty-four leg workouts.
The accuracy achieved was 81.7%. The utilization of sensor-based technologies in this
technique shows potential for precise monitoring and analysis of leg exercises. The authors
stressed the possibility of accurately measuring exercise time spent on routine tasks. They
used SVM and Random Forest (RF) to reach an accuracy of about 96.2%.

[18] made use of data gathered from special wearable wristband sensors, demonstrating
the potential to identify workout periods. Nunavath et al. [19] classified multiple physical
activities using sensor data, especially using accelerometer data. They applied sensor-
based methods on the UCI-HAR dataset, such as DNNs, that is Deep Neural Networks
as well as RNNs, that is Recurrent Neural Networks. Based on the sensor data that was
gathered and then analyzed, it was found that this achieved a 84.89% accuracy in the
classification of these activities.

Vimala et al. [19] offered an artificial intelligence-based solution for identifying pa-
tients’ physical activity types. First, an RNN was used, that is a recurrent neural network.
Secondly, a DNN was used, which is deep feed-forward neural network. There were also
two datasets that were used. The first one consisted of 14 daily life activities which were
captured from wrist-worn sensors. The second dataset comprised of 10 activities captured
using hip-worn sensors. The data gathered from volunteers wearing these sensors were
then used for model evaluation. The RNN model performed better with 84.89% accuracy.
The Fl-score was 82.56%. This suggested the model’s capacity to accurately understand
as well as track the physical activities of patients.

Capecci et al. [20] focuses on creating an interactive monitoring tool for physical
therapy that is performed from the comfort of users’ home. A stage for processing videos
and evaluating workout performance are included in the software platform. A device
called the Kinect v2 sensor is used to extract information from the image. It is elaborated
to get an exercise score. Additionally, the instrument gives physiotherapists a numerical
assessment of their patients’ workout performances. 5 people and 5 distinct exercises were
used in the testing of the suggested tool.

In another paper, Capecci et al. [21], in a rehabilitation setting, the Kinect v2 sen-
sor’s accuracy evaluation is examined. In terms of joint locations/angles during dynamic
postures in therapy for low-back pain, an accuracy analysis is done. While some re-
search has examined the validity of joint angles and positions, the results of these studies
only take into account static postures. In contrast, rehabilitation exercise monitoring
takes into account dynamic movements involving a broad range of motion as well as joint
tracking. Joint locations and angles in this work are clinical characteristics to assess the
subject’s motions. The accuracy of both space and time is examined in comparison to
the state-of-the-art or gold standard, which is a stereophotogrammetric system.

2.3 Keypoints

Using MediaPipe, Pham et al. [22] were able to extract skeletal sequences from RGB
footage that was taken using a commercial camera. The DD-Net deep architecture is
utilized for action recognition in the assessment section. The model’s average accuracy
is 98.33%. In an another approach, Yubin et al. (2021) [23] proposed a Mediapipe based
computer vision-based technique for rating yoga poses utilizing two datasets: Dataset A,
which they took from Kaggle and Dataset B, which the researchers created. Using coarse
as well as fine contrastive samples, the method produced the greatest accuracy for Dataset
A, 0.8321.

Rangari et al. [24|focused on individual exercise pose recognition using 2D coordinates
for body keypoints recorded by an RGB camera. 18 major body joints’ coordinates were
identified and used as the model’s attributes for exercise classification. Human volunteers
of various ages and heights were taken to create a benchmark dataset. When tested on
that dataset, the model outperformed previous methods with an impressive accuracy of
97.01%, demonstrating the efficacy of their proposed strategy. Faisal et al. [15] used a
deep learning-based model that can recognize five distinct poses with significantly less
data. The variability in the dataset is compensated by improving the diversity in the
images. They evaluated performance of their model against many image classification
models, including ResNet.

Pham et al. [25] develops a comprehensive framework that identifies physical exercises
and assesses thier quality as well, as it is being performed by users. This framework uses a
custom dataset which targets 9 common exercises, including arm circles, squats, jumping
jacks. The dataset encompasses data from nine subjects. The study explores the efficacy
of two distinct networks for HAR: the compact DD-Net and the high-performance graph
CNN, FF-AAGCN. For real-time classification, a sliding window method is integrated
with these networks. Results on the dataset show that this framework is able to achieve
high accuracy in exercise recognition, with DD-Net achieving accuracies and F1-scores of
99.24% and 99.23%, respectively, while FF-AAGCN attains 98.48% and 98.32%.

2.4 Hybrid CNN Architecture

A CNN-based technique for predicting human exercise postures was proposed by Haque
et al. [26] used a dataset with five distinct workout courses to achieve this. Their model
properly identified these exercise postures with an accuracy of 82.68%. A self-prepared
dataset as well as a publicly available one were used to demonstrate the findings of pa-
per [27] for WorkoutNet, a deep learning network for exercise action identification. It
surpassed models like as XceptionNet, VGG-19, and DenseNet121, with a validation ac-
curacy of 92.75%. It was verified with Fl-measure and confusion matrix to properly
classify exercises into 10 groups.

In [28], a boxing experiment is used to make a dataset. Supervised classification is used
to categorize the limb and, for each strike, the method employed. Also, the performer’s
level of skill was classified. A boxing bag was instrcuted to be struck by both novice and
expert kickboxers from various distances. This data was captured, resulting in a dataset
of about 4000 strike trajectories. Then multi-class linear support vector and K-nearest
neighbors were used to classify these. With 99% accuracy, both systems could identify
the limb employed in the strike. Further, with 86% accuracy, both systems were able
to classify the employed methods. By classifying each limb separately using hierarchical

classification, the accuracy was further increased. What was remarkable is that to obtain
the above mentioned prediction accuracy, just 10% of the dataset was needed for training.
KNN was able to successfully classify strikes by skill level with 73.3% acuuracy.

2.5 Machine learning techniques

Whelan et al. [29] used IMUs that were positioned on the shank, thigh, and lumbar spine.
Global and customized classification methods were contrasted in the study. The results
were surprising, with accuracy (AC) at 64%, sensitivity (SE) at 70%, and specificity (SP)
at 28% for binary classification and 59%, 24%, and 84% for multi-class classification,
respectively, the results showed that global classifiers performed badly. Individualized
classifiers performed noticeably better even with just one IMU. In binary classification,
they obtained 81% AC, 81% SE, and 84% SP; in multi-class classification, they obtained
69%, 70%, and 89%, respectively. These results draw attention to the shortcomings of
global classification techniques and the improved precision of customized methods for
squat technique monitoring and evaluation.

In, [30] 3D skeletal data of a patient is recorded. A recurrent neural network is used in
combination with long-short-term memory is used, to gauge time-frequency properties in
the skeletal domain. This is done using approximation coefficients of the Discrete Wavelet
Transform (DWT) to identify the exercise performed. Every exercise instance is then
divided into segments. To investigate muscle and/or joint progress, the best performing
of these are utilized as a comparison image, and different versions of the activity are
compared with the reference. Lastly, indicators are assessed at the conclusion of every
engagement session to do joint performance analysis.

Sarwat et al. [31] demonstrates a cheap technique that attempts to diagnose strokes.
It is a major cause of death and hard to diagnose as well. This system uses a machine
learning algorithm coupled with common tools that are open-source only. Using the
inertial measurement unit of smartphones which is built-in along with gradient boosting
open-sourced algorithms, it was possible to diagnose a patient by coming up with a score
on 3 tasks in the Fugl-Meyer upper-extremity assessment. An accuracy of 95.56% was
obtained using 5-fold cross-validation evaluation.

Soekarjo et al. [28], using a dataset collected from a kickboxing experiment, supervised
classification is used to categorize the limb and, for each strike, the method employed.
Also, the performer’s level of skill was classified. A boxing bag was instrcuted to be struck
by both novice and expert kickboxers from various distances. This data was captured,
resulting in a dataset of about 4000 strike trajectories. Then multi-class linear support
vector and K-nearest neighbors were used to classify these. With 99% accuracy, both
systems could identify the limb employed in the strike. Further, with 86% accuracy, both
systems were able to classify the employed methods. By classifying each limb separately
using hierarchical classification, the accuracy was further increased. What was remarkable
is that to obtain the above mentioned prediction accuracy, just 10% of the dataset was
needed for training. KNN successfully was able to classify strikes by skill level with 73.3%
acuuracy.

Kianifar et al. [32] aimed at giving doctors a numerical representation of SLS perfor-
mance. An automated squat quality assessment method based on inertial measurement
units (IMUs) was suggested. The joint angles, velocities, and accelerations of the squat-
ting leg were estimated using a set of three IMUs. Support vector machines were used
to train classifiers based on the most informative features. The findings demonstrated

that internal rotation at the hip and ankle, as well as knee flexion at the, are distinguish-
ing characteristics. Moreover, training multiple classifiers separated by gender results in
better classification. The results revealed high accuracy of 95.7% for ”poor” or ”good”
squatting posture quality and 94.6% for distinguishing between a high and low risk of
injury.

2.6 Gaps in existing research work

A fair number of papers were reviewed and as shown above, it is evident that the problem
of workout pose recognition, and even action recognition in general is a challenging task.
A variety of MLL and DL models have been on multiple datasets. Based on the extensive
literature review, some research gaps were identified, which are as follows

The previous research generally takes into consideration a small set of exercises,
taking into account about five to ten popular poses. So, the number of categories
included is less.

Moreover, the chosen poses in many of the research papers are significantly different
from one another in terms of body position. The issue with this is that any model
used may find it easy to find discriminating features in the images and/or the
keypoints. This will consequently result in high accuracy model. But these may
not generalize to a large extent or when exercises with similar range of motion are
introduced.

It is also possible that people perform exercises in different environments, and that
there are different people present in the dataset performing different exercises. The
environment, angle and lighting condition should also be taken into account, which
some papers miss out on in their dataset.

It was also observed that there was limited cross-cultural and demographic variabil-
ity in the datasets used, which is something we attempt to address in our approach.

More diversified datasets are required in order to train and evaluate the systems.

Most of the papers in this area have used supervised learning approaches. The use
of unsupervised methods may also help this domain. This is outside the scope of
our current study.

There is limited discussion into the application of these systems and the way in
which they will be implemented. For instance, we focus on the context wherein
mobile applications may be used for aid and they may have limited compute power.

Also, due to the inherent variety of exercises and similarity in movements, exercise
pose classification may benefit from ensemble learning approaches, which has been
underutilized in this area. Ensemble learning models train several smaller models
on different groupings of the data. This may help to capture the high level of variety
present in the dataset.

Chapter 3

METHODOLOGY

The study’s methodology used a two-step approach to the problem of identifying exer-
cise poses in images. Taking into account the complexity of the task, a thorough and
rigorous methodology was created, utilizing the advantages of both deep learning and
keypoint-based methodologies. Through the exploration of deep learning architectures,
and ensemble-based techniques, the research aimed to create a resilient framework that
could precisely identify exercise positions in various environments. The next paragraphs
go into slightly more detail about the process, emphasizing the analysis done and its
reasoning.

The dataset used was carefully constructed to include a wide variety of exercise poses
taken in different settings with different lighting, angles, people, poses, etc, guaranteeing
a thorough portrayal of actual exercise scenarios.

In this first stage, deep learning architectures specifically for image recognition were
applied to the image data. Models were thoroughly trained and fine-tuned in order to
achieve effective pose detection. Evaluation was performed on multiple metrics.

In the second phase, keypoints detection algorithms, namely, YOLOv8 and MediaPipe
were used for the purpose of classification of workout poses. Modern object detection
system YOLOvVS8 was first implemented with a range of machine learning and ensemble-
based techniques. The same was then repeated using MediaPipe keypoints. And again a
thorough analysis and comparison was performed.

The complex nature of workout pose recognition required an extensive analysis to im-
prove applications in the given context. Given the variability in performing exercises, the
dynamic motion, and environmental factors, a robust solution was needed. By explor-
ing multiple techniques and evaluating their performance rigorously, the study aimed to
develop a highly accurate and reliable system capable of accurately identifying workout
poses from images, using lightweight techniques that give fast inference as well.

3.1 Tools used

Python version 3.10 was used to conduct the study. Hardware requirements include an
Nvidia RTX 3080 GPU, a 4-core Intel i7 processor, 32GB DDR4 RAM, and the use of
Google Colab’s GPU for faster processing.

3.1.1 Python 3.10

Python is extensively popular among and used for ML and DL programs. It has also
been extensively developed and used for many large-scale projects. Being an high-level

10

interpreted language, it is executed by an interpreter on the go. This means it processes
the program each line at a time. It has extensive support of libraries and regular updates,
great for beginners, and a programmer can focus on what to do, and less on how to do
that.

3.1.2 Tensorflow

Developed by Google, TensorFlow enables researchers and developers to work on ML
and DL tasks. It was released in 2015, and since then has seen constant updates and
improvements, making it a popular choice for deep learning workloads. Its support for
a variety of models also makes it a popular choice. What is even better is that it is
open source. It comes under the Apache Open-Source license. We can use, contribute
and redistribute it for free. This is also heavily supported by the developer community.
TensorFlow architecture involves pre-processing, model build, train and evaluate.

3.1.3 Pandas

Pandas is a fundamental tool for data preparation and analysis in machine learning. It
enables data cleaning, transforming, and analyzing. Pandas is also heavily supported and
feature rich to perform a variety of tasks on our data. For instance, as mentioned before,
we can clean, transform, and analyses the data whichever way we like. It supports multiple
data formats as well, like CSV, Excel, etc. Pandas extracts data to make a Dataframe. On
this dataframe then users can calculate statistics, like correlation, average, distribution
of data. Omne can modify data by removing missing values or imputing them, filtering
data based on some conditions, visualize data using multiple libraries, and also export
the transformed data in multiple formats.

3.1.4 Scikit-Learn

Scikit-learn is an extensively used machine learning open-source library written for Python.
It provides many supervised and unsupervised learning algorithms. It focuses on robust-
ness and support requirements in production systems, ensuring ease of use, quality coding,
performance, and comprehensive documentation. Built on NumPy, SciPy, and matplotlib,
scikit-learn is known for its simplicity and efficiency for data analysis and modeling, mak-
ing it accessible for both beginners and those experienced in machine learning.

3.1.5 Google Colab

Google Colab is a cloud-based platform that allows users to execute Python in a Jupyter
notebook environment for free. We can run our workloads using computational hardware
like GPUs and TPUs, which are also provided by Colab itself. Some of the hardware is
behind a paywall. There are mutiple GPUs available, depending on the type of length
of the workload to be executed. This ease of availability of compute power and storage
makes Google Colab a popular an ideal choice for machine learning tasks as well as data
analysis. Colab offers other features as well including integration with Google Drive, and
the option to share and collaborate on notebooks with others.

11

3.2 Proposed Approach: Phase 1

The processes used to tackle the given problem of workout pose recognition consists of
multiple phases. To put it another way, it includes gathering data, preparing it, choosing
a model, training and honing it, assessing and then possibly deploying it.

Deployment

Figure 3.1: Workflow

12

3.2.1 Dataset Collection

We have taken various exercise categories each containing 2D pose images which were
pulled manually from Google search engine using Kaggle as a reference. Thus, our dataset
contains 1058 photos in total, divided into 20 classes, each with 55-60 images. As de-
scribed above, the dataset attempts to capture a wide variety of exercises and different
people performing them in various settings. The 20 exercise categories are as follows:
Benchpress, bow, bridges, child’s pose, cobra, crane pose, crunches, cycling, deadlift,
donkey kicks, down dog, flutter kicks, lat-ulldowns, leg-extensions, plank, pullup, shoul-
der press, squat, standing toe reach and tricep-pushdown. The exercises are chosen to
incorporate a variety of bodyweight and weight training exercises as well as stretches.

Deadiift Pank Bridges Crane Pose

5

FlutterKicks

Figure 3.2: Sample images from dataset

13

Distribution of Images across the Workout Dataset

60

5

No. of Images
8
1

20 A

10 A

Cobra
Pull up
Bow

x et
c 3
z &

Downdog
Bridges
Childs Pose
Benchpress
Crunches
Donkey Kicks
Deadlift
Lat-pulldowns
FlutterKicks
Cycling
Crane Pose
Shoulder Press
Tricep-pushdown

Standing toe reach
Leg-extensions

Workout Poses

Figure 3.3: Sample images from dataset

3.2.2 Data Processing and Augmentation

Images are loaded using Tensorflow and a standard size of 224x224 pixels is maintained.
To avoid class-imbalanced splits, each image—labeled according to the exercise in the
directory structure—is shuffled. The dataset split is 80:20 where 80% is for training, and
the remaining to test, after normalizing to [-1, 1]. Before an image is fed into the models,
it undergoes a predetermined set of augmentations.

For pose recognition tasks, image data augmentation can be essential to boosting the
resilience and generalization of deep learning models. Augmentation simulates real-world
scenarios by introducing variations in the existing dataset, which increases the diversity
of the training dataset. The model is better able to learn features and fluctuations due
to this. In our approach, augmentations including contrast and brightness fluctuation,
random rotation, zooming, and flipping of the horizontal and vertical axes, were applied
to increase variability and facilitate generalization.

14

80:20 Split

800 K

{ 20 200K

n =100 n = 1,000,000

Train Set
I
3

Test Set

Figure 3.4: Train-test-split

3.2.3 Model Architecture and Training

Multiple deep learning CNN architectures have been used to conduct a thorough study.
ImageNet pre-trained models were downloaded from Tensorflow. The advantage is that
we can use the information already learnt by these models. To reduce spatial dimensions
and focus attention on significant features, Global Average Pooling (GAP) layers were
introduced. Also dropout layer is added to avoid overfitting. Later, dense layers are
added with softmax activation function. The models are then trained and evaluated
using accuracy metric. Categorical cross entropy loss function was used along with Adam
optimizer. As mentioned before, multiple deep learning architectures were used in this
phase. The models used are as follows:

3.2.3.1 VGGI16

Convolutional neural networks with the architecture VGG-16 are renowned for being
simple and efficient in image recognition. The network may learn complicated features by
stacking the convolutional layers, which use tiny 3x3 filters with a stride of 1. VGG-16
has demonstrated exceptional accuracy in classifying objects in images. It is still a widely
used deep learning benchmark and option for transfer learning, despite its complexity and
processing demands.

For VGG16, the 16 layers are divided into 3 fully connected and 13 convolutional
layers. It is often recommended for its simplicity and uniform structure. It uses small 3x3
convolutional filters throughout the network. For our task, we had a total of 14,724,948
parameters and all of them were kept trainable. VGG19 is a larger variant of VGG16,
with 3 additional convolutional layers. There are total of 20,034,644 parameters and all
of them were kept trainable.

15

convl

conv2

conv3

conv4

5
e i fc6 fo7 fe8

14 x 14 x 512 IXRRAS Ladslon

28 x 28 x 512

56 x 56 x 256

77 %512

LA
11/x 112 x 128

@ convolution+ReLLU
max pooling
., fully connected+ReLU

L
224 x 224 x 64

Figure 3.5: VGG16 architecture

3.2.3.2 ResNet50

ResNet50 is a deep CNN that has gained recognition for the introduction of the innovative
and useful residual connections. The advantage of these connections is that they enable
easier training of quite deep networks with increased effectiveness. It is a 50-layer architec-
ture, has residual blocks with skip connections to avoid some convolutional layers, hence
addressing the vanishing gradient issue. This architecture has achieved the best overall
results on problems globally like ImageNet task, and has had a major impact on a variety
of computer vision problems. The architecture is a fundamental component of many deep
learning frameworks, demonstrating the ability of residual learning for training.

ResNet-50 introduces residual learning with 50 layers, including GAP, fully connected,
and 48 convolutional layers. Residual blocks use a bottleneck design, consisting of a
series of 1x1, 3x3, and 1x1 convolutions which preserves representational strength and
decreases computational complexity. There are a total of 23,628,692 parameters, out of
which 23,575,572 were kept trainable.

ResNet50 Model Architecture

Input Output

Max Pool
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block

| Zero Padding l
Avg Pool
Flattening

FC

e e e

Stage 1 Stage 2 Stage3 Stage4 Stage 5
Figure 3.6: ResNet50 architecture

16

3.2.3.3 DenseNet

DenseNet, or Densely Connected Convolutional Network, is a neural network architecture
distinguished by its densely connected layers. It connects every layer in a feed-forward
manner to every other layer, in contrast to conventional convolutional neural networks
where each layer is only connected to the next following layer. This design helps with
gradient flow and feature reuse, which gives an advantage of learning with fewer parame-
ters compared to other networks. In further detail, DenseNet is made up of dense blocks.
The feature reuse is encouraged by giving each layer input of feature maps from all levels
that came before it. Transition layers are also used by DenseNet to limit the expansion of
feature maps and reduce computing expense. This architecture has gained popularity in
deep learning research and applications due to its remarkable performance on a multitude
of image classification tasks.

DenseNet contains densely connected layers, which ensure that each layer gets infor-
mation directly from all layers before it. This promotes the reuse of features and eases
information transfer across the network. For DenseNet121, there were a total of 7,633,108
parameters out of which 6,047,572 were kept trainable. For DenseNet201, there were a
total of 20,995,604 parameters out of which 6,475,092 were kept trainable.

t
e X

Figure 3.7: Dense blocks in DenseNet’s architecture

3.2.3.4 MobileNetV2

A lightweight convolutional neural network, MobileNetV2 was created especially for em-
bedded devices and mobiles with limited processing capability. It expands on the original
MobileNet architecture by adding various upgrades for effectiveness and performance. For
example, the concept of depthwise separable convolutions are utilized here. This main-
tains the same representational capacity but reduces computational complexity. These
type of convolutions separate the spatial and channel-wise convolutions. Moreover, it
adds inverted residual blocks with shortcut connections and also linear bottlenecks to
help with gradient propagation. Due to these improvements, MobileNetV2 is a popular

17

option for deploying deep learning models on smartphones with limited resources since
it can achieve impressive levels of performance on tasks like object detection and image
classification.

MobileNetV2 introduces depth-wise separable convolutions. Because of its reduced
computation and parameter counts, it is ideal for mobile and edge devices and real-
time applications with constrained processing capacity. There were a total of 2,283,604
parameters out of which 2,249,492 were kept trainable

’ conv 1x1, Linear]

conv 1x1, Relub T
) (onv lxl Linear
Dwise 3x3,
§ stride=2, Relu6

Dwise 3x3, Relub 1\

Conv 1x1, Relu6

Dwise 3x3,
stride=s, Relu6

Conv 1x1, Relué

i

input C input) C input D
Stride=1 block Stride=2 block

MobileNetV1 MobileNetV2

Figure 3.8: MobileNetV2 key feature

3.2.3.5 InceptionV3

Convolutional neural network architecture InceptionV3 is a member of Google’s Inception
family. Its goal is to maximize accuracy and processing efficiency in computer vision
tasks. It consists of several inception modules, pooling operations in its convolutional
layers. The filter sizes vary (1x1, 3x3, and 5x5), and parallel feature extraction routes
are present. To speed up training and enhance generalization, it also integrates batch
normalization technique. For classification, InceptionV3 uses fully connected layers and
global average pooling. Because of its sophisticated architecture and effective design, it
performs admirably on benchmarks, which has led to its widespread adoption.

InceptionV3 aims to capture multi-scale features efficiently using inception modules.
They incorporate convolutions of varying filter sizes and concatenate feature maps. There
were a total of 21,843,764 parameters out of which 21,809,332 were kept trainable.

18

1x1 convolutions

Filter
concatenation

M

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

A

1x1 convolutions

1x1 convolutions

+

3x3 max pooling

Previous layer

Figure 3.9: InceptionV3’s key feature

3.2.3.6 Xception

XceptionNet, or ”Extreme Inception,” was presented by the man behind the Keras deep
learning framework. Though it goes beyond the concept of depthwise separable convo-
lutions, it is influenced by the design of Inception. A sequence of depthwise separable
convolutions are used by XceptionNet to replace the conventional Inception modules.
Compared to conventional convolutional layers, this separation enables the network to
collect spatial and channel-wise correlations independently, resulting in a more economi-
cal use of parameters and computations. Its main goal is to boost the network’s capacity
while minimizing the amount of parameters and computational overhead. XceptionNet
achieves state-of-the-art performance with lower risk of overfitting and enhanced efficiency
on a variety of computer vision applications.

In Xception, depth wise separable convolutions are used. This minimizes the amount
of parameters while capturing spatial interdependence efficiently and encouraging better
information flow. The total number of parameters were 20,902,460 out of which 20,847,932
were kept trainable.

) = =]
| -d
e I
c|c| e
o - o
g @ & & |5
T ; &
2504 Bl L L Tl = L
= P honizern T £ | X 2| gurs
= | = = | H=5d
= - E —_— E E & —r : =
fral - g ¢
g Glg & |8
. . . - y ir]
1zgatarmixt (BN | b G2 @ Corvix | é :;: ?3 o E

(b XoeptionTime Architeciure

Figure 3.10: XceptionNet architecture

19

3.2.3.7 EfficientNet

EfficientNet is a family of convolutional neural networks developed by researchers at
Google. It is engineered to attain cutting-edge results on image classification, while
maintaining a high degree of computational and parameter efficiency. Compound scaling,
which consistently and logically scales the network breadth, depth, and resolution, is the
main breakthrough of EfficientNet. It performs better by scaling all of these dimensions
at once rahter than the conventional method of just scaling one while maintaining others
fixed. The foundational architecture strikes a compromise between depth, width, and
resolution within a specified computational budget. The model’s size is then gradually
increased via compound scaling to get a higher level of accuracy. EfficientNet is known
for its exceptional performance on image classification benchmarks like as ImageNet, Effi-
cientNet models use a considerable reduction in parameters and floating-point operations
(FLOPS) due to which it is well suited for contexts with limited resources, including
mobile and edge devices.

EfficientNet introduces the concept of compound scaling. This means that it scales the
network’s depth, resolution and width uniformly by a factor which can be learned. This
guarantees a computationally efficient model which balances efficiency and complexity,
improving performance under various resource restrictions. We have used EfficientNetB0
model whose architecture (figure 4.4) consistently demonstrates good performance on
benchmark datasets when it comes to image classification. We added our own Glob-
alAveragePooling2D layer, dropout layer (at 20% rate) and dense layers with softmax
activation for 20 exercise categories. There were a total of 4,075,191 parameters out of
which 4,033,168 were kept trainable.

#channels))
R . - wider : :

é ?
: deeper
- higher § _-,--higher
i resolution e _+_resolution

(a) baseline (b) width scaling (c) depth scaling (d) resolutlon scaling (e) compound scaling

- layer_i

7} resolution HxW

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network
width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

Figure 3.11: EfficientNet’s key feature: Compound Scaling

3.2.4 Model Evaluation and Fine-Tuning

Model evaluation is performed on the test set. For a detailed analysis, we have used
multiple methods on each model. We calculated the accuracy, the confusion matrices,
class-wise accuracy and generated classification reports for each model. Training and

20

testing accuracy and loss curves were plotted to analyse the models for overfitting or
underfitting. For the process of fine-tuning, we unfroze some of the pre-trained layers.
After unfreezing, the parameters associated with those layers also become part of the
training process. Multiple tests with different number of frozen layers were performed.
After this, the models are further trained for more epochs. Varying improvement in
accuracy was observed.

3.2.5 Comparative Study

A comparative study was done to obtain a more thorough understanding of the perfor-
mance of each model used in the task of pose recognition. Through a thorough analysis of
the advantages and disadvantages of various strategies, insights were obtained regarding
their effectiveness in a variety of assessment metrics and real-world contexts. Then, the
best-performing model found having the best test accuracy was chosen, and its weights
were saved for deployment later.

3.2.6 Model deployment

As mentioned before, the best weights for the best performing model, along with all the
model parameters were saved for future deployment. To demonstrate the same, the gradio
module available in Python was used.

Gradio is a open-source library that enables creating user interfaces which are web-
based, for machine learning models. Developers can easily share web-based interfaces for
their models, and users can interact with the interface and see the outputs. Gradio is often
used to create interactive demos for many machine learning models, and also featuring
multiple inputs like image, text, and audio.

21

3.3 Proposed Approach: Phase 2

There are several steps in the procedure used for the assigned work. The proposed ap-
proach is demonstrated below in figure 3.12.

Data Keypoint Data
Collection E Detection > Preprocessing
. Mode.1 : Tgsting Tl:.i?:-el

valuation ata ing

Figure 3.12: Proposed Approach: Phase 2

3.3.1 Dataset Collection

Popular exercises were selected, and for each exercise, images were manually retrieved
using Kaggle [16] as a guide and Google search engine. Consequently, the dataset has
1058 images, divided into 20 classes, each including 55-60 images. The twenty workout
categories are as follows: bridges, bench press, bow, crane pose, crunches, cycling, cobra,
child’s pose, donkey kicks, downdog, deadlift, flutter kicks, pullup, plank, standing toe
reach, shoulder press, squat, and triceps pushdown. A variety of stretches, bodyweight
exercises, and weight training exercises are included in this set.

Tensorflow is then used to load images with a standard size of 224x224. Every image
has a label based on the exercise being performed. Before loading, the dataset is shuffied
to prevent imbalanced splits, following which a 80:20 split is made for training and testing
respectively.

3.3.2 Keypoint Detection

YOLOvS8 and MediaPipe algorithms have been used as the keypoint extraction algorithms.
For YOLOVS, a grid is created using the input image, which gives cells. Now for each
grid cell, bounding boxes and corresponding confidence ratings are predicted as part of
a single-stage object recognition approach. The architecture usually comprises of many
convolutional layers followed by upsampling and concatenation operations. Anchor boxes
are used to increase localization accuracy, while feature fusion and skip connections are
used to record spatial relationships.

The second method, MediaPipe extracts keypoints by first preprocessing the input im-
age, then utilizing a convolutional neural network model trained for predicting the location
of specific keypoints by detecting and localizing keypoints on the human body, including
joints and landmarks. Features are extracted from the image at different scales, followed
by regression techniques to predict the coordinates of each keypoint. Post-processing tech-
niques may be applied to refine the results. That extracted keypoints act as the feature

22

for each image. An example of keypoint detection using MediaPipe on a test image taken
from the dataset as shown in figure 3.13.

Figure 3.13: Keypoint detection in an exercise image

3.3.3 Data Preprocessing

Preprocessing involves augmentations, which are required to increase the dataset’s diver-
sity to improve generalization. SMOTE (Synthetic Minority Over-sampling) Technique is
a method frequently used in data augmentation to reduce class imbalance. By fabricating
synthetic records for the minority class, it mitigates imbalance issues. First, a sample is
selected at random from the minority class, and then its k-nearest neighbors are found.
After calculating a vector between the chosen neighbor with the current data point being
examined, it is multiplied with a random number ranging from 0-1. For every image in
the dataset, this procedure is repeated. The labels were categorical in nature. They are
encoded into numerical values using LabelEncoder.

3.3.4 Model Training

Thereon multiple algorithms have been trained on both the above skeletal data to compare
the performance between them. For each algorithm, GridSearchCV was used to find
the best hyperparameters. It is a method for systematically tuning hyperparameters of
machine learning models. It works by searching through a specified list of parameters and
also utilizes cross-validation to evaluate each combination’s performance.

3.3.4.1 K-Nearest Neighbors(KNN)

K-Nearest Neighbors is a non-parametric regression and classification approach. For clas-
sification, the majority class is taken and for regression, the average of the K closest data
points is taken, to predict a new data point. Based on a distance metric, the "nearest”
data points are identified. Although it is simple to use and intuitive, how well it performs
depends on how the number of neighbors (K) and distance measure are chosen.

KNN could be used to identify exercise positions using information taken from images
or videos. For a multitude of types of data, KNN can be a good choice to consider.
For example, accelerometer data, joint angles, or key points, KNN may be trained to
identify poses. The functioning of calculating the distances between feature vectors for
classification still remains the same.

23

i
~ £ .
= |
e e
f’ e © ® .\ ! \\
(S L] [] / \‘ |]
@ Class A \ o .
9 - P/Y Class B -
; .

7 u

e ’ - = | 7
“’.. .-r"-Q ./l\&-—-_, "

\
m \

~ -
-

, @
&
/ # ClassC
. ‘. ./ -
4

* I

~

Figure 3.14: KNN

3.3.4.2 GaussianNB

It is based on Bayes’ theorem, assumes feature independence, Gaussian Naive Bayes
(GaussianNB) is a simple but powerful probabilistic classifier. Classification is done using
class probabilities which are calculated using likelihood of features and the each class
priors. GaussianNB frequently performs well even though it is simple in its principle and
also assumes feature independence.

GaussianNB could be used as a classifier for workout pose recognition to distinguish
between exercise poses based on images. It might be trained to categorize features includ-
ing joint angles or keypoints. Then classify them into various exercise poses. It is also
a good choice for applications involving real-time inference, for example real-time pose
recognition, because of its simplicity, ease of use and effectiveness, specially in contexts
with limited resources.

1 (2 — pay)?
P(z; | y) = EXP(—T;
2mo? Oy

y

Figure 3.15: GaussianNB

3.3.4.3 Linear SVM

Linear Support Vector Machine (SVM) looks for the best linear border in the feature
space between classes. It is effective for linearly separable datasets because it maximizes
the margin between the closest data points (support vectors) from each class.

It can be used to categorize exercise poses. Through labeled training data representing
various workout poses, the SVM learns to accurately categorize fresh instances into the
appropriate categories.

24

Figure 3.16: SVM explanation

3.3.4.4 Decision Tree

For classification, a flexible and easy-to-understand supervised learning approach is the
decision tree. It is based on the input features values, it divides the feature space with a
recursive technique. This is used to make smaller subsets of the dats. Each split attempts
to maximize information gain. If we visualize, and we can also see in Figure 3.17, a tree-
like structure is created, where leaf node represents class labels, and every internal node
indicating a choice.

Decision trees could be used for workout posture recognition to categorize exercise
poses according to image characteristics. This can be achieved by decision tree partition-
ing the feature space of, for instance, keypoints to determine which pose a given instance
represents. They are useful for predicting and evaluating exercise poses and giving users
useful feedback because of its easy understandable visualization.

Sunny Overcast Rain

Humidity Yes

High Normal Strong Weak
No Yes No Yes

Figure 3.17: Decision Tree working

3.3.4.5 Random Forest

Based on decision trees, Random Forest is an ensemble learning technique. It builds
multiple independent decision trees during training and votes together their predictions.
To create variation among the trees, each decision tree for making the Random Forest is

25

trained using a random selection of training data. This random selection improves the
model’s ability to generalize and also reduces overfitting. Random Forest is popular for
its versatile nature, ability to scale well, and the power of high-dimensional data handling.

Random Forest could be used to classify exercise poses because of its collective nature.
By this we mean that since numerous decision trees are constructed on different subsets
of the data, therefore by using this collective knowledge of trees, workout poses could be
effectively classified. Random Forest works well for difficult pose identification tasks in
workout monitoring systems because of its robustness against overfitting.

Instance

i,
.
/ L
o dodb
Tree-1 Tree-n
Class-A Class-B Class-B

I c |
IMajm‘il}'-\-*{)[ing f

|Final-Class

Figure 3.18: Random Forest working

3.3.4.6 LightGBM

LightGBM is a high-performance gradient boosting algorithm. It focuses on speed, accu-
racy, but with efficiency. It uses a innovative algorithm, using decision trees, which builds
the tree using a leaf-wise splitting method. It chooses the leaf with the greatest reduction
in loss, or it technical terms, the greatest reduction in delta loss. This helps achieve
great performance while also reducing training time substantially and limited memory
use. This makes for a scalable solution for large-scale datasets. It is also an advantage
for such datasets because of it support for distributed and parallel computation.

Light GBM could be used as a classifier in the context of workout pose recognition
through labeled training data with different workout poses and associated features, Light-
GBM is able to learn intricate patterns and generate precise predictions. Because of its
effectiveness and scalability, Light GBM is a good fit for real-time fitness monitoring sys-
tems, where prompt and precise position detection is crucial.

26

: A= o
XG Boost: : -
Lighi{:13M: /.\

Figure 3.19: Light GBM vs XGBoost: Leafwise splitting

3.3.4.7 XGBoost

XGBoost is a boosting algorithm that is highly optimized. It enhances the generalization
capabilities of the model by combining the benefits of gradient boosting with multiple
regularization techniques integrated. This techinque consequently helps prevent overfit-
ting. Because it also offers suppoert for parallel computing, it has the ability to handle
massive datasets and is hence scalable as well. It is clear that it can be and also is a
well-liked option for several tasks, including classification, regression because of its speed,
accuracy, high generalizability and being less prone to overfitting.

XGBoost could be used as a classifier for workout pose recognition through train-
ing data labeled with different workout poses. XGBoost is able to understand intricate
patterns and produce precise predictions thanks to its . The posture recognition sys-
tem is made more robust and less prone to overfitting thanks to XGBoost’s optimization
approaches.

3.3.4.8 Bagging

Machine learning models can be made more accurate and stable by using an ensemble
learning technique called bagging, which is short for bootstrap aggregating. It operates by
using replacement sampling to train several versions of the same base learning algorithm.
This is done on varying subsets of the training data. Each model independently trains
to predict the target variable. For classification, this is done by voting. By increasing
model variety, it lowers variance and hence prevents. The predictions made using bagging
technique are often more reliable and accurate.

Bagging can be used to enhance the performance of classifiers that recognize exercise
positions. This is achieved by improving the overall accuracy through training multiple
classifiers on distinct portions of the train data. By enhancing generalization and re-
ducing the likelihood of overfitting, bagging can result in more dependable workout pose
identification.

27

Classifier

v
00000
0000

[

I
J
0000
00000
=]
I

Ensemble Classifier

Figure 3.20: Bagging explanation

3.3.5 Model Evaluation

For evaluation and analysis of the models, a test set was used. On each model, several
techniques were applied for a thorough analysis.
and recall were determined. A comparative analysis was conducted in order to further
understand each models’ performance with respect to the keypoint detection techniques
used. The model that performed the best and had the highest test accuracy was then

selected, and its weights were saved.

Original Data

Bootstrapping

Aggregating

Bagging

Then their test accuracy, precision

28

Chapter 4

RESULTS and DISCUSSION

4.1 Phase 1

For all the 9 models, the learning rate has been kept at 0.001, with Adam optimizer while
fine tuning with different number of layers and using categorical cross entropy loss.

We conducted an analysis of all the models used in our study for workout image recog-
nition. Table 4.1’s benchmark results demonstrate EfficientNetB0’s superior performance,
with the model attaining the maximum accuracy of 91% for top-1 classification. Among
the best performers, DenseNet201 stood out with a 99.05% accuracy rate for top-5 classi-
fication closely followed by EfficicentNetB0 with 98.9%. We also present information on
each model’s precision, recall and F1 score.

Table 4.1: Benchmark result of 9 T-LL models

Models Before fine-tuning After fine-tuning
Initial Top-1 | Top-5 | PrecisioRecall | F1-
Accu- Accu- | Accu- Score
racy racy racy
VGG16 70.62% 79.62% | 97.16% | 0.88 0.81 0.81
VGG19 81.52% 83.89% | 98.10% | 0.85 0.84 0.84
ResNet50 76.30% 81.99% | 97.16% | 0.84 0.82 0.81
DenseNet121 66.35% 85.31% | 98.00% | 0.87 0.87 0.86
DenseNet201 72.51% 86.73% | 99.05% | 0.89 0.88 0.88
MobileNetV2 72.64% 76.42% | 92.92% | 0.81 0.76 0.75
InceptionV3 73.11% 84.43% | 95.75% | 0.85 0.84 0.83
Xception 76.30% 81.52% | 96.68% | 0.84 0.83 0.82
EfficientNetB0 | 86.73% 91.00% 98.90% | 0.92 0.92 0.91

29

We can see that EfficientNetB0O gave us the best performance for top 1 accuracy.
For top-5 accuracy also, the performance is closely matched to the best performing
DenseNet201. It is remarkable that even with much fewer parameters than DenseNet201,
EfficientNetBO0 is able to give competitive performance. We can also see with the preci-
sion, recall and F1 score values that EfficientNetBO can be considered to be the overall
best performing model. The scalability and efficiency of EfficientNetBO0 is evident here
and it can also be argued that the inference times using this model can be faster than
the other models mentioned here. This demonstrates the strength of architectural cre-
ativity over parameter count. While it may not boast the large number of parameters
of some of the other deep learning architectures, it still emerges triumphant in perfor-
mance in our case, showcasing a superiority that defies expectations. This also lends well
to our use case of limited compute power. For scenarios where the computing power is
limited, for example on mobile devices, a solution is needed that provide fast inference
using lightweight models. And EfficientNetBO fits nicely in this context. We have given a
detailed architecture of EfficientNetB0 in Figure 4.1 to demonstrate its functioning, how
an image goes through the various layers and how it is modified.

30

224x224x3

4 4 4
Lo
.14
1

Dense

Dropout 0.2 224x224x3

Average Pooling

7x7x1280
224x224x3
W
Stem Conv (3x3)
7x7x320 112x112x32
\'4
Block1 Conv (3x3)

7x7x192

112x112x16

x4 x2

14x14x112 56x56x24

Block5 Conv (5x5) x3 x2
/N

14x14x80 28x28x40

Block4 Conv (3x3) x3
|

Figure 4.1: Detailed architecture of EfficientB0: the best model found

31

In the first training phase of EfficicentNetB0, the best model discovered, took place
across 25 epochs, yielding an initial testing accuracy of 86.73% and a testing loss of 0.43.
After then, the 150th layer was the focus of 10 more epochs of fine-tuning with the learn-
ing rate set to 0.0001. With the use of checkpointing and optimal accuracy monitoring
mechanisms, the procedure produced an astounding 99.65% fine-tuning training accuracy
and 0.012 fine-tuning loss. Testing accuracy for the optimized model was 91.00%, and
testing loss was 0.43, which was the same as during the first training phase. The model’s
accuracy was significantly increased overall through the fine-tuning procedure, indicating
the success of the modifications made at this stage. The accuracy and loss curves are
also provided to illustrate the model’s development with fine-tuning; they show a clear
tendency towards improved accuracy and lower loss. The accuracy and loss curves in
figures 4.2 and 4.3 graphically illustrate the model’s development with finetuning; they
show a clear tendency towards improved accuracy and lower loss.

Training and Validation Accuracy

— | S
—
——

p—

;_/',
081 £

r
064

044

= Tamng ACCuracy
Vahdation ACCuracy

Start fne Turung

00 T
0 5 0 15 0 25 X 5

Figure 4.2: Accuracy curve of EfficientNetB0O model

Training and Validation Loss
10

— Training Loss
Validation Loss
081 = Start Fine Tuning

0.61

041

a \\

0.0 T T T T r
0 5 10 15 20 25 30 35
epoch

Figure 4.3: Loss curve of EfficientNetB0 model

32

In order to provide a more nuanced view of exercise-specific accuracy, we have included
Table 4.2 that shows EfficientNetB0’s accuracy for each workout class. The model per-
forms well in a variety of exercises, with accuracy levels ranging from 69.23% to 100.00%.
Most exercises yield greater than or equal to 80%, only tricep-pushdown shows a low
performance of 69.23%. Examining the AUC-ROC curve as shown in figure 4.4 offers a
thorough evaluation and shed light on the model’s discriminative ability in this multi-class
situation. The model’s competency is demonstrated by notable precision, particularly the
100.00% accuracy for classes like Bow, Bridges, Child’s Pose, Cobra, Crane Pose, Cycling,
FlutterKicks and Pullup.

Table 4.2: Pose-wise accuracy of EfficientNetB0 model

Workout Pose ‘ Accuracy
Benchpress 91.66%
Bow 100.00%
Bridges 100.00%
Child’s Pose 100.00%
Cobra 100.00%
Crane Pose 100.00%
Crunches 90.00%
Cycling 100.00%
Deadlift 80.00%
Donkey kicks 90.00%
Downdog 84.61%
FlutterKicks 100.00%
Lat-pulldowns 88.88%
Leg-extensions 93.33%
Plank 82.35%
Pullup 100.00%
Shoulder Press 90.90%
Squat 90.00%
Standing toe reach 90.00%
Tricep-pushdown 69.23%

33

ROC Curve for Each Pose Label

= Benchpress (AUC = 1.00)
F Bow (AUC = 1.00)
= Bridges (AUC = 1.00)
— Childs Pose (AUC = 1.00)
Cobra (AUC = 1.00)
— Crane Pose (AUC = 1.00)
Crunches (AUC = 1,00
— Cycling (AUC = 1,00)
Deadlift (AUC = 1.00)
04+ Donkey Kicks (AUC = 1.00)
— Downdog (AUC = 1.00)
Flutterkicks (AUC = 1.00)
Lat-pulldowns (AUC = 0.98)
— Leg-extensions (AUC = 1.00)
024 — Plank (AUC = 0.96)
— Pullup (AUC = 1.00)
Shoulder Press (AUC = 0.99)
— 5quat (AUC = 1.00)
Standing toe reach (AUC = 1.00)
Tricep-pushdown (AUC = 0.99)
== Random

True Positive Rate

v v T v v
0.0 0.2 0.4 0.6 0.8 L0
False Positive Rate

Figure 4.4: AUC-ROC curve of EfficientNetB0O model

A breakdown of classifications is given by the confusion matrix in figure 4.5. Exam-
ining measures relevant to each class, such as precision and recall, we obtain detailed
understanding of how well the model understands different types of exercises. Diagonal
elements show the model correctly predicting poses. The off-diagonal elements point out
areas that require improvement. It shows which incorrect class the model predicts for
each exercise. The same follows for all the classes. This could be of interest as it may
indicate similarity of movement or range of motion between exercises which may require
more discriminating data to distinguish classes. This method provides a detailed insight
of the strengths and limitations of the model. The confusion matrix is a very useful tool
for evaluating any machine learning model. For a binary or a multi-class problem, though
it is much more useful in a multi-class setting, this tool allows a simple visual that can
highlight the initial shortcomings of the model. For example, if some classes are being
very poorly classified, then that warrants further investigation. Just looking at accuracy
will not give us that detailed information. Further, if a particular class is being misclas-
sified as some other class repeatedly, then that is also an interesting observation. There
must be some similarity between the 2 classes which causes this confusion. So, confusion
matrix allows this per-class analysis.

34

14

o

Bridges focccocoocormooccocoocofoo
Ch'|d5r'059-ooooococoococcoogoco

Benchpress

Bow

Bridges

Childs Pose -
Cobra

Crane Pose -
Crunches
Cycling

Deadlift 4

Donkey Kicks
Downdog -
FlutterKicks
Lat-pulldowns -
Leg-extensions
Plank 4

Pull up 4

Shoulder Press
Squat

Standing toe reach
Tricep-pushdown -

12

10

True Labels
HOOOOQCODOOOOD O

cooococoocooocooo

i
PulluplocorfJcoccoocococococoooo
Sh0U|derPl’eSS-ooczEUUOUOOUGUUODGGGD

1eo00Q0Q

MW‘OOOOOCOOOOCOOCOOOO
CobrajoococoococococoocococococoffJoocoo

CranePose fJooococoocoooccoc@ooooo
Cycling oooooooooocomcoooooo

Deadiift {cocccoccoccocffloocoococooco
DOﬂkGYKICkS-oooooco:oouoccooocco
Squa[-oouooooooo»—-mooooocoo
Standlnqtoereach-onooomooo._-coocooocoo

CFUﬂChES-oo.—-occo:ooco:ﬂooocco
Plank jc oo oc o

Downdog {omocococcococoococooococo

FlutterKicks fJoc cccooroWMococoooo0oo 0o
Lat-pulldowns {8 cccoccoffJoooocooocoooooo

Benchpress jJcooccoocoococoocOocO0OOOQO©
Leg-extensions

Th(ep‘pushdawnﬂoooo—oooocoo.-ooooco
!
o

Predicted Labels

Figure 4.5: Confusion-matrix for EfficientNetB0 model

4.1.1 Outputs

Figure 4.6 shows the true and predicted labels for images of different workout stances
from the testing dataset. As demonstrated in the confusion matrix, there are incorrect
predictions in the result as well. For classes where lower accuracy is obtained, it is useful
to analyze possible similarities between images which may cause confusion.

True: Bow True: Squat True: Lat-pulldowns
Predicted: Bow

Predicted: Squat Predicted: Lat-pulldowns

True: Denkey Kicks
Predicted: Donkey Kicks

True: Tricep-pushdown True: Crunches
Predicted: Tricep-pushdown Predicted: Tricep-pushdown

Figure 4.6: Actual vs Predicted pose of some test images

35

Gradio was used in the development of an online interface. It is an open-source toolkit
that makes it possible to create machine learning model user interfaces. It is frequently
used to produce interactive demonstrations with many inputs, including text, audio, and
images. Figure 4.7 and figure 4.8 demonstrate this interface in action. Figure 4.7 shows
what the interface looks like. Figure 4.8 demonstrates the scenario wherein either a user
uploads an image to the model, or the application can also be integrated with a camera
that periodically clicks images and feeds it to the model. Based on the what the model
has learnt, it outputs a prediction.

Wokrout stance detection

Figure 4.7: Gradio interface

Wokrout stance detection

Figure 4.8: Gradio interface showing output for an image

36

4.2 Phase 2

The methodology followed in Phase 2 was described above. It involves data collection,
followed by keypoint detection on the images in the dataset. The dataset chosen was the
same as followed in Phase 1. On those images, 2 keypoint identification algorithms were
used, namely YOLOvS8 and MediaPipe, as mentioned before. Further, data augmentation
using SMOTE technique has been performed to eliminate any class imbalance and ensure
that all classes have equal representation. This takes care of preparing the dataset and
also making sure that there is adequate diversity present in the dataset for the complex
task of workout pose recognition. Then we begin training the model. The details of the
models trained and their tuning has been discussed in detail later. After any model has
been trained, testing is performed using the test set. It was previously mentioned that an
80:20 split was used between the train and test split of the data. After testing, evaluation
is performed using multiple metrics. Using multiple metrics ensure that we can analyze
and understand the depth of the model, its performance, check for inconsistencies and
overfitting.

YOLOvS8 predicted a total of 32 keypoints in this experiment while MediaPipe pro-
duced 33. Table 4.3 listed the best parameters found using Grid Search with respect to
each machine learning and ensemble technique upon training on each skeletal data.

4.2.1 Hyperparameter tuning

For this phase, several hyperparameter tuning was done to optimize peroformance.

Machine learning hyperparameters are like the tuning knobs of a musical instrument,
fine-tuning the performance of a model to achieve optimal results. These parameters,
distinct from model parameters learned during training, dictate the behavior and perfor-
mance of the learning algorithm itself.

Tuning hyperparameters is crucial because it directly influences a model’s ability to
learn and generalize patterns from data. Just as a symphony requires precise tuning for
harmonious melodies, machine learning models require careful adjustment of hyperpa-
rameters to orchestrate optimal performance. The following Table 4.3 shows the models
used and the best hyperparameters that were found. The analysis was performed fro both
YOLOVS8 models and MediaPipe based models.

37

Table 4.3: Best Hyperparameters Found Using GridSearchCV

Model Parameter ‘ Criterion
‘ YOLOv8 MediaPipe
max_depth none none
Decision Tree min_samples_split | 2 1
min_samples_leaf | 2 2
Linear SVM splitter best best
c 1 1
loss hinge hinge
penalty 11 12
Multi Layer Perceptron activation relu relu
alpha 0.0001 0.0001
n_neighbors 3 3
KRN weights distance distance
P 2 2
learning rate 0.001 0.001
XGBoost n_estimators 128 100
max_depth 5 3
gamma 0.1 0.2
Bagging n_estimators 128 100
learning rate 0.003 0.001
. n_estimators 100 100
LightGBM max_depth 3 5
n_estimators 128 100
Random Forest min_samples_leaf | 1 1
min_samples_split | 2)
max_depth none)

4.3 Experimental results

According to Table 4.4, classifiers that use MediaPipe keypoints as opposed to YOLOv8
achieved higher accuracies. For instance, Linear SVM with MediaPipe shows accuracy
increase from 69.88% to 90.90%, while GaussianNB’s accuracy increases from 56.79% to
88.88% as well. Light GBM performed best with MediaPipe with 95.95%. Random forest
closely follows it with 94.94%. Other ensemble techniques like Bagging also shows higher
accuracy rates. Additionally, Multi-Layer Perceptron shows a notable improvement in
accuracy employing MediaPipe keypoints, going from 81.89% to 91.41%.

For YOLOvS, Bagging showed the best performance of 82%. Further, in contrast
to MediaPipe, Decision Trees and KNN show comparatively poorer accuracy rates when
using YOLOvVS8. These results highlight how important feature extraction methods are to
improving classifier performance.

38

Table 4.4: Test Accuracies of All Classifiers

Individual classifier Accuracy (YOLOv8) Accuracy (MediaPipe)
Decision Trees 50.00% 84.34%
Linear SVM 69.88% 90.90%
Multi-Layer Perceptron 81.89% 91.41%
KNN 66.68% 70.20%
GaussianNB 56.79% 88.88%
XGBoost 73.00% 91.91%
Bagging 82.00% 93.43%
Light GBM 80.00% 95.95%
Random Forest 78.00% 94.94%

Compared to using just one model, ensemble algorithms integrate several models to get
more accurate predictions. They increase strengths and minimize weaknesses by utilizing
the diversity of several models. This is reflected in the results with all ensembles showing
better performance.

Overall it can be said that the combination of MediaPipe with ensemble algorithms
show consistently good performance when compared with other combinations.

To obtain more fine-grained understanding of the performance, precision, recall and
F1 score are shown in Table 4.5. Precision tells us out of all the positively predicted
occurrences, what is the percentage of correctly positive predicted instances. Recall gives
us the percentage of accurately predicted positive cases among all true positives. It tells
us how well the model recognizes positive cases. F1 score gives us a single metric for
model evaluation which is the just the harmonic mean of precision and recall.

Table 4.5: Precision, Recall and F'1 score for Mediapipe models

Algorithm Precision Recall
Decision Tree 0.83 0.85
Linear SVM 0.89 0.87
Multi-Layer Perceptron 0.89 0.90
KNN 0.67 0.64
GaussianNB 0.87 0.88
XGBoost 0.96 0.95
Bagging 0.97 0.95
Light GBM 0.97 0.96
Random Forest 0.95 0.94

Accurate classification and a reduction in false positives using MediaPipe keypoints is
demonstrated by most ensembles, which routinely attain precision and recall above 0.95.
When it comes to reliably classifying images based on MediaPipe keypoints, Linear SVM
and Multi-Layer Perceptrons also fare well, scoring around 0.89. Lower ratings for KNN,
however, point to possible false positives and limitations in its classification. The findings
highlight the significance of choosing the right technique with MediaPipebased features
for classification tasks. It can be argued that YOLOvVS is a more popular model for object
and keypoint detection than MediaPipe. However, it would be unwise to look at any
algorithm in isolation and instead experiements such as the one conducted above should
be performed. This would help determine the viability of any solution and allow more the

39

emergence of combination of models that can be further developed as frameworks. For
instance, in our case MediaPipe+Light GBM may be good for action recognition.

The confusion matrix in Figure 4.9, provides a breakdown of exercise classifications.
The accurate pose predictions are demonstrated via diagonal elements. The regions that
are misclassified and hence need improvement are the offdiagonal elements. For every
exercise, it displays the wrong class that the model predicts. From the confusion matrix,
the system demonstrates 100% accuracy for a number of exercise categories, namely bench
press, cobra, child’s pose, downdog, deadlift, flutter kicks, leg extensions, lat pulldowns,
plank, standing toe reach, shoulder press and triceps pushdown. This shows that the given
combination of keypoint detection technique and model proves to be a good solution for
the given task. It accurately detects many of the workout poses, even those with similar
ranges of motion, for example flutter kicks and leg extensions. This is something that is
desirable in such a context since many exercises go through similar range of motion with
only slight tweaks. This completely changes the dynamics of the exercise and shifts focus
towards different target muscle groups.

Benchpress
Bow
Uridges
Chelds Pose
Cobra 4
Crane Pose
Crunthes
Cyclng
D ancflift
Donkey Krcks
Dowradogq
Flutterscks
Lat-pulidowns
Leg-extensons
Plank <
Pull up
Shoulder Press
Squat
Standing 1oe reach
Thicep-pushdown 1

L=
=
o C O
oo

(bra jfcoccococcocccocoflocecce
Cnefost loocoooooccooocooffeoocoo

A

MHW“SJOOGO-OO“ODOOD-—OGOO
co0000CO0

o
Q0000000

000“7(’(‘5100-:oocoaoonooooco:co

A

oco0oCcCOODODOOCOOQOODO
-R-R-N-E-N-N-E-N-E-E-N-%-

True Labels

(- -]

~L-N-NW-F-W-N-W-N-N-N- - N

Squit {c oflcccocoocococococeo

Bow jJo oo 00 0000000000000
Sanangloeredh JonNc oD OOCCOOCOCO0O0O00O0 00O

Bridges {0000 00000000000
ChidiM o 00 0000000000000

Aank 10 ©

[=]
B
Pllipjocoocolecocococcooococoo
Shouider ess i~ o ofJococcocococcooooco

Desdit oo OODOOOQOOD

g lococoocooocoococoe
Downdog fJococcooocococffococococoooe

Mutterskks dloc oo cocooNoocooOOCOO0 OO

Wtpulidowns {C O 000 OONOCOOODOOOODD0

Leg-extensons io 00 0O

(fWM<00¢cscocbaconnoeaoeo

Tcep-pushdown

Predicted Labels

Figure 4.9: Confusion matrix of Light GBM model with MediaPipe landmarks

40

Table 4.6: Pose-wise accuracy for Light GBM+MediaPipe model

Pose Accuracy
Bridges 94.11%
Bench Press 100.00%
Bow 91.66%
Cobra 100.00%
Child’s Pose 100.00%
Crane Pose 93.75%
Cycling 88.88%
Crunches 88.88%
Downdog 100.00%
Donkey Kicks 87.50%
Deadlift 100.00%
Flutter Kicks 100.00%
Leg Extensions 100.00%
Lat Pulldowns 100.00%
Pullups 85.71%
Plank 100.00%
Squat 87.50%
Standing Toe Reach 100.00%
Shoulder Press 100.00%

Tricep Pushdown 100.00%

Table 4.6 shows the pose-wise accuracy for MediaPipe+Light GBM model. This is
confirmed by its high precision and recall.

Figure 4.10 displays the learning curve for the Light GBM model, illustrating how the
cross-validation score evolves as the number of training instances increases. On the x-axis,
we observe the number of training samples, while the y-axis shows the cross-validation
score. The green line shows the change in cross validation score. We observe an steep
initial increase from around 0.6 to roughly 0.95. This fast increase indicates model’s
effective learning and becoming more proficient at extracting features from the data and
leveraging them for classification. It also shows that the introduction of additional data
into the model is enhancing the model’s performance to a substantial degree. This is
helping it to generalize better and make more accurate predictions.

However, upon the addition of more training samples, the curve doesn’t show the
steep increase that was evident in the beginning. Instead, it begins to plateau, and the
score only slightly increasing to 0.96 from 0.95. This implies that there comes a point
in training where the model’s learning speed is fading. Additional data provides limited
improvement. This is expected in model training, after a certain volume of data has
been trained, the returns on investing more data into the model, is limited. This fact is
important to understand, specially for practical and wide-use applications as it highlights
the tradeoff of cost of acquiring more data and potential performance gains. It also shows
the importance of realizing that focusing on other aspects for model improvement like
hyperparameter tuning is essential. This is an aspect that we have focused on, and also
on model architecture. The issue of model architecture is tackled to some extent using
the variety of models we have used for our use cases. Thus, a learning curve not only
depicts the efficiency of a model, in our case, Light GBM. Additionally, it provides valuable

41

insights for optimizing resources and efforts. Instead of focusing on gathering more and
more data, wasting time and potentially money on it, efforts can be redirected towards
enhancing data quality or alternative model enhancements. We know that gathering data
is time-consuming and expensive. Consequently, this plateau phase helps in efficiently
allocating resources and achieving a more robust and effective model.

—o— Crossvalhidation score

S ore

07

0.6 4

L L L L v L -
00 400 00 600
Trainung examples

Figure 4.10: Cross-validation score vs number of samples

The Figure 4.11 shows the AUC-ROC curve for each class in the MediaPipe keypoints
based Light GBM model. The ROC curve displays the true positive rate versus the false
positive rate. The curve closest to the top-left corner represents the Benchpress class,
indicating perfect classification performance. Classes like Bridges, Cobra and many others
also have ROC curves hugging the top-left corner, suggesting excellent discrimination
ability.

1.0 4 .
| -
= | "

0.8 | e

Class Benchpress (AUC = 1.00)
Class Bow (AUC = 0.99)
Class Bridges (AUC = 1.00)

Figure 4.11: AUC-ROC curve for each class Mediapipe+Light GBM)

True Positive Rate

o
=

o
o

0.2

0.0 4

Class Childs Pose (AUC = 1.00)
Class Cobra (AUC = 1.00)

Class Crane Pose (AUC = 1.00)
Class Crunches (AUC = 0.99)

Class Cycling (AUC = 1.00)

Class Deadlift (AUC = 1.00)

Class Donkey Kicks (AUC = 1.00)
Class Downdog (AUC = 1.00)

Class FlutterKicks (AUC = 1.00)
Class Lat-pulldowns (AUC = 1.00)
Class Leg-extensions (AUC = 1.00)
Class Plank (AUC = 1.00)

Class Pull up (AUC = 1.00)

Class shoulder Press (AUC = 1.00)
Class squat (AUC = 1.00)

Class Standing toe reach (AUC = 1.00)
Class Tricep-pushdown (AUC = 1.00)

0.0

0.2

0.4 0.6

False Positive Rate

0.8 1.0

42

4.3.1 Outputs

In Figure 4.12, a series of images from the testing dataset are shown. It shows various
exercise poses input to the model for testing purpose. Each image is listed with both
the true labels and the predicted labels generated by the model. The true label tells us
the exercise pose as found in the labeled dataset. Having this comparison visually allows
quick assessment of the model’s accuracy.

Furthermore, to showcase the performance of how accurate the keypoint algorithms
are, the keypoints predicted using MediaPipe are overlaid on the poses. Because of this,
we can see the algorithm’s ability to accurately identify major keypoints. These include
major joints such as shoulders, elbows, and knees, and limbs, etc which are crucial to
identify the body pose, and then consequently identify exercise positions. The accuracy of
keypoints predicted by the keypoint detection algorithms offers additional understanding
into how effectively a model comprehends human poses.

This graphical display illustrates how well the model categorizes and accurately iden-
tifies poses, which can have practical uses such, as tracking fitness progress aiding in
physical therapy and advancing sports science. By comparing the key points with the
predicted labels it becomes simpler to pinpoint strengths and weaknesses in the models
performance. This insight can guide enhancements like refining the model and enhancing
its adaptability, in real life situations.

prediction:Leg-extensions prediction:Deadlift

! prediction:FlutterKicks
true label:Leg-extensions

true label:Deadlift true label:FlutterKicks

prediction:Tricep-pushdown prediction:Bow prediction:Pull up
true label:Tricep-pushdown true label:Bow true label:Pull up

Figure 4.12: True vs Predicted pose of a few test samples

43

Chapter 5

CONCLUSION AND FUTURE SCOPE

The presented experimental results reveal insights into the performance of prominent CNN
architectures—VGG16, VGG19, ResNetb0, DenseNet121, DenseNet201, MobileNetV2,
InceptionV3, Xception, and EfficientNetB0O on workout pose detection. The dataset pro-
vides a challenging and diverse set of visual data for training and evaluation. The observed
variations in test accuracies across models and epochs underscore the influence of architec-
tural differences. EfficientNetB0 has demonstrated the strongest performance, achieving
top 1 accuracy of 91%. Architectures like DenseNet121 and DenseNet201 notably per-
formed worse than EfficientNetB0O. These findings highlight the importance of choosing
configurations and architectures that balances model complexity with the complexity of
the problem, taking into account the diversity of exercises and the context of application.

In this research, the domain of action recognition was explored by utilizing multi-
ple techniques using multiple algorithms, using keypoint detection via YOLOvV8 and
MediaPipe. During training, data augmentation techniques were used to correct class
imbalance and improve resilience. The classification step was carried out after data aug-
mentation and keypoint extraction. MediaPipe with ensemble algorithms consistently
showcased impressive performance. However YOLOv8 was found to be inferior to Medi-
aPipe in all the tests, even though the number of keypoints that were found to be nearly
the same for both. This also shows the capability of ensemble algorithms in how the
different models combine their learned features to improve performance.

Several avenues for future research exist. Firstly, the exploration of ensemble methods
holds promise for further improving the overall accuracy. Combining predictions from
multiple models can enhance generalization. Secondly, the integration of transformer-
based models for vision, which is the latest development in computer vision tasks also
holds promise. Specifically, vision transformers|[14] have shown to beat previous state-
of-the-art set by CNN architectures on multiple tasks. Furthermore, attention to data
augmentation techniques could enhance model generalization. Specifcally, investigating
results through an augmentation technique called RandAugment[13]. We may also at-
tempt to improve model performance by incorporating keypoints. Finally, an exploration
of explainability and interpretability may contribute to the transparency of the system
and facilitate user trust and acceptance. Overall, the findings from this study lay the foun-
dation for further advancements in workout pose detection, encouraging the integration
of novel architectures and methodologies to address the inherent challenges.

44

Bibliography

1]

Y. S. Jain, D. Chowdhury, and M. Chattopadhyay, “Machine learning based fitness
tracker platform using mems accelerometer,” 2017 International Conference on
Computer, FElectrical & Communication Engineering (ICCECE), pp. 1-5, 2017.
[Online]. Available: https://api.semanticscholar.org/CorpusID:53280514

W. Zhang, C. Su, and C. He, “Rehabilitation exercise recognition
and evaluation based on smart sensors with deep learning frame-
work,” [IEEE Access, vol. 8, pp. 77561-77571, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:218565154

R. Ji, “Research on basketball shooting action based on image feature extraction
and machine learning,” IEEE Access, vol. 8, pp. 138 743-138 751, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:221087665

A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose esti-
mation,” in Computer Vision - 14th European Conference, ECCV 2016, Proceedings,
ser. Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds. Springer Verlag, 2016, publisher Copyright: (C) Springer In-
ternational Publishing AG 2016.; 14th European Conference on Computer Vision,
ECCV 2016 ; Conference date: 08-10-2016 Through 16-10-2016.

A. Moran, B. Gebka, J. Goldshteyn, A. Beyer, N. Johnson, and A. Neuwirth, “Muscle
vision: Real time keypoint based pose classification of physical exercises,” 2022.

S. R. Sreela and S. M. Idicula, “Action recognition in still im-
ages using residual neural network features,” Procedia Computer Sci-
ence, vol. 143, pp. 563-569, 2018, 8th International Conference on Ad-
vances in Computing and Communications (ICACC-2018). [Online]. Available:
https://www.sciencedirect.com /science/article/pii/S1877050918321306

W. Yang, Y. Wang, and G. Mori, “Recognizing human actions from still images with
latent poses,” in 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2010, pp. 2030-2037.

H. Kwon, Y. Kim, J. S. Lee, and M. Cho, “First person action
recognition via two-stream convnet with long-term fusion pooling,” Pat-
tern Recognition Letters, vol. 112, pp. 161-167, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167865518303027

M. Singh, M. S. A. Ansari, and M. Govil, “Deeppose: An integrated deep learn-
ing model for posture detection using image and skeletal data,” in 2023 1jth In-

45

[10]

[11]

[12]

[13]

[14]

[17]

[18]

[19]

ternational Conference on Computing Communication and Networking Technologies
(ICCCNT), 07 2023, pp. 1-7.

H. Rookba, b. hussein abdallah, A. Ahmed Abdallah, R. Osama Abdel-Aal,
R. Reda Numan, A. Khaled Darwish, and W. El-Behaidy, “Automatic feedback for
physiotherapy exercises based on posenet,” FCI-H Informatics Bulletin, vol. 2, no. 2,
pp. 10-14, 2020.

J. Jose and S. Shailesh, “Yoga asana identification: A deep learning approach,”
IOP Conference Series: Materials Science and FEngineering, vol. 1110, no. 1,
p. 012002, mar 2021. [Online]. Available: https://dx.doi.org/10.1088/1757-
899X,/1110/1/012002

V. Podgorelec, Pecnik, and G. Vrbancic, “Classification of similar sports images
using convolutional neural network with hyper-parameter optimization,” Applied
Sciences, vol. 10, no. 23, 2020. [Online]. Available: https://www.mdpi.com/2076-
3417/10/23/8494

M. Y. Farhad, S. Hossain, M. R. K. Tanvir, and S. A. Chowdhury, “Sports-net18:
Various sports classification using transfer learning,” in 2020 2nd International Con-
ference on Sustainable Technologies for Industry 4.0 (STI). IEEE Computer Society,
2020, pp. 1-4.

K. Joshi, V. Tripathi, C. Bose, and C. Bhardwaj, “Robust sports im-
age classification using inceptionvd and neural networks,” Procedia Com-
puter Science, vol. 167, pp. 2374-2381, 2020, international Confer-
ence on Computational Intelligence and Data Science. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050920307560

B. Dittakavi, D. Bavikadi, S. V. Desai, S. Chakraborty, N. Reddy, V. N. Balasubra-
manian, B. Callepalli, and A. Sharma, “Pose tutor: An explainable system for pose
correction in the wild,” in 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2022, pp. 3539-3548.

D. Das, S. M. Busetty, V. Bharti, and P. K. Hegde, “Strength training: A fitness
application for indoor based exercise recognition and comfort analysis,” in 2017 16th
IEEE International Conference on Machine Learning and Applications (ICMLA),
2017, pp. 1126-1129.

B. Zhou, M. Sundholm, J. Cheng, H. Cruz, and P. Lukowicz, “Never skip leg day:
A novel wearable approach to monitoring gym leg exercises,” in 2016 IEEE Inter-
national Conference on Pervasive Computing and Commaunications (PerCom,), 2016,

pp- 1-9.

Y. Yoshida and E. Yuda, “Workout detection by wearable device data using machine
learning,” Applied Sciences, vol. 13, p. 4280, 03 2023.

V. Nunavath, S. Johansen, T. Johannessen, L. Jiao, B. Hansen, S. Berntsen, and
M. Goodwin, “Deep learning for classifying physical activities from accelerometer
data,” Sensors, vol. 21, p. 5564, 08 2021.

46

[20]

[21]

[22]

[23]

[24]

[25]

[27]

28]

[29]

M. Capecci, M. Ceravolo, F. orazio, F. Ferracuti, S. larlori, G. Lazzaro, S. Longhi,
L. Romeo, and F. Verdini, “A tool for home-based rehabilitation allowing for clinical
evaluation in a visual markerless scenario,” vol. 2015, 08 2015.

M. Capecci, M. G. Ceravolo, F. Ferracuti, S. Iarlori, S. Longhi, .. Romeo, S. N.
Russi, and F. Verdini, “Accuracy evaluation of the kinect v2 sensor during dynamic
movements in a rehabilitation scenario,” in 2016 38th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp.
5409-5412.

Q.-T. Pham, V.-A. Nguyen, T.-T. Nguyen, D.-A. Nguyen, D.-G. Nguyen, D.-T.
Pham, H. Vu, and T.-L. Le, “Automatic recognition and assessment of physical
exercises from rgb images,” in 2022 IEEE Ninth International Conference on Com-
munications and Electronics (ICCE), 2022, pp. 349-354.

Y. Wu, Q. Lin, M. Yang, J. Liu, J. Tian, D. Kapil, and L. Vanderbloemen,
“A computer vision-based yoga pose grading approach wusing contrastive
skeleton feature representations,” Healthcare, vol. 10, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:245515661

T. Rangari, S. Kumar, P. P. Roy, D. P. Dogra, and B.-G. Kim, “Video based exercise
recognition and correct pose detection,” Multimed. Tools Appl., vol. 81, no. 21, pp.
30267-30 282, Sep. 2022.

Q.-T. Pham, D.-A. Nguyen, T.-T. Nguyen, T. N. Nguyen, D.-T. Nguyen, D.-T.
Pham, T. H. Tran, T.-L. Le, and H. Vu, “A study on skeleton-based action
recognition and its application to physical exercise recognition,” in Proceedings of
the 11th International Symposium on Information and Communication Technology,
ser. SoICT 22. New York, NY, USA: Association for Computing Machinery, 2022,
p. 239-246. [Online|. Available: https://doi.org/10.1145/3568562.3568639

S. Haque, A. S. A. RABBY, M. A. Laboni, N. Neehal, and S. A. Hossain, “Exnet:
Deep neural network for exercise pose detection,” in International Conference
on Recent Trends in Image Processing and Pattern Recognition, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:199583316

A. Dey, A. Dutta, and S. Biswas, “Workoutnet: A deep learning model for the recog-
nition of workout actions from still images,” in 2023 3rd International Conference
on Intelligent Technologies (CONIT), 2023, pp. 1-8.

K. M. W. Soekarjo, D. Orth, E. Warmerdam, and J. van der Kamp, “Automatic
classification of strike techniques using limb trajectory data,” in Machine Learning
and Data Mining for Sports Analytics, U. Brefeld, J. Davis, J. Van Haaren, and
A. Zimmermann, Eds. Cham: Springer International Publishing, 2019, pp. 131-
141.

M. O’Reilly, D. Whelan, T. Ward, E. Delahunt, and B. Caulfield, “Technology in re-
habilitation: Comparing personalised and global classification methodologies in eval-
uating the squat exercise with wearable imus,” Methods of Information in Medicine,
vol. 56, 06 2017.

47

[30] N. Rao, P. M. Surana, R. Ragesh, and G. Srinivasa, “Analysis of joints for tracking
fitness and monitoring progress in physiotherapy,” in 2019 IEEE International Con-
ference on Signal and Image Processing Applications (ICSIPA), 2019, pp. 181-185.

[31] H. Sarwat, H. Sarwat, M. I. Awad, and S. A. Maged, “Assessment of post-stroke
patients using smartphones and gradient boosting,” in 2020 15th International Con-
ference on Computer Engineering and Systems (ICCES), 2020, pp. 1-6.

[32] R. Kianifar, A. Lee, S. Raina, and D. Kuli¢, “Automated assessment of dynamic
knee valgus and risk of knee injury during the single leg squat,” IEFEE Journal of
Translational Engineering in Health and Medicine, vol. 5, pp. 1-13, 2017.

48

Registration for conference 1: 12CT 2024

VIDUSHI RESEARCH INNOVATION &
PUBLICATION Invoicing and payments

powered by

Payment Receipt Transaction Reference: pay_NZFOIiljZ4RXay
This is a payment receipt for your transaction on |IEEE 9th 12CT 2024

AMOUNT PAID § 9,500.00

ISSUED TO PAID ON
amanrehmanl8@gmail.com 10 Feb 2024
+918800286070

Name of Registred Author

Aman Rehman

DESCRIPTION UNIT PRICE qQTy AMOUNT
NON IEEE MEMBER FULL PAPER REGISTRATION %9,500.00 1 9,500.00
Total ¥9,500.00

Amount Paid

No Refund Policy

Page 10f 1

49

Certificate for conference 1: 12CT 2024

f 9'"International Conference for
Convergence in Technology
(I2CT)

5% _ 7™ April 2024
Certificate

This is to certify that Dr./Prof./Mr./Ms. Aman Rehman has presented paper entitled A
Comparison of Transfer Learning Inspired CNN Architectures for 2D Image Workout

Recognition in 9*iInternational Conference for Convergence in Technology (12CT) during
Sthel 7tk April 2024.

(i

Dr. Chanakya Kumar Jha
General Chair -12CT

20

Registration for conference 2: InCACCT 2024

[¢IEEE

omaRCTON

CHANDIGARH | NAAC e —
UNIVERSITY | Gave At | FTEE

RAMKED
L LMV M

REGISTRATION FEE RECEIPT:
InCACCT-2024

Received a sum of Rs. 8000/

from Aman Rehman 0)\'

Delhi Technological University

as registration fee for Paper (ID & Title)

1664 & Leveraging MediaPipe and YOLO Keypoint Detection in Ensemble
Approaches for Workout Pose Recognition

in 2nd International Conference, INnCACCT-2024, organized by
Department of Computer Science and Engineering, with the
technical sponsors IEEE Delhi Section (IEEE Conference Record
No.: 61598X) during 02nd - 03rd May, 2024 at Chandigarh

University, Campus - Gharuan, Mohali, Punjab, India.

=

Registration Team
InCACCT-2024

o1

Certificate for conference 2: InCACCT 2024

Sr. No.
AN CHANDIGARH NAAC A s R
+ NN &
RANKINGS =
c“ MEHSITY G RADE D1 lnl‘,}r;/("f‘ll‘ B !sEsErE

- Al
o [———— ACoreated UTVErSTY uwONGST YT UNVERSITES N A

Certificate of Participation

This is to certify that Prof./ Dr./ Mr./ Ms. Aman Rehman

of Delhi Technological University

participated/ presented a paper titled

Leveraging MediaPipe and YOLO Keypoint Detection in Ensemble Approaches for Workout Pose

Recognition

2nd International Conference on Ad 1t in C ion & Comp Technologies, 2024,

P

(INCACCT-2024), organized by Department of Computer Science & Engineering, Technically sponsored by
IEEE Delhi Section (Record No.: 61598X) during 02nd - 03rd May, 2024 at Chandigarh University,

Gharuan, Mohali, Punjab, India.

Dr. Meenu Gupta
Convener & Conf. Organizing Chair
Chandigarh University, Punjab,
India

Prof. (Dr.) Rakesh Kumar
Convener & Conf. Organizing Chair

AD-CSE, Chandigarh University, Punjab,
India

52

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Thesis: Workout Pose Recognition
Total Pages: 62

Name of the Scholar: Aman Rehman

Supervisor: Shailender Kumar

Department: Computer Science and Engineering

This is to report that the above thesis was scanned for similarity detection. Process and outcome is given
below:

Software used: Turnitin Similarity Index: 6% Total Word Count: 15691

Date:

Candidate's Signature Signature of Supervisor

Similarity Report

PAPER NAME
Aman_Thesis2.pdf

WORD COUNT CHARACTER COUNT

15691 Words 87538 Characters

PAGE COUNT FILE SIZE

62 Pages 9.6MB

SUBMISSION DATE REPORT DATE

May 23, 2024 8:26 PM GMT+5:30 May 23, 2024 8:27 PM GMT+5:30

® 6% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

* 5% Internet database « 2% Publications database
» Crossref database » Crossref Posted Content database

* 5% Submitted Works database

® Excluded from Similarity Report

* Bibliographic material » Quoted material

- Cited material « Small Matches (Less then 8 words)

Summary

	1685ce337c1e68a85c812f2f3d0edea061fdbf7b2e0197f6f44b3073f3ea2e55.pdf
	ac3bb61a969f9a723ac935a543718dbb6d6e699ccce5f354d0775e6051c08e4f.pdf
	47d2f24f94559fee60c538dce88e7cb948a89ae40ac290d70ddc2a3859249a7b.pdf
	9c324990e2109bbc1361d6d7cda1b8225cd9692edb3b6a21ed915eb733a6232d.pdf
	e7455ed8fb2b24a361a9e79a7a28c29f3c42c41ab1dd4a69a44301aab476dabd.pdf
	8b2f7e4680cfb8cfec6ddb012e4ec9c401c590940dcb2cd5f30694fc94ca5f0c.pdf

	682eec109aa5eab25867f8e97be7ffdcc417b40941bb39c2286ed8c2ca8ee463.pdf
	9c324990e2109bbc1361d6d7cda1b8225cd9692edb3b6a21ed915eb733a6232d.pdf
	e7455ed8fb2b24a361a9e79a7a28c29f3c42c41ab1dd4a69a44301aab476dabd.pdf
	6f49c73763cad7c854834c03c4269b709b1a1ac54ddc9836635b8cb008d8722f.pdf

	2dbd4ee80f00ddd1ec29fd79dbf921ba6577975bedb7bbe882d2861dd1368fe4.pdf
	47d2f24f94559fee60c538dce88e7cb948a89ae40ac290d70ddc2a3859249a7b.pdf
	9c324990e2109bbc1361d6d7cda1b8225cd9692edb3b6a21ed915eb733a6232d.pdf
	e7455ed8fb2b24a361a9e79a7a28c29f3c42c41ab1dd4a69a44301aab476dabd.pdf
	6f49c73763cad7c854834c03c4269b709b1a1ac54ddc9836635b8cb008d8722f.pdf

