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ABSTRACT 

 
The emergence of machine learning and medical IoT is changing healthcare, especially 

when it comes to managing diseases such as diabetes. Integration of machine learning 

algorithms and IoT device data offers a promising opportunity to improve glucose 

management models in context. At the same time, the Internet of Things is changing 

culture by enabling continuous monitoring, remote communication and increasing 

efficiency, thus changing delivery and service management. This comprehensive study 

aims to evaluate the effectiveness of machine learning models using IoT device data to 

predict blood sugar levels through a meta-analysis. It also examines recent developments, 

challenges, and future directions for data integration and management in the context of 

IoMT, highlighting its potential for healthcare reform. We searched electronic databases 

(such as Scopus, Springer, IEEE Xplore, PubMed, CINAHL, Embase, Web of Science, 

and Nature) for studies published between 2019 and 2023. Performance of machine 

learning models for predicting blood glucose. Studies that did not include machine 

learning models or performance measurements were excluded. The assessment was 

employed to assess study quality. Our primary outcomes included a comparison of ML 

models for BG-level prediction across different prediction horizons (PHs). Ten eligible 

studies were analyzed, focusing on BG prediction across PHs of 15, 30, 45, and 60 

minutes. The ML models demonstrated mean absolute root mean square error (RMSE) 

values of 15.02 (SD 1.45), 21.488 (SD 2.92), 30.094 (SD 3.245), and 35.89 (SD 6.4) 

mg/dL, respectively. Among these, the Random Forest (RF) model exhibited superior 

performance across all prediction horizons. Alongside these findings, advancements in 

IoMT have shown significant benefits, such as enhanced disease monitoring, prevention, 

care, and diagnosis. However, challenges in managing and securely storing vast amounts 

of patient data and ensuring data privacy and security persist. The integration of 

blockchain technology and cloud computing is emerging as a promising solution to these 

challenges. 
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CHAPTER 1 

 

INTRODUCTION 

 
The medical sector has embraced the IoT for patient care and monitoring. IoT adoption in 

healthcare includes various applications such as remote tracking, integration of healthcare 

devices, wearable biometric sensors, and smart beds (Figure 1). For instance, tiny cameras 

attached to vitamin-sized tablets capture images of the patient's digestive tract, aiding 

specialists in disease diagnosis, such as colon cancer. Machine learning techniques 

enhance image processing, enabling more effective diagnosis and treatment. Continuous 

glucose monitors or CGMs provide real-time blood glucose monitoring through electrodes 

under the skin, transmitters, and receivers [1, 2]. IoT sensors placed near the windpipe 

collect cardiorespiratory signals, transmitting the data wirelessly for analysis [3]. Smart 

contact lenses with sensors and microcircuits can detect changes in eye fluid, assisting in 

the diagnosis of medical conditions [4]. Engineers have also developed hydrogel pills with 

attached sensors to monitor gastrointestinal temperatures and ulcers [5]. IoT has the 

potential to enable personalized medicine based on lifestyle, environmental, and genetic 

factors. The future of IoT in healthcare looks promising as consumers show increasing 

interest in collecting and understanding their health data [6, 7]. 

 

Diabetes represents a pressing global health challenge, with a rising prevalence that is 

projected to continue escalating in the coming decades [8,9]. The impact of uncontrolled 

diabetes on individuals' health and healthcare systems is profound, underscoring the 

critical need for effective management strategies to prevent complications and improve 

outcomes [10, 11]. In particular, the management of blood glucose (BG) levels is 

paramount for reducing the risk of acute and chronic complications associated with 

diabetes. Machine learning (ML) technologies, when integrated with Internet of Things 

(IoT) applications, hold significant promise for transforming diabetes management [12]. 

Diabetes is a growing global health problem that is expected to increase in the next decade 
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[8,9]. The impact of uncontrolled diabetes on an individual's health and well-being is 

significant; this highlights the urgent need for effective management strategies to prevent 

identified problems and improve outcomes [ 10, 11]. In particular, controlling blood sugar 

(BG) levels is important in reducing the risk of acute and chronic diseases associated with 

diabetes. Machine learning (ML) technology holds great promise in revolutionizing 

diabetes management when combined with Internet of Things (IoT) applications [12] . By 

monitoring physical and continuous data, IoT devices such as continuous blood glucose 

monitors (CGM) can provide valuable information that can be used by machine learning 

algorithms for predictive modeling and personal impact. ML algorithms can analyze 

complex data provided by CGMs, electronic health records (EHRs), and lifestyle factors 

to predict blood glucose changes and improve glycemic control [ 13, 14]. Several machine 

learning (ML) algorithms, such as random forests (RF), support vector machines (SVM), 

neural networks, and autoregressive models, have been examined for their ability to 

predict blood glucose (BG) levels and related addresses. problems. However, the 

effectiveness of these models may vary between studies due to differences in data 

elements, designs, and patient populations [15–17]. 

 

As machine learning models continue to improve and IoT devices evolve rapidly, this 

meta-analysis examines trends and trends over the past five years. By reviewing research 

published between 2019 and 2023, we plan to provide a new assessment of the future of 

machine learning in the context of legacy urine glucose monitoring with IoT technology. 

This meta-analysis focused on evaluating the effectiveness of machine learning models in 

predicting glycemic outcomes and improving glycemic control in diabetic patients. By 

combining existing literature, this study aims to explore the progress, challenges, and 

trends in the integration of urinary machine learning and IoT technologies for diabetes 

control. Furthermore, the study will investigate specific ML algorithms and IoT 

architectures that have demonstrated promising results in diabetes prediction and control. 

This study will contribute valuable insights to inform future research directions and guide 

the implementation of ML-driven solutions in clinical practice, ultimately improving 
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diabetes management and reducing the burden of diabetes-related complications. 

Figure 1: IoT HealthCare Architecture 

 

1.1. IoMT Market Dynamics: Emerging Trends 

 

In 2022, the market for Internet of Medical Things reached a valuation of USD 61.56 

billion, with North America contributing 41.36% of the total share and it is projected to 

reach USD 516.40 billion by 2032 [18], with a CAGR (compound annual growth rate) of 

23.70% from 2023 to 2032 (Figure 2). The Asia-Pacific region is anticipated to witness 

the highest growth rate throughout the forecast period in the global market for IoMT due 

to changes in lifestyle, improving diagnostic facilities and increasing awareness causing 

the rise in number of private players in countries such as India, China, and Thailand. The 

analysis of various segments within the IoMT market reveals interesting insights. In the 

platform segment, which includes device, cloud, and application management, the device 

management segment emerged as the dominant player, capturing approximately 39.32% 

of the market share in 2022. This can be attributed to advancements in implanted, wearable 



4 
 

 
 

sensor, and other stationary devices. In the component segment, which consists of 

hardware, software, and services, the hardware segment took the lead, accounting for 

around 41.25% of the market share. This progress can be credited to the growing 

utilization of IoT-enabled medical equipment. Among the application segments, the real-

time monitoring segment dominated the market, generating a revenue of USD 17.94 

billion in 2022, primarily driven by the growing adoption of cost-effective sensors and 

connected devices. The smart wearable devices segment led the market with a 41.25% 

market share, generating a revenue of USD 25.39 billion [18] in the same year. This 

growth can be attributed to the rising consumer adoption of smart wearable technology 

products. Looking ahead, it is likely that by 2032, the home-use healthcare devices 

segment will dominate the market due to the increasing burden of chronic illnesses and 

the growing geriatric population worldwide. 

 

In terms of the mode of service delivery segment, the on-premises segment accounted for 

a significant market share of 57.25% in 2022, generating a revenue of USD 35.24 billion.  

 

Adoption of 5G technology and investments in advanced 5G networks are anticipated to 

fuel market growth [19]. The rising public and private expenditure on healthcare 

automation and digitalization, aimed at cost reduction and efficiency enhancement, is 

contributing to market expansion. Additionally, the growing use of network function 

virtualization (NFV) and software-defined networking (SDN) within the industry is 

expected to further stimulate market growth during the forecast period [20]. 

 

EHR collaboration plays a key role in facilitating the sharing and interpretation of medical 

data in a user-friendly format, enabling improved healthcare and better decision-making 

[21, 22]. Interoperability enables seamless flow of medical data between healthcare 

providers and other healthcare managing systems, resulting in enhanced efficiency and 

cost savings. Government initiatives to promote interoperability serve as major catalysts 

for improving healthcare interoperability. Encouragingly, notable standard bodies like 



5 
 

 
 

Fast Healthcare Interoperability Resources (FHIR) and Health Level Seven (HL7) are 

making remarkable strides towards achieving interoperability, bringing positive 

developments in the field [23]. After achieving interoperability, systems will be able to 

effectively handle data from various sources, allowing organizations to use AI and 

conduct data analytics to enhance outcomes for end users. [21] With a seamless flow of 

accurate data between entities, organizations can then implement advancements like ML 

and predictive analytics to extract increased value from the data. We are approaching a 

time when the possibilities for innovation to improve health outcomes are becoming more 

tangible. Committing to interoperability beyond mere compliance will turn this into an 

exhilarating and transformative moment in the field of healthcare.  
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Figure 2: IoMT predicted market growth and segment analysis with market share of dominant sectors in 

Year 2022 
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1.2. Key Market Players: IoMT 

The IoMT holds the potential to reduce healthcare expenses for both governments and 

patients [24]. Companies in MedTech sector are focused to transform the delivery of 

patient care via the IoMT. The pandemic has witnessed a significant rise in investments 

in this field, leading to projections of substantial growth in the global IoMT [25] market 

fueled by these increased investments. In the highly fragmented market, there are multiple 

prominent players, including Johnson & Johnson (J&J), Medtronic, Siemens Healthline, 

and Koninklijke Philips N.V., who hold significant market presence. Apple is making 

healthcare more accessible to everyone by offering convenient access to precise sensors 

and software [26]. This enables consumers to enhance their understanding of healthcare 

and gain insights into how their daily choices affect their well-being. These companies 

make substantial investments in research and development, technological advancements, 

patents, as well as collaborations, acquisitions, and mergers to enhance their revenue and 

fortify their market position. An example of this is the collaboration between Philips and 

Cognizant in July 2021, where they joined forces to create comprehensive digital solutions 

that expedite clinical trials and enhance patient care [27]. More recently J&J creates new 

IoT architecture with TCS as their digital transformation partner [28]. MedTech sector is 

now utilizing technologies such as analytics, AI, robotics, and many immersive 

technologies, among others. [29] In this many startups have joined the league and are 

involved in manufacturing wearables such as biopatches, ECG monitors, psychological 

monitoring devices, smart glasses etc. [30] For example, Aidmed a Polish startup 

developed a chest-worn wearable portable medical device Aidmed One [31]. This device 

using sensors collects various bio signals such as accelerometer (measurement of patient 

movement and position), bioimpedance (measuring changes in chest volume), Pressure 

sensor for measuring airflow through the mouth/nose, thermometer for skin surface 

temperature, microphone for volume level such as coughing, ECG (electrocardiogram), 

and SpO2 sensor for pulse rate and blood oxygen saturation. The data is sent to a cell 

phone and subsequently to a server, which is accessible by a doctor or healthcare provider. 

By analyzing the collected data, the doctor can evaluate the patient’s condition and track 
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their progress in treatment. Further, Gate Science a US based startup developed a wearable 

device called RELAY, designed to manage pain [32]. This innovative product combines 

pharmacological blockade and neuromodulation capabilities into a single multimodal 

device. Additionally, Gate Science offers a companion app that empowers patients to 

control these signaling mechanisms. By offering an alternative to post-surgery pain 

relieving narcotics, the startup’s solution presents doctors and patients with a new 

approach to pain management. Orbicor Technologies, a startup based in Costa Rica, 

develops UnnoMed, a platform for cardiovascular management. [33] This platform 

utilizes IoMT medical devices to generate unique clinical data. The data provided by 

UnnoMed complements existing information available to cardiovascular patients and 

facilitates continuous monitoring and optimization of their treatment. By enabling 

healthcare providers to sense the early stages and advancement of cardiovascular diseases 

(CVD), the platform aids in proactive healthcare management. EloCare, a startup based 

in Singapore, specializes in the development of a connected device for menopause care 

[34]. Their wearable device, Elo, provides continuous monitoring of symptoms and 

collects essential health data. Clinicians with this data create personalized health profiles, 

enabling more effective delivery of lifestyle adjustments or medical interventions for 

women experiencing menopause.  

Many companies continue to prioritize the development of blood pressure and cardiac 

devices due to their significant importance. This strategic focus is understandable 

considering the existing availability of technology and sensors, which facilitates 

innovation and allows companies to make incremental improvements without starting 

from scratch. Furthermore, the presence of capable manufacturers simplifies the process 

of transforming an idea into a commercially viable product. Apple plans to enhance the 

cardiovascular measuring capabilities of the Apple Watch by implementing further 

improvements. The implementation of these updates is a complex process one crucial 

prerequisite is obtaining FDA approval, which is necessary for any significant 

improvement. The FDA approval can be time-consuming, often spanning several years 

before the desired enhancements can be incorporated. Established tech giants pose a 
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significant challenge for traditional medical device companies in the wearable medical 

device market. While this might initially seem counterintuitive, it is clear given the 

prominence of companies like J&J MedTech and Medtronic. To safeguard and 

commercialize their ideas, companies need to obtain clearance from regulatory bodies and 

secure patents. However, the global medical industry witnessed a 20% decrease in IoT 

related patent applications in the first quarter of 2023 compared to the previous quarter as 

per GlobalData’s Patent Analytics. They also revealed a 24% decline in the total number 

of grants for IoT related inventions during the same period. Specifically, the medical 

industry submitted 764 patent applications related to the IoT in Q1 2023, whereas the 

number was 957 in the preceding quarter. As competition intensifies and research and 

development investments soar, many companies are turning to collaboration through 

mergers and acquisitions (M&A). These strategic alliances allow for cost reduction while 

maximizing the overall impact and efficiency. Softheon, Inc., a US based company 

recently completed the acquisition of NextHealth Technologies, exemplifying the pursuit 

of growth and synergy in the industry. NextHealth is an AI based healthcare software-as-

a-service (SaaS) analytics service. Its platform is built specifically to help healthcare 

professional by enabling users to monitor their daily readings, including metrics like heart 

rate and blood pressure. Through the merger Softheon go-to-strategy receives a substantial 

boost. This move will enhance the engineering process, leading to the development of 

more competitive and robust products. The shared objective of both companies is to 

provide more less expensive healthcare solutions to vulnerable class while improving the 

quality of care.  

 

1.3. Booming Chip Industry for IoMT 

With advancing knowledge companies are now focusing on designing chips that are 

secure, flexible, and cost-effective. More recently Silicon lab has decided to leave from 

any business other than IoT devices and wireless connectivity signifying the 

commencement of their transformation into a specialized IoT chip designer, focusing 

solely on this field. By 2022, they aimed to transform into a complete IoT chip designer, 

and they have achieved significant growth, doubling its revenue in just two years. In 
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addition, silicon Labs has emerged as a pioneering force in harmonizing diverse standards 

utilized in IoT devices. They have introduced specialized silicon that supports the Matter 

standard and previous standards like Zigbee and Zwave. Companies seeking to develop 

products that seamlessly connect a wide range of smart home devices, are likely to 

consider Silicon Labs as their provider. They are facing competition from established and 

prominent companies such as MediaTek, Infineon, Broadcom, STMicroelectronics, and 

Qualcomm. For example, Taiwan-based MediaTek which specializes in chip design for 

smart speakers of Amazon Alexa achieved approximately $1.9 billion USD revenue from 

IoT connected devices in the Q2 2022. In contrast, Silicon Labs accomplished outstanding 

outcomes by achieving record revenue of $263 million in the second quarter (Q2) of that 

same year. Despite the competition it has proved its ability to thrive and achieve 

significant financial success. Although the IoT chip industry is experiencing growth, 

numerous end-user devices remain susceptible to hacking. They address this concern by 

implementing hardware-level security measures during the final stage of chip production. 

On 14 March 2023, Silicon Labs introduced system-on-chip family (xG27) and the BB50 

microcontroller unit (MCU) which has sparked the development of various innovative 

products. They are designed for the smallest IoT devices. One such example is a wearable 

in-mouth sensor that harnesses the capabilities of silicon Lab’s system-on-chip (SoC), 

enabling data capture and transmission via Bluetooth and Zigbee. Companies have begun 

to build small, portable medical devices, asset trackers, home sensors, and wearable 

electronics that utilizes Silicon Lab recently introduced family of Internet of Things (IoT) 

wireless device SoC products. The xG27 family includes BG27 and MG27, BG27 comes 

with Bluetooth functionality and MG27 offers Bluetooth, Zigbee and proprietary wireless 

connectivity. They aim to empower companies in expanding their product portfolio by 

offering enhanced flexibility. Such as selling one version of device offering Zigbee or 

Bluetooth, and an unconnected version that could be more cost-effective, all utilizing the 

same SoC and microcontroller unit (MCU). An SoC is a unified chip that incorporates 

both an MCU and other components. The MCU delivers the necessary processing power 

to capture and manage data on the chip, allowing users to select the desired wireless 
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functionality if required. Consider an advanced toothbrush designed to monitor an 

individual’s brushing time. In one version, the toothbrush could utilize the MCU to display 

the brushing results directly to the user. Alternatively, with the incorporation of the BG27 

chip, the toothbrush could establish a connectivity with the user smartphone via Bluetooth 

enabling the seamless transfer of data regarding the toothbrush usage to the Cloud, 

facilitating more comprehensive management and analysis. SoC products are 

meticulously designed to operate on low power, allowing them to maintain battery life 

even when left idle on a shelf for extended periods. Moreover, these chips come in a 

compact package measuring 2.3mm × 2.6mm (0.09-0.1 inch), making them ideal for 

integration into compact medical patches, continuous glucose monitors, wearable 

electrocardiograms, and asset tags across diverse settings. The BG27 &MG27 SoCs are 

centered around the ARM cortex M33 processor and offer a range of shared features 

(figure 3) carefully crafted to make them the perfect choice for small form-factor devices. 

The BG27 incorporates an integrated DCDC Boost, enabling its operation at voltages as 

low as 0.8 volts. This feature allows the utilization of single-cell alkaline, silver oxide, 

and 1.55v button cell batteries commonly found in healthcare utilities like wearable ECG, 

glucose monitors, and battery-operated patches. Earlier this year Lura Health, a medical 

device manufacture has chosen the new SoC as the foundation for their upcoming smart 

wearable. Unlike typical wrist-worn or external skin wearables this innovative Laura 

Health monitor is designed to be placed inside a person’s mouth. To be more precise, the 

device is small enough to be securely attached to a tooth using adhesive. The sensor is 

worn continuously for months transmitting data to a smartphone through Bluetooth 

connectivity. The device will enable healthcare professionals and dentist to gather 

significant data from saliva that can be utilized for assessing health conditions such as pH 

levels that can contribute to tooth decay, as well as monitoring chronic kidney disease and 

glucose levels.     

Looking into the IoT market today power consumption is becoming more vital since there 

is often no way for users to change batteries on a regular basis. To ensure robust security, 

both SoCs incorporate Silicon Lab’s secure vault, which provides secure boot and 
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debugging functionalities. This helps prevent glitch attacks, safeguard against tampering, 

and protect against remote cyber-threats. As wearable and other IoT devices continue to 

enhance their functionality, including the collection and transmission of larger amounts 

of sensor data, the challenges of size and energy efficiency become more pronounced for 

both the technology itself and its users.  

 

Figure 3: Common features of BG27 and MG27 designed to make them the ideal SoC for small form-

factor devices. 

New advancements in technology have brought about impressive accomplishments not 

just in the identification and diagnosis of diseases, but also in predicting their occurrence 

[35]. Healthcare prediction systems strive to ascertain the likelihood of a future disease or 

the early identification of an existing one. These predictions draw upon various sources, 

including electronic medical records, data from wearable healthcare devices, and 

healthcare reports. Bracelets, smartwatches, and other devices equipped with 

accelerometers and heart rate trackers are extensively employed as wearable biosensors in 

a variety of settings, including hospitals, sports, and fitness applications [36-39]. Wearable 
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devices equipped with medical sensors to gather measurements. These measurements, 

combined with existing medical data, are employed to provide medical recommendations, 

and monitor the individual’s health status. During real-time streaming, the health status 

data being streamed undergoes abnormality filtration to eliminate any irregularities. 

Following that, the extracted health data is input into a machine learning model to forecast 

the individual's health status [40]. 
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CHAPTER 2 

DATA FUSION 

2. Fusion of Multimodal Data in Healthcare: Advancing Precision medicine with AI 

and ML 

The field of healthcare data is inherently multimodal [41], encompassing various types of 

information such as medical images, multi-omics data, and EHRs. By integrating a wide 

range of different data, we can deepen our understanding of human health and deliver 

personalized treatments. Researchers are actively exploring ways to integrate multimodal 

data (so-called data fusion) to obtain a better view [42]. Advances in technology, 

especially machine learning, allow us to integrate these disparate data and provide useful 

capabilities [42]. Integrating disparate data is important in many medical applications by 

leveraging the power of different models to provide better diagnosis, treatment, prediction, 

and decision-making. This approach brings us closer to the goal of precision medicine, 

where treatment can be personalized to the individual [42]. 

Data fusion refers to the combination of multiple data variables to provide different views 

of shared events to solve inference problems. Fusion technology focuses on using the 

coordination and integration of various adaptations to facilitate effective decision-making. 

For example, the fusion of medical data often plays an important role in the interpretation 

of medical images. Significant advances in artificial intelligence (AI) and machine 

learning (ML) models in recent years have made it possible to effectively integrate large 

amounts of data into small, large numbers of statistical and nonvariational models [43]. 

Multimodal machine learning is specific research that focuses on the combination of 

different information modalities [43]. There is clinical interest in combining multimodal 

data to automate clinical outcome prediction and diagnosis, as exemplified by research on 

Alzheimer's disease [44, 45]. 
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Researchers have found that combining imaging data, specific lab test results, and 

demographic information as inputs to ML models yields enhanced performance compared 

to using single-source models [44, 45]. In a similar vein, the integration of pathological 

images with patient demographic data has shown improved performance in breast cancer 

diagnosis compared to models utilizing a single modality. These advantages have also 

been observed in various medical imaging applications such as predicting diabetic 

retinopathy, detecting COVID-19, and diagnosing glaucoma. Several studies have 

explored the utilization of artificial intelligence (AI) for the fusion of multimodal medical 

data [41-44]. 

However, previous reviews differ from our study in terms of their focus and coverage. 

Some studies have concentrated on fusing different medical imaging modalities without 

considering electronic health records (EHR) alongside imaging modalities. Others have 

specifically examined the fusion of omics data with other modalities using deep learning 

(DL) models [45]. Additionally, there has been research on the fusion of various Internet 

of Medical Things (IoMT) data for smart healthcare applications [46]. Liu et al. [47] 

investigated the integration of multimodal EHR data, considering both unstructured and 

structured data free texts within the electronic records, using a combination of 

conventional machine learning (ML) and deep learning (DL). Huang et al. [48] explored 

fusion strategies that concentrate on combining structured electronic health records (EHR) 

data with medical imaging. Their study specifically emphasized fusion techniques and 

methods for extracting features using deep learning (DL) models. Machine learning 

models can categorize fusion approaches based on when the features are combined, 

leading to different strategies such as late fusion, early fusion, and joint fusion [48] (Figure 

4). 

Multimodal machine learning (ML) has emerged as a prominent research area in the 

medical field, attracting significant attention. Our focus was to survey the existing 

literature in multimodal medical ML, particularly the fusion of EHR with medical imaging 

data. However, many studies have employed relatively simple fusion strategies, which, 
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while effective, may not fully leverage the wealth of information embedded within these 

modalities. Given the rapid developments in the field and the continuous advancement of 

new AI models for multimodal data, it is important to acknowledge the possibility of 

studies existing beyond the scope of the reviewed fusion strategies or employing a 

combination of these strategies. We maintain optimism that the advancements in this field 

will foster more inclusive investigations of multimodal medical data, offering valuable 

assistance in the clinical decision-making process.  

Figure 4: Fusion approaches can be classified as early, late, or joint fusion, based on when the features are 

combined within the machine learning model. These categorizations depend on the specific stage of fusion 

in the ML model. 
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CHAPTER 3 

METHODS 

 

The study was carried out in accordance with the reporting guidelines of the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Liberati et al., 

2009) [49, 50]. PRISMA provides a standardized and reproducible approach for literature 

identification, article selection, appraisal, and analysis. A pre-defined protocol was 

established to document the analysis methodology and criteria for inclusion. 

3.1.Study Design 

This section outlines the research design and methodology utilized in this study. It covers 

the eligibility criteria, information sources, research inquiries, study selection procedures, 

data collection methods, and the article selection process for publication. 

3.2.Research Questions: 

General Questions (GQ): 

1. What advancements and trends have emerged in diabetes management with the 

integration of machine learning and IoT technologies over the past five years? 

2. What are the key challenges and gaps identified in the literature regarding the practical 

implementation of machine learning and IoT solutions in diabetes management during 

this period? 

Specific Questions (SQ): 

These questions aim to delve deeper into the ways in which specific health parameters and 

physiological data are monitored and analyzed using machine learning and IoT devices in 

the context of diabetes management. They focus on understanding: what are the outcomes 

and effectiveness observed from the application of machine learning and IoT techniques 

in the management and control of diabetes, particularly in predicting blood glucose levels 

and optimizing glycemic control? Which machine learning algorithms and IoT 

architectures are predominantly employed in the development and deployment of 
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solutions for diabetes management? 

The answers to these research questions will provide comprehensive insights into the 

current state of machine learning and IoT applications in diabetes management. They will 

help evaluate the impact, challenges, and opportunities associated with these technologies 

in improving diabetes care and patient outcomes. 

3.3.Search Strategy: 

To define the search string, we conducted searches in scientific databases and cross-

referenced familiar terms, including synonyms, acronyms, and relevant word 

combinations. We refined our search string using the PICOS approach, which is 

recommended for structuring the elements outlined by PRISMA, such as defining 

objectives, research questions, and eligibility criteria. Each component of PICOS 

represents a specific element: Participants (P), Interventions (I), Comparisons (C), 

Outcomes (O), and Study Design (S). Participants: Adult individuals diagnosed with 

diabetes mellitus, including those with type 1 diabetes, type 2 diabetes, or gestational 

diabetes. 

 Interventions: Utilization of machine learning algorithms and IoT technologies, 

including wearable devices and smart sensors, for monitoring, management, and 

prediction of blood glucose levels in diabetic patients. 

 Comparisons: Comparison of the effectiveness and outcomes achieved through the 

integration of machine learning and IoT technologies with traditional methods of 

diabetes management. 

 Outcomes: Assessment of outcomes related to glycemic control, blood glucose 

prediction accuracy, improvement in patient outcomes (such as quality of life, 

morbidity, and mortality rates), identification of challenges and gaps in the 

implementation of machine learning and IoT solutions in diabetes management. 

 Study Design: Inclusion of research articles, clinical trials, observational studies, and 

feasibility studies that investigate the integration of machine learning and IoT 

technologies in diabetes management. Emphasis on studies reporting outcomes related 
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to the application of machine learning algorithms and IoT architectures in predicting 

blood glucose levels, optimizing glycemic control, and addressing challenges in 

diabetes management. 

 Based on the search strategy, we demonstrated the search string defined to be used in 

querying the databases: 

 

 

 

 

 

3.4.Study Selection: 

For article selection, we retrieved studies published within the last five years (2019–2023) 

from electronic databases using our predefined search string. The databases surveyed 

included Scopus, Springer, IEEE Xplore, PubMed, CINAHL, Embase, Web of Science, 

and Nature. These databases were selected due to their comprehensive coverage of 

relevant articles in the field addressed in this paper. Moreover, they offer access to full-

text journals and conference proceedings from prominent health conferences focusing on 

patient self-care, IoT, diabetes, wearable devices, and related topics. The last search was 

done on January 15th, 2024. 

3.5.Exclusion Criteria: 

 Articles focused on pediatric populations, including children and adolescents (up to 

18 years of age), were excluded.  

 Our meta-analysis specifically focuses on Continuous Glucose Monitoring (CGM) 

technologies used in diabetes management. 

 Articles not reporting primary research studies, such as thesis, opinions, abstracts, 

dissertations, criticisms, books, protocols, posters, reviews, and oral presentations 

were excluded. 

("machine learning" OR "artificial intelligence" OR "data mining" OR "predictive 

modeling") AND ("Internet of Medical Things" OR "IoMT" OR "healthcare IoT" OR 

"wearable devices" OR "smart sensors") AND ("diabetes" OR "diabetes mellitus" OR 

"diabetic patients" OR "blood glucose" OR "glycemic control") AND ("predict blood 

glucose" OR "blood glucose prediction" OR "diabetes management" OR "glycemic 

prediction") 
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 Articles that do not specifically discuss the utilization of IoT techniques, including 

wearable electronic devices, for monitoring, self-care, and management during the 

treatment phase of diabetes patients were excluded. 

 

3.6.Inclusion Criteria: 

 Studies involving adult men and women diagnosed with diabetes mellitus, including 

type 1 diabetes, type 2 diabetes, or gestational diabetes.  

 Studies published within the last 5 years to capture recent advancements and trends in 

the field of diabetes management. 

 Articles written in English to ensure accessibility and comprehensibility for analysis 

and interpretation in the meta-analysis. 

 

3.7.Data Extraction and Management: 

Both reviewers independently conducted data extraction and quality assessment. Any 

disagreements were resolved by an impartial third reviewer. When a study reported 

multiple test results for the same ML model, the most favorable outcome was chosen for 

extraction. Similarly, if a study evaluated multiple ML models, performance metrics for 

each model were extracted individually. In studies focusing on blood glucose level 

prediction, root mean square errors (RMSEs) for different prediction horizons (PHs) were 

extracted. For studies not specifying PHs, performance metrics such as R-squared value 

and Accuracy of ML models were extracted. 
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3.8. Methodological Quality Assessment of Included Studies 

The quality of the included studies was assessed using the Quality Assessment of 

Diagnostic Accuracy Studies (QUADAS-2) tool. This tool evaluates studies across four 

domains: patient selection (5 items), index test (3 items), reference standard (4 items), and 

flow and timing (4 items). All four domains were used to assess the risk of bias, while the 

first three domains were specifically used to evaluate concerns regarding applicability. 

Each domain consists of a set of questions (totaling 7) related to either risk of bias or 

applicability [52]. 

 

3.9. Data Synthesis and Statistical Analysis 

The performance metrics of models used for blood glucose level prediction were evaluated 

independently based on their specified prediction horizons. Studies that did not specify 

prediction horizons were analyzed separately. The primary performance metric used was 

the root mean square error (RMSE) of ML models in predicting BG levels. For each study, 

effect sizes (Cohen’s d) and standard errors were calculated. Study heterogeneity was 

assessed using I² values obtained from multivariate random-effects meta-regression, 

which accounted for within- and between-study correlations. Heterogeneity was 

categorized into quartiles based on these values: 0% to <25% for low heterogeneity, 25% 

to <50% for low-to-moderate heterogeneity, 50% to <75% for moderate-to-high 

heterogeneity, and >75% for high heterogeneity [53, 54]. Additionally, meta-regression 

was employed to explore the sources of heterogeneity. Publication bias was evaluated 

using regression testing for funnel plot asymmetry through Egger's test.  

Furthermore, studies focusing on BG levels were divided into four subgroups based on 

different prediction horizons (15, 30, 45, 60, and 120 minutes). A two-sided P value of 

less than 0.05 was considered statistically significant. All statistical analyses were 

conducted using JASP (Version 0.18.3), and we utilized guidelines from Cochrane 

Review Manager. 
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CHAPTER 4 

RESULTS 

From a total of 1,174 studies identified through a systematic search of predefined 

electronic databases, 1,067 (91%) remained after duplicates were removed. After 

screening titles and abstracts, 734 (68.79%) studies were excluded for irrelevant topics or 

a lack of predefined outcomes. The remaining 333 (31.2%) studies underwent full-text 

evaluation. Of these, 323 (97%) were excluded for various reasons, resulting in 10 (3%) 

studies being included in the final meta-analysis. 

Figure 5: PRISMA Flow diagram of identifying and including studies. 

4.1. Description of Included Studies 
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In total, the 10 studies included 8,776 participants with over 20 different ML models and 

different IoT devices (Table 1). 

Study_ID Sample Size 

(N) 

Outcome 

Measure 

ML model IoT Devices Demographic 

information 

 [55] 40 (DM1) 

 

RMSE 

R-squared 

(R2) 

RF 

SVR 

Abbott Freestyle Libre CGM 

System, Fitbit Charge 5 Smart 

Band 

Age, sex, BMI, duration 

of diabetes, HbA1C (%) 

[56] 40 (DM1) 

 

RMSE, R 

squared (R2) 

RF 

SVM 

BRNN 

Abbott Freestyle Libre CGM 

System, Fitbit Charge 5 Smart 

Band 

Age, sex, BMI, duration 

of diabetes, HbA1C (%) 

[57] 3 different 

datasets: 

 12-DM1  

(OhioT1DM 

data set) 

 25-DM1 

(ABC4D data 

set) 

 12 DM1 

(ARISES data 

set) 

 

RMSE  

MAE 

gRMSE 

E3NN 

TCN [65] 

CRNN [66] 

LSTM [67] 

Bi-LSTM 

[68] 

SVR [69] 

ARIMA [70] 

  

 

  

Medtronic Enlite CGM, 

Dexcom G5 CGM, Dexcom G6 

CGM 

- 

[58] 40 DM1 RMSE RF 

SVM 

BRNN 

Abbott Freestyle Libre CGM 

sensor, Fitbit Charge 5 smart band 

Sex, age, BMI, HbA1C 

%, insulin units per day, 

duration of diabetes  

[59] Six from the 

Ohio T1DM 

dataset and 

one study 

participant 

who is also an 

author of the 

study 

RMSE, MRE Ridge 

Regression  

Dexcom G6 (CGM measurements 

to Apple Health), 

Empatica E4 wristband, Oura ring,  

Apple Watch 

- 

[60] 12 (T1DM) RMSE, 

gRMSE, 

Deep 

Learning 

Clinically validated wearable 

sensor wristband 

Age, gender, insulin 

regimen, HbA1c, glucose 
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MAE, 

MAPE,  

Time Lag 

algorithm 

embedded 

within the 

ARISES 

platform 

level, daily risk range  

[61] Dataset 1 

(768, Female) 

Dataset 2 

(Excluded 

pediatric as 

well) 

Precision, 

Accuracy, 

Specificity, 

Sensitivity, 

F1-Score, 

NPV,  

FNR,  

FPR,  

FDR,  

MCC 

FMATSO-

MDDTCN 

TSO-MDDTCN 

MAO-

MDDTCN 

CSO-MDDTCN 

EOO-MDDTCN 

 

IoT sensors-based diabetic data 

collection 

Insulin level, Body Mass 

Index (BMI), age 

[62] 2217 (T2D) RMSE, 

MAPE 

CGP Model 

(RNN based 

model) 

Mobile-app (January AI), CGM 

(Freestyle Libre, Abbott), HR 

monitor (Apple Watch or Fitbit) 

BMI, Weight, height, age 

[63]  Dataset1 

(Pima 

Indians 

diabetes, 

768)  

 Dataset2 

(Hospital 

Frankfurt 

Germany 

diabetes 

dataset, 

2000) 

 Dataset3 

(merged 

dataset, 

2768) 

 

Confusion 

matrix; 

Accuracy  

 

Adaptive 

random 

forest 

algorithm 

IoT-enabled Blood Pressure 

Monitor, Glucose Monitor, Sleep 

Tracker, Heart Rate Monitor, 

Smart Scale (weight) 

Age,  

BMI,  

Blood pressure, Diabetes 

Pedigree Function, 

Glucose, Insulin, 

Outcome, Pregnancies, 

and Skin Thickness 

[64] 147 

participants  

 74 of 93 

in waist-

worn 

wearables 
arm  

Area Under 

the Receiver 

Operating 

Characteristic 

(ROC) 

LR 

LSR 

RR 

CART 

RF 

Fitbit Zip or Fitbit Charge HR 2 

wearable arm 

age, gender, race/ 

ethnicity, education, 

marital status, and annual 

household income 
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Table 1: Baseline characteristics of predicting BG level-based studies. 

RF, Random Forest; SVR, Support Vector Regression; SVM, Support Vector Machine; BRNN, Bayesian 

Regularized Neural Networks; RMSE, Root Mean Square Error; R2, R squared; gRMSE, glucose specific 

RMSE; MAE, mean absolute error; MAPE, mean absolute percent error; One-Dimensional Convolutional 

Neural Network (1DCNN); Long Short-Term Memory (LSTM); Multi-scale Dilated Deep Temporal 

Convolutional Network (MDDTCN); CGP, Continuous glucose prediction; DirecNet, Diabetes research in 

children Network; LR, Linear Regression; LSR, Lasso regression, RR, Ridge regression; CART, 

Classification and regression trees; GB, Gradient boosting; EML, Ensemble machine learning, E3NN, 

embedded edge evidential neural network; TCN, temporal convolutional network; CRNN, convolutional 

RNN; ARIMA, autoregressive integrated moving average. 

4.2. Quality Assessment of Included Studies 

 

 73 of 93 

in wrist-

worn 

wearables 

arm 

Curve, R2 GB 

EML 
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Figure 6: Assessment of study quality. Graph (A) depicting risk of bias and concerns about applicability, 

and Summary (B) showing risk of bias and applicability concerns. 

 

The evaluation findings using the QUADAS-2 tool indicated that 30% of the studies 

included did not provide detailed reporting of patient selection criteria, resulting in 

substandard patient selection quality. 

4.3.Statistical Analysis 

4.3.1. Machine Learning Models for Predicting Blood Glucose Levels 

In our meta-analysis evaluating the performance of machine learning (ML) models at a 

15-minute prediction horizon, we observed significant heterogeneity across the included 

studies. This analysis incorporated data from 4 studies [55, 56, 58, 60], collectively 

examining 5 distinct ML models. The mean RMSE was 15.02 (SD 1.45) mg/dL. The 

omnibus test of model coefficients yielded a statistically significant result (Q = 15.651, df 

= 1, p < 0.001), indicating that the choice of ML model significantly influenced the 

outcome variable. Similarly, the test of residual heterogeneity revealed substantial residual 

heterogeneity across studies (Q = 191.880, df = 7, p < 0.001), underscoring significant 

variability in effect sizes not explained by the ML models alone. Residual heterogeneity 

estimates further confirmed the extent of variability, with an estimated 𝜏2 (Tau-squared) 

of 4.435 and 𝜏 (Tau) of approximately 2.106 as shown in the Forest Plot (Figure 7). The 

𝐼2 statistic (97.345%) indicated that a large proportion of the total variability in effect sizes 

was due to heterogeneity rather than sampling error, emphasizing considerable differences 

in study outcomes among the included ML models. Additionally, the H2 value (37.668%) 

reflected the ratio of true heterogeneity to total observed variability, highlighting the 

impact of heterogeneity on the meta-analysis results. Furthermore, regression testing for 

funnel plot asymmetry using Egger's test detected significant asymmetry (z = -5.707, p < 

0.001), suggesting the presence of publication bias. This finding underscores the need for 

cautious interpretation of the meta-analytic results and consideration of potential bias in 

the synthesized evidence. 



27 
 

 
 

 
Figure 7: Forest Plot for comparing ML models at a PH = 15 mins 

 

 

For PH = 30 minutes, 3 studies [57, 58, 60] with 11 different ML models. The mean RMSE 

was 21.488 (SD 2.92) mg/dL. The omnibus test of model coefficients revealed a 

statistically significant effect (Q = 6.895, df = 1, p = 0.009), indicating that the choice of 

ML model significantly influenced the outcome variable within the selected studies. 

Similarly, the test of residual heterogeneity showed substantial residual heterogeneity 

across studies (Q = 306.266, df = 71, p < 0.001), highlighting significant variability in 

effect sizes not explained by the ML models alone. Residual heterogeneity estimates 

further quantified the variability, with an estimated 𝜏2 of 0.384 and τ of approximately 

0.620 as shown in the Forest Plot. The 𝐼2 statistic (75.595%) indicated a moderate to high 

level of heterogeneity among the included studies, suggesting considerable differences in 

effect sizes across ML models. Additionally, the H2 value (4.098%) reflected the ratio of 

true heterogeneity to total observed variability, emphasizing the impact of heterogeneity 

on the meta-analysis results. Furthermore, regression testing for funnel plot asymmetry 

using Egger's test did not detect significant asymmetry (z = 0.427, p = 0.669), suggesting 

no substantial publication bias among the included studies. 
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For PH = 45 minutes, 5 studies [55, 56, 58, 59, 60] with 7 different ML models. The mean 

RMSE was 30.094 (SD 3.245) mg/dL. The omnibus test of model coefficients yielded a 

statistically significant result (Q = 5.580, df = 1, p = 0.018), indicating that the choice of 

ML model significantly influenced the outcome variable within the selected studies. 

Similarly, the test of residual heterogeneity revealed substantial residual heterogeneity 

across studies (Q = 153.332, df = 9, p < 0.001), highlighting significant variability in effect 

sizes not explained solely by the ML models. Residual heterogeneity estimates further 

quantified the extent of variability, with an estimated 𝜏2 of 2.505 and 𝜏 of approximately 

1.583 as shown in the Forest Plot (Figure 8). The 𝐼2 statistic (95.709%) indicated a high 

level of heterogeneity among the included studies, suggesting considerable differences in 

effect sizes across ML models. Additionally, the H2 value (23.304%) reflected the ratio of 

true heterogeneity to total observed variability, emphasizing the impact of heterogeneity 

on the meta-analysis results. Furthermore, regression testing for funnel plot asymmetry 

using Egger's test did not detect significant asymmetry (z = 1.700, p = 0.089), suggesting 

no substantial publication bias among the included studies at this prediction horizon. 

These findings highlight the challenges associated with assessing ML model performance 

at the 45-minute prediction horizon, characterized by notable residual heterogeneity and 

variability across studies. Future research efforts should aim to address heterogeneity and 

consider the implications of different ML model choices within this timeframe, enhancing 

the reliability and applicability of ML-based predictive modeling in relevant healthcare 

contexts. 
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Figure 8: Forest Plot for comparing ML models at a PH = 45 mins 

 

For PH = 60 minutes, 2 studies [57, 60] with 9 different ML models. The mean RMSE 

was 35.89 (SD 6.4) mg/dL. The omnibus test of model coefficients did not yield a 

statistically significant result (Q = 3.182, df = 1, p = 0.074), suggesting that the choice of 

ML model may have a relatively minor influence on the outcome variable within the 

selected studies. Similarly, the test of residual heterogeneity showed moderate residual 

heterogeneity across studies (Q = 83.888, df = 68, p = 0.093), indicating some variability 

in effect sizes not entirely explained by the ML models. Residual heterogeneity estimates 

quantified the extent of variability, with an estimated 𝜏2 of 0.044 and 𝜏 of approximately 

0.210 as shown in the Forest Plot. The 𝐼2 statistic (25.830%) indicated a relatively low 

level of heterogeneity among the included studies, suggesting moderate consistency in 

effect sizes across ML models. Additionally, the H2 value (1.348%) reflected a low ratio 

of true heterogeneity to total observed variability, indicating less impact of heterogeneity 

on the meta-analysis results compared to other prediction horizons. Regression testing for 

funnel plot asymmetry using Egger's test did not detect significant asymmetry (z = -0.625, 

p = 0.532), suggesting no substantial publication bias among the included studies at this 

prediction horizon (Figure 9). These findings suggest that ML model performance at the 
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60-minute prediction horizon may be relatively consistent and less influenced by model 

choice compared to shorter prediction horizons. 

 
Figure 9: Funnel Plot for studies comparing ML models at a PH = 60 mins 

 

For PH = 2 hours, 1 study [62] with 3 different ML models. The omnibus test of model 

coefficients revealed a statistically significant result (Q = 140.661, df = 1, p < .001), 

indicating variability in model effects beyond chance. The test of residual heterogeneity 

also showed significant heterogeneity (Q = 61.527, df = 2, p < .001), suggesting 

substantial inconsistency among study outcomes. The estimate of residual heterogeneity 

(τ² = 0.008, τ = 0.088) indicated a high degree of variability between studies as shown in 

the Forest Plot (Figure 10), with an I² value of 96.501% and H² of 28.582%, classifying 

the heterogeneity as high. The regression test for funnel plot asymmetry (Egger's test) 

further confirmed asymmetry (z = -7.839, p < .001), suggesting potential publication bias 

or other sources of bias affecting the meta-analysis results. 
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Figure 10: Forest Plot for comparing ML models at a PH = 2 hours 

 

 

Studies without a specific predictive horizon were included in the analysis to assess the 

performance of machine learning models in diabetes management irrespective of time-

based forecasting; this includes 3 studies [61, 64, 63] with 13 different ML models. The 

omnibus test of model coefficients yielded a statistically significant result (Q = 7.731, df 

= 1, p = 0.005), suggesting that the choice of ML model significantly influenced the 

outcome variable within the selected studies. Similarly, the test of residual heterogeneity 

revealed substantial residual heterogeneity across studies (Q = 898.036, df = 54, p < 

0.001), indicating significant variability in effect sizes not entirely explained by the ML 

models. Residual heterogeneity estimates quantified the extent of variability, with an 

estimated 𝜏2 of 0.102 and 𝜏 of approximately 0.320 as shown in the Forest Plot. The 𝐼2 

statistic (93.118%) indicated a high level of heterogeneity among the included studies, 

suggesting considerable differences in effect sizes across ML models. Additionally, the 

H2 value (14.530%) reflected a moderate ratio of true heterogeneity to total observed 

variability, emphasizing the impact of heterogeneity on the meta-analysis results. 

Furthermore, regression testing for funnel plot asymmetry using Egger's test did not detect 

significant asymmetry (z = -1.326, p = 0.185), suggesting no substantial publication bias 

among the included studies without a specific predictive horizon. These findings 

underscore the complexity and variability in ML model performance across studies 

without a defined prediction horizon, highlighting the need for further investigation into 

specific model characteristics and contextual factors influencing performance.  
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5. DISCUSSION 

5.1. Key Findings  

This study evaluates the effectiveness of various ML models in improving blood glucose 

management among patients with diabetes mellitus (DM), from a selection of 10 eligible 

studies. Through a thorough and exhaustive literature searches, we obtained 

comprehensive evidence to assess the collective predictive capacity of ML models for BG 

level prediction in diabetes management. 

 

5.2. Included Studies Comparison 

Based on these findings, the Random Forest (RF) model consistently demonstrates 

superior performance compared to other models (SVR, SVM, ARISES) across different 

studies for a prediction horizon of 15 minutes. Therefore, RF may be considered the best-

performing model for predicting BG levels at this specific prediction horizon based on the 

available data. In our research focusing on a 15-minute prediction horizon for blood 

glucose management in diabetes, we analyzed multiple studies with Cohen's d values 

ranging from -2 to -2.7119. These results indicate RF's superior ability to predict BG levels 

within a short time frame. Overall, our meta-analysis highlights Random Forest as the 

most effective ML model for BG prediction at a 15-minute horizon in diabetes 

management. 

In the investigation of a 30-minute prediction horizon the results from Rodríguez-

Rodríguez et al. consistently demonstrated that Random Forest exhibited superior 

performance compared to Support Vector Machine and Bidirectional Recurrent Neural 

Network models, with Cohen's d values ranging from -2.6358 to -2.7226. This indicates 

RF's effectiveness in predicting BG levels within a 30-minute window. Additionally, Zhu 

et al. [57] investigated multiple models using the OhioT1DM dataset, where diverse 

models such as TCN, CRNN, LSTM, Bi-LSTM, SVR, and ARIMA were compared, 

showcasing varying performance metrics. Our meta-analysis underscores Random Forest 

as the most effective ML model for BG prediction at a 30-minute horizon, aligned with 

findings from Rodríguez-Rodríguez et al.'s studies [55, 56, 58]. In examining the 45-
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minute prediction horizon, the meta-analysis revealed several notable findings. 

Rodríguez-Rodríguez et al. [55, 56, 58] demonstrated that Random Forest outperformed 

Support Vector Regression (SVR) with a Cohen's d of -2.0, indicating substantial 

predictive capability. Similarly, it was reported RF's superiority over SVM and 

Bidirectional Recurrent Neural Network (BRNN) models, suggesting RF's efficacy in BG 

prediction within a 45-minute window. Notably, Zhu et al. [60] showcased the 

effectiveness of the ARISES model with RF, achieving a Cohen's d of 0.6691, suggesting 

positive performance in BG prediction at this timeframe. Additionally, Zhu et al. 

demonstrated contrasting results with SVM and BRNN models, underscoring the 

variability in model performance across different studies and datasets. These findings 

highlight the nuanced effectiveness of ML models in BG management within a 45-minute 

prediction horizon. Based on the provided data for the 45-minute prediction horizon in 

blood glucose management, the model with the highest Cohen's d value, indicating the 

best performance, is the ARISES model with Random Forest (RF) from Zhu et al. The 

Cohen's d value for this model is 0.6691, suggesting that it exhibited the most favorable 

predictive capability compared to the other models evaluated within this timeframe.  

For PH = 60 min Across multiple comparisons, E3NN (OhioT1DM) consistently 

demonstrated superior performance compared to other models (TCN, CRNN, LSTM, Bi-

LSTM, SVR, ARIMA). Negative Cohen's d values (ranging from -0.4562 to -0.8103) 

indicated that E3NN (OhioT1DM) outperformed these models in various contexts. The 

effect sizes, though moderate in magnitude, were consistently in favor of E3NN 

(OhioT1DM). The 95% confidence intervals around Cohen's d estimates provided 

additional context, indicating the precision and reliability of the effect size measurements. 

While some intervals were relatively wide due to the small sample size (N = 12), they 

generally supported the conclusion of E3NN (OhioT1DM) superiority. 

In our comparative analysis of predictive models with no specific time frame, the 

Ensemble machine learning consistently emerged as the most effective model. This model 

demonstrated a substantial advantage over Linear Regression (LR), Random Forest (RF), 

and Gradient Boosting (GB), with Cohen's d effect sizes ranging from -0.665 to -0.7335, 
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favoring EML. These results were statistically significant, as evidenced by the non-

overlapping confidence intervals. The superior performance of EML underscores its 

potential as a robust predictive tool and highlights the importance of model selection in 

optimizing predictive accuracy. 

For Zahedani et al. [62] study, among evaluated models (CGP, XGBoost, RF), CGP 

outperformed with the lowest RMSE (13.4), highest correlation (0.71), and lowest percent 

error (10.3%). These results highlight CGP's suitability for accurate predictions in similar 

datasets, underscoring the impact of advanced machine learning techniques on predictive 

accuracy. 

5.3.Strengths and Limitations 

The study is subject to several limitations. Despite utilizing a comprehensive search 

strategy, some relevant studies may have been missed. To improve literature retrieval, 

major medical databases like PubMed, CINAHL, and Embase were included, and baseline 

models from pertinent studies were screened to minimize omissions. Additionally, 

significant heterogeneity was observed across all subgroups due to various factors, 

including different types of diabetes mellitus, machine learning models, data sources, 

reference indices, and the timing and settings of data collection. To address this, meta-

regression analyses were conducted within subgroups to explore potential sources of 

heterogeneity. Moreover, some studies lacked the required outcome measures or had 

inconsistent ones, necessitating the use of estimation methods for calculating indicators, 

which may have introduced some estimation error. However, this error was considered 

acceptable due to the use of appropriate estimation methods, enriching the study's 

findings. Nonetheless, future studies should report all relevant outcome measures for 

comprehensive evaluation. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE DIRECTIONS 

 

The Internet of Things (IoT) plays a crucial role in remotely monitoring patients, proving 

to be a significant advantage. Its capabilities become particularly valuable during 

emergency situations, such as a pandemic, where it can aid in providing timely assistance. 

Several challenges arise in the context of remote patient monitoring in IoT: 

 The transmission of data to the monitoring center introduces the risk of noise 

contamination, which can compromise the data quality.  

 Monitoring generally requires the presence of experts, making it a supervised process 

that leads to additional costs. 

 Live monitoring demands numerous sensors, which increases energy consumption and 

power leakage during data processing, posing significant challenges. 

 Managing multiple users within the IoT ecosystem adds to the overall complexity and 

management requirements. 

 Patient privacy is ultimately at risk as their data is stored in cloud environments, 

making the protection of patient privacy a critical concern. 

The healthcare sector faces numerous challenges, including the diversity of devices, data 

security risks from breaches, flexible usage, compatibility issues, resource availability, 

real-time data processing, accurate correlation between measured attributes and disease 

diagnosis, thorough analysis of personnel vulnerability reports, rapid data growth, 

maintenance of patient vital records, digital watermarking of patient images, high 

infrastructure costs, and the lack of standardized protocols, among other obstacles. 

Recent advancements in medical devices have introduced numerous benefits but have also 

heightened security and privacy concerns. As healthcare systems gather, store, and 

analyze sensitive medical data, there is increasing worry that vulnerabilities in IoMT tools 
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could be exploited. Cybercriminals may use these weaknesses to gain unauthorized access 

to personal and medical information, jeopardizing hospital security. The interconnected 

nature of these devices makes them susceptible to attacks, which can result in serious 

consequences, including physical harm and loss of life. The use of IoT devices introduces 

common security threats and vulnerabilities, often due to insecure connections via 

Application Programming Interfaces (APIs). Communication between IoT devices 

frequently lacks strong security measures. Given that health data includes personally 

identifiable information, adhering to industry-standard regulations is essential to address 

data security concerns. Ensuring the integrity and confidentiality of data, as well as 

mitigating cybersecurity risks in IoT solutions, is critical for success. Incorporating digital 

security measures into the design of IoT devices from the beginning is vital to protect 

against data security risks. The complexity of modern IoT devices and the convergence of 

various technologies often lead to the neglect of security measures during device 

interconnection and data exchange. There is currently no universal solution to these 

security challenges, underscoring the importance of implementing risk mitigation 

protocols before widespread adoption. Besides research and development, medical device 

manufacturers have critical responsibilities, including designing user-friendly interfaces, 

performing rigorous verification and validation processes, and offering comprehensive 

life-cycle services. Production services face challenges such as achieving faster  time-to-

market, reducing costs, complying with medical regulations, and providing end-to-end 

product support. Security concerns also hold significant importance and should be 

addressed during the design phase to realize the anticipated benefits in the market. 

The healthcare industry is currently experiencing a notable shift towards digitalization, 

necessitating a focus on privacy and security measures through case studies and technical 

tools. Within this context, the IoMT emerges as a key player, harnessing its potential to 

connect diverse devices and propel the advancements of Industry 4.0. While IoMT brings 

numerous benefits, it is vital to approach its implementation carefully to mitigate potential 

challenges that could undermine its positive outcomes. Achieving a delicate equilibrium 

is crucial as we navigate the ongoing technological revolution in the years to come. 
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In the future, improved ML models will enhance BG management for patients with DM, 

reducing adverse BG events and improving quality of life. Future studies should prioritize 

enhancing ML model performance in longer prediction horizons (e.g., 60 minutes) and 

address imbalanced CGM data to improve model accuracy. Integrating factors like meal 

intake and exercise into ML models, optimizing ensemble structures, and validating 

models in clinical settings are crucial steps for advancing BG management to support real-

time feedback and medical intervention. Additionally, leveraging IoT benefits such as 

continuous monitoring and data integration could further enhance the effectiveness of 

these ML models in managing blood glucose levels.  In summary, as the prediction 

horizon (PH) extends, the RMSE for blood glucose level prediction models increases, with 

Random Forest (RF) demonstrating the most robust performance among the ML models 

assessed. Future research should prioritize improving predictive accuracy and 

implementing ML models effectively in clinical settings. Additionally, exploring 

enhanced approaches for integrating data from IoT devices could further optimize glucose 

management strategies. 
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