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Abstract

This thesis is mainly a study of convergence estimates of various approximation opera-

tors. Approximation theory is indeed an old topic in mathematical analysis that remains

an appealing field of study with several applications. The findings presented here are

related to the approximation of specific classes of linear positive operators. The introduc-

tory chapter is a collection of relevant definitions and literature of concepts that are used

throughout this thesis.

• The second chapter is based on Durrmeyer-type modification of Apostol-Genocchi

operators.

• The third chapter is devoted to a modification of the Lupaş-Kantrovich operator that

preserves exponential function e−x.

• The fourth chapter is based on the inverse Pólya-Eggenberger distribution.

• The chapter fifth is dedicated to estimating the difference between Mastroianni and

Gupta operators.

• The chapter sixth is dedicated to Micchelli-type iterative combinations of general-

ized positive linear operators.

• The last chapter summarizes the thesis with a brief conclusion and also discusses

the prospects of this thesis.
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Chapter 1

Introduction

In mathematics, the main focus of the theory of approximation is on identifying the best

ways to approximate functions with simpler ones and quantifying the errors that are in-

troduced thereby. The foundation of approximation theory was laid on a result first given

by Karl Weierstrass [147] in 1885, which states that for every continuous function f on a

closed interval [a, b] and any ε > 0, there exists a polynomial p of degree n on [a, b] such

that

| f (x) − p(x)| < ε, ∀x ∈ [a, b].

In other words, any continuous function on a closed and bounded interval can be uni-

formly approximated on that interval by polynomials to any degree of accuracy.

1.1 Preliminaries

In this section, we recall some definitions and properties regarding approximation opera-

tors discussed here that will be of interest to the whole thesis.

1.1.1 Linear Positive Operators

Definition 1.1.1 Let X and Y be two linear spaces of real functions. Then the mapping

L : X → Y is a linear operator if:

L (α f + βg; x) = αL( f ; x) + βL(g; x),

for all f , g ∈ X and α, β ∈ R. If for all f ∈ X and f ≥ 0, it follows that L( f ; x) ≥ 0, then

L is called a positive operator.

Next, we define the modulus of continuity, mainly used to measure quantitatively the

uniform continuity of functions.

1
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1.1.2 Usual and Higher Order Modulus of Continuity

Definition 1.1.2 Let f ∈ C[a, b] and δ ≥ 0, then

ω ( f ; δ) = sup {| f (x + h) − f (x)| : x, x + h ∈ [a, b], 0 6 h 6 δ} .

Where ω is known as the usual modulus of continuity or simply first order modulus of

continuity which was introduced by H. Lebesgue in 1910.

Some of the error estimates in this thesis are given in terms of the modulus of conti-

nuity of higher order. Therefore we now give the definition of ωr, r ∈ N, as given in 1981

by L. L. Schumaker [135].

Definition 1.1.3 Let f ∈ C[a, b], then for r ∈ N and δ ≥ 0, the modulus of continuity of

order r is defined as:

ωr ( f ; δ) = sup
{∣∣∣∆r

h f (x)
∣∣∣ : x, x + rh ∈ [a, b], 0 6 h 6 δ

}
,

where

∆r
h f (x) =

r∑
i=0

(−1)r−i

 r

i

 f (x + ih) ,

denotes the forward difference with step size h. In particular, for r = 1, ω ( f , δ) is the

usual modulus of continuity.

Proposition 1.1.4 The modulus of continuity of order r verifies the following properties:

1. ωr ( f ; .) is a positive, non decreasing and continuous function on (0,∞);

2. ωr ( f ; 0) = 0;

3. ωr ( f ; .) has sub-additive property;

4. ωr+1 ( f ; .) ≤ 2ωr ( f , .) for all x ≥ 0;

5. ωr ( f ; nx) ≤ nrωr ( f ; x) for all n ∈ N and x > 0;

6. ωr ( f ; kx) ≤ (1 + [k])r ωr ( f ; x) for all k > 0 and x > 0, where [α] denotes the

integer part of α;

For r = 1, these properties are valid for the usual modulus of continuity ω ( f ; .).
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1.1.3 Ditzian-Totik Modulus of Smoothness

We recall the definitions of the Ditzian-Totik first-order modulus of smoothness and

the K-functional [54]. Let ϕ(x) =
√

x(1 − x) and f ∈ C[0, 1], then the first order modulus

of smoothness is defined as:

ωϕ( f ; δ) = sup
0≤h≤δ

{∣∣∣∣∣∣ f
(
x +

hϕ(x)
2

)∣∣∣∣∣∣ −
∣∣∣∣∣∣ f

(
x −

hϕ(x)
2

)∣∣∣∣∣∣ , x ± hϕ(x)
2
∈ [0, 1]

}
. (1.1)

Further, the corresponding Peetre’s K-functional is given by

Kϕ( f ; δ) = inf
g∈Wϕ

{‖ f − g‖ + δ ‖ϕg′‖} , δ > 0, (1.2)

where

Wϕ = {g : ‖ϕg′‖ < ∞, g ∈ AC[0, 1]} ,

and AC[0, 1] denotes the space of all absolutely continuous functions on every interval

[a, b] ⊂ (0, 1) and ‖.‖ is the uniform norm in C[0, 1]. Moreover, from [[54], p. 11], there

exists a constant C > 0 such that:

Kϕ( f ; δ) ≤ Cωϕ( f ; δ). (1.3)

1.1.4 Weighted Spaces and Corresponding Modulus of Continuity

Let Bρ(I) be the space of all functions f defined on the interval I ∈ R for which there

exists a constant M > 0 such that | f (x)| ≤ Mρ(x), for every x ∈ I, where ρ is a positive

continuous function called weight function. In 1974, A.D. Gadjiev [60; 61] introduced

the weighted space Cρ(I), which is the set of all continuous functions f on the interval

I ∈ R and f ∈ Bρ(I). This space is a Banach space, endowed with the norm

|| f ||ρ = sup
x∈I

| f (x)|
ρ(x)

.

For I = [0,∞), the subspace C∗ρ[0,∞) is defined as follows:

C∗ρ[0,∞) := { f ∈ Cρ[0,∞) : lim
x→∞

| f (x)|
ρ(x)

= k < +∞}.

Many authors [15; 82] use the following weighted modulus of continuity Ω ( f , δ) for

f ∈ CB(0,∞):

Ω ( f ; δ) = sup
x∈[0,∞),|h|<δ

| f (x + h) − f (x)|(
1 + h2) (1 + x2) .

Let us denote by C∗[0,∞), the Banach space of all real-valued continuous functions

on [0,∞) with the property that lim
x→∞

f (x) exists and is finite endowed with the uniform

norm. In [35], the following theorem is proved:
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Theorem 1.1.5 If the sequence An : C∗[0,∞) → C∗[0,∞) of positive linear operators

satisfies the conditions

lim
n→∞

An

(
e−kt; x

)
= e−kx, k = 0, 1, 2

uniformly in [0,∞), then

lim
n→∞

An ( f ; x) = f (x) ,

uniformly in [0,∞), for every f ∈ C∗[0,∞).

1.1.5 Modulus of Continuity for Exponential Functions

To find the rate of convergence of operators satisfying the conditions from the above

theorem, we use the following modulus of continuity:

ω∗ ( f ; δ) = sup
{
| f (x) − f (t)| : x, t > 0,

∣∣∣e−x − e−t
∣∣∣ 6 δ}

defined for every δ ≥ 0 and every function f ∈ C∗[0,∞).

Proposition 1.1.6 The modulus of continuity defined for exponential functions has the

following properties:

1. ω∗ ( f ; δ) can be expressed in terms of usual modulus of continuity, by the relation

ω∗ ( f ; δ) = ω ( f ∗; δ) ,

where f ∗ is the continuous function on [0,∞) given by:

f ∗ (x) =

 f (− ln (x)) , x ∈ (0,∞] ,

lim
t→∞

f (t) , x = 0.

2. For every t, x ∈ [0, 1] and M > 0, we have

ω∗ ( f ; δ) ≤
(
1 + eM

)
ω ( f ; δ) ·

3. The defined modulus of continuity ω∗ possess the following property:

| f (t) − f (x)| ≤
1 +

(
e−t − e−x)2

δ2

ω ( f ∗; δ) .

1.1.6 Lipschitz Spaces

Definition 1.1.7 For non-negative real numbers a and b, the Lipschitz space [122] is

defined as:

LipM(β) =

{
f ∈ C[0, 1] : | f (t) − f (x)| ≤ M

|t − x|β

(ax2 + bx + t)β/2
; x, t ∈ (0, 1)

}
,

where β ∈ (0, 1] and M is a positive constant.
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To discuss some direct estimates of operators in this thesis, we used Lipschitz-type maxi-

mal function of order β defined by Lenze [101] as follows:

$β( f ; x) = sup
t,x,t∈[0,1]

| f (t) − f (x)|
|t − x|β

, x ∈ [0, 1], (1.4)

where β ∈ (0, 1].

The definitions we provided above are for functions with a single variable. These

definitions are slightly different for a function with two independent variables.

1.1.7 Total and Partial Modulus of Continuity

To establish the degree of approximation of bivariate operators in the space of con-

tinuous functions on the compact set I2 = [a, b] × [a, b], the total modulus of continuity

for the function f ∈ C(I2) is defined by:

ωtotal( f ; δ1, δ2) = sup{| f (t1, t2) − f (x, y)| : (t1, t2), (x, y) ∈ I2, |t1 − x| ≤ δ1, |t2 − y| ≤ δ2}.

Further, the partial moduli of continuity with respect to the independent variables x

and y is given as:

ω(1)( f ; δ) = sup{| f (x1, y) − f (x2, y)| : y ∈ I, |x1 − x2| ≤ δ},

and

ω(2)( f ; δ) = sup{| f (x, y1) − f (x, y2)| : x ∈ I, |y1 − y2| ≤ δ}.

Both total and partial modulus of continuity for bivariate functions satisfy the properties

of the usual modulus of continuity and can be studied more in [22].

1.2 Historical Background and Literature Review

A simple yet powerful tool for deciding whether a given sequence of linear positive oper-

ators on C[0, 1] or C[0, 2π] is an approximation process or not are the Korovkin theorems.

These theorems are abstract results in approximation which gives conditions for uniform

approximation of continuous functions on a compact metric space. The Korovkin theo-

rem [[21] pp.218] elegantly says that, if (Ln)n≥1 is an arbitrary sequence of linear positive

operators on the space C[a, b], and if

lim
n→∞

Ln (ei; x)→ ei uniformly on [a, b],
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for the test functions ei(x) = xi, i = 0, 1, 2 then

lim
n→∞

Ln ( f ; x)→ f uniformly on [a, b],

for each f ∈ C[a, b].

The above theorem, known as Korovkin’s first theorem, was proposed by P. P. Ko-

rovkin [100] in 1953. Korovkin’s second theorem has a similar statement, but the space

C[0, 1] is replaced by the space C[0, 2π], i.e., the space of all 2π periodic real-valued

functions on R. The test functions ei in this case belong to the set {1, cos(x), sin(x)} for

i = 0, 1, 2 respectively. H. Bohmann [34] in 1952 had proved a result similar to Ko-

rovkin’s first theorem but concerning sequences of linear positive operators on C[0, 1] of

the form

L ( f ; x) =
∑
i∈I

f (ai) φi, f ∈ C[0, 1],

where (ai)i∈Λ is a finite set of numbers in [0, 1] and φi ∈ C[0, 1], i ∈ Λ. Therefore,

Korovkin’s first theorem is also known as Bohman-Korovkin Theorem. An immediate

analogue of Korovkin’s theorem does not hold if the domain of definition of the function

f becomes unbounded and hence requires the function to have some finite limit at infinity.

For continuous and unbounded functions on [0,∞), A. D Gadžiev [60] in 1974 introduced

a weighted space Cρ[0,∞) defined as the set of all continuous functions f on the interval

[0,∞) for which there exists a positive constant M such that | f (x)| ≤ Mρ(x), for every

x ∈ [0,∞). Here ρ is a positive continuous function called the weight function. The space

Cρ[0,∞) is a Banach space equipped with the norm

‖ f ‖ρ = sup
x∈[0,∞)

| f (x)|
ρ (x)

.

The Korovkin theorem by Gadžiev is given as: Let ϕ : [0,∞) → [0,∞) be a continuous,

strictly increasing and unbounded function. Set ρ (x) = 1 + ϕ2 (x). If the sequence of

linear positive operators Ln : Cρ [0,∞)→ Cρ [0,∞) verifies

lim
n→∞

∥∥∥Ln(ϕi; x) − ϕi(x)
∥∥∥
ρ

= 0, i = 0, 1, 2.

Then,

lim
n→∞
‖Ln( f ; x) − f (x)‖ρ = 0,

for every f ∈ Cρ [0,∞) for which lim
n→∞

f (x)
ρ(x) exists and is finite.

With the application of Korovkin theorems to study the uniform convergence of lin-

ear positive operators, advancement in approximation theory began with the development

of new linear positive operators, the first and most important of which are the Bernstein
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polynomials. In 1912, S. N. Bernstein [32] gave an elegant proof of the famous Weier-

strass approximation theorem by defining a sequence of polynomials called Bernstein op-

erators on the closed interval [0, 1] (extended on [a, b] by simple manipulations). These

operators are defined as:

Let f be a bounded function on [0, 1]. The Bernstein operator of degree n with

respect to f is defined as:

Bn ( f ; x) =

n∑
k=0

bn,k (x) f
(

k
n

)
; x ∈ [0, 1] , (1.5)

where

bn,k (x) =

 n

k

 xk(1 − x)n−k; k = 0, 1, 2, · · · n,

and

 n

k

 =
Γ(n+1)

Γ(k+1)Γ(n−k+1) represents the binomial coefficient. It should be noted that

bn,k (x) ∈ Pn, k = 0, 1, 2, · · · , n, where Pn denotes the space of all polynomials of degree

at most n, are the so-called Bernstein polynomials.

Proposition 1.2.1 Some important properties of the Bernstein polynomials are listed as

follows:

1. The Bernstein polynomials of degree n form a basis for Pn ;

2. The Bernstein polynomials satisfy symmetry property bn,k (x) = bn,n−k (1 − x) , k =

0, 1, 2, · · · , n;

3. The Bernstein polynomials are all positive over [0, 1], that is bn,k (x) ≥ 0, ∀x ∈

[0, 1];

4. Another important property is that the Bernstein polynomials form a partition of

unity:
n∑

k=0

bn,k (x) = 1;

5. The recursive formula for the Bernstein polynomials is as follows:

bn,k (x) = (1 − x) bn−1,k (x) + xbn−1,k−1 (x) .

Since the Bernstein operators were only suitable for approximating functions on a com-

pact interval, O. Szász in 1950 [143], and G. Mirakiyan in 1941 presented a generalization
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of these operators for a continuous function f on the interval [0,∞), which later came to

be known as Szász-Mirakiyan operators. These operators are defined as:

S n( f ; x) =

∞∑
k=0

sn,k (x) f
(

k
n

)
, x ∈ [0,∞), (1.6)

where

sn,k (x) = e−nx (nx)k

k!
.

In 1957, V. A. Baskakov [30] introduced another sequence of linear positive opera-

tors on the interval [0,∞) called Baskakov operators which are defined as:

Vn( f ; x) =

∞∑
k=0

vn,k (x) f
(

k
n

)
, x ∈ [0,∞), (1.7)

where

vn,k (x) =

(
n + k − 1

k

)
xk

(1 + x)n+k .

To approximate integrable functions on the compact interval [a, b], Kantorovich [92]

was the first to define the integral variant of Bernstein operators by replacing the weight

function with the average mean of the weight function in the vicinity of the point k
n as:

B̂n ( f ; x) = (n + 1)
n∑

k=0

bn,k (x)

(k+1)/(n+1)∫
k/(n+1)

f (t) dt,

where bn,k (x) is defined in (1.5).

Similarly, Szász-Kantorovich operators on the unbounded interval [0,∞) for given

basis function sn,k (x) in (1.6) are defined as:

Ŝ n ( f ; x) = n
∞∑

k=0

sn,k (x)

(k+1)/n∫
k/n

f (t) dt. (1.8)

For Baskakov operators, the integral variant on the semi-real axis is:

V̂n ( f ; x) = (n − 1)
∞∑

k=0

vn,k (x)

(k+1)/(n−1)∫
k/(n−1)

f (t) dt, (1.9)

where vn,k (x) is defined in similar manner as in (1.7). To estimate functions on

an unbounded interval, Kantorovich forms of various approximation operators have

been defined from time to time. For further reference, one can visit the articles

[6; 14; 17; 45; 66; 118].
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In 1967, J. L. Durrmeyer [55] gave a more generalised integral modification of Bern-

stein operators by replacing the values of f (k/n) by an integral over the weight function

on the interval [0, 1]. These so-called Bernstein-Durrmeyer operators were first studied

by Derrienic [48] and are defined as:

B̃ ( f ; x) = (n + 1)
n∑

k=0

bn,k (x)

1∫
0

bn,k (t) f (t) dt. (1.10)

In the year 1985, Mazhar and Totik [115] introduced the Szász-Durrmeyer operators

as follows:

S̃ n ( f ; x) = n
∞∑

k=0

sn,k (x)

∞∫
0

sn,k (t) f (t) dt. (1.11)

In the same year Sahai and Prasad [133] also established the Baskakov-Durrmeyer

operators defined as follows:

Ṽn ( f ; x) = (n − 1)
∞∑

k=0

vn,k (x)

∞∫
0

vn,k (t) f (t) dt. (1.12)

where bn,k (x), sn,k (x) and vn,k (x) are same as in (1.5), (1.6) and (1.7) respectively.

Durrmeyer-type variants of a number of linear positive operators were constructed in

subsequent years. One can refer to the articles [9; 11; 42; 62; 96].

As approximation theory continues to advance, researchers have been motivated to

explore the development of innovative approximation operators that exhibit faster

convergence rates and are applicable across a diverse range of functions and spaces. In

1976, May [112] introduced operators of the following form:

Wλ ( f ; x) =

∞∫
−∞

S (λ, x, t) f (t) dt,

and termed it as exponential operators provided they satisfy two conditions, first is the

homogenous partial differential equation

∂

∂x
S (λ, x, t) =

λ(t − x)
q(x)

S (λ, x, t) , (1.13)

where S (λ, x, t) ≥ 0 is the kernel of these operators and q is a polynomial of at most degree

n which is analytic and positive for x ∈ (a, b) for some a, b such that −∞ ≤ a ≤ b ≤ +∞,

while second is the normalization condition

Wλ (1; x) =

∞∫
−∞

S (λ, x, t)dt = 1. (1.14)
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These operators satisfying the above conditions are, for example, the Bernstein operators,

Szás- Mirakiyan operators, Post-Widder operators, Gauss-Weierstrass operators and

Baskakov operators. These well-known operators are thus referred to as exponential

operators. Some approximation properties were also studied for polynomials of degree at

most 2.

Another approximation operator examined in this thesis is the beta-type operators.

A vital tool among the researchers to study linear positive operators is Euler’s beta

function, which for α, β > 0 is defined as follows:

B(α, β) =

∫ ∞

0

tα−1

(1 + t)α+β
dt =

|α +
∣∣∣β∣∣∣(α + β)
. (1.15)

The transform (1.15) reproduces the Durrmeyer type modification of the linear positive

operators defined by (2.18) for all real-valued continuous and bounded functions f on

[0,∞). The derived operators have been studied extensively by researchers over the past

few decades; for instance, see [1; 43; 46; 52].

1.3 Improvement in the Order of Approximation

The central idea in approximation theory is to estimate the rate of convergence of the se-

quence of operators using various convergence methods. These methods aim to improve

the rate of convergence of operators, thereby reducing the error induced during the ap-

proximation process. Let En( f ) be the error function for the best uniform approximation

of function f by trigonometric or algebraic polynomials Tn of degree n, then

En ( f ) = inf
Tn

sup
x
| f (x) − Tn (x)| .

We expect that the smoother the function f is, the faster En ( f ) converges to zero.

If f is r times continuously differentiable on some compact interval, then

En ( f ) 6 Cr ‖ f r‖ n−r, n = 1, 2, · · ·

For instance, we say that En ( f ) tends to zero at least as fast as 1/n whenever f is differen-

tiable i.e. degree of approximation of f is 1/n and 1
/
n2 when it is twice differentiable, and

so on. Estimates of this type of estimating error have a rich history. The first results of this

type were given by S. N. Bernstein [33] and later Favard [58] found the best constant Cr.

Jackson [87] then refined the above given estimate of En ( f ) by using subtler measures of
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the smoothness of a function f such as modulus of continuity ω ( f , δ) for f ∈ C(I) as: If

f is r times continuous differentiable, then

En ( f ) 6 Crn−rω
(

f r, n−1
)
, n = 1, 2, · · · .

The continuity of f ensures that ω( f , δ) → 0 as δ → 0. Although the linear positive

operators are conceptually simpler and easy to construct and study, they lack the rapidity

of convergence for sufficiently smooth functions. In the same context, a well-known

theorem of Korovkin states that the optimal rate of convergence for any sequence of linear

operators is at most O(n−2). Thus if we want to have a better order of approximation

for smoother functions, we must slacken the positivity condition. Several investigations

indicate that even when a sequence or class of linear positive operators is saturated with a

certain order of approximation, some carefully chosen linear combinations of its members

give a better order of approximation of smoother functions.

Our interest in this thesis is to improve the order of approximation of classical and

existing operators. For instance, many of the standard operators in approximation theory

preserve the test functions e0 and e1 for all n ∈ N, i.e.,

Ln (e0; x) = e0 Ln (e1; x) = e1.

An important approach to improving the order of approximation was given by J. P. King

in his pioneer work [98]. He presented a non-trivial sequence of positive linear operators

defined on C[0, 1] that preserved the test functions e0 and e2. Let {rn (x)} be a sequence

of continuous functions defined on [0, 1] such that rn (x) ∈ [0, 1]. Then the operators

Vn,rn : C[0, 1]→ C[0, 1] are defined as:

Vn,rn ( f ; x) =

n∑
k=0

(rn (x))k(1 − rn (x))n−k f
(

k
n

)
, x ∈ [0, 1],

where

rn (x) =

 x2, n = 1
−1

2(n−1) +

√(
n

n−1

)
x2 + 1

4(n−1)2 , n = 2, 3, · · ·

The operators Vn,rn interpolate f at the endpoints 0 and 1 and are not polynomial

operators. King also proved that the order of approximation of operators Vn,rn is at least

as good as the order of approximation of Bernstein operators for x ∈ [0, 1
3 ]. Inspired by

his work, other modifications of well-known operators were constructed as well to fix cer-

tain functions and to study their approximation and shape-preserving properties. In [36]

Cárdenas-Morales et al. presented a family of sequences of linear Bernstein-type opera-

tors Bn,α, n > 1, depending on a real parameter α ≥ 0, and fixing the polynomial function



12 Introduction

e2+αe1. Among other things, the authors prove that if f is convex and increasing on [0, 1],

then f (x) ≤ Bn,α( f ; x) < Bn( f ; x) for every x ∈ [0, 1]. In their research paper, Duman and

Özarsalan [56] proposed an improved version of the classical Szász-Mirakiyan operators

that provide a more accurate error estimation. Similarly, Ozsarac and Acar [125] intro-

duced a new modification of the Baskakov operators that preserve the functions eµt and

e2µt, where µ > 0.

In this thesis, we have used King’s approach as well as the sequential approach to

present a better modification of various operators, thereby reducing the error and improv-

ing the rate of approximation of the considered operators.

1.4 Chapter-Wise Overview of the Thesis

The thesis consists of seven chapters, whose contents are described below:

The literature and historical context of some key approximation operators are

covered in Chapter 1. Along with a brief summary of the chapters this thesis is divided

into, we also discuss some preliminary instruments that will be employed subsequently

to derive our main results.

Chapter 2 is dedicated to certain operators based on a class of orthogonal polyno-

mials called Apostol-Genocchi polynomials. It is majorly divided into two sections. The

first section considers a Durrmeyer-type modification of Apostol-Genocchi operators

based on Jain operators for f ∈ C[0,∞).

We established a Durrmeyer-type modification of Apostol-Genocchi operators based on

Jain operators:

Hn ( f ; x) =

∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) f (ξ) dξ (1.16)

=

∞∑
k=0

〈
p(β)

n,k (ξ) , f (ξ)
〉〈

p(β)
n,k (ξ) , 1

〉 b(α)
n,k (x),

where

b(α)
n,k (x) = e−nx

(
1 + eλ

2

)α G(α)
k (nx; λ)

k!
, (1.17)

and

p(β)
n,k (x) =

nx(nx + kβ)k−1e−(nx+kβ)

k!
.

Here G(α)
k (nx; λ) is the generalized Apostol-Genocchi polynomials of order α, and p(β)

n,k (x)

is the Jain basis. First, we estimate the convergence rate of Jain-Durrmeyer operators
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associated with the Apostol-Genocchi operators. We establish approximation estimates,

such as a global approximation theorem along with some convergence estimates in

terms of the usual modulus of continuity, and study the approximation behaviour of

these operators (2.10) including K−functionality. We also estimate the convergence rate

of the proposed operators for functions in Lipschitz-type space. Moreover, graphical

interpretation to determine the absolute error for some particular values of the parameters

is performed using Mathematica software.

The second section of this chapter is dedicated to a Durrmeyer-type modification

of Apostol-Genocchi operators based on the beta operator. In this section, For

f ∈ C[0,∞), Prakash [129] et al. considered a sequence of linear positive operators

using Apostol-Genocchi operators polynomials. We presented a Durrmeyer form of

Apostol-Genocchi operators based on the beta function as:

V (α)
n ( f ; x) =

∞∑
k=0

v(α)
n,k (x)

1
β (k + 1, n)

∫ ∞

0

tk

(1 + t)n+k+1 f (t)dt, (1.18)

where

v(α)
n,k (x) = e−nx

(
1 + eλ

2

)α G(α)
k (nx; λ)

k!
, (1.19)

and β (k + 1, n) is Beta function given as:

β(α, β) =

∫ ∞

0

tα−1

(1 + t)α+β
dt =

|α +
∣∣∣β∣∣∣(α + β)
, α, β > 0.

Here G(α)
k (nx; λ) is the generalized Apostol-Genocchi polynomials of order α, and

β (k + 1, n) is the Beta basis. We propose the Beta function associated with the

Apostal-Genocchi polynomials to study the approximation properties of these Durrmeyer

operators and obtain the rate of convergence. Furthermore, we give a direct approxima-

tion theorem using first and second-order modulus of continuity, local approximation

results for Lipschitz class functions and direct theorem for the usual modulus of continu-

ity.

Chapter 3 deals with a modification of the Lupaş-Kantrovich operator that pre-

serve exponential function e−x. We considered these modified operators in the following

way:

K̃m ( f ; x) = (m + 1)
∞∑

k=0

2−mλm(x) (mλm(x))k

2kk!

k+1
m+1∫
k

m+1

f (u)du, (1.20)
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where

λm (x) =
x + log

(
(1 + m)

(
1 − e

−1
m+1

))
m log

(
2 − e−

1
m+1

) . (1.21)

Here λm (x) , is calculated under the assumption that these operators preserve exponential

function e−x. The moments and central moments of the proposed operators are evaluated

with the help of moment-generating functions. We estimate the convergence rate of

the operators in terms of both the usual and exponential modulus of continuity. Our

analysis also includes a global estimate and quantitative Voronovskaya results. Some

approximation results associated with the rate of convergence and order of approximation

are also provided, along with some numerical examples and graphical representations.

Chapter 4 is related to the study of operators associated with inverse Pólya-

Eggenberger distribution. It is divided into two sections and the first section focuses

mainly on introducing Bézier variant of Baskakov operators associated with inverse

Pólya-Eggenberger distribution, a concept originated by Stancu and then thoroughly re-

searched by Deo and Dhamija[45]. For θ ≥ 1, Bézier variant is defined as:

L̂(β)
n,θ(ϕ; x) =

∞∑
r=1

wθ,βn,r(x)
∫ ∞

0
χρn,r (t)ϕ(t)dt + w

θ,β
n,0(x)ϕ (0) , (1.22)

where

χρn,r(t) =


nρ

Γ(rρ)e
−nρt(nρt)rρ−1, c = 0

Γ( nρ
c +rρ)

Γ(rρ)Γ( nρ
c )

crρtrρ−1

(1+ct)
nρ
c +rρ

, c ∈ N,

(1.23)

∫ ∞

0
χρn,r(t)t

jdt =


Γ(rρ+ j)
Γ(rρ)

1∏ j
i=1 (nρ − ic)

, j , 0

1, j = 0,
(1.24)

and

w(β)
n,r(x) =

 n + r − 1

r


r−1∏
i=0

(x + iβ)
n−1∏
j=0

(1 + jβ)

n+r−1∏
k=0

(x + 1 + kβ)

with w
θ,β
n,r(x) =

(
Jβn,r(x)

)θ
−

(
Jβn,r+1(x)

)θ
and Jβn,r(x, c) =

∞∑
j=r
w

(β)
n, j(x). It is obvious that the

operators L̂(β)
n,θ(.; x) are the linear positive operators.

Special cases:
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• For c = 0 and θ = 0, the operators (4.5) reduce to Baskakov-Szász type operators

based on inverse Pólya-Eggenberger-distribution [95].

• For c = β = 0 and θ = ρ = 1, the operators (4.5) include Baskakov-Szász operators

(see [2; 80]).

• For c = β = 0, θ = 1 and ρ → ∞, the operators (4.5) reduce to Baskakov operators

[30].

• For c = 0, θ = 1, β > 0 and ρ → ∞, the operators (4.5) include Stancu operators

[142].

We estimate the approximation behaviour of proposed operators in terms of first and

second-order modulus of smoothness. Additionally, the degree of approximation is also

established for the functions of the derivative of bounded variation.

The second section of this chapter is dedicated to α-Pólya-Baskakov operator [128]

based on inverse Pólya-Eggenberger distribution as follows:

⇀

Q

(α,e)

r (h; x) =

∞∑
s=0

q(α,e)
r,s (x)h

( s
r

)
, (1.25)

where α being a non-negative parameter, which may depend only on the natural number

r, with α→ 0 when r → ∞, r ≥ 1, x ∈ [0,∞), and

q(α,e)
r,s (x) = α

 r + s − 1

s

 1[r,−e]x[s,−e]

(1 + x)[r+s,−e]

− (1 − α)

 r + s − 3

s − 2

 1[r−1,−e]x[s−1,−e]

(1 + x)[r+s−2,−e]

+ (1 − α)

 r + s − 1

s

 1[r−1,−e]x[s,−e]

(1 + x)[r+s−1,−e] .

This section explores the approximation properties of a non-negative real parametric

generalization of the Baskakov operators based on inverse Pólya-Eggenberger (I-P-E)

distribution. As a result of this study, we can obtain some approximation results,

including the Voronovskaya type asymptotic formula, error estimate in terms of modulus

of continuity and the sense of k-functional, and weighted approximation.

Chapter 5 investigates the difference between Mastroianni operators with Gupta

operators in terms of modulus of continuity of first order. We considered here
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Srivastava-Gupta [68] operators

Gn;c( f ; x) =

∞∑
i=0

vn,i(x, c)Hn,i( f ), (1.26)

The Mastroianni operators [113; 114] are mentioned below:

Mn,c( f ; x) =

∞∑
i=0

vn,i(x, c)Fn,i( f ), (1.27)

where

vn,i(x, c) =
(−x)i

i!
τ(i)

n,c(x),Fn,i( f ) = f
( i
n

)
,

with individual cases, which are mentioned below:

• If τn,0(x) = exp(−nx) then vn,i(x, 0) = exp(−nx) (nx)i

i! , and the operators (5.1) reduce

to Szász operators.

• If c ∈ N and τn,c(x) = 1
(1+cx)n/c , then we have vn,i(x, c) =

(n/c)i
i!

(cx)i

(1+cx)
n
c +i , and the opera-

tors (5.1) reduce to Baskakov operators.

• If τn,−1(x) = (1− x)n then vn,i(x,−1) =
(

n
i

)
xi(1− x)n−i, and the operators (5.1) reduce

to Bernstein polynomials,

Hn,i( f ) = (n + c)
∫ ∞

0
vn+2c,i−1(t, c) f (t)dt, 1 ≤ i < ∞, Hn,0( f ) = f (0).

We study the approximation properties of Gupta operators and the approximation of the

difference of operators and find an estimate for the difference of Mastroianni operators

with Gupta operators in terms of modulus of continuity of first order. We give the rate of

convergence with the help of the moduli of continuity and Peetre’s K-functional and in

the last section, the weighted approximation of functions is studied.

Chapter 6 is dedicated to Micchelli-type iterative combinations of generalized pos-

itive linear operators Tn,k : C2(R+)→ C(R+), which is defined as:

Tn,k ( f ; x) =

k∑
r=1

(−1)r+1

kr
 Lr

n,c ( f ; x) . (1.28)

The generalised form of linear positive operators Ln,c : C2(R+)→ C(R+) defined as:

Ln,c( f ; x) =

∞∑
k=0

qn,k(x) f
(

k
n

)
, (1.29)

where

qn.k(x) =
(−x)k φ(k)

n,c(x)
k!

,
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and

φn,c(x) =

(1 + cx)−n/c ; c = −1, x ∈ [0, 1]

(1 + cx)−n/c ; c > 0, x ∈ [0,∞).

This is a generalised form of iterative combinations of positive linear operators

with well-known Bernstein and Baskakov operators as its particular case. We have

estimated the rth moment of the iterative operator and found a recurrence relation

between the central moments and their derivatives. We deduce the Voronovskaya type

asymptotic formula and the relation between the error of continuous function and its

norm with restrictions on its higher derivatives.

At the end of the thesis, we serve to summarize the research conducted, highlight-

ing the key findings and implications of the study. This summary provides readers with

a clear understanding of the research and its significance. Additionally, the author offers

their thoughts on the future direction of the research, outlining potential areas for further

investigation and providing insight into how the research could be expanded or improved.

Overall, the thesis serves as a comprehensive conclusion, bringing together the various

elements of the research and providing valuable insights for future research in the field.

We now move on to our second chapter, which explores some important operators

based on a class of orthogonal polynomials called Apostol-Genocchi polynomials. These

operators are particularly significant and we will explore them in depth throughout this

chapter.





Chapter 2

On Durrmeyer Variant of Operators
Involving Apostal-Genocchi
Polynomials

In the late 19th century, P. L. Chebyshev initiated the research on orthogonal polynomials,

which was further developed by A. A. Markov and T. J. Stieltjes. This chapter focuses on

certain operators based on a class of orthogonal polynomials known as Apostol-Genocchi

polynomials. The first section constructs the Durrmeyer variant of these certain opera-

tors using the Jain operators with real parameters α, β, and λ, whereas the second section

deals with the Durrmeyer variant associated with the Beta basis function. We estab-

lish approximation estimates such as a global approximation theorem along with some

convergence estimates in terms of the usual modulus of continuity and examine the ap-

proximation behaviour of proposed operators including K− functional. Furthermore, we

estimate the rate of convergence of the proposed operators for function in Lipschitz-type

space and local approximation results by using the modulus of continuity. Employing

Mathematica software, we show the approximation and the absolute error graphically by

varying the values of given parameters.
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2.1 Integral Modification of Apostol-Genocchi

Operators

2.1.1 Introduction

The classical Bernoulli polynomials Bn(x), Euler polynomials En(x), and Genocchi

polynomials Gn(x), together with their familiar generalizations B(α)(x), E(α)(x) and G(α)(x)

of (real or complex) order α, are usually by means of the following generating functions

(see, [4; 110; 121; 134; 138; 141] for details):( z
ez − 1

)α
exz =

∞∑
n=0

B(α)
n (x)

zn

n!
(|z| < 2π; 1α := 1) , (2.1)

(
2

ez + 1

)α
exz =

∞∑
n=0

E(α)
n (x)

zn

n!
(|z| < π 1α := 1) , (2.2)

and (
2z

ez + 1

)α
exz =

∞∑
n=0

G(α)
n (x)

zn

n!
(|z| < π 1α := 1) . (2.3)

Obviously

Bn(x) := B(1)
n (x), En(x) := E(1)

n (x), and Gn(x) := G(1)
n (x), (n ∈ N0) , (2.4)

where N0 := N ∪ {0} (N := {1, 2, 3, · · · }).

From Equations (2.1), (2.2) and (2.3), it is easy to find the classical Bernoulli num-

bers Bn(x), Euler numbers En(x) and Genocchi numbers Gn(x), which are defined as

Bn := Bn(0) = B(1)
n (0), En := En(0) = E(1)

n (0), and Gn := Gn(0) = G(1)
n (0),

respectively.

Analogues of the classical Bernoulli polynomials and numbers were first inves-

tigated by Apostol [23] and later on Srivastav [137]. An analogous extension of the

generalized Euler polynomials as the Apostol-Euler polynomials studied by Luo [107].

Moreover, Luo [104; 105; 106; 107] introduced and investigated the Apostol-

Genocchi polynomials of (real or complex) order α, which are defined as follows:

Definition 2.1.1 [107] The Apostol-Genocchi polynomials G(α)
n (x; λ) of order α in vari-

able x are defined by means of the generating function:(
2z

λez + 1

)α
exz =

∞∑
n=0

G(α)
n (x; λ)

zn

n!

(
|z| <

∣∣∣log (−λ)
∣∣∣ ; 1α := 1

)
. (2.5)
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with, of course,

G(α)
n (x) = G(α)

n (x; 1) and G(α)
n (λ) := G(α)

n (0; λ) ,

and

Gn (x; λ) := G(1)
n (x; λ) and Gn (λ) := G(1)

n (λ) ,

where Gn (λ) , G(α)
n (λ) and Gn (x; λ) denote the so-called Apostol-Genocchi numbers,

Apostol-Genocchi numbers of order α and Apostol-Genocchi polynomials, respectively.

For our convenience, we consider the operators in the following form:

For f ∈ C[0,∞), the operator is defined as:

Aα,λ
n ( f ; x) =

∞∑
k=0

b(α)
n.k (x) f

(
k
n

)
= e−nx

(
1 + eλ

2

)α ∞∑
k=0

G(α)
k (nx; λ)

k!
f
(

k
n

)
, (2.6)

where G(α)
k (x; λ) is generalized Apostol-Genocchi polynomials, which have the generat-

ing function of the form(
2t

1 + λet

)α
ext =

∞∑
k=0

G(α)
k (x; λ)

tk

k!
, (|t| < π). (2.7)

The Apostol-Genocchi polynomials and their properties are studied by many

researchers for the detail here we refer (cf. [24; 91; 105; 106; 124; 129; 140]).

In [108], the following explicit formula for the Apostol-Genocchi polynomials

G(α)
k (x; λ) is given:

G(α)
k (x; λ) = 2αα!

(
k
α

) k−α∑
i=0

λi

(1 + λ)α+i

(
k − α

i

)(
α + i − 1

i

)

×

i∑
j=0

(−1) j

(
i
j

)
ji(x + j)k−i−α

2F1[α + i − k, i; i + 1; j/(x + j)], (2.8)

where k, α ∈ N ∪ {0}, x ∈ R, λ ∈ R \ {−1} and 2F1[a, b; c; z] denotes the Gaussian

hypergeometric function defined by

2F1[a, b; c; z] =

∞∑
n=0

(a)n (b)n

(c)n

zn

n!
=

ab
c

z
1!

+
a(a + 1)b(b + 1)

c
z2

2!
+ · · · ,

where (α)0 = 1, (α)n = α(α + 1) · · · (α + n − 1) =
Γ(n+α)

Γ(α) , (n ≥ 1) and 0 6 α < 1 (see [4],

pp. 37).
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Over the most recent two decades, an amazing number of papers showed up

contemplating Genocchi numbers, their combinatorial relations, Genocchi polynomials,

and their speculations alongside their different extensions and integral representations,

which provides a new direction in the field of positive linear operators. To the readers,

we suggest the following articles [5; 44; 64; 85].

Jain [88] introduced a new class of linear operators as:

J(β)
n ( f ; x) =

∞∑
k=0

p(β)
n,k (x) f

(
k
n

)
, x ≥ 0, (2.9)

where 0 ≤ β < 1 and

p(β)
n,k (x) =

nx(nx + kβ)k−1e−(nx+kβ)

k!
.

For β = 0, these operators reduce to Szász-Mirakyan operators. Several researchers

studied Jain operators and their integral variant in [19; 20; 52; 57; 132; 145].

Durrmeyer variants of various operators are studied by several researchers [1; 43;

46; 52; 146] but in the year 2015, Gupta and Greubel [75] introduced the Durrmeyer

variant of Jain operators (2.9). Motivated from [75], we now consider a Durrmeyer type

modification of Apostol-Genocchi operators based on Jain operators. For f ∈ C[0,∞) the

operators are defined as:

Hn ( f ; x) =

∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) f (ξ) dξ (2.10)

=

∞∑
k=0

〈
p(β)

n,k (ξ) , f (ξ)
〉〈

p(β)
n,k (ξ) , 1

〉 b(α)
n,k (x),

where 〈 f , g〉 =
∫ ∞

0
f (ξ)g (ξ) dξ.

Some interesting results are studied by several mathematicians which have given a

new direction in the field of positive linear operators (cf. [5; 44; 64; 85]).

2.1.2 Auxiliary Properties

Lemma 2.1.2 [75] For 0 ≤ β < 1, we have〈
p(β)

n,k (ξ) , ξr
〉〈

p(β)
n,k (ξ) , 1

〉 = Pr (k; β) , r = 0, 1, 2, · · · ,
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where Pr (k; β) is a polynomial of order r in variable k and 〈 f , g〉 =
∫ ∞

0
f (ξ)g(ξ)dξ. In

particular

P0 (k; β) = 1;

P1 (k; β) =
1
n

[
(1 − β) k +

1
1 − β

]
;

P2 (k; β) =
1
n2

[
(1 − β)2k2 + 3k +

2!
1 − β

]
;

P3 (k; β) =
1
n3

[
(1 − β)3k3 + 6 (1 − β) k2 +

(11 − 8β) k
1 − β

+
3!

1 − β

]
;

P4 (k; β) =
1
n4

[
(1 − β)4k4 + 10(1 − β)2k3 + 5 (7 − 4β) k2

+
10 (5 − 3β) k

1 − β
+

4!
1 − β

]
;

P5 (k; β) =
1
n5

[
(1 − β)5k5 + 15(1 − β)3k4 + 5 (1 − β) (17 − 8β) k3

+
15

(
15 − 20β + 6β2

)
k2

1 − β
+

(274 − 144β) k
1 − β

+
5!

1 − β

 .
Lemma 2.1.3 [129] ForAα,λ

n (tm; x), m = 0, 1, 2, 3 and 4, we have

Aα,λ
n (1; x) = 1;

Aα,λ
n (ξ; x) = x +

α

n(1 + eλ)
;

Aα,λ
n (ξ2; x) = x2 +

(1 + 2α + eλ)
n(1 + eλ)

x +
α2 − 2αeλ − αe2λ2

n2(1 + eλ)2 ;

Aα,λ
n (ξ3; x) = x3 +

(3 + 3α + 3eλ)
n(1 + eλ)

x2 +

(
3α2 + 3α + e2λ2 − 3αe2λ2 − 3αeλ + 2eλ + 1

)
n2(1 + eλ)2 x

+

(
α3 − 6α2eλ − 3α2e2λ2 − 5αeλ − 4αe2λ2 − αe3λ3

)
n3(1 + eλ)3 ;

Aα,λ
n (ξ4; x) = x4 +

(3 + 2α + 3eλ)
n(1 + eλ)

x3 +

(
−6α2 − 25e2λ2 − 50eλ + 6αe2λ2 − 12α − 25

)
n2(1 + eλ)2 x2

+
x

n3(1 + eλ)3

[
2α3 + 7e3λ3 − 5αe3λ3 + 21e2λ2 + 3α2 − 6α2e2λ2 + 3αe2λ2

−9α2eλ + 21eλ + 20α + 24αeλ
]
.
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Lemma 2.1.4 The operators (2.10), for Hn

(
ξi; x

)
, the moments up to second order are

given by:

Hn (1; x) = 1;

Hn (ξ; x) = (1 − β) x +
1
n

{
α(1 − β)
1 + eλ

+
1

1 − β

}
;

Hn

(
ξ2; x

)
= (1 − β)2 x2 +

{
(1 + 2α + eλ) (1 − β)2

1 + eλ
+ 3

}
x
n

+
1
n2

 (1 − β)2
(
α2 − 2αeλ − αe2λ2

)
(1 + eλ)2 +

3α
1 + eλ

+
2!

1 − β

 .
Proof: By using Lemma 2.1.2 and Lemma 2.1.3, we get

Hn (1; x) =

∞∑
k=0

P0 (k, β) b(α)
n,k (x)

= 1,

Hn (ξ; x) =

∞∑
k=0

P1 (k, α) b(α)
n,k (x)

=

∞∑
k=0

1
n

[
(1 − β) k +

1
1 − β

]
b(α)

n,k (x)

= (1 − β)A(α)
n (ξ; x) +

1
n (1 − β)

A
(α)
n (1; x)

= (1 − β) x +
1
n

{
α(1 − β)
1 + eλ

+
1

1 − β

}
,

Hn

(
ξ2; x

)
=

∞∑
k=0

P2 (k, α) b(α)
n,k (x)

=

∞∑
k=0

1
n2

[
(1 − β)2k2 + 3k +

2!
1 − β

]
b(α)

n,k (x)

= (1 − β)2
A

(α)
n

(
ξ2; x

)
+

3
n
A

(α)
n (ξ; x) +

2!
n2 (1 − β)

A
(α)
n (1; x)

= (1 − β)2
{

x2 +
(1 + 2α + eλ)

n(1 + eλ)
x +

α2 − 2αeλ − αe2λ2

n2(1 + eλ)2

}
+

3
n

{
x +

α

n(1 + eλ)

}
+

2!
n2 (1 − β)

= (1 − β)2 x2 +

{
(1 + 2α + eλ) (1 − β)2

1 + eλ
+ 3

}
x
n

+
1
n2

 (1 − β)2
(
α2 − 2αeλ − αe2λ2

)
(1 + eλ)2 +

3α
1 + eλ

+
2!

1 − β

 .
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Lemma 2.1.5 By direct computation, we have

Hn ((ξ − x) ; x) =
1
n

{
α(1 − β)
1 + eλ

+
1

1 − β

}
− βx,

Hn

(
(ξ − x)2 ; x

)
= β2x2 +

{
(1 + 2α + eλ) (1 − β)2

1 + eλ
−

2α (1 − β)
1 + eλ

−
2

1 − β
+ 3

}
x
n

+


(
α2 − 2αeλ − αe2λ2

)
(1 − β)2

(1 + eλ)2 +
3α

1 + eλ
+

2
1 − β

 1
n2 .

Lemma 2.1.6 For the operatorsHn, we have |Hn( f ; x)| ≤ ‖ f ‖,

where f ∈ C[0,∞) and ‖ f ‖ = sup
x∈[0,∞)

| f (x)|.

Proof: From operators (2.10) and using Lemma 2.1.4, we get

|Hn( f ; x)| ≤

∣∣∣∣∣∣∣
∞∑

k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) f (ξ) dξ

∣∣∣∣∣∣∣
≤

∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) | f (ξ)| dξ ≤ ‖ f ‖.

2.1.3 Main Results

Let f ∈ C2
B[0,∞) be denoted the space of all functions f ∈ CB[0,∞) such that f ′, f ′′

define in C[0,∞). Let ‖ f ‖ be denoted the usual supremum norm of a bounded function f .

Then Peetre’s K−functional

K ( f ; δ) = inf
g∈C2

B[0,∞)
{‖ f − g‖ + δ ‖g′′‖} , (2.11)

and for δ > 0 the modulus of continuity of second-order

ω2 ( f ; δ) = sup
0<h≤δ,x∈[0,∞)

| f (x + 2h) − 2 f (x + h) + f (x)| . (2.12)

Also from ([49], p. 177, Theorem 2.4), there exists a constant C > 0 such that

K ( f ; δ) ≤ Cω2

(
f ;
√
δ
)
. (2.13)

Now we get the following approximation results.

The Bohman-Korovkin-Popoviciu theorem [99] is a powerful mathematical tool

used to prove uniform convergence. In this context, it has been applied to the Apostol-

Genocchi-Jain-Durremyer operators (2.10) to establish their uniform convergence.



26 On Durrmeyer Variant of Operators Involving Apostal-Genocchi Polynomials

Theorem 2.1.7 Let us f ∈ C[0,∞) ∩f and this function also belongs to the class

f :=
{

f : x ∈ [0,∞) ,
f (x)

1 + x2 is convergent as x→ ∞
}
,

Then, the uniformly on each compact subset of [0,∞), where C[0,∞) is the space of all

real-valued continuous functions on [0,∞), i.e.,

lim
n→∞

V (α)
n ( f ; x) = f (x),

where α(n) be such that α→ 0 as n→ ∞.

Proof: As α→ 0 as n→ ∞, from Lemma 2.1.4, we have

lim
n→∞
Hn

(
ξi; x

)
= xi, i = 0, 1, 2,

uniformly on each compact subset of the non-negative half-line real axis. Hence, we get

the desired result by applying the well-known Korovkin-type theorem [21] regarding the

convergence of a sequence of positive linear operators.

Theorem 2.1.8 If f ∈ CB[0,∞) then for x ∈ [0,∞), we have

|Hn ( f ; x) − f (x)| ≤ 2ω
(

f ;
√
Hn

(
(ξ − x)2 ; x

))
,

where ω is the modulus of continuity of f [49] defined as:

ω ( f ; x) := sup
x,y∈[0,∞)
|x−y|≤δ

| f (x) − f (y)| .

Proof: Applying the well-known property of ω ( f ; x), Lemma 2.1.4, and from operators

(2.10), we have

|Hn ( f ; x) − f (x)| =

∣∣∣∣∣∣∣
∞∑

k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) ( f (ξ) − f (x)) dξ

∣∣∣∣∣∣∣
≤

∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) |( f (ξ) − f (x))| dξ

≤

∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
ω ( f ; δ) p(β)

n,k (ξ)
(
1 +

1
δ
|ξ − x|

)
dξ

=

1 +
1
δ

∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) |ξ − x| dξ

ω ( f ; δ) .
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For the integration, the following result holds by using Cauchy-Schwarz inequality

|Hn ( f ; x) − f (x)| ≤
[
1 +

1
δ

∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

(∫ ∞

0
p(β)

n,k (ξ)dξ
)1/2

×

(∫ ∞

0
p(β)

n,k (ξ) (ξ − x)2 dξ
)1/2

dξ
]
ω ( f ; δ) .

Now using the last inequality for infinite sum and we have

|Hn ( f ; x) − f (x)|

≤

[
1 +

1
δ

{ ∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ)dξ
}1/2

×

{ ∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) (ξ − x)2 dξ
}1/2]

ω ( f ; δ)

=

[
1 +

1
δ
{Hn (1; x)}1/2

{
Hn

(
(ξ − x)2 ; x

)}1/2
]
ω ( f ; δ) .

By taking

δ =
{
Hn

(
(ξ − x)2 ; x

)}1/2
.

We get the required result.

Now, for 0 < % ≤ 1 and let us present approximation in terms of Lipschitz constant

defined as:

Lip%K =

{
f ∈ CB[0,∞) : | f (η1) − f (η2)| ≤ K

|η1 − η2|
%

(η1 + η2)%/2

}
, η1, η2 ∈ [0,∞),

where K > 0 is a constant.

Theorem 2.1.9 Suppose that f ∈ Lip%K , then

|Hn ( f ; x) − f (x)| ≤ K
{

1
x
Hn

(
(ξ − x)2 ; x

)}%/2
.

Proof: Since f ∈ Lip%K and 0 < % ≤ 1, we have

|Hn ( f ; x) − f (x)| = |Hn ( f (ξ) − f (x); x)|

≤ Hn (| f (ξ) − f (x)| ; x)

≤ KHn

(
|ξ − x|%

(ξ + x)%/2
; x

)
. (2.14)

From (2.14), it becomes

Hn

(
|ξ − x|%

(ξ + x)%/2
; x

)
=

∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ)
|ξ − x|%

(ξ + x)%/2
dξ

≤

{ ∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ) dξ
}(2−%)/2

×

{ ∞∑
k=0

(∫ ∞

0
p(β)

n,k (ξ) dξ
)−1

b(α)
n,k (x)

∫ ∞

0
p(β)

n,k (ξ)
(ξ − x)2

(ξ + x)
dξ

}%/2
,
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where we use the Hölder inequality by taking p = 2
%

and q = 2
2−% . Now using the fact that

1
ξ+x ≤

1
x , we have

Hn

(
|ξ − x|%

(ξ + x)%/2
; x

)
= {Hn (1; x)}(2−%)/2

{
1
x
Hn

(
(ξ − x)2 ; x

)}%/2
.

This proves the required results.

Theorem 2.1.10 For every f ∈ CB[0,∞), we have

|Hn ( f ; x) − f (x)| ≤ Mω2

(
f ,
δn(x, α)
√

2

)
+ ω ( f , τω) ,

where M > 0 is a constant.

Proof: For f ∈ Cβ [0,∞) and by the definition of the operators H̃n, we have

H̃n ( f ; x) := Hn ( f ; x) − f
(
(1 − β) x +

1
n

{
α(1 − β)
1 + eλ

+
1

1 − β

})
+ f (x). (2.15)

Using Lemma 2.1.4, we obtain

H̃n (e0; x) = 1, and H̃n (e1; x) = x,

i.e., H̃n preserve constants and linear functions. Therefore

H̃n ((e1 − x) ; x) = 0. (2.16)

Let f ∈ C2
B[0,∞) and using Taylor’s expansion

g(ξ) = g(x) + (ξ − x) g′(x) +

∫ ξ

x
(ξ − u) g′′(u)du, ξ, x ∈ [0,∞). (2.17)

Applying H̃n to above expansion and using (2.17), we have

H̃n (g; x) − g(ξ) = g′(x)H̃n (ξ − x; x) + H̃n

(∫ ξ

x
(ξ − u) g′′(u)du; x

)
,

and from (2.16), we have∣∣∣∣H̃n (g; x) − g(ξ)
∣∣∣∣

≤ H̃n

(∣∣∣∣∣∣
∫ ξ

x
(ξ − u) g′′(u)du

∣∣∣∣∣∣ ; x
)

≤ Hn

(∣∣∣∣∣∣
∫ ξ

x
(ξ − u) g′′(u)du

∣∣∣∣∣∣ ; x
)

−

∣∣∣∣∣∣∣
∫ (1−β)x+ 1

n

{
α(1−β)
1+eλ + 1

1−β

}
x

(
(1 − β) x +

1
n

{
α(1 − β)
1 + eλ

+
1

1 − β

}
− u

)
g′′ (u) du

∣∣∣∣∣∣∣ .
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Now we consider ∣∣∣∣∣∣
∫ x

ξ

(ξ − u) g′′(u))du

∣∣∣∣∣∣ ≤ (ξ − x)2
‖g′′‖ ,

then we get ∣∣∣∣H̃n (g; x) − g(x)
∣∣∣∣ ≤ (
Hn

(
(ξ − x)2 ; x

)
+

(
Hn (ξ − x; x)2

))
‖g′′‖ .

From Lemma 2.1.4 and using (2.15), for the operators H̃ (α)
n , we have∣∣∣∣H̃n ( f ; x) − f (x)

∣∣∣∣ ≤ ∣∣∣∣H̃n ( f − g; x)
∣∣∣∣ +

∣∣∣∣H̃n (g; x) − g(x)
∣∣∣∣ + |g(x) − f (x)|

+

∣∣∣∣∣∣ f
(
(1 − β) x +

1
n

{
α(1 − β)
1 + eλ

+
1

1 − β

})
− f (x)

∣∣∣∣∣∣
≤ 4 ‖ f − g‖ +

(
Hn

(
(ξ − x)2 ; x

)
+

(
Hn (ξ − x; x)2

))
‖g′′‖

+ ω ( f ,Hn (ξ − x; x)) .

Taking infimum on the right hand side over g ∈ W2
∞ and from (2.13), we have∣∣∣∣H̃n ( f ; x) − f (x)

∣∣∣∣ ≤ 4K2

(
f ,
τ4

n (x, α)
4

)
+ ω ( f , τω)

≤ Mω2

(
f ,
δn(x, α)

2

)
+ ω ( f , τω) ,

where

τ2
n(x, α) = Hn

(
(ξ − x)2 ; x

)
+

(
Hn (ξ − x; x)2

)
and τω = Hn (ξ − x; x) .

2.1.4 Numerical Results

Let f (x) = x3 − 2x2 + x − 2, α = 2, β = 0.01, λ = 4 and n ∈ {10, 20, 30}. The

convergence of the defined operators H̃n towards the function f (x) and the absolute error

En(x) =
∣∣∣H̃n( f ; x) − f (x)

∣∣∣ of the operators are shown in Fig(a) and Fig(b), respectively.

The absolute error of the operators is also computed in Table 1 for some values in [1, 3].
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n=10

n=20

n=30

f

1.5 2.0 2.5 3.0

5

10

15

Figure 2.1: Considering n = [10, 20, 30], the convergence of operators H̃n towards the

function f (x) = x3 − 2x2 + x − 2 with parameters α = 2, β = 0.01 and λ = 4.

E10(x)
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Figure 2.2: Graphical representation of absolute error En(x) =
∣∣∣H̃n( f ; x) − f (x)

∣∣∣ to the

function f (x) = x3 − 2x2 + x − 2 with parameters α = 2, β = 0.01, λ = 4 and n =

{10, 20, 30}.

2.2 Integral Modification of Beta type Apostol-Genocchi

Operators

For f ∈ C[0,∞), Prakash et al. [129] considered the following operators:

Aα,β
n ( f ; x) =

∞∑
k=0

v(α)
n.k (x) f

(
k
n

)
= e−nx

(
1 + eβ

2

)α ∞∑
k=0

ψαk (nx; β)
k!

f
(

k
n

)
, (2.18)

where ψαk (x; β) is generalized Apostol-Genocchi polynomials, which have the generating

function of the form:(
2t

1 + βet

)α
ext =

∞∑
k=0

ψαk (x; β)
tk

k!
, (|t| < π). (2.19)
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Table 2.1: Estimation of absolute error En(x) for some values of x ∈ [1, 3].

x n = 10 n = 20 n = 30

1 0.31827 0.12793 0.07812

1.2 0.58023 0.24848 0.15482

1.4 0.91155 0.40104 0.25106

1.6 1.31081 0.58416 0.36541

1.8 1.77657 0.79643 0.49645

2.0 2.30742 1.03641 0.64276

2.2 2.90192 1.30269 0.80290

2.4 3.55866 1.59383 0.97545

2.6 4.27620 1.90842 1.15890

2.8 5.05312 2.24502 1.35209

3.0 5.88800 2.60221 1.55333

The Apostol-Genocchi polynomials and their properties have been studied by many re-

searchers over the past few decades; for instance, see (cf. [24; 91; 105; 106; 124; 140]).

In [108], the following explicit formula for the Apostol-Genocchi polynomials

ψαk (x; β) is given:

ψαk (x; β) = 2αα!
(
k
α

) k−α∑
i=0

βi

(1 + β)α+i

(
k − α

i

)(
α + i − 1

i

)

×

i∑
j=0

(−1) j

(
i
j

)
ji(x + j)k−i−α

2F1[α + i − k, i; i + 1; j/(x + j)], (2.20)

where k, α ∈ N∪{0}, β ∈ C\ {−1} and 2F1[a, b; c; z] denotes the Gaussian hypergeometric

function defined by

2F1[a, b; c; z] =

∞∑
n=0

(a)n (b)n

(c)n

zn

n!
=

ab
c

z
1!

+
a(a + 1)b(b + 1)

c
z2

2!
+ · · · ,

where (α)0 = 1, (α)n = α(α + 1) · · · (α + n − 1) =
Γ(n+α)

Γ(α) , (n ≥ 1) and 0 6 α < 1.

Durrmeyer variants of various operators are studied by several researchers [1; 43;

46; 52; 146]. In this paper, we consider the Durrmeyer type modification of the linear

positive operators defined by (2.18) for all real-valued continuous and bounded functions

f on [0,∞) as follows:

V (α)
n ( f ; x) =

∞∑
k=0

v(α)
n,k (x)

1
β (k + 1, n)

∫ ∞

0

tk

(1 + t)n+k+1 f (t)dt, (2.21)
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where β (k + 1, n) is beta function.

We proceed by obtaining the moments and giving a direct approximation theorem

using first and second-order modulus of continuity, local approximation results for Lips-

chitz class functions and direct theorem for the usual modulus of continuity.

2.2.1 Basic Properties

Lemma 2.2.1 The moments of V (α)
n ( f ; x) are given as follows:

V (α)
n (1; x) = 1;

V (α)
n (t; x) =

1
(n − 1)

[
nx + α + 1 + eβ]

V (α)
n (t2; x) = n2x2 +

[
(1 + 2α + eβ)

(1 + eβ)
+ 1

]
nx

+

[
α2 − 2αeβ − αe2β2

(1 + eβ)2 +
α

(1 + eβ)
+ 2

]
1

(n − 1) (n − 2)
.

Lemma 2.2.2 For δn (x) = V (α)
n [(t − x)n; x] and n ∈ {1, 2} we have

δ1 (x) = V (α)
n [(t − x) ; x] =

1
(n − 1)

[
x + α + 1 + eβ

]
;

δ2 (x) = V (α)
n (t − x) ; x =

[
n2

(n − 1) (n − 2)
+ 1 −

2x
n − 1

]
x2

+

[
n

(n − 2)

(
(1 + 2α + eβ)

(1 + eβ)
+ 1

)
− 2 (α + 1 + eβ)

]
x

(n − 1)

+

[
α2 − 2αeβ − αe2β2

(1 + eβ)2 +
α

(1 + eβ)
+ 2

]
1

(n − 1) (n − 2)
.
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Lemma 2.2.3 ForAα,β
n (tm; x), m = 0, 1, 2, 3 and 4, we have

Aα,β
n (1; x) = 1;

Aα,β
n (ξ; x) = x +

α

n(1 + eβ)
;

Aα,β
n (ξ2; x) = x2 +

(1 + 2α + eβ)
n(1 + eβ)

x +
α2 − 2αeβ − αe2β2

n2(1 + eβ)2 ;

Aα,β
n (ξ3; x) = x3 +

(3 + 3α + 3eβ)
n(1 + eβ)

x2 +

(
3α2 + 3α + e2β2 − 3αe2β2 − 3αeβ + 2eβ + 1

)
n2(1 + eβ)2 x

+

(
α3 − 6α2eβ − 3α2e2β2 − 5αeβ − 4αe2β2 − αe3β3

)
n3(1 + eβ)3 ;

Aα,β
n (ξ4; x) = x4 +

(3 + 2α + 3eβ)
n(1 + eβ)

x3 +

(
−6α2 − 25e2β2 − 50eβ + 6αe2β2 − 12α − 25

)
n2(1 + eβ)2 x2

+
x

n3(1 + eβ)3

[
2α3 + 7e3β3 − 5αe3β3 + 21e2β2 + 3α2 − 6α2e2β2 + 3αe2β2

−9α2eβ + 21eβ + 20α + 24αeβ
]
.

2.2.2 Main Theorems

The Bohman-Korovkin-Popoviciu theorem [99] is a powerful mathematical tool

used to prove uniform convergence. In this context, it has been applied to the Apostol-

Genocchi-Jain-Durremyer operators (2.21) to establish their uniform convergence.

Theorem 2.2.4 Let us f ∈ C[0,∞) ∩f and this function also belongs to the class

f :=
{

f : x ∈ [0,∞) ,
f (x)

1 + x2 is convergent as x→ ∞
}
,

where C[0,∞) is the space of all real-valued continuous functions on [0,∞).

Then, we have

lim
n→∞

V (α)
n ( f ; x) = f (x),

uniformly on each compact subset of [0,∞), where α(n) be such that α→ 0 as n→ ∞.

Proof: As α→ 0 as n→ ∞ and from the Lemma 2.2.3, we have

lim
n→∞

V (α)
n ( f ; x) − f (x) = xi, i = 0, 1, 2.

uniformly on each compact subset of the non-negative half-line real axis. Hence, we get

the desired result by applying the well-known Korovkin-type theorem [21] regarding the

convergence of a sequence of positive linear operators.
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Let C2
β [0,∞) denote the space of real valued contiuous and bounded function f on

the interval [0,∞), endowed with the norm,

‖ f ‖ = sup
x∈[0,∞)

| f (x)| .

For any δ > 0, the Peetre’s K-functional is defined by:

K2 ( f ; δ) = inf
l∈C2

β[0,∞)
{‖ f − l‖ + δ ‖l′′‖} ,

where

C2
β [0,∞) =

{
g ∈ Cβ [0,∞) : l′, l′′ ∈ Cβ [0,∞)

}
.

By DeVore and Lorentz [49], there exist an absolute constant C > 0, such that

K2 ( f ; δ) 6 Cω2

(
f ;
√
δ
)
,

where second order modulus of continuity for f ∈ Cβ [0,∞) is defined as:

ω2

(
f ;
√
δ
)

= sup
x∈[0,∞)

sup
0<h6

√
δ

| f (x + 2h) − 2 f (x + h) + f (x)|

Also, we denote the usual modulus of continuity by ω ( f ; δ).

The following auxiliary operators are defined in order to prove our next theorem.

∼

Vn (l; x) = V (α)
n ( f ; x) − f

(
nx + (α + 1 + eβ)

(n − 1)

)
+ f (x) .

Lemma 2.2.5 Let g ∈ C2
β [0,∞). Then for all x > 0 and n > 2, we have∣∣∣∣ ∼Vn (l; x) − l (x)

∣∣∣∣ 6 φa
n (x) ‖l′′‖

where

φa
n (x) = V (α)

n

[
(t − x)2, x

]
+

(
x + α + 1 + eβ

(n − 1)

)2

∼

Vn (l; x) = V (α)
n ( f ; x) − f

(
nx + (α + 1 + eβ)

(n − 1)

)
+ f (x) .

Proof: By the definition of
∼

Vn, it is obvious that
∼

Vn (t − x; x) = 0, (2.22)

let lr ∈ C2
β [0,∞) , from Taylor expansion of l

l (t) − l (x) = (t − x) l′ (x) +

t∫
x

(t − u)l′′ (u) du.
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We can write

∼

Vn (l; x) − l (x) = l′ (x)
∼

Vn (t − x; x) +
∼

Vn


t∫

x

(t − u)l′′ (u) du; x


=
∼

Vn


t∫

x

(t − u)l′′ (u) du; x

 ∼Vn


t∫

x

(t − u)l′′ (u) du; x


−

( nx+(α+1+eβ)
(n−1)

)∫
x

(
nx + (α + 1 + eβ)

(n − 1)
− u

)
l′′ (u) dt.

Since

∼

Vn


t∫

x

(t − u)l′′ (u) du; x

 6 (t − x)2
‖l′′‖ ,

and ∣∣∣∣∣∣∣∣∣∣
( nx+(α+1+eβ)

(n−1)

)∫
x

(
nx + (α + 1 + eβ)

(n − 1)
− u

)
l′′ (u) dt

∣∣∣∣∣∣∣∣∣∣ 6
[

x + (α + 1 + eβ)
(n − 1)

]2

‖l′′‖

⇒
∼

Vn |(l; x) − l (x)| 6

V (α)
n

(
(t − x)2; x

)
+

[
x + (α + 1 + eβ)

(n − 1)

]2
 ‖l′′‖ .

By Lemma 2.2.2, we may conclude that

φa
n (x) = V (α)

n

[
(t − x)2, x

]
+

(
x + α + 1 + eβ

(n − 1)

)2

]
∣∣∣∣ ∼Vn (l; x) − l (x)

∣∣∣∣ 6 φa
n (x) ‖l′′‖ .

Theorem 2.2.6 Let f ∈ Cβ [0,∞). Then for all x > 0 and n > 2, there exist a constant

C > 0 such that

|Vn ( f ; x) − f (x)| 6 Cω2

(
f ;

√
φa

n (x)
)

+ ω

(
f ;

(
nx + (α + 1 + eβ)

(n − 1)

))
,

where φa
n (x) defined as in above Lemma 2.2.3.

Proof: For f ∈ Cβ [0,∞) and g ∈ C2
β [0,∞), by the definition of the operators

∼

Vn, one has

|Vn ( f ; x) − f (x)| 6
∣∣∣∣ ∼Vn ( f − g; x)

∣∣∣∣ + |( f − g) (x)|

+
∣∣∣∣ ∼Vn (l; x) − l (x)

∣∣∣∣ +

∣∣∣∣∣∣ f
(
nx + (α + 1 + eβ)

(n − 1)

)
− f (x)

∣∣∣∣∣∣ ,
and ∣∣∣∣ ∼Vn (l; x)

∣∣∣∣ 6 3 ‖ f ‖ .
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Therefore, we can get

|Vn ( f ; x) − f (x)| 6 ‖( f − g)‖ +
∣∣∣∣ ∼Vn (l; x) − l (x)

∣∣∣∣ + ω

∣∣∣∣∣∣ f ;
(
nx + (α + 1 + eβ)

(n − 1)

)∣∣∣∣∣∣ .
Using Lemma 2.2.5, the above inequality leads to

|Vn ( f ; x) − f (x)| 6 ‖( f − g)‖ + φa
n (x) ‖l′′‖ + ω

∣∣∣∣∣∣ f ;
(
nx + (α + 1 + eβ)

(n − 1)

)∣∣∣∣∣∣ .
Thus, taking infimum over all g ∈ C2

β [0,∞) on the right-hand side of the last equality and

considering the definition of K-functional, we get the required result.

Now consider the Lipschitz-type space:

lip∗M (r) :=
{

f ∈ Cβ [0,∞) : | f (t) − f (x)| 6 M
|t − x|r

(t − x)
r
2
; x, t ∈ (0,∞)

}
,

where M is a positive constant and r ∈ (0, 1] .

Lemma 2.2.7 For all x ≤ 0 and n > 2, we have

Vn (|t − x| ; x) 6
√
δn (x),

where

δn (x) = Vn

(
(t − x)2; x

)
.

Proof: By the definition of the proposed operators, we get

Vn (|t − x| ; x) =

∞∑
k=0

v(α)
n,k (x)

1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 |t − x|dt.

After applying the Cauchy-Schwarz inequality on the right-hand side of the above in-

equality, we get

Vn (|t − x| ; x) =


∞∑

k=0

v(α)
n,k (x)

 1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 |t − x|dt


2

1
2

. (2.23)

Again applying the Cauchy-Schwarz inequality to the integral in the right-hand side of

(5.2.2), we have

Vn (|t − x| ; x) =


∞∑

k=0

v(α)
n,k (x)

 1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 (t − x)2dt




1
2

=

√
Vn

(
(t − x)2; x

)
=

√
δn (x).
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Theorem 2.2.8 Let f ∈ lip∗M (r). Then for all x > 0 and n > 2 we have

|Vn ( f ; x) − f (x)| 6 M
(
δn (x)

x

) r
2

,

where δn (x) defined as in Lemma 2.2.5.

Proof: Firstly, we suppose that r = 1. Then for f ∈ lip∗M (1) we may write:

|Vn ( f ; x) − f (x)| 6
∞∑

k=0

v(α)
n,k (x)

1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 | f (t) − f (x)|dt

6 M
∞∑

k=0

v(α)
n,k (x)

1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1

|t − x|
√

t − x
dt.

Using the fact 1
√

t−x
< 1
√

x and Lemma 2.2.5 in the last inequality, we get

|Vn ( f ; x) − f (x)| 6
M
√

x

∞∑
k=0

v(α)
n,k (x)

1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 |t − x|dt

=
M
√

x
(Vn |t − x| ; x) 6 M

√
δn (x)

x
.

This is the required result for r = 1. Let r ∈ (0, 1). Then application of the Holder

inequality two times with p=1
r and q = 1

1−r gives

|Vn ( f ; x) − f (x)| 6
∞∑

k=0

v(α)
n,k (x)

1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 | f (t) − f (x)|dt

6


∞∑

k=0

v(α)
n,k (x)

 1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 | f (t) − f (x)|dt


1
r


r

6


∞∑

k=0

v(α)
n,k (x)

1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 | f (t) − f (x)|
1
r dt


r

.

Since f ∈ lip∗M (r) , this equality leads to

|Vn ( f ; x) − f (x)| 6 M


∞∑

k=0

v(α)
n,k (x)

1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1

∣∣∣∣∣∣ |t − x|
√

t − x

∣∣∣∣∣∣dt


r

6
M
x

r
2


∞∑

k=0

v(α)
n,k (x)

1
β (k + 1, n)

∞∫
0

tk

(1 + t)n+k+1 ||t − x||dt


r

=
M
x

r
2
{Vn (|t − x| ; x)}r

Therefore, by Lemma 2.2.5, we may conclude that

|Vn ( f ; x) − f (x)| 6 M
(
δn (x)

x

) r
2

,
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which completes the proof.

Let Hx2 [0,∞) be set of all functions f defined on [0,∞) having the property

| f (x)| 6 M f

(
1 + x2

)
,

where M f is a constant depending only on f . By Cx2 [0,∞), we denotes the subspace of

all continuous functions belonging to Hx2 [0,∞). For any positive b, by

ωb ( f ; δ) = sup
|t−x|6δ

sup
x,t∈[0,b]

| f (t) − f (x)| ,

we denote the usual modulus of continuity of f on the closed interval [0, b].

Theorem 2.2.9 let f ∈ Cx2 [0,∞) and ωb+1 ( f ; s) be its modulus of continuity on the

finite interval [0, b + 1] ⊂ [0,∞) with b > 0.Then for all n > 2, we have

‖Vn ( f ; x) − f (x)‖C|0,b| 6 6M f

(
1 + b2

)
δn (b) + 2ωb+1 ( f ; δ) ,

where δn (x) defined as in Lemma 2.2.5.

Proof:

| f (t) − f (x)| 6 6M f

(
1 + b2

)
(t − x)2 +

(
1 +
|t − x|
δ

)
ωb+1 ( f ; δ) ,

|Vn ( f ; x) − f (x)| 6 6M f

(
1 + b2

)
Mn

(
(t − x)2; x

)
+ ωb+1 ( f ; δ)

(
1 +

1
δn

Mn (t − x) ; x
)
.

From Lemma 2.2.5, for x ∈ [0, b] , we get

|Vn ( f ; x) − f (x)| 6 6M f

(
1 + b2

)
δn (x) + ωb+1 ( f ; δ)

(
1 +

1
δn

√
δn (x)

)
6 6M f

(
1 + b2

)
δn (b) + ωb+1 ( f ; δ)

(
1 +

1
δn

√
δn (b)

)
.

Finally, by choosing δ = δn (b), we arrive at the desired result.

Theorem 2.2.10 If f ∈ CB[0,∞) then for x ∈ [0,∞), we have∣∣∣V (α)
n ( f ; x) − f (x)

∣∣∣ ≤ 2ω f ;
√

V (α)
n

(
(ξ − x)2; x

)
,

where ω is the modulus of continuity of f [49] defined as:

ω ( f ; x) := sup
x,y∈[0,∞)
|x−y|≤δ

| f (x) − f (y)| .
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Proof: Applying the well-known property of ω ( f ; x), Lemma 2.2.3, we have

∣∣∣V (α)
n ( f ; x) − f (x)

∣∣∣ =

∞∑
k=0

[
β (k + 1, n)

]−1bn,k (x)

∞∫
0

Vn,k (t) f (t) dt

=

∣∣∣∣∣∣∣∣
∞∑

k=0

[
β (k + 1, n)

]−1b(α)
n,k (x)

∞∫
0

Vn,k ( f (t) − f (x)) dt

∣∣∣∣∣∣∣∣
=

∞∑
k=0

[
β (k + 1, n)

]−1bn,k (x)

∞∫
0

Vn,k ( f (t) − f (x)) dt

=

∞∑
k=0

[
β (k + 1, n)

]−1b(α)
n,k (x)

∫ ∞

0
Vn,k (t)

(
1 +

1
δ
|ξ − x|

)
dt

=

1 +
1
δ

∞∑
k=0

[
β (k + 1, n)

]−1

b(α)
n,k (x)

∫ ∞

0
Vn,k (t) |t − x| dt

ω ( f ; δ) .

For the integration, the following result holds by using Cauchy-Schwarz inequality

∣∣∣V (α)
n ( f ; x) − f (x)

∣∣∣ 6 [1 +
1
δ

∞∑
k=0

(β (k + 1, n) dξ)−1b(α)
n,k (x) (β (k + 1, n) dξ)1/2

×

(∫ ∞

0
β (k + 1, n)(ξ − x)2dξ

)1/2

dξ]ω ( f ; δ) .

Now using the last inequality for infinite sum and we have

∣∣∣V (α)
n ( f ; x) − f (x)

∣∣∣ 6 [
1 +

1
δ

{ ∞∑
k=0

(β (k + 1, n) dξ)−1b(α)
n,k (x)

∫ ∞

0
β (k + 1, n)dξ

}1/2

×

∞∑
k=0

(∫ ∞

0
β (k + 1, n) dξ

)−1

b(α)
n,k (x)

×

∫ ∞

0
β (k + 1, n) (ξ)(ξ − x)2dξ}1/2

]
ω ( f ; δ)

=

[
1 +

1
δ

V (α)
n (1; x)1/2

]
V (α)

n

(
(ξ − x)2; x

)1/2
ω ( f ; δ) .

By taking

δ =
{
V (α)

n ((ξ − x)2 ; x
)1/2

,

we get the required result.

2.2.3 Graphical Comparisons

Example 2.2.11 We have estimated the rate of convergence for the operators V (µ,υ)
m ( f ; x)

to the function f (x) = 9/2x2 − 2/9x + 1. In table, we estimated the absolute error Em =
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∣∣∣V (µ,υ)
m ( f ; x) − f (x)

∣∣∣ for different values of m = [20, 40, 60, 80], while keeping µ, υ=1. As

the conclusion comes from the error table for a large value of n the proposed operator

(2.21) converges to f (x).

Table 2.2: Table for absolute error Em =
∣∣∣V (µ,υ)

m ( f ; x) − f (x)
∣∣∣ with m = [20, 40, 60, 80].

x E20 E40 E60 E80

0 0.0365846 0.0225925 0.0159124 0.0122399

0.4 0.319678 0.142688 0.0916417 0.067467

0.8 0.920152 0.422625 0.274099 0.202792

1.2 1.76484 0.817217 0.531461 0.393736

1.6 2.85373 1.32647 0.863725 0.640298

2 4.18683 1.95037 1.27089 0.942478

Our postulated operators (2.21) is an enhanced operator that enables faster conver-

gence and better approximation. To emphasise our claim, we present a figure based on a

numerical example to demonstrate a quicker rate of convergence for our operators.

V20
(1,1)

V40
(1,1)

V60
(1,1)

f(x)

0.5 1.0 1.5 2.0

5

10

15

20

Figure 2.3: Considering m = [20, 40, 60, 80], the convergence of operators V (µ,υ)
m ( f ; x)

towards the function f (x) = 9/2x2 − 2/9x + 1.



Chapter 3

An Approach to Preserve Functions
with Exponential Growth by Modified
Lupaş-Kantrovich Operators

We propose a modification of the so-known Lupaş-Kantrovich operators that preserve

exponential function e−x. To support this claim, we estimate the convergence rate of the

operators in terms of both the usual and exponential modulus of continuity. The idea

of the moment-generating function is used to determine the moment and central moment

for modified operators. Our analysis also includes a global estimate and quantitative

Voronovskaya results to examine the asymptotic behaviour. At the end of this chapter,

we present a result and accompanying graphs to illustrate the efficiency of our modified

operators.

3.1 Introduction

King [98] received recognition in 2003 for his modification of Bernstein operators that

preserve test functions e0 and e2 on [0, 1]. Later, King drew the attention of scholars to

this topic, and they presented numerous related studies. Many researchers have done

exceptional work in this area by defining the operators that preserve e0 and e2, e2 + ae1

for a > 0, exponential functions, linear functions, and so on. According to the overall

purpose of this paper, we will limit the scope of our investigation to only preserving the

exponential functions. We know, studying how to preserve exponential functions is still

at its dawn. Let us provide some of the most recent sources for this subject here. Acar et

41
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al. [13], published the modification of Szász-Mirakyan operators that preserves e2ax, for

a ∈ (0,∞]. They discussed shape preservation properties and compared modified opera-

tors to Szász-Mirakyan operators. They also used a natural transformation to estimate the

error in terms of the modulus of continuity of first order. Further, these modified operators

[13] were studied in detail by Aral et al. [25], who demonstrated their importance from

a computational perspective. Acar et al. [12] calculated the approximation order using

a new proposed weighted modulus of smoothness and introduced the Szász-Mirakyan

operators that fix eαx and e2αx where α > 0 concurrently. Furthermore, they presented

some saturation results for their modified operators to illustrate the accuracy of their

estimates. Reader can also refer to the article [51; 73; 102] and references therein.

Many operators have been modified during the last four years using the same idea,

including Bernstein [25], Baskakov-Szász-Mirakyan [71], Stancu Szász-Mirakyan-

Durrmeyer operators [93], Phillips operators [76; 144], Baskakov-Schurer-Szász-Stancu

operators[136], and Baskakov-Schurer-Szász operators [148]. Also, Deo et al. [41; 47]

suggested the operators based on King’s technique that outperforms the Baskakov

Durrmeyer operators and Szász-Mirakyan Durrmeyer in terms of convergence rate.

Yilmaz et al. [149] altered the Baskakov-Kantorovich operators in such a way that we

get a sequence of operators that preserve constant functions and ex. The whole purpose

of our paper is to give an alteration of the operators [98] that preserves constant functions

and e−x.

3.1.1 Construction of Operators

In the year 1995, Lupaş [109] proposed discrete operators and established some

direct results. For f ∈ C[0,∞), the Lupaş operators are defined as

Gm ( f ; x) =

∞∑
k=0

gm,k (x) f
(

k
m

)
,

where

gm,k (x) = 2−mx (mx)k

2kk!
.

In [[77], Page No. 210], the modified form of Lupaş Kantorovich operators for the

objective of approximating integral functions is defined as:
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Gm ( f ; x) = (m + 1)
∞∑

k=0

2−mx (mx)k

2kk!

k+1
m+1∫
k

m+1

f (u)du. (3.1)

We aim to construct operators that preserve 1 and e−x. Let us assume operators (3.1) for

some function λm (x)

Gm
(
e−u;λ̄m (x)

)
= (m + 1)

∞∑
k=0

2−mλ̄m(x) (mλ̄(x))k

2kk!

k+1
m+1∫
k

m+1

e−udu,

therefore

Gm
(
e−u;λ̄m (x)

)
= − (m + 1) 2−mλ̄m(x)

(
e−

1
m+1 − 1

) ∞∑
k=0

(mλ̄(x))k

k!

e−
1

m+1

2

k

.

Now using the binomial series
∞∑

k=0

(a)k
k! zk = (1 − z)−a

|z| < 1, we obtain

Gm
(
e−u;λ̄m (x)

)
= − (m + 1) 2−mλ̄m(x)

(
e−

1
m+1 − 1

) 1 − e−
1

m+1

2

−mλ̄m(x)

= − (m + 1)
(
e−

1
m+1 − 1

) (
2 − e−

1
m+1

)−mλ̄m(x)
.

Taking Gm (e−u;λ̄m (x)) = e−x into account, we can calculate

λ̄m (x) =
x + log

(
(1 + m)

(
1 − e

−1
m+1

))
m log

(
2 − e−

1
m+1

) . (3.2)

We analyze the modified form of the operators (3.1) is

K̃m ( f ; x) = (m + 1)
∞∑

k=0

2−mλ̄m(x) (mλ̄(x))k

2kk!

k+1
m+1∫
k

m+1

f (u)du, (3.3)

whereλ̄m (x) is given in (3.2).

3.2 Preliminaries

Performing basic calculations, the moment-generating function of the operators (3.3) can

be expressed as:

K̃m

(
eθu; x

)
=

1
θ

(m + 1)
(
e

θ
m+1 − 1

) (
2 − e

θ
m+1

)−mλ̄m(x)
. (3.4)
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Since the moments are linked to the moment-generating function, the r−th moment

K̃m (er; x) , er(u) = ur (r ∈ N ∪ {0}) can be calculated by employing the following relation:

K̃m (er; x) =

[
∂r

∂θr K̃m

(
eθu; x

)]
θ=0

=

[
∂r

∂θr

1
θ

(m + 1)
(
e

θ
m+1 − 1

) (
2 − e

θ
m+1

)−mλ̄m(x)
]
θ=0
.

Employing Mathematica software, the expansion of the above statement in powers

of θ would be as follows:

K̃m

(
eθu; x

)
=

1
θ

(m + 1)
(
e

θ
m+1 − 1

) (
2 − e

θ
m+1

)−mλ̄m(x)

= 1 +
θ(2mλ̄m (x) + 1)

2(m + 1)
+
θ2

(
3m2 (λ̄m(x))2 + 9mλ̄m (x) + 1

)
6(m + 1)2

+
θ3

(
4m3 (λ̄m(x))3 + 30m2 (λ̄m(x))2 + 40mλ̄m (x) + 1

)
24(m + 1)3

+
θ4

(
5m4 (λ̄m(x))4 + 70m3 (λ̄m(x))3 + 250m2 (λ̄m(x))2 + 215mλ̄m (x) + 1

)
120(m + 1)4 + O

(
θ5

)
. (3.5)

Moreover, by changing the scale attribute of moment-generating function, if we

can expand e−θxK̃m

(
eθu; x

)
in powers of θ, the r-th order central moment ψr (x) =

K̃m ((u − x)r; x) may be produced by accumulating the coefficient of θr

r! .

e−θxK̃m

(
eθu; x

)
= e−θx 1

θ
(m + 1)

(
e

θ
m+1 − 1

) (
2 − e

θ
m+1

)−mλ̄m(x)

= 1 +
θ(2mλ̄m (x) − 2mx − 2x + 1)

2(m + 1)

+
θ2

6(m + 1)2 (3m2 (λ̄m(x))2 + 3m2x2 − 6m2λ̄m (x) x + 9mλ̄m (x) + 6mx2 − 6mλ̄m (x) x

− 3mx + 3x2 − 3x + 1)

+
θ3

24(m + 1)3 (4m3 (λ̄m(x))3 − m3x3 + 12m3λ̄m (x) x2 − 12m3 (λ̄m(x))2x + 30m2 (λ̄m(x))2

− 12m2x3 + 24λ̄m (x) m2x2 + 6m2x2 − 12m2 (λ̄m(x))2x − 36m2λ̄m (x) x + 40mλ̄m (x)

− 12mx3 + 12mλ̄m (x) x2 + 12mx2 − 36mλ̄m (x) x − 4mx − 4x3 + 6x2 − 4x + 1)

+
θ4

120(m + 1)4 (5m4 (λ̄m(x))4 + 5m4x4 − 20m4λ̄m (x) x3 + 30m4 (λ̄m(x))2x2 − 20m4 (λ̄m(x))3x

+ 70m3 (λ̄m(x))3 + 20m3x4 − 60m3λ̄m (x) x3 − 10m3x3 + 60m3 (λ̄m(x))2x2 + 90m3λ̄m (x) x2

− 20m3 (λ̄m(x))3x − 150m3 (λ̄m(x))2x + 250m2 (λ̄m(x))2 + 30m2x4 − 60m2λ̄m (x) x3 − 30m2x3

+ 30m2 (λ̄m(x))2x2 + 180m2λ̄m (x) x2 + 10m2x2 − 150m2 (λ̄m(x))2x − 200m2λ̄m (x) x

+ 215mλ̄m (x) + 20mx4 − 20mλ̄m (x) x3 − 30mx3 + 90mλ̄m (x) x2 + 20mx2 − 200mλ̄m (x) x

− 5mx + 5x4 − 10x3 + 10x2 − 5x + 1) + O
(
θ5

)
.
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Lemma 3.2.1 We calculate the moments of the proposed operator (3.3) using (3.5) as

described below:

K̃m (e0; x) = 1;

K̃m (e1; x) =
(2mλ̄m (x) + 1)

2(m + 1)
;

K̃m (e2; x) =

(
3m2 (λ̄m(x))2 + 9mλ̄m (x) + 1

)
3(m + 1)2 ;

K̃m (e3; x) =

(
4m3 (λ̄m(x))3 + 30m2 (λ̄m(x))2 + 40mλ̄m (x) + 1

)
4(m + 1)3 ;

K̃m (e4; x) =

(
5m4 (λ̄m(x))4 + 70m3 (λ̄m(x))3 + 250m2 (λ̄m(x))2 + 215mλ̄m (x) + 1

)
5(m + 1)4 .

Lemma 3.2.2 As a result of the above analysis, the first four central moments are as

follows:

ψ1 (x) =
1

2(m + 1)
(2mλ̄m (x) − 2mx − 2x + 1);

ψ2 (x) =
1

3(m + 1)2 (3m2 (λ̄m(x))2 + 3m2x2 − 6m2λ̄m (x) x + 9mλ̄m (x) + 6mx2

− 6mλ̄m (x) x − 3mx + 3x2 − 3x + 1);

ψ3 (x) =
1

4(m + 1)3 (4m3 (λ̄m(x))3 − 4m3x3 + 12m3λ̄m (x) x2 − 12m3 (λ̄m(x))2x

+ 30m2 (λ̄m(x))2 − 12m2x3 + 24m2λ̄m (x) x2 + 6m2x2 − 12m2 (λ̄m(x))2x

− 36m2λ̄m (x) x + 40mλ̄m (x) − 12mx3 + 12mλ̄m (x) x2 + 12mx2 − 36mλ̄m (x) x

− 4mx − 4x3 + 6x2 − 4x + 1);

ψ4 (x) =
1

5(m + 1)4 (5m4 (λ̄m(x))4 + 5m4x4 − 20m4λ̄m (x) x3 + 30m4 (λ̄m(x))2x2

− 20m4 (λ̄m(x))3x + 70m3 (λ̄m(x))3 + 20m3x4 − 60m3λ̄m (x) x3 − 10m3x3

+ 60m3 (λ̄m(x))2x2 + 90m3λ̄m (x) x2 − 20m3 (λ̄m(x))3x − 150m3 (λ̄m(x))2x

+ 250m2λ̄m (x)2 + 30m2x4 − 60m2λ̄m (x) x3 − 30m2x3 + 30m2 (λ̄m(x))2x2

+ 180m2λ̄m (x) x2 + 10m2x2 − 150m2 (λ̄m(x))2x − 200m2λ̄m (x) x + 215nλ̄m (x)

+ 20nx4 − 20nλ̄m (x) x3 − 30nx3 + 90nλ̄m (x) x2 + 20nx2 − 200nλ̄m (x) x

− 5nx + 5x4 − 10x3 + 10x2 − 5x + 1).

Also,

lim
m→∞

mψ1 (x) = lim
m→∞

m
[
(2mλ̄m (x) − 2mx − 2x + 1)

2(m + 1)

]
= x
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and

lim
m→∞

mψ2 (x) = lim
m→∞

m
3(m + 1)2

[
3m2(λ̄m(x))2 + 3m2x2 − 6m2λ̄m (x) x + 9mλ̄m (x)

+6mx2 − 6mλ̄m (x) x − 3mx + 3x2 − 3x + 1
]

= 2x.

3.3 Main Results

The subspace of real-valued continuous functions with uniform norms that have finite

limits at infinity can be represented as C∗[0,∞). For a function over an infinite interval,

Boyanov [35] described its approximation properties. Holhoş [82] later proved the next

theorem to figure out how fast a function will converge.

Theorem 3.3.1 Let Q : C∗[0,∞)→ C∗[0,∞) be the sequence of linear positive operators

and

‖Q (e0) − 1‖[0,∞) = α1(m);∥∥∥Q
(
e−u) − e−x

∥∥∥
[0,∞)

= α2(m);∥∥∥∥Q
(
e−2u

)
− e−2x

∥∥∥∥
[0,∞)

= α3(m).

Then

‖Qm f − f ‖[0,∞) ≤ α1(m)‖ f ‖[0,∞) + (2 + α1(m))ω∗( f ;
√
α1(m) + 2α2(m) + α3(m)).

The modulus of continuity can be expressed as:

ω∗(ṽ; δ) = sup
|e−x−e−u|≤δ

x,u >0

|ṽ (x) − ṽ (u)| ,

with the property

|ṽ (u) − ṽ (x)| ≤
(
1 +

(e−u − e−x)2

δ2

)
ω∗ (ṽ; δ) , δ > 0. (3.6)

In the presented theorem, we present quantitative estimates for proposed operators

as an application of the previous theorem.

Theorem 3.3.2 For f ∈ C∗[0,∞), the inequality∥∥∥K̃m f − f
∥∥∥

[0,∞)
≤ 2ω∗

(
f ,

√
α3(m)

)
,

holds true. Here K̃m f converges to f uniformly and α3(m)→ 0 as m→ ∞.

Proof: The operators preserve constant functions as well as e−x, so α1(m) = α2(m) = 0.
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Now, we simply need to evaluate α3(m).

From (3.4), we obtain

K̃m

(
e−2u; x

)
=
−1
2

(m + 1)
(
e
−2

m+1 − 1
) (

2 − e
−2

m+1
)−λ̄m(x)

,

where

λ̄m (x) =
x + log

(
(1 + m)

(
1 − e

−1
m+1

))
m log

(
2 − e−

1
m+1

) .

Employing Mathematica software, we obtain

K̃m

(
e−2u; x

)
= e−2x +

2xe−2x

m
+

(
24x2 − 72x − 11

)
e−2x

12m2 + O
( 1

m

)3 .
Since

sup
x∈[0,∞)

xe−2x =
1
2e
, sup

x∈[0,∞)
x2e−2x =

1
e2 .

So, we obtain

α3(m) =
∥∥∥∥K̃m

(
e−2u

)
− e−2x

∥∥∥∥
[0,∞)

= sup
x∈[0,∞)

∣∣∣∣K̃m

(
e−2u

)
− e−2x

∣∣∣∣
≤

1
m

(
1
e

)
+

1
m2

(
2
e2 +

3
e

+
11
12

)
+ O

( 1
m

)3
≤ O

(
1
m

)
→ 0 as m→ ∞.

Remark 3.3.3 With the aid of Mathematica and Lemma 3.2.2, we find

lim
n→∞

m2ψ4 (x) = lim
n→∞

m2

5(n + 1)4

[
5m4 (λ̄m(x))4 + 5m4x4 − 20m4λ̄m (x) x3 + 30m4 (λ̄m(x))2x2

− 20m4 (λ̄m(x))3x + 70m3 (λ̄m(x))3 + 20m3x4 − 60m3λ̄m (x) x3 − 10m3x3

+ 60m3 (λ̄m(x))2x2 + 90m3λ̄m (x) x2 − 20m3 (λ̄m(x))3x − 150m3 (λ̄m(x))2x

+ 250m2λ̄m (x)2 + 30m2x4 − 60m2λ̄m (x) x3 − 30m2x3 + 30m2 (λ̄m(x))2x2

+ 180m2λ̄m (x) x2 + 10m2x2 − 150m2 (λ̄m(x))2x − 200m2λ̄m (x) x

+ 215mλ̄m (x) + 20mx4 − 20mλ̄m (x) x3 − 30mx3 + 90mλ̄m (x) x2 + 20mx2

− 200mλ̄m (x) x − 5mx + 5x4 − 10x3 + 10x2 − 5x + 1
]

= 12x2,

and

lim
m→∞

m2K̃m

((
e−x − e−u)4; x

)
= 12e−4xx2.
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Theorem 3.3.4 For x ∈ [0,∞), and f , f ′′ ∈ C∗[0,∞), we obtain∣∣∣∣m [
K̃m ( f ; x) − f (x)

]
− x

[
f ′ (x) + f ′′ (x)

]∣∣∣∣
≤ |αm (x)| | f ′ (x)| + |βm (x)| | f ′′ (x)| + 4ω∗

(
f ′′,

1
√

m

)
((βm (x) + x) + γm (x)) .

Proof: Using Taylor’s expansion, we obtain

f (u) = f (x) + (u − x) f ′ (x) +
1
2

(u − x)2 f ′′ (x) + ṽ (u, x) (u − x)2,

where

ṽ (u, x) =
f ′′ (µ) − f ′′ (x)

2
, x < µ < u.

Applying the operators K̃m to both sides of the aforementioned expression and the

Lemma (3.2.2) results in the following expression:∣∣∣∣∣K̃m ( f ; x) − f (x) − ψ1 (x) f ′ (x) −
1
2
ψ2 (x) f ′′ (x)

∣∣∣∣∣ ≤ ∣∣∣∣K̃m

(
ṽ (u, x) (u − x)2; x

)∣∣∣∣ .
Using Lemma 3.2.2, we get∣∣∣∣∣m [

K̃m ( f ; x) − f (x)
]
− x f ′ (x) −

1
2

(2x) f ′′ (x)
∣∣∣∣∣

≤ |m (ψ1 (x)) − x| | f ′ (x)| +
1
2
|m (ψ2 (x)) − 2x| | f ′′ (x)|

+
∣∣∣∣mK̃m

(
ṽ (u, x) (u − x)2; x

)∣∣∣∣ .
Taking αm (x) = m (ψ1 (x)) − x and βm (x) = 1

2 |m (ψ2 (x)) − 2x| , we get∣∣∣∣m [
K̃m ( f ; x) − f (x)

]
− x

[
f ′ (x) + f ′′ (x)

]∣∣∣∣
≤ |αm (x)| | f ′ (x)| + |βm (x)| | f ′′ (x)| +

∣∣∣∣mK̃m

(
ṽ (u, x) (u − x)2; x

)∣∣∣∣ .
To conclude our proof, we need to find the estimate of

∣∣∣∣nK̃m

(
ṽ (u, x) (u − x)2; x

)∣∣∣∣ . Employ-

ing inequality (3.6), we arrive at

|ṽ (u, x)| ≤
(
1 +

(e−u − e−x)2

δ2

)
ω∗

(
f ′′; δ

)
.

For the cases |e−u − e−x| ≤ δ and |e−u − e−x| > δ the two inequalities

|ṽ (u, x)| ≤ 2ω∗
(
f ′′; δ

)
and |ṽ (u, x)| ≤

2(e−u − e−x)2

δ2 ω∗
(
f ′′; δ

)
,

holds true respectively.

Thus

|ṽ (u, x)| ≤ 2
(
1 +

(e−u − e−x)2

δ2 ω∗
(
f ′′; δ

))
.
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Making use of the preceding argument and Cauchy-Schwarz inequality, we obtain

mK̃m

(
ṽ (u, x) (u − x)2; x

)
≤ mK̃m

(
2
(
1 +

(e−u − e−x)2

δ2 ω∗
(
f ′′, δ

))
(u − x)2; x

)
= 2m (ψ2 (x))ω∗

(
f ′′, δ

)
+

2m
δ2 ω

∗ ( f ′′, δ
)
K̃m

((
e−u − e−x)2(u − x)2; x

)
= 2ω∗

(
f ′′, δ

) [
m (ψ2 (x)) +

m
δ2

(ψ4 (x))1/2
(
K̃m

((
e−u − e−x)2; x

))1/2
]
.

Conclude the result by selecting δ = 1
√

m and γm (x) = (ψ4 (x))1/2
(
K̃m

(
(e−u − e−x)2; x

))1/2
.

Theorem 3.3.5 For f , f ′′ ∈ C∗[0,∞) and x ∈ [0,∞), the following equality holds

lim
m→∞

m
[
K̃m ( f ; x) − f (x)

]
= x

[
f ′ (x) + f ′′ (x)

]
.

Proof: With the help of Taylor’s expansion of f , we obtain

f (u) = f (x) + (u − x) f ′ (x) +
1
2

(u − x)2 f ′′ (x) + ṽ (u, x) (u − x)2, (3.7)

where

lim
u→x

ṽ (u, x) = 0.

Applying K̃m to both sides of (3.7) and from Lemma 3.2.2, we obtain

K̃m ( f ; x) − f (x) = ψ1 (x) f ′ (x) +
1
2
ψ2 (x) f ′′ (x) + K̃m

(
ṽ (u, x) (u − x)2; x

)
.

The Cauchy-Schwarz inequality can be used to determine

K̃m

(
ṽ (u, x) (u − x)2; x

)
≤

√
K̃m

(
ṽ2 (u, x) ; x

)
K̃m

(
(u − x)4; x

)
. (3.8)

Also, we have

lim
m→∞
K̃m

(
ṽ2 (u, x) ; x

)
= 0. (3.9)

From (3.8) and (3.9), we obtain

lim
m→∞

mK̃m

(
ṽ (u, x) (u − x)2; x

)
= 0.

Thus we achieve

lim
m→∞

m
[
K̃m ( f ; x) − f (x)

]
= lim

n→∞
m

[
ψ1 (x) f ′ (x) +

1
2
ψ2 (x) f ′′ (x) + K̃m

(
ṽ (u, x) (u − x)2; x

)]
= x

[
f ′ (x) + f ′′ (x)

]
.
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Let CB [0,∞) denote the space of real-valued continuous and bounded function f on

the interval [0,∞), endowed with the norm,

‖ f ‖ = sup
x∈[0,∞)

| f (x)| .

For any δ > 0, the Peetre’s K-functional is defined by:

K2 ( f ; δ) = inf
l∈CB[0,∞)

{‖ f − l‖ + δ ‖l′′‖} ,

where

C2
B [0,∞) = {g ∈ CB [0,∞) : l′, l′′ ∈ CB [0,∞)} .

By DeVore and Lorentz [49] there exist an absolute constant C > 0 such that

K2 ( f ; δ) 6 Cω2

(
f ;
√
δ
)
,

where the modulus of continuity of second order is denoted by

ω2

(
f ;
√
δ
)

= sup
x∈[0,∞)

sup
0<h6

√
δ

| f (x + 2h) − 2 f (x + h) + f (x)| .

Theorem 3.3.6 Let f ∈ CB[0,∞), then the inequality

∣∣∣K̃m ( f ; x) − f (x)
∣∣∣ ≤ Mω2

 f ;
1
2

√
ψ2 (x) +

(
(2mλ̄m(x)+1)

2(m+1) − x
)2

2

+ω
(

f ;
(
(2mλ̄m (x) + 1)

2(m + 1)
− x

))
,

holds true for all x ∈ [0,∞) and a positive constant M.

Proof: We establish the auxiliary operators Km : CB[0,∞)→ CB[0,∞)

Km ( f ; x) = K̃m (v; x) + f (x) − f
(
(2mλ̄m (x) + 1)

2(m + 1)

)
.

For the operators (3.3), we have ∥∥∥K̃m ( f ; x)
∥∥∥ ≤ ‖ f ‖ ,

implies

‖Km ( f ; x)‖ ≤ 3 ‖ f ‖ . (3.10)

Additionally, for ~ ∈ C2
B[0,∞), Taylor expansion is presented as:

ṽ (u) − ṽ (x) = (u − x) ṽ′ (x) +

u∫
x

(u − µ)ṽ′′ (µ) dµ, x ∈ R[0,∞).
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By applying operators Km ( f ; x) on both sides of the above equation and utilizing the

Cauchy-Schwarz inequality, we obtain

|Km (ṽ; x) − ṽ (x)| =

∣∣∣∣∣∣∣∣Km


u∫

x

(u − µ)ṽ′′ (µ) dµ; x


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣K̃m


u∫

x

(u − µ)ṽ′′ (µ) dµ; x


∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣∣
(2mλ̄m(x)+1)

2(m+1)∫
x

(
(2mλ̄m (x) + 1)

2(m + 1)
− µ

)
ṽ′′ (µ) dµ

∣∣∣∣∣∣∣∣∣∣
≤ ‖ṽ′′‖

ψ2 (x) +

(
(2mλ̄m(x)+1)

2(m+1) − x
)2

2

 . (3.11)

Using the estimates from equations (3.10) and (3.11), we can finally conclude that∣∣∣K̃m ( f ; x) − f (x)
∣∣∣

≤ |Km ( f − ṽ; x) − ( f − ṽ) (x)| +

∣∣∣∣∣∣ f
(
(2mλ̄m (x) + 1)

2(m + 1)

)
− f (x)

∣∣∣∣∣∣ + |Km (ṽ; x) − ṽ (x)|

≤ 4 ‖ f − ṽ‖ +

ψ2 (x) +

(
(2mλ̄m(x)+1)

2(m+1) − x
)2

2

 ‖ṽ′′‖ +

∣∣∣∣∣∣v
(
(2mλ̄m (x) + 1)

2(m + 1)

)
− f (x)

∣∣∣∣∣∣
≤ 4K2

 f ,
1
4

ψ2 (x) +

(
(2mλ̄m(x)+1)

2(m+1) − x
)2

2


 +

∣∣∣∣∣∣ f
(
(2mλ̄m (x) + 1)

2(m + 1)

)
− f (x)

∣∣∣∣∣∣
≤ Mω2

 f ,
1
2

√√√√√ψ2 (x) +

(
(2mλ̄m(x)+1)

2(m+1) − x
)2

2


 + ω

(
f ,

(
(2mλ̄m (x) + 1)

2(m + 1)
− x

))
.

3.4 Graphical Comparisions

Example 3.4.1 The function f (x) = cos(x) is approximated by the operators K̃m in

Figure 3.1 for n = 10, 20, 40. The operators (3.3) clearly converges to the function f (x)

as n is increased. We calculate the error |K̃m ( f ; x) − f (x)| in Table 3.1 and also give a

graph depicting the error in Figure 3.2.
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n=10

n=20

n=40

f

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.1: Approximation behaviour of K̃m for the function f (x) = cos(x).

Table 3.1: Estimation of absolute error |K̃m ( f ; x)− f (x)| for the function f (x) = cos(x) at

different values of n = 10, 20, 40, 60.

.

x n = 10 n = 20 n = 40 n = 60
π
2 0.107714 0.0648587 0.0356679 0.0245513

π 0.286407 0.152325 0.0777487 0.0520773
3π
2 0.236268 0.166841 0.0992171 0.0700621

2π 0.528039 0.296931 0.154454 0.103863

n=10

n=20

n=40

n=60

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

Figure 3.2: Absolute error |K̃m ( f ; x) − f (x)| of the proposed operators for f (x) = cos(x)

with n = 10, 20, 40, 60.



Chapter 4

Study of Operators Associated with
Inverse Pólya-Eggenberger Distribution

Researchers have spent the last few decades studying a large array of approximation oper-

ators due to the development of the theory of inverse Pólya-Eggenberger distribution. This

chapter focuses mainly on the investigation of a modification of certain inverse Pólya-

Eggenberger distribution. In the first section, we introduce the Bézier variant of a se-

quence of summation-integral type operators involving inverse Pólya-Eggenberger distri-

bution and Păltănea operators [126]. For these operators, we estimate the approximation

behaviour including first and second-order modulus of smoothness. Lastly, we establish

the rate of convergence for a class of functions with derivatives of bounded variation. In

the second section, we explore the approximation properties of a non-negative real para-

metric generalization of the Baskakov operators using the inverse Pólya-Eggenberger

(I-P-E) distribution. As a result of this study, we can obtain some approximation results,

including the Voronovskaya type asymptotic formula, error estimate in terms of modulus

of continuity and in the sense of k-functional, and weighted approximation.

4.1 Bézier Variant of Summation-Integral Type

Operators

4.1.1 Introduction

In 1970, Stancu [142] presented the generalization of Baskakov operators using

the concept of inverse Pólya-Eggenberger distribution (IPED) with subject to parameter

53
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β ≥ 0. For ϕ ∈ C[0,∞), these operators are defined as follows:

L(β)
n (ϕ; x) =

∞∑
r=0

 n + r − 1

r


r−1∏
i=0

(x + iβ)
n−1∏
j=0

(1 + jβ)

n+r−1∏
k=0

(x + 1 + kβ)
f
( r
n

)

=

∞∑
r=0

w(β)
n,r(x) f

( r
n

)
, x ∈ [0,∞). (4.1)

In the current decade, several researchers proposed various operators and their vari-

ants based on PED as well as IPED and studied their approximation properties

and interesting results. For more literature on this topic, one can refer to articles

[5; 44; 46; 50; 52; 53; 78; 85; 95].

In 2003, Srivastava-Gupta [139] introduced a widespread family of positive linear

operators and contemplated their estimated properties and interesting results. In light

of this work, we consider summation-integral type operators involving inverse Pólya-

Eggenberger distribution [142] and Păltănea operators [126].

For ρ ≥ 0, we consider the integral-type operators, which is a generalisation of the

operators (4.1):

L̂(β)
n (ϕ; x) =

∞∑
r=1

w(β)
n,r(x)

∫ ∞

0
χρn,r (t)ϕ(t)dt + w

(β)
n,0(x)ϕ (0) , (4.2)

where

χρn,r(t) =


nρ

Γ(rρ)e
−nρt(nρt)rρ−1, c = 0

Γ( nρ
c +rρ)

Γ(rρ)Γ( nρ
c )

crρtrρ−1

(1+ct)
nρ
c +rρ

, c ∈ N,

(4.3)

and ∫ ∞

0
χρn,r(t)t

jdt =


Γ(rρ+ j)
Γ(rρ)

1∏ j
i=1 (nρ − ic)

, j , 0

1, j = 0.
(4.4)

The operators (4.2) were also studied by Kajla et al. [95] for c = 0. Now we introduce

the Bézier variant of (4.2) for θ ≥ 1 as follows:

L̂(β)
n,θ(ϕ; x) =

∞∑
r=1

wθ,βn,r(x)
∫ ∞

0
χρn,r (t)ϕ(t)dt + w

θ,β
n,0(x)ϕ (0) , (4.5)

where wθ,βn,r(x) =
(
Jβn,r(x)

)θ
−

(
Jβn,r+1(x)

)θ
and Jβn,r(x, c) =

∞∑
j=r
w

(β)
n, j(x). It is obvious that the

operators L(β)
n,θ(.; x) are the linear positive operators.



4.1 Bézier Variant of Summation-Integral Type Operators 55

Special Cases:

(1) For c = 0 and θ = 0, the operators (4.5) reduce to Baskakov-Szász type operators

based on inverse Polya-Eggenberger-distribution [95].

(2) For c = β = 0 and θ = ρ = 1, the operators (4.5) include Baskakov-Szász operators

(see [2; 80]).

(3) For c = β = 0, θ = 1 and ρ → ∞, the operators (4.5) reduce to Baskakov operators

[30].

(4) For c = 0, θ = 1, β > 0 and ρ → ∞, the operators (4.5) include Stancu operators

[142].

A lot of work has already been done on summation-integral type operators involving

various linear positive operators and analysis of their convergence results. We refer to the

readers some interesting articles (see [7; 37; 39; 81; 118; 130]) for more information.

The vital target of the paper is to contemplate the approximation properties of opera-

tors (4.5) including K-functional and second-order modulus of smoothness. Lastly, we set

up the rate of convergence for functions with a class of derivative of bounded variation.

4.1.2 Preliminaries

Lemma 4.1.1 For ek(x) = xk, k = 0, 1, 2, . . . , the moments of positive linear operators

(4.2) are as follows:

L̂(β)
n (e0; x) = 1;

L̂(β)
n (e1; x) =

nρx
(1 − β)(nρ − c)

;

L̂(β)
n (e2; x) =

nρx
(1 − β)(nρ − c)(nρ − 2c)

[
ρ
{(n + 1) (x + β) + (1 − 2β)}

1 − 2β
+ 1

]
.

Lemma 4.1.2 For n ∈ N and with the help of Lemma 4.1.1, the central moments of the

operators (4.2) are as follows:

L̂(β)
n

(
(e1 − x); x

)
=

(1 − β)c + nβρ
(1 − β)(nρ − c)

x;

L̂(β)
n

(
(e1 − x)2; x

)
=

nρ
[
1 + ρ + β {(n − 1)ρ − 2}

]
(1 − β) (1 − 2β)(nρ − c)(nρ − 2c)

x

+
2c2(1 − 3β + 2β2) + c(1 + β − 6β2)nρ + {1 + β(1 + 2β)n} nρ2

(1 − β) (1 − 2β)(nρ − c)(nρ − 2c)
x2.
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Further, for every x ∈ [0,∞), L̂(β)
n

(
(e1 − x)m; x

)
is a polynomial in x of degree m with

L̂(β)
n

(
(e1 − x)m; x

)
= O

(
1

n−[(m+1)/2]

)
, as n→ ∞.

Lemma 4.1.3 If β = β (n)→ 0 as n is sufficient large and lim
n→∞

nβ (n) = s ∈ R, then

(i) lim
n→∞

nL̂(β)
n

(
(e1 − x); x

)
=

(
s + c

ρ

)
x;

(ii) lim
n→∞

nL̂(β)
n

(
(e1 − x)2; x

)
=

(
1 + s + 1

ρ

)
x +

(
1 + s + c

ρ

)
x2 6

(
1 + s + c

ρ

)
(1 + x) x.

Lemma 4.1.4 For every ϕ ∈ CB[0,∞), we have∣∣∣L̂(β)
n,θ (ϕ(t); x)

∣∣∣ ≤ θL̂(β)
n (‖ϕ‖ ; x) ≤ θ ‖ϕ‖ .

Proof: For 0 ≤ l1 ≤ l2 ≤ 1, θ ≥ 1, using the inequality∣∣∣lβ1 − lβ2
∣∣∣ ≤ θ |l1 − l2| ,

and from the definition of wθ,βn,r(x), we get

0 <
(
Jβn,r(x)

)θ
−

(
Jβn,r+1(x)

)θ
≤ θ

(
Jβn,r(x) − Jβn,r+1(x)

)
= θJβn,0(x).

Hence ∣∣∣L̂(β)
n,θ (ϕ(t); x)

∣∣∣ ≤ θL̂(β)
n (‖ϕ‖ ; x) ≤ θ ‖ϕ‖ .

4.1.3 Direct Estimates

Suppose CB [0,∞) denotes the class of continuous and bounded functions in [0,∞)

with norm ‖ϕ‖ = sup
x∈[0,∞)

|ϕ(x)|.

The usual modulus of smoothness for function ϕ ∈ CB [0,∞) is defined as follows:

ω
(
ϕ;
√
δ
)

= sup
0<h≤

√
δ

sup
x∈[0,∞)

|ϕ (x + h) − ϕ (x)| ,

and let

ω2

(
ϕ;
√
δ
)

= sup
0<h≤

√
δ

sup
x∈[0,∞)

|ϕ (x + 2h) − 2ϕ (x + h) + ϕ (x)| ,

be the second order modulus of continuity and corresponding K-functional is defined as

follows:

K2 (ϕ; δ) := inf
x∈C2

B[0,∞)

{
‖ϕ − g‖ + δ ‖g′‖ + δ2 ‖g′′‖ : g ∈ C2

B [0,∞)
}
, δ > 0,
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where C2
B [0,∞) = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)}.

From DeVore and Lorentz ([49], p.177., Theorem 2.4), the following inequality

holds for M > 0:

K2 (ϕ; δ) 6 Mω2

(
ϕ;
√
δ
)
. (4.6)

Theorem 4.1.5 For ϕ ∈ CB[0,∞), we have

∣∣∣L̂(β)
n,θ(ϕ; x) − ϕ(x)

∣∣∣ ≤ 1 +

((
1 + s +

c
ρ

)
θx(1 + x)

) 1
2
ω

(
f ;

1
√

n

)
.

Proof: By linearity property of L̂(β)
n,θ(.; x) , we have

∣∣∣L̂(β)
n,θ(ϕ; x) − ϕ(x)

∣∣∣ ≤∫ ∞

0
K θ

n (x, t; c) |ϕ(t) − ϕ(x)| dt

≤

∫ ∞

0
K θ

n (x, t; c)
(
1 +
|t − x|
δ

)
dt.

Using Holder’s inequality on the right-hand side of the above expression, we have∣∣∣L̂(β)
n,θ(ϕ; x) − ϕ(x)

∣∣∣ ≤{
1 +

1
δ

(
L̂(β)

n,θ((t − x)2; x)
) 1

2

}
ω (ϕ; δ)

≤

{
1 +

1
δ

(
θL̂(β)

n ((t − x)2; x)
) 1

2

}
ω (ϕ; δ) .

By using Lemma 4.1.3, Lemma 4.1.4 and choosing δ = 1
√

n , we obtain the result.

Theorem 4.1.6 For ϕ ∈ CB[0,∞), we have

∣∣∣L̂(β)
n,θ(ϕ(t); x) − ϕ(x)

∣∣∣ ≤ Mω2

ϕ;

√
θ

1
2 δc,s

n,ρ(x)

 ,
where δc,s

n,ρ(x) =

√
L̂(β)

n (t − x)2; x).

Proof: Using Taylor’s expansion for g ∈ C2
B and x, t ∈ [0,∞), we get

g (t) = g (x) + (t − x) g′ (x) +

∫ t

x
(t − u) g′′ (u) du.

Applying L̂(β)
n,θ on both sides of the above expansion, we get

L̂(β)
n,θ(g(t); x) − g(x) = g′(x)L̂(β)

n,θ ((t − x); x) + L̂(β)
n,θ

(∫ t

x
(t − u) g′′ (u) du; x

)
.
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Using Cauchy-Schwarz inequality, Lemma 4.1.3 and Lemma 4.1.4, we get∣∣∣L̂(β)
n,θ(g(t); x) − g(x)

∣∣∣ ≤ ∣∣∣g′(x)L̂(β)
n,θ ((t − x); x)

∣∣∣ +

∣∣∣∣∣∣L̂(β)
n,θ

(∫ t

x
(t − u) g′′ (u) du; x

)∣∣∣∣∣∣
≤ ‖g′‖ L̂(β)

n,θ (|t − x| ; x) +
‖g′′‖

2
L̂(β)

n,θ

(
(t − x)2; x

)
≤ ‖g′‖

(
L̂(β)

n,θ

(
(t − x)2; x

)) 1
2

+
‖g′′‖

2
L̂(β)

n,θ

(
(t − x)2; x

)
≤
√
θ ‖g′‖ δc,s

n,ρ(x) +
θ ‖g′′‖

2

(
δc,s

n,ρ(x)
)2
. (4.7)

Using Lemma 4.1.4 and (4.7), we obtain∣∣∣L̂(β)
n,θ(ϕ(t); x) − ϕ(x)

∣∣∣ ≤ ∣∣∣L̂(β)
n,θ(ϕ(t) − g(t); x)

∣∣∣ +
∣∣∣L̂(β)

n,θ(g(t); x) − g(x)
∣∣∣ + |ϕ(x) − g(x)|

≤(θ + 1) ‖ϕ − g‖ +
√
θ ‖g′‖ δc,s

n,ρ(x) +
θ ‖g′′‖

2

(
δc,s

n,ρ(x)
)2
.

Taking the infimum on the right-hand side of the above inequality over g ∈ C2
B, we get∣∣∣L̂(β)

n,θ(ϕ(t); x) − ϕ(x)
∣∣∣ ≤ (θ + 1)K2

(
ϕ; θ

1
2 δc,s

n,ρ(x)
)
.

Using relation (4.31), we obtain the required result.

4.1.4 Rate of Convergence

In this section, we discuss the rate of convergence by means of the decomposition

technique of functions with a derivative of bounded variation (DBV).

Let ϕ ∈ DBVγ ∈ [0,∞) , γ > 0, be the class of all functions defined on [0,∞),

having a derivative of bounded variation on every finite subinterval of [0,∞) and

|ϕ (t)| 6 Mtγ, M > 0.

The function ϕ ∈ DBVγ [0,∞), we may write

ϕ (x) =

∫ x

0
g (t) dt + ϕ(0),

where g(t) is a function of bounded variation on each finite subinterval of [0,∞).

We may rewrite the operators (4.2) as:

L̂(β)
n,θ(ϕ; x) =

∫ ∞

0
K θ

n (x, t; c)ϕ (t) dt, (4.8)

where K θ
n (x, t; c) is the kernel function given by

K θ
n (x, t; c) =

∞∑
r=1

wβ,θn,r(x)χρn,r (t) dt + w
β,θ
n,0(x)δ (t) ,
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where δ (t) is the Dirac delta function. We denote the auxiliary function f ′x by

ϕ′x(t) =


ϕ′(t) − ϕ′(x−), 0 6 t < x,

0, t = x,

ϕ′(t) − ϕ′(x+), 0 < t < ∞.

(4.9)

Lemma 4.1.7 Let β = β(n) → 0 as n → ∞ and lim
n→∞

nβ(n) = s ∈ R. For all x ∈ (0,∞)

and n is sufficiently large, we have

(i) ςβ,cn,θ (x, y; c) =
∫ y

0
K θ

n (x, t; c) dt 6 ((1+s)ρ+c)
nρ

θx(1+x)
(x−y)2 , 0 6 y < x;

(ii) 1 − ςβ,cn,θ (x, z; c) =
∫ ∞

z
K θ

n (x, t; c) dt 6 ((1+s)ρ+c)
nρ

θx(1+x)
(z−x)2 , x < z < ∞.

Proof: In view of Lemma 4.1.3 and Lemma 4.1.4, first we prove (i)∫ y

0
K θ

n (x, t; c) dt 6
∫ y

0

(x − t)2

(x − y)2K
θ
n (x, t; c) dt

6 θ (x − y)−2 L̂(β)
n

(
(e1 − x)2; x

)
6

((1 + s)ρ + c)
nρ

θx (1 + x)
(x − y)2 .

The proof of (ii) is similar to (i), so we omit the details.

Theorem 4.1.8 Let ϕ ∈ DBV [0,∞) , β = β(n) → 0 as n → ∞ and lim
n→∞

nβ(n) = s ∈ R.

Then for every x ∈ (0,∞) and sufficient large n, we have∣∣∣L̂(β)
n,θ (ϕ; x) − ϕ(x)

∣∣∣ ≤ θ(ρs + c)
(θ + 1)nρ

|ϕ′(x+) + θϕ′(x−)| x

+
θ

θ + 1
|ϕ′(x+) − ϕ′(x−)|

√
θ ((1 + s)ρ + c) x(1 + x)

nρ

+
θ ((1 + s)ρ + c) x(1 + x)

nρx

[√n]∑
k=1

x
V

x− x
k

ϕx′ +
x
√

n

x
V

x− x√
n

ϕx′

+
θ ((1 + s)ρ + c) x(1 + x)

nρx
|ϕ(2x) − ϕ(x) − xϕ(x+)|

+
θ ((1 + s)ρ + c) x(1 + x)

nρ

[√n]∑
k=1

x+ x
k

V
x
ϕ′x +

x
√

n

x+ x√
n

V
x

(ϕ′x) + M(γ, c, r, x)

+
θ ((1 + s)ρ + c) x(1 + x)

nρx
|ϕ(x)| +

√
θN(ρ, s, c)x(1 + x)

n
|ϕ(x+)| .

Proof: Using the (4.2) of the operators L̂(β)
n,θ, we have

L̂(β)
n,θ (ϕ; x) − ϕ (x) =

∫ ∞

0
K θ

n (x, t; c) (ϕ (t) − ϕ (x)) dt

=

∫ ∞

0

(∫ t

x
K θ

n (x, t; c)ϕ′ (u) du
)

dt. (4.10)
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From the relation (5.7) we can write

ϕ′(u) =ϕ′x(u) +
1

θ + 1
(ϕ′(x+) + θϕ′(x−))

+
1
2

(
ϕ′(x+) + θϕ′(x−)

) (
sgn(u − x) +

θ − 1
θ + 1

)
× δx(u)

[
ϕ′(u) −

(
ϕ′(x+) + ϕ′(x−)

)]
, (4.11)

where

δx (u) =

1, x = u

0, x , u.

It is easy to say that

∞∫
0

K θ
n (x, t; c)

t∫
x

[ϕ′(u) −
1
2

(ϕ′(x+) + ϕ′(x−)]δx(u)dudt = 0. (4.12)

Now

Pρ,β
n,θ(x) =

∞∫
0

K θ
n (x, t; c)

t∫
x

1
θ + 1

(ϕ′(x+) + θϕ′(x−))dudt.

=
1

θ + 1
(ϕ′(x+) + θϕ′(x−))

∞∫
0

K θ
n (x, t; c) (t − x)dt

=
1

θ + 1
(ϕ′(x+) + θϕ′(x−))L̂(β)

n,θ(t − x; x), (4.13)

and

Qρ,β
n,θ(x) =

∞∫
0

K θ
n (x, t; c)

t∫
x

1
2

(ϕ′(x+) + θϕ′(x−))
(
sgn(u − x) +

θ − 1
θ + 1

)
dudt

=
1
2

(ϕ′(x+) + θϕ′(x−))

−
x∫

0

K θ
n (x, t; c)

t∫
x

(
sgn(u − x) +

θ − 1
θ + 1

)
dudt

+

∞∫
x

K θ
n (x, t; c)

t∫
x

(
sgn(u − x) +

θ − 1
θ + 1

)
≤

θ

θ + 1
(ϕ′(x+) + θϕ′(x−))

∞∫
0

K θ
n (x, t; c) |t − x| dt

≤
θ

θ + 1
(ϕ′(x+) + θϕ′(x−))

(
L̂(β)

n,θ

(
(e1 − x)2; x

)) 1
2
. (4.14)
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By using Lemma 4.1.3 and Lemma 4.1.7, from (4.10) − (4.14), we have

L̂(β)
n,θ (ϕ; x) − ϕ(x) ≤

∣∣∣A(β)
n,θ(ϕ

′; x) + B(β)
n,θ(ϕ

′; x)
∣∣∣

+
θ(ρs + c)
(θ + 1)nρ

|ϕ′(x+) + θϕ′(x−)| x

+
θ

θ + 1
|ϕ′(x+) − ϕ′(x−)|

√
θ ((1 + s)ρ + c) x(1 + x)

nρ
, (4.15)

where

A(β)
n,θ(ϕ

′; x) =

x∫
0


t∫

x

ϕ′x(u)du

K θ
n (x, t; c)dt,

and

B(β)
n,θ(ϕ

′; x) =

∞∫
x


t∫

x

ϕ′x(u)du

K θ
n (x, t; c)dt.

To estimate A(β)
n,θ(ϕ

′; x), using integration by parts and applying Lemma 4.1.7 with y =

x − x
√

n , we obtain

A(β)
n,θ(ϕ

′; x) =

∣∣∣∣∣∣∣∣
x∫

0


t∫

x

ϕ′x(u)du

 dtζ
β,c
n,θ (x; t)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
x∫

0

ζ
β,c
n,θ (x; t)ϕ′x(t)dt

∣∣∣∣∣∣∣∣
≤

y∫
0

∣∣∣ϕ′x(t)∣∣∣ ∣∣∣ζβ,cn,θ (x; t)
∣∣∣ dt +

y∫
0

∣∣∣ϕ′x(t)∣∣∣ ∣∣∣ζβ,cn,θ (x; t)
∣∣∣ dt

≤
θ ((1 + s)ρ + c) x(1 + x)

nρ

y∫
0

x
V
t
ϕ′x(x − t)2dt +

x∫
y

x
V
t
ϕ′xdt

≤
θ ((1 + s)ρ + c) x(1 + x)

nρ

x− x√
n∫

0

x
V
t
ϕ′x(x − t)2dt +

x
√

n

x
V

x− x√
n

ϕ′x. (4.16)
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Substituting u = x
x−t , we get

θ ((1 + s)ρ + c) x(1 + x)
nρ

x− x√
n∫

0

x
V
t
ϕ′x(x − t)2dt =

θ ((1 + s)ρ + c) x(1 + x)
nρx

√
n∫

1

x
V

x− x
u

ϕ′xdu

≤
θ ((1 + s)ρ + c) x(1 + x)

nρx

[√n]∑
k=1

k+1∫
k

x
V

x− x
k

ϕ′xdu

≤
θ ((1 + s)ρ + c) x(1 + x)

nρx

[√n]∑
k=1

x
V

x− x
k

ϕ′x.

(4.17)

From (4.16) and (4.17), we get

A(β)
n,θ(ϕ

′; x) =
θ ((1 + s)ρ + c) x(1 + x)

nρx

[√n]∑
k=1

x
V

x− x
k

ϕ′x +
x
√

n

x
V

x− x√
n

ϕ′x. (4.18)

We can write

B(β)
n,θ(ϕ

′; x) ≤

∣∣∣∣∣∣∣∣
2x∫

x


t∫

x

ϕ′x(u)du

 dt(1 − ζ
β,c
n,θ (x; t))

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∞∫

2x


t∫

x

ϕ′x(u)du

 dtK
θ
n (x, t; c)

∣∣∣∣∣∣∣∣ .
From the second part of the Lemma 4.1.7, we get

K θ
n (x, t; c) = dt((1 − ζ

β,c
n,θ (x; t)) f or t > x.

Hence

B(β)
n,θ(ϕ

′; x) = B(β)
n,θ,1(ϕ′; x) + B(β)

n,θ,2(ϕ′; x),

where

B(β)
n,θ,1(ϕ′; x) =

∣∣∣∣∣∣∣∣
2x∫

x


t∫

x

ϕ′x(u)du

 dt(1 − ζ
β,c
n,θ (x; t))

∣∣∣∣∣∣∣∣ ,
and

Bβ,c
n,θ,2( f ′; x) =

∣∣∣∣∣∣∣∣
∞∫

2x


t∫

x

ϕ′x(u)du

 dtK
θ
n (x, t; c)

∣∣∣∣∣∣∣∣ .
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Using integration by parts, applying Lemma 4.1.7, 1 − ζβ,cn,θ (x; t) ≤ 1 and taking t = x + x
u

successively,

B(β)
n,θ,1(ϕ′; x) =

∣∣∣∣∣∣∣∣
2x∫

x

ϕ′x(u)du(1 − ζβ,cn,θ (x; 2x)) −

2x∫
x

ϕ′x(t)(1 − ζ
β,c
n,θ (x; t))dt

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
2x∫

x

(ϕ′(u) − ϕ′(x+))du

∣∣∣∣∣∣∣∣
∣∣∣1 − ζβ,cn,θ (x; 2x)

∣∣∣ +

∣∣∣∣∣∣∣∣
2x∫

x

ϕ′x(t)(1 − ζ
β,c
n,θ (x; t))dt

∣∣∣∣∣∣∣∣
≤
θ ((1 + s)ρ + c) x(1 + x)

nρx
|ϕ(2x) − ϕ(x) − xϕ(x+)|

+
θ ((1 + s)ρ + c) x(1 + x)

nρ

2x∫
x+ x√

n

t
V
x
ϕ′x

(t − x)2 dt +

x+ x√
n∫

x

t
V
x
ϕ′xdt

≤
θ ((1 + s)ρ + c) x(1 + x)

nρx
|ϕ(2x) − ϕ(x) − xϕ(x+)|

+
θ ((1 + s)ρ + c) x(1 + x)

nρ

[√n]∑
k=1

x+ x
k

V
x
ϕ′x +

x
√

n

x+ x√
n

V
x

(ϕ′x). (4.19)

Using Lemma 4.1.7, we have

B(β)
n,θ,2(ϕ′; x) =

∣∣∣∣∣∣∣∣
∞∫

2x


t∫

x

(ϕ′(u) − ϕ′(x+))du

K θ
n (x, t, c)dt

∣∣∣∣∣∣∣∣
≤

∞∫
2x

|ϕ(t) − ϕ(x)|K θ
n (x, t, c)dt +

∞∫
2x

|t − x| |ϕ(x+)| K θ
n (x, t, c)dt

≤

∣∣∣∣∣∣∣∣
∞∫

2x

ϕ(t)K θ
n (x, t, c)dt

∣∣∣∣∣∣∣∣ + |ϕ(x)|

∣∣∣∣∣∣∣∣
∞∫

2x

K θ
n (x, t, c)dt

∣∣∣∣∣∣∣∣
+ |ϕ(x+)|


∞∫

2x

(e1 − x)2K θ
n (x, t, c)dt


1
2

≤M

∞∫
2x

tγK θ
n (x, t, c)dt + |ϕ(x)|

∣∣∣∣∣∣∣∣
∞∫

2x

K θ
n (x, t, c)dt

∣∣∣∣∣∣∣∣
+

√
θ ((1 + s)ρ + c) x(1 + x)

nρ
|ϕ(x+)| . (4.20)
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For t ≥ 2x, we get t ≤ 2(t − x) and x ≤ t − x, applying Hölder’s inequality, we have

B(β)
n,θ,2(ϕ′; x) ≤ M2γ


∞∫

2x

(e1 − x)2rK θ
n (x, t, c)dt


γ
2k

+
θ ((1 + s)ρ + c) x(1 + x)

nρx
|ϕ(x)| +

√
θ ((1 + s)ρ + c) x(1 + x)

nρ
|ϕ(x+)|

= M(γ, c, k, x) +
θ ((1 + s)ρ + c) x(1 + x)

nρx
|ϕ(x)|

+

√
θ ((1 + s)ρ + c) x(1 + x)

nρ
|ϕ(x+)| . (4.21)

From (4.19) and (4.21), we get

B(β)
n,θ(ϕ

′; x) =
θ ((1 + s)ρ + c) x(1 + x)

nρx
|ϕ(2x) − ϕ(x) − xϕ(x+)|

+
θ ((1 + s)ρ + c) x(1 + x)

nρ

[√n]∑
r=1

x+ x
r

V
x
ϕ′x +

x
√

n

x+ x√
n

V
x

(ϕ′x)

+ M(γ, c, r, x) +
θ ((1 + s)ρ + c) x(1 + x)

nρx
|ϕ(x)|

+

√
θ ((1 + s)ρ + c) x(1 + x)

nρ
|ϕ(x+)| . (4.22)

From (4.15), (4.18) and (4.22), we get our desired result.
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4.2 Generalization of Parametric Baskakov Operators

based on the I-P-E Distribution

4.2.1 Introduction

In literature, the inverse Pólya-Eggenberger (I-P-E) distribution is defined as:

P(X = ς̈) =

 m̈ + ς̈ − 1

ς̈


m̈−1∏̈
ς

(A + ς̈S )
m̈−1∏
s=0

(B + ς̈S )

m̈+ς̈−1∏̈
ς=0

(A + B + ς̈S )
, ς̈ = 0, 1, ..., m̈, (4.23)

shows the probability that ς̈ white balls are selected preceding the m̈-th black ball. The

details have been given about this distributions (4.23) in [45; 52; 90].

In 1957, Baskakov [30] presented a sequence of positive linear operators, known as

Baskakov operators on the unbounded interval [0,∞) for appropriate functions specified

on the interval [0,∞). Afterwards, many mathematicians who studied the Baskakov

operators came up with various modifications, including [70; 117; 127].

Recall that for every h ∈ CB [0,∞) , classical Baskakov operators are defined as:

Ir (h, x) =

∞∑
s=0

vr,s (x)h
( s
r
)
, (4.24)

where r ≥ 1, x ∈ [0,∞) and

vr,s (x) =

 r + s − 1

s

 xs

(1 + x)r+s
.

Furthermore, using the inverse Pólya-Eggenberger distribution (4.23), Stancu [142] pre-

sented a special class of positive linear operators contextualising the Baskakov operators

tied to a real-valued function bounded on [0,∞) as follows:

I(%̂)
r (h; x) =

∞∑
s=0

v
(%̂)
r.s (x) h

( s
r
)

=

∞∑
s=0

(r + s − 1
s

)
1[r,−%̂]x[s,−%̂]

(1 + x)[r+s,−%̂] h
( s
r
)
. (4.25)

For the case where %̂ = 0, the operators (4.25) reduce to the basic Baskakov operators [30].
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We came across a manuscript where in 2019, Ali and Hasan [27] introduced α-

Baskakov operators, which are non-negative real parametric generalisations of Baskakov

operators. The operators are reduced to classical Baskakov operators for α = 1. Higher

order derivatives are represented as α-Baskakov operators in this paper to obtain their

new representation as powers of independent variable x.

Now, for every h ∈ CB [0,∞), the parametric generalization of the Baskakov oper-

ators is defined as:

Lαr (h; x) =

∞∑
s=0

ραr,s (x)h
( s
r
)
, (4.26)

where r ≥ 1, x ∈ [0,∞) and

ραr,s (h; x) =

∞∑
s=0

xs−1

(1 + x)r+s−1

 αx
1 + x

 r + s − 1

s

 − (1 − α)(1 + x)

 r + s − 1

s − 2


+ (1 − α)(1 + x)

 r + s − 1

s − 2

 + (1 − α)x

 r + s − 1

s


 h

( s
r
)
,

we call these operators α-Baskakov operators.

The α-Baskakov operators for h (x) can also expressed as:

Lαr (h; x) = (1 − α)
∞∑
s=0

 r + s − 2

s

 xs

(1 + x)r+s−1,gs

+ α

∞∑
s=0

 r + s − 1

s

 xs

(1 + x)r+s,
h
( s
r
)
,

where

gs = h
( s
r
) (

1 +
s
r − 1

)
− h

(s + 1
r

) s
r − 1

.

We consider generalised α-Baskakov operators (4.26) based on the I-P-E distribution

(4.23). This work was prompted by D.D. Stancu [142], who introduced two classes of

linear positive operators depending on a non-negative parameter α (this parameter may

depend only on natural numbers), and proceeded to establish some of their approximation

properties to real-valued functions. In 2019, Deo and Dhamija [46] considered a new

modification of the Baskakov operators based on I-P-E distribution, and they also

examined various modified forms of the Baskakov operators in the context of the Lupaş

operators on the basis of I-P-E distribution. In 2016, Dhamija and Deo [52] provided Jain-

Durrmeyer operators connected to the I-P-E distribution and examined the approximation
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properties of the Jain-Durrmeyer operators based on the I-P-E distribution, including the

degree of approximation and uniform convergence of the operators. Baskakov-Szász

type operators on the inverse Pólya-Eggenberger distribution were presented by Kajla

et al. [94]. The rate of convergence for functions with bounded variation derivatives is

established by using a Durrmeyer-type operator with basic functions in summation and

integration based on Stancu [142] and Pltánea (2008). Numerous authors contributed to

the I-P-E distribution and the Baskakov operators [16; 45; 59].

Now we propose α-Pólya-Baskakov operator based on inverse Pólya-Eggenberger

distribution (4.23) as follows:

⇀

Q

(α,%̂)

r (h; x) =

∞∑
s=0

q(α,%̂)
r,s (x)h

( s
r
)
, (4.27)

where α is a non-negative parameter, which may depend only on the natural number r,
with α→ 0 when r→ ∞, r ≥ 1, x ∈ [0,∞), we have

q(α,%̂)
r,s (x) = α

 r + s − 1

s

 1[r,−%̂]x[s,−%̂]

(1 + x)[r+s,−%̂]

− (1 − α)

 r + s − 3

s − 2

 1[r−1,−%̂]x[s−1,−%̂]

(1 + x)[r+s−2,−%̂]

+ (1 − α)

 r + s − 1

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂] .

Another way to express the above operators is as follows:

⇀

Q

(α,%̂)

r (h; x) = (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]gs

+ α

∞∑
s=0

 r + s − 1

s

 1[r,−%̂]x[s,−%̂]

(1 + x)[r+s,−%̂] h
( s
r
)
,

where

gs = h
( s
r
) (

1 +
s
r − 1

)
− h

(s + 1
r

) s
r − 1

.

The purpose of this note is to investigate the approximation behaviour of the proposed

operators.
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4.2.2 Premiinary

Lemma 4.2.1 Deo and Dhamija [44] use the Vandermonde convolution formula and the

substitutions λ = 0, p = 0 to derive the moments of I-P-E distribution based operators

(4.25). Stancu [142] however, already calculated these moments using hypergeometric

series.

I%̂r (1; x) =1;

I%̂r (v; x) =
x

1 − %̂
;

I%̂r
(
v2; x

)
=

x(%̂(r − 1) + rx + x + 1)
(1−%̂)(1 − 2%̂)r ;

I%̂r
(
v3; x

)
=

(r + 1)x((r + 2)x + 3) − x
(
%̂2((3 − 2r)r − 1) − %̂(−3r(rx + 1) + 3x + 2) − 1

)
(1 − %̂)(1 − 2%̂)(1 − 3%̂)r2 ;

I%̂n
(
v4; x

)
=

1
(1 − %̂)(1 − 2%̂)(1 − 3%̂)(1 − 4%̂)r3

[
(1 − 2%̂)(1 − 3%̂)(1 − 4%̂)

− (r + 1)(%̂ + x)
{
6%̂2((r − 3)r + 4) + %̂((r + 2)(5r − 9)x + 12r − 25)

+(r + 2)x((r + 3)x + 6) + 7}] .

Lemma 4.2.2 The moments of
⇀

Q

(α,%̂)

n ( f ; x) are given as follows:

⇀

Q

(α,%̂)

r (1; x) = (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

+ α

∞∑
s=0

 r + s − 1

s

 1[r,−%̂]x[s,−%̂]

(1 + x)[r+s,−%̂]

=1.

⇀

Q

(α,%̂)

r (v; x) = (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s (r − 2)
r (r − 1)

]

+ α

∞∑
s=0

 r + s − 1

s

 1[r,−%̂]x[s,−%̂]

(1 + x)[r+s,−%̂]

[ s
r
]

= (1 − α)
(r − 2)
r I%̂r−1 (t; x) + αI%̂r (t; x)

= (1 − α)
(r − 2)
r

x
1 − %̂

+
αx

1 − %̂

=
2α + r − 2

(1 − %̂)r x.
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⇀

Q

(α,%̂)

r
(
v2; x

)
= (1 − α)

∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s2 (r − 3)
r2 (r − 1)

]

− (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s
r2 (r − 1)

]

+ α

∞∑
s=0

 r + s − 1

s

 1[r,−%̂]x[s,−%̂]

(1 + x)[r+s,−%̂]

[ s2
r2

]
=

(1 − α) (r − 3) (r − 1)
r2 I%̂r−1

(
t2; x

)
−

(1 − α)
r2 I%̂r−1 (t; x) + αI%̂r

(
t2; x

)
=

(4αr + (r − 3)r)
(1 − %̂)(1 − 2%̂)r2 x2 +

4α%̂(r − 2) + 4α + %̂((r − 5)r + 8) + r − 4
(1 − %̂)(1 − 2%̂)r2 x.

⇀

Q

(α,%̂)

r
(
v3; x

)
= (1 − α)

∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s3 (r − 4)
r3 (r − 1)

]

= −3 (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s2
r3 (r − 1)

]

− (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s
r3 (r − 1)

]

+ α

∞∑
s=0

 r + s − 1

s

 1[r,−%̂]x[s,−%̂]

(1 + x)[r+s,−%̂]

[ s3
r3

]

=
(1 − α) (r − 4) (r − 1)2

r3 I%̂r−1

(
t3; x

)
−

(1 − α) (r − 1)
r3 I%̂r−1

(
t2; x

)
−

1
r3 I%̂r−1 (t; x) + αI%̂r

(
t3; x

)

=
(r + 1)(6α + r − 4)

(1 − %̂)(1 − 2%̂)(1 − 3%̂)r2 x3

+
3(6α(%̂(r − 2) + 1) + %̂((r − 6)r + 11) + r − 5)

(1 − %̂)(1 − 2%̂)(1 − 3%̂)r2 x2

−
1

(1 − %̂)(1 − 2%̂)(1 − 3%̂)r3

 (−%̂(r − 3) − 1)(%̂(r(2r − 9) + 16) + r − 8)

−2α(%̂(3%̂(r(2r − 7) + 8) + 9r − 20) + 4)

 x.
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⇀

Q

(α,%̂)

r
(
v4; x

)
= (1 − α)

∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s4 (r − 5)
r4 (r − 1)

]

− 6 (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s3
r4 (r − 1)

]

− 4 (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s2
r4 (r − 1)

]

− (1 − α)
∞∑
s=0

 r + s − 2

s

 1[r−1,−%̂]x[s,−%̂]

(1 + x)[r+s−1,−%̂]

[ s
r4 (r − 1)

]

+ α

∞∑
s=0

 r + s − 1

s

 1[r,−%̂]x[s,−%̂]

(1 + x)[r+s,−%̂]

[ s4
r4

]

=
(1 − α) (r − 5) (r − 1)3

r4 I%̂r−1

(
t4; x

)
−

6 (1 − α) (r − 1)2

r4 I%̂r−1

(
t3; x

)

−
4 (1 − α) (r − 1)

r4 I%̂r−1

(
t2; x

)
−

1
r4 I%̂r−1 (t; x) + αI%̂r

(
t4; x

)

=
(8αr(r + 1)(r + 2) + (r − 5)r(r + 1)(r + 2))

(1 − %̂)(1 − 2%̂)(1 − 3%̂)(1 − 4%̂)r4 x4

+
(48αr(r + 1)(%̂(r − 2) + 1) + 6n(n + 1)(%̂((r − 7)r + 14) + r − 6))

(1 − %̂)(1 − 2%̂)(1 − 3%̂)(1 − 4%̂)r4 x3

+
1

(1 − %̂)(1 − 2%̂)(1 − 3%̂)(1 − 4%̂)r4



8αr(%̂(%̂(r(11r − 39) + 46)

+18r − 38) + 8) + r(%̂(%̂(r(r
(11r − 94) + 301) − 362)

+rr(18n − 139) + 291)

+7r − 57)


x2

+
1

(1 − %̂)(1 − 2%̂)(1 − 3%̂)(1 − 4%̂)m̂4



(16α(%̂(r − 2) + 1)(%̂(3%̂(( ¯m − 3

r + 4) + 3r − 7) + 1))

+%̂(6%̂3((r − 5)r + 8)2

+%̂2r(r(12r − 109) + 359) − 416%̂

+%̂(r − 6)(7r − 24)) + r − 16


x.

Lemma 4.2.3 We establish the following limits of central moments by using Lemma 4.2.2

and, lim
r→∞
r%̂ = l:
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(i) lim
r→∞
r
⇀

Q

(α,%̂)

r (ϑ; x) = (l + 1) x (1 + x) ,

(ii) lim
r→∞
r2

⇀

Q

(α,%̂)

r (ϑ; x) = 3x2(1 + l)2(1 + x)2,

where ϑ(v) = (v − x)i and, i = 2, 4.

4.2.3 Direct Results

The renowned Bohman-Korovkin-Popoviciu theorem is used to obtain the uniform

convergence of the α-Pólya-Baskakov operator (4.27).

Theorem 4.2.4 For a non-negative parameter α, which may depend only r ∈ N, let h ∈

C[0,∞). If %̂→ 0 when r→ ∞, then we have

lim
n→∞

⇀

Q

(α,%̂)

r (h; x) = h(x),

uniformly on each compact subset of [0,∞), where C[0,∞) is the space of all real-valued

functions continuous on [0,∞).

Proof: Taking Lemma (4.2.2) into consideration, it follows that:

lim
r→∞

⇀

Q

(α,%̂)

r
(
vi; x

)
= xi, i = 0, 1, 2

uniformly on each compact subset of [0,∞). Thus, we arrive at the desired conclusion by

applying the well-known Bohman-Korovkin-Popoviciu theorem. α-Pólya-Baskakov oper-

ator (4.27) asymptotic behaviour is now presented.

Theorem 4.2.5 Let h be a bounded and integrable function on [0,∞). for the first and

second derivatives of h at a fixed point x ∈ [0,∞), then the function could be written as

follows:

lim
r→∞
r
(
⇀

Q

(α,%̂)

r (h; x) − h (x)
)

= (l + 1) x (1 + x) h′ (x) + 3x2(1 + l)2(1 + x)2h′′(x).

Proof: Applying Taylor’s expansion, we can express the function h by writing,

h(v) = h(x) + (v − x)h′(x) +
1
2!

(v − x)2h′′(x) + ε(v, x)(v − x)2,

where, lim
v→x

ε(v, x) = 0 and ε(v, x) is a bounded function. By linearity of α-Pólya-Baskakov

operator (4.27), it follows

⇀

Q

(α,%̂)

r (h; x) − h(x) =
⇀

Q

(α,%̂)

r (v − x; x) h′(x) +
1
2

⇀

Q

(α,%̂)

r
(
(v − x)2; x

)
h′′(x)+

+
⇀

Q

(α,%̂)

r
(
ε(v, x) · (v − x)2; x

)
.
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Taking Lemma 4.2.3 into account, we get

lim
r→∞
r
(
⇀

Q

(α,%̂)

r (h; x) − h (x)
)

= (−2 + l) xh′ (x) + (l + 1) x (1 + x) h′′(x)

+ lim
r→∞
r
(
⇀

Q

(α,%̂)

r
(
ε(v, x) · (v − x)2; x

))
. (4.28)

As a result of the Cauchy-Schwarz inequality,

r
⇀

Q

(α,%̂)

r
(
ε(v, x)(v − x)2; x

)
≤

√
⇀

Q

(α,%̂)

r
(
ε2(v, x); x

)√r2⇀Q(α,%̂)

r
(
(v − x)4; x

)
. (4.29)

Since ε2(·, x) ∈ C[0,∞) and ε2(x, x) = 0, applying uniform convergence and from Theo-

rem (4.2.4), we obtain

lim
r→∞

⇀

Q

(α,%̂)

r
(
ε2(v, x); x

)
= ε2(x, x) = 0. (4.30)

Therefore, from Lemma 4.2.3 and (4.30) yields

lim
r→∞
r
⇀

Q

(α,%̂)

r
(
ε(v, x) · (v − x)2; x

)
= 0,

and using (4.28), we obtain the asymptotic behavior of the α-Pólya-Baskakov operator

(4.27).

Lemma 4.2.6 The following inequality is true for positive linear operators (4.27).∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x)

∣∣∣∣∣∣ 6 ‖h‖ .
Proof: From operators (4.27), we obtain∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∞∑
s=0

q(α,%̂)
r,s (x)h

( s
r
)∣∣∣∣∣∣∣ 6

∞∑
s=0

q(α,%̂)
r,s (x)

∣∣∣∣∣h ( s
r
)∣∣∣∣∣

6
∞∑
s=0

q(α,%̂)
r,s (x) sup |h(x)| = ‖h‖ .

Let CB[0,∞) denotes the space containing the real-valued continuous and bounded

functions h ∈ CB[0,∞), equipped with the norm

‖h‖ = sup
x∈[0,∞)

|h(x)| .

The Peetre’s K-functional for h has been characterized as follows:

K2 (h; δ) := inf
x∈C2

B[0,∞)
{‖h − f ‖ + δ ‖ f ′′‖} , δ > 0,
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where C2
B[0,∞) = { f ∈ CB[0,∞) : f ′, f ′′ ∈ CB[0,∞)} . Now, according to Lorentz and

DeVore ( [49], p.177. Theorem 2.4) ∃ C > 0, such that

K2 (h; δ) 6 Cω2

(
h; δ1/2

)
, (4.31)

The modulus of continuity of second order ω2

(
h; δ1/2

)
can be specified by

ω2

(
h; δ1/2

)
= sup

0<d6δ1/2
sup
x∈I
|h (x + 2d) − 2h(x + d) + h(x)| .

Furthermore, the modulus of smoothness of first order can be provided by

ω
(
h; δ1/2

)
= sup

0<d6δ1/2
sup
x∈I
|h(x + d) − h(x)| .

Theorem 4.2.7 For h ∈ CB[0,∞), we conclude∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣ 6 ω
(
h,

(2α + %̂r − 2)
(1 − %̂)r x

)
+ Cω2

h,
√
ψ(α)
r,λ (x)

2

 ,
where C > 0 is a constant and

ψ(α)
r,λ(x) =

⇀

Q

(α,%̂)

r
(
(v − x)2; x

)
+

{
(2α + %̂r − 2)

(1 − %̂)r x
}2

.

Proof: We proceed with auxiliary operators

Q
(α,%̂)
r (h; x) =

⇀

Q

(α,%̂)

r (h; x) + h(x) − h
(
2α + r − 2

(1 − %̂)r x
)
. (4.32)

We found that
⇀

Q

(α,%̂)

r (h; x) are linear for all x ∈ [0,∞) , hence

Q
(α,%̂)
r (1; x) = 1 and Q

(α,%̂)
r (v; x) = x,

i.e., Q
(α,%̂)
r preserves linear functions intact as a result

Q
(α,%̂)
r (v − x; x) = 0. (4.33)

For v, x ∈ [0,∞) and function g ∈ C2
B[0,∞), according to Taylor’s theorem we can imply

that,

g(v) = g(x) + (v − x)g′(x) +

∫ v

x
(v −$)g′′($)d$.

Applying the operator Q
(α,%̂)
r to both sides of above inequality, we can write

Q
(α,%̂)
r (g; x) − g(x) = g′(x)Q

(α,%̂)
r ((v − x); x) + Q

(α,%̂)
r

(∫ v

x
(v −$)g′′($)d$; x

)
= Q

(α,%̂)
r

(∫ v

x
(v −$)g′′($)d$; x

)
=

⇀

Q

(α,%̂)

r

(∫ v

x
(v −$)g′′($)d$; x

)
− ∫

2α+r−2
(1−%̂)r x

x

(
2α + r − 2

(1 − %̂)r x −$
)
g′′($)d$.
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Furthermore, we acquire∣∣∣∣∣Q(α,%̂)
r (g; x) − g(x)

∣∣∣∣∣ 6 ⇀

Q

(α,%̂)

r

(∣∣∣∣∣∫ v

x
(v −$)g′′($)d$

∣∣∣∣∣ ; x
)

+

∣∣∣∣∣∣∣
∫ 2α+r−2

(1−%̂)r x

x

(
2α + r − 2

(1 − %̂)r x −$
)
g′′($)d$

∣∣∣∣∣∣∣ . (4.34)

Since
∣∣∣∣∫ t

x
(v −$)g′′($)d$

∣∣∣∣ 6 (v − x)2 ‖g′′‖ and∣∣∣∣∣∣∣
∫ 2α+r−2

(1−%̂)r x

x

(
2α + r − 2

(1 − %̂)r x −$
)
g′′($)d$

∣∣∣∣∣∣∣ 6
{

2α + r − 2
(1 − %̂)r x − x

}2

‖g′′‖.

As a equation, (4.34) indicates∣∣∣∣∣Q(α,%̂)
r (g; x) − g(x)

∣∣∣∣∣ 6 ⇀Q(α,%̂)

r
(
(v − x)2; x

)
+

{
2α + r − 2

(1 − %̂)r x − x
}2 ‖g′′‖

6

⇀Q(α,%̂)

r
(
(v − x)2; x

)
+

{
(2α + %̂r − 2)

(1 − %̂)r x
}2 ‖g′′‖

= ψ(α)
r,λ(x) ‖g′′‖ , (4.35)

In accordance with Lemma 4.2.6 and auxiliary operators, we have∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣ 6
∣∣∣∣∣Q(α,%̂)
r ((h − g); x)

∣∣∣∣∣ + |g(x) − h(x)| +
∣∣∣∣∣Q(α,%̂)
r (g; x) − g(x)

∣∣∣∣∣
+

∣∣∣∣∣∣h
(
2α + r − 2

(1 − %̂)r x
)
− h(x)

∣∣∣∣∣∣
6 4 ‖h − g‖ + ψ(α)

r,λ(x) ‖g′′‖ + ω

(
h;

(2α + %̂r − 2)
(1 − %̂)r x

)
.

taking infimum on both side over g ∈ C2
B[0,∞), we get

∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣ 6 4K2

h;
ψ(α)
r,λ(x)

4

 + ω

(
h;

(2α + %̂r − 2)
(1 − %̂)r x

)
.

using equation (4.31), we obtain

∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣ 6 Cω2

h;

√
ψ(α)
r,λ(x)

2

 + ω

(
h;

(2α + %̂r − 2)
(1 − %̂)r x

)
.

For β ∈ (0, 1], the Lipschitz-type space is defined as: [123]

Lip∗D(β) :=
{

h ∈ CB[0,∞) : |h(v) − h(x)| 6 D
|v − x|β

(x + v)β/2
; x, v ∈ [0,∞)

}
.

Here, β ∈ (0, 1] andD > 0 is constant.
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Theorem 4.2.8 Let h ∈ Lip∗
D

(β) where 0 < β ∈ (0, 1]. Then ∀x ∈ [0,∞), we get∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣D
Ψ

(α,%̂)
r (x)

x

β/2, (4.36)

where Ψ
(α,%̂)
r (x) =

⇀

Q

(α,%̂)

r
(
(v − x)2; x

)
.

Proof: Let us suppose that β = 1. Then, for h ∈ Lip∗
D

(1) and x ∈ [0,∞), we conclude∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣ 6
∣∣∣∣∣∣∣
∞∑
s=0

q(α,%̂)
r,s (x)h

( s
r
)
− h(x)

∣∣∣∣∣∣∣
6

∞∑
s=0

q(α,%̂)
r,s (x)

∣∣∣∣∣h ( s
r
)
− f (x)

∣∣∣∣∣ 6 D ∞∑
s=0

q(α,%̂)
r,s (x)

∣∣∣ sr − x
∣∣∣( s

r + x
)1/2 .

Applying the Cauchy-Schwarz inequality for sum and 1√
k
r+x
6 1
√

x , we obtain∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣ 6 D√x

∞∑
s=0

q(α,%̂)
r,s (x)

{( s
r − x

)2
}1/2

6
D
√

x

 ∞∑
s=0

q(α,%̂)
r,s (x)


1/2 ∞∑

s=0

q(α,%̂)
r,s (x)

( s
r − x

)2


1/2

6
D
√

x

{
⇀

Q

(α,%̂)

r (1; x)
}1/2{

⇀

Q

(α,%̂)

r
(
(v − x)2; x

)}1/2

= D

Ψ
(α,%̂)
r (x)

x

1/2

.

As a result, the outcome for β = 1 is correct.

As we continue, we will demonstrate the necessary outcome for 0 < β < 1 and

consider h ∈ Lip∗
D

(β), we get∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣ 6 ∞∑
s=0

q(α,%̂)
r,s (x)

∣∣∣∣∣h ( s
r
)
− h(x)

∣∣∣∣∣ 6 D ∞∑
s=0

q(α,%̂)
r,s (x)

∣∣∣ sr − x
∣∣∣β( s

r + x
)β/2 .

making use of inequality 1√ s
r+x
6 1
√

x and using Holder’s inequality in the above summa-

tion with p = 2
β
, q = 2

2−β . As a result of applying the Holder’s inequality to the sum with

p = 2/β, q = 2/(2 − β) and inequality 1√ s
r+x
6 1
√

x , we obtain∣∣∣∣∣∣⇀Q(α,%̂)

r (h; x) − h(x)

∣∣∣∣∣∣ 6 Dxβ/2
∞∑
s=0

q(α,%̂)
r,s (x)

{( s
r − x

)2
}β/2

6
D

xβ/2

 ∞∑
s=0

q(α,%̂)
r,s (x)

( s
r − x

)2

β/2 ∞∑

s=0

q(α,%̂)
r,s (x)


2−β

2

6 D


⇀

Q

(α,%̂)

r
(
(v − x)2; x

)
x


β/2

= D

Ψ
(α,%̂)
r (x)

x

β/2.
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4.2.4 Weighted Approximation

Gadjiev [60; 61] investigated the weight spaces CΨ[0,∞) and BΨ[0,∞) of real-

valued functions defined on [0,∞) with Ψ(x) = 1+ x2, in order to demonstrate Korovkin’s

theorem, which is not commonly true in all of these spaces.

BΨ[0,∞) := {h : |h(x)| 6 DhΨ(x)} ,

with

‖h‖Ψ = sup
x∈[0,∞)

|h(x)|
Ψ(x)

,

and

CΨ[0,∞) := {h : h ∈ BΨ[0,∞)} ,

i.e. CΨ[0,∞) = C[0,∞) ∩ BΨ[0,∞) is the subspace of BΨ[0,∞) containing continuous

functions and

C∗Ψ[0,∞) :=
{

h ∈ CΨ[0,∞) : lim
x→∞

|h(x)|
Ψ(x)

< ∞

}
.

The Korovkin’s theorem, however, is valid throughout the range C∗
Ψ

[0,∞).

The following is the definition of the usual modulus of continuity of h on [0, b]: The

classical modulus of continuity of h on [0, b] is defined as follows:

ωb (h; δ) = sup
|v−x|6δ

sup
x,v∈[0,b]

|h(v) − h(x)| .

Theorem 4.2.9 Let h ∈ C∗
Ψ

[0,∞) then for operators
⇀

Q

(α,%̂)

r (h; x) we conculde∥∥∥∥∥∥⇀Q(α,%̂)

r (h; x) − h(x)

∥∥∥∥∥∥
C[a,b]

6 4Dh

(
1 + b2

)
Ψ

(α,%̂)
r (x) + 2ω

(
h,

√
Ψ

(α,%̂)
r (x)

)
, (4.37)

where Ψ
(α,%̂)
r (x) =

⇀

Q

(α,%̂)

r
(
(v − x)2; x

)
.

Proof: Suppose v − x > 1 for v ∈ (b + 1,∞) and x ∈ [0, b] , then, we conclude

|h(v) − h(x)| 6 DhΨ(v − x) = Dh

{
1 + (v − x)2

}
= Dh

(
v2 − 2xv + x2 + 1

)
6 Dh

(
v2 + x2 + 2

)
= Dh

{
(v − x)2 + 2x(v − x) + 2 + 2x2

}
6 Dh(v − x)2

{
2x2 + 2x + 3

}
6 4Dh(v − x)2

(
1 + x2

)
6 4Dh(v − x)2

(
1 + b2

)
. (4.38)

For x ∈ [0, b] and v ∈ [0, b + 1], we conclude

|h(v) − h(x)| 6 ωb+1 (|v − x|) 6
(
1 +
|v − x|
δ

)
ωb+1 (h, δ) , δ > 0. (4.39)
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We find by solving (5.7) and (4.39)

|h(v) − h(x)| 6 4Dh

(
1 + b2

)
(v − x)2 +

(
1 +
|v − x|
δ

)
ωb+1 (h, δ) ,

making use of Cauchy-Schwarz inequality, we obtain∣∣∣∣∣∣⇀Q(α,%̂)

r h(v; x) − h(x)

∣∣∣∣∣∣ 6 4Dh

(
1 + b2

) ⇀
Q

(α,%̂)

r
(
(v − x)2; x

)
+

(
1 +

1
δ

⇀

Q

(α,%̂)

r (|v − x| ; x)
)
ωb+1 (h, δ)

6 4Dh

(
1 + b2

) ⇀
Q

(α,%̂)

r
(
(v − x)2; x

)
+

1 +
1
δ

{
⇀

Q

(α,%̂)

r
(
(v − x)2; x

)}1/2ωb+1 (h, δ)

6 4Dh

(
1 + b2

)
Ψ

(α,%̂)
r (x) +

[
1 +

1
δ

√
Ψ

(α,%̂)
r (x)

]
ωb+1 (δ) ,

choosing δ =

√
Ψ

(α,%̂)
r (x), we receive the desired outcome.

Theorem 4.2.10 Suppose h ∈ C∗
Ψ

[0,∞) then, we obtain

lim
r→∞

∥∥∥∥∥∥⇀Q(α,%̂)

r (h; x) − h(x)

∥∥∥∥∥∥
Ψ

= 0. (4.40)

Proof: From [61], this is sufficient to validate the three equations shown below.

lim
r→∞

∥∥∥∥∥∥⇀Q(α,%̂)

r (vr; x) − vr

∥∥∥∥∥∥
Ψ

= 0, r = 0, 1, 2. (4.41)

Clearly equation (4.41) holds for r = 0 as
⇀

Q

(α,%̂)

r (1; x) = 1.

From lemma 4.2.2 we can say that,∥∥∥∥∥∥⇀Q(α,%̂)

r (v; x) − x

∥∥∥∥∥∥
Ψ

= sup
x∈[0,∞)

1
Ψ(x)

∣∣∣∣∣2α + r − 2
(1 − %̂)r x − x

∣∣∣∣∣
= sup

x∈[0,∞)

x
x2 + 1

∣∣∣∣∣ (2α + %̂r − 2)
(1 − %̂)r

∣∣∣∣∣ 6 (2α + %̂r − 2)
(1 − %̂)r .

This implies that lim
r→∞

∥∥∥∥∥∥⇀Q(α,%̂)

r (v; x) − x

∥∥∥∥∥∥
Ψ

= 0. similarly, we have

∥∥∥∥∥∥⇀Q(α,%̂)

r
(
v2; x

)
− x2

∥∥∥∥∥∥
Ψ

= sup
x∈[0,∞)

1
Ψ(x)

∣∣∣∣∣∣∣
(4αr+(r−3)n)
(1−%̂)(1−2%̂)r2 x2

+
4α%̂(r−2)+4α+%̂((r−5)r+8)+r−4

(1−%̂)(1−2%̂)r2 x − x2

∣∣∣∣∣∣∣
6 sup

x∈[0,∞)

x2

Ψ(x)

∣∣∣∣∣ (4αr + (r − 3)r)
(1 − %̂)(1 − 2%̂)r2 − 1

∣∣∣∣∣
+ sup

x∈[0,∞)

x
Ψ(x)

∣∣∣∣∣ x(4α%̂(r − 2) + 4α + %̂((r − 5)r + 8) + r − 4)
(1 − %̂)(1 − 2%̂)r2

∣∣∣∣∣ .
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Thus

lim
r→∞

∥∥∥∥∥∥⇀Q(α,%̂)

r
(
v2; x

)
− x2

∥∥∥∥∥∥
Ψ

= 0.

The anticipated outcome is attained.



Chapter 5

Convergence and Difference Estimates
between Mastroianni and Gupta
Operators

In this chapter, we are concerned about investigating the difference of operators. Gupta

operators are a modified form of Srivastava-Gupta operators. We estimate the difference

between Mastroianni operators with Gupta operators in terms of the modulus of conti-

nuity of first order. We also study the weighted approximation of functions and obtain

the rate of convergence with the help of the moduli of continuity as well as Peetre’s K-

functional of Gupta operators.

5.1 Introduction

Acu-Rasa [10], Aral et al. [26] and Gupta [69] studied some fascinating results for the

difference of operators in a general sense. Several results on this topic are compiled in

the recent book of Gupta et al. [79]. We study here the Mastroianni operators [103] are

mentioned below:

Mn,c( f ; x) =

∞∑
i=0

vn,i(x, c)Fn,i( f ), (5.1)

where

vn,i(x, c) =
(−x)i

i!
τ(i)

n,c(x),Fn,i( f ) = f
( i
n

)
,

with particular cases considered as:

(i) If τn,0(x) = exp(−nx), then vn,i(x, 0) = exp(−nx) (nx)i

i! , and the operators Mn,0 be-

comes Szász operators.

79
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(ii) If c ∈ N and τn,c(x) = 1
(1+cx)n/c , then we have vn,i(x, c) =

(n/c)i
i!

(cx)i

(1+cx)
n
c +i , and we obtain

classical Baskakov operators.

(iii) If τn,−1(x) = (1− x)n, then vn,i(x,−1) =
(

n
i

)
xi(1− x)n−i, and the operators (5.1) reduce

to Bernstein polynomials,

where Fn,i : S → R is a functional (linear and positive) defined on S and S ⊂ C[0,∞).

Case (iii) has not been considered here, we will continue with this case in our next

upcoming research.

Srivastava-Gupta operator (see [39], [139]) reproduces only constant functions. Re-

cently Gupta in [68] studied a few examples of genuine operators (operators preserving

linear functions), we consider here the following operators

Gn;c( f ; x) =

∞∑
i=0

vn,i(x, c)Hn,i( f ), (5.2)

where vn,i(x, c) is defined in (5.1) and

Hn,i( f ) = (n + c)
∫ ∞

0
vn+2c,i−1(t, c) f (t)dt, 1 ≤ i < ∞, Hn,0( f ) = f (0).

Remark 5.1.1 For operators (5.1), we have Fn,i( f ) = f
(

i
n

)
such that

Fn,i(e0) = 1, and bFn,i = Fn,i(e1).

If we denote TFn,i
r = Fn,i(e1 − bFn,ie0)r, r ∈ N, then by simple computation, we have

TFn,i
r = Fn,i(e1 − bFn,ie0)r = 0, r = 2, 4.

5.2 Preliminaries

Remark 5.2.1 For the Gupta type operators (5.2), by simple computation, we have

Hn,i(er) =
(i + r − 1)!

(i − 1)!

Γ
(

n
c − r + 1

)
cr.Γ

(
n
c + 1

) ,
where Hn,i(e0) = 1, bHn,i := Hn,i(e1) = i

n . If we denote THn,i
r = Hn,i(e1 − bHn,ie0)r, r ∈ N,

then after simple computation, we have

THn,i
2 := Hn,i(e1 − bHn,ie0)2 =

ci2 + ni
n2(n − c)

,
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and

THn,i
4 := Hn,i(e1 − bHn,ie0)4

= Hn,i(e4, x) − 4Hn,i(e3, x)
( i
n

)
+ 6Hn,i(e2, x)

( i
n

)2

−4Hn,i(e1, x)
( i
n

)3

+Hn,i(e0, x)
( i
n

)4

=
(i + 3)(i + 2)(i + 1)i

n(n − c)(n − 2c)(n − 3c)
− 4

(i + 2)(i + 1)i2

n2(n − c)(n − 2c)
+ 6

(i + 1)i3

n3(n − c)
−

3i4

n4 .

Lemma 5.2.2 Few moments of Mastroianni operators are given by

Mn(e0; x) = 1;

Mn(e1; x) = x;

Mn(e2; x) =
x
n

[x(n + c) + 1];

Mn(e3; x) =
x
n2 [x2(n + c)(n + 2c) + 3x(n + c) + 1];

Mn(e4; x) =
x
n3 [x3(n + c)(n + 2c)(n + 3c) + 6x2(n + c)(n + 2c) + 7x(n + c) + 1];

Mn(e5; x) =
x
n4 [x4(n + c)(n + 2c)(n + 3c)(n + 4c) + 10x3(n + c)(n + 2c)(n + 3c)

+25x2(n + c)(n + 2c) + 15x(n + c) + 1];

Mn(e6; x) =
x
n5 [x5(n + c)(n + 2c)(n + 3c)(n + 4c)(n + 5c) + 15x4(n + c)(n + 2c)

(n + 3c)(n + 4c) + 65x3(n + c)(n + 2c)(n + 3c) + 90x2(n + c)(n + 2c)

+31x(n + c) + 1].

Lemma 5.2.3 Let f (t) = ei, i = 0, 1, 2, 3, 4 and c is the element of the set {0, 1, 2, }, then

we have

Gn,c(e0; x) = 1;

Gn,c(e1; x) = x;

Gn,c(e2; x) =
(n + c)
(n − c)

x2 +
2

(n − c)
x, n > c;

Gn,c(e3; x) =
(n + c) (n + 2c)
(n − c) (n − 2c)

x3 +
6 (n + c)

(n − c) (n − 2c)
x2 +

6
(n − c) (n − 2c)

x, n > 2c;

Gn,c(e4; x) =
(n + c) (n + 2c) (n + 3c)
(n − c) (n − 2c) (n − 3c)

x4 +
12 (n + c) (n + 2c)

(n − c) (n − 2c) (n − 3c)
x3

+
36 (n + c)

(n − c) (n − 2c) (n − 3c)
x2 +

24
(n − c) (n − 2c) (n − 3c)

x, n > 3c.
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Consequently,

Gn,c ((e1 − x); x) = 0;

Gn,c

(
(e1 − x)2; x

)
=

2x (1 + cx)
n − c

, n > c;

Gn,c

(
(e1 − x)4; x

)
=

12c2 (n + 7c)
(n − c) (n − 2c) (n − 3c)

x4 +
24c2 (13n + c)

(n − c) (n − 2c) (n − 3c)
x3

+
12c2 (n + 9c)

(n − c) (n − 2c) (n − 3c)
x2 +

24
(n − c) (n − 2c) (n − 3c)

x, n > 3c.

Very recently, Pratap and Deo [131] considered genuine Gupta-Srivastava op-

erators and studied fundamental properties, the rate of convergence, Voronovskaya

type estimates, convergence estimates and weighted approximation. In the year 2018,

Garg et al. [63] studied the weighted approximation properties for Stancu general-

ized Baskakov operators. In the same year, Acu et al. [8] also studied the order of

approximation for Srivastava-Gupta operators via Peetre’s K−functional and weighted

approximation properties and some numerical considerations regarding the approxima-

tion properties, were considered. Several researchers studied approximation operators

and their variants, and they were given some impressive results on the asymptotic

formula, Voronovskaya-type formula, rate of convergence and bounded variation (See

[1], [8], [26], [28], [29], [37], [40], [41], [64], [72], [89], [111], [120], [122]).

5.3 Difference of Operators

Let CB[0,∞) be the class of bounded continuous functions defined on the interval [0,∞)

equipped with the norm ||.|| = supx∈[0,∞) | f (x)| < ∞.

Theorem A[67; 69] Let f (s) ∈ CB[0,∞), s is a member of set {0, 1, 2} and x belongs

to [0,∞), then for all natural numbers n, we get

|(Gn,c −Mn,c)( f , x)| ≤ || f ′′||α(x) + ω( f ′′, δ1)(1 + α(x)) + 2ω( f , δ2(x)),

where

α(x) =
1
2

∞∑
i=0

vn,i(x, c)(TFn,i
2 + THn,i

2 ),

and

δ2
1 =

1
2

∞∑
i=0

vn,i(x, c)(TFn,i
4 + THn,i

4 ), δ2
2 =

∞∑
i=0

vn,i(x, c)(bFn,i − bHn,i)2.

We give the quantitative estimate for the difference of Mastroianni and Gupta type opera-

tors as an application of Theorem A:
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Theorem 5.3.1 Let f ( j) ∈ CB[0,∞), j is a member of set {0, 1, 2} and x belongs to [0,∞),

then for all natural numbers n, we get

|(Gn,c −Mn,c)( f ; x)| ≤ || f ′′||β(x) + ω( f ′′, δ1)(1 + β(x)),

where

β(x) =
cx[x(n + c) + 1]

2n(n − c)
+

nx
2n(n − c)

,

and

δ2
1 =

1
2n4(n − c)(n − 2c)(n − 3c)

[{
3c2 (n + c) (n + 2c) (n + 3c) (n + 6c)

}
x4

+6c (n + c) (n + 2c) {3c (n + 6c) + 2n (n + 2c)} x3

+ (n + c)
{
21c2 (n + 6c) + 36nc (n + 2c) + n2 (3n + c)

}
x2

+
{
3c2 (n + 6c) + 12nc (n + 2c) + n2 (3n + c) + 6n3

}
x
]
.

Proof: First using Remark (5.1.1), Remark (5.2.1) and applying Lemma (5.2.2), we get

β(x) =
1
2

∞∑
i=0

vn,i(x, c)(TFn,i
2 + THn,i

2 )

=
1
2

∞∑
i=0

vn,i(x, c)
ci2 + ni

n2(n − c)

=
c

2(n − c)
Mn(e2, x) +

n
2n(n − c)

Mn(e1, x)

=
cx[x(n + c) + 1]

2n(n − c)
+

nx
2n(n − c)

.

δ2
1 =

1
2

∞∑
i=0

vn,i(x, c)(TFn,i
4 + THn,i

4 )

=
1
2

∞∑
i=0

vn,i(x, c)THn,i
4

=
1
2

∞∑
i=0

vn,i(x, c)
[ (i + 3)(i + 2)(i + 1)i
n(n − c)(n − 2c)(n − 3c)

− 4
(i + 2)(i + 1)i2

n2(n − c)(n − 2c)
+ 6

(i + 1)i3

n3(n − c)
−

3i4

n4

]
=

1
2

∞∑
i=0

vn,i(x, c)
n4(n − c)(n − 2c)(n − 3c)

[(
i4 + 6i3 + 11i2 + 6i

)
n3

−4
(
i4 + 3i3 + 2i2

)
n2(n − 3c) + 6(i4 + i3)n(n − 2c)(n − 3c)

−3i4(n − c)(n − 2c)(n − 3c)
]

=
1
2

∞∑
i=0

vn,i(x, c)
n4(n − c)(n − 2c)(n − 3c)

[
i4

{
n3 − 4n2(n − 3c) + 6n(n − 2c)(n − 3c)

−3(n − c)(n − 2c)(n − 3c)} + i3
{
6n3 − 12n2 (n − 3c) + 6n (n − 2c) (n − 3c)

}
+ i2

{
11n3 − 8n2 (n − 3c)

}
+ 6in3

]
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=
1
2

∞∑
i=0

vn,i(x, c)
n4(n − c)(n − 2c)(n − 3c)

[
3i4c2 (n + 6c) + 12i3nc (n + 2c) + i2n2 (3n + c) + 6in3

]
=

1
2n4(n − c)(n − 2c)(n − 3c)

[
3n4c2 (n + 6c)Mn(e4, x) + 12n4c (n + 2c)Mn(e3, x)

+n4 (3n + c)Mn(e2, x) + 6n4Mn(e1, x)
]

=
1
2

3xc2 (n + 6c)
{
x3(n + c)(n + 2c)(n + 3c) + 6x2(n + c)(n + 2c) + 7x(n + c) + 1

}
n4(n − c)(n − 2c)(n − 3c)

+
12nc(n + 2c)x

{
x2(n + c)(n + 2c) + 3x(n + c) + 1

}
n4(n − c)(n − 2c)(n − 3c)

+
n2 (3n + c) x {x(n + c) + 1}
n4(n − c)(n − 2c)(n − 3c)

+
6n3x

n4(n − c)(n − 2c)(n − 3c)

]
=

1
2n4(n − c)(n − 2c)(n − 3c)

[{
3c2 (n + c) (n + 2c) (n + 3c) (n + 6c)

}
x4

+6c (n + c) (n + 2c) {3c (n + 6c) + 2n (n + 2c)} x3

+ (n + c)
{
21c2 (n + 6c) + 36nc (n + 2c) + n2 (3n + c)

}
x2

+
{
3c2 (n + 6c) + 12nc (n + 2c) + n2 (3n + c) + 6n3

}
x
]
,

and

δ2
2 =

∞∑
i=0

vn,i(x, c)(bFn,i − bHn,i)2 = 0.

5.4 Weighted Approximation

The usual first order of modulus of continuity of f on bounded interval [0, b] is defined

as:

ωb ( f ; δ) = sup
0<|t−x|≤δ

sup
t,x∈[0,b]

| f (t) − f (x)| .

Let

B2 [0,∞) :=
{
f : [0,∞)→ R | f (x)| ≤ M f

(
1 + x2

)}
,

where M f is a constant dependant on f , with the norm

‖ f ‖2 = sup
x≥0

| f (x)|
1 + x2 .

Let

C2 [0,∞) = C [0,∞) ∩ B2 [0,∞) .

In [84], Ispir acquainted the weighted modulus of continuity Ω ( f ; δ) as:

Ω ( f ; δ) = sup
0≤|k|<δ,x≥0

| f (x + k) − f (x)|(
1 + k2) (1 + x2) , f ∈ C2 [0,∞) . (5.3)



5.4 Weighted Approximation 85

Let

C′2 [0,∞) =

{
f ∈ C2 [0,∞) : lim

t→∞

| f (x)|
1 + t2 < ∞

}
.

From [84; 86], if f ∈ C′2 [0,∞) , then lim
δ→0

Ω ( f ; δ) = 0 and

Ω ( f ; pδ) ≤ 2 (1 + p)
(
1 + δ2

)
Ω ( f ; δ) , p > 0. (5.4)

From (5.3) and (5.4) and for f ∈ C′2 [0,∞), we have

| f (t) − f (x)| ≤
(
1 + (t − x)2

) (
1 + x2

)
Ω ( f ; |t − x|)

≤ 2
(
1 +
|t − x|
δ

) (
1 + δ2

)
Ω ( f ; δ)

(
1 + (t − x)2

) (
1 + x2

)
.

Now we give the rate of approximation of unbounded functions in the theorem of

first order of modulus of continuity.

Theorem 5.4.1 Let f ∈ C2 [0,∞), then we get∣∣∣Gn,c ( f , x) − f (x)
∣∣∣ ≤ 4M f

(
1 + b2

)
δ2

n(x) + 2ωb+1 ( f ; δ) ,

where δ = δn(x) =

√
Gn,c

(
(t − x)2, x

)
.

Proof: For x ∈ [0, b] and t ≥ 0, we have

| f (t) − f (x)| ≤ 4M f

(
1 + b2

)
(t − x)2 +

(
1 +
|t − x|
δ

)
ωb+1 ( f ; δ) , δ > 0.

Applying operator Gn,c and using Cauchy-Schwarz inequality, we have∣∣∣Gn,c ( f ; x) − f (x)
∣∣∣ ≤ 4M f

(
1 + b2

)
Gn,c

(
(t − x)2, x

)
+

(
1 +
Gn,c (|t − x| , x)

δ

)
ωb+1 ( f , δ)

≤ 4M f

(
1 + b2

)
Gn,c

(
(t − x)2, x

)
+

(
1 +

1
δ

√
Gn,c

(
(t − x)2, x

))
ωb+1 ( f , δ) .

After choosing δ =

√
Gn,c

(
(t − x)2, x

)
, we obtain the required result.

Theorem 5.4.2 Let f ∈ C′2 [0,∞), then we have

lim
n→∞

∥∥∥Gn,c ( f ) − f
∥∥∥

2
= 0.

Proof: From [83], it is sufficient to verify the following by the well-known Bohman-

Korovkin theorem:

lim
n→∞

∥∥∥∥Gn,c

(
ti; x

)
− xi

∥∥∥∥
2

= 0, i = 0, 1, 2. (5.5)
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From Lemma (5.2.3), the result is true for i = 0, 1. Again using Lemma (5.2.3), we get∥∥∥∥Gn,c

(
t2; x

)
− x2

∥∥∥∥
2

= sup
x≥0

∣∣∣∣∣ (n + c)
(n − c)

x2 +
2

(n − c)
x − x2

∣∣∣∣∣ .
Finally, we have

lim
n→∞

∥∥∥∥Gn,c

(
t2; x

)
− x2

∥∥∥∥
2

= 0.

Thus we get the desired result.

Theorem 5.4.3 Let g ∈ C′2 [0,∞) and η > 0, we have

lim
n→∞

sup
x∈[0,∞)

∣∣∣Gn,c (g; x) − g(x)
∣∣∣(

1 + x2)1+η
= 0, x0 ∈

(
0,∞

]
.

Proof: Let x0 > 0 be any arbitrary fixed value and x0 ∈
(
0,∞

]
then, we have

sup
x∈[0,∞)

∣∣∣Gn,c (g; x) − g(x)
∣∣∣(

1 + x2)1+η
≤ sup

x≤x0

∣∣∣Gn,c (g; x) − g(x)
∣∣∣(

1 + x2)1+η
+ sup

x>x0

∣∣∣Gn,c (g; x) − g(x)
∣∣∣(

1 + x2)1+η

≤
∣∣∣Gn,c (g) − g

∣∣∣
C[0,x0]

+ ‖g‖2 sup
x>x0

∣∣∣∣Gn,c

(
1 + t2; x

)∣∣∣∣(
1 + x2)1+η

+ sup
x>x0

|g(x)|(
1 + x2

0

)1+η
. (5.6)

From Theorem (5.4.2), the first term of the above inequality tends to zero.

Since |g(x)| ≤ ‖g‖2
(
1 + x2

)
, we have

sup
x>x0

|g(x)|(
1 + x2)1+η

≤
‖g‖2(

1 + x2
0

)η .
Let ε > 0 be arbitrary and if we choose x0 very big then

‖g‖2(
1 + x2

0

)η < ε

2
, (5.7)

Since lim
n→∞

sup
x>x0

Gn,c(1+t2;x)
1+x2 = 1, we have

sup
x>x0

Gn,c

(
1 + t2; x

)
1 + x2 ≤

(
1 + x2

0

)η
‖g‖2

ε

2
+ 1, as n→ ∞.

Therefore

‖g‖2 sup
x>x0

Gn,c

(
1 + t2; x

)
(
1 + x2)1+η

≤
‖g‖2(

1 + x0
2)η sup

x>x0

Gn,c

(
1 + t2; x

)(
1 + x2) ≤

ε

2
+
‖g‖2(

1 + x2)η . (5.8)

From Theorem (5.4.1), and for sufficient large n, we have∥∥∥Gn,c(g) − g
∥∥∥

C[0,x0]
< ε. (5.9)

Estimates from (5.7) to (5.9), the Theorem is proved.
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Theorem 5.4.4 Let f ∈ C′2 [0,∞). For sufficient large n, we have

sup
x∈[0,∞)

∣∣∣Gn,c ( f ; x) − f (x)
∣∣∣(

1 + x2)5/2 ≤ ĈΩ
(

f ; n−1/2
)
,

where Ĉ > 0 is constant.

Proof: For x is a point of interval ∈ [0,∞) and δ is a positive number and by using the

definition of the weighted modulus of continuity and Lemma (5.2.3), we obtain

| f (t) − f (x)| ≤
(
1 + (x + |t − x|)2

)
Ω ( f ; |t − x|)

≤ 2
(
1 + x2

) (
1 + (t − x)2

) (
1 +
|t − x|
δ

)
Ω ( f ; δ) .

Applying operator Gn,c both sides, we get∣∣∣Gn,c ( f ; x) − f (x)
∣∣∣ ≤ 2

(
1 + x2

)
Ω ( f ; δ)

{
1 + Gn,c

(
(t − x)2; x

)
+ Gn,c

((
1 + (t − x)2

) |t − x|
δ

; x
) }
.

Applying Cauchy-Schwarz inequality, Lemma (5.2.3) and choosing δ = 1
√

n , we obtain the

required result.





Chapter 6

Iterative Combinations of Generalised
Approximation Operators

The purpose of this chapter is to consider the generalised form of iterative combinations

of positive linear operators with well-known Bernstein and Baskakov operators as its

particular case. We have estimated the rth moment of the iterative operator and found

a recurrence relation between the central moments and their derivatives. We deduce the

Voronovskaya type asymptotic formula and the relation between the error of continuous

function and its norm with restrictions on its higher derivatives.

6.1 Introduction

In the year 1973, Micchelli [116] had given several results on saturation class and studied

properties of semigroups of operators of the Bernstein operator. In the last section of his

Ph. D. thesis, he defined iterative operator as:

Tn,k ( f ; x) =
[
I − (I − Bn)k

]
( f ; x) = −

k∑
v=0

(−1)v
(
k
v

)
Bv

n ( f ; x) , (6.1)

where Bn is the Bernstein operator and Br
n is the rth iterate of the operator Bn with k =

1, 2, ... and established the following result∣∣∣Tn,k( f ; x) − f (x)
∣∣∣ 6 3

2

(
2k − 1

)
ω ( f ; δ) ,

where ω( f ; δ) is the modulus of continuity. The operators (6.1) proved to be a better

approach to finding the order of approximation for the Bernstein operator.

89
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Inspired by Micchelli [97; 116], Agarwal [18] et al. gave more intellectual and

sharpened results for the new Micchelli type linear operators such as Voronovskaya type

asymptotic approximation of sufficiently smooth function for the Bernstein operators.

In 1998, Agarwal [18] extended his work on the Micchelli combination of Bernstein

operators and gave simultaneous approximation results related to the inverse theorem.

Deo [37; 38] had studied Beta as well as Baskakov operators and estimated results for

Baskakov-type operators based on Micchelli [116]. Some interesting approximation

results are studied by several mathematicians [1; 5; 85; 96].

We now consider the sequence with the weighted function

qn.k(x) =
(−x)k φ(k)

n,c(x)
k!

,

where

φn,c(x) =

(1 + cx)−n/c ; c = −1, x ∈ [0, 1]

(1 + cx)−n/c ; c > 0, x ∈ [0,∞).

The generalised form of linear positive operators Ln,c : C2(R+)→ C(R+) defined as:

Ln,c( f ; x) =

∞∑
k=0

qn,k(x) f
(

k
n

)
, (6.2)

where C2(R+) =

{
f ∈ C(R+) : lim

x→∞

| f (x)|
1+x2 < 0

}
. The space C2(R+) endowed with the norm

|| f || = sup
{
| f (x)|
1 + x2 ; x ≥ 0

}
,

such that C2(R+) is a Banach space. For c = −1, operators (6.2) represent Bernstein

operators and for c > 0, operators (6.2) represent Baskakov operators.

Now we consider Micchelli-type iterative combinations of generalized positive lin-

ear operators as:

Tn,k : C2(R+)→ C(R+),

and

Tn,k ( f ; x) =

k∑
r=1

(−1)r+1

kr
 Lr

n,c ( f ; x) . (6.3)

Very recently, Deo et al. [44] studied generalised positive linear operators based on

Pólya-Eggenberger distribution (PED) as well as inverse Pólya-Eggenberger distribution

(IPED), which are actually generalised form of classical Bernstein and Baskakov
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operators and authors established direct results for these operators and variant form of

these generalised operators were studied by Dhamija et al. [50]. In year 2011, Deo et

al. [41; 50] established a generalised form of Bernstein and Baskakov operators and gave

a better approximation with the help of King’s [98] idea.

6.2 Auxiliary Results

This section of the paper consists of some basic properties and definitions that will be

used further to prove the main theorems.

Definition 6.2.1 (Exponential operators) Let S λ( f ; t) be positive operators of the form

S λ( f ; t) =

∞∫
−∞

W(λ, t, x) f (x)dx,

such that S λ( f ; t) satisfies the following homogenous partial differential equation:

∂

∂t
W(λ, t, u) =

λ

p(t)
W(λ, t, u)(u − t), (6.4)

where p(t) is analytic and positive for t ∈ (A, B) for some A, B,−∞ 6 A < B 6 +∞, and

the normalization condition

S λ(1; t) =

∞∫
−∞

W(λ, t, u)du = 1.

Then operators S λ( f ; t) are referred to as exponential operators.

Let m ∈ N◦ = N
⋃
{0} (the set of all non-negative integers), p ∈ N (set of Natural

numbers) and λ denote the integral part of λ.

Let the mth order moment a{p}n,m(x) be defined as:

a{p}n,m(x) = L{p}n,c ((t − x)n; x) .

We shall use an,m(x) = a{1}n,m(x), a(1)
n,m(x) for the derivative of an,m(x) with respect to x and

R( j, k; x) be the coefficient of 1/nk in the Tn,k

(
(t − x) j; x

)
.

Lemma 6.2.2 For the operator Lr
n,c( f ; x)

(i) Lr
n,c(1; x) = 1;

(ii) Lr
n,c(t; x) = x;
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(iii) Lr
n,c(t

2; x) = x2
(
1 + c

n

)r
+ x

c

[(
1 + c

n

)r
− 1

]
.

Proof: This result can be easily proved by mathematical induction.

Lemma 6.2.3 There is a recurrence holds for the function an,m(x) as ,

n an,m+1(x) = x(1 + cx)
[
a(1)

n,m(x) + m an,m−1(x)
]

;

with an,0(x) = 1, an,1(x) = 0, and an,2(x) =
x(1+cx)

n .

Proof: The values corresponding to an,0(x), an,1(x) and an,2(x) follows immediately from

the definition. This proof will proceed by proving

x(1 + cx) a(1)
n,m(x) = n an,m+1(x) − x(1 + cx)m an,m−1(x).

The rest is basic computation which is left to the reader.

6.3 Direct Results

This section is dedicated to introducing approximation theorems and determining the

asymptotic Voronovskaya-type formula to discuss the convergence properties.

Theorem 6.3.1 For every f ∈ C2(R+) with k ∈ N◦ and n ∈ N,

|Tn,k( f ; x) − f (x)| ≤ ω( f ; δ)
[(

2k −1
)

+
1
δ2

{(
2 +

c
n

)k
− 2k

} (
x2 +

x
c

)]
.

Proof: We consider,

Tn,k ( f ; x) − f (x) =

k∑
r=1

(− 1)r+1
(
k
r

)
Lr

n,c ( f (t) − f (x); x) .

Therefore, ∣∣∣Tn,k( f ; x) − f (x)
∣∣∣ 6 k∑

r=1

(
k
r

)
Lr

n,c (| f (t) − f (x)|; x) . (6.5)

Mond and et al. [119] given the result that for all t, x ∈ [0,∞] and δ > 0,

| f (t) − f (x)| ≤
(
1 +

(t − x)2

δ2

)
ω( f ; δ). (6.6)

From (6.5) and (6.6) and using lemma (6.2.2), we have

|Tn,k( f ; x) − f (x)| 6
k∑

r=1

(
k
r

)
Lr

n,c

((
1 +

(t − x)2

δ2

)
; x

)
ω( f ; δ)

6 ω( f ; δ)

 k∑
r=1

(
k
r

)
Lr

n,c(1; x) +
1
δ2

k∑
r=1

Lr
n,c

(
(t − x)2; x

) ,
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and with the help of the central moment

Lr
n,c((t − x)2; x) =

(
x2 +

x
c

) [(
1 +

c
n

)r
−1

]
,

we get

|Tn,k( f ; x) − f (x)| ≤ ω( f ; δ)
[(

2k −1
)

+
1
δ2

{(
2 +

c
n

)k
− 2k

} (
x2 +

x
c

)]

= ω( f ; δ)
(
2k −1

) 1 +
1
δ2


(
2 + c

n

)k
− 2k

2k −1


(
x2 +

x
c

) .
Choosing δ = n−1/2 in above, we finally get

||Tn,k( f ) − f (x)|| ≤ ω( f ; 1/
√

n)(2k − 1)

1 + n


(
2 + c

n

)k
− 2k

2k − 1

 x
(
x +

1
c

) ,
which is the desired answer.

Remark 6.3.2 It is easy to verify that for c > 0,(
2 + c

n

)k
− 2k

2k − 1
6 ck k

n
=

c1

n
, where c1 = ckk.

So we get

|| Tn,k( f ) − f || 6 ω
(

f ; 1/
√

n
) (

2k − 1
) [

1 + k ckx
(
x +

1
c

)]
, x ∈ [0,∞),

and for c = −1, we have

|| Tn,k( f ) − f || 6 ω
(

f ; 1/
√

n
) (

2k − 1
) (

1 +
k
4

)
, x ∈ [0, 1].

Lemma 6.3.3 [119]. an,m(x) is a polynomial in x and 1/n with degree of an,m(x) in both is

less than equal to m with an,m(x) = o
(
n−[(m+1)/2]

)
. Also, the coefficient of (1/n)m in an,2m(x)

is (2m− 1)!!φ(x)m, where a!!= semi factorial of a and φ(x) = x(1 + cx) and the coefficient

of (1/n)m in an,2m+1(x) (2m + 1)!! φm(x)φ
′

(x)
(

m
3

)
.

Proof: By the definition of exponential operators, (6.2) satisfies the partial differential

equation (6.4). Also, Bernstein polynomials, Szàsz, Post-Widder and Baskakov all are

exponential types. So, the proof follows from [112] (Prop.3.2).

Lemma 6.3.4 [18]. There is the recurrence relation:

a{p+1}
n,m (x) =

m∑
j=0

(
m
j

) m− j∑
i=0

1
i!

d
(
a{p}n,m(x)

)
dx

a{p}n,i+ j(x),

where dy
dx denotes the derivative of y with respect to x.
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Lemma 6.3.5 [18]. We have a{p}n,m(x) = o
(
n−[(m+1)/2]

)
.

Lemma 6.3.6 [18]. For l − th moment ( l ∈ N ) of Tn,k, we have

Tn,k

(
(t − x)l; x

)
= o

(
n−k

)
.

Definition 6.3.7

Un,s(x) =

∞∑
k=0

(−x)kφ(k)
n,c(x)

k!
(k − nx)s.

The inequality

0 ≤ Un,s(x) ≤ K n[s/2]; 0 ≤ x < ∞,

follows from lemma (6.3.3).

Theorem 6.3.8 Let f ∈ C2(R+) and f (2k) exists at a fixed point x ∈ [0,∞), then

lim
n→∞

nk [Tn,k( f ; x) − f (x)
]

=

2k∑
j=2

f ( j)(x)
j!

R( j, k; x). (6.7)

Also, if f (2k−1) ∈ A.C.[0, c] with f (2k) ∈ L∞[0, c], then for any proper interval [a, b] of

[0, c], we have ∥∥∥Tn,k( f ; ) − f
∥∥∥

C[a,b]
6

C
nk

{
‖ f ‖C[a,b] +

∥∥∥ f (2k)
∥∥∥

L∞[0,c]

}
. (6.8)

Proof: Since f is continuous in [0,∞), so it has a Taylors series expansion at t = x,

f (t) = f (x) +

2k∑
j=1

f ( j)(x) (t − x) j

j!
+

f 2k+1(ξ) (t − x)2k+1

(2k + 1)!
, 0 < ξ < ∞. (6.9)

Now we consider

nk [Tn,k( f ; x) − f (t)
]

= nk
2k∑
j=1

f j(x)
j!

Tn,k[(t − x) j; x]

+ nk
k∑

r=1

(− 1)r+1
(
k
r

)
Lr

n,c

(
ε(t; x)(t − x)2k; x

)
= G1 + G2,

where ε(t, x)→ 0 as t → x.

So for a given ε > 0, there exist a δ(ε) > 0 such that

|ε(t, x)| < ε whenever 0 < |t − x| < δ.

First we evaluate G1,

G1 = nk
2k∑
j=2

f ( j)(x)
j!

Tn,k

(
(t − x) j; x

)
+ nk [ f ′(x) Tn,k(t − x; x)

]
.
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From lemma (6.3.6), we get

Tn,k((t − x) j; x) = o(n−k).

We can directly compute that,

G1 =

2k∑
j=2

f j(x)
j!

R( j, k; x) + o(1). (6.10)

Now, we estimate G2,

Let Θδ(t) be the characteristic function in (t − δ, t + δ), we have

|G2 | 6 nk
k∑

r=1

(
k
r

)
Lr

n,c

(
|ε(t, x)||t − x|2kΘδ(t); x

)
+ nk

k∑
r=1

(
k
r

)
Lr

n,c

(
|ε(t, x)||t − x|)2k (1 − Θδ(t)) ; x

)
= G21 + G22 .

Therefore,

G21 6 sup
|t−x|<δ

|ε(t, x)|nk
k∑

r=1

(
k
r

)
Lr

n,c

(
(t − x)2k; x

)
6 εnk

k∑
r=1

a{r}n,2k

(
k
r

)
= εC1.

Now

|G22| 6 nk
k∑

r=1

(
k
r

)
Lr

n,c

(
|ε(t, x)|(t − x)2k (1 − Θδ(t)) ; x

)
.

For an arbitrary p > k and using lemma (6.3.5), we have

Lr
n,c(|ε(t, x)| |t − x|2k; x) ≤

M2

δ2(p−k) Lr
n,c((t − x)2p; x)

and

G22 6
M3

np−k = o(1).

Since ε > 0 is an arbitrary, G2 → 0 as n → ∞. From G1, G2 and (6.7) follows

immediately

Tn,k( f (t); x) − f (x) = Tn,k (ϕ(t) ( f (t) − f (x)) ; x) + Tn,k ((1 − ϕ(t)) ( f (t) − f (x)) ; x)

= G3 + G4,

where ϕ(x) is the characteristics function of the closed interval on [0, c].
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For all t ∈ [0, c] and x ∈ [a, b], we have

f (t) − f (x) =

2k−1∑
l=0

f (l)(x)
l!

(t − x)l +
1

(2k − 1)!

t∫
x

(t − s)2k−1 f (2k)(s)ds.

And

G3 =

2k−1∑
l=0

f (l)(x)
l!

Tn,k

(
ϕ(t) (t − x)l; x

)
+

1
(2k − 1)!

Tn,k


t∫

x

ϕ(t) (t − s)2k f (2k)(s)ds


=

2k−1∑
l=0

f (l)(x)
l!

[
Tn,k

(
(t − x)l; x

)
+ Tn,k

(
(ϕ(t) − 1) (t − x)l; x

)]
+

1
(2k − 1)!

T
n,k


t∫

x

ϕ(t) (t − s)2k f (2k)(s)ds


=

2k−1∑
l=0

f (l)(x)
l!

(G31 + G32) + G33.

Clearly, G31 = o
(

1
nk

)
by lemma (6.3.6). Similarly by definition of characteristics function,

G31 = o
(

1
nk

)
. Convergence of G31 and G32 is uniform for all x ∈ [a, b] & t ∈ [0, b]. Also,

G33 6

∥∥∥ f (2k)
∥∥∥

L∞[0,c]

(2k − 1)!
6

M11

∥∥∥ f (2k)
∥∥∥

L∞[0,c]

nk , where M11 is a constant.

Combining the above results and the interpolation property of norms introduced by Gold-

berg and Meir [65], we have

G3 6 M12

{
‖ f ‖C[a,b] +

∥∥∥ f (2k)
∥∥∥

L∞[0.c]

}
. (6.11)

For G4, we proceed on the same lines as we have done for (6.7) and for G3.

G4 6 M21

2k−1∑
l=0

∥∥∥ f (l)
∥∥∥

C[a,b]
+

∥∥∥ f (2k)
∥∥∥

L∞[0,c]

 . (6.12)

Hence from (6.11) and (6.12), we obtain the required result (6.8).

Theorem 6.3.9 Suppose that k ∈ N◦. If the function f , f
′

, f
′′

..... f (2k+1) are in the class of

C[0,∞) and f (2k+1)∈ LipM 1 on [0,∞), then

|Tn.k( f ; x) − f (x)| = o
(

1
nk+1

)
,

uniformly as n→ ∞ on [0,∞).

Proof: Let us define

|| f ||k = max
0≤ j≤2k

{
|| f j
||,M

}
.
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It will be sufficient to prove that

|Tn,k+1( f ; x) − f (x)| ≤
Ak || f ||k

nk+1 ,

where Ak is a constant independent of f and n. We will prove it by mathematical induction.

For the case k = 0,

|Tn,0( f ; x) − f (x)| = | Ln,c( f ; x) − f (x)|.

By Taylor series expansion, we obtain

| Ln,c( f (t) − f (x); x)| ≤
x(1 + cx)

2n
f
′′

(x).

Suppose the theorem is true for j < k and f satisfies the hypothesis of the theorem then

we have

f (x) −
2k+1∑
i=0

f (i)(x)
i!

(x − x0)i =
1

(2k + 1)!

x∫
x0

(x − η)2k+1 f (2k+1)(η)dη

≤
1

(2k + 1)!

[
(x − η)2k+2

]x

x0
|| f ||k

(2k + 2)
.

Since Ln,c are positive linear operators,∣∣∣∣∣∣∣Ln,c f (x) −
2k+1∑
i=0

f (i)(x)
nii!

Un,i(x)

∣∣∣∣∣∣∣ 6 1
(2k + 1)! n2k+2 Un,2k+2(x)|| f ||k,

we can rewrite this inequality as:

(Ln,c −I)( f ; x) =

2k+1∑
i=0

f (i)(x)
ni i!

Un,i(x) + en(x),

where

| en(x)| ≤
|| f ||k ak

nk+1 .

Now, consider the function

Jn,l(x) =
f (l)(x) Un,l(x)

l! n[l/2] , l = 2, 3, ...2k.

This satisfies the hypothesis of the theorem for the integers kl =
[
k − l

2

]
as kl < k.

By the definition of Jn,l applying induction∣∣∣(Ln,c − I)ki+1(Jn,i; x)
∣∣∣ 6 b ki

nki
||Jn,i||ki .

Also Jn,i

i! n[i/2] is a polynomial of degree i which is uniformly bounded in n.

0 ≤
Jn,i

i! n[i/2] ≤
C
i!

;
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and

||Jn,i ||ki
= || f (i)

|| ≤ || f ||k .

We can easily estimate,

| (Ln,c −I)k(Jn,i; x)| ≤ bk

nk+1 || f ||k, i = 2, 3...2k.

Moreover, ||
(
Ln,c −I

)k
|| ≤ 2k mk, where mk is independent of f and n. Therefore we have,

|Tn,k+1( f ; x) − f (x)| =

∣∣∣∣∣∣∣( Ln,c − I
)k

 2k∑
i=2

Jn,i n[i/2]

ni + en(x); x


∣∣∣∣∣∣∣

≤

Ak

2k∑
i=2

n[i/2]

nki +1 ni +
2k ak mk

nk+1

 || f ||k
=

2k ak mk + bk(2k − 1)
nk+1 || f ||k .

So, we obtain the required result by mathematical induction.

Example 6.3.10 We have approximated the rate of convergence of the operators Tn,k( f )

to the function f (x) = xsin(1/x) for different values of k while keeping c > 0. As the

conclusion comes from the table and using the graphical technique, for the value of k = 10

the error estimation is less than 0.1 and for k = 30 the error is less than 0.001.

x |Tn,10( f ; x) − f (x)| |Tn,30( f ; x) − f (x)|

0.895 0.11650 0.00160

0.9050 0.12240 0.00180

0.9150 0.12830 0.00210

0.9300 0.13440 0.00240

0.940 0.14040 0.00280

0.950 0.14660 0.00310

0.960 0.15280 0.00360

0.970 0.15900 0.00400

0.980 0.16530 0.00450

0.990 0.17160 0.00510

1.00 0.17800 0.00560

Table 6.1: Comparing between error of operators for different values of k towards function

f(x)=xsin(1/x) with c > 0.
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(a) k=10, c =23.6

(b) k=30, c =23.6

Figure 6.1: Convergence of Tn,k( f ; x)∗ ∗ ∗∗, for the function f (x) = xsin(1/x)− − −−, for

n = 100.
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(a) k=10, c = -1

(b) k=30, c = -1

Figure 6.2: Convergence of Tn,k( f ; x)− − −, for the function f (x) = xsin(1/x)− − − − −,

for n = 100.



Conclusion and Future scope

Conclusion

This chapter aims to present concluding remarks to our thesis and illustrate some of

the prospects that define our current and future endeavours in scientific research. This

thesis is mainly a study of convergence estimates of various approximation operators and

their variants. The introductory chapter consists of definitions and a literature survey of

concepts used throughout this thesis.

The second chapter presents a Durrmeyer-type construction involving a class of or-

thogonal polynomials called Apostol-Genocchi polynomials. The main goal of the first

section is to construct Durrmeyer-type operators of Apostol-Genocchi operators (2.18)

based on the Jain operators (2.9) with real parameters α, β, and λ. In the second

section, we present Beta operators associated with the Apostal-Genocchi polynomials

and studied the approximation properties of these Durrmeyer operators. We give a

direct approximation theorem using first and second-order modulus of continuity, local

approximation results for Lipschitz class functions and a direct theorem for the usual

modulus of continuity.

Inspired by King’s approach, the next chapter deals with the modification of the

so-known Lupaş-Kantrovich that preserves constant functions and exponential function

e−x. Followed by some useful lemmas, we determine the rate of convergence of the

proposed operators in terms of the usual modulus of continuity and Peetre’s K- functional.

Further, the degree of approximation is also established for the function of bounded

variation. We also illustrate convergence and absolute error via figures and tables.

In the fourth chapter, we discuss approximation operators due to the development

of the theory of inverse Pólya-Eggenberger distribution. The first section of this chapter

presents the summation-integral type operators involving inverse Pólya-Eggenberger

101
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distribution [142] and Păltănea operators [126]. The vital target of this chapter is to

contemplate the approximation properties of operators (4.5) including K-functional and

second-order modulus of smoothness. Lastly, we set up the rate of convergence for

functions with derivative of bounded variation. The main goal of the second section is to

construct α-Pólya-Baskakov operator based on inverse Pólya-Eggenberger distribution

(4.23), where α being a non-negative parameter, which may depend only on the natural

number r, with α → 0 when r → ∞, r ≥ 1, x ∈ [0,∞) . As a result of this study, we

can obtain some approximation results, including the Voronovskaya type asymptotic

formula, error estimate in terms of modulus of continuity and the sense of k-functional,

and weighted approximation.

In the fifth chapter, we discuss the approximation properties of Gupta operators.

We find an estimate for the difference between Mastroianni operators and Gupta oper-

ators in terms of modulus of continuity of first order. We give the rate of convergence

with the help of the moduli of continuity and Peetre’s K−functional and the weighted

approximation of functions is studied.

The purpose of the sixth chapter is to give generalised results for the operators

(6.3) and obtain better approximation results. We study auxiliary results and derive

the value of the iterative operators (6.3) at the basic test functions 1, t, t2. Also, we

obtain Voronovskaya-type results, direct estimates in terms of modulus of continuity and

provide a computational approximation which relates the rate of convergence graphically

with the error estimation done.

Academic future plans

The objective of my work is to share my research results with the mathematical com-

munity and to continue carrying further additional studies in the area of approximation

by linear positive operators. Furthermore, I shall intend to put forward parametric

generalisations of existing operators which permits us to approximate an additional

array of functions. I intend to pursue research and contribute to the development of new

operators in this field in addition to contributing modifications to those currently exist.

We have examined the Mastroianni and Gupta operators in this thesis. Bede et

al. [31] have been associated with introducing the max-product version of families of

linear approximation operators. In general, a family of nonlinear (or more accurately
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sub-linear) operators with improved approximation properties of their original version is

the max-product version of a sequence or net of linear operators; in many instances, the

order of convergence is faster than that of linear operators. My goal is to expand on this

research in the future by establishing the max-product form of Mastroianni and Gupta

operators.

Another appealing problem related to approximation theory is to identify which

operators provide the best approximation. There are several operators with high conver-

gence rates, some of which are investigated in this thesis. As part of my continuing study,

I am interested in comparing the existing operators employing the difference of operators

examined to find out which ones generate the best approximation.

The corresponding semi-exponential operators for Bernstein, Baskakov and Ismail-

May operators were obtained by Abel et al. [3]. Since the area of semi-exponential

operators is not much explored, I intend to study the approximation properties of

these operators such as the complete asymptotic expansion, and the behaviour of their

derivatives through simultaneous approximation and other convergence estimates.
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