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ABSTRACT 

 

 
Analog circuit design for Spiking Neural Networks (SNNs) is the engineering 

discipline that can be used to model biological neuron’s functionality by using 

electronic components. This approach bases its functionality on the analogue of 

SNNs and biochemical neurons that allows designing effective and reliable 

information systems. They are applied in complex pattern identification, adaptation, 

motor control, flexibility, immunity to noise, and self-repair mechanisms among 

others. LTSpice – an effective tool for circuit simulation, has been employed to 

consider specified neuron models and compare it. Inspired by the model of Hodgkin-

Huxley (HH) Neuron that generates an imitation of the ionic currents which traverse 

the neuronal membrane to create action potentials, a second-orderrderivative 

equation of a simpleeneuronnmodel was proposed by Izhikevich(2003))[6]. Circuit 

simulations in LTSpice and efficiency studies have been conducted on the 

implementation of these neuron models. A detailed study of simple model of spiking 

neuron, and reconfigurable analog version of the piecewise linear neuron model[8] 

with CCII components is done using AD844 and AD633 in LTSpice. LTSpice has 

been used to implement many kinds of neuron models to make an extensive analysis 

about them with special consideration to working with analog circuits for spiking 

neurons. Subsequently the implementations AD633 analog multipliers and AD844 

operational amplifiers are used where these parts are necessary. The firing patterns 

they exhibit are those that are observed on biological neurons, and these circuits are 

meant to emulate. In order to enhance the biomedical realism and accuracy of the 

meant spiking signal following further development, the Integrate-and-Fire neuron 

concept and, in addition, a membrane recovery variable, will be incorporated. When 

the second-order derivative equation is in use, the shape is more like the spikes seen 

in cortical neurons. The first part of the equation is crucial since most mechanisms of 

spike formation are characterized by the increase in the membrane potential. We 

have demonstrated the analog circuit of the proposed second-order derivative 

equation which was earlier proposed in the form of differential equation using 

AD844 and AD633. It is demonstrated that this second order derivative equation is 

indeed effective by constructing the neuron models in LTSpice. Also the 

implementation of CCII using AD844 that constitutes a major part of the membrane 

(iv) 



(9   

circuit of the neuron has enhanced the area efficiency of the existing reconfigurable 

analog version of piecewise linear model[8] up to a great extent making its practical 

implementation more cost effective. Theoretical studies of the analog neuron model 

depend profoundly on the CCII that is implemented using the help of AD844. It also 

enables minimal signal attenuation and high-speed net current transfer, which are 

crucial for emulating neuron functions. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

We must integrate numerical simulation of large-scale brain models with 

experimental investigations of the human and animal nervous systems to fully 

comprehend the functioning of the brain. Finding compromises between two 

seemingly incompatible objectives is necessary when we create these massive brain 

models with spiking neurons: To depict an individual neuron, the model must be: 

1) computationally straightforward and  

2) able to replicate the complex firing patterns found in organic neurons. 

The study of analog implementation of neuro-systems has been sparked by the 

discovery that the analog neural computation principles used by the brain are 

fundamentally different from the digital ones used in classical computing. For these 

reasons, the principal choice for the direct application of neuro-systems is the use of 

sophisticated electrical components and analog circuits to simulate neurological 

functions. Neural models, brain dynamics, network topologies, and learning 

processes can all be prototyped using very large-scale integration (VLSI) technology 

to test different hypotheses, provided that a suitable reconfigurable platform for 

neural structure implementation is available. 

 

 

1.1 TYPES OF NEURAL NETWORKS 

 

 

Neural networks are computer programs that use machine learning (ML) 

techniques to mimic how the human brain functions. Speedier are neural 
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networks at processing data than traditional computers and are more adept at 

seeing patterns and solving problems. Neural networks can go by the titles Neural 

networks, both artificial and simulated (ANNs and SNNs).  

 

 

1.1.1 Convolutional Neural Networks 

 

 

Neural networks with convolutions, a very well-liked model of neural 

networking, use one or more convolutional layers along with a kind of 

multilayer perceptron. These layers may be fully connected or pooled. This 

neural network model recognizes and processes patterns in images applying 

concepts from matrix multiplication in particular and linear algebra. 

Convolutional layers in this model are able to generate feature maps that 

identify specific areas within a given visual input. After that, the website is 

broken down and scrutinized more closely to yield illuminating findings. 

Convolutional neural networks are useful for AI-based image recognition 

applications. In complex use cases including image classification, facial 

identification, optical character recognition (OCR), natural language 

processing (NLP), this kind of neural network is frequently employed. It's 

also used in signal processing and paraphrase recognition. 

 

 

1.1.2 Deconvolutional Neural Networks 

 

 

The actions carried out by convolutional neural networks are reversed by 

deconvolutional neural networks. This specific use of artificial intelligence 

(AI) looks for missing signals or features that the convolutional neural 

network may have missed while performing its intended task. Neural 

networks with deconvolution capabilities are helpful for many tasks, 

including image analysis and synthesis. 
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1.1.3 Recurrent Neural Networks 

 

 

 

A recurrent neural network is one kind of neural network where the output 

from one step is used as the input for the subsequent step. Every input and 

output in a traditional neural network is independent of every other one. 

Remembering the prior words is necessary because in certain situations, it is 

necessary to predict the word that will come next in a sentence. 

Consequently, to tackle this issue, RNN was created and a Hidden Layer 

was used. The primary and most crucial feature of an RNN is its hidden 

state, which retains some sequence-specific data. Because the state keeps 

track of the previous input that was provided to the network, it is also 

known as memory state. To produce the result, it executes the same task on 

all inputs or hidden layers using the same parameters for each input. This 

reduces the complexity of the parameters compared to other neural 

networks. Text-to-speech applications, sales forecasting, and stock market 

forecasting are three common uses for recurrent neural networks. 

 

 

 1.1.4 Feed-forward Neural Networks 

 

 

This version of a basic neural network transfers information in a single 

direction via a number of processing nodes before arriving at the output 

node. Large amounts of "noisy" data are processed by feed-forward neural 

networks, which produce "clean" outputs. The multi-layer perceptrons 

(MLPs) model is another name for this particular kind of neural network. 

The input layer, one or more hidden layers, and the output layer make up the 

architecture of a feed-forward neural network. These models, despite their 

different name, use sigmoid neurons instead of perceptrons, which enables 

them to handle nonlinear, practical problems. Feed-forward neural networks 
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provide the foundation for other neural network models, computer vision, 

facial recognition, and natural language processing. 

 

 

1.1.5 Modular Neural Networks 

 

 

Multiple separate neural networks overseen by an intermediary make up 

modular neural networks. Every independent network functions as a 

"module," utilizing different inputs to accomplish specific tasks related to 

the overall goal of the larger network. When computation is happening, the 

modules don't talk to each other or impede on each other's work. This 

improves the speed and efficiency of completing lengthy and complicated 

computational tasks. 

 

 

1.1.6 Spiking Neural Networks 

 

The Spiking Neural Networks – SNNs are, in fact, a particular type of 

artificial neural network that is different from a traditional ANNs since it 

resembles biological neurons. Here are a few crucial SNN features: 

 

 Brain Model:  

 

1. Spikes: In SNNs, information is communicated between neurons 

by a series of brief, unique occurrences called spikes. When a 

neuron reaches a certain level of polarization of membranes, 

known as the threshold, a spike is created. 

2. Temporal Coding: This implies that the spiking activity does not 

merely encode information in terms of the presence or absence of 

a spike, but also the time of the occurrence of these spikes. Such 

spikes regimes should be accurately timed. 
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 Biological Realism: 

 

1. Dynamic Synapses: Two more physiologically realistic models of 

synaptic behaviour, short-term plasticity and STDP together for 

SNNs are often incorporated. 

2. Energy Efficiency: SNNs may offer greater efficiency in energy 

usage because their neurons are activated only when there is a 

stimulus or spike. Another advantage of progress variables is that 

it is easily observed and monitored because its value is register-

based which is preferred for hardware implementations. 

 

 Calculations: 

 

1. Event-Driven Processing: SNNs employ event-based processing 

unlike most other network types, which employ continuous 

processing. for this reason, SNNs are well suited for such 

application since neurons do not fire unless activated by a spike 

thus implying the model uses less power. 

 

 

1.2 ADVANTAGES & DISADVANTAGES OF NEURAL NETWORKS 

 

 

1.2.1 ADVANTAGES 

 

 Frequently use online services that lower (but do not completely 

eliminate) systematic risk. 

  Are constantly being expanded into new fields with more challenging 

problems. 

 Can operate more effectively and longer than humans. 

 Can be designed to take lessons from past results and use them to 

improve future computations. 
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1.2.2 DISADVANTAGES 

 

 

 The development of the code and algorithms could take a while.  

 If a self-learning system lacks transparency, it could be difficult to 

identify mistakes or changes to the assumptions.  

 Usually, it gives an approximate range or sum that might not come to 

pass. 

 It still depends on hardware, which may need to be maintained with 

effort and knowledge.  

 

 

1.3 SPIKING NEURAL NETWORKS (SNNs) 

 

Spiking neural networks (SNNs) are artificial neural networks that closely 

resemble natural neural networks. SNNs incorporate time into their operational 

model in addition to synaptic and neuronal state. The concept is that, unlike 

neurons in conventional multi-layer perceptron networks, neurons in SNNs only 

transmit information when a membrane potential, or the intrinsic property of a 

neuron linked to its membrane electrical charge, crosses a threshold. When the 

membrane potential crosses the threshold, the neuron fires, causing the potentials 

of nearby neurons to change accordingly. A neuron model that fires at threshold 

crossing is known as a spiking neuron model.  
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Fig 1. (A)Spiking Neural Nets and their Interconnections in Comparison to (B) 

Neurones that are biological [2] 

 

 

Artificial neurons behave differently from biological neurons, even though they 

look a lot alike. The following are the main differences between artificial and 

biological NNs: 

 General brain structure;  

 Brain computations;  

 Learning is a rule as opposed to the brain.  

In 1952, Scientists Andrew Huxley and Alan Hodgkin created the initial Spiking 

Neural Network model. The action potential initiation and propagation in 

biological neurons were described by the model. In contrast, biological neurons 

do not transmit impulses directly. Neurotransmitters are chemicals that need to be 

exchanged in the synaptic gap in order for communication to occur. 

 

 

1.3.1 The advantages of using Neural Networks with Spikes 

 

 Energy Efficiency: SNNs are likely to be able to achieve higher levels of 

energy efficiency in comparison to more traditional ordinary ANNs due 

to their event-based operation and relative sparing usage, which makes 

them fitting for usage in power-constrained environments. 

 

(A) (B) 
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 Temporal Dynamics: SNNs are particularly useful in tasks involving 

sequences or time series because SNN naturally handles temporally 

dependent input and temporal relationships. 

 

 Robustness: For some purposes, its asynchronous and event-driven 

topology may afford SNNs the edge of being less susceptible to noise 

and hardware failure. 

 

 

1.3.2 Obstacles and Recent Studies 

 

 Training Complexity: Due to the nonsmooth nature of spike events in 

SNNs, training of SNNs is a more complex process than that of 

conventional ANNs. New learning paradigms are proposed by authors, 

who with a reference to biological learning principles, such as STDP. 

 

 Absence of Standardized Tools: However, there is relatively less 

number of existing conventional and systematic methodologies and tools 

when it comes to the construction and training of the SNNs as compared 

to the case with classic ANNs and this still comprises the current 

research area. 

 

 Cost of Computing: Alas, to mimic the activity of spiking neurons in 

these cases, when using general purpose engineering and not SNN 

specialized technologies, it may cost too much to accurately imitate 

SNNs. 

 

1.3.3 Uses 

 

 Neuromorphic Hardware: SNNs are a very good fit and complement 

neuromorphic hardware that was designed based on the architecture and 

functionality of a human brain. 
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 Real-Time Processing: SNNs find their application as real-time 

classifiers – for applications in robotics, sensory motoring and real time 

decision making. 

 

 BCI individuals are being adopted using SNNs due to its ability to fit the 

temporal characteristics of neural data. 

 

1.3.4 Prospective Courses 

 

As the fields of neuromorphic electronics and engineering advances, with 

improvements in training methodologies and the need for highly efficient 

and real-time processing, Spiking Neural Networks have a great future 

ahead of them. Research is gradually enhancing their responses toward 

biological realism, computing capability and adaptability to hard-tasking 

real-world scenarios. 

 

1.3.5 In summary 

 

The recent development of structures that can be considered as a new line of 

artificial intelligence staking to make a bridge between AI and BI is the 

spikey neural networks. SNNs offer an opportunity for alteration in 

disciplines that need rugged, real-time, low-power architectures using 

temporal dynamics and high efficiency by emulating biological neural 

systems. 

 

1.3.6 How Does Spiking Neural Network Work? 

The information propagation strategy is what sets an SNN apart from a 

conventional ANN. As much as is feasible, SNN aims to mimic a biological 

neural network. Because of this, SNN functions with discrete events that 

happen at set times as opposed to ANN's constantly fluctuating time values. 

A spike train is the term used to describe a set of spikes. The SNN receives 
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a set of spikes and outputs another set of spikes. The primary idea is as 

follows: 

 The electrical potential of biological neurons is the value that each 

neuron possesses at any given time. 

 A neuron's value can fluctuate according to its mathematical model; for 

instance, if it receives a spike from a neuron upstream, its value could 

increase or decrease.  

 A neuron's value will instantly fall below its average if it exceeds a 

threshold and fires a single impulse to every neuron downstream that is 

connected to the first one.  

 As a result, the neuron will have a refractory phase that is comparable to 

that of a biological neuron. Over time, the neuron's value will 

progressively revert to its average.  

 

 

1.3.7 Neural Codes based on spikes 

 

Neural computation is the aim of artificial spiking neural networks. Neural 

spiking must therefore be given meaning, and every computation-related 

variable must be described in terms of the spikes that spiking neurons use to 

exchange information. Based on biological understanding, numerous neural 

information encodings have been proposed: 

 Binary Coding 

 

In binary coding, an all-or-nothing encoding, an active or inactive neuron 

will release one or more spikes over a predetermined period of time. This 

encoding was backed by the discovery that physiological neurons exhibited 

a predisposition to fire in response to input (a sensory stimulus such as light 

or external electrical inputs). Since individual neurons are represented as 

binary units that can only accept two on/off values, this binary abstraction 

can be advantageous to them. Spike train classification is another use where 
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it may be used to analyze spike trains from pre-existing spiking neural 

networks. It uses a binary interpretation of the output spike trains.  

 

 

 Rate Coding 

 

Rate coding removes the temporal aspect of spikes by utilizing only the rate 

of spikes within an interval as a meter for the information delivered. The 

mechanism underlying rate encoding is the fact that physiological neurons 

fire more frequently in response to stronger (sensory or artificial) stimuli. 

Once more, it can be used to the analysis of spike trains or even individual 

neurons. As rate neurons, the neurons in the first example transform real-

valued input numbers, or "rates," into an output, or "rate," at each time step. 

The idea of rate coding has served as the foundation for traditional artificial 

"sigmoidal" neurons in technological settings and cognitive research. 

 

 

 Fully Temporal Codes 

 

Accurate spike timing is necessary for the whole temporal code's encoding. 

Neuroscience research indicates that spike-timing can be extraordinarily 

accurate and consistent. A precise (internal or external) event, like the start 

of a stimulus or the spike of a reference neuron, is associated with a timing 

in a fully temporal code. 

 

 Latency Coding 
 

 

It's the time, not the number of spikes, that counts in latency coding. 

Information is encoded using the period of time between a certain (internal 

or external) occurrence and the first spike. This is based on the observation 

that upstream neurons spike earlier in response to significant sensory inputs. 

This encoding, among other supervised and unsupervised learning methods, 
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has been used with the Spike Prop and Chronotron. The sequence in which 

neurons in a group fire their initial spikes encodes information about a 

stimulus and is intimately related to rank-order coding. It's the time, not the 

number of spikes, that counts in latency coding. The period of time between 

a certain (internal or external) event to the first spike is utilized. 

 

 

1.3.8 Architecture of SNN 

 

In an SNN architecture, reconfigurable scalar weights describe spiking 

neurons and connecting synapses. The data input in analog form is first 

converted employing a spike train population coding method, a sort of 

temporal coding, or a rate-based methodology in order to create an SNN. A 

genuine neuron in the brain receives synaptic inputs from neural network 

neighbours, just like a simulated spiking neuron does. Network dynamics 

and action potential creation are both demonstrated by biological brain 

networks. 

 

 

Compared to real biological networks, artificial SNNs have far simpler 

network dynamics. Assuming that the spiking neurons in the model have 

pure threshold, dynamics is helpful in this situation (unlike aspects of post-

inhibitory rebound, hysteresis, resonance dynamics, or refractoriness). An 

action potential, or spike, is produced when the membrane potential of 

postsynaptic neurons above a threshold that is influenced by the activity of 

presynaptic neurons. 
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Fig 2: Architecture of Multilayer SNN [1]  

 

 

 

1.3.9 Learning Rules in SNN 

 

 

To achieve learning, use scalar-valued synaptic weights, whether spiking or 

non-spiking. In non-spiking networks, it is impossible to replicate a specific 

type of bio-plausible learning rule; spikes make this possible. 

Neuroscientists have discovered other versions of this learning rule, which 

they have collectively dubbed spike-timing-dependent plasticity (STDP). Its 

primary characteristic is that, between time intervals of tens of milliseconds, 

the weight (synaptic effectiveness) connecting a pre- and post-synaptic 

neuron changes in response to their respective spike rates. Based on data 

that is local to the synapse and local in time, the weight is adjusted. Both 

 

(13) 



(9   

supervised and unsupervised learning strategies in SNNs are covered in the 

upcoming subsections. 

 

 Unsupervised Learning 

 

No label is applied to the data, and the network is not given any 

performance feedback. Finding statistical correlations in data and 

responding to them is a typical task. A prime example of this is Hebbian 

learning and its spiking generalizations, such STDP. While correlation 

analysis can be a goal unto itself, it can also be applied to later grouping or 

classification of data. By definition, synaptic weight is lowered if a post-

synaptic neuron fires later, and strengthened if Shortly after a pre-synaptic 

neuron fires, a post-synaptic neuron fires. On the other hand, there are 

several physiological types of STDP, of which this traditional variety is only 

one. 

 

 Supervised Learning 

 

Through the correlation of (classes of) inputs with target outputs a mapping 

or regression between inputs and outputs is produced by the learning device 

in supervised learning, where data (the input) is paired with labels (the 

targets). An error signal is used to update the weights of the network by 

calculating the difference between the target and actual output. Under 

supervised learning, we can directly update the parameters using the targets; 

in contrast, reinforcement learning only gives us a general mistake signal, or 

"award," which shows the system's effectiveness. Practically speaking, it's 

difficult to distinguish between the two kinds of supervised learning. 
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1.3.10 Traditional Neural Networks Vs SNNs 

 

 

A spiking neural network is a feed-forward, two-layered network with 

heterogeneous lateral connections in its second hidden layer. Information is 

sent by biological neurons using brief, sharp voltage spikes. We call these 

signals action potentials, spikes, and pulses. Because spiking neuron 

networks have the ability to hold temporal information in their signals, they 

are more powerful than non-spiking ones. Nevertheless, unique and 

physiologically more plausible rules for synaptic plasticity are also 

necessary for spiking neuron networks. It is not possible for spikes to travel 

randomly across neurons. The synapse, which consists of the beginning of 

the dendrite, the end of the axon, and a synaptic gap, is the most intricate 

part of the neuron. Previously believed to be merely a means of transmitting 

a signal from the axon to the dendrite, the synapse is now recognized as a 

sophisticated signal pre-processor that plays a crucial role in learning and 

adaptability. Some vesicles fuse with the cell membrane and release their 

neurotransmitter content into the extracellular fluid that fills the synaptic 

gap when a spike reaches the axonal (presynaptic) side of the synapse. The 

original concepts and models for artificial neural networks were developed 

more than 50 years ago, making them a relatively ancient computer science 

technique. McCulloch-Pitts threshold neurons, a theoretically simple model 

where a neuron transmits a binary "high" signal when the total of its 

incoming weighted inputs is greater than a threshold, were the first artificial 

neural networks. These neurons have been utilized in complex artificial 

neural networks like Hopfield nets and multi-layer perceptrons, despite the 

fact that they can only provide digital output. A multilayer perceptron with a 

single hidden layer for digital computations, for instance, is called a 

universal network because it can compute any function and produce a 

Boolean output. Second-generation neurons use a continuous activation 

function instead of a step or threshold function to calculate their output 

signals, analog input and output is appropriate for them. Activation 

functions that are frequently used are the sigmoid and hyperbolic tangent. 
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1.3.11 Implementing Spiking Neural Networks  

 

 

SNNs have potential applications similar to those of conventional ANNs. 

Moreover, SNNs have the ability to activate biological organisms' central 

nervous systems, such as an insect looking for food in a foreign place. Their 

realism makes them useful for studying how biological brain networks 

function. A real neural circuit's topology and function can be hypothesized, 

and its plausibility can be evaluated by comparing recordings of the circuit 

to the output of the relevant SNN. Unfortunately, there aren't enough 

training procedures for SNNs, this may pose issues for SNNs in certain 

applications, such as computer vision. 

 

 

1.3.12 Pros and Cons of SNN 

 
 
 

 Pros 
 
 

 

 A dynamic system is SNN. It performs exceptionally well in dynamic 

processes such as dynamic picture identification and speech. 

 An SNN can continue to train even after it has begun operating. 

 Training an SNN just requires training its output neurons. 

 Compared to regular ANNs, which usually have more neurons, SNNs 

often have fewer neurons. 

 SNNs can operate very quickly because impulses, as opposed to 

continuous values, are sent by the neurons. 

 They have improved noise immunity and information processing 

productivity by utilizing the temporal presentation of data. 
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Cons 

 

 At the moment, there isn't a learning algorithm created especially for 

this assignment; SNNs are challenging to train.  

 It is not feasible to construct a small SNN.  
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CHAPTER 2 

 

 

ANALOG IMPLEMENTATION OF ANNs 

 

 

 

 

2.1 COMPARISON BETWEEN ANALOG & DIGITAL 

IMPLEMENTATIONS 

 

 

While it has been established that digitally constructed simulators are helpful and 

practical for researching neural network behaviour, they are not suitable for 

large-scale, realistic, real-time simulations of neural systems or for actual 

biologically plausible systems. 

 

In the future, these kinds of capabilities might be provided by custom digital 

systems that make use of Field programmable gate arrays (FPGAs) or parallel 

Graphics processing units (GPUs). However, it's unclear how these systems 

could potentially get close to the resilience, density of the neurons and synapses 

they simulate, as well as energy efficiency. This field of analog implementation 

of neuro-systems has been the subject of research since it was found that the rules 

of neural computation, which are analogous to those of classical computing but 

fundamentally different from each other, govern how the brain operates. 

 

For these reasons, the primary technique for the direct building of neuro-systems 

involves the use of intricate electrical components and analog circuits to simulate 

neurological activities. Testing can be done by implementing very large-scale 

integration (VLSI). different ideas via prototyping brain models, neural 

dynamics, network topologies, and learning mechanisms, provided that a suitable 

reconfigurable platform for neural structure implementation is available.  
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Analog techniques are fast, efficient, and capable of simulating brain activity 

right down to the ion channels in the membrane of each neuron when it comes to 

VLSI implementation; yet, they are rigid and take a long time to develop. For 

designers of biologically plausible neuro-systems, reconfigurable platforms can 

offer small and adaptable solutions as a midpoint in the design space. 

 

 

2.2 HARDWARE IMPLEMENTATION USING FPGAs 

 

 

Neural networks are based on massive amounts of multiply accumulate 

calculations. By simulating the interactions of thousands of neurons, these 

computations generate a statistical probability of an event. This is a measure of 

the network's confidence in identifying a specific object in images. Of course, it 

could be incorrect. People frequently perceive human faces in inanimate objects, 

for instance! Thus, any system will need to have some margin for error in its 

results. Since the final answer must stay within the acceptable degree of accuracy 

specified by the application's tolerance, the statistical nature of these results 

allows for flexibility in the dynamic range of the computations. As a result, 

inference offers chances to use various data types creatively. 

 

 

It is frequently possible to reduce data widths to 8-bit integers, and in certain 

situations, to just one bit. Almost any size of data can be processed by FPGAs 

with little to no loss in compute utilization [5]. There are benefits and drawbacks 

to using ASICs, CPUs, GPUs, and FPGAs for neural network inference. The best 

performance and lowest cost are provided by custom chips (ASICs), but only for 

specific algorithms; no flexibility is offered.  The most programming flexibility, 

however, is provided by CPUs, albeit at a lower compute throughput. In general, 

GPU performance outperforms CPU performance and is further enhanced when a 

large batch number is used, meaning multiple queries are processed in parallel.  
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It is not always possible to batch input data in latency critical real-time systems. 

Neural networks can be optimized for a single query and still achieve high-level 

compute resource utilization in this domain, which is one area where FPGAs are 

somewhat unique. FPGAs are perfect for processing neural networks with 

latency criticality when an ASIC is not available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(20) 



(9   

 

 

CHAPTER 3 

 

 

DIFFERENT NEURON MODELS 

 

 

 

 
3.1 WHAT IS A NEURON? 

 

 

A mathematical model is called an artificial neuron or neural node. Most of the 

time, it calculates the input's weighted average before biasing it. After that, this 

resultant term is run via an activation function. This activation function is 

nonlinear, just as the sigmoid function; given a linear input, it generates a 

nonlinear output. 

 

 

 

Fig 3:  Model of Artificial Neuron [3] 

 

 

Neural nodes, or layers of neurons, make up a typical network of neuron. These 

layers come in three main varieties: 

 single input layer;  

 one or more hidden layers; 

 single output layer  
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Every neural node has a threshold and a weight, and they are all connected to one 

another. After undergoing some transformation on an input, it sends back an 

output. Any node that has an output that exceeds the designated threshold value 

is activated. It then transmits data to the network's subsequent layer. If not, it 

stays inactive and doesn't send any data to the network's next tier. 

 

 

 
 

Fig 4: Layers of Neural Network [2] 
 

 
 

3.2 TYPES OF NEURON MODELS 

 

 

      3.2.1 LIF MODEL 

 

 

The LIF model encapsulates the following characteristics of a neuron: 

 integrates synaptic inputs both spatially and temporally; 

 produces spikes when voltage hits a threshold, converting raw analog 

impulses into spikes;  

 possesses a leaky membrane;  

 becomes refractory during the action potential. 

 

(13) 

(22) 



(9   

The spatial and temporal integration of inputs is assumed to be linear in the 

LIF model. Furthermore, compared to genuine neurons, the dynamics of 

membrane potentials near the spike threshold in LIF neurons are far slower. 

 

 

 
 

Fig 5: Model of an analog electronic circuit for a LIF neuron.[11] 
 

 

 

 

 
 

Fig 6: LIF neuron model in simplified analog electronic circuit.[4] 
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3.2.2 OZ NEURON 

 

 

 

 
 

 

Fig 7: OZ neuron’s building blocks. [12] 
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3.2.3 IF (INTEGRATE AND FIRE) NEURON 

 

A 

 

 
B 

 
 

Fig 8: (A) Schematic of the diode (with operation mechanism without 

external bias) & using a digital signal controller in the MOSFET neuron 

circuit, (B) In relation to time, the pulses of the MOSFET and diode neuron 

circuits in synaptic current, membrane voltage, and spike voltage.  [11] 
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3.2.4 Neuron circuit with smooth nonlinear output function 

 

 

 
 

 

Fig 9: (a) is an excitatory neuron circuit and (b) is an inhibitory neuron 

circuit. [14] 
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CHAPTER 4 

 

SPICE MODELS 

 

 

 

 

4.1 AD844 

 

 

The junction isolated complementary bipolar (CB) process developed by Analog 

Devices, Inc. was used to create the high-speed monolithic operational amplifier 

known as AD844. It combines outstanding dc performance with a wide 

bandwidth and a rapid large signal response. It is suitable for many noninverting 

applications, even though it is optimized for use as an inverting mode amplifier 

and in current-to-voltage applications. The AD844 can replace traditional op 

amps, despite its current feedback architecture resulting in a very crisp pulse 

response, excellent linearity, and much improved ac performance. This kind of 

operational amplifier produces a closed-loop bandwidth that is primarily 

controlled by the feedback resistor and is essentially independent of the closed-

loop gain.  

 

The limitations on slew rate found in other current-feedback operational 

amplifiers and conventional op amps are not present in the AD844. For an output 

step of 20 V, the maximum rate of change in production can surpass 2000 V/μs. 

Generally, settling time ranges from 100 ns to 0.1% and is largely unaffected by 

gain. The AD844 is short-circuit protected up to 80 mA. It has low distortion, 

driving 50 Ω loads to ±2.5 V.  
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Fig 10: AD844 functional block diagram [12],[16] 

 

 

 

Fig 11: output of AD844 when non-inverting input is given 

 

AD844 spice model has been imported in LTSpice and verified with the desired 

results of an operational amplifier for a non-inverting input, where port 1 is the 

non-inverting input port, y. 
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Fig 12: output of AD844 when inverting input is given 

 

AD844 spice model has been imported in LTSpice and verified with the desired 

results of an operational amplifier for an inverting input, where port 2 is the 

inverting input port, x. 

 

 

 The AD844 is a cheap, adaptable part It provides an excellent blend of ac and 

dc performance 

 It is not restricted by slew rates. The output level practically has no effect on 

the increase and fall time intervals.  

 It can drive loads as low as 50 Ω and very large capacitive loads with the use 

of an external network. It can operate on power supplies ranging from ±4.5 V 

to ±18 V. 

  

 

The AD844's offset voltage and input bias currents are laser trimmed to reduce 

dc errors; the drift of bias current 9 nA/°C and the VOS drift is usually 1 μV/°C. 

With its outstanding differential gain and differential phase characteristics, the 

AD844 can be used in a wide range a bandwidth of up to 60 MHz for video 

based programs. It is an excellent choice for an analog-to-digital converter 

(ADC) flash input amplifier because it has a wide bandwidth, low noise, low 

distortion, and low drift. 
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4.2 AD633 

 

An analog multiplier with four quadrants that operates fully is the AD633. It has 

a high impedance summation input (Z), differential X and Y inputs, and a high 

impedance. A concealed Zener provides the nominal 10 V full scale low 

impedance output voltage. The first product with these features available in 

reasonably priced 8-lead PDIP and SOIC packaging is the AD633. The AD633 

can be laser calibrated to ensure a total accuracy of 2% of full scale. In a 10 Hz to 

10 kHz bandwidth, noise at the output typically measures less than 100 µV rms, 

while nonlinearity for the Y input typically falls between 0.1% and 0.7%. The 

AD633 is a great option because of its 20 V/µs slew rate, 1 MHz bandwidth, and 

capacity to drive capacitive loads., For many uses where convenience and 

affordability are critical, the AD633 is a great tool.  

 

The AD633's versatility is not diminished by its simplicity. The Z input allows 

the user to set up different applications, raise the multiplier gain, and add the 

results of two or more multipliers. It also provides access to the output buffer 

amplifier. There are packages for SOIC and 8-lead PDIP for the AD633. For 

commercial usage (J Grade), its operational temperature ranges are 0°C to 70°C; 

for industrial use (A Grade), they are -40°C to +85°C.  

 

 

 
 

Fig 13: AD633 functional block diagram [12],[17] 
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Fig 14: output of AD633, working as an analog multiplier 

 

AD633 spice model has been imported in LTSpice and verified with the desired 

results of an analog multiplier with four quadrants input x1, x2, y1, y3 and high 

impedance summation input z. 

 

 

 The affordable 8-lead SOIC and PDIP packages of the comprehensive four-

quadrant multiplier AD633 are available. The end product is simple to use 

and reasonably priced. 

  The AD633 can be used without the need for costly user calibration or 

additional components. 

 The device is stable and dependable due to its monolithic design and laser 

calibration. 

  The signal source loading is insignificant due to the large (10 MΩ) input 

resistances. 

 The voltage range of the power supply is between ±8 and ±18 volts. A stable 

Zener diode produces the internal scaling voltage; multiplier accuracy is 

essentially supply insensitive. 
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4.3 IMPLEMENTATION OF NEURON USING AD844 & AD633 

 

 

 

 

Fig 15: A simple neuron model using AD844 & AD633 

 

 

 

 

Fig 16: 2nd order piecewise linear neuron model using AD844 
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CHAPTER 5 

 

 

SIMPLE MODEL OF SPIKING NEURONS 

 

 

 

 

5.1 IMPLEMENTATION OF NONLINEAR ODEs  

 

Large-scale brain models must be numerically simulated in conjunction with 

experimental research on the human and animal neurological systems to 

completely understand how the brain functions. When creating these expansive 

brain models with spiking neurons, we have to strike a balance between two 

seemingly incompatible requirements: A single neuron model needs to be:  

 

 Computationally straightforward 

 Capable of simulating the intricate firing patterns of real biological neurons. 

 

Due to the fact that real-time neuron simulation is only possible with a small 

number of neurons, using computationally prohibitive Hodgkin-Huxley-type 

models that are biophysically accurate is not feasible. Conversely, though, while 

employing an integrate-and-fire model is more efficient in terms of computation, 

it is unrealistically basic and unable to replicate the complex spiking and bursting 

dynamics that are present in cortical neurons. Hodgkin–Huxley-type neuron 

models to 2- Dimensional system of Izhikevich's form for ordinary differential 

equations  [6]. 

v’ = 0.04 v^2 + 5 v + 140- u + I 

u’ =a .(bv – u) 
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utilizing additional reset equations  

v>= 30 mV 

then c → v 

u+d → u 

 

here I is the minimal current required for the quadratic IF neuron to fire 

repeatedly, and v, u, and constant parameters a, b, c, and d stand for the 

membrane recovery variable and membrane potential, respectively.  

 

 

 

Fig 17: Spiking neuron circuit 
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5.2 NEURON RESPONSES & SIMULATIONS 

 

 

 

 

Fig 18: Spiking circuit with Y voltage 

 

Spikes started generating when a basic neuron circuit is designed in LTSpice 

using AD844 & AD633, here all the three R1,R2 and R3 resistances are kept 

equal that is 1k ohm. 

 

 

 

  

Fig 19: Spiking circuit with Y voltage and varied R3 resistance (R3<R1,R2) 
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Spikes started generating with greater resembles to the biological spikes, when a 

basic neuron circuit is designed in LTSpice using AD844 & AD633, here R2 and 

R1 are kept greater then R3 where R1=R2=1k ohm and R3=500 ohm. 

 

 

 

Fig 20: Spiking circuit with Y voltage and varied R3 resistance (R3>>R1,R2) 

 

The frequency of the spikes is getting increased and nature of the spikes is in the 

resemblance to the biological neural spikes, when R3 resistance is increased up 

to a large extent in comparison with R1 and R2 which a kept to 1k ohm.  

 

 

 

Fig 21: A simple neuron model using AD844 & AD633 
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Fig 22: Tens of thousands of Spikes generation 

 

After increasing the R1 and R2 very largely than the R3 resistance we are 

capable getting the desired output of generating tens of thousands of spikes in the 

real-time and the nature of the spikes is in the resemblance to the biological 

neural cells. Here the nature of the spikes is more accurate and realistic 

biologically in comparison to the above spikes. 
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CHAPTER 6 

 

 

ANALOG APPLICATION OF PIECEWISE LINEAR NEURAL 

NETWORK USING CCII BLOCK CONSTRUCTION 

 

 

 

 
With a contemporary conveyor of the second generation (CCII), a unique 

implementation of the neuron in a reconfigurable analog circuit has been described 

[8]. The Izhikevich model [6] has been modified into a new piecewise linear (PWL) 

circuit that can replicate various Cortical neurons exhibit dynamic characteristics.  

Because of its regular form and usage of common building components, the circuit 

can be built as a reconfigurable analog device that is specifically designed for neural 

networks. This represents a step toward the development of programmable analog 

neural integrated circuits. Large-scale neural network implementation in analog is a 

good fit for this model due to its resistance to matching of the input and output 

impedance and noise.  

 

6.1 CURRENT CONVEYOR OF SECOND GENERATION (CCII) 

 

 

  Conveyor of the First Generation (CCI) 

 

The three terminals that comprise the CCI are designated by the terminal names 

X, Y, and Z. Any voltage that is applied to Y is equal to the potential at X. Any 

current that enters Y also enters X, and as a variable constant current source, it 

has a high output impedance and is mirrored at Z. Current into Y generates 

current into Z in a sub-type CCI+, whereas current into Y causes an equivalent 

current to flow out of Z in a CCI-.The best way to depict its terminal 

characteristics is with a hybrid matrix that compares the three ports' outputs to 

their corresponding inputs. This relationship can be expressed for CCI as: 
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Fig 23: Hybrid matrix for CCI [7] 

 

 

 Second Generation Current Conveyor (CCII) 

 

There is no current flow at terminal Y. One way to think of the perfect CCII is as 

an ideal transistor with flawless properties. Y stands for neither the gate nor the 

base, where no current flows. The emitter or source voltage (at X) follows the 

voltage at Y because there is no base-emitter or gate-source voltage drop. The 

emitter or source has an input impedance of zero (X), but the base or gate has an 

infinite (Y) input impedance. Even though the output impedance is infinite, any 

current that leaves the emitter, also known as the source (X), is reflected and 

flows into the collector, also known as the drain (Z). A CCII− is represented by 

this ideal bipolar or field-effect transistor because of the reversal of sensing 

between the X and Z currents. Z would be a CCII+ if the high-impedance current 

that was exiting it was also exiting X.  

 

 

 

Fig 24: Hybrid matrix for CCII [7] 

 

0 

 

0 

(39) 



(9   

 

 

Fig 25: Block diagrams for CCI & CCII [7] 

 

 

 

     6.1.1 CMOS REALIZATION OF CCII 

 

 

 

Fig 26: Realization of +CCII/-CCII using 350nm CMOS technology 
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Fig 27: Output of +CCII/-CCII using 350nm CMOS technology, where the 

input voltages are verified i.e. Vx = Vy. 

 

 

 

Fig 28: CCII using 350nm CMOS technology is giving an output at V(z-) 

terminal therefore functioning as CCII-. 
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     6.1.2 CCII USING AD844 

 

 

 

Fig 29: CCII+/CCII- implemented using AD844 

 

 

 

Fig 30: Output verification of the implemented CCII+, where Vx=Vy 
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Fig 31: Output verification of implemented CCII-, where Vw=Vz 

 

 

 

Fig 32: Output verification of implemented CCII-, where Vx=Vy 
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6.2 PROPOSED NEURON CIRCUIT 

 

 

     6.2.1 MEMBRANE CIRCUIT USING AD844 

 

 

 

Fig 33: Membrane circuit using AD844 

 

 

 

Fig 34: Output of the membrane circuit where the CCII is designed using 

AD844 
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     6.2.2 AUXILIARY AFTER SPIKE RESTING CIRCUIT  

 

 

 

 

Fig 35: Auxiliary spike resting circuit using open loop comparator 

 

 

 

Fig 36: Simulation of the auxiliary spike resting circuit in LTSpice which 

signifies an open loop comparator. 
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Fig 37: 2nd order piecewise linear neuron model using AD844 

 

 

 

Fig 38: (i) Variation of membrane potential of the 2nd order piecewise linear 

neuron model 

 

In the above simulation the resistance and capacitances are taken as R1= 

4.5k,,R2 = 9k,,R3 = 33k,,R4 = 16k,,R5 = 11k,,R6 = 16k,,Cv=0.33pf,,Cu = 

2.13pf results in seated spiking kind of waveform. 
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Fig 39: (ii) Variation of membrane potential of the 2nd order piecewise 

linear neuron model 

 

The output waveform of the membrane potential variation results in 

consistent tonic spiking with the variation in the resistance and capacitance 

values. 

 

 

Fig 40: (iii)Variation of membrane potential of the 2nd order piecewise 

linear neuron model  

 On further increase in the resistance and capacitor values, more sharper 

spikes are generating in the waveform with higher frequency. 

 

Neural oscillations and spike trains of diverse types of functions in a 

neuronal circuit realized in the software. A number of different output 

waveform shapes of the model neuron circuit are illustrated with the 

dependency on spikiness. This way, various types of spiking behaviors may 

be realized without changing size of transistor or connection diagram. With 

reference to the data derived in the study, it can be deduced that this 

electrical circuit mimics the behavior of the neural dynamics as postulated 

by in Izhikevich (2003). 
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CONCLUSION 

 

Spiking Neurons have been implemented using AD844 and AD644 in LTSPICE. 

Our model is the most basic model that can replicate various kinds of neural activity: 

It has only one nonlinear term on the right-side equation which is v^2 and it contains 

two overall equations. However, the presented model is canonical in a sense that it is 

equivalent to a large class of biophysically detailed and accurate Hodgkin-Huxley-

type models being different from them by the change of coordinates only, this 

change can be accompanied by incorporating a massive number of equations and all 

available data on ionic currents. From biological neurons, the phenomena like 

spiking, burring and mixed mode firing, post inhibitory spikes and bursts, continuous 

spiking with frequency adaptation, threshold variation, resting and spiking bistable 

region, subthreshold oscillations and resonance are all created by the model 

presented. Using the model described here, we show how to build spiking neuronal 

networks that generate coordinated activity and oscillations comparable to those 

observed in mammalian brains. It is demonstrated that this second order derivative 

equation is indeed effective by constructing the neuron models in LTSpice and 

successfully generating tens of thousands of spikes. In terms of their temporal and 

spatial organization, the spikes are nearly as complex as the real action potentials that 

occur in neurons in the cerebral cortex. 

 

The behaviour of biological neurons has been effectively simulated with the help of 

this careful study and simulations of Spiking Neurons with the help of LTSpice, 

AD844, and AD633. Synthesis of piecewise linear neuron models with the help of 

CCII building blocks is presented here only in a generalized form applicable to the 

analog implementation. Outcomes signify that such circuits are competent of 

mimicking each style of neuronal activity. It is important to note that this model is 

highly immune to noise and impedance matching in the input and output, which 

could be very suitable for large-scale neural networks. This is an important 

advancement towards building programmable analog neural integrated circuits for 

actual use. Since high-performance analog computation emanates from the Second-
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Generation Current Conveyor (CCII) implementations, these approaches are well 

suited to the complex biological information processing devices. Second generation 

current conveyor is implemented with the help of AD844. The generated spikes in 

this case look realistically similar to the natural action potentials. Therefore, the 

second-order piecewise-linear model of a neuron’s electrical circuit emulates the 

excitability of the nervous system as described by Izhikevich (2003)[6].  

 

Future development of distinct membrane recovery variables and concept of 

Integrate-and-Fire neuron will contribute to the realistic and useful models in the 

future. In future the auxiliary spike resting circuit can be designed using some active 

element in order to implement the second order piecewise linear neuron model.  
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