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Deep Neural Networks Airport Runway Crack Detection and Densification  

Aryan Bansal 

ABSTRACT 

As a greater number of people travel due to the built many airports by improved 

Infrastructure, a lot of runways are used constantly by planes and worries about safeties 

are increasing since new ways of using them keep on mushrooming because of this 

line of action. Runway maintenance has become an essential duty due to check of 

cracks. However, traditional methods such as manual inspection because cracks 

always have differing degree on division have never had good performance in time 

and needed more time to proof the exact problem. 

 

To solve these problems, it is possible to present an dataset that goes by the name of 

ARID. It splits into eight divisions of runway cracks. It contains 8228 anotated 

illustrations hence serving as a good source for acquiring the models to work with 

while training or evaluating them. By using modern methods of deep learning like 

YOLO v5 and Faster R-CNN, this idea creates a good working algorithm for detecting 

runway cracks. 

 

To get optimal model performance tuning and changing different parameters being 

fine-tuned are involved. We have noticed a significant improvement in the 

performance metrics of our model as a result of intense experimentation. The precision 

of crack detection has increased from 83% up to 92%, while the recall rate has 

escalated steadily from an initial 62.8% to its current level which stands at 76%. The 

proposed model has been demonstrated by these results to be effective in precisely 

identifying and categorizing cracks on runways, so that runway maintenance and 

safety can be upgraded.  

 

Keyword: YOLO, Faster RCNN, Airport Runway, AIRD, Crack Detection. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

1.1 Overview 

In the past few years, extreme travel and travel changing have greatly increased all 

over the world. It is the aviation industry that has experienced major technology 

advancements leading to safe and comfortable flights. Current airplanes have cutting-

edge navigation systems, highly developed safety features together with better cabin 

amenities that provide an enhanced air travel experience for travellers. Various factors 

influence the development of surface cracks on runways despite the way in which 

heightened transportation activity impacts infrastructure service performance and life. 

This is why routine maintenance has become increasingly important especially in 

detecting and classifying runway cracks. Consequently, safety and service life may be 

threatened through their structural degradation. Cracks in the pavement can cause 

damage on those who use it as well as risk their safety when they are at risk. 

Nonetheless, these are most typical problems that occur in airport runways leading to 

reduced tension and even accidents in some cases. Should these broken down cracks 

not be fixed, the instance will be exacerbated as a result of persistent establishment or 

human actions. Fluctuations in temperature, precipitation, freeze-thaw cycles, along 

with excessive loads and improper maintenance by humans can cause damage to 

runways. It is important to inspect and repair runways regularly to prevent damage. 

Ground penetrating radar as well as automatic crack detection are employed to find 

deep-set extreme cracks. They assist in maintenance planning thus promoting speedy, 

efficient and effective repairs. 

Apart from technology-oriented strategies, the use of good designs for airport runways, 

as well as their proper construction, should be given serious thought as they can reduce 

incidences of cracks occurring. Good quality materials, proper drainage system and 

coming up with efficient methods of managing different heavy loads. All these 

measures are important in extending the life span of pavement runways. The ongoing 

oversight and maintenance of runway infrastructure are imperative regarding the safety 

and efficiency of air travel. If the aviation industry takes this step towards cracks ’

damage first, airport operations will be more reliable. This will not only help increase 

integration but enhance growth and sustainability globally as well in terms of transport. 

Maintain pavement and reduce green house emissions by sealing cracks in roads before 

they expand into potholes. By removing cracks at an early stage rehabilitation costs 

might be minimized up to 80% compared with rehabilitating deteriorated pavement. 

In the last few years there has been explosive growth in the Indian economy quickening 

the pace of airport development which has in turn allowed aviation industry to get over 

pre-pandemic levels. New routes and startup carriers are appearing on the horizon. By 

the year 2025, the Indian government plans to construct 220 more airports while in 

2027, India should have 1,200 aircrafts and 400 million passengers according to 

Jyotiraditya Scindia who is the Minister for Civil Aviation. In a market expected to see 

great growth, the country is constructing new greenfield airports funded using the 

public money and public-private partnerships. So far, eight out of the 21 greenfield 
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airports that have been planned are already in operation. The increase in the number 

of people deciding to fly would mean that there would be different kinds of damages 

on the runways. Fuel marks and wheel marks observed on the runway are usually 

numerous. Furthermore, there could be very fine cracks that may indicate complete 

failure. The pictures of the runways have a lot of noise and contain features such as 

fine cracks, fuel spills, and rough textures. 

The analysis process within intelligent transportation system has benefited 

significantly from the advent of automated crack detection technologies characterized 

by quick and accurate outcomes that have replaced slow and subjective conventional 

methods. An airport authority, say International Civil Aviation Organization(ICAO) 

could utilize an automated crack detection system to examine runways with great 

efficiency ranking them according to urgency before undertaking repairs as way of 

extending their lifespan. Computer vision aims at enabling computers to learn from 

the visual representations of digital images and videos. This helps in improving 

understanding of features as well as patterns using visual data. In these research areas, 

there is an abundance of pictorial data which can be accessed through cell phones 

including digital cameras. Several scholars have been researching deep architectures 

that detect cracks. For example, Gopalakrishna et al.[1] reviewed a series of deep 

learning approaches which are applicable to crack detection. By using Otsu’s improved 

threshold segmentation algorithm, road signs can be removed from an image of a road 

surface. Once the marks are removed and the crack is traced, we use the enhanced 

adaptive threshold segmentation for segmenting the image. Oliveira et al.[2] used 

various image analysis techniques to detect and describe cracks in road surface. 

1.2 Problem Statement 

The development of AI and deep learning technology helps improve plane operation 

safety and efficacy since it promotes better runway conditions. Using these 

technologies guarantees that airplane runway upkeep approaches are always forward-

looking enough to prevent any possible issues before they pose a threat to civil aviation 

growth as well as sustainability. Although these techniques have been shown to work 

well in identifying cracks found in high quality image databases[3], it should be noted 

that they may not provide enough precision to distinguish between crack and complex 

background in images of poor quality. Effective modeling of pavement distress would 

require identification and further analysis of critical surface cracks. The detection rate 

for surface cracks can be influenced by a number of factors such as age of layers, 

volume of traffic, climatic conditions, stratification and layer quality. Road 

administrators can rely on these specifications for developing road maintenance 

strategies focusing on type, extent and stage various faults are in when detected. 

Previously, numerous studies have tried to tackle these problems by following different 

methods to find the solutions but were not so fruitful. For instance, in trying to 

determine any form of failure points, CrackNet[4] sometimes managed to succeed 

though it failed at establishing different types of faults along the same failure surfaces.. 

In contrast, Zalama et al.[5] examined horizontal, vertical varieties of distress as 

proposed by Akarsu et al.[6] who further proposed that three types of distresses exist; 

horizontal, vertical and alligator cracks. Other studies have looked into identifying 

blurred road signs or distinguishing sealed cracks from other categories of pavement 

imperfections. 
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To achieve improved effectiveness in deep learning techniques, good quality of data 

used during training and testing of models are essential. For the airport runway distress 

surface database, crucial is availability of labeled datasets. Accurate learning of 

different types of cracks and distress pattern's distinguishing features is facilitated by 

high-quality labeled datasets so that they should encompass diverse images 

corresponding to multiple environments, various lighting conditions as well as noise 

levels in order to guarantee model's robustness. Researchers are looking for new ways 

for improving the models of crack detecting that include modern deep learning 

methods like convolutional neural networks, recurrent neural networks and hybrid 

models up which are mixed several ways of coping with difficult data. One way of 

increasing the robustness of such models to diverse environments is by using data 

augmentation methods such as rotating or scaling the image during training together 

with flipping it horizontally. 

One additional benefit, in addition to assisting with including sensor data like 

temperature and humidity senses with the visual data for the enhancement of model 

predictability, is integrating drones or mobile imaging systems for obtaining updated 

information sets to train crack detection models efficiently. The objective is eventually 

to invent a type of system which can automatically detecting cracks and identifying 

them so as to operate almost anywhere and give precise, useful feedback concerning 

repairs of roads. With such a system airports will check out the decay ahead of time, 

reducing costs and pollution, as well as raising safety levels plus saving on time by 

handling the pavements properly. I introduce a new dataset called the "Airport Runway 

Image Dataset" (ARID). Initially, 8,228 images were extracted from 10 different 

surface sections. Those photos were collected through Google Applications Interface 

(API) using street view. The primary operation to be done using this dataset is to 

identify all the segments that show any forms of distress by placing bounding boxes 

around them to form a segmentation mask. 

Two models that use DL (deep learning) have been improved based on the concept of 

deep learning and have been put into a single frame from the figure one. "This thesis 

makes the following important contributions: 

• They introduced a new dataset that simultaneously depicts surface cracks and 

counts them with various cameras. Such cameras encompass overhead views 

as well as common angles. The information on break points came from 

overhead photos, whereas categorizations were based on wide angle images. 

• The wide-field pictures have been tagged to show all nine identified types and 

their identifications i.e., D0-D8. As a result transverse, block, longitudinal, 

alligator, sealed transverse, sealed longitudinal and lane longitudinal cracking 

is observed, together with critical potholes that are used to assess the quality of 

crack surface. 

The proposed model, implemented on two deep learning approaches, namely YOLO 

v5 and Faster R-CNN, is trained on the dataset mentioned above. 
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Figure 1.1. Outline for Airport Runway Crack Detection and its Classification 

 

The following are chapters of these dissertations that are structured in order to offer an 

extensive review pertaining to primary ideas, methodologies, and discoveries in 

relation to the exploration of crack detection as well as segmentation using deep 

learning methods. The next section presents a comprehensive summary about the same 

topic areas. Delving into the basics of deep learning, Chapter 2 traces its historical 

development. An emphasis is placed on Convolutional Neural Networks (CNNs) as 

they play a crucial role in image processing applications. This section delves on the 

organization of CNNs which include convolutional layer, pooling layer and fully 

connected layer among others in addition to explaining how networks of such nature 

are taught to detect patterns as well as characteristics within pictures.This chapter 

explores different algorithmic approaches historically used for image analysis and 

processing e.g., edge detection, thresholding and morphological operations. In Chapter 

3, we present an exhaustive literature review on conventional image processing 

techniques particularly applied to crack detection. Besides, this chapter offers an in-

depth review of previous studies about crack detection which shows us where it has 

come from, in terms of efficiency, practicality, and feasibility. These improvements 

from traditional methods are what we are going to look at more deeply later on, in 

relation to this research work done using newer forms of machine learning called deep 

neural networks. In Chapter 4, the architecture for Crack Detection and Segmentation 

is proposed in detail. State-of-the-art deep learning models are used in this architecture. 

Thus, it explains how the architecture was designed and implemented by integrating 

You Only Look Once (YOLO) and Faster R-CNN models. For those who may not be 

familiar with these types of models, we will describe them later on in this chapter along 

with an outline of how they were configured and trained in order to perform tasks 
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related to crack detection and segmentation. Chapter 5 explains the experimental 

design that was used to assess the suggested crack identification and division method. 

This section describes the methodology applied during the data collection step, data 

preprocessing task and particular parameters for model training purposes. The 

subsequent section contains different types of tests in which the respective 

configurations are evaluated. We are displaying and looking at the outcomes while 

illustrating how effectively the recommended models work on precision, recall and 

overall accuracy. In essence, the preceding paragraphs have presented a 

comprehensive view on what has been found out as well as the degree to which they 

added value through these chapters of the dissertation paper by stating Chapter 6 as its 

last section while giving an abridged account of different topics like thesis aims and 

methods used among others culminating into final chapter. 

 

 

 

 

. 
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CHAPTER 2 

 

 

DEEP  LEARNING 

 

Today, ML techniques have facilitated numerous parts of the contemporary 

civilization. More and more data is constantly produced, and it will further grow in the 

future. 80%-90% of the total data cannot perform most of the tasks as structured data 

(unstructured data). However, traditional ML techniques like logistic regression, 

support vector machine, decision tree and k-nearest neighbours’ were constrained by 

the fact that they could not handle unstructured data. It has only been within the past 

few decades that machine learning has evolved from a methodology that required 

significant domain expertise and careful engineering to one where an algorithm might 

transform unstructured data points, such as pixel values for images, into appropriate 

representations that could then be used by other machine learning algorithms [7]. 

Representation learning is a suite of techniques that enable computers to analyse 

disorganised information and identify how it can be used for a given purpose without 

any specific instructions. Machine learning algorithms in deep learning have several 

layers of representation. The deep representation learning is achieved by using 

multiple layers of simple complex nodes, which can change the input from one form 

to another at a slightly higher level of abstraction. When enough of these are put 

together, it becomes possible to discover very sophisticated functions thereby making 

it easy for professionals with diverse research topics different fields take much 

attention. These novel technologies have been applied to tackle a difficult issue in civil 

engineering. Following section covers the basic idea of DL alongside the distinct 

constituents that must be put together without fail to develop an efficient DL model. 

Based on these insights and methodologies, an asphalt specific pavement-crack 

identifying framework will be brought forth. 

2.1 History  

In the early days of the AI construction, very high intelligence computing power tried 

very hard to resolve problems within the range of possibilities for human intellect; 

problems were thought of in a row of formal-mathematical rules, hence, they were 

simple enough for machine value. Therefore, the real aim of AI development is to 

handle tasks that are simple for people in such a way as they understand them 

"intuitively", but impossible to describe on the basis of any formal language for 

programming computers[8]. Solving these challenges is possible by using DL. DL 

aims not only to learn the mapping but as well as acquiring the most favourable data 

representation [8]. People have been using the terms AI and DL simultaneously ever 

since the first learning algorithms designed were imitative of brain functions. 

Essentially, the idea of artificial neural networks (ANNs) being the same as deep 

learning is now commonplace among practitioners in this field. About fifty years ago, 

Rosenblatt[9] popularized neural networks (NNs) through various types of perceptron 

networks. However, in 1969 Minsky and Papert considered them very limited in their 

function [10]. A lot of people generalized these restrictions improperly, which in turn 

caused a significant decrease in the popularity of neural networks. A number of deep 

learning techniques were developed in the 1980s and 1990s like long short term 

memory (LSTM)[11-12] as well as back propagation algorithm. The 1990s saw 
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unrealistic claims made by the artificial intelligence community that failed to meet 

these expectations when artificial intelligence research could not live up to it. Kernel 

machines and graphical models also found success in their own right; this, coupled 

with a drop in interest for neural networks as of 2007. This led to NNs losing their 

enthusiasm between 2001-04 or so [8]. In 2006 Hochreiter et al.[10], demonstrated 

how one might construct deep-belief-network that could be trained effectively through 

unsupervised layer-wise learning: while still others adopted similar techniques when 

dealing with different types of hierarchical architectures [13,14]. These studies have 

waken up AI from coma. With performance better than other techniques in multiple 

artificial intelligence challenges, DL is now one of effective methods among 

supervised, unsupervised, and reinforcement learning. 

2.2 Machine Learning 

Since DL falls under a wider range of other ML methods, some basic concepts in ML 

have to be talked about. In different fields, ML algorithms and models have been 

utilised hence the multiple definitions of ML. The name “machine learning” was given 

in the year 1959 [15] hence this relates to how mathematical models and algorithms 

are employed for performing specific functions using data generated by computer 

systems together with experience [16]. Learning from data is the process of analysing 

situations endowed with certain patterns that do not have a known theoretical solution. 

In such situations, it means that Machine Learning will always provide ways through 

which such patterns can be identified through which patterns can be determined. The 

machine learning problems generally fall under three categories: supervised, 

unsupervised and reinforcement learning as shown in Figure 2.1. In supervised 

learning a naive model can only learn a regulated data with beginners guide (The 

learning set). From where it gets ins and outs together Proactive Maintenance; we can 

travel through multiple articles including step in step Self-Instructional. For example, 

when it comes to detecting whether an image has a particular object, training data will 

involve images containing the object or images that do not have it (the in-put), with 

each image receiving a label depending on whether or not it contains the object [16]. 

Contrastingly, outputs being non-existent serves as a basis for application of 

unsupervised learning models. Unsupervised study focuses on how systems can find a 

function to reflect a latent structure from data without labels. Refereeing to 

reinforcement learning is a method used by machines to learn through experimentation 

with reward from themselves experiences and actions in an interactive setting. The 

agent increases its performance by automatically discovering the best way of behaving 

in a given situation. 

2.3 What is learning? 

The traditional frameworks are used to explain the aspects of learning algorithms and 

for learning to be considered as feasible, provide mathematical proof of this fact—

Shai Shalev-Shwartz, Shai Ben-David [18] presented examples that could help in 

understanding how basic learning process work alongside what have been identified 

as principal challenges within machine learning (ML). Rats learn how  
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Figure 2.1 . Different ML problem categories [17] 

to avoid poisoned food starting from their childhood. Rats usually take a small amount 

of new food first and are careful to investigate the physical consequences. If the food 

causes sickness, they never eat it forever. The experiment involved an animal in search 

of a harmless meal. In this case, the animal would expect that if it experienced a 

negative label then it would also develop negatively. Assume we are attempting to 

write a spam detector program. For instance, one straightforward way is to remember 

every email determined to be spam by a user. When an incoming email is received, it 

is verified against the spam set. If it is found in the spam set, then it is marked as a 

spam message; else, it is saed in the inbox folder. Memorization is occasionally 

helpful, but it does not have much in common with learning because it cannot be 

generalized. An intelligent learner who truly understood should be able to extract 

wider generalizations from diverse instances. It therefore means that generalizing 

constitutes the ultimate definition of intelligence. When compared with other 

creatures, man’s special gift is his ability to think and understand concepts widely, 

putting us one step ahead. For instance, given a realistic picture of an elephant, a child 

might be able to recognize a drawn elephant that looks very different (Figure 2.2). 

Another problem is when the learner comes to a wrong conclusion. In explaining this 

notion, Skinner’s superstition experiments are the most useful example. To be precise, 

Skinner put some hungry pigeons in a box that came with an automatic device meant 

to supply food for the hen occasionally with no consideration given to its actions. He 

found that pigeons would exhibit behaviours signalling expectancy only during 

feeding time and for more or less two minutes after that. While waiting for food, a 

particular bird spun round and round in a counter clockwise direction before making 

one or two turns in the opposite direction before it was rewarded. But there were 

sometimes when it was fed by Andy and would peck continuously at the upper edge 

of its basin."’A bird thrust its head out and swung it sharply rightwards from leftwards 

then back again with some slowness so as to make it like a pendulum while another 

bird began shaping up like it was making quotations (this means they stuck their heads 

beneath an unseen pole raised them up multiple times’[19]. 
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Figure 2.2. Concept of generalisation and intelligence 

When humans learn, they use their common sense and ignore random patterns or 

conclusions from learning that are meaningless, but machines do not. A machine 

requires well defined principles to steer it out of arriving at irrelevant conclusions. In 

simpler terms, the algorithm should be able to discern a pattern in the data but not in 

the noise. 

2.4 Convolutional Neural Network (CNN) 

In this section, we will introduce the basic notions of NNs and discuss various parts of 

CNNs before explaining why each architecture is worth considering. There is a 

standard NN architecture shown in Figure 2.3 with input i given as a single feature 

vector, xk. The input is passed through successive hidden layers, to estimate an output 

ŷ. All the layer consists of neurons (nodes), each of which is completely linked to all 

nodes in the previous layer and the following layer. You can do this at arbitrary patches 

because each layer has no connections to the others. With respect to this particular 

patch, the output of the one that came before it ak
[l−1] is modified by the weight ωjk

[l] 

and added to a bias term bj
[l]. 

After this happens, it passes through an activation function g[l] which decides what will 

be outputted from the node aj
[l]. 

The result of each node is generally formulated as 

𝑎𝑗
ሾ1ሿ

= 𝑔ሾ1ሿ(σ 𝜔𝑗𝑘
ሾ1ሿ

𝑎𝑘
ሾ1−1ሿ

+ 𝑏𝑗
ሾ1ሿ

)𝑘                                     (1)                                                    

 

 

The input vector is denoted by a[0]. The final fully-connected layer a[3] is given the 

name “output layer” in this example, while in classification tasks it shows the 

likelihoods of classes. It should be noted that the weights ωjk
[l]as well as the biases 

bj
[l]are actually calculated while training the model. 
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Figure 2.3. A typical NN containing two hidden layers. 

2.4.1 Implementing Digital Images 

We first convert a tensor with three channels (an order of 3) into one with a smaller 

order, meaning one (a vector) when you intend on using an ordinary network to  

handle a digital image. For example, consider an image of 100×100 pixels resolution 

stored in RGB format with 3 channels hence appearing as a vector of 30,000 elements 

while each element represents a single input feature. Building an NN model requires 

thirty thousand weight parameters for one node located at layer one. Therefore, it 

implies that if you want to employ larger images or insert additional nodes into the 

first layer then you will have increased number of parameters. This approach does not 

really work for image NN development and it is cumbersome. Convolutional neural 

networks take better advantage of the forms of input data to set an architecture using 

weights more effectively. CNNs capitalizes on two vital ideas to enhance network 

performance: handy interactions and shared parameters. In an ordinary nerual system, 

each output node aj[l] interacts with every input neuron ak
[l-1] whereas CNNs are sparse 

in terms of connections usually. This can be achieved by making use of filters having 

less size compared to the initial data. For example an input image may contain many 

pixels while filters consisting merely tens or hundreds of pixels can identify minor yet 

important characteristics like contours. Other techniques like a dropout layer can be 

used to improve performance and avoid over-fitting of data. This paper describes how 

each of these layers works as well as their configurations within the CNN system. 

2.4.2 Convolution Layer 

Convolution layers are the main computational elements of CNNs. A series of filters 

with learnable weights is included in each block. These filters are convolved with input 

from the previous layer to look for important patterns across the whole picture. An 

error function is minimized by designing filters in a certain manner for each network. 

In a CNN, a convolution operation is identical to a cross-correlation operation in two-

dimensional signal processing. In Figure 39, we see the 2D image I of size 5 x 5 pixels 
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and filter K of size 3 x 3 pixels being subjected to convolution operation.Applying the 

filter to one pixel at a time means moving one pixel at a time on the input image; this 

stride (i.e., one) makes the output image smaller than the input image. This is solved 

by placing zero pixels on the edge of the input image during convolution while using 

a filter (see Figure 2.4). The convolutional layer's output is calculated using the 

addition operation on the result of the convolution operation and a bias "b,” which is 

then passed through an activation function “a". A formula; Conv(I, K)xy of a pixel’s 

convolutional layer in (x, y) coordinate is: 

 

𝐶𝑜𝑛𝑣(𝐼, 𝐾)𝑥𝑦 = 𝑎(𝑏 +  σ σ σ 𝐾𝑖𝑗𝑘 ∗ 𝐼𝑥+𝑖−1,𝑦+𝑗−1,𝑘
𝑑
𝑘=1

𝑤
𝑗=1

ℎ
𝑖=1 )                    (2) 

 

where h and w stand for the dimensions of the filter, whereas d corresponds to the 

number of input channels. 

Figure 2.4. Convolution operation in CNN. 

2.4.3 Activation Function 

To introduce nonlinearity, it is important for you to include a nonlinear activation 

function in the network. Check the following diagram where the three activation 

functions are commonly seen in DL. In the early days of DL, many people loved the 

sigmoid function. Nevertheless, nowadays it is well known that tanh function 

outperforms it [20]. One issue with these functions is that their gradients vanish at the 

end points, making them stagnate. As a result, learning becomes drastically slow when 

a gradient-based optimizer is employed. In recent times, the Rectified Linear Unit 

(ReLU), which is non-saturating, has gained popularity as an activation function 

[21,22]. The use of this activation function has been found to increase network 

performance. In this study, we are using ReLU activation functions for all activation 

functions except the final layer of the network; it will consist of a softmax activation 
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function to help classify input data. Softmax function si(x⃗ ) of class i defines 

probabilities of input points belonging to each class, defined as: 

 

𝑆𝑖(𝑋⃗) =  
𝑒𝑥𝑖

σ 𝑒
𝑥𝑗2

𝑗=1

    (3) 

Figure 2.5.  Activation functions in DL. 

2.4.4 Pooling Layer 

Pooling layers are mostly used by CNNs for reducing the size of the input layers so 

that computation is accelerated while at the same time increasing detection robustness. 

The most commonly used types of pooling are max-pooling and average pooling in 

DL. For image-like data, max-pooling has been shown to be far much better [23]. 

Every pooling layer in this study is a max-pooling layer unless otherwise indicated. In 

Figure 2.6, notice that with a 2×2 window and a stride of 2 the max-pooling mechanism 

is illustrated. As it goes through the input data, the highest value in the 2×2 window is 

selected. With each two-pixel shift of the 2×2 window, the whole input will be 

operated upon in this way. In this way, size of input data is reduced (in this example, 

the output data is half the size of the input data). 

2.4.5 Dropout 

Figure 2.6. Max pooling mechanism[24]. 
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Dropout could make neural net more flexible by applying diverse architectures or 

avoiding from overfitting-many various nets can combine into one net [25]. Actually, 

it means to randomly remove neurons in a NN(“dropout”).  Figure 2.7 illustrates the 

disappearing of temporarily their input-output links together with output layers 

themselves during dropout applied on neural networks (see fig. forty-two).  As part of  

this analysis, the dropout method will be used on all the layers with 0.5 as the threshold 

probability rate [25]. 

Figure 2.7. Net Modal Dropout Nerual  

 

2.4.6 Cost Function 

 

Training a CNN is essential for finding a group of weights and bias that minimizes 

mistake in prediction and actual. To numerically measure error, we would have to 

define loss functions. Categorical cross entropy (Equation 4) is the designated loss 

function Li that is used for estimating the difference between the true class y from the 

probability distribution over the predicted class ŷ of a single image. Through the use 

of the softmax function, it becomes easy to calculate the probability distribution of the 

anticipated class. 

 

𝐿𝑖(𝑦𝑖ෝ, 𝑦𝑖) =  σ −𝑦𝑖 ln 𝑦𝑖ෝ𝑘
𝑖=1                                                  (4) 

 

When it comes to incorporating image labels into neural networks, modelers use a one-

hot encoding scheme. Two classes- one and two are represented in binary classification 

by (0, 1) as well as (1, 0). Consequently, the network model output is represented in 

the form probabilities for every class which are denoted by (ŷ1, ŷ2). This means that 

in our example case, if we have output vector (0.3, 0.7) then it implies that there is a 

30% possibility that it belongs to class one while there is a 70% chance that this same 

vector belongs to class two. 

In equation 4, the lost value is 0.36 given that the true class is one. To illustrate, (-0* 

ln(0.3)-1*ln(0.7)). is what the context is? For instance, poor prediction for the same 

example shall attract loss of 0.92 (0.6, 0.4) while good predictions like (0.05, 0.95) 

have such small losses as 0.05 The cost function, C, is merely a summation over the 

loss function L that has been applied to all images divided by their number, N. 
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𝐶𝑜𝑠𝑡 =  
1

𝑁
 σ 𝐿𝑖(𝑦𝑖ෝ, 𝑦𝑖)𝑁

𝑖                                                     (5) 

 

In order to add regularization into the model, it is necessary to insert the L2 

regularization formula. This formula is defined as the sum of the squares of the weights 

on features and then is put into cost function together with its parameter. 

 

2.4.7 Optimization 

 

Broadly speaking, the question of learning is about optimisation. It follows therefore, 

that this optimisation aims at determining the most appropriate parameters that help to 

reduce the cost function, that is, weights and biases. In cases where neural networks 

are large, closed form solutions to their optimisation are not available so these are 

determined via gradient descent among other methods while using iterative algorithms. 

Common neural networks have non-convex search spaces, therefore it is logical to 

consider using a modified stochastic gradient descent algorithm. The cost function has 

millions of parameters in the proposed CNNs which should be fine-tuned. In this 

research work, we use Adam (adaptive moment estimation) to minimise the cost 

function. Adam is a first-order gradient-based optimisation algorithm for stochastic 

objective functions. 

In the training phase, this optimisation algorithm will be administered as the 

optimisation algorithm [26, 28] since Adam optimiser is computationally efficient, 

with small amounts of memory required, invariants to gradient rescaling along 

diagonals, and suitable for huge data and/or parameter non-convex optimisation 

problems in ML [26,27]. An effective method of finding gradients of parameters 

through backwards and forwards application of chain rule on a computational graph is 

back propagation. When every forward pass is done, the expense function calculates; 

thus, depending on the output from such activity, besides inputs used as ground truths 

we can compute value derivative with respect to learning parameters by performing 

back propagation. Furthermore, this information feeds into Adam optimiser which 

modifies learning rates according to them. The computational parallelism gets quicker-

due to vectorisation that is increased on Graphics Processing Unit (GPU) processors. 

Nonetheless, the computation will move slower since with a larger data set there is 

need for large memory to implement vectorisation. As a remedy to this problem, the 

training data is broken into smaller mini-batches [29]. Despite enlarger mini-batches 

offers more computational parallelism, smaller mini-batch training, nevertheless, tends 

to give better generalisation performance, as well as having a much smaller memory 

footprint that can be leveraged to increase the speed of machines used for this purpose 

[30]. According to Masters & Luschi, mini-batches with fewer samples lead to 

gradients being calculated closer to their current value thus giving rise for both stable 

learning procedures with less noise in them or simply put improving reliability of such 

systems [30]. Thus this survey is going to employ mini-batches of 32 images (N in 

Equation (5) will be 32 instead of the total number of images). 
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CHAPTER 3 

 

 

LITERATURE  REVIEW 

 

3.1 Image Processing 

A 2D function f(X, Y) is used to explain an image, where X and Y serve as spatial 

coordinates pinpointing a point's location within the said image and with the “f” value 

showing how intense a pixel is at this very point. All pixels as well as their intensity 

levels remain discrete and limited in number. Digital Image Processing, as described 

by Gonzalez[31], refers to the application of computer to manipulate digital images 

which is referred to as “The field of Digital Image Processing”. 

One controversial issue that is facing researchers concerning the boundary within 

image processing and related fields such as computer vision and image analysis. It is 

tough to tell the difference between computer vision as well as image processing. 

However, it should be understood that these computerized procedures can be divided 

into low-level, mid-level, and high-level processes. 

 

1. Low-level processing refers to a having such as receiving or giving of images 

which consist of actions including noise suppression, difference amplification as 

well as image acuity. 

2. Images are consumed as inputs by intermediate-level processes and then they 

generate image features, for example contours and edges.  

3. High-level processing, akin to image analysis, encompasses advanced tasks such 

as recognition and object detection. 

 

 

3.2 Traditional Methods for Crack Detection using  Image Processing 

In traditional maintenance systems, experts or technicians typically identify and 

evaluate cracks under expert supervision, a process that demands considerable time 

and labor. Consequently, there is an expectation that automated or semi-automated 

methods employing image analysis will streamline the process, leading to time savings 

and improved performance in assessing crack indexes and conditions. Numerous 

studies explore the automated identification of cracks on road surfaces [32, 33, 34, 35–

38]. These investigations highlight the inherent challenge in crack detection, primarily 

stemming from images being riddled with noise and undesired elements such as 

shadows, dust, and paint lines. Furthermore, in practical survey systems, images are 

captured by a affixed camera to approprite vehicle traveling at particular speeds and 

encountering various environmental factors [33]. As a result, the quality of the images 

fluctuates, posing challenges for crack detection. 

There exist two broad categories that encompass the techniques used in the detection, 

evaluation and differentiation of cracks These include those borne from traditional 

image processing and the ones that use new technologies such as neural networks plus 

machine learning. The next few sub-sections would take us through earlier solutions 

that employ edge detection, Gabor filters as well as image feature extraction 

techniques. 
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3.2.1 Edge detection 

Image Processing (IP) techniques, such as edge detection, are commonly employed in 

detection and classification of cracks. Edge detection determines the edges on an 

image by using their intensity gradients[39]. Several methods which have also been 

based on Canny’s methodology [40] have been proposed for detecting sites of cracks 

[41, 42]. Prior to utilizing Canny’s edge detection algorithm, contrast of images is 

enhanced by Huili Zhao et al. [41]. Zhao's approach successfully identifies cracks and 

is more effective in eliminating dot noise than the Canny method. Agaian's [42] 

extended Canny approach with the fusion of two edge detection test images (AC test). 

To modify images with Overview of "Modified Canny kernel" or "Modified Canny 

kernel and Modified gradient Canny" an image processing technique that focuses on 

branch edge. 

This study looked at what distinguishes crack from other objects in terms of seven 

different methods in an attempt to locate cracks through edge detection [43]. From 

these images, the performance of these various methods was compared across 30 

pictures revealing that dynamic optimization results in improved performance. 

Nevertheless, experimental results obtained indicate that crack segmentation remains 

a challenge since no distinction can be made between actual cracks and paint-like 

features as shown by our tests on this subject matter. Wavelet transform can serve as 

another basis for edge detection [44–46]. Cuhadar et al.[47] used wavelet 

transformation to evaluate road condition. They applied this method in analyzing data 

from International Roughness Index (IRI) and different types of pavement conditions 

using wavelet transformation as a means for segmentation. Figure 3.1 illustrates a 

comparison between edge detection methods with various common filters and the a` 

trous algorithm across scales. The outcomes point to the fact that the at trous method 

has better performance in terms of noise removal when compared against other 

common filtering techniques in this context though they are largely influenced by 

scale. 

3.2.2 Gabor Filters 

Gabor filters conduct filtering of images through Gabor functions [48]. They are also 

employed for extracting feature images [49, 50]. Recognized for their efficacy in 

texture segmentation [51], Gabor filters find application in pavement crack detection 

and segmentation since images can be viewed as texture images [52, 53]. The output 

quality is dependent on the number of filters used in a Gabor filter bank design, as seen 

in Salman's approach to crack detection [52]. Salman employed various orientation 
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filters as well as Gabor filters. Increasing the number of orientations enhances 

accuracy but also leads to longer computational times and a higher false positive rate. 

Despite its capability to detect the majority of crack pixels and effectively segment the 

crack line, this method remains susceptible to noise. 

 

Figure 3.1. Result edge detection: (a) original, (b) Robert edges ,(c) Sobel edges, (d) 

Prewitt edges , (e) LOG edges, (f) Canny edges, (g,h,i) edge based a’ trous algorithm 

with scaling 21, 22, 23 [55] 

  

 

3.2.3 Adaptive thresholding 

A lot of computer vision and graphics applications use Adaptive thresholding as a 

major technique [54]. This technique is notable for its versatility because it works by 

comparing a pixel with the mean of its neighboring pixels and ignoring low gradient 

differences.  Bradley et al.[54] employed  "integral image” tool, which is utilized in a 

face detection  [56], to reduce the operations required while computing the average of 

a rectangular region within the image. Adaptive thresholding stands out as potent 

image processing technique capable of addressing variations in illumination across 

spatial regions and effectively eliminating noise. Fan et al.[57] employed a Deep 
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Convolutional Neural Network (CNN) model which identifies the regions containing 

cracks, subsequently applying an adaptive thresholding technique for crack 

segmentation from the regions identified as containing cracks within the image. This 

approach is characterized by its simplicity and speed. Adaptive thresholding also 

demonstrates high accuracy when applied to images with prominent cracks. 

Nonetheless, it is ineffective in eliminating dot-like noise, which is commonly 

prevalent in road image datasets. 

Figure 3.2. LBP feature based Crack detection[60] 

 

3.2.4 Crack Detection Based on image Feature 

For crack detection, one should consider utilizing image attributes like Neighboring 

Difference Histogram Model (NDHM) [61]. This formula determines inweight 

differences between possible dangerous pixels to adjacent ones, which are typical in 

most situations and locations. whenever the quantity of unsafe pixels within its 

surrounding rises in value, there is more chance that a given point could correspond to 

dangerous things. Li et al. [61] conducted a comparison between the proposed method 

with several thresholding techniques like Otsu [58] and Kapur [59], demonstrating the 

superior performance of the NDHM method. While this approach effectively 

highlights nearly all crack pixels, it also tends to detect noise, resulting in the presence 

of dots and salt-and-pepper noise in the output. Hu et al. [60] emphasises Local Binary 

Patterns (LBP) feature classification is utilized for pavement crack detection. The 

research involves extracting 35 features within the image, which are subsequently 

organized into six sub-classes. An LBP feature is associated with each block of the 

3x3 partitioned image, which is then divided into a distinctive pattern so that in the 

end each pixel is either classified as cracked or not depending on the patterns that were 

identified. LBP feature and Canny detection method comparison appears at the top-

left Figure 3.2. However, in challenging scenarios like the presence of paint in the 

bottom right location, both LBP features and Canny filter may incorrectly distinguish 

paint from crack. 
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3.2.5 Geographic Features 

Geometric attributes have found application in crack detection across various materials 

[62] and specifically in road crack detection. Nguyen et al.'s proposal [63] defines a 

crack as a linear structure characterized by a Gaussian cross-section intensity profile. 

Following the enhancement of crack images using a Gaussian function-based filter, 

the center-line of the crack is extracted. The subsequent step involves eliminating 

spurious cracks, such as undesired edges. This approach requires certain pre-

processing and post-processing measures to accurately discern genuine cracks. 

A proposal by Median [64] employs a blend of 2D images and 3D data processing 

techniques to enhance crack detection, revealing detailed crack features. The Median 

method operates by extracting geometric information derived from road images. In 

this model, transverse cracks attain 96% balanced accuracy whereas longitudinal 

cracks attain 93%. Similarly, in previous suggestions in [38, 65], it was cracked 

attributes including the width of cracks, curve of cracks, or length of cracks which 

were used to determine whether pixels were or were not representing cracks. 

 

3.3 Deep Learning and Crack Detection 

Deep learning (DL) techniques have insignificantly demonstrated remarkable efficacy 

in addressing numerous practical challenges [66-69]. With a greater emphasis on 

automatic learning and reduced reliance on heuristics, LeCun et al.[70] illustrated the 

potential of constructing superior pattern recognition systems. The introduction of 

AlexNet in 2012 by Krizhevsky et al. yielded groundbreaking outcomes in an image 

classification competition (ImageNet challenge [71]), showcasing the capabilities of 

CNN architectures [72]. Following this, many researchers have utilized AlexNet and 

various other Convolutional Neural Network (CNN) architectures for damage 

detection in civil infrastructure. Cha et al. devised a conventional CNN specifically for 

detecting  cracks in concrete and conducted a comparative analysis against edge 

detection technique by Canny and Sobel[73]. Their study utilized a training dataset 

consisting of 40,000 images with resolutions of 256×256 pixels, while testing was 

conducted on 55 images with resolutions of 5,888×3,584 pixels. They demonstrated 

that CNN outperforms in detecting concrete cracks under realistic conditions [73]. Cha 

et al.[74] employed Faster Region-based CNN to detect different types of destruction. 

Using FCNN, Huang et al. managed to detect crack and leak faults on the internal 

surface of underground tunnels made of concrete [75]. While using the Naive Bayes 

CNN approach, Chen and Jahanshahi identified cracks in video frames shot at separate 

nuclear energy installations [76]. The "Jackscrew" paper by Wang et al.[77] presented 

a CNN design targeting at crack detection in 3D asphalt surfaces but excluded pooling 

layers typical for a usual CNN that would ensure precision of pixel accurate. 

Meanwhile, in his research, Zhang[80] used a three-convolutional-layered CNN 

instead of more complex variants. An assessment of five hundred images taken by a 

low-cost smartphone with the resolution of 3, 264 x 2, 448 pixels was performed. The 

result showed that the deep learning (DL) system outperformed all other methods used 

to process them before. They collected 9,053 images showing various forms of damage 

on roads which were captured using smartphone cameras attached to vehicles; then, 

they used two different convolutional neural networks (CNNs) namely Single Shot 

Multibox Detector (SSD) Inception V2 and SSD MobileNet to identify where cracks 

appear in each photograph [81]. The German Asphalt Pavement Distress dataset was 
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used by Eisenbach et al. to examine computer vision as well as DL-based crack 

detection methodologies. At the same time, Pauly and others further investigated the 

effects of additional CNN architecture layers on crack detection systems for pavement 

surfaces and examined how DL accuracy was affected due to varying positions of 

training data in comparison with the test sets [78, 79]. 

 

3.4 Crack Processing Using CNNs 

3.4.1 Crack Detection 

Deep learning comprises a range of machine learning techniques that rely on multiple 

layers of artificial neural networks. Within machine learning, neural networks find 

extensive application in crack detection and segmentation, boasting numerous 

advantages over traditional machine learning models [36, 37, 62, 82, 83]. DL models 

possess the capability to autonomously learn features within images, whereas 

traditional machine learning methods require users to manually design image features. 

Deep learning has demonstrated its capability to address subjective defects, such as 

minor product labeling errors, which are challenging to train for. In recent times, deep 

learning has emerged as a potent approach for tackling detection and segmentation 

tasks. Out of the 12 methods studies that aimed at crack detection, neural networks 

form the basis of six methods combining both unsupervised and supervised techniques 

[65]. Oliveira implemented two levels of crack detection: pixel-based crack detection 

and block-based crack detection. 90% approximate high precision comes with a 

require that is complex on pre-processing block-based before training and testing to 

detect cracks correctly using the technology [36, 37, 64, 84]. 

The research used pictures taken through the mobile phone from cracks in the 

pavement, which had differing colours far afield from those acquired through real 

systems usually for the fast moving cameras that are optimized to capture black and 

white images. In so doing, they presented an ICIP paper on CNN applications in ICIP 

proceedings [36] focusing on image processing, where deep neural networks such as 

convolutional neural network(s) served this purpose. According to Zhang, a good 

patch is suggested to be located within a distance below 5 pixels from the center of the 

fissure, while a bad patch does not have any fissures. The study compares the ROC 

curve of Support Vector Machine (SVM) [85], Boosting algorithm [86] and the one 

offered by the authors. The results demonstrate that the proposed method has the best 

AUC value (Area Under the receiver operating characteristic (ROC) Curve) which is 

equal to 0.845. Nevertheless, with an accuracy level of 89%, the F1-score that is being 

got cannot be considered sufficient enough as regards crack detection, demonstrating 

that detected cracks in outcomes are often wider than true ones. 

In their approach [84], Maeda et al. explored various deep learning architectures and 

convolutional networks applied to the detection of road damage and cracks in images. 

They gathered a new dataset using a smartphone affixed to a moving vehicle, 

comprising eight types of road damage, including five types of cracks, rutting, white 

line blur, and crosswalk blur.. 

Fan et al.[37] used a model called the CNN on data from two public road cracks – the 

CFD and AigleRN . The CFD data set had about 65% positive pixels while the 

AigleRN had around 98.5% positive vs negative ratio without any modifications to the 

data sets, which made them skewed in terms of positive class sensitivity or specificity 
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on the CFD dataset and sensitivity on CFD’s. Crack images with corresponding labels 

were used during the training phase and the experiments showed that training with 

ground truths representing thinner cracks resulted in thinner output cracks [37]. The 

proposed architecture is composed of 9 layers as follows: two CNN layers each with 

16 kernels followed by a max pooling layer after that there are two more CNN layers 

– one having 32 kernels and another having 32 kernels then we have three fully 

connected layers for this network. The CNN layer’s kernel size should be this size: 

3×3. The max-pooling layer’s kernel size should be 2×2. Consequently, there exist 

papers that elaborate on applications of this kernel size in crack detection. Zhang et al. 

[36] implemented another model based on CNNs which made use of deep learning in 

detecting cracks. However, the resulting crack detection probability map proved that 

both the real crack pixels and several neighboring pixels were all given the same 

probability during crack detection. Hence the crack as detected seemed more enormous 

than it actually was; low crack coherence was observed, in a proposed system by 

Nguyen et al. [87] whose system also generated cracks far larger than the based truth. 

You Only Look Once (YOLO) is a method of object detection in real-time using 

minimal computational processing power [88]. This is because it divides the image 

into grid boxes and predicts their classes and the locations of bounding boxes as its 

primary function combining both localization and classification into single 

convolutions to increase speed. YOLO v2 was used to detect cracks and other damages 

on roads. Its overall F1 score was 0.87.  However, detecting the area with cracks and 

not pixel-wise segmentation only was the focus of this analysis. RetinaNet [89] 

introduction aimed at detecting road damages based on deep learning. The backbone 

for feature maps in RetinaNet while using different neural networks during the process 

of learning. RetinaNet happens to possess some limitations one of which is to detect 

paint artifacts and shadow lines instead of cracks. To address this issue, a two-step 

model that can detect cracks quickly was proposed [90]. Cracks are first extracted from 

streets’ images without changing sizes of original images in order to generate patches 

that have cracks. Then, these cropped patches are used to detect cracks by the second 

module. Indeed, this method achieved a recall rate and precision rate of 0.9521 and 

0.9774. Nevertheless, the model presented serious problems with images in which 

cracks and road markings coexisted, or in cases of border cracks, as in Park…’s model. 

To sum up, for crack detection CNN models usually have input samples that are 

classified as either positive or negative. Crack pixels are found in the center of the 

positive samples while there are no cracks at all in the negative samples. 

A common CNN architecture for detecting cracks incorporates 3-5 pieces of 

convoluted iceland, with kernels in each layer being the same or increasing from the 

beginning to the end. Furthermore, it uses max-pooling layers for parametric reduction. 

At the end, a fully-connected layer that has two neurons is used for determining 

whether or not input images should be grouped into categories - either as positive (that 

is cracked) or negative (that is not). All the above mentioned strategies in relation to 

detecting cracks usually work by samples. Instead of pixel classification level, 

evaluation accuracy is done at the image region classification level. Therefore, there 

have existed several segmentation methods for crack detection proposed to operate 

within the smallest unit of the image: a pixel. In the subsequent section we shall review 

a few methods for crack detection using pixels, or segmenting cracks. 
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3.4.2 Crack Segmentation 

First, this section examines several papers employing CNNs for general object 

segmentation. Subsequently, it explores works specifically focused on crack 

segmentation. The concept of Region-Based Semantic Segmentation (R-CNN) was 

introduced by Girshick et al. In their study, they introduced a model capable of 

detecting and segmenting images based on regions with CNN features, termed as R-

CNN (Region-Convolutional Neural Networks). R-CNN is created from three 

principal components: the first one is of a module that generates approximately 2000 

region proposals without considering the category, the second one involves extracting 

a feature vector from each region by means of a big CNN, and finally there is a third 

module containing a Support Vector Machine (SVM) which classifies regions in a 

linear approach. Underpinned by bounding boxes for all proposed regions, R-CNN 

allows the network to break an image into parts corresponding to these regions; yet the 

results of this approach showed in Girshick’s proposal point to several disadvantages 

in the design of R-CNN. The mAP of this model on VOC2012 (The PASCAL Visual 

Object Classes Challenge 2012) stands at 53.3%. While R-CNN calls for large 

memories and its training is slow, in contrast, during test time object detection is slow. 

Fast R-CNN is a more advanced version of R-CNN that proposes sharing computation 

between different object proposals during the forward pass of each convolutional layer. 

Two major differences are apparent in the architecture of Fast R-CNN. First, regions 

of interest (RoIs) are used as the pooling layer input for feature extraction from the 

feature map and not the whole image. In conclusion, there are two sibling layers output 

from Fast R-CNN. The first layer is used to assign each input to an object class while 

the second one refines bounding boxes on object instances. For Faster R-CNN, training 

and testing times are reduced compared to R-CNN and SPPNet. Nonetheless, selective 

search computations are still necessary to accelerate the training process. 

Mask R-CNN, an extension of Faster R-CNN, was introduced by He et al. [91] with 

the objective of achieving pixel-level segmentation [92]. In addition to the already 

existing bounding box recognition branch, Mask R-CNN also incorporates a mask 

component. Furthermore, key features of Mask R-CNN have been introduced by He 

et al, of which RoIAlign is one example – it is an alignment technique that works pixel-

to-pixel. RoIAlign addresses the limitations of the RoI pooling layer by eliminating 

harsh quantization and ensuring proper alignment of extracted features with the input. 

Unlike previous R-CNN versions that only provide bounding boxes, Mask R-CNN 

precisely identifies the pixels of each object. Experimental results demonstrate that 

Mask R-CNN outperforms earlier R-CNN versions in terms of mAP. Despite this, the 

mAP of Mask R-CNN for small objects is still not relatively high, which shows that it 

is not appropriate for small objects segmentation. 

Fully Convolutional Networks introduced by Long et al. for semantic segmentation 

[93], utilize knowledge transfer from VGG16 [94]. Fully connected layers in VGG16 

are changed into fully convolutional layers using a 1x1 convolutional layer in the FCN 

architecture. By doing this, the classification network can now provide a low-

resolution heatmap. The sub-sections of the upscaling part are implemented with 

transposed convolutions which use semantic primitives represented with low 

resolution. Again, it should be noted that at each phase the up-sampling is fine-tuned 

again. FCN has the flexibility to accept inputs of arbitrary size and produce 

corresponding-sized outputs. Moreover, it excels in extracting spatial information of 
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objects for semantic segmentation, yielding a higher mean Intersection over Union 

(IoU) compared to other segmentation methods like R-CNN. However, FCN's 

complexity and long training duration are attributed to the large number of kernels in 

its convolutional layers. 

Originally, U-Net was initially developed for biomedical image segmentation [95]. 

However, it is now used for numerous other image segmentation jobs. Its architecture 

comprises two components: a contracting segment for feature computation and an 

expanding segment for spatial pattern localization within the image. The contracting 

segment employs max-pooling layers to reduce parameters and shrink image 

dimensions, while the expanding segment employs up-sampling layers to enlarge the 

image size. As a result, the output image maintains the same size as the input image. 

Within the U-Net architecture, concat layers are utilized, which merge feature maps at 

the same level from both segments, enhancing object localization accuracy. This 

network incorporates a total of 23 convolutional layers. Ronneberger's approach 

emphasizes two key strategies: Overlap Tile and separation of touching objects. 

Overlap Tile allows the U-Net model to predict the entire image in parts, while the 

separation method encourages the network to discern small boundaries between 

adjacent cells. With these strategies, the U-Net model achieved a high IoU score of 

0.9203 in the ISBI cell tracking challenge.  

SegNet is an encoder-decoder architecture designed for image segmentation [96], 

utilized in various scenarios such as indoor and outdoor scene prediction. Its encoder 

network mirrors the initial 13 layers of the VGG16 network [94], generating a series 

of feature maps. Each encoder is paired with a decoder responsible for up-sampling 

the feature map. A notable feature of SegNet is its storage of max-pooling indices only, 

effectively reducing parameter count. Comparisons demonstrate SegNet's 

performance equivalence to FCN while consuming less memory. Notably, SegNet 

excels in boundary delineation, surpassing other methods in most scenarios. 

XNet, a CNN tailored for medical X-ray image segmentation, adopts an encoder-

decoder architecture commonly seen in segmentation tasks [97]. Despite training on a 

relatively small dataset comprising 108 images across 10 body parts, XNet achieves 

an impressive overall accuracy of 92% and an AUC of 0.98. Unlike many 

segmentation networks, XNet incorporates a compact serial down-sampling module 

within its encoder architecture. Additionally, Bullock et al. integrate two encoder-

decoder modules to enhance feature extraction while preserving image resolution. 

Across all evaluation metrics, including F1-Score and AUC, XNet consistently 

surpasses the 90% mark when applied to three X-ray image categories. Comparative 

analysis against SegNet demonstrates XNet's superior F1 score across all categories, 

coupled with a reduced parameter count. 

DeepCrack uses a new methodology that uses a deep hierarchical neural network for 

crack segmentation [98]. A hierarchical CNN based on pixels for cracks was proposed 

by Liu et al. Instead of applying all of the layers to VGG-16, DeepCrack neglects fully 

connected layer and its fifth pooling layer in order to produce auxiliary outputs at 

multiple scales which are significant hence cutting down on memory footprint as well 

as computational costs. Incorporating a guide filter inspired by guided feathering [99], 

DeepCrack refines predictions and eliminates noise in low-level predictions. The 

dataset utilized comprises over 500 images sourced from both internet downloads and 
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authors' captures, exhibiting variations in spatial resolution and characteristics, posing 

challenges for real-world applications. DeepCrack achieves a mean IoU of 85.9 and 

an F1 score of 86.5%. 

In overview, the outlined image segmentation architectures commonly exhibit several 

shared traits: They typically feature a backbone within the network architecture, often 

comprising two symmetric segments: encoding and decoding, or contracting and 

expanding. Certain approaches leverage pre-existing networks like VGG16 [94] for 

the encoding segment, while introducing novel architectures for the decoding segment. 

Concatenation layers are frequently employed across these methods. The techniques 

utilize a convolutional 1 × 1 layer for channel-wise pooling, often referred to as a 

projection layer or feature map pooling. However, while crack detection methods are 

criticized for detecting larger areas containing cracks than the actual crack size [36, 

87], crack segmentation methods face challenges due to road images varying in 

resolution and containing numerous artifacts, notably noise that is difficult to 

eliminate. Consequently, recent approaches have adopted a two-stage architecture to 

address both crack detection and segmentation within a single framework. The 

subsequent section will delve into reviewing these novel proposals. 
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CHAPTER 4 

 

 

PROPOSED ARCHITETURE 

 

 

 

4.1 Introduction 

 

The index of cracking serves as a measure of the damage resulting from the separation 

of segments on the runway surface, typically manifested as cracks. Crack detection 

involves examining and pinpointing cracks on a runway surface to assess airport 

runway conditions and plan maintenance activities. Manually executing crack 

detection relies on human-vision or cognition, semi-automatically or fully 

automatically through computer vision. Manual inspection demands expertise and is 

both labor-intensive and time-consuming. Automatic methods for detecting cracks in 

images had been devised to enhance operating speed and achieve performance 

surpassing humans [65]. This represents a formidable challenge in computer vision 

and image processing, attracting research attention for decades [100, 33, 34, 36, 98]. 

In this chapter will introduce an deep learning method for automatically detecting and 

segmenting road cracks to assess runway conditions. However, the subjective aspects 

involved in the actual evaluation of the crack detection challenges for automation, 

making it an ongoing area of research independent of this thesis. This chapter 

concentrates to achieve precise pixel-level segmentation of cracks through deep 

learning techniques, having aim of eventually facilitating the automated computation 

of the cracking index. Shifting from manually measured dimensions of crack and 

density to semi-automatic computation of crack positions and networking through 

image processing and deep learning holds promise for substantial enhancement in 

crack evaluation. Semi-automatic detection methods offer greater efficiency for 

surveys compared to manual inspection [35, 65]. 

Certain previous methods concentrate solely on either region-level detection or pixel-

level segmentation, aiming to optimize either crack detection or crack segmentation 

performance independently. However, by focusing solely on one aspect, these methods 

fail to address the problem comprehensively, leading to an overall reduction in 

performance. Specifically, obtaining significant results proves challenging, especially 

when dealing with demanding data types like noisy images with subtle crack features 

and imbalanced datasets. Numerous methods have been proposed for detecting and 

segmenting cracks in runway images. Traditional image processing (IP) techniques 

like the Canny edge detector [40], as well as approaches utilizing Gabor filters [48], 

leverage variations in pixel intensity to delineate edges, treating cracks as features that 

are responsive to edge detection filters. Nevertheless, these methods are sensitive to 

numerous images with small details, which limits their ability to effectively reject 

noise. Moreover, determining the optimal parameters needed to balance noise removal 

with preserving weak crack features varies from one image to another. 

In contrast, deep learning techniques, particularly those employing neural networks, 

have gained significant traction for object detection. CNNs stand out as one of the 
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most robust recognition techniques. While various research employs CNNs for crack 

detection [36,37], others utilize CNNs for pixel-wise segmentation of cracks in images 

[98]. 

During the training phase, small sections of images are utilized for training, where 

positive inputs encompass sections with cracks and negative inputs comprise sections 

without cracks. The model is deployed for crack detection once it surpasses its training. 

The section of images used during the training phase for detection systems typically 

represent small segments of images, with positive inputs negative inputs featuring 

crack and non-crack images. The results entails a binary decision regarding the 

existence of a crack in the input image. Nguyen et al.[87] developed crack detection 

CNN model, highlighting its capability to eliminate nearly all noise and artifacts in the 

actual image, which is comparably large at 750 × 1900 pixels, while effectively 

obtaining crack in image patches. This model lacks in the localization of detected 

cracks which are not as precise as the ground truth. Zhang et al.[36] introduced CNN 

which results a high score but encounter with the issue that the cracks detected are 

higher with respect to ground truth cracks. 

Image acquisition can be achieved through various means such as a camera affixed to 

a vehicle, a dedicated drone, or a smartphone. Two distinct stages, employing CNNs, 

are trained using these samples: initial stage is for detection following the second for 

crack segmentation. Existing studies have primarily concentrated on either crack 

detection or crack segmentation individually. However, in this chapter, both detection 

and segmentation are integrated into a single framework using a deep learning 

approach. The proposed framework demonstrates significant performance 

enhancement, particularly when referred to imbalanced datasets containing cracks, 

where the crack pixels is considerably smaller than non-crack pixels in the image. 

The primary focus of this chapter include: Introducing a two-stage architecture with 

CNNs, tailored for handling noisy, low-resolution images, and imbalanced datasets. 

The performance of model surpasses that of combining previous detection and 

segmentation methods in the formation two-stage approach. This underscores how 

specially designed two-stage appraoch maximizes the benefits of a detection and 

segmentation paradigm.  

4.2 Two Stage Approach 

For the majority of the positive training examples, a crack is generally located at the 

centeriod. Even though the center position tends to contain cracks when testing with 

part of the cases, it is still worth noticing that a few of these samples will also be 

detected as positives. All cracks found by regression may have their boundaries 

extending into other areas adjacent thereto plus some percentage/portion overlap of 

those regions’ pixel values which are next closest outside these boundaries. Hence, the 

size of training samples plays a crucial role. Smaller input region samples tend to result 

in better localization of detected cracks relative to the actual cracks. In the event of 

low-resolution images, distinguishing adequately between positive and negative 

samples in the crack region sample should require it to be quite sizeable; especially so 

for faint cracks as well as crack-like noise. The next section will describe the 

integration of two stages involved in crack detection and segmentation. A CNN is first 

used as a detection model, where it has been trained to recognize all the cracks in image 

patches while at the same time eliminating artifacts and noise. In the subsequent stage, 
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the crack is segmented at the pixel level within smaller patches rather than the entire 

original image. Consequently, the amalgamated model inherits the benefits of both 

detection and segmentation methodologies. 

Crack Detection: In order to increase useful features and focus on inconspicuous 

crack features, various convolutional layers are employed which are responsible for 

different aspects representation of the image such as form, border or brightness of the 

images. The desired features of the crack were derived by a five-layer CNN model in 

this work. Empirical justifications are taken into consideration while choosing the 

layer count. This demonstrates that, for the specific crack detection problem under 

investigation, a five-layer CNN architecture yields the highest performance. Padding 

was not employed in the CNN layers of the detection stage, implying that the image 

samples processed by the CNN layer did not receive extra padding during convolution 

through the kernel. By shrinking each layer, we reduce the number of parameters in 

them, and then attach a max-pooling layer of kernel size 2×2 behind each CNN layer. 

To pick the highest value in every 2×2 block, max-pooling function is applied splitting 

down further on every level of convolution network thorough diminution. Number of 

weights is decreased and overfitting is avoided by max-pool at same time. 

In CNNs, Fully Connected layers are typically positioned at the end of the model 

which gather and consolidate every features learned in preceding layers. For this task, 

where images are categorised into two classes—positive (crack) and negative (non-

crack)—two neurons are employed in the final Fully Connected layer. 

The process of combining features is accomplished through two Fully Connected 

layers. The first  layer comprises two hundred neurons, facilitating the flattening of 

features and build a vector out of them. This vector consolidates all the feature 

information and significant elements from the preceding CNN layers. The second 

Fully Connected layer encompasses two neurons, aligning with the crack and non-

crack classification. 

In order to determine whether there exists a crack or not, the samples require 

estimation during the final step. To identify crack inside the picture, which eventually 

leads to a range of 0 – 1 depicting chances that one may have no cracks present or 

some other number other than zero, a softmax function will be used at the output layer. 

In this proposed method, a max-pooling layer is employed following each 

convolutional layer. This design choice aims to accelerate the scanning of the input 

image compared to models without pooling layers , while also mitigating the risk of 

overfitting. The implementation of max pooling involves a straightforward and 

efficient algorithm. By appending a pooling layer after each layer, the training duration 

is shortened thus parameter count is reduced, and overfitting is regulated. 

After each layer, a technique known as max-pooling is used to lessen the weights thus 

avoiding overfitting in this model. The ReLU function serves as the activation function 

in the convolutional layers and first fully connected layer. This choice is due to its 

common application in CNN classification models and its ability to accelerate training 

time .IIn the last layer, a Softmax function is used in a fully connected layer of two 

neurons. This setup makes it possible to determine the class that an input image 

belongs to; either crack or non-crack. This setup leads to identification of the input 

image type either as crack or non-crack. 
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Crack Segmentation: The suggested CNN architecture that is divided into two 

essential parts; one known as contraction part that is the encoding part while the other 

is expansion part which is regarded as the decoding one. Such an architecture employs 

encoder-decoder model that is common in image segmentation. Accordingly, they are 

ideal with regard to the semantic type of tasks that involve segmentation of cracks in 

image data. 

The contraction phase is made in such a way that it seeks out for objects’ feature in 

images. This phase uses a 5-layer CNN model to extract features. Contraction phase 

conception is steer by an architecture that increases the number of filters in every layer, 

as is the case in established segmentation and object detection techniques. Since the 

network is tailored for segmentation, its objective is to identify and categorize objects 

not just at the block level but also at the pixel level. Consequently, the number of 

kernels employed differs from previous work [87]. Unlike U-Net, which features a 

substantial number of filters in every layer, our approach gradually reduces the number 

of kernels in every subsequent layer, halving it.  

Padding is included in each layer's output to ensure that all samples receive additional 

padding when convolved with the kernel. Moreover, after each layer, a max-pooling 

layer does decrease the number of weights and sample size. 

The expanding segment serves as counterpart to the contraction phase. While the 

contraction phase is employed to extract features, the expansion phase is utilized for 

spatially localizing patterns within image smaples. This architecture features a 

symmetric structure for both components  decoder and encoder. It can be seen that the 

growing part acts similar to a deconvolutional network, which is an inverse counterpart 

of the convolutional network, as it expands the input data until it produces a bigger 

image. Furthermore, upsampling is conducted having size of 2 × 2 to retain the 

dimensions to those of the samples. In this design, 1 × 1 kernel layer acts as a sigmoid 

activation function, helping to process feature maps resulting into a segmentation map; 

four concatenation layers on the other side combine two layers at a given axis for 

increased information flow through various levels in the network. 

4.3 Overall Architecture 

This section introduces the proposed model, which combines aspects of YOLOv5 and 

the Faster R-CNN model, operating in two distinct phases: Detection and 

Segmentation.  

 

 

4.3.1 Detection and Noise Reduction Using YOLO 

Initially, the YOLOv5 (You Only Look Once version 5) model is primarily employed 

for detecting cracks or damage on runway surfaces. The approach encompasses the 

following steps: 

1. Training on Image Patches: During the training phase, the YOLOv5 test sets the 

image patches containing runway sections with and without cracks, thereby providing 
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discriminating details of the crack that will help differentiate it from other crack 

features. 

2. Categorization and Detection: In the Detection stage, the YOLOv5 model processes 

the full runway images and determines sections with cracks and none. Object detection 

has been a popular technique among experts because of its speed and accuracy, which 

is one reason the YOLOv5 design framework permits it to tag regions early. 

3. Background Noise Reduction: YOLOv5 is not only a way to detect objects; it is also 

a way to clean up pictures by eliminating all background noise and unnecessary stuff. 

This stage ensures that only natural cracks in runway images are examined during 

detection. 

The YOLOv5 model is capable of finding and detecting the damaged spots in the 

runway images correctly. Several crack regions, which have been identified, form the 

results of this stage and are ready for more extensive examination. 

4.3.2 Pixel-Level Segmentation of Runway Cracks 

Once the detection phase is over, the model moves on to the segmentation stage where 

a more detailed analysis is done. During this stage, the focus is on identifying the exact 

location of each crack within the defined areas at pixel level. 

1. Localization of Detected Areas: In the primary phase, those sections that are 

said to have cracks are chosen out for further investigation. This is how the 

customization makes it easier for the computer program to concentrate more 

on the mentioned specific regions hence improving on how it works better 

while dividing the image into distinct pieces. 

2. Pixel-Level Segmentation: On these localised areas, well-thought 

segmentation methods are used to differentiate crack pixels from those that are 

not. To define the size and extent of an individual crack, the segmentation 

process examines pixel intensities,  textures, and other characteristics to 

precisely delineate the shape and scope of each crack. 

3. Schematic Representation and CNN Layers: Each CNN layer in the YOLOv5 

architecture is followed by a max pooling layer, as shown in the schematic 

representation of the proposed model (Figure 4.1). The role of the 

convolutional layers is to extract features whereas max pooling layers help to 

reduce spatial dimensions and identify important features detected by the 

convolutional layers. 

The proposed model integrates detection and segmentation thereby offering a 

comprehensive approach that not only identifies whether there is a crack or not 

but also produces detailed segmentation maps indicating the exact location and 

shape of cracks. By following a two–stage procedure, it is anticipated that the 

detection rate as well as characterization of runway cracks will be more 

accurate leading to improved maintenance practices. 
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Figure 4.1. Block Diagram of Proposed Model for Detecting Road Cracks and its 

Segmentation 

 

4.3.3 YOLO 

The YOLOv5 model uses deep learning for recognizing different types of cracking 

automatically using a framework [101]. YOLO stands for “You Only Look Once” and 

it can be thought of as a relatively new object detecting technique that has gained much 

popularity due to its ability to achieve high accuracy when applied within systems 

based on deep learning techniques. Table 4.1 enlists the details of CNN architecture 

and shows the series of layers along with each kernel size, strides with the output shape 

of pixel for model implementation. 

Key Features and Efficiency of YOLOv5: 

Single-Pass Object Detection: The approach of this single pass contrasts with that 

which might require a number of passages over the same image for identification and 

classification of objects, hence optimizing object detection by the YOLOv5 model. 

Reframing Object Detection: When working with YOLOv5, a single regression 

problem is believed to be reframed as an object detection problem. It involves 

predicting bounding boxes and class probabilities from full-images directly in a single 

evaluation; hence making detection process very fast and efficient 
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Table 4.1 . CNN Architecture for the Proposed Model 

 

 

Integration of CNN Classifiers: There are Convolutional Neural Network (CNN) 

classifiers in the model who aid in extracting characteristics and classifying photos, 

which is critical. Convolutional neural nets are proficient enough to recognize spatial 

hierarchies in images; therefore, they are suitable for detailed object identification 

tasks. 

Simultaneous Prediction: An ability of YOLOv5 is its stand–out feature allowing 

prediction of several class probabilities along with bounding boxes at once. The 

simultaneous prediction allows this model to process multiple objects in an image 

without sacrificing speed at high accuracy levels 

Architectural Diagram and Functionality: Figure 4.2 illustrates the architectural 

design of the YOLOv5 model. The architecture is designed to streamline the object 

detection workflow through several key components: 
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Input Layer: The relevant features are extracted by the subsequent layers that process 

the input image. 

 

Figure 4.2. YOLO v5 Architectural Diagram 

 

Convolutional Layers: For feature extraction, multiple convolutional layers are 

utilized. Those layers apply different filters to the input image to detect edges, textures 

and other important patterns which mean cracks. 

Max-Pooling Layers: For each convolutional layer, following one another max-

pooling layers are employed to lower the spatial dimensions of feature maps helping 

in pointing out significant features while keeping computing efficiency in place. 

Bounding Box Prediction: In this scenario the application is predicting locations where 

it can say that cracks are found; within those locations a range of choices are mentioned 

for accuracy: likelyhood concerning cracks’ varieties as classes. 

Output Layer: Finally, it submits the detections results represented as the bounding 

box coordinates and associated class probabilities. 

4.3.3 Faster RCNN 

The model Faster R-CNN follows a crack-guessed, two-stage detection technique that 

embeds three major components in it: Feature Extraction Classification (FEC), 

Location Refinement (LR), and Informative Region Selection (IRS). Through this 

well-thought-out structure, the system can effectively identify any form of cracks on 

an image with great precision and detail. Here’s what happens: 

1. Informative Region Selection (IRS) 

Objective: To find and select regions in the image that are potential to carry cracks. 
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Process: Image Segmentation: Commence by segmenting the complete crack image 

into smaller portions or regions of interest (ROIs) is the first step. This reduces the size 

of those areas in question areas that need a closer investigation. 

Region Proposal Network (RPN): The RPN is a tool which helps to give areas on the 

image which are likely to have cracks the feature detection stage coming up with 

categories of objects. It looks at the whole image and finds regions of crack-prone 

through some mechanisms.. 

2. Feature Extraction Classification (FEC) 

Objective: In order to extract relevant characteristics for the proposed regions, and use 

it to identify cracks. 

Process: Convolutional Layers, A range of convolutional-filter layers are applied to 

each segment or candidate area. With the assistance of these layers, diverse filters are 

utilized for the purpose of extracting significant attributes that are connected to carck 

like textures, edges and patterns 

Feature Maps: The significant features detected in each segment are highlighted by 

the feature maps produced by convolutional layers. 

Classifier: A classifier is employed to process the extracted characteristics and decide 

on the possibility of cracks. The task of this classification is to determine if there are 

any cracks present, and identify what type they may be (e.g., longitudinal or 

transverse). 

3. Location Refinement (LR) 

Objective: To refine the location and bounding boxes of the detected cracks for precise 

localization. 

Process: Bounding Box Regression, The proposed regions have their coordinates 

refined through bounding box regression algorithm in the model. This way, the 

bounding boxes are readjusted in order to better enclose the detected cracks, hence 

improving the positioning accuracy. 

Output: The final output includes the recognized regions with their respective types of 

cracks as well as the exact coordinates of bounding boxes which have been refined. 

This accurate localization is very important in order that more detailed examinations 

followed by repairs may take place. 
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CHAPTER 5 

 

 

EXPERIMENTAL   EVALUATION 

 

 

 

5.1 Implementation Details 

In this section, detailed information on how the entire setup is implemented is 

provided. The sections have practical examples to help in understanding the data used 

in the new model. Also, section 4.2 provides information on how hyperparameters 

were selected during training. 

 

Dataset Collection : The explanation above highlights the collection of new data set 

used to train the model on various runway crack types. It is inclusive of various images 

depicting different types of runway cracks as well as their conditions in the images; 

these have been carefully chosen with the intention of capturing many possible 

scenarios so as to ensure precise labeling which makes training more effective. 

 

Hyperparameter Selection: Optimal hyperparameters selection for model training 

would be discussed. The hyperparameters optimized were like learning rate and batch 

size; it also included tuning the number of epochs as well as fine-tuning other 

architecture-related ones. Explicitly, this part describes what specific values have been 

chosen in these hyperparameters ’set-up and provides insight into model precision as 

well as costs issues. 

 

Experimental Setup: We conducted experiments on a device with the hardware 

specifications mentioned here: - Processor: AMD Ryzen 5 5600H, - Graphics: Radeon 

with a 3.30 GHz speed - RAM: 8 GB - GPU: NVIDIA GeForce RTX 

 

These hardware components enabled the model to carry out the complicated tasks in 

training and validating the deep learning algorithm. Selecting a high-speed graphics 

card such as NVIDIA GeForce RTX was essential in hastening the process of training 

due to the large volume and intricacy of the data set. 

 

5.2 Training and Testing 

 

In the developing phase, we introduced the model to the freshly accumulated data 

which she used to understand different patterns and characteristics related to runway 

breaks. Multiple iterations were made during training where the model’s performance 

would be continuously reviewed for improvement purposes using selected 

hyperparameters. 

 

The efficacy of the model was appraised during the testing phase by means of 

employing another subset of the same dataset. Such an evaluation allowed us to 

determine how well this model could identify or characterize various types of linear 

damages within images that had never been observed before. 
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There is a comprehensive overview of the entire setup inclusive of dataset collection 

and hyper parameter search until the exact hardware used in conducting experiments 

is presented in finer details in this section. In this way, it is guaranteed that the model 

will be able to detect and segment cracks on runway robustly while being efficient too. 

 

5.3 Dataset Description 

 

In general, figure 5.1 shows pavement cracks are categorized into nine types as shown 

below 

1. Reflective Runway Crack 

2. Transverse Runway Crack 

3. Block Runway Crack 

4. Longitudinal Runway Crack 

5. Alligator Runway Cracks 

6. Sealed-Reflective Runway Crack 

7. Lane-Longitudinal Runway Crack 

8. Sealed-Longitudinal Runway Crack 

 

ARID Dataset: To implement crack detection on airport runway, we present a novel 

dataset called ARID (Airport Runway Image Dataset), consisting of 8,228 images 

gathered from 10 different airports within India. The images were taken by an iPhone 

11 camera which had the following specifications: * **Main Camera**: 12 MP, f/1.8, 

26mm (wide), 1/2.55", 1.4µm, dual pixel PDAF, OIS * **Secondary Camera**: 12 

MP, f/2.4, 120˚, 13mm (ultrawide), 1/3.6” 

Moreover, the Google API was used to automatically obtain distress surface images 

with the help of GPS coordinates, in addition to camera and image parameters. Image 

capture was enabled by choosing the starting and ending points for every marked 

runway. 

 

Image Capture Process:  We captured various snapshots of the same fractures located 

in specific positions through cameras inclined at -60° and -90° from the normal, in 

order to enable a right classification of pavement imperfections. All pictures were 

resized to 640 x 640 pixels because of uniformity. 

 

Annotation: A software annotation tool was used to annotate wide-view images in 

such a way that they show all the nine different types of runway cracks (named D0 to 

D8). Therefore, by annotating this dataset, it was made sure that every picture got 

correctly labelled for training and testing. 

 

Dataset Composition: A set of two sets makes the data 

Training set: 5760 images   

Testing set: 2468 pictures. 

The ARID dataset provides a whole range of annotated images showing cracks on 

runways from different airports. As a result, it becomes a useful source for which other 

models can be trained and tested for the detection and classification of these types of 

anomalies. Real life applicability guarantees high correct rate and trustworthy models 

given that it employs high resolution photos with carefully made notes. 
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Figure 5.1. Airport Runway Distress Crack Types With its Crack ID. 
 

 

5.4 Performance Metrics 

 

This part will include the metrics for the evaluation of runway crack classification and 

detection performance, among them precision, recall, and F1-score. Here are the 

definitions of these metrics: 

 

 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

(𝑡𝑝+𝑓𝑝)
     1)                                                                                            

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

(𝑡𝑝+𝑓𝑛)
     (2)                                                                   

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                          (3) 

 

where: 

tp (True Positive) indicates the number of correctly detected cracks. 

fp (False Positive) indicates the number of incorrectly detected cracks. 
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fn (False Negative) indicates the number of undetected cracks. 

 

5.4 Model Training and Evaluation 

 

The model proposed for training had a total of 5,760 images used in its training while 

2,468 others were used to evaluate it. What happened next was that the training took 

20,000 iterations within the space of 10 epochs and this meant the learning rate had to 

be set at 0.01. 

 

Accuracy Estimation: To estimate accuracy, we calculated overlaping area of 

predicted bounding boxes wit ground-truth bounding boxes. The rules used in 

identifying true positives; false positives; and false negatives are as below: 

 

True Positive (TP): If more than 20% of the ground-truth bounding box is overlapped 

by the predicted bounding box, then it is counted as a right prediction. False Positive 

(FP): If less than 20% of the ground-truth bounding box is overlapped by the predicted 

bounding box, it is counted as wrong prediction. False Negative (FN): It is a false 

negative if a crack is not predicted by the model. 

 

Bounding Box Color Coding: Red bounding box stands for ground truth values. The 

green bounding box signifies predicted boxes. 

 

Evaluation Results: The cracks that are correctly detected and classified showed 

accuracy with over 20% Intersection over Union (IoU) in each crack class segment in 

Figure 5.2. In Figure 5.2, there are parts that have less than 20% IoU overlap when 

compared to the ground-truth which means they are wrong. Figure 5.2 has less than 20 

percent IoU overlap, it shows true negatives. During the manual annotation process 

Figure 5.2 shows unlabeled cracks that remained. 
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Figure 5.2. Classification of Predicted Runway Crack for Validation Set. 

 

 

 

Conclusion: The proposed YOLOv5-based model performs highly well in evaluation 

metrics and visual representations of the bounding boxes, hence making it apparent. 

In the practical applications for which it was proffered, this shows that it is indeed 

effective and dependable in detecting and classifying runway cracks. 

 

Result Comparison: YOLOv5 vs Faster R-CNN 

Table 6 shows how YOLOv5 and Faster R-CNN perceive and classify nine crack 

categories. In the Faster R-CNN model, precision, recall and F1 scores for 

longitudinal, alligator and longitudinal lane cracks are relatively lower. On the other 

hand, YOLOv5 has achieved better F1 scores for all classes than Faster R-CNN. To 

be more specific, the YOLOv5 model has precision of 93% and 77% recall. The 

principal precision, recall and F1 score of proposed runway crack detection model in 

YOLOv5 is 84%. This emphasizes the importance of annotated data in developing 

runway crack detection with type identification powers. The result for detection and 

classification of the YOLO v5 and Faster R-CNN for 9 crack classes are shown in 

Table 5.1 

 

Comparative Analysis: The robustness of both models was tested by deliberately 

selecting images with obstacles such as sunshine and shadows (e.g., trees, crew buses) 

for figuring out top-down images if YOLOv5 was better than Faster R-CNN in 

detecting runway cracks. Ground truth values of cracks are represented by black 

bounding boxes in Figure 5.3. On the runway, blue and green bounded boxes show the 

predicted detections of cracks. Despite obstacles being present, both models are able 

to detect runway cracks with precision; they are thus effective and robust. 
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Table 5.1 . Result of YOLOv5 and Faster RCNN for Nine Crack Classes 
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Figure 5.3. Runway Crack Detection using YOLO v5 model and Faster R-

CNN model. 

 

 

In detecting and classifying runway cracks, the YOLOv5 model outperforms Faster R-

CNN according to the comparative evaluation. The YOLOv5 model is capable 

accurately identifying such crack types as alligator, longitudinal and longitudinal lane 

with better precision, recall and F1 scores. Furthermore, given difficult condition, it 

also shows that both models can detect even when cracks are on the runway proving 

they can be relied upon for use in airport upkeep and caution. 
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CHAPTER 6 

 

 

CONCLUSION AND FUTURE SCOPIC 

 

 

 

 

The researchers presented Airport Runway Image Dataset (ARID) for image dataset 

developed to aid classifications, detections and monitoring of surface cracks on airport 

runways using deep learning methods that will facilitate automation The data set 

includes two forms of images, wide angle shots as well as overhead views Illustrative 

examples are given below in order to explain what each picture type is meant for in 

this case. Mainly wide-view images are used for the classification of runway cracks 

which helps to categorize observed types of pavement distresses. On the contrary, top-

down images are utilized to estimate the density of the cracks, indicating how much 

destruction has taken place. 

The dataset contains nine typical types of airport runway surface defects, which can 

be used to make an extensive assessment of different types of cracks. This study is 

about using two types of deep learning models-YOLO model 5 and Faster R-CNN 

model- to detect and identify cracks. The level of precision standing at 83 percent 

indicates that YOLO bot model 5 is efficient in recognizing cracks. While it had a 

marginally lower accuracy rate, the Faster R-CNN model nonetheless performed well 

in detecting runway cracks as well as other things. 

The study is meant to show how surface cracks could be categorized using deep 

learning techniques together with wide-view imagery. From the results, the authors 

conclude that the proposed model is dependable since it can detect as well as forecast 

cracks at different camera views too. Therefore, it is a valuable and budget-friendly 

tool for assessing surface crack condition, runway surveillance, and maintenance 

activities. 

In future work, we can focus on improving Robustness models, mainly through 

enhancing the Faster R-CNN analysis. Also, combining payload images and system 

during Google Map can increase practical applicability of the system in actual real-

world scenarios. The improvement seeks to make runway inspections and management 

easy to do so that it can be made more effective than before. 
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