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A Study on PEFT Techniques for Optimizing Content Generation
and Textual Comprehension

Rohit Negi

ABSTRACT  

Recent  progress  towards  large language models  (LLMs) have brought  significant
improvents  towards  natural  language  processing  (NLP),  making  it  possible  to
perform  tasks  such  as  translating  languages,  generating  text,   and  classifying
information.  To  help  these  LLMs  work  efficiently  with  limited  computational
resources for specific tasks, parameter-efficient fine-tuning (PEFT) techniques have
plays a major role. In our thesis we explore the history, methods, experiments, and
real-world  applications  of  PEFT  techniques  in  detail,  with  a  specific  focus  on
optimizing them for creating content and understanding text better. It also covers the
ethical and social consequences of using these techniques, along with strategies for
adapting  and  collaborating  on  models.  We  analyze  different  aspects  of  PEFT
techniques & compare different words to understand the changes it brings in differnet
conditions so others can get help in their work while using these methods.
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CHAPTER 1 - INTRODUCTION  

1.1 Overview

Language modelling is the process of teaching computers to understand & generate
text that resembles humans. It plays a major role in NLP, as it includes developing
models & algorithms that  can accurately predict  the next  words in a  sentence or
paragraph. This helps in generating new text, finishing sentences, and figuring out
the likelihood of different word combos.

Back in the day, early language models were pretty simple. They used basic stats to
guess what words would come next based on how often they appeared together. But
then came deep learning, tons of public data, and super powerful computers. That's
when Large Language Models (LLMs) stepped onto the scene. They use fancy deep
learning techniques, especially transformer architectures, to really dig into language
patterns. One cool thing about LLMs is they can handle massive amounts of data,
even  stuff  like  pictures  and  sounds.  They're  basically  language  wizards,
understanding and generating human-like text better than ever before.

Today's  LLMs  are  can  ace  all  sorts  of  tasks,  thanks  to  their  massive  size  and
computational prowess, but that also means they're pretty demanding. For example
GPT-175B, a model with a mind-blowing 175 billion parameters, requires a small
army of GPUs just to function properly. To deal with this issue, there's something
called model  compression.  It's  like squeezing a large model  into a  smaller,  more
manageable  version  making  it  easier  to  run  on  low  coputation  devices  like
smartphone.

LLMs should also raise some serious questions about the environment and ethics.
They also  consume a  large  amount  of  energy,  which  is  not  good for  the  planet.
Morever  in  some  areas  it  become  challenging  to  obtain  the  necessary  hardware
needed for it. One way to address these concerns is through PEFT techniques which
can help in assisting this issue by reducing the resources & energy required without
any significant downfall in performance. Following these ways can help in coserving
power and environment and increase its access to more people.

Here in our thesis we will explore various Parameter Efficient Fine Tuning (PEFT)
Techniques to understand its working in different scenarios.
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1.2 History

1.2.1 History of LLMs

Origin of our present LLMs goes way back, when researchers first started exploring
language models and neural networks. Imagine this: it all began with what we call
statistical language models. Back then, researchers were all about using probabilities
to predict what words would come next in a sentence. That time methods like n-
grams & Hidden Markov Models were pretty basic compared to what we have now,
but they paved the way for understanding natural language, capapble of helping with
simple things like generating text and guessing the next word, but were not good
with complex stuff.

Further ahead, researchers started looking at big chunks of text and using machine
learning to find patterns. Support Vector Machines were a big deal during this phase
as they brought a different understanding to language and gave us cool things like
spam detectors and sentiment analyzers.

Moving in forward direction,  things improved with techniques like deep learning
with RNNs and LSTM netoworks which were like detectives, diving deep into text
and uncovering all the little details and long-distance connections which bought a big
change  as  machines  could  now  understand  context  better,  opening  doors  for
translating languages and recognizing speech. But it was not all perfect.

The big change happened with the Transformer model having fancy new architecture
based on self-attention allowing models like GPT and BERT to truly shine. They
could finally look at a whole sentence or even an entire document all at once, giving
them a real grasp of context. Thanks to these models, we now have smarter chatbots,
better text summaries, and smoother translations.

Since then, language learning models (LLMs) have been on a constant journey of
growth and improvement. Models like GPT-1, GPT-2, and GPT-3 just kept getting
bigger and smarter. Not only them but other models like ALBERT and RoBERTa are
continuing in pushing the boundaries too, not just limiting to general language tasks
anymore and now we even have various models specialized for fields like medicine,
science, and even coding. And as we continue moving forward, we're ensuring that
these models are ethical, fair, and understandable, so that everyone can benefit from
them responsibly.
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1.2.2 History of PEFT Techniques

Origin of our PEFT techniques for LLMs starts with the challenges of traditional
fine-tuning  methods.  These  methods  involved  updating  all  parameters  of  a  pre-
trained model, which was a real headache. It required a lot of resources and was
impractical  for  very  large  models,  making  it  difficult  for  many  researchers  and
practitioners to access. But it changed in 2019 as adapter modules were introduced
which were like small,  trainable layers that we add to each layer of a pre-trained
model & during fine-tuning only these modules are updated, which means we can
reduce the number of  parameters  that  need training.  It  was  a real  game-changer,
making the process more efficient and accessible. One of the example of this is the
use of adapter modules with BERT.

In 2021,  further  innovations  emerged with  Low-Rank Adaptation (LoRA),  which
introduced  low  rank  decomposition  of  the  weight  matrices  to  the  model.  This
technique reduced the trainable number of parameters by focusing on most important
aspects of the weight updates, as seen in the application of LoRA to GPT-3. Another
notable method from 2021 was BitFit.  It finetuned only bias terms of the model,
drastically cutting down the number of parameters while maintaining much of the
model  performance.  Layer-wise  fine-tuning  also  gained  popularity,  involving  the
selective fine-tuning of only certain layers, typically the final ones, while freezing
the rest. BERT was an example of a model that benefited from this approach.

The year 2021 also saw the rise of prompt tuning and prefix tuning. Prompt tuning
involved learning a set of prompt tokens that guide the model to produce desired
outputs, with GPT-3 being a prominent example. Prefix tuning, on the other hand,
involved prepending learned tokens  (prefix)  to  the  input  embeddings,  as  seen in
models  like  BART.  P-Tuning,  introduced in  2021,  combined prompt  tuning with
other optimization strategies improving both efficiency & performance of the fine
tuning process.

Recent innovations in parameter-efficient fine-tuning have continued to evolve. In
2022,  sparse  fine-tuning  focused  on only  updating  a  sparse  subset  of  the  model
parameters, determined by their importance during fine-tuning, as applied to models
like Sparse GPT-3. Efficient Prompt Learning (EPL), introduced in 2023, leveraged
efficient  prompts  to  guide  model  behavior  without  extensive  parameter  updates,
significantly  reducing  training  overhead  while  maintaining  high  performance.
Compacter,  also  from 2023,  combined adapters  with  low-rank updates  to  further
compress the fine-tuning process, making it highly efficient for very large models
such as GPT-4. HyperNetworks, another 2023 innovation, used small networks to
dynamically generate weights for larger networks, reducing the need for extensive
parameter updates and enhancing efficiency.

The  most  recent  advancements  include  Parameter-Efficient  Multi-Task  Learning
(PEMTL) in 2024, which enables fine-tuning across multiple tasks simultaneously by
optimizing shared parameters to enhance performance and efficiency across tasks.
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We  use  these  methods  in  multi-task  learning  models  and  it  shows  significant
improvements in both efficiency and performance.

Way of fine-tuning parameters have completely changed with context to adapting
large language models as now, even with limited computing power, we can fine-tune
huge models making it possible for more researchers and practitioners to customize
these advanced NLP models for specific tasks. Because of this, a noticeable increase
in innovation and new applications across various fields can be seen.

1.3 Motivation

The  rapid  advancement  of  large  language  models  (LLMs)  has  completely
transformed  the  fields  of  natural  language  processing  (NLP)  and  artificial
intelligence  (AI).  Models  like  GPT-3  and  BERT  have  demonstrated  impressive
abilities in generating human-like text, understanding complex language structures,
and handling a wide variety of NLP tasks. However, there's a downside: these models
are enormous and need a  lot  of  computing power,  which makes them somewhat
challenging to work with.

That's where PEFT techniques come by offering a promising solution to the problems
posed by these massive models  by reducing the number of  trainable parameters,
making it  possible to customize large models for specific tasks without incurring
high computing costs. It may sound great but we need more research to understand
how effective these PEFT techniques are for generating content and understanding
text.

Here we seek to address the gaps by exploring and comparing various PEFT methods
making our goal to find best ways to make your models more efficient and boost
their  performance.  Get ready: we are about to dive deep into the world of PEFT
techniques and their impact on LLMs.

1.4 Objectives

1. Literature Review:
   - Explore the various PEFT techniques available, such as adapter modules, LoRA,
prompt tuning, prefix tuning, and the latest advancements.
   -  Delve  into  the  strengths,  limitations,  and  particular  applications  of  each
technique, particularly in content generation and text comprehension.

2. Methodology Development:
   - Create a solid experimental framework to evaluate PEFT techniques. This means
choosing the right datasets, defining performance metrics, and setting up baseline
models.
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   - Design experiments that systematically test how different PEFT methods affect
model performance, computational efficiency, and resource usage.

3. Experimental Evaluation:
   - Apply and refine the chosen PEFT techniques on large language models.
   - Experiment with these techniques across different tasks, like text generation and
summarization, to assess their effectiveness.

4. Ethical and Societal Implications:
   -  Dive into  the ethical  considerations  that  come with using PEFT techniques,
including things like bias, transparency, and accessibility.
   - Offer recommendations and best practices for ethically and responsibly utilizing
PEFT-optimized models in various applications.

By  achieving  these  goals,  this  thesis  aims  to  contribute  to  the  field  of  NLP by
providing a comprehensive understanding of PEFT techniques and how they can be
optimized for content  generation and text comprehension. The findings will  offer
valuable insights for researchers and practitioners who want to use advanced LLMs
effectively and responsibly.
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CHAPTER 2 – LITERATURE SURVEY  

2.1 Large Language Models

The development of Deep Learning (DL) techniques, the presence of super powerful
computers, and enough training data have all led to the rise of LLMs. These models
can  learn  complex  patterns,  understand  subtle  nuances  in  language,  and  make
connections between words and ideas because they are trained on huge amounts of
online text. When these models are fine-tuned for specific tasks, they have shown
impressive results, achieving cutting-edge performance across various benchmarks.

Table 2.1 Comparison of Traditional ML, Deep Learning, and LLMs [1]

Table 2.2 Overview of different LLM models

Model Release
Date

Parameters Pretrain
Data 

Hardware
Trained On

Training
Time

BigGAN                2018-09  488 million ImageNet TPU v3 -
BERT 2018-11 340 million 16GB 16 TPU v2 4 days 
BERT-Large          2018-11 340 million 16GB 16 TPU v2 4 days
GPT-2     2019-02 1.5 billion 40GB 256 V100 GPU 1 month
VQ-VAE-2     2019-05 85 million ImageNet 128 TPU v3 -
XLNet         2019-06 340 million 32GB 512 V100 GPU -
RoBERTa              2019-07 355 million 160GB 1024 V100 GPU -
DistilBERT     2019-10 66 million 16GB 8 V100 GPU -
T5                2019-10 11 billion 750GB 1024 TPU v3 2 weeks
BART          2019-10 400 million 160GB 512 V100 GPU -
StyleGAN2       2019-12 23.1 million Flickr-Faces-HQ 32 V100 GPU -
ALBERT       2019-12 223 million 16GB 64 TPU v3 1 week
Turing-NLG       2020-02 17 billion - 256 V100 GPU -
GPT-3    2020-06 175 billion 570GB DGX SuperPOD

(NVIDIA V100,
10,000)

1 month

EleutherAI GPT-
Neo      

2021-03 2.7 billion Pile dataset
(825GB)

192 V100 GPU 1 month

LaMDA         2021-05 137 billion 1.56TB 1024 TPU v4 -
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EleutherAI GPT-J 2021-06 6 billion Pile dataset
(825GB)

256 V100 GPU 1 month

Jurassic-1       2021-08 178 billion - 256 V100 GPU -
OpenAI Codex   2021-08 12 billion Multiple sources DGX SuperPOD

(NVIDIA V100,
10,000)

-

FLAN 2021-09 137 billion - 128 TPU v3 60 hours
Gopher           2021-12  280 billion 300 billion

tokens
1024 TPU v4 -

ERNIE 3.0       2021-12 10 billion - 256 V100 GPU -
GLaM             2021-12 1.2 trillion 280 billion

tokens
2048 TPU v4 -

Megatron-Turing 
NLG    

2022-01 530 billion 270TB 4480 NVIDIA
A100

2 months

Chinchilla       2022-03 70 billion - 1024 TPU v4 -
PaLM              2022-04 540 billion 780GB 6144 TPU v4 -
M6-T           2022-04 100 billion - 512 TPU v4 -
OPT              2022-05 175 billion 180 billion

tokens
992 NVIDIA

A100
-

BLOOM           2022-07 176 billion 350 billion
tokens

Jean Zay
supercomputer

(NVIDIA A100,
384)

3.5 months

UL2               2022-10 20 billion 1 trillion tokens 1024 TPU v4 -
Flan-T5      2022-10 11 billion - 512 TPU v4 -
Galactica        2022-11 120 billion 106 billion

tokens
1024 TPU v4 -

LLaMA          2023-02 65 billion 1.4 trillion
tokens

2048 NVIDIA
A100

-

GPT-4                  2023-03 - -
PanGu-Σ 2023-03 1.1 trillion 329 billion

tokens
512 Ascend 910 100 days

Pythia 2023-04 12 billion 300billion
tokens

256 40G A100 -

PaLM2 2023-05 16 billion 100billion
tokens

- -

CodeGen2 2023-05 16 billion 400billion
tokens

- -

StarCoder 2023-05 15.5 billion 1 trillion tokens 512 40G A100 -
LLaMA2 2023-07 70 billion 2 trillion tokens 2000 80G A100 -

From 2018 to 2023, large language models (LLMs) have gotten a lot  bigger and
more complex. First, we had models like BERT and GPT-2 that set the foundation.
But now we have even larger models like GPT-3 and GLaM, which have hundreds of
billions  of  parameters.  To  handle  these  behemoth  models,  we  need  advanced
hardware like TPU v4 and NVIDIA A100 GPUs that can handle the heavy lifting.
And  the  amount  of  data  used  for  pretraining  these  models  has  also  increased
significantly, showing us how important it is to have diverse and extensive datasets.
Additionally, there's a shift towards using multimodal and specialized models. As we
move forward, we need to find ways to tackle the computational costs, reduce the
environmental  impact,  and  address  ethical  concerns  to  ensure  sustainable
development of AI.
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Fig. 2.1: No. of LLMs released over the years [2]

2.1.1 Capabilities of LLMs

1. Question-answering (QA):
   - LLMs are great at giving direct answers to questions in everyday language.
   - They can be trained on big text collections and fine-tuned on datasets with labeled
QA information to improve their performance.
   - LLM-based QA systems are excellent at handling tricky questions and putting
together answers from different sources.

2. Text Generation:
   - LLMs can create top-notch content for various purposes like articles, blogs, and
social media posts.
   -  They understand and produce  natural  language,  ensuring  that  the  generated
content is accurate and makes sense.

3. Language Translation:
   -  LLMs can accurately and fluently translate text between different languages,
helping people communicate across language barriers.
   - Their precision and fluency make global collaboration and access to information
much easier.

4. Text Classification:
   - LLMs are experts when it comes to analyzing and categorizing text, like figuring
out the sentiment of a message or detecting spam.
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   - They handle large amounts of text data efficiently, making data management a
breeze.

5. Summarization:
   - LLMs can create short and coherent summaries of long texts, saving time and
effort in content creation.
   -  They make content  creation more efficient  by capturing the  most  important
information accurately.

6. Virtual Assistance:
   -  In  virtual  assistants  and chatbots,  LLMs understand  what  users  are  asking,
provide the required information, and have natural human-like conversations.
   - They improve user-experience and operation efficiency by offering personalized
help and automating routine tasks.

7. Information Extraction (IE):
   - LLMs accurately extract important details and relationships from unstructured
text, making it easier to create organized knowledge graphs.
   - They make information extraction processes more efficient and accurate.

8. Dialog Systems:
   - LLMs make open-domain chatbots sound more natural and coherent, creating
more engaging conversations.
   - Their use in dialog systems changes how people interact with technology, making
conversations more enjoyable.

9. Semantic Search:
   - LLMs understand what users are searching for and provide search results beyond
just matching keywords.
   - They improve search accuracy and relevance, helping finding information more
easier.

10. Speech Recognition:
    - LLMs trained on huge amounts of data improve accuracies of automated speech
transcription.
    - Their contextual knowledge and ability to keep learning make them perfect for
handling speech signals effectively.
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2.1.2 Languange Model Types

Fig. 2.2: Distribution of language models [3]

1. Statistical Language Models (SLMs):
   - Use statistical methods to assign probability values to word sequences.
   - Based on the idea that word frequencies and patterns in large text corpora can
predict word occurrence likelihood.
   - Examples: N-gram models, Hidden Markov Models.

2. Pre-trained Language Models (PLMs):
   - Those Language models that are trained in unsupervised manner on large corpora
before being fine-tuned for specific tasks.
   - Learn representations of general language by extracting structures & patterns
from huge amounts of text data.
   - Examples: BERT, RoBERTa, GPT.

3. Large Language Models (LLMs):
   - These Language models have many parameters and significant processing power.
   - Examples: GPT-3, BERT, etc.

4. Neural Language Models (NLMs):
   - Word sequence probability distribution can be modelled using neural network
topologies.
  -  Designed  to  capture  intricate  relationships  between  words  and  generate
contextually appropriate text.
     -  Examples: RNNs, LSTM networks.



12

5. Transformer Language Models (TLMs):
   - Language models that specifically utilize the Transformer architecture.
   - Examples: GPT series, BERT.

Fig. 2.3: A broader overview of LLMs [2]
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2.2 PEFT Techniques

As large language models gain traction, effective deployment and training become
essential  prerequisites for facilitating broad adoption. A completely distinct set of
weights is needed for every job on which an LLM is refined. When models reach
hundreds of billions of parameters, it becomes prohibitively slow to reload all the
weights for every task and highly inefficient to host a separate set of weights for
every model. By adjusting a very tiny percentage of weights in relation to the entire
model  size  while  maintaining  the  model's  frozen state,  PEFT algorithms seek to
address this issue. Several versions of the same model can be served simultaneously
at  inference  time  by  quickly  switching  small  submodules  rather  than  all  of  the
weights. 

PEFT techniques, aims to maximise the process of fine-tuning LLMs. PEFT fine-
tunes  the  model  by  updating  a  subset  of  parameters,  in  contrast  to  standard
approaches that update the complete model. This is especially helpful because fine-
tuning LLMs typically calls for a large volume of task-specific data, which may be
costly  and  time-consuming  to  collect.  It  is  computationally  costly  to  update  all
parameters using the conventional method, particularly when working with LLMs.
By providing a more effective use of computing power, data, and time, PEFT tackles
these issues. This method works great when it's tough or expensive to gather a lot of
task-specific data. It's also useful when you need a faster and more resource-efficient
way to fine-tune the process. From a technical standpoint, PEFT methods involve
building  layers,  adding  more  tokens,  and  breaking  down  weight  gradients  into
specific matrices. This helps learn a minimal set of parameters for the job. [4]

Fig. 2.4: Different types of PEFT algorithms. [5]

PEFT  algorithms  are  grouped  into  four  main  types:  additive,  selective,
reparameterized,  and  hybrid  fine-tuning.  Additive  fine-tuning  introduces  new
adjustable modules or parameters using methods like Adapter, Soft Prompt, and other



14

variations.  Selective fine-tuning doesn't  add new parameters  but  instead makes a
subset  of  the  existing  model  parameters  adjustable.  It  uses  techniques  like
unstructural and structural masking. Trainable low-rank parameters are incorporated
into reparameterized fine-tuning during training and subsequently reintegrated into
the original model for inference. Techniques like low-rank decomposition and LoRA
derivatives are used to achieve this. By combining components from several PEFT
techniques,  hybrid fine-tuning builds  a  single,  cohesive model  that  capitalises  on
their  combined  advantages.  These  approaches  aim  to  optimize  fine-tuning  by
modifying the model architecture, selectively tuning parameters, or reparametrization
models in a low-dimensional space.

Fig. 2.5: Parameter-efficient fine-tuning methods taxonomy. [6]

Below here discussed are some common PEFT Techniques.

2.2.1 Pruning

To make the model smaller by removing unnecessary parts, pruning is a powerful
optimization strategy. This technique allows you to directly prune certain parameters
without significantly affecting the effectiveness of the model,  as these parameters
don't contribute much to its performance. Pruning offers benefits such as memory
optimization, improved computational efficiency, and better storage efficiency. There
are  two  basic  forms  of  pruning:  Unstructured  Pruning,  which  removes  specific
parameters, and Structured Pruning, which preserves the overall network structure
while  removing  connections  or  hierarchical  structures  based  on predefined rules.
Researchers have been working on combining pruning methods with Large Language
Models (LLMs) to address the large size and computational costs associated with
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these  models.  They  have  classified  their  work  into  organized  and  unstructured
pruning strategies. [7]

2.2.2 Knowledge Distillation

It is an effective machine learning method for improving model performance and
generalization. Knowledge is transferred from a more sophisticated instructor model
to a more straightforward student model. The primary goal is to transform the teacher
model's vast body of knowledge into a more useful representation, thereby improving
and streamlining it. There are two categories of knowledge distillation: White-box
KD, where the teacher's parameters are accessible, and Black-box KD, where only
the teacher's predictions are available. [8]

2.2.3 Quantization

Quantization  is  a  commonly used technique in  model  compression to  reduce the
computational  and  storage  overhead  of  deep  learning  models.  Conventional
representation uses floating-point numbers; however, quantization reduces computer
complexity and storage needs by converting them to integers or other discrete forms.
Though quantization  entails  inherent  precision  loss,  effective  implementation  can
lead  to  significant  model  compression  with  negligible  accuracy  damage.
Quantization can be generally classified into two primary approaches: quantization-
aware training (QAT) and post-training quantization (PTQ). When quantization is
used to compress the model is when the main differences are found. Quantization is
used by QAT when the model is being trained or fine-tuned, whereas PTQ quantizes
a model after training. [9]

2.2.4 Low-Rank Factorization (LoRA)

The  goal  of  Low-Rank  Factorization,  a  model  compression  technique,  is  to
approximate  a  weight  matrix  by  splitting  it  them  to  smaller  matrices  that  have
dimensions that are noticeably less. A big weight matrix W must be factorised into
two matrices, U and V, so that W ≈ UV. U is a m × k matrix, and V is a k × n matrix,
with k being significantly smaller than m and n. This is the basic idea behind the
process.  The  number  of  parameters  and  processing  overhead  are  significantly
decreased because the product of U and V  almost equates to original weight matrix.
[10]

2.2.5 Prompt Tuning (PT)

By using an embedding layer (intra-connectivity) to create token-like embeddings,
prompt tuning (PT) entails concatenating these embeddings to the input embeddings
of the Pre-trained Language Model (PLM) in the workspace. To make these token-
like embeddings more in line with the job goal, fine-tuning is applied. PT inserts
parameters precisely at the embedding layer with respect to modular qualities and
cooperation  with  the  PLM.  An  inter-connectivity  of  fixed  density  is  established
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between  the  PLM  and  PT  by  concatenating  token-like  embeddings  with  input
embeddings. [11]

2.2.6 Prefix Tuning (PF)

This method uses two linear layers with a Softmax activation in between, as opposed
to Prompt Tuning. This extends the workspace to incorporate the input embeddings
and the keys and values of the Attention in all Transformer levels, with respect to
modular  qualities  and  cooperation  with  the  Pre-trained  Language  Model  (PLM).
These matrices are concatenated with the PF token-like embeddings produced by this
method  (integration  form).  Through  the  PLM,  PF  creates  a  fixed,  dense
interconnectivity for all of its data. [12]

2.2.7 Adapters

Adapters apply intra-connectivity via a feedforward layer, bottlenecking data through
two linear layers with ReLU activation positioned in between that project data down
and then up.  With  the  use  of  FNN and Attention  blocks,  adapters  create  hidden
representations that are inserted sequentially. Adapters combine their findings with
their  workspace  (Attention  and FNN blocks)  by direct  addition  (h + ∆h),  which
facilitates cooperation with the Pre-trained Language Model (PLM) and has modular
qualities. Although there are variations such as AdapterDrop, Compacters, and Tiny-
Attention Adapters that can change the amount of insertions or internal connectivity,
they  are  all  integrated  using  direct  addition.  Connectors  establish  fixed,  dense
interconnectivity by sending all of their data to their workspace. [13]

2.2.8 Tiny-Attention Adapters

By adding a tiny Attention layer, Tiny-Attention Adapters, a variation of Adapters,
alter intra-connectivity. Tiny-Attention Adapters are comparable to Adapters in terms
of modular qualities and their ability to work with the Pre-trained Language Model
(PLM).  They  are  added  one  after  the  other,  operate  together  directly  with  their
workspace,  and  take  in  inputs  in  the  form  of  concealed  representations.  Their
insertion  into the  workspace happens after  the  Attention block,  though,  and they
create dynamic interconnectivity by sending information to the workspace only when
it is needed. [14]

2.2.9 Compacters

A type of adapter known as a compacter has a different reparameterization of the
layer  W.  The  representation  of  W  in  the  conventional  Adapter  layer  is
W Rk×dW Rk×d. On the other hand, Compacters reparameterize W by summing∈ ∈
Kronecker  products,  where  k and d are  divisible  by a  hyperparameter  nn that  is
defined by the user. In particular, W=∑i=1nAi BiW=∑i=1nAi Bi = nn Kronecker⊗ ⊗
products, where Ai Rn×nAi Rn×n and Bi Rnk×ndBi Rnk×nd. By distributing the∈ ∈ ∈ ∈
weights of AI among its layers, compacters improve parameter efficiency even more.
Compacters  are  similar  to  Adapters  in  terms of  their  modular  characteristics  and
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ability to work with the Pre-trained Language Model (PLM). They function together
with the PLM, utilise direct addition for integration, adhere to a sequential insertion
form, and have the same workspace. [15]

2.2.10  (IA)3

A (IA)3 module  is  made  up of  three  vectors  that  resize  the  Transformer  layer's
Attention (keys, values) and FeedForward Network (FFN) blocks. In order to prevent
the module from influencing the Pre-trained Language Model's (PLM) functioning
before it is led by the task's objective gradient, these vectors are initialised to one
during  the  tuning  phase.  In  order  to  work  with  the  PLM  and  include  modular
qualities  into  its  workspace,  which  comprises  intermediate  FFN ,  keys  & values
across  all  Transformer  levels,  (IA)3 employs  learned vector  rescaling.  Sequential
insertion allows it to transmit all of its data to its workspace, creating fixed, dense
interconnectivity. [16]

2.2.11  MHM

Researchers looking at adapter insertion form discovered that sequential adapters did
not perform as well in testing as parallel adapters (PA). On the basis of their study,
they  dissected  the  architecture  of  the  previously  stated  PEFT  techniques  and
presented a brand-new approach termed MHM, which combines parallel  adapters
with prefix tuning. By parallel insertion of adapters in the FeedForward Network
(FFN) modules in MHM, parallel adapters obtain the same FFN moduls input. On
the other hand, the self-attention layers and FFN modules come before the standard
adapters.  PA is  used  as  one of  the  experimental  PEFT approaches  as  a  point  of
comparison. [17]

Fig. 2.6: General structure of some common PEFT models. [18]
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Table 2.3 Structural properties of  different PEFT modules [19]

Table 2.4 Efficiency of the different PEFT techniques [19]

where, for each of the following: n = number of tokens for prompt and prefix tuning;
d = input/output dimension of PEFT module; r = rank for LoRA; k = bottleneck
dimension for Adapters; and dm = model dimension. d = dm. T = Input embeddings.
N = Kronecker-products Reduced dimension.



19

2.3 Related Work

The paper [20] investigates the optimal balance of model-size and training-tokens for
LLMs within a computing budget. It finds that current practices focus too much on
increasing model  size without  proportionally  increasing training data,  resulting in
under-trained  models.  According  to  the  study,  equal  scaling  of  model  size  and
training tokens is necessary for optical computing training. Empirical evidence from
training over 400 models shows that many large models, like Gopher and GPT-3, are
not optimally trained. The authors introduced the Chinchilla model, which, with 70
billion parameters and 1.4 trillion tokens, outperformed larger models like Gopher
and  GPT-3,  achieving  a  state  of  the  art  accuracy  on  MMLU  benchmark.  This
indicates that smaller models trained with more data are more efficient and effective,
reducing  compute  costs  for  fine-tuning  and  inference.  The  paper  advocates  for
revisiting  training  practices  to  adopt  these  findings  for  more  efficient  use  of
computational resources and better-performing models.

Fig. 2.7: Overlaid predictions. [20] 

Fig. 2.8: Parametric fit. [20]

Parametric modelling of the loss ˆ„ , ” and display contour (left) and isoFLOP𝐿 𝑁 𝐷
slices (right).
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Below here are some related work which efficiently uses different PEFT Techniques.

Integrating  pruning  techniques  can  significantly  enhance  the  efficiency  of  PEFT
methods. AdapterDrop [21] examines taking adapters out of lower transformer layers
and using multitasking adapters in AdapterFusion [22]. This study finds that pruning
can  boost  both  training  &  efficiency  with  only  a  minor  performance  impact.
SparseAdapter  [23] looks at a variety of pruning techniques and finds that typical
adapters  can be outperformed when a high sparsity  ratio,  like 80%, is  used.  The
model's capacity and performance are significantly improved by the Large-Sparse
configuration,  which  doubles  the  bottleneck  dimension  while  keeping  the  same
parameter  budget  (for  example,  50% sparsity).  SPLoRA  [24] uses  channel  based
pruning  on  the  LoRA weights,  affecting  both  the  source  weights  and  the  LoRA
parameters. Similarly, LoRAPruning [25] applies structured pruning to both the pre-
trained model-weights and the LoRA weights. LoRAPruning makes weight merging
easier than unstructured pruning of LoRA, which sparsifies the model-weights while
maintaining the density of LoRA weights. Also, utilising the gradients of LoRA, it
presents a new standard to approximate the pretrained weights' gradients, helping to
estimate the importance of weights. ProPETL [26] creates a single-shared prototype,
like an LoRA, prefix or adapter, that is used across different layers & tasks. This
method also develops binary masks pruning various sub-networks for different layers
& tasks, significantly improving parameter efficiency by allowing parameters to be
reused across layers and tasks.

Quantization is a popular technique to boost computational efficiency and cut down
on  memory  usage.  For  example,  BI-Adapter  [27] takes  advantage  of  adapters'
resilience  to  noise  in  the  parameter  space  and  introduces  a  clustering-based
quantization  method.  This  approach  achieves  impressive  results  by  quantizing
adapters to just 1-bit precision, which drastically reduces storage needs while still
delivering top-notch performance compared to other precision settings. PEQA [27]
uses a two-stage process for fine-tuning that is both parameter efficient and & aware
of quantization. The first step involves quantizing the FFN weight matrix that has
been pre-trained. In the second stage, only specific parameters are fine-tuned, which
keeps both memory and parameter use in check. QLoRA [28] unveils a number of
innovative methods,  including as 4-bit  Paged Optimizers,  Double Quantization &
NormalFloat, that enable the optimisation of a large 65B language model with 4-bit
quantization on a single 48GB GPU. This method maintains performance on par with
full 16-bit fine-tuning. LoftQ [29] offers a framework for better initializing quantized
backbone  weights  and  LoRA  weights,  tackling  quantization  issues  through
optimization  during  network  initialization.  LQ-LoRA  [30] employs  an  iterative
approach to apply integer linear programming for dynamic quantization settings and
breaks  down  weights,  drawing  inspiration  from  robust  principal  components
analysis.  QA-LoRA  [31] builds  on  QLoRA by  allowing  quantization  during  the
inference stage with INT4 quantization and group-wise operators, which boosts both
efficiency and accuracy. Finally, BitDelta  [32] presents a quantization method of 1
bit post training that focuses on weight differences between finetuned & pretrained
models.  This  method simplifies deployment  by using a  single full  precision base
model along with 1-bit deltas that are efficiently batched.
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Several  methods  have  been  developed to  reduce  memory  utilisation  during  fine-
tuning of large language models (LLMs) by minimising the requirement for caching
gradients across the LLM. For example,  Side-Tuning  [33] & Ladder-Side Tuning
(LST)  [34] present  a  network  branch  that  learns  & operates  in  tandem with  the
primary  model.  These  techniques  greatly  reduce  the  amount  of  memory  needed
during training by channelling backpropagation only through this  parallel  branch,
removing the  need to  maintain  gradient  information  for  the weights  of  the  main
model. In a similar way, Res-Tuning  [35] separates PEFT tuners (such as prompt
tuning and adapters) from the main model. Expanding on this, Res-Tuning-Bypass
creates  a  parallel  bypass  network  that  removes  the  data-flow  induced  in  the
decoupled tuners to main model, thus eliminating the need of gradient caching during
backpropagation in the main model.  MEFT  [36] takes inspiration from reversible
models  [37], where intermediate activations aren't cached during the forward pass
but  are  recalculated  during  backpropagation.  Without  more  pretraining,  MEFT
investigates how to transform an LLM into its  reversible counterpart.  In order to
guarantee that  the fine-tuning performance is  comparable to  complete  fine-tuning
methods,  a crucial  step in this procedure is meticulously initialising newly added
parameters in the pretrained models to preserve the original  starting point.  Three
techniques  are  presented  by  MEFT to  drastically  lower  the  amount  of  memory
required to store activations. LoRA-FA [38] tackles the memory overhead issue in
LoRA fine-tuning, where high activation memory consumption is required during
backpropagation. To solve this, LoRA-FA updates only the projection-up weights,
leaving  pretrained  weights  &  projection-down  weights  frozen.  This  approach
removes  the  need  to  store  input  activations,  as  the  intermediate  activation  is
sufficient for gradient computation, thus greatly reducing memory requirements. In
order to further reduce memory consumption during fine-tuning, certain techniques
completely  prevent  backpropagation  inside  LLMs.  HyperTuning  [39] uses  a
HyperModel to create PEFT parameters from a small number of examples, yielding
outcomes comparable to full model fine-tuning. PEFT Plug-in [40] first trains PEFT
modules  on  smaller  language models,  which  is  more  memory-efficient,  and then
integrates these trained modules into LLMs during inference. This technique saves a
significant  amount  of  memory  by  avoiding  the  requirement  for  gradient-based
optimisation on larger models. It's crucial to remember that HyperModel and PEFT
Plug-in both need further model training, which has its own expenses. MeZO [41]
presents  a  memory  efficient  zeroth-order  (ZO)  optimizer  for  training  LLMs,
bypassing conventional backpropagation for gradient computation and instead using
only forward passes. In order to minimise memory consumption during inference,
MeZO implements an in-place solution for the traditional ZO gradient estimator and
uses  it  to  compute  gradients.  With  this  method,  LLMs  with  up  to  30  billion
parameters may be fine-tuned efficiently on a single 80GB GPU, all while keeping
performance  close  to  that  of  backpropagation  based  finetuning  techniques.
Additionally,  it  substantially  reduces  storage  demands  compared  to  methods  like
LoRA and Adapter.

Some more experimental works are stated below.
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Table 2.5 Comparing FLAN-T5 across data splits, gauging ROUGE-L for E2E
NLG/SAMSum and AG News/CoLA accuracy in measurements. [42]

Interestingly, most Parameter Efficient Fine Tuning (PEFT) algorithms show faster
convergence  with  increased  data.  According  to  the  hypothesis,  PEFT approaches
learn unstably at low data amounts, while full-tuning learns and overfits quickly to
the small datasets. On the other hand, PEFT techniques show more stability and an
improved capacity to understand the underlying data structure at larger data sizes.
The benchmarking results here are inconsistent, with no particular PEFT approach
emerging as the top performer. On the other hand, there exists a clear distinction
between PEFT & full-tuning based on the amount of accessible data. 

Table 2.6 Different PEFT performance for SER. [43]

Here,  Adapter  Tuning,  Parallel  Adapter  Tuning,  &  Embedding  Prompt  methods
perform  worse  compared  to  direct  downstream  classification  models  with  the
Whisper  model,  with  parallel  adapter  being  the  least  effective.  However,  these
methods  improve  emotion  recognition  for  Wav2Vec 2.0  Base  & WavLM Base+.
LoRa enhances SER performance for WavLM Base+ & Wav2Vec 2.0 Base but may
underperform with Whisper models, likely due to positional embeddings. LoRa here
achieves best finetuning performance for WavLM Base+ with an average UAR of
67.3% across four datasets.
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Table 2.7 RoBERTa-large (RoBL) and RoBERTa-base (RoBB) model optimisation
using the GLUE benchmark, providing the Pearson/Spearman correlation for STS-B,
accuracy/F1 score for MRPC and QQP, averaged matched accuracy for MNLI, and
accuracy for other NLU tasks, as well as the Matthews correlation for COLA. [44]

Above PEFT methods effectively reduce trainable parameters while often matching
or exceeding full finetuning performance on GLUE benchmark. And for RoBERTa-
base, methods like BitFit, sequential adapter, Child-TuningD, MAM adapter, LoRA,
and ProPELTAdapter outperform full fine-tuning, whereas others like prompt-tuning
and prefix-tuning generally underperform. A similar trend is observed for RoBERTa-
large, with ProPELTLoRA also performing well. ProPELTAdapter, using only 1.50%
of  the  trainable  parameters  with  AdapterFusion,  achieves  the  best  overall
performance. MAM Adapter combines parallel adapters & prefix-tuning for better
results but requires more parameters. Sequential adapter, while parameter-intensive,
performs exceptionally  well.  Prompt-tuning,  despite  using  the  fewest  parameters,
delivers the poorest performance. Child-TuningD performs well with RoBERTa-base
but  struggles  with  RoBERTa-large  on  specific  tasks,  likely  due  to  learning  rate
issues.
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Table 2.8 PEFT techniques on RoBERTa-large. [45]

The results on RoBERTa-large across 13 NLU tasks with 5 randomly sampled splits
reveal Dynamic-UPL outperforming all other methods, achieving new state of the art
results  for  few-shot  learning.  Dynamic-UPL improves  performance  compared  to
Prefix tuning and IDPT, especially on SST-5, TREC and RTE datasets, with fewer
model parameters tuned. It also surpasses Adapter, LoRA, and BitFit across most
tasks, requiring only about 0.1% of parameters. Compared to LM-BFF, a prompt
based  finetuning  method,  Dynamic-UPL achieves  similar  or  better  results  on  7
datasets  with  significantly  fewer  parameters.  These  findings  highlight  Dynamic-
UPL's superior generalization and efficiency in few-shot learning settings.
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Table 2.9 PEFT Techniques performance on datasets [46]

The study finds that parameter-efficient models generally outperform the FullTuning
model,  aligning  with  prior  research  and  supporting  theoretical  analysis  on  their
superior generalization capabilities. These models also demonstrate greater stability
compared  to  the  FullTuning  model,  corroborating  theoretical  stability  analysis.
Interestingly, even the Random model surpasses the FullTuning model,  indicating
that  sparsity  enhances  performance.  Additionally,  the  proposed  SAM  model
outperforms several  baseline models across various tasks,  ranking among the top
three in most evaluations.

Table 2.10 Training time (in hour) analysis [46]

Adapter and LoRA models outperform the FullTuning model by tuning only a few
new parameters, while other parameter-efficient models take more time due to the
use of masks. The SAM model, despite needing masks, outperforms most models
except  Adapter  and  LoRA due  to  faster  convergence.  These  parameter-efficient
models, though slower to train, require less storage space, which is advantageous for
handling multiple downstream tasks.
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Table 2.11 SURE benchmark on pre-trained Wav2Vec 2.0. [47]

Here, Parameter-efficient approaches in speech processing tasks perform on par with
or better than thorough fine-tuning, particularly excelling on the Emotional Speech
Dataset (ESD) and demonstrating effectiveness in speaker recognition (SR) tasks.
Notably,  the  proposed  ConvAdapter  achieves  significant  parameter  reduction,
utilizing only 0.94% of trainable parameters of fine-tuning. While slightly trailing
other  adapters  in  performance,  it  presents  a  promising  alternative  for  efficient
transfer  learning.  Combining  ConvAdapter  with  other  methods  like  prefix  fine-
tuning or LoRA could further enhance results, particularly in challenging datasets
like MELD.

Table 2.12 Performance of different methods in the SUPERB benchmark. [48]

Efficient methods generally outshine Baseline and full fine-tuning (FT), particularly
in  recognition  and  speaker  tasks  like  ASR,  PR,  SD,  and  SID.  Houlsby  notably
improves SID accuracy by 23% compared to Baseline and maintains consistently
high performance due to its larger parameter size. However, LoRA performs poorly,
even  worse  than  Baseline  in  some  tasks.  Weighted-sum  stands  out  for  its
effectiveness,  achieving comparable  performance to  more  complex methods  with
minimal  additional  parameters,  as  shown in  the  SUPERB benchmark  for  speech
tasks.
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Table 2.13 Project-specific code summary task on the Bleu-4 Scores. [18]

In  this  case,  CodeT5  models  were  trained  on  one  project  dataset  using  the  full
finetuning and PEFT approaches, and their performance was assessed on a different
project dataset. Full fine-tuning frequently performed better than PEFT techniques in
project-specific code summarization tasks; optimal performance was attained when
models were fine-tuned and assessed on the same dataset. However, PEFT methods
showed better results in cross-project scenarios, with relative improvements when
fine-tuning on one dataset and testing on others. This suggests that while preserving
outcomes  that  are  comparable  to  comprehensive  fine-tuning,  PEFT  approaches
improve  the  model's  transferability  between  projects.  The  potential  of  PEFT
approaches  to  improve  transfer  learning  capacity  by  utilising  frozen  pre-trained
parameters may account for their higher performance in certain settings. Without any
fine-tuning,  direct  inference  on the pre-trained CodeT5 model  could  not  produce
sufficient evaluation performance, indicating the necessity of adjusting in some way.
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CHAPTER 3 - METHODOLOGY  

3.1 Pre-Training Objectives

The pre-training goals of LLMs are explained in this section.

1. Full Language Modeling:
   - An autoregressive language modelling goal in which the model's job is to forecast
tokens in the future based on tokens in the past.

2. Prefix Language Modeling:
   - A non-causal training goal in which the loss is determined solely by using the
target tokens that are still there after a randomly selected prefix.

3. Masked Language Modeling:
  -  Tokens  or  spans  (a  series  of  tokens)  are  randomly  masked  in  this  training
objective, and the model's job is to forecast masked tokens based on the context of
the past and future.

4. Unified Language Modeling:
   - It combines non-causal, masked, & causal language-training goals. In the context
of masked language modelling, Instead of being bilateral, attention is either focused
from left to right or from right to left.

Fig. 3.1: An example of language model training objectives. [49]
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3.2 Distributed LLM Training

1. Data Parallelism:
   - This technique duplicates the model across several devices, dividing a batch of
data across them. All of the devices' weights are synchronised at the conclusion of
each training cycle.

2. Tensor Parallelism:
   - Tensor computations are split up among several devices using tensor parallelism.
It is sometimes referred to as intra-layer model parallelism or horizontal parallelism.

3. Pipeline Parallelism:
   - This technique divides up model layers among various devices. Another name for
this is vertical parallelism.

4. Model Parallelism:
   - It combines elements of pipeline and tensor parallelism.

5. 3D Parallelism:
   - It is a combination of tensor, model, and data parallelism.

6. Optimizer Parallelism:
  - It  lowers  communication  costs  and  memory  use  by  gradient  partitioning,
parameter  partitioning,  and  optimizer  state  partitioning  among  devices.  It  is  also
referred to as zero redundancy optimizer.

3.3 Model Adaptation

This section gives a summary of the important phases involved in adapting LLMs,
from pretraining going to finetuning for specific tasks, and how they are utilized.
When  we  mention  alignment-tuning,  we're  referring  to  aligning  with  human
preferences, although the term can have different meanings in other contexts.

1. Pre-Training:

Initially, the model undergoes self-supervised training on a vast dataset to predict
subsequent tokens based on the given input. LLMs come in different architectures,
including encoder decoder & decoder only models, with various building blocks &
loss functions.

2. Fine-Tuning:

Fine-tuning LLMs can be approached in different ways:
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- Transfer Learning: While pretrained LLMs perform well on many tasks, fine-tuning
with task-specific data can further enhance performance for a specific downstream
task.

-  Instruction-Tuning:  This  involves  finetuning  the  pretrained  model  using  data
formatted  as  instructions  paired  with  input-output  examples.  These  instructions
typically  cover  multiple  natural  language  tasks,  guiding  model  response
appropriately to different prompts. Task performance and zero-shot generalisation are
enhanced by this approach.

-  Alignment-tuning:  To  mitigate  issues  like  generating  false,  biased,  or  harmful
content, LLMs are aligned using human feedback. This involves updating the model
to avoid undesirable  responses,  ensuring it  remains helpful,  honest,  and harmless
(HHH). Techniques like reinforcement learning with human feedback (RLHF) are
employed, where a model initially fine-tuned on demonstrations is further trained
using reward modeling and reinforcement learning.

-  Parameter-Efficient  Tuning:  Given  the  substantial  memory  and  computing
requirements for training LLMs, researchers have developed techniques to fine-tune
models more efficiently by updating only a few parameters or adding new ones.

3. Prompting/Utilization:

One  method  of  asking  trained  LLMs  to  produce  answers  is  called  prompting.
Different prompt styles can be used to prompt LLMs; sometimes they will adapt to
instructions  without  requiring  additional  fine-tuning,  and  other  times  they  will
require fine-tuning based on data comprising multiple prompt styles.

- Zero-Shot Prompting: This method enables LLMs to answer questions they have
never seen before, without requiring examples in the prompt.

-  In-context  Learning:  Often  called  "few-shot  learning,"  this  technique  entails
displaying multiple input-output pairings to the model in order to elicit the intended
response.

- Reasoning in LLMs: LLMs can handle task planning, logical problems, and critical
thinking through reasoning, which can be enhanced by various prompting styles or
training on reasoning datasets.

- Chain-of-Thought (CoT): In this method, prompts include reasoning steps along
with  inputs-outputs,  enabling  the  model  to  produce  results  with  step-by-step
reasoning.

-  Self-Consistency:  This  improves  CoT  via  generating  multiple-response  and
selecting most frequent one.

- Tree-of-Thought (ToT): This approach explores multiple-reasoning paths, allowing
for forward-looking and backtracking in problem-solving.
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- Single-Turn Instructions: Here, LLMs are questioned once with all relevant data,
and they can produce answers in a few-shot or zero-shot scenario by comprehending
the context.

-  Multi-Turn  Instructions:  For  complex  tasks  requiring  multiple  interactions,
feedback & responses using other tools  as inputs for subsequent  rounds with the
LLM, commonly used in autonomous agents.

Fig. 3.2: Standard data pre-processing workflow for LLMs pre-training. [50]

Fig. 3.3: Simple flowchart showcasing several phases of LLMs.  [2]
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3.4 Model selection and deployment guidelines

If  you want  to  make the  most  of  Language Models  (LLMs)  for  NLP tasks  and
improve your applications and systems, just follow these steps:

1. Figure out the Task:
   - Decide which specific NLP task you want the LLM to handle first. Anything from
text categorization and sentiment analysis to text production or question-answering
could be included.

2. Pick the Right Model:
   - Select a pretrained LLM based on the needs of your assignment. Think about
models such as RoBERTa, BERT, or GPT-3, each with pros and cons of their own.

3. Customize the Model:
   - It's now time to adapt the chosen pre-trained model to your particular assignment.
Adjust it using your personal dataset. To achieve the best results, change variables
like epochs, batch size, & learning rate.

4. Evaluate the Model:
   - Test performance on fine-tuned model on a separate dataset. Use metrics like
precision, recall, accuracy, and F1 score to see how well it's doing. This helps ensure
effective task performance and lets you identifying improvement areas.

5. Get the Model in Action:
   - Include the optimised model in your system or application. Make it available via
a user interface or an API. When it's in production, don't forget to use logging and
monitoring to track its performance.

6. Keep an Eye on the Model:
   -  Keep a close watch on how the model performs in production.  If necessary,
retrain it based on its performance. Regularly evaluate its performance and adjust
parameters or train it on new data if its performance starts to decline.

7. Keep Improving the Model:
   - Gather feedback from users to enhance the model's performance. Keep the model
updated with fresh data to ensure it stays relevant and aligned with the ever-evolving
needs and trends.
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3.5 Ethical guidelines

To  make  sure  we  develop  and  use  Language  and  Learning  Models  (LLMs)
responsibly, with a focus on user privacy, fairness, ethics, transparency, competition,
collaboration, and environmental impact, here are some guidelines. By adhering to
these  guidelines,  LLMs  can  minimise  any  possible  negative  impacts  while  still
making a good contribution to society.

1. Protect User Privacy:
   -  Keep user privacy a priority by implementing practices like minimizing data
collection, anonymizing user content, and using encryption to secure user-generated
data.

2. Reduce Bias:
   - Actively seek out and reduce biases in LLMs through the use of inclusive and
varied  training  data,  methods  for  detecting  bias,  and  comprehensive  evaluation
metrics.

3. Address Ethical Considerations:
   - Take into account the potential for LLMs to be used in harmful ways and focus on
developing  models  that  benefit  society.  Build  models  with  accountability,
transparency, and responsibility in mind.

4. Enhance Transparency:
   - Improve the transparency and explainability of LLMs by using techniques like
attention mechanisms & model  interpretation tools.  This will  help users trust  the
system.

5. Encourage Competition:
   - Encourage cooperation between government, business, and academics to prevent
monopolisation  of  LLM  development  and  implementation.  This  encourages
creativity and sensible use.

6. Foster Collaboration:
   - By sharing research findings and best practices, and by opening-sourcing models,
you can foster collaboration between researchers, developers, and industry.

7. Minimize Environmental Impact:
   - In order to lessen the environmental impact of LLMs, try to develop more energy-
efficient models and investigate alternate training strategies.

8. Consider Optimization Implications:
   - Be aware that optimizing LLMs could perpetuate inequalities & introduce new
exploitation forms. Carefully consider these ethical implications during development
and deployment.
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3.6 Metrics

When it comes to evaluating how well LLMs (Language Models) perform, there are
various metrics that we can use. These metrics give us different insights into their
efficiency.  To  get  a  comprehensive  understanding  of  an  LLM,  we  often  look  at
metrics like accuracy and zero-shot ability alongside others.

1. Number of Parameters: 
   - The total number of variables or learnable weights that the LLM must optimise
during training is indicated by this measure. Parameters are like the weights in the
connections  between  neurons  or  attention  layers.  Generally,  if  there  are  more
parameters,  the  LLM becomes more  expressive.  But  keep in  mind,  having more
parameters also means you'll need more computational resources and memory for
both training and inference.

2. Model Size: 
   - This is the amount of memory or disc space needed by the LLM to hold all of its
components, including weights and biases. The model size is closely related to the
number of parameters. Usually, more parameters mean a larger model size. However,
the type of data used to represent parameters and the model architecture can also
affect the overall size.

3. Compression Ratio: 
   -  The ratio  of  the  uncompressed  LLM's  initial  size  to  its  compressed  size  is
provided by this measure. A higher compression ratio means that the LLM has been
compressed more efficiently. In other words, it has been significantly reduced in size
while still maintaining its functionality and performance.

4. Inference Time: 
   - This is a measurement of how long it takes the LLM to analyse and provide
replies for input data during inference; it is also referred to as latency. Inference time
is crucial for real-world applications where the LLM needs to respond to user queries
or process large amounts of data in real-time.

5. Floating Point Operations (FLOPs): 
   - This metric tells us the number of arithmetic operations involving floating-point
numbers (usually 32-bit  or 16-bit)  that the LLM performs when processing input
data. FLOPs give us an idea of the computational requirements of an LLM and allow
us to compare the efficiency between different LLMs or compression techniques.
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3.7 Best Practices

To improve your work it is best to follow these practices:

1. Explicit Reporting of Parameter Counts:
- Authors should clearly specify the type of parameter count (trainable, changed,

rank) in their papers, ideally reporting all of them. This will enhance understanding
and enable more accurate comparisons between methods.

2. Evaluation with Different Model Sizes:
- Methods should be assessed using various model sizes providing comprehensive

understanding to their strengths and limitations. This is especially important as many
studies focus primarily on BERT.

3. Comparisons to Similar Methods:
- In addition to comparing new methods with popular approaches (e.g., LoRa,

BitFit,  Adapters),  it  is  crucial  to  compare  them  with  other  conceptually  and
architecturally similar techniques. This will offer a more thorough understanding of a
method's performance and its relative strengths.

4. Standardized PEFT Benchmarks and Competitions:
- Developing standardized benchmarks and competitions will allow participants

to  compete  under  the  same  conditions,  facilitating  direct  comparisons.  These
benchmarks  should  provide  standardized  data  and  models  at  different  scales  and
include a standardized way to evaluate GPU memory consumption.

5. Emphasis on Code Clarity and Minimal Implementations:
- The community should prioritize easy-to-understand code with simple, reusable

implementations.  Such  clarity  not  only  aids  understanding  but  also  increases  the
likelihood of methods being adopted and cited by other researchers.
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CHAPTER 4 – EXPERIMENTAL ANALYSIS  

4.1 Need for Model Compression Methods

As you can see that when training the model it runs out of memory as the model is
too big for the hardware to support.

So we use can use different PEFT methods to train it.

e.g. above we have used LORA for model compression.
It brings down the trainable parameter down to only 0.71% which drastically reduces
the memory needed to train the model.
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4.2 Text Generation

Below are the snapshots of the training steps & the result.
As a model was trained on a very small subset of data, due to low resources thus it
does not gives a good enough convergence rate & result but is enough for generating
text.
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4.3 Text Summarization

Below are the snapshots of the training steps & the result.
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4.4 Analysis & Result

As shown in above code snapshots, all three components are properly working.

The result here shows how PEFT model performed better than the original model
with minimal computation resources.

4.5 Hardware & Libraries Used

    • Graphic Card : NVIDIA GeForce RTX 3050 4GB VRAM

    • Libraries : tensorflow, tflearn, torch, nltk, transformers, evaluate.

    • LLM : flan-t5-base

    • PEFT Technique : LoRA
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CHAPTER 5 - CONCLUSION  

5.1 Challenges for LLMs

LLMs like GPT-4 have made great strides in natural language processing, but they
also come with their fair share of challenges. Let's take a closer look:

1. Computational Cost: Training LLMs requires a massive amount of computational
resources,  which  can  drive  up  costs  and  raise  concerns  about  the  environmental
impact.

2. Bias and Fairness: Due to LLMs' ability to detect and even magnify biases in their
training data, there are ethical concerns that must be addressed.

3. Overfitting: LLMs can sometimes get too caught up in the specific examples they
were trained on, resulting in illogical responses. Striking the right balance between
memorization and generalization is crucial.

4.  Economic  and  Research  Inequality:  The  high  costs  associated  with  LLM
development  can  create  a  situation  where  only  well-funded  organizations  can
participate, exacerbating existing inequalities.

5.  Reasoning  and  Planning:  LLMs struggle  when  it  comes  to  tasks  that  require
reasoning and planning, often falling short in common-sense scenarios.

6. Hallucinations: LLMs have the tendency to generate responses that may sound
plausible but are actually incorrect or inconsistent.

7.  Prompt  Engineering:  Designing  effective  prompts  is  essential  as  it  greatly
influences the quality of the LLM's outputs.

8. Limited Knowledge: Pre-trained information can become outdated, and retraining
can be quite costly. Augmenting retrieval techniques can help, but it requires some
adaptation.

9.  Safety  and  Controllability:  Ensuring  that  LLMs  do  not  produce  harmful  or
inappropriate content is a significant concern that needs to be addressed.

10. Multi-Modality: Integrating diverse data like text, images, and videos presents
challenges in aligning the data and increasing the computational demands.

11. Catastrophic Forgetting: Fine-tuning LLMs can sometimes cause them to forget
previously learned information, which can be problematic.
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12.  Adversarial  Robustness:  LLMs  are  vulnerable  to  adversarial  attacks,  which
highlights  the  need  for  robust  evaluation  tools,  especially  in  safety-critical
applications.

13. Interpretability and Explainability: It might be challenging to comprehend LLMs'
decision-making processes since they frequently function like "black boxes." Trust
and acceptance may be impacted by this lack of transparency.

14.  Privacy  Concerns:  Using  LLMs  raises  concerns  about  data  privacy  and  the
potential for extracting sensitive information from the models.

15. Real-Time Processing: The high computational demands of LLMs can hinder
their  ability  to  process  information  in  real-time,  particularly  in  mobile  and  edge
computing environments.

16. Long-Term Dependencies: LLMs struggle with maintaining context during long
or  multi-turn  conversations,  which  can  affect  the  overall  coherence  of  their
responses.

17.  Hardware  Acceleration:  The  increasing  size  of  LLMs  is  surpassing  the
capabilities  of  existing  hardware,  making  model  inference  costly.  We  need
advancements in hardware and model quantization to address this issue.

18.  Regulatory  and  Ethical  Frameworks:  To  control  the  social  and  ethical
ramifications  of  LLMs,  regulatory  monitoring  and  ethical  frameworks  must  be
established.

5.2 Recommendations for Optimal Performance of LLMs

LLMs, such as GPT-4, are super effective at a bunch of different tasks because they
know a ton and can learn like champs. To get the most out of these models, there are
a few strategies you should keep in mind:

-  Go for the Fancy Architecture: One of the most sophisticated language models
available at the moment is GPT-4. It's really good at generating content that actually
makes sense, so it's a top choice for all sorts of tasks.

-  Give Detailed Prompts  with Task Context  and Relevant  Info: How well  LLMs
perform depends a lot  on how clear  and specific  your input  prompts  are.  If  you
provide lots of details about the task and relevant info, it'll help the model understand
what it needs to do and give more accurate responses.

- Include Relevant Info in Your Prompts: If you want the model to give precise and
focused responses, throw in some extra relevant info in your prompts. In particular,
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with tasks requiring specialised expertise, such as medical or coding, the output can
be improved by include pertinent information and instructions in the prompt.

-  Try Different Prompt Techniques:  Given the complexity and unpredictability of
LLMs,  it  is  worthwhile  to  experiment  with various  prompt strategies  in  order  to
improve performance. You may try asking leading questions, providing more detailed
instructions, "double-quoting keywords," or presenting the information in a different
way. Who knows, maybe you'll achieve even greater outcomes!

5.3 PEFT Technique Selection

Because prompt  tuning makes use of  the  embedding layer—which has  sufficient
contextual  information  after  navigating  the  frozen  language  model  layers—it  is
perfect  for  applications  like  Named  Entity  Recognition.  This  indicates  that  the
assignment can be completed by concentrating only on the embeddings. In addition,
Prompt Tuning is an effective choice that works well even with a small computation
budget  because  it  requires  very  few  parameters  and  has  a  straightforward  layer
structure O(1) complexity.

LoRA works well for activities involving answering questions. It assists the model in
determining  the  connections  between  words  and  phrases  in  the  inquiry  and  the
response by working on the attention queries and values. The efficacy of LoRA is
supported by its impressive results in multiple-choice quality assurance assignments.
The model utilises critical information more effectively thanks to the configurable
scaling integration.  Subsequent to the Transformer attention block, Tiny-Attention
Adapters have the potential to enhance attention even more, as well as the calibre of
hidden representations.

For tasks like Data-to-Text and Summarization, both LoRA and Prefix Tuning can be
effective. Research by [12],[16],[51],[52] shows that these techniques offer similar 
performance, but the choice depends on your computational resources. LoRA, with 
its fewer parameters and better layer efficiency, tends to be more efficient. These 
findings are supported by their characteristics in PEFT-Ref. Although Adapters 
perform well in generation tasks, research by [51] suggests they have lower 
faithfulness scores comparing to full finetuning and Prefix Tuning. This is because 
Adapters use both the feed-forward and attention blocks. [53] discovered that there is
a lot of redundancy in the feed-forward block, and altering it can make generating 
jobs less faithful.

In summary, the ideal PEFT technique depends on complexity of your task. For tasks
requiring complex reasoning [54], techniques using attention modules are 
recommended. For tasks involving the addition of new concepts, feed-forward 
modules can be used to store new knowledge [55] (Dai et al., 2022). For simpler 
tasks, adding task-specific information through the embedding layer is sufficient.
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5.4 Conclusion

Although recent advancements have made it possible to train larger models, we must
stress the necessity to scale datasets responsibly while putting an emphasis on high-
quality data. Only high-quality data that has been carefully collected and managed
can  benefit  from  scaling  to  larger  datasets.  Accurate  language  modelling  and
subsequent tasks depend on a correct train-test set separation. Furthermore, because
massive web-scraped datasets may contain harmful language, prejudices, and private
information,  training  on  billions  of  tokens  presents  ethical  and  privacy  issues.
Comprehensive dataset introspection becomes more crucial as datasets get larger in
order to solve these problems.

Furthermore,  we  see  that,  on  our  baselines,  PEFT approaches  outperform  fully
supervised  fine-tuning  in  general  at  low-  to  medium-resource  levels,  but  they
converge  more  slowly.  Furthermore,  we  find  that  downstream  performance  is
significantly impacted by changes in attention levels and the choice of later layers.

By this study we hope that it can help in the better understanding & choice of these
techniques  to  help  in  your  work.  To further  enhance performance and tackle the
difficulties  associated  with  large-scale  data  management,  future  studies  should
investigate the integration of several PEFT techniques.
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