
A Study on PEFT Techniques for
Optimizing Content Generation and

Textual Comprehension

A Thesis Submitted
In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY
in

Artificial Intelligence

by
ROHIT NEGI

(Roll No. 2K22/AFI/17)

Under the Supervision of

Prof. RAHUL KATARYA
(Professor, Dept of Computer Science & Engineering)

To the
Department of Computer Science and Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India

 May, 2024

ii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

ACKNOWLEDGEMENTS

I have taken efforts in this thesis. However, it would not have been possible without
the kind support and help of many individuals and organizations. I would like to
extend my sincere thanks to all of them.

I am highly indebted to Prof. Rahul Katarya for his guidance and constant
supervision as well as for providing necessary information regarding the project &
also for their support in completing this review paper. I would like to express my
gratitude towards the Head of the Department (Computer Science and
Engineering, Delhi Technological University) for their kind cooperation and
encouragement which helped me in the completion of this research survey. I would
like to express my special gratitude and thanks to all the Computer Science and
Engineering staff for giving me such attention and time.

My thanks and appreciation also go to my colleague in writing the survey paper and
the people who have willingly helped me out with their abilities.

Rohit Negi

iii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE’S DECLARATION

I, Rohit Negi, Roll No. 2K22/AFI/17 student of M.Tech (Artificial Intelligence),

hereby certify that the work which is being presented in this thesis entitled “A Study

on PEFT Techniques for Optimizing Content Generation and Textual

Comprehension” in partial fulfillment of the requirements for the award of the

Degree of Master of Technology in Artificial Intelligence in the Department of

Computer Science and Engineering, Delhi Technological University is an authentic

record of my own work carried out during the period from August 2022 to Jun 2024

under the supervision of Prof Rahul Katarya, Asst Prof, Dept of Computer Science

and Engineering. The matter presented in the thesis has not been submitted by me for

the award of any other degree of this or any other Institute.

Place: Delhi Candidate’s Signature

iv

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE

Certified that Rohit Negi (Roll No. 2K22/AFI/17) has carried out the research work

presented in the thesis titled “A Study on PEFT Techniques for Optimizing

Content Generation and Textual Comprehension”, for the award of Degree of

Master of Technology from Department of Computer Science and Engineering, Delhi

Technological University, Delhi under my supervision. The thesis embodies result of

original work and studies are carried out by the student himself and the contents of

the thesis do not form the basis for the award of any other degree for the candidate or

submit else from the any other University /Institution.

Prof. Rahul Katarya
(Supervisor)

Department of CSE
Date: Delhi Technological University

v

LIST OF PUBLICATIONS

1. R. Negi and R. Katarya, "Emerging Trends in Chatbot Development : A
Recent Survey of Design, Development and Deployment," 2023 14th
International Conference on Computing Communication and Networking
Technologies (ICCCNT), Delhi, India, 2023, pp. 1-6, doi:
10.1109/ICCCNT56998.2023.10307280.

2. Paper title: ‘Experimental Study of Hyperparameter Tuning in Text
Generation Chatbot on Deep Learning Techniques’ accepted in
ICAAIML2024.

vi

Table of Contents
ACKNOWLEDGEMENTS..ii
CANDIDATE’S DECLARATION..iii
CERTIFICATE...iv
LIST OF PUBLICATIONS...v
List of Tables...vii
List of Figures..ix
ABSTRACT..1
CHAPTER 1 - INTRODUCTION..2

1.1 Overview...2
1.2 History...3

1.2.1 History of LLMs...3
1.2.2 History of PEFT Techniques..4

1.3 Motivation...5
1.4 Objectives..5

CHAPTER 2 – LITERATURE SURVEY...7
2.1 Large Language Models..7

2.1.1 Capabilities of LLMs...9
2.1.2 Languange Model Types..11

2.2 PEFT Techniques...13
2.2.1 Pruning...14
2.2.2 Knowledge Distillation..15
2.2.3 Quantization...15
2.2.4 Low-Rank Factorization (LoRA)...15
2.2.5 Prompt Tuning (PT)...15
2.2.6 Prefix Tuning (PF)..16
2.2.7 Adapters..16
2.2.8 Tiny-Attention Adapters...16
2.2.9 Compacters...16
2.2.10 (IA)3...17
2.2.11 MHM..17

2.3 Related Work...19
CHAPTER 3 - METHODOLOGY...28

3.1 Pre-Training Objectives...28
3.2 Distributed LLM Training...29
3.3 Model Adaptation..29
3.4 Model selection and deployment guidelines.................................32
3.5 Ethical guidelines..33
3.6 Metrics...34

vii

3.7 Best Practices..35
CHAPTER 4 – EXPERIMENTAL ANALYSIS.....................................36

4.1 Need for Model Compression Methods..36
4.2 Text Generation...37
4.3 Text Summarization..38
4.4 Analysis & Result..39
4.5 Hardware & Libraries Used..39

CHAPTER 5 - CONCLUSION...40
5.1 Challenges for LLMs..40
5.2 Recommendations for Optimal Performance of LLMs.................41
5.3 PEFT Technique Selection..42
5.4 Conclusion...43

REFERENCES..44
List of Publications
Plagiarism Verification

viii

List of Tables

Table
Number

Table Name
Page

Number

2.1
Comparison of Traditional ML, Deep Learning, and
LLMs

6

2.2 Overview of different LLM models 6

2.3 Structural properties of different PEFT modules 17

2.4 Efficiency of the different PEFT techniques 17

2.5 Comparing FLAN-T5 across data splits... 21

2.6 Different PEFT performance for SER 21

2.7 RoBL & RoBB model optimisation... 22

2.8 PEFT techniques on RoBERTa-large. 23

2.9 PEFT Techniques performance on datasets 24

2.10 Training time (in hour) analysis 24

2.11 SURE benchmark on pre-trained Wav2Vec 2.0 25

2.12
Performance of different methods in the SUPERB
benchmark.

25

2.13
Project-specific code summary task on the Bleu-4
Scores

26

ix

List of Figures

Figure
Number

Figure Name
Page

Number

2.1 No. of LLMs released over the years 8

2.2 Distribution of language models 10

2.3 A broader overview of LLMs 11

2.4 Different types of PEFT algorithms. 12

2.5 Parameter-efficient fine-tuning methods taxonomy 13

2.6 General structure of some common PEFT models. 16

2.7 Overlaid predictions 18

2.8 Parametric fit 18

3.1 An example of language model training objectives. 27

3.2
Standard data pre-processing workflow for LLMs pre-
training.

30

3.3 Simple flowchart showcasing several phases of LLMs. 30

1

A Study on PEFT Techniques for Optimizing Content Generation
and Textual Comprehension

Rohit Negi

ABSTRACT

Recent progress towards large language models (LLMs) have brought significant
improvents towards natural language processing (NLP), making it possible to
perform tasks such as translating languages, generating text, and classifying
information. To help these LLMs work efficiently with limited computational
resources for specific tasks, parameter-efficient fine-tuning (PEFT) techniques have
plays a major role. In our thesis we explore the history, methods, experiments, and
real-world applications of PEFT techniques in detail, with a specific focus on
optimizing them for creating content and understanding text better. It also covers the
ethical and social consequences of using these techniques, along with strategies for
adapting and collaborating on models. We analyze different aspects of PEFT
techniques & compare different words to understand the changes it brings in differnet
conditions so others can get help in their work while using these methods.

2

CHAPTER 1 - INTRODUCTION

1.1 Overview

Language modelling is the process of teaching computers to understand & generate
text that resembles humans. It plays a major role in NLP, as it includes developing
models & algorithms that can accurately predict the next words in a sentence or
paragraph. This helps in generating new text, finishing sentences, and figuring out
the likelihood of different word combos.

Back in the day, early language models were pretty simple. They used basic stats to
guess what words would come next based on how often they appeared together. But
then came deep learning, tons of public data, and super powerful computers. That's
when Large Language Models (LLMs) stepped onto the scene. They use fancy deep
learning techniques, especially transformer architectures, to really dig into language
patterns. One cool thing about LLMs is they can handle massive amounts of data,
even stuff like pictures and sounds. They're basically language wizards,
understanding and generating human-like text better than ever before.

Today's LLMs are can ace all sorts of tasks, thanks to their massive size and
computational prowess, but that also means they're pretty demanding. For example
GPT-175B, a model with a mind-blowing 175 billion parameters, requires a small
army of GPUs just to function properly. To deal with this issue, there's something
called model compression. It's like squeezing a large model into a smaller, more
manageable version making it easier to run on low coputation devices like
smartphone.

LLMs should also raise some serious questions about the environment and ethics.
They also consume a large amount of energy, which is not good for the planet.
Morever in some areas it become challenging to obtain the necessary hardware
needed for it. One way to address these concerns is through PEFT techniques which
can help in assisting this issue by reducing the resources & energy required without
any significant downfall in performance. Following these ways can help in coserving
power and environment and increase its access to more people.

Here in our thesis we will explore various Parameter Efficient Fine Tuning (PEFT)
Techniques to understand its working in different scenarios.

3

1.2 History

1.2.1 History of LLMs

Origin of our present LLMs goes way back, when researchers first started exploring
language models and neural networks. Imagine this: it all began with what we call
statistical language models. Back then, researchers were all about using probabilities
to predict what words would come next in a sentence. That time methods like n-
grams & Hidden Markov Models were pretty basic compared to what we have now,
but they paved the way for understanding natural language, capapble of helping with
simple things like generating text and guessing the next word, but were not good
with complex stuff.

Further ahead, researchers started looking at big chunks of text and using machine
learning to find patterns. Support Vector Machines were a big deal during this phase
as they brought a different understanding to language and gave us cool things like
spam detectors and sentiment analyzers.

Moving in forward direction, things improved with techniques like deep learning
with RNNs and LSTM netoworks which were like detectives, diving deep into text
and uncovering all the little details and long-distance connections which bought a big
change as machines could now understand context better, opening doors for
translating languages and recognizing speech. But it was not all perfect.

The big change happened with the Transformer model having fancy new architecture
based on self-attention allowing models like GPT and BERT to truly shine. They
could finally look at a whole sentence or even an entire document all at once, giving
them a real grasp of context. Thanks to these models, we now have smarter chatbots,
better text summaries, and smoother translations.

Since then, language learning models (LLMs) have been on a constant journey of
growth and improvement. Models like GPT-1, GPT-2, and GPT-3 just kept getting
bigger and smarter. Not only them but other models like ALBERT and RoBERTa are
continuing in pushing the boundaries too, not just limiting to general language tasks
anymore and now we even have various models specialized for fields like medicine,
science, and even coding. And as we continue moving forward, we're ensuring that
these models are ethical, fair, and understandable, so that everyone can benefit from
them responsibly.

4

1.2.2 History of PEFT Techniques

Origin of our PEFT techniques for LLMs starts with the challenges of traditional
fine-tuning methods. These methods involved updating all parameters of a pre-
trained model, which was a real headache. It required a lot of resources and was
impractical for very large models, making it difficult for many researchers and
practitioners to access. But it changed in 2019 as adapter modules were introduced
which were like small, trainable layers that we add to each layer of a pre-trained
model & during fine-tuning only these modules are updated, which means we can
reduce the number of parameters that need training. It was a real game-changer,
making the process more efficient and accessible. One of the example of this is the
use of adapter modules with BERT.

In 2021, further innovations emerged with Low-Rank Adaptation (LoRA), which
introduced low rank decomposition of the weight matrices to the model. This
technique reduced the trainable number of parameters by focusing on most important
aspects of the weight updates, as seen in the application of LoRA to GPT-3. Another
notable method from 2021 was BitFit. It finetuned only bias terms of the model,
drastically cutting down the number of parameters while maintaining much of the
model performance. Layer-wise fine-tuning also gained popularity, involving the
selective fine-tuning of only certain layers, typically the final ones, while freezing
the rest. BERT was an example of a model that benefited from this approach.

The year 2021 also saw the rise of prompt tuning and prefix tuning. Prompt tuning
involved learning a set of prompt tokens that guide the model to produce desired
outputs, with GPT-3 being a prominent example. Prefix tuning, on the other hand,
involved prepending learned tokens (prefix) to the input embeddings, as seen in
models like BART. P-Tuning, introduced in 2021, combined prompt tuning with
other optimization strategies improving both efficiency & performance of the fine
tuning process.

Recent innovations in parameter-efficient fine-tuning have continued to evolve. In
2022, sparse fine-tuning focused on only updating a sparse subset of the model
parameters, determined by their importance during fine-tuning, as applied to models
like Sparse GPT-3. Efficient Prompt Learning (EPL), introduced in 2023, leveraged
efficient prompts to guide model behavior without extensive parameter updates,
significantly reducing training overhead while maintaining high performance.
Compacter, also from 2023, combined adapters with low-rank updates to further
compress the fine-tuning process, making it highly efficient for very large models
such as GPT-4. HyperNetworks, another 2023 innovation, used small networks to
dynamically generate weights for larger networks, reducing the need for extensive
parameter updates and enhancing efficiency.

The most recent advancements include Parameter-Efficient Multi-Task Learning
(PEMTL) in 2024, which enables fine-tuning across multiple tasks simultaneously by
optimizing shared parameters to enhance performance and efficiency across tasks.

5

We use these methods in multi-task learning models and it shows significant
improvements in both efficiency and performance.

Way of fine-tuning parameters have completely changed with context to adapting
large language models as now, even with limited computing power, we can fine-tune
huge models making it possible for more researchers and practitioners to customize
these advanced NLP models for specific tasks. Because of this, a noticeable increase
in innovation and new applications across various fields can be seen.

1.3 Motivation

The rapid advancement of large language models (LLMs) has completely
transformed the fields of natural language processing (NLP) and artificial
intelligence (AI). Models like GPT-3 and BERT have demonstrated impressive
abilities in generating human-like text, understanding complex language structures,
and handling a wide variety of NLP tasks. However, there's a downside: these models
are enormous and need a lot of computing power, which makes them somewhat
challenging to work with.

That's where PEFT techniques come by offering a promising solution to the problems
posed by these massive models by reducing the number of trainable parameters,
making it possible to customize large models for specific tasks without incurring
high computing costs. It may sound great but we need more research to understand
how effective these PEFT techniques are for generating content and understanding
text.

Here we seek to address the gaps by exploring and comparing various PEFT methods
making our goal to find best ways to make your models more efficient and boost
their performance. Get ready: we are about to dive deep into the world of PEFT
techniques and their impact on LLMs.

1.4 Objectives

1. Literature Review:
 - Explore the various PEFT techniques available, such as adapter modules, LoRA,
prompt tuning, prefix tuning, and the latest advancements.
 - Delve into the strengths, limitations, and particular applications of each
technique, particularly in content generation and text comprehension.

2. Methodology Development:
 - Create a solid experimental framework to evaluate PEFT techniques. This means
choosing the right datasets, defining performance metrics, and setting up baseline
models.

6

 - Design experiments that systematically test how different PEFT methods affect
model performance, computational efficiency, and resource usage.

3. Experimental Evaluation:
 - Apply and refine the chosen PEFT techniques on large language models.
 - Experiment with these techniques across different tasks, like text generation and
summarization, to assess their effectiveness.

4. Ethical and Societal Implications:
 - Dive into the ethical considerations that come with using PEFT techniques,
including things like bias, transparency, and accessibility.
 - Offer recommendations and best practices for ethically and responsibly utilizing
PEFT-optimized models in various applications.

By achieving these goals, this thesis aims to contribute to the field of NLP by
providing a comprehensive understanding of PEFT techniques and how they can be
optimized for content generation and text comprehension. The findings will offer
valuable insights for researchers and practitioners who want to use advanced LLMs
effectively and responsibly.

7

CHAPTER 2 – LITERATURE SURVEY

2.1 Large Language Models

The development of Deep Learning (DL) techniques, the presence of super powerful
computers, and enough training data have all led to the rise of LLMs. These models
can learn complex patterns, understand subtle nuances in language, and make
connections between words and ideas because they are trained on huge amounts of
online text. When these models are fine-tuned for specific tasks, they have shown
impressive results, achieving cutting-edge performance across various benchmarks.

Table 2.1 Comparison of Traditional ML, Deep Learning, and LLMs [1]

Table 2.2 Overview of different LLM models

Model Release
Date

Parameters Pretrain
Data

Hardware
Trained On

Training
Time

BigGAN 2018-09 488 million ImageNet TPU v3 -
BERT 2018-11 340 million 16GB 16 TPU v2 4 days
BERT-Large 2018-11 340 million 16GB 16 TPU v2 4 days
GPT-2 2019-02 1.5 billion 40GB 256 V100 GPU 1 month
VQ-VAE-2 2019-05 85 million ImageNet 128 TPU v3 -
XLNet 2019-06 340 million 32GB 512 V100 GPU -
RoBERTa 2019-07 355 million 160GB 1024 V100 GPU -
DistilBERT 2019-10 66 million 16GB 8 V100 GPU -
T5 2019-10 11 billion 750GB 1024 TPU v3 2 weeks
BART 2019-10 400 million 160GB 512 V100 GPU -
StyleGAN2 2019-12 23.1 million Flickr-Faces-HQ 32 V100 GPU -
ALBERT 2019-12 223 million 16GB 64 TPU v3 1 week
Turing-NLG 2020-02 17 billion - 256 V100 GPU -
GPT-3 2020-06 175 billion 570GB DGX SuperPOD

(NVIDIA V100,
10,000)

1 month

EleutherAI GPT-
Neo

2021-03 2.7 billion Pile dataset
(825GB)

192 V100 GPU 1 month

LaMDA 2021-05 137 billion 1.56TB 1024 TPU v4 -

8

EleutherAI GPT-J 2021-06 6 billion Pile dataset
(825GB)

256 V100 GPU 1 month

Jurassic-1 2021-08 178 billion - 256 V100 GPU -
OpenAI Codex 2021-08 12 billion Multiple sources DGX SuperPOD

(NVIDIA V100,
10,000)

-

FLAN 2021-09 137 billion - 128 TPU v3 60 hours
Gopher 2021-12 280 billion 300 billion

tokens
1024 TPU v4 -

ERNIE 3.0 2021-12 10 billion - 256 V100 GPU -
GLaM 2021-12 1.2 trillion 280 billion

tokens
2048 TPU v4 -

Megatron-Turing
NLG

2022-01 530 billion 270TB 4480 NVIDIA
A100

2 months

Chinchilla 2022-03 70 billion - 1024 TPU v4 -
PaLM 2022-04 540 billion 780GB 6144 TPU v4 -
M6-T 2022-04 100 billion - 512 TPU v4 -
OPT 2022-05 175 billion 180 billion

tokens
992 NVIDIA

A100
-

BLOOM 2022-07 176 billion 350 billion
tokens

Jean Zay
supercomputer

(NVIDIA A100,
384)

3.5 months

UL2 2022-10 20 billion 1 trillion tokens 1024 TPU v4 -
Flan-T5 2022-10 11 billion - 512 TPU v4 -
Galactica 2022-11 120 billion 106 billion

tokens
1024 TPU v4 -

LLaMA 2023-02 65 billion 1.4 trillion
tokens

2048 NVIDIA
A100

-

GPT-4 2023-03 - -
PanGu-Σ 2023-03 1.1 trillion 329 billion

tokens
512 Ascend 910 100 days

Pythia 2023-04 12 billion 300billion
tokens

256 40G A100 -

PaLM2 2023-05 16 billion 100billion
tokens

- -

CodeGen2 2023-05 16 billion 400billion
tokens

- -

StarCoder 2023-05 15.5 billion 1 trillion tokens 512 40G A100 -
LLaMA2 2023-07 70 billion 2 trillion tokens 2000 80G A100 -

From 2018 to 2023, large language models (LLMs) have gotten a lot bigger and
more complex. First, we had models like BERT and GPT-2 that set the foundation.
But now we have even larger models like GPT-3 and GLaM, which have hundreds of
billions of parameters. To handle these behemoth models, we need advanced
hardware like TPU v4 and NVIDIA A100 GPUs that can handle the heavy lifting.
And the amount of data used for pretraining these models has also increased
significantly, showing us how important it is to have diverse and extensive datasets.
Additionally, there's a shift towards using multimodal and specialized models. As we
move forward, we need to find ways to tackle the computational costs, reduce the
environmental impact, and address ethical concerns to ensure sustainable
development of AI.

9

Fig. 2.1: No. of LLMs released over the years [2]

2.1.1 Capabilities of LLMs

1. Question-answering (QA):
 - LLMs are great at giving direct answers to questions in everyday language.
 - They can be trained on big text collections and fine-tuned on datasets with labeled
QA information to improve their performance.
 - LLM-based QA systems are excellent at handling tricky questions and putting
together answers from different sources.

2. Text Generation:
 - LLMs can create top-notch content for various purposes like articles, blogs, and
social media posts.
 - They understand and produce natural language, ensuring that the generated
content is accurate and makes sense.

3. Language Translation:
 - LLMs can accurately and fluently translate text between different languages,
helping people communicate across language barriers.
 - Their precision and fluency make global collaboration and access to information
much easier.

4. Text Classification:
 - LLMs are experts when it comes to analyzing and categorizing text, like figuring
out the sentiment of a message or detecting spam.

10

 - They handle large amounts of text data efficiently, making data management a
breeze.

5. Summarization:
 - LLMs can create short and coherent summaries of long texts, saving time and
effort in content creation.
 - They make content creation more efficient by capturing the most important
information accurately.

6. Virtual Assistance:
 - In virtual assistants and chatbots, LLMs understand what users are asking,
provide the required information, and have natural human-like conversations.
 - They improve user-experience and operation efficiency by offering personalized
help and automating routine tasks.

7. Information Extraction (IE):
 - LLMs accurately extract important details and relationships from unstructured
text, making it easier to create organized knowledge graphs.
 - They make information extraction processes more efficient and accurate.

8. Dialog Systems:
 - LLMs make open-domain chatbots sound more natural and coherent, creating
more engaging conversations.
 - Their use in dialog systems changes how people interact with technology, making
conversations more enjoyable.

9. Semantic Search:
 - LLMs understand what users are searching for and provide search results beyond
just matching keywords.
 - They improve search accuracy and relevance, helping finding information more
easier.

10. Speech Recognition:
 - LLMs trained on huge amounts of data improve accuracies of automated speech
transcription.
 - Their contextual knowledge and ability to keep learning make them perfect for
handling speech signals effectively.

11

2.1.2 Languange Model Types

Fig. 2.2: Distribution of language models [3]

1. Statistical Language Models (SLMs):
 - Use statistical methods to assign probability values to word sequences.
 - Based on the idea that word frequencies and patterns in large text corpora can
predict word occurrence likelihood.
 - Examples: N-gram models, Hidden Markov Models.

2. Pre-trained Language Models (PLMs):
 - Those Language models that are trained in unsupervised manner on large corpora
before being fine-tuned for specific tasks.
 - Learn representations of general language by extracting structures & patterns
from huge amounts of text data.
 - Examples: BERT, RoBERTa, GPT.

3. Large Language Models (LLMs):
 - These Language models have many parameters and significant processing power.
 - Examples: GPT-3, BERT, etc.

4. Neural Language Models (NLMs):
 - Word sequence probability distribution can be modelled using neural network
topologies.
 - Designed to capture intricate relationships between words and generate
contextually appropriate text.
 - Examples: RNNs, LSTM networks.

12

5. Transformer Language Models (TLMs):
 - Language models that specifically utilize the Transformer architecture.
 - Examples: GPT series, BERT.

Fig. 2.3: A broader overview of LLMs [2]

13

2.2 PEFT Techniques

As large language models gain traction, effective deployment and training become
essential prerequisites for facilitating broad adoption. A completely distinct set of
weights is needed for every job on which an LLM is refined. When models reach
hundreds of billions of parameters, it becomes prohibitively slow to reload all the
weights for every task and highly inefficient to host a separate set of weights for
every model. By adjusting a very tiny percentage of weights in relation to the entire
model size while maintaining the model's frozen state, PEFT algorithms seek to
address this issue. Several versions of the same model can be served simultaneously
at inference time by quickly switching small submodules rather than all of the
weights.

PEFT techniques, aims to maximise the process of fine-tuning LLMs. PEFT fine-
tunes the model by updating a subset of parameters, in contrast to standard
approaches that update the complete model. This is especially helpful because fine-
tuning LLMs typically calls for a large volume of task-specific data, which may be
costly and time-consuming to collect. It is computationally costly to update all
parameters using the conventional method, particularly when working with LLMs.
By providing a more effective use of computing power, data, and time, PEFT tackles
these issues. This method works great when it's tough or expensive to gather a lot of
task-specific data. It's also useful when you need a faster and more resource-efficient
way to fine-tune the process. From a technical standpoint, PEFT methods involve
building layers, adding more tokens, and breaking down weight gradients into
specific matrices. This helps learn a minimal set of parameters for the job. [4]

Fig. 2.4: Different types of PEFT algorithms. [5]

PEFT algorithms are grouped into four main types: additive, selective,
reparameterized, and hybrid fine-tuning. Additive fine-tuning introduces new
adjustable modules or parameters using methods like Adapter, Soft Prompt, and other

14

variations. Selective fine-tuning doesn't add new parameters but instead makes a
subset of the existing model parameters adjustable. It uses techniques like
unstructural and structural masking. Trainable low-rank parameters are incorporated
into reparameterized fine-tuning during training and subsequently reintegrated into
the original model for inference. Techniques like low-rank decomposition and LoRA
derivatives are used to achieve this. By combining components from several PEFT
techniques, hybrid fine-tuning builds a single, cohesive model that capitalises on
their combined advantages. These approaches aim to optimize fine-tuning by
modifying the model architecture, selectively tuning parameters, or reparametrization
models in a low-dimensional space.

Fig. 2.5: Parameter-efficient fine-tuning methods taxonomy. [6]

Below here discussed are some common PEFT Techniques.

2.2.1 Pruning

To make the model smaller by removing unnecessary parts, pruning is a powerful
optimization strategy. This technique allows you to directly prune certain parameters
without significantly affecting the effectiveness of the model, as these parameters
don't contribute much to its performance. Pruning offers benefits such as memory
optimization, improved computational efficiency, and better storage efficiency. There
are two basic forms of pruning: Unstructured Pruning, which removes specific
parameters, and Structured Pruning, which preserves the overall network structure
while removing connections or hierarchical structures based on predefined rules.
Researchers have been working on combining pruning methods with Large Language
Models (LLMs) to address the large size and computational costs associated with

15

these models. They have classified their work into organized and unstructured
pruning strategies. [7]

2.2.2 Knowledge Distillation

It is an effective machine learning method for improving model performance and
generalization. Knowledge is transferred from a more sophisticated instructor model
to a more straightforward student model. The primary goal is to transform the teacher
model's vast body of knowledge into a more useful representation, thereby improving
and streamlining it. There are two categories of knowledge distillation: White-box
KD, where the teacher's parameters are accessible, and Black-box KD, where only
the teacher's predictions are available. [8]

2.2.3 Quantization

Quantization is a commonly used technique in model compression to reduce the
computational and storage overhead of deep learning models. Conventional
representation uses floating-point numbers; however, quantization reduces computer
complexity and storage needs by converting them to integers or other discrete forms.
Though quantization entails inherent precision loss, effective implementation can
lead to significant model compression with negligible accuracy damage.
Quantization can be generally classified into two primary approaches: quantization-
aware training (QAT) and post-training quantization (PTQ). When quantization is
used to compress the model is when the main differences are found. Quantization is
used by QAT when the model is being trained or fine-tuned, whereas PTQ quantizes
a model after training. [9]

2.2.4 Low-Rank Factorization (LoRA)

The goal of Low-Rank Factorization, a model compression technique, is to
approximate a weight matrix by splitting it them to smaller matrices that have
dimensions that are noticeably less. A big weight matrix W must be factorised into
two matrices, U and V, so that W ≈ UV. U is a m × k matrix, and V is a k × n matrix,
with k being significantly smaller than m and n. This is the basic idea behind the
process. The number of parameters and processing overhead are significantly
decreased because the product of U and V almost equates to original weight matrix.
[10]

2.2.5 Prompt Tuning (PT)

By using an embedding layer (intra-connectivity) to create token-like embeddings,
prompt tuning (PT) entails concatenating these embeddings to the input embeddings
of the Pre-trained Language Model (PLM) in the workspace. To make these token-
like embeddings more in line with the job goal, fine-tuning is applied. PT inserts
parameters precisely at the embedding layer with respect to modular qualities and
cooperation with the PLM. An inter-connectivity of fixed density is established

16

between the PLM and PT by concatenating token-like embeddings with input
embeddings. [11]

2.2.6 Prefix Tuning (PF)

This method uses two linear layers with a Softmax activation in between, as opposed
to Prompt Tuning. This extends the workspace to incorporate the input embeddings
and the keys and values of the Attention in all Transformer levels, with respect to
modular qualities and cooperation with the Pre-trained Language Model (PLM).
These matrices are concatenated with the PF token-like embeddings produced by this
method (integration form). Through the PLM, PF creates a fixed, dense
interconnectivity for all of its data. [12]

2.2.7 Adapters

Adapters apply intra-connectivity via a feedforward layer, bottlenecking data through
two linear layers with ReLU activation positioned in between that project data down
and then up. With the use of FNN and Attention blocks, adapters create hidden
representations that are inserted sequentially. Adapters combine their findings with
their workspace (Attention and FNN blocks) by direct addition (h + ∆h), which
facilitates cooperation with the Pre-trained Language Model (PLM) and has modular
qualities. Although there are variations such as AdapterDrop, Compacters, and Tiny-
Attention Adapters that can change the amount of insertions or internal connectivity,
they are all integrated using direct addition. Connectors establish fixed, dense
interconnectivity by sending all of their data to their workspace. [13]

2.2.8 Tiny-Attention Adapters

By adding a tiny Attention layer, Tiny-Attention Adapters, a variation of Adapters,
alter intra-connectivity. Tiny-Attention Adapters are comparable to Adapters in terms
of modular qualities and their ability to work with the Pre-trained Language Model
(PLM). They are added one after the other, operate together directly with their
workspace, and take in inputs in the form of concealed representations. Their
insertion into the workspace happens after the Attention block, though, and they
create dynamic interconnectivity by sending information to the workspace only when
it is needed. [14]

2.2.9 Compacters

A type of adapter known as a compacter has a different reparameterization of the
layer W. The representation of W in the conventional Adapter layer is
W Rk×dW Rk×d. On the other hand, Compacters reparameterize W by summing∈ ∈
Kronecker products, where k and d are divisible by a hyperparameter nn that is
defined by the user. In particular, W=∑i=1nAi BiW=∑i=1nAi Bi = nn Kronecker⊗ ⊗
products, where Ai Rn×nAi Rn×n and Bi Rnk×ndBi Rnk×nd. By distributing the∈ ∈ ∈ ∈
weights of AI among its layers, compacters improve parameter efficiency even more.
Compacters are similar to Adapters in terms of their modular characteristics and

17

ability to work with the Pre-trained Language Model (PLM). They function together
with the PLM, utilise direct addition for integration, adhere to a sequential insertion
form, and have the same workspace. [15]

2.2.10 (IA)3

A (IA)3 module is made up of three vectors that resize the Transformer layer's
Attention (keys, values) and FeedForward Network (FFN) blocks. In order to prevent
the module from influencing the Pre-trained Language Model's (PLM) functioning
before it is led by the task's objective gradient, these vectors are initialised to one
during the tuning phase. In order to work with the PLM and include modular
qualities into its workspace, which comprises intermediate FFN , keys & values
across all Transformer levels, (IA)3 employs learned vector rescaling. Sequential
insertion allows it to transmit all of its data to its workspace, creating fixed, dense
interconnectivity. [16]

2.2.11 MHM

Researchers looking at adapter insertion form discovered that sequential adapters did
not perform as well in testing as parallel adapters (PA). On the basis of their study,
they dissected the architecture of the previously stated PEFT techniques and
presented a brand-new approach termed MHM, which combines parallel adapters
with prefix tuning. By parallel insertion of adapters in the FeedForward Network
(FFN) modules in MHM, parallel adapters obtain the same FFN moduls input. On
the other hand, the self-attention layers and FFN modules come before the standard
adapters. PA is used as one of the experimental PEFT approaches as a point of
comparison. [17]

Fig. 2.6: General structure of some common PEFT models. [18]

18

Table 2.3 Structural properties of different PEFT modules [19]

Table 2.4 Efficiency of the different PEFT techniques [19]

where, for each of the following: n = number of tokens for prompt and prefix tuning;
d = input/output dimension of PEFT module; r = rank for LoRA; k = bottleneck
dimension for Adapters; and dm = model dimension. d = dm. T = Input embeddings.
N = Kronecker-products Reduced dimension.

19

2.3 Related Work

The paper [20] investigates the optimal balance of model-size and training-tokens for
LLMs within a computing budget. It finds that current practices focus too much on
increasing model size without proportionally increasing training data, resulting in
under-trained models. According to the study, equal scaling of model size and
training tokens is necessary for optical computing training. Empirical evidence from
training over 400 models shows that many large models, like Gopher and GPT-3, are
not optimally trained. The authors introduced the Chinchilla model, which, with 70
billion parameters and 1.4 trillion tokens, outperformed larger models like Gopher
and GPT-3, achieving a state of the art accuracy on MMLU benchmark. This
indicates that smaller models trained with more data are more efficient and effective,
reducing compute costs for fine-tuning and inference. The paper advocates for
revisiting training practices to adopt these findings for more efficient use of
computational resources and better-performing models.

Fig. 2.7: Overlaid predictions. [20]

Fig. 2.8: Parametric fit. [20]

Parametric modelling of the loss ˆ„ , ” and display contour (left) and isoFLOP𝐿 𝑁 𝐷
slices (right).

20

Below here are some related work which efficiently uses different PEFT Techniques.

Integrating pruning techniques can significantly enhance the efficiency of PEFT
methods. AdapterDrop [21] examines taking adapters out of lower transformer layers
and using multitasking adapters in AdapterFusion [22]. This study finds that pruning
can boost both training & efficiency with only a minor performance impact.
SparseAdapter [23] looks at a variety of pruning techniques and finds that typical
adapters can be outperformed when a high sparsity ratio, like 80%, is used. The
model's capacity and performance are significantly improved by the Large-Sparse
configuration, which doubles the bottleneck dimension while keeping the same
parameter budget (for example, 50% sparsity). SPLoRA [24] uses channel based
pruning on the LoRA weights, affecting both the source weights and the LoRA
parameters. Similarly, LoRAPruning [25] applies structured pruning to both the pre-
trained model-weights and the LoRA weights. LoRAPruning makes weight merging
easier than unstructured pruning of LoRA, which sparsifies the model-weights while
maintaining the density of LoRA weights. Also, utilising the gradients of LoRA, it
presents a new standard to approximate the pretrained weights' gradients, helping to
estimate the importance of weights. ProPETL [26] creates a single-shared prototype,
like an LoRA, prefix or adapter, that is used across different layers & tasks. This
method also develops binary masks pruning various sub-networks for different layers
& tasks, significantly improving parameter efficiency by allowing parameters to be
reused across layers and tasks.

Quantization is a popular technique to boost computational efficiency and cut down
on memory usage. For example, BI-Adapter [27] takes advantage of adapters'
resilience to noise in the parameter space and introduces a clustering-based
quantization method. This approach achieves impressive results by quantizing
adapters to just 1-bit precision, which drastically reduces storage needs while still
delivering top-notch performance compared to other precision settings. PEQA [27]
uses a two-stage process for fine-tuning that is both parameter efficient and & aware
of quantization. The first step involves quantizing the FFN weight matrix that has
been pre-trained. In the second stage, only specific parameters are fine-tuned, which
keeps both memory and parameter use in check. QLoRA [28] unveils a number of
innovative methods, including as 4-bit Paged Optimizers, Double Quantization &
NormalFloat, that enable the optimisation of a large 65B language model with 4-bit
quantization on a single 48GB GPU. This method maintains performance on par with
full 16-bit fine-tuning. LoftQ [29] offers a framework for better initializing quantized
backbone weights and LoRA weights, tackling quantization issues through
optimization during network initialization. LQ-LoRA [30] employs an iterative
approach to apply integer linear programming for dynamic quantization settings and
breaks down weights, drawing inspiration from robust principal components
analysis. QA-LoRA [31] builds on QLoRA by allowing quantization during the
inference stage with INT4 quantization and group-wise operators, which boosts both
efficiency and accuracy. Finally, BitDelta [32] presents a quantization method of 1
bit post training that focuses on weight differences between finetuned & pretrained
models. This method simplifies deployment by using a single full precision base
model along with 1-bit deltas that are efficiently batched.

21

Several methods have been developed to reduce memory utilisation during fine-
tuning of large language models (LLMs) by minimising the requirement for caching
gradients across the LLM. For example, Side-Tuning [33] & Ladder-Side Tuning
(LST) [34] present a network branch that learns & operates in tandem with the
primary model. These techniques greatly reduce the amount of memory needed
during training by channelling backpropagation only through this parallel branch,
removing the need to maintain gradient information for the weights of the main
model. In a similar way, Res-Tuning [35] separates PEFT tuners (such as prompt
tuning and adapters) from the main model. Expanding on this, Res-Tuning-Bypass
creates a parallel bypass network that removes the data-flow induced in the
decoupled tuners to main model, thus eliminating the need of gradient caching during
backpropagation in the main model. MEFT [36] takes inspiration from reversible
models [37], where intermediate activations aren't cached during the forward pass
but are recalculated during backpropagation. Without more pretraining, MEFT
investigates how to transform an LLM into its reversible counterpart. In order to
guarantee that the fine-tuning performance is comparable to complete fine-tuning
methods, a crucial step in this procedure is meticulously initialising newly added
parameters in the pretrained models to preserve the original starting point. Three
techniques are presented by MEFT to drastically lower the amount of memory
required to store activations. LoRA-FA [38] tackles the memory overhead issue in
LoRA fine-tuning, where high activation memory consumption is required during
backpropagation. To solve this, LoRA-FA updates only the projection-up weights,
leaving pretrained weights & projection-down weights frozen. This approach
removes the need to store input activations, as the intermediate activation is
sufficient for gradient computation, thus greatly reducing memory requirements. In
order to further reduce memory consumption during fine-tuning, certain techniques
completely prevent backpropagation inside LLMs. HyperTuning [39] uses a
HyperModel to create PEFT parameters from a small number of examples, yielding
outcomes comparable to full model fine-tuning. PEFT Plug-in [40] first trains PEFT
modules on smaller language models, which is more memory-efficient, and then
integrates these trained modules into LLMs during inference. This technique saves a
significant amount of memory by avoiding the requirement for gradient-based
optimisation on larger models. It's crucial to remember that HyperModel and PEFT
Plug-in both need further model training, which has its own expenses. MeZO [41]
presents a memory efficient zeroth-order (ZO) optimizer for training LLMs,
bypassing conventional backpropagation for gradient computation and instead using
only forward passes. In order to minimise memory consumption during inference,
MeZO implements an in-place solution for the traditional ZO gradient estimator and
uses it to compute gradients. With this method, LLMs with up to 30 billion
parameters may be fine-tuned efficiently on a single 80GB GPU, all while keeping
performance close to that of backpropagation based finetuning techniques.
Additionally, it substantially reduces storage demands compared to methods like
LoRA and Adapter.

Some more experimental works are stated below.

22

Table 2.5 Comparing FLAN-T5 across data splits, gauging ROUGE-L for E2E
NLG/SAMSum and AG News/CoLA accuracy in measurements. [42]

Interestingly, most Parameter Efficient Fine Tuning (PEFT) algorithms show faster
convergence with increased data. According to the hypothesis, PEFT approaches
learn unstably at low data amounts, while full-tuning learns and overfits quickly to
the small datasets. On the other hand, PEFT techniques show more stability and an
improved capacity to understand the underlying data structure at larger data sizes.
The benchmarking results here are inconsistent, with no particular PEFT approach
emerging as the top performer. On the other hand, there exists a clear distinction
between PEFT & full-tuning based on the amount of accessible data.

Table 2.6 Different PEFT performance for SER. [43]

Here, Adapter Tuning, Parallel Adapter Tuning, & Embedding Prompt methods
perform worse compared to direct downstream classification models with the
Whisper model, with parallel adapter being the least effective. However, these
methods improve emotion recognition for Wav2Vec 2.0 Base & WavLM Base+.
LoRa enhances SER performance for WavLM Base+ & Wav2Vec 2.0 Base but may
underperform with Whisper models, likely due to positional embeddings. LoRa here
achieves best finetuning performance for WavLM Base+ with an average UAR of
67.3% across four datasets.

23

Table 2.7 RoBERTa-large (RoBL) and RoBERTa-base (RoBB) model optimisation
using the GLUE benchmark, providing the Pearson/Spearman correlation for STS-B,
accuracy/F1 score for MRPC and QQP, averaged matched accuracy for MNLI, and
accuracy for other NLU tasks, as well as the Matthews correlation for COLA. [44]

Above PEFT methods effectively reduce trainable parameters while often matching
or exceeding full finetuning performance on GLUE benchmark. And for RoBERTa-
base, methods like BitFit, sequential adapter, Child-TuningD, MAM adapter, LoRA,
and ProPELTAdapter outperform full fine-tuning, whereas others like prompt-tuning
and prefix-tuning generally underperform. A similar trend is observed for RoBERTa-
large, with ProPELTLoRA also performing well. ProPELTAdapter, using only 1.50%
of the trainable parameters with AdapterFusion, achieves the best overall
performance. MAM Adapter combines parallel adapters & prefix-tuning for better
results but requires more parameters. Sequential adapter, while parameter-intensive,
performs exceptionally well. Prompt-tuning, despite using the fewest parameters,
delivers the poorest performance. Child-TuningD performs well with RoBERTa-base
but struggles with RoBERTa-large on specific tasks, likely due to learning rate
issues.

24

Table 2.8 PEFT techniques on RoBERTa-large. [45]

The results on RoBERTa-large across 13 NLU tasks with 5 randomly sampled splits
reveal Dynamic-UPL outperforming all other methods, achieving new state of the art
results for few-shot learning. Dynamic-UPL improves performance compared to
Prefix tuning and IDPT, especially on SST-5, TREC and RTE datasets, with fewer
model parameters tuned. It also surpasses Adapter, LoRA, and BitFit across most
tasks, requiring only about 0.1% of parameters. Compared to LM-BFF, a prompt
based finetuning method, Dynamic-UPL achieves similar or better results on 7
datasets with significantly fewer parameters. These findings highlight Dynamic-
UPL's superior generalization and efficiency in few-shot learning settings.

25

Table 2.9 PEFT Techniques performance on datasets [46]

The study finds that parameter-efficient models generally outperform the FullTuning
model, aligning with prior research and supporting theoretical analysis on their
superior generalization capabilities. These models also demonstrate greater stability
compared to the FullTuning model, corroborating theoretical stability analysis.
Interestingly, even the Random model surpasses the FullTuning model, indicating
that sparsity enhances performance. Additionally, the proposed SAM model
outperforms several baseline models across various tasks, ranking among the top
three in most evaluations.

Table 2.10 Training time (in hour) analysis [46]

Adapter and LoRA models outperform the FullTuning model by tuning only a few
new parameters, while other parameter-efficient models take more time due to the
use of masks. The SAM model, despite needing masks, outperforms most models
except Adapter and LoRA due to faster convergence. These parameter-efficient
models, though slower to train, require less storage space, which is advantageous for
handling multiple downstream tasks.

26

Table 2.11 SURE benchmark on pre-trained Wav2Vec 2.0. [47]

Here, Parameter-efficient approaches in speech processing tasks perform on par with
or better than thorough fine-tuning, particularly excelling on the Emotional Speech
Dataset (ESD) and demonstrating effectiveness in speaker recognition (SR) tasks.
Notably, the proposed ConvAdapter achieves significant parameter reduction,
utilizing only 0.94% of trainable parameters of fine-tuning. While slightly trailing
other adapters in performance, it presents a promising alternative for efficient
transfer learning. Combining ConvAdapter with other methods like prefix fine-
tuning or LoRA could further enhance results, particularly in challenging datasets
like MELD.

Table 2.12 Performance of different methods in the SUPERB benchmark. [48]

Efficient methods generally outshine Baseline and full fine-tuning (FT), particularly
in recognition and speaker tasks like ASR, PR, SD, and SID. Houlsby notably
improves SID accuracy by 23% compared to Baseline and maintains consistently
high performance due to its larger parameter size. However, LoRA performs poorly,
even worse than Baseline in some tasks. Weighted-sum stands out for its
effectiveness, achieving comparable performance to more complex methods with
minimal additional parameters, as shown in the SUPERB benchmark for speech
tasks.

27

Table 2.13 Project-specific code summary task on the Bleu-4 Scores. [18]

In this case, CodeT5 models were trained on one project dataset using the full
finetuning and PEFT approaches, and their performance was assessed on a different
project dataset. Full fine-tuning frequently performed better than PEFT techniques in
project-specific code summarization tasks; optimal performance was attained when
models were fine-tuned and assessed on the same dataset. However, PEFT methods
showed better results in cross-project scenarios, with relative improvements when
fine-tuning on one dataset and testing on others. This suggests that while preserving
outcomes that are comparable to comprehensive fine-tuning, PEFT approaches
improve the model's transferability between projects. The potential of PEFT
approaches to improve transfer learning capacity by utilising frozen pre-trained
parameters may account for their higher performance in certain settings. Without any
fine-tuning, direct inference on the pre-trained CodeT5 model could not produce
sufficient evaluation performance, indicating the necessity of adjusting in some way.

28

CHAPTER 3 - METHODOLOGY

3.1 Pre-Training Objectives

The pre-training goals of LLMs are explained in this section.

1. Full Language Modeling:
 - An autoregressive language modelling goal in which the model's job is to forecast
tokens in the future based on tokens in the past.

2. Prefix Language Modeling:
 - A non-causal training goal in which the loss is determined solely by using the
target tokens that are still there after a randomly selected prefix.

3. Masked Language Modeling:
 - Tokens or spans (a series of tokens) are randomly masked in this training
objective, and the model's job is to forecast masked tokens based on the context of
the past and future.

4. Unified Language Modeling:
 - It combines non-causal, masked, & causal language-training goals. In the context
of masked language modelling, Instead of being bilateral, attention is either focused
from left to right or from right to left.

Fig. 3.1: An example of language model training objectives. [49]

29

3.2 Distributed LLM Training

1. Data Parallelism:
 - This technique duplicates the model across several devices, dividing a batch of
data across them. All of the devices' weights are synchronised at the conclusion of
each training cycle.

2. Tensor Parallelism:
 - Tensor computations are split up among several devices using tensor parallelism.
It is sometimes referred to as intra-layer model parallelism or horizontal parallelism.

3. Pipeline Parallelism:
 - This technique divides up model layers among various devices. Another name for
this is vertical parallelism.

4. Model Parallelism:
 - It combines elements of pipeline and tensor parallelism.

5. 3D Parallelism:
 - It is a combination of tensor, model, and data parallelism.

6. Optimizer Parallelism:
 - It lowers communication costs and memory use by gradient partitioning,
parameter partitioning, and optimizer state partitioning among devices. It is also
referred to as zero redundancy optimizer.

3.3 Model Adaptation

This section gives a summary of the important phases involved in adapting LLMs,
from pretraining going to finetuning for specific tasks, and how they are utilized.
When we mention alignment-tuning, we're referring to aligning with human
preferences, although the term can have different meanings in other contexts.

1. Pre-Training:

Initially, the model undergoes self-supervised training on a vast dataset to predict
subsequent tokens based on the given input. LLMs come in different architectures,
including encoder decoder & decoder only models, with various building blocks &
loss functions.

2. Fine-Tuning:

Fine-tuning LLMs can be approached in different ways:

30

- Transfer Learning: While pretrained LLMs perform well on many tasks, fine-tuning
with task-specific data can further enhance performance for a specific downstream
task.

- Instruction-Tuning: This involves finetuning the pretrained model using data
formatted as instructions paired with input-output examples. These instructions
typically cover multiple natural language tasks, guiding model response
appropriately to different prompts. Task performance and zero-shot generalisation are
enhanced by this approach.

- Alignment-tuning: To mitigate issues like generating false, biased, or harmful
content, LLMs are aligned using human feedback. This involves updating the model
to avoid undesirable responses, ensuring it remains helpful, honest, and harmless
(HHH). Techniques like reinforcement learning with human feedback (RLHF) are
employed, where a model initially fine-tuned on demonstrations is further trained
using reward modeling and reinforcement learning.

- Parameter-Efficient Tuning: Given the substantial memory and computing
requirements for training LLMs, researchers have developed techniques to fine-tune
models more efficiently by updating only a few parameters or adding new ones.

3. Prompting/Utilization:

One method of asking trained LLMs to produce answers is called prompting.
Different prompt styles can be used to prompt LLMs; sometimes they will adapt to
instructions without requiring additional fine-tuning, and other times they will
require fine-tuning based on data comprising multiple prompt styles.

- Zero-Shot Prompting: This method enables LLMs to answer questions they have
never seen before, without requiring examples in the prompt.

- In-context Learning: Often called "few-shot learning," this technique entails
displaying multiple input-output pairings to the model in order to elicit the intended
response.

- Reasoning in LLMs: LLMs can handle task planning, logical problems, and critical
thinking through reasoning, which can be enhanced by various prompting styles or
training on reasoning datasets.

- Chain-of-Thought (CoT): In this method, prompts include reasoning steps along
with inputs-outputs, enabling the model to produce results with step-by-step
reasoning.

- Self-Consistency: This improves CoT via generating multiple-response and
selecting most frequent one.

- Tree-of-Thought (ToT): This approach explores multiple-reasoning paths, allowing
for forward-looking and backtracking in problem-solving.

31

- Single-Turn Instructions: Here, LLMs are questioned once with all relevant data,
and they can produce answers in a few-shot or zero-shot scenario by comprehending
the context.

- Multi-Turn Instructions: For complex tasks requiring multiple interactions,
feedback & responses using other tools as inputs for subsequent rounds with the
LLM, commonly used in autonomous agents.

Fig. 3.2: Standard data pre-processing workflow for LLMs pre-training. [50]

Fig. 3.3: Simple flowchart showcasing several phases of LLMs. [2]

32

3.4 Model selection and deployment guidelines

If you want to make the most of Language Models (LLMs) for NLP tasks and
improve your applications and systems, just follow these steps:

1. Figure out the Task:
 - Decide which specific NLP task you want the LLM to handle first. Anything from
text categorization and sentiment analysis to text production or question-answering
could be included.

2. Pick the Right Model:
 - Select a pretrained LLM based on the needs of your assignment. Think about
models such as RoBERTa, BERT, or GPT-3, each with pros and cons of their own.

3. Customize the Model:
 - It's now time to adapt the chosen pre-trained model to your particular assignment.
Adjust it using your personal dataset. To achieve the best results, change variables
like epochs, batch size, & learning rate.

4. Evaluate the Model:
 - Test performance on fine-tuned model on a separate dataset. Use metrics like
precision, recall, accuracy, and F1 score to see how well it's doing. This helps ensure
effective task performance and lets you identifying improvement areas.

5. Get the Model in Action:
 - Include the optimised model in your system or application. Make it available via
a user interface or an API. When it's in production, don't forget to use logging and
monitoring to track its performance.

6. Keep an Eye on the Model:
 - Keep a close watch on how the model performs in production. If necessary,
retrain it based on its performance. Regularly evaluate its performance and adjust
parameters or train it on new data if its performance starts to decline.

7. Keep Improving the Model:
 - Gather feedback from users to enhance the model's performance. Keep the model
updated with fresh data to ensure it stays relevant and aligned with the ever-evolving
needs and trends.

33

3.5 Ethical guidelines

To make sure we develop and use Language and Learning Models (LLMs)
responsibly, with a focus on user privacy, fairness, ethics, transparency, competition,
collaboration, and environmental impact, here are some guidelines. By adhering to
these guidelines, LLMs can minimise any possible negative impacts while still
making a good contribution to society.

1. Protect User Privacy:
 - Keep user privacy a priority by implementing practices like minimizing data
collection, anonymizing user content, and using encryption to secure user-generated
data.

2. Reduce Bias:
 - Actively seek out and reduce biases in LLMs through the use of inclusive and
varied training data, methods for detecting bias, and comprehensive evaluation
metrics.

3. Address Ethical Considerations:
 - Take into account the potential for LLMs to be used in harmful ways and focus on
developing models that benefit society. Build models with accountability,
transparency, and responsibility in mind.

4. Enhance Transparency:
 - Improve the transparency and explainability of LLMs by using techniques like
attention mechanisms & model interpretation tools. This will help users trust the
system.

5. Encourage Competition:
 - Encourage cooperation between government, business, and academics to prevent
monopolisation of LLM development and implementation. This encourages
creativity and sensible use.

6. Foster Collaboration:
 - By sharing research findings and best practices, and by opening-sourcing models,
you can foster collaboration between researchers, developers, and industry.

7. Minimize Environmental Impact:
 - In order to lessen the environmental impact of LLMs, try to develop more energy-
efficient models and investigate alternate training strategies.

8. Consider Optimization Implications:
 - Be aware that optimizing LLMs could perpetuate inequalities & introduce new
exploitation forms. Carefully consider these ethical implications during development
and deployment.

34

3.6 Metrics

When it comes to evaluating how well LLMs (Language Models) perform, there are
various metrics that we can use. These metrics give us different insights into their
efficiency. To get a comprehensive understanding of an LLM, we often look at
metrics like accuracy and zero-shot ability alongside others.

1. Number of Parameters:
 - The total number of variables or learnable weights that the LLM must optimise
during training is indicated by this measure. Parameters are like the weights in the
connections between neurons or attention layers. Generally, if there are more
parameters, the LLM becomes more expressive. But keep in mind, having more
parameters also means you'll need more computational resources and memory for
both training and inference.

2. Model Size:
 - This is the amount of memory or disc space needed by the LLM to hold all of its
components, including weights and biases. The model size is closely related to the
number of parameters. Usually, more parameters mean a larger model size. However,
the type of data used to represent parameters and the model architecture can also
affect the overall size.

3. Compression Ratio:
 - The ratio of the uncompressed LLM's initial size to its compressed size is
provided by this measure. A higher compression ratio means that the LLM has been
compressed more efficiently. In other words, it has been significantly reduced in size
while still maintaining its functionality and performance.

4. Inference Time:
 - This is a measurement of how long it takes the LLM to analyse and provide
replies for input data during inference; it is also referred to as latency. Inference time
is crucial for real-world applications where the LLM needs to respond to user queries
or process large amounts of data in real-time.

5. Floating Point Operations (FLOPs):
 - This metric tells us the number of arithmetic operations involving floating-point
numbers (usually 32-bit or 16-bit) that the LLM performs when processing input
data. FLOPs give us an idea of the computational requirements of an LLM and allow
us to compare the efficiency between different LLMs or compression techniques.

35

3.7 Best Practices

To improve your work it is best to follow these practices:

1. Explicit Reporting of Parameter Counts:
- Authors should clearly specify the type of parameter count (trainable, changed,

rank) in their papers, ideally reporting all of them. This will enhance understanding
and enable more accurate comparisons between methods.

2. Evaluation with Different Model Sizes:
- Methods should be assessed using various model sizes providing comprehensive

understanding to their strengths and limitations. This is especially important as many
studies focus primarily on BERT.

3. Comparisons to Similar Methods:
- In addition to comparing new methods with popular approaches (e.g., LoRa,

BitFit, Adapters), it is crucial to compare them with other conceptually and
architecturally similar techniques. This will offer a more thorough understanding of a
method's performance and its relative strengths.

4. Standardized PEFT Benchmarks and Competitions:
- Developing standardized benchmarks and competitions will allow participants

to compete under the same conditions, facilitating direct comparisons. These
benchmarks should provide standardized data and models at different scales and
include a standardized way to evaluate GPU memory consumption.

5. Emphasis on Code Clarity and Minimal Implementations:
- The community should prioritize easy-to-understand code with simple, reusable

implementations. Such clarity not only aids understanding but also increases the
likelihood of methods being adopted and cited by other researchers.

36

CHAPTER 4 – EXPERIMENTAL ANALYSIS

4.1 Need for Model Compression Methods

As you can see that when training the model it runs out of memory as the model is
too big for the hardware to support.

So we use can use different PEFT methods to train it.

e.g. above we have used LORA for model compression.
It brings down the trainable parameter down to only 0.71% which drastically reduces
the memory needed to train the model.

37

4.2 Text Generation

Below are the snapshots of the training steps & the result.
As a model was trained on a very small subset of data, due to low resources thus it
does not gives a good enough convergence rate & result but is enough for generating
text.

38

4.3 Text Summarization

Below are the snapshots of the training steps & the result.

39

4.4 Analysis & Result

As shown in above code snapshots, all three components are properly working.

The result here shows how PEFT model performed better than the original model
with minimal computation resources.

4.5 Hardware & Libraries Used

 • Graphic Card : NVIDIA GeForce RTX 3050 4GB VRAM

 • Libraries : tensorflow, tflearn, torch, nltk, transformers, evaluate.

 • LLM : flan-t5-base

 • PEFT Technique : LoRA

40

CHAPTER 5 - CONCLUSION

5.1 Challenges for LLMs

LLMs like GPT-4 have made great strides in natural language processing, but they
also come with their fair share of challenges. Let's take a closer look:

1. Computational Cost: Training LLMs requires a massive amount of computational
resources, which can drive up costs and raise concerns about the environmental
impact.

2. Bias and Fairness: Due to LLMs' ability to detect and even magnify biases in their
training data, there are ethical concerns that must be addressed.

3. Overfitting: LLMs can sometimes get too caught up in the specific examples they
were trained on, resulting in illogical responses. Striking the right balance between
memorization and generalization is crucial.

4. Economic and Research Inequality: The high costs associated with LLM
development can create a situation where only well-funded organizations can
participate, exacerbating existing inequalities.

5. Reasoning and Planning: LLMs struggle when it comes to tasks that require
reasoning and planning, often falling short in common-sense scenarios.

6. Hallucinations: LLMs have the tendency to generate responses that may sound
plausible but are actually incorrect or inconsistent.

7. Prompt Engineering: Designing effective prompts is essential as it greatly
influences the quality of the LLM's outputs.

8. Limited Knowledge: Pre-trained information can become outdated, and retraining
can be quite costly. Augmenting retrieval techniques can help, but it requires some
adaptation.

9. Safety and Controllability: Ensuring that LLMs do not produce harmful or
inappropriate content is a significant concern that needs to be addressed.

10. Multi-Modality: Integrating diverse data like text, images, and videos presents
challenges in aligning the data and increasing the computational demands.

11. Catastrophic Forgetting: Fine-tuning LLMs can sometimes cause them to forget
previously learned information, which can be problematic.

41

12. Adversarial Robustness: LLMs are vulnerable to adversarial attacks, which
highlights the need for robust evaluation tools, especially in safety-critical
applications.

13. Interpretability and Explainability: It might be challenging to comprehend LLMs'
decision-making processes since they frequently function like "black boxes." Trust
and acceptance may be impacted by this lack of transparency.

14. Privacy Concerns: Using LLMs raises concerns about data privacy and the
potential for extracting sensitive information from the models.

15. Real-Time Processing: The high computational demands of LLMs can hinder
their ability to process information in real-time, particularly in mobile and edge
computing environments.

16. Long-Term Dependencies: LLMs struggle with maintaining context during long
or multi-turn conversations, which can affect the overall coherence of their
responses.

17. Hardware Acceleration: The increasing size of LLMs is surpassing the
capabilities of existing hardware, making model inference costly. We need
advancements in hardware and model quantization to address this issue.

18. Regulatory and Ethical Frameworks: To control the social and ethical
ramifications of LLMs, regulatory monitoring and ethical frameworks must be
established.

5.2 Recommendations for Optimal Performance of LLMs

LLMs, such as GPT-4, are super effective at a bunch of different tasks because they
know a ton and can learn like champs. To get the most out of these models, there are
a few strategies you should keep in mind:

- Go for the Fancy Architecture: One of the most sophisticated language models
available at the moment is GPT-4. It's really good at generating content that actually
makes sense, so it's a top choice for all sorts of tasks.

- Give Detailed Prompts with Task Context and Relevant Info: How well LLMs
perform depends a lot on how clear and specific your input prompts are. If you
provide lots of details about the task and relevant info, it'll help the model understand
what it needs to do and give more accurate responses.

- Include Relevant Info in Your Prompts: If you want the model to give precise and
focused responses, throw in some extra relevant info in your prompts. In particular,

42

with tasks requiring specialised expertise, such as medical or coding, the output can
be improved by include pertinent information and instructions in the prompt.

- Try Different Prompt Techniques: Given the complexity and unpredictability of
LLMs, it is worthwhile to experiment with various prompt strategies in order to
improve performance. You may try asking leading questions, providing more detailed
instructions, "double-quoting keywords," or presenting the information in a different
way. Who knows, maybe you'll achieve even greater outcomes!

5.3 PEFT Technique Selection

Because prompt tuning makes use of the embedding layer—which has sufficient
contextual information after navigating the frozen language model layers—it is
perfect for applications like Named Entity Recognition. This indicates that the
assignment can be completed by concentrating only on the embeddings. In addition,
Prompt Tuning is an effective choice that works well even with a small computation
budget because it requires very few parameters and has a straightforward layer
structure O(1) complexity.

LoRA works well for activities involving answering questions. It assists the model in
determining the connections between words and phrases in the inquiry and the
response by working on the attention queries and values. The efficacy of LoRA is
supported by its impressive results in multiple-choice quality assurance assignments.
The model utilises critical information more effectively thanks to the configurable
scaling integration. Subsequent to the Transformer attention block, Tiny-Attention
Adapters have the potential to enhance attention even more, as well as the calibre of
hidden representations.

For tasks like Data-to-Text and Summarization, both LoRA and Prefix Tuning can be
effective. Research by [12],[16],[51],[52] shows that these techniques offer similar
performance, but the choice depends on your computational resources. LoRA, with
its fewer parameters and better layer efficiency, tends to be more efficient. These
findings are supported by their characteristics in PEFT-Ref. Although Adapters
perform well in generation tasks, research by [51] suggests they have lower
faithfulness scores comparing to full finetuning and Prefix Tuning. This is because
Adapters use both the feed-forward and attention blocks. [53] discovered that there is
a lot of redundancy in the feed-forward block, and altering it can make generating
jobs less faithful.

In summary, the ideal PEFT technique depends on complexity of your task. For tasks
requiring complex reasoning [54], techniques using attention modules are
recommended. For tasks involving the addition of new concepts, feed-forward
modules can be used to store new knowledge [55] (Dai et al., 2022). For simpler
tasks, adding task-specific information through the embedding layer is sufficient.

43

5.4 Conclusion

Although recent advancements have made it possible to train larger models, we must
stress the necessity to scale datasets responsibly while putting an emphasis on high-
quality data. Only high-quality data that has been carefully collected and managed
can benefit from scaling to larger datasets. Accurate language modelling and
subsequent tasks depend on a correct train-test set separation. Furthermore, because
massive web-scraped datasets may contain harmful language, prejudices, and private
information, training on billions of tokens presents ethical and privacy issues.
Comprehensive dataset introspection becomes more crucial as datasets get larger in
order to solve these problems.

Furthermore, we see that, on our baselines, PEFT approaches outperform fully
supervised fine-tuning in general at low- to medium-resource levels, but they
converge more slowly. Furthermore, we find that downstream performance is
significantly impacted by changes in attention levels and the choice of later layers.

By this study we hope that it can help in the better understanding & choice of these
techniques to help in your work. To further enhance performance and tackle the
difficulties associated with large-scale data management, future studies should
investigate the integration of several PEFT techniques.

44

REFERENCES

[1]........“A Survey on Evaluation of Large Language Models | ACM Transactions on
Intelligent Systems and Technology.” Accessed: May 26, 2024. [Online]. Available:
https://dl.acm.org/doi/full/10.1145/3641289?casa_token=_vcfJs0OIJIAAAAA
%3AtAyFrOuSVhHe9LoK7kR5qBLsIetEAoyweibBjHMPMgSN47C_5mVLTatMK
DuqIQvkyPPR9SsRucHb_qo
[2]........H. Naveed et al., “A Comprehensive Overview of Large Language Models.”
arXiv, Apr. 09, 2024. doi: 10.48550/arXiv.2307.06435.
[3].........S. Pahune and M. Chandrasekharan, “Several categories of Large Language
Models (LLMs): A Short Survey,” IJRASET, vol. 11, no. 7, pp. 615–633, Jul. 2023,
doi: 10.22214/ijraset.2023.54677.
[4].....M. Weyssow, X. Zhou, K. Kim, D. Lo, and H. Sahraoui, “Exploring Parameter-
Efficient Fine-Tuning Techniques for Code Generation with Large Language
Models.” arXiv, Jan. 18, 2024. doi: 10.48550/arXiv.2308.10462.
[5]........Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang, “Parameter-Efficient Fine-
Tuning for Large Models: A Comprehensive Survey.” arXiv, Apr. 29, 2024. doi:
10.48550/arXiv.2403.14608.
[6] V. Lialin, V. Deshpande, and A. Rumshisky, “Scaling Down to Scale Up: A Guide
to Parameter-Efficient Fine-Tuning.” arXiv, Mar. 27, 2023. doi:
10.48550/arXiv.2303.15647.
[7]. . .Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML for Model
Compression and Acceleration on Mobile Devices,” presented at the Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 784–800.
Accessed: May 25, 2024. [Online]. Available:
https://openaccess.thecvf.com/content_ECCV_2018/html/Yihui_He_AMC_Automat
ed_Model_ECCV_2018_paper.html
[8]. .F. Tung and G. Mori, “Similarity-Preserving Knowledge Distillation,” presented
at the Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 1365–1374. Accessed: May 25, 2024. [Online]. Available:
https://openaccess.thecvf.com/content_ICCV_2019/html/Tung_Similarity-
Preserving_Knowledge_Distillation_ICCV_2019_paper.html
[9]..........A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A
Survey of Quantization Methods for Efficient Neural Network Inference,” in Low-
Power Computer Vision, Chapman and Hall/CRC, 2022.
[10] D. Yin, Y. Yang, Z. Wang, H. Yu, K. Wei, and X. Sun, “1% VS 100%: Parameter-
Efficient Low Rank Adapter for Dense Predictions,” presented at the Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp.
20116–20126. Accessed: May 25, 2024. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2023/html/Yin_1_VS_100_Parameter-
Efficient_Low_Rank_Adapter_for_Dense_Predictions_CVPR_2023_paper.html
[11]........B. Lester, R. Al-Rfou, and N. Constant, “The Power of Scale for Parameter-
Efficient Prompt Tuning.” arXiv, Sep. 02, 2021. doi: 10.48550/arXiv.2104.08691.
[12].........X. L. Li and P. Liang, “Prefix-Tuning: Optimizing Continuous Prompts for
Generation.” arXiv, Jan. 01, 2021. doi: 10.48550/arXiv.2101.00190.

45

[13]................N. Houlsby et al., “Parameter-Efficient Transfer Learning for NLP,” in
Proceedings of the 36th International Conference on Machine Learning, PMLR,
May 2019, pp. 2790–2799. Accessed: May 25, 2024. [Online]. Available:
https://proceedings.mlr.press/v97/houlsby19a.html
[14].........H. Zhao, H. Tan, and H. Mei, “Tiny-Attention Adapter: Contexts Are More
Important Than the Number of Parameters.” arXiv, Oct. 18, 2022. doi:
10.48550/arXiv.2211.01979.
[15]....R. Karimi Mahabadi, J. Henderson, and S. Ruder, “Compacter: Efficient Low-
Rank Hypercomplex Adapter Layers,” in Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2021, pp. 1022–1035. Accessed: May 26, 2024.
[Online]. Available:
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-
Abstract.html
[16]. H. Liu et al., “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper
than In-Context Learning,” Advances in Neural Information Processing Systems, vol.
35, pp. 1950–1965, Dec. 2022.
[17].J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “Towards a Unified
View of Parameter-Efficient Transfer Learning.” arXiv, Feb. 02, 2022. doi:
10.48550/arXiv.2110.04366.
[18].. . .J. Liu, C. Sha, and X. Peng, “An Empirical Study of Parameter-Efficient Fine-
Tuning Methods for Pre-Trained Code Models,” in 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Sep. 2023, pp.
397–408. doi: 10.1109/ASE56229.2023.00125.
[19]..........M. Sabry and A. Belz, “PEFT-Ref: A Modular Reference Architecture and
Typology for Parameter-Efficient Finetuning Techniques.” arXiv, Oct. 19, 2023. doi:
10.48550/arXiv.2304.12410.
[20]J. Hoffmann et al., “Training Compute-Optimal Large Language Models.” arXiv,
Mar. 29, 2022. doi: 10.48550/arXiv.2203.15556.
[21].A. Rücklé et al., “AdapterDrop: On the Efficiency of Adapters in Transformers.”
arXiv, Oct. 05, 2021. doi: 10.48550/arXiv.2010.11918.
[22]......J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych, “AdapterFusion:
Non-Destructive Task Composition for Transfer Learning.” arXiv, Jan. 26, 2021. doi:
10.48550/arXiv.2005.00247.
[23]..........S. He, L. Ding, D. Dong, M. Zhang, and D. Tao, “SparseAdapter: An Easy
Approach for Improving the Parameter-Efficiency of Adapters.” arXiv, Nov. 10,
2022. doi: 10.48550/arXiv.2210.04284.
[24]..L. Hedegaard, A. Alok, J. Jose, and A. Iosifidis, “Structured Pruning Adapters.”
arXiv, Feb. 02, 2023. doi: 10.48550/arXiv.2211.10155.
[25].....M. Zhang et al., “LoRAPrune: Pruning Meets Low-Rank Parameter-Efficient
Fine-Tuning.” arXiv, Oct. 03, 2023. doi: 10.48550/arXiv.2305.18403.
[26]........G. Zeng, P. Zhang, and W. Lu, “One Network, Many Masks: Towards More
Parameter-Efficient Transfer Learning.” arXiv, Jun. 11, 2023. doi:
10.48550/arXiv.2305.17682.
[27]............S. Jie, H. Wang, and Z.-H. Deng, “Revisiting the Parameter Efficiency of
Adapters from the Perspective of Precision Redundancy,” presented at the
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023,
pp. 17217–17226. Accessed: May 27, 2024. [Online]. Available:

46

https://openaccess.thecvf.com/content/ICCV2023/html/Jie_Revisiting_the_Paramete
r_Efficiency_of_Adapters_from_the_Perspective_of_ICCV_2023_paper.html
[28]...T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLoRA: Efficient
Finetuning of Quantized LLMs,” Advances in Neural Information Processing
Systems, vol. 36, pp. 10088–10115, Dec. 2023.
[29] Y. Li et al., “LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language
Models.” arXiv, Nov. 28, 2023. doi: 10.48550/arXiv.2310.08659.
[30]..........H. Guo, P. Greengard, E. P. Xing, and Y. Kim, “LQ-LoRA: Low-rank Plus
Quantized Matrix Decomposition for Efficient Language Model Finetuning.” arXiv,
Jan. 17, 2024. doi: 10.48550/arXiv.2311.12023.
[31]....Y. Xu et al., “QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large
Language Models.” arXiv, Oct. 09, 2023. doi: 10.48550/arXiv.2309.14717.
[32].....J. Liu et al., “BitDelta: Your Fine-Tune May Only Be Worth One Bit.” arXiv,
Feb. 27, 2024. doi: 10.48550/arXiv.2402.10193.
[33]J. O. Zhang, A. Sax, A. Zamir, L. Guibas, and J. Malik, “Side-Tuning: A Baseline
for Network Adaptation via Additive Side Networks,” in Computer Vision – ECCV
2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., Cham: Springer
International Publishing, 2020, pp. 698–714. doi: 10.1007/978-3-030-58580-8_41.
[34] Y.-L. Sung, J. Cho, and M. Bansal, “LST: Ladder Side-Tuning for Parameter and
Memory Efficient Transfer Learning,” Advances in Neural Information Processing
Systems, vol. 35, pp. 12991–13005, Dec. 2022.
[35]..........Z. Jiang et al., “Res-Tuning: A Flexible and Efficient Tuning Paradigm via
Unbinding Tuner from Backbone,” Advances in Neural Information Processing
Systems, vol. 36, pp. 42689–42716, Dec. 2023.
[36]..........B. Liao, S. Tan, and C. Monz, “Make Pre-trained Model Reversible: From
Parameter to Memory Efficient Fine-Tuning.” arXiv, Oct. 19, 2023. doi:
10.48550/arXiv.2306.00477.
[37]. .A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The Reversible Residual
Network: Backpropagation Without Storing Activations,” in Advances in Neural
Information Processing Systems, Curran Associates, Inc., 2017. Accessed: May 27,
2024. [Online]. Available:
https://proceedings.neurips.cc/paper/2017/hash/f9be311e65d81a9ad8150a60844bb94
c-Abstract.html
[38].....L. Zhang, L. Zhang, S. Shi, X. Chu, and B. Li, “LoRA-FA: Memory-efficient
Low-rank Adaptation for Large Language Models Fine-tuning.” arXiv, Aug. 07,
2023. doi: 10.48550/arXiv.2308.03303.
[39]. . .J. Phang, Y. Mao, P. He, and W. Chen, “HyperTuning: Toward Adapting Large
Language Models without Back-propagation,” in Proceedings of the 40th
International Conference on Machine Learning, PMLR, Jul. 2023, pp. 27854–27875.
Accessed: May 27, 2024. [Online]. Available:
https://proceedings.mlr.press/v202/phang23a.html
[40]...F. Jin, J. Zhang, and C. Zong, “Parameter-efficient Tuning for Large Language
Model without Calculating Its Gradients,” in Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, H. Bouamor, J. Pino, and K.
Bali, Eds., Singapore: Association for Computational Linguistics, Dec. 2023, pp.
321–330. doi: 10.18653/v1/2023.emnlp-main.22.

47

[41]......S. Malladi et al., “Fine-Tuning Language Models with Just Forward Passes,”
Advances in Neural Information Processing Systems, vol. 36, pp. 53038–53075, Dec.
2023.
[42]...G. Pu, A. Jain, J. Yin, and R. Kaplan, “Empirical Analysis of the Strengths and
Weaknesses of PEFT Techniques for LLMs.” arXiv, Apr. 28, 2023. doi:
10.48550/arXiv.2304.14999.
[43].........T. Feng and S. Narayanan, “PEFT-SER: On the Use of Parameter Efficient
Transfer Learning Approaches For Speech Emotion Recognition Using Pre-trained
Speech Models,” in 2023 11th International Conference on Affective Computing and
Intelligent Interaction (ACII), Sep. 2023, pp. 1–8. doi:
10.1109/ACII59096.2023.10388152.
[44]....L. Xu, H. Xie, S.-Z. J. Qin, X. Tao, and F. L. Wang, “Parameter-Efficient Fine-
Tuning Methods for Pretrained Language Models: A Critical Review and
Assessment.” arXiv, Dec. 19, 2023. doi: 10.48550/arXiv.2312.12148.
[45]............F. Jin, J. Lu, and J. Zhang, “Unified Prompt Learning Makes Pre-Trained
Language Models Better Few-Shot Learners,” in ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun.
2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10095738.
[46]....“On the Effectiveness of Parameter-Efficient Fine-Tuning | Proceedings of the
AAAI Conference on Artificial Intelligence.” Accessed: May 27, 2024. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/26505
[47]...........“Evaluating Parameter-Efficient Transfer Learning Approaches on SURE
Benchmark for Speech Understanding | IEEE Conference Publication | IEEE
Xplore.” Accessed: May 27, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10095656?
casa_token=AsbGRX5MYF0AAAAA:Ad9jqW2AX6z6e0S71Ri-
vMOGh28CebmdoOJ9PQlWDeOa3hA-zVuLZbp8rCWd16i5sihMJyusb74
[48].“Exploring Efficient-Tuning Methods in Self-Supervised Speech Models | IEEE
Conference Publication | IEEE Xplore.” Accessed: May 27, 2024. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/10023274?
casa_token=aZwG97qCgsQAAAAA:P85HzlBexqBcvMwzlsJgN-
E2A29DNKldqHFoeXwhj50t0udkmW4YSdFETLLGiVtJLB0SIJKQXvQ
[49]...T. Wang et al., “What Language Model Architecture and Pretraining Objective
Works Best for Zero-Shot Generalization?,” in Proceedings of the 39th International
Conference on Machine Learning, PMLR, Jun. 2022, pp. 22964–22984. Accessed:
May 26, 2024. [Online]. Available: https://proceedings.mlr.press/v162/wang22u.html
[50]W. X. Zhao et al., “A Survey of Large Language Models.” arXiv, Nov. 24, 2023.
doi: 10.48550/arXiv.2303.18223.
[51].. . .P. Xu et al., “Evaluating Parameter Efficient Learning for Generation.” arXiv,
Oct. 24, 2022. doi: 10.48550/arXiv.2210.13673.
[52].............N. Ding et al., “Parameter-efficient fine-tuning of large-scale pre-trained
language models,” Nat Mach Intell, vol. 5, no. 3, pp. 220–235, Mar. 2023, doi:
10.1038/s42256-023-00626-4.
[53].Z. Zhang, Y. Lin, Z. Liu, P. Li, M. Sun, and J. Zhou, “MoEfication: Transformer
Feed-forward Layers are Mixtures of Experts.” arXiv, Apr. 05, 2022. doi:
10.48550/arXiv.2110.01786.
[54].........S. Chen, M. Jiang, J. Yang, and Q. Zhao, “Attention in Reasoning: Dataset,
Analysis, and Modeling,” IEEE Transactions on Pattern Analysis and Machine

48

Intelligence, vol. 44, no. 11, pp. 7310–7326, Nov. 2022, doi:
10.1109/TPAMI.2021.3114582.
[55]. D. Dai, L. Dong, Y. Hao, Z. Sui, B. Chang, and F. Wei, “Knowledge Neurons in
Pretrained Transformers.” arXiv, Mar. 09, 2022. doi: 10.48550/arXiv.2104.08696.

L ist of Publications

1 st Paper

Link: https://ieeexplore.ieee.org/document/10307280
Citation :
R. Negi and R. Katarya, "Emerging Trends in Chatbot Development : A Recent
Survey of Design, Development and Deployment," 2023 14th International
Conference on Computing Communication and Networking Technologies (ICCCNT),
Delhi, India, 2023, pp. 1-6, doi: 10.1109/ICCCNT56998.2023.10307280.

https://ieeexplore.ieee.org/document/10307280

2 nd Paper

Title:

“Experimental Study of Hyperparameter Tuning in Text Generation Chatbot on Deep

Learning Techniques”

Status: Accepted in ICAAIML2024

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-42

Plagiarism Verification

Title of the Thesis : A Study on PEFT Techniques for Optimizing Content
 Generation and Textual Comprehension

Total Pages : 48

Name of the Scholar : Rohit Negi

Supervisor : Prof. Rahul Katarya

Department : Dept. of Computer Science & Engineering

This is to report that the above thesis was scanned for similarity detection. Process and outcome are
given below:

Software used: Turnitin Similarity Index: 3% Total Word Count: 11969

Place: Delhi
Date:

Candidate’s Signature Signature of Supervisor

	ACKNOWLEDGEMENTS
	CANDIDATE’S DECLARATION
	CERTIFICATE
	LIST OF PUBLICATIONS
	List of Tables
	List of Figures
	ABSTRACT
	CHAPTER 1 - INTRODUCTION
	1.1 Overview
	1.2 History
	1.2.1 History of LLMs
	1.2.2 History of PEFT Techniques

	1.3 Motivation
	1.4 Objectives

	CHAPTER 2 – LITERATURE SURVEY
	2.1 Large Language Models
	2.1.1 Capabilities of LLMs
	2.1.2 Languange Model Types

	2.2 PEFT Techniques
	2.2.1 Pruning
	2.2.2 Knowledge Distillation
	2.2.3 Quantization
	2.2.4 Low-Rank Factorization (LoRA)
	2.2.5 Prompt Tuning (PT)
	2.2.6 Prefix Tuning (PF)
	2.2.7 Adapters
	2.2.8 Tiny-Attention Adapters
	2.2.9 Compacters
	2.2.10 (IA)3
	2.2.11 MHM

	2.3 Related Work

	CHAPTER 3 - METHODOLOGY
	3.1 Pre-Training Objectives
	3.2 Distributed LLM Training
	3.3 Model Adaptation
	3.4 Model selection and deployment guidelines
	3.5 Ethical guidelines
	3.6 Metrics
	3.7 Best Practices

	CHAPTER 4 – EXPERIMENTAL ANALYSIS
	4.1 Need for Model Compression Methods
	4.2 Text Generation
	4.3 Text Summarization
	4.4 Analysis & Result
	4.5 Hardware & Libraries Used

	CHAPTER 5 - CONCLUSION
	5.1 Challenges for LLMs
	5.2 Recommendations for Optimal Performance of LLMs
	5.3 PEFT Technique Selection
	5.4 Conclusion

	REFERENCES
	List of Publications
	Plagiarism Verification

