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Preface

Quantum information science is a rapidly expanding field. Entanglement can be con-

sidered as heart of the quantum information theory. Although much research has

been done on two-qubit entanglement, very little is known about multipartite entan-

glement. A better understanding of multipartite entanglement aids our understanding

of the many-body system. There are many unanswered questions in the theory of

multipartite systems. This is due to the complex structure of the multipartite system.

The complexity of a multi-qubit system grows in proportion to the number of qubits

and the dimension of the system. Entanglement is a quantum mechanical property

that can be used as a resource in computational and communication tasks. It is es-

sential in many information processing protocols, including quantum cryptography,

quantum superdense coding, and quantum teleportation. Although entangled states

are useful in various quantum information processing tasks, the practical use of an

entangled resource is restricted to the successful experimental realization of the re-

source. Non-locality is another quantum mechanical phenomenon which is not same

as the entanglement. Although non-locality and quantum entanglement go hand in

hand and they correspond to quantum correlation present in quantum states concep-

tually, they are very much distinct. At the level of a two-qubit entangled state and

also for higher dimensional bipartite and multipartite entangled quantum states, it is

possible to obtain more non-locality with less entanglement. Thus, we may expect

that non-local states with less entanglement may be more useful as resource states.

Many novel applications of non-locality have been developed for quantum computa-

tion and communication, including communication complexity, and quantum cryptog-

raphy. Quantum teleportation is an important topic to study in quantum information

science. It plays a vital role in the development of quantum information theory and

quantum technologies. Bennett et. al. have developed the first protocol of quantum

teleportation for two-qubit system. By using quantum teleportation protocol, we can

send information encoded in a quantum state in a more efficient way than the ex-
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isted classical protocols. The efficiency of the quantum teleportation protocol can be

measured through the fidelity of a state known as teleportation fidelity. Another form

of quantum teleportation is known as controlled quantum teleportation (CQT). CQT

works perfectly for a three-qubit state shared between Alice, Bob and, Charlie where

the third party Charlie acts as a controller. The importance of the CQT lies in the fact

that in the CQT protocol, the controller has the power to enhance the teleportation

fidelity of the two-qubit state possessed by Alice and Bob by performing measure-

ments on his qubit. Here, we have derived a different form of criteria, which is based

on the maximum eigenvalue, for the detection of entangled state useful in quantum

teleportation. The developed criterion may also be implementable in an experiment.

Then, we have extensively studied the non-locality of the two-qubit state by defining

a quantity that measures the strength of the non-locality. Later, we considered the

three-qubit state (pure/mixed) and studied the non-locality of its reduced two-qubit

state with the power of the controller of the three-qubit state in controlled quantum

teleportation. Also, we have connected the non-locality of the three-qubit state with

the non-locality of the two-qubit state by deriving the upper bound and lower bound of

the Svetlichny operator. The derived state dependent bounds may be used to detect

the genuine non-locality of any general three-qubit quantum state. Thus, the detection

of genuine non-locality guarantees that the three-qubit state is genuinely entangled.

At the end of the thesis, we studied the controlled quantum teleportation protocol us-

ing a three-qubit state and derived the lower bound of the controller’s power in terms

of the introduced witness operator. Thus, our study may help to estimate the power of

the controller in an experiment.

Chapter 1 is introductory in nature. Chapters 2-5 are based on the research work

published/communicated in the form of research papers in reputed journals. Finally,

we conclude the thesis with future scope and references. Each chapter begins with a

brief outline of the work carried out in that chapter.

Date : 13.05.2024 (ANUMA GARG)

Place : DTU, New Delhi, India.
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Chapter 1

General Introduction

�As far as the laws of mathematics refer to reality, they are not certain, and as far as

they are certain, they do not refer to reality. �

- Albert Einstein

The introduction gives an overview of the basic definitions, and concepts of linear

algebra and a few recapitulations of quantum mechanics. We then study the theory

of entanglement, in particular, bipartite and tripartite entanglement. We recapitulate

the theory of non-locality, in which the bipartite and tripartite non-locality is discussed.

In bipartite non-locality, we discussed the concept of non-locality using inequality. We

have considered the Mermin’s inequality and Svetlichny inequality to discuss the non-

locality in tripartite system. A brief review of quantum communication protocols, in

particular, quantum teleportation and controlled quantum teleportation is discussed.

In the last section, we emphasized on the non-locality in quantum communication.

1
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1.1 Basics of linear algebra

Linear algebra is the study of vector spaces and operations defined on it. In this

section, we recall a few fundamental terms of linear algebra which would be needed

for a better understanding of quantum information theory [1–3].

Vector space

A non-empty set V with two binary operations "addition" and "multiplication" denoted

by "+" and "." respectively is said to be a vector space over a field F if it satisfies the

following axioms:

1. Closed under addition: u+ v ∈ V, ∀ u,v ∈ V

2. Addition is associative: (u+ v)+w = u+(v+w), ∀ u,v,w ∈ V

3. Additive identity: There exist a zero element 0 ∈ V such that 0+u = u, ∀ u ∈ V

4. Additive inverse: For every vector u ∈ V, there exist a vector −u ∈ V such that

u+(−u) = 0

5. Addition is commutative: u+ v = v+u, ∀ u,v ∈ V

6. Closed under multiplication: α.u ∈V, ∀ α ∈ F and u ∈ V

7. Multiplicative Identity: There exist a unity element 1 ∈ V such that 1.u = u, ∀

u ∈ V

8. α.(u+ v) = α.u+α.v, ∀ α ∈ F and ∀ u,v ∈ V

9. (α +β ).u = α.u+β .u, ∀ α,β ∈ F and ∀ u ∈ V

10. (α.β ).u = α.(β .u), ∀ α,β ∈ F and ∀ u ∈ V

Linear dependence and linear independence

A set of finite non-zero vectors v1, v2,. . . ,vn of a vector space V over a field F is said to

be linearly independent if there exist scalars α1,α2, . . . ,αn ∈ F such that α1v1+α2v2+

· · ·+αnvn = 0 implies αi = 0, ∀ i. Otherwise, the set is linearly dependent.

Basis and dimension

Let V be a vector space over a field F.

(a) Basis: A set S = {v1, v2, . . . ,vn} ⊆ V is said to be a basis if

(i) v1,v2, ...,vn are linearly independent vectors.
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(ii) S spans the vector space V over field F.

(b) Dimension: The number of elements in the basis set is known as the dimension

of the vector space V.

Linear operator

A linear operator D is a function defined as D : V →V , where V is a vector space over

a field F such that

D(αu+βv) = αD(u)+βD(v),∀ u,v ∈ V and ∀ α,β ∈ F (1.1.1)

Matrix representation of an operator

A linear operator D may be represented in the form of a matrix. Let D be a linear

operator from V1 into V2, where V1 and V2 are two vector spaces of dimension n and

m respectively. Let v j( j = 1, . . . ,n) and wi(i = 1, . . . ,m) be the basis elements of vector

spaces V1 and V2 respectively. Then a linear operator D can be represented by (m×n)

matrix as

D(v j) = a1 jw1 +a2 jw2 + · · ·+am jwm =
m

∑
i

ai jwi, j ∈ {1,2, . . . ,n} (1.1.2)

where ai j are the elements of matrix representation of operator D.

Transpose and conjugate transpose of a matrix

For a given matrix A = ∑i ∑ j ai j, the interchanging of rows of the matrix into columns

and the columns into rows is known as transpose of a matrix and is denoted by AT =

∑ j ∑i a ji. The conjugate transpose of a given matrix A = ∑i ∑ j ai j is defined by applying

the complex conjugate of every element of the matrix and then interchanging rows

with columns of a matrix or vice versa gives the conjugate transpose of a matrix and

is denoted as A† = ∑ j ∑i a∗ji.

Eigenvalue and eigenvector

Eigenvalue: A linear operator D defined on a vector space V over the field F. A scalar

λ ∈ F is called eigenvalue of D if there is a non-zero vector v ∈ V such that

Dv = λv (1.1.3)

The equation (1.1.3) is called eigenvalue equation.

Eigenvector: If λ is an eigenvalue of D, then any non-zero vector corresponding to it

is called the eigenvector of D.
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Remark: The lower and upper bound of the maximal eigenvalue of a Hermitian op-

erator has been obtained by using various matrix norms. Here, we provide a result

known as Dembo’s bound [4, 5] for obtaining the lower and upper bound of the maxi-

mal eigenvalues of any positive-semidefinite Hermitian operator.

Dembo’s bound: For any n ⊗ n Hermitian positive semi-definite operator Rn with

eigenvalues λ1 ≤ λ2 ≤ .....≤ λn, Dembo’s bound [4,5] is given by

c+η1

2
+

√
(c−η1)2

4
+(b∗)T b ≤ λn(Rn)≤

c+ηn−1

2
+

√
(c−ηn−1)2

2
+(b∗)T b (1.1.4)

where Rn =

Rn−1 b

(b∗)T c

, η1 is the lower bound on minimal eigenvalue of Rn−1, ηn−1 is

the upper bound on maximal eigenvalue of Rn−1 and b is a vector of dimension n−1.

Inner product space

Let V be a vector space over a field F. A function which assigns each ordered pair of

vectors to an element of the field, defined as

⟨u,v⟩ : V ×V → F, u,v ∈V (1.1.5)

is said to be an inner product if it follows the following conditions

1. Linearity: ⟨αu+βv,w⟩= α⟨u,w⟩+β ⟨v,w⟩, ∀ u,v,w ∈ V and ∀ α,β ∈ F.

2. Conjugate symmetry: ⟨u,v⟩= ⟨v,u⟩, ∀ u,v ∈ V

3. ⟨u,u⟩ ≥ 0 and ⟨u,u⟩= 0 if and only if u = 0, for any u ∈ V

Any vector space V over field F associated with an inner product is known as an inner

product space.

Orthogonal vectors

Let u and v be two vectors of a vector space V over the field F. The vector u is said to

be orthogonal to v, if the inner product of u and v is zero, i.e., ⟨u,v⟩= 0.

Norm

A norm is a real-valued function defined on a vector space V over a field F as

||.|| : V → F (1.1.6)

||.|| satisfies the following properties:
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1. Triangular Property: ∥u+ v∥ ≤ ∥u∥+∥v∥, ∀ u,v ∈ V

2. Non-Negativity: ∥v∥ ≥ 0, ∀ v ∈ V. ∥v∥= 0 if and only if v = 0.

3. ∥αv∥= |α|∥v∥, ∀ v ∈ V and ∀ α ∈ F

Unit vector

If the norm of a vector is unity, then the vector is known as a unit vector.

Orthonormal vectors

A set of vectors is known as orthonormal vectors if the inner product of any vector

u with itself is 1, i.e., ⟨u,u⟩ = 1 and the inner product of any vector u with any other

distinct vector v is 0, i.e., ⟨u,v⟩= 0.

Norm and inner product of two operators

(a) Inner product of two operators: For any two finite dimensional linear operators

D1 and D2, the inner product of D1 and D2 is defined as

⟨D1,D2⟩= Tr[D†
1D2] (1.1.7)

(b) Norm of a operator: Norm of a linear operator D is defined as

∥D∥=
√
⟨D,D⟩ (1.1.8)

Normed linear space

A vector space V is called normed linear space if for every element v ∈ V, there is a

unique real number associated with it, which may be the norm of v.

Banach space

A complete normed linear space is known as Banach space.

Hilbert space

A complete inner product space is called Hilbert space.

Remark: A Banach space is a Hilbert space if and only if the parallelogram law holds.

Tensor product

Let V1 and V2 be two vector spaces over a field F of dimension m and n respectively.

The tensor product of V1 and V2 is denoted by V1 ⊗V2 and it is of dimension mn.

Suppose A be a matrix of order m×n and B be a matrix of order p×q. Therefore, the
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matrix A and B may be represented as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn

 , B =


b11 b12 · · · b1q

b21 b22 · · · b2q
...

...
...

...

bp1 bp2 · · · bpq

 (1.1.9)

The matrix representation of A⊗B is given as

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

...

am1B am2B · · · amnB

 (1.1.10)

It is now clear from (1.1.10) that A⊗B represent a matrix of order mp×nq.

Properties of tensor product:

If A,B,C,D ∈ Mm,n and α ∈ F then

1. (αA)⊗B = A⊗ (αB) = α(A⊗B)

2. (A⊗B)† = A† ⊗B†

3. (A+B)⊗C = A⊗C+B⊗C

4. (A⊗B)⊗C = A⊗ (B⊗C)

5. (A⊗B)(C⊗D) = AC⊗BD

6. Tr(A⊗B) = Tr(B⊗A)

7. det(A⊗B) = det(B⊗A)

8. (A⊗B)−1 = A−1 ⊗B−1

9. Im ⊗ In = Imn, where Im and In are identity matrix of order m and n respectively.

Partial transpose of a matrix

If a matrix X of order d2×d2 is subdivided into d2 blocks of order d×d then the partial

transposition of a matrix X is obtained by performing the transposition operation on

every block of order d of the matrix X .
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To illustrate it, let us consider a 4×4 matrix X , which is given in the block matrix form

as

X =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


The partial transposition of the matrix X may be given as

XPT =


a11 a21 a13 a23

a12 a22 a14 a24

a31 a41 a33 a43

a32 a42 a34 a44


Remark:

(i) If XPT has no negative eigenvalue, i.e., if it is positive semidefinite, then the matrix

X is said to be positive partial transpose

(ii) If XPT has atleast one negative eigenvalue then the matrix X is said to have nega-

tive partial transpose.

1.1.1 A few results in linear algebra

Result 1.1: For any two Hermitian d ×d matrices A and B, we have [6]

λmin(A)Tr(B)≤ Tr(AB)≤ λmax(A)Tr(B) (1.1.11)

where the eigenvalues of A are arranged as λmin = λ1 ≤ λ2 ≤ λ3 ≤ .......≤ λd = λmax.

Result 1.2: If M be any n× n complex matrix and N be any n× n Hermitian matrix,

then we have [2,6]

λmin(M)Tr(N)≤ R(Tr(MN))≤ λmax(M)Tr(N) (1.1.12)

where M = M+M†

2 and R(x) denotes the real part of x.

Proof:- Let us assume that the eigenvalues of M may be arranged in an ascending

order as λmin = λ1 ≤ λ2 ≤ ......≤ λn = λmax. To prove Result 1.2, let us recall the lower
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and upper bound of R(Tr(MN)), which is given in [6],

n

∑
i=1

λi(M)λn−i+1(N)≤ R(Tr(MN))≤
n

∑
i=1

λi(M)λi(N) (1.1.13)

In L.H.S., Replacing all the eigenvalues of M by its minimum eigenvalues and in R.H.S.

if we replace all the eigenvalues of M by its maximum eigenvalue, we get the desired

result given in (1.1.12).

Result 1.3: If M be any n× n complex matrix and N be any n× n Hermitian matrix,

then we have

Tr(M)λmin(N)≤ R(Tr(MN))≤ Tr(M)λmax(N) (1.1.14)

where M = M+M†

2 and R(x) denotes the real part of x.

Result 1.4: If M be any n× n complex matrix and N be any n× n Hermitian matrix,

then we have

Tr(M)λk(N)≤ R(Tr(MN)) (1.1.15)

where λk(N) denote the first non-zero eigenvalue of N.

1.2 Origin of quantum mechanics

Until the end of the 19th century, classical mechanics appeared to be sufficient to

explain all the physical phenomena, but it fails to account for thermodynamic equi-

librium between matter and radiation, which may be considered as the root of clas-

sical mechanics. In the late nineteen century and the first quarter of the twentieth

century, it was found that the amount of energy radiated from black body radiation

calculated experimentally does not match with the theoretical result obtained by using

the theory of classical mechanics. Thus, we require a new concept to explain the

difference obtained in the theoretical and experimental results. Many attempts were

made in different ways to explain the difference but all failed until a revolutionary the-

ory called quantum mechanics was introduced. The theory of quantum mechanics

was developed between the years 1925 and 1930. Quantum mechanics provides a

consistent description of matter on the microscopic scale and can be considered one

of the greatest intellectual achievements of the twentieth century. Two equivalent ap-
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proaches to the theory were proposed at nearly the same time. The first is known as

matrix mechanics developed by W. Heisenberg, M. Born, and P. Jordan, and the sec-

ond is known as wave mechanics which was proposed by E. Schrodinger [7]. Now,

we shall present the principles of quantum mechanics in a more general way, as a set

of postulates.

1.2.1 Postulates of quantum mechanics

The postulates of quantum mechanics map a mathematical theory to physical sys-

tems. Hence, they are the result of years of discoveries made by experimenters as

well as theoreticians in the field of quantum mechanics. However, this also means

that the postulates may still undergo more or less minor changes over time. Currently,

the postulates may be formulated in the following form [1].

1. State space: Any isolated physical quantum system is associated with a Hilbert

space, which may be called state space in quantum mechanics. In state space,

the physical system is completely described by a vector known as state vector.

A quantum state is a column vector of a Hilbert space H which is denoted as

|v⟩ and ⟨v| denote its dual vector. If H denotes a two dimensional Hilbert space

spanned by {|0⟩, |1⟩} vectors then the basis vectors {|0⟩, |1⟩} can be represented

as

|0⟩=

1

0

 , |1⟩=

0

1

 (1.2.1)

In general, a quantum state in a d-dimensional Hilbert space can be represented

as

|ψ⟩=
d

∑
i=1

bi|ki⟩ (1.2.2)

where ki denote the basis of the Hilbert space H and bi are the scalars belong-

ing to field F.

Since every vector in a Hilbert space is represented as a column vector, a d-

dimensional quantum state can also be represented as a column vector given

by
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|ψ⟩=


b1
b2
...

bn


2. Evolution: If |ψ⟩ represents a state in a closed quantum system, then its evolu-

tion is described by the unitary operator. A state |ψ⟩ at time t1 is related to state

|ψ ′⟩ at time t2 by a unitary operator U(t1, t2), which can be expressed as

|ψ
′
(t2)⟩=U(t1, t2)|ψ(t1)⟩ (1.2.3)

3. Measurements: Measurements on a quantum system in Hilbert space H are

described by a collection of measurement operators from set {Mi} with com-

pleteness relation

Σi=1M†
i Mi = I (1.2.4)

These operators {Mi} act on the state space that is being measured, and the

index i refers to the measurement outcome that occurs after measurement.

4. Composite system: The state space of a composite physical system is the

tensor product of the state spaces of the component physical systems. If we

consider n quantum systems |ψ1⟩, |ψ2⟩, ...., |ψn⟩, then the joint state of the com-

posite system is |ψ1⟩⊗ |ψ2⟩⊗ · · ·⊗ |ψn⟩.

1.2.2 Formalism of quantum mechanics

The postulates of quantum mechanics are the basic principles that help to develop

the mathematical formalism of it. They play an important role in understanding the

behavior of a physical system.

1.2.2.1 Observables

In quantum mechanics, observables are dynamical variables like energy, momentum,

position, and angular momentum, which can be measured. Every dynamical variable

is represented by Hermitian operator. The requirement of the Hermitian operator is

due to the fact that it has real eigenvalues.
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Let us consider the eigenvalue equation [8]

A|φ⟩= λ |φ⟩ (1.2.5)

where Hermitian operator A represents a physical system, λ denote the real eigen-

value and |φ⟩ is the corresponding eigenvector. In general, if we assume that |ai⟩

denote the eigenstate of the Hermitian operator A then the eigenvalue equation is

given by

A|ai⟩= ai|ai⟩ (1.2.6)

If the system is assumed to be the superposition of eigenstates of A, then an arbitrary

normalized state |α⟩ can be represented as

|α⟩= ∑
i

ci|ai⟩, ∑
i
|ci|2 = 1 (1.2.7)

When a measurement is performed on a physical system |α⟩ then it collapses to one

of the eigenstates |ai⟩ and its probability is given by

|ci|2 = |⟨ai|α⟩|2 (1.2.8)

1.2.2.2 Expectation value of an observable in quantum mechanics

The expectation value of a Hermitian operator A of an arbitrary state |α⟩ is denoted

by ⟨A⟩, and is defined as ⟨α|A|α⟩. If |ai⟩′s represent the orthonormal eigenstates of A

corresponding to the eigenvalues λ ′
i s, i = 1,2, . . . then we have

⟨ai|A|a j⟩= λ j⟨ai|a j⟩= λiδi j (1.2.9)

The expectation value of A can be expressed in terms of its eigenvalues as

⟨A⟩= ⟨α|A|α⟩ = ∑
i

∑
j
⟨α|ai⟩⟨ai|A|a j⟩⟨a j|α⟩

= ∑
i

∑
j
⟨α|ai⟩λ jδi j⟨a j|α⟩

= ∑
j

λ j⟨α|a j⟩⟨a j|α⟩

= ∑
j

λ j|⟨a j|α⟩|2 (1.2.10)
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In the second step, we have used the completeness relation, which is given by

∑
i
|ai⟩⟨ai|= 1 (1.2.11)

1.2.2.3 Projection operator

Consider a Hilbert space H spanned by the complete orthonormal eigenvectors |ai⟩′s

of a Hermitian operator A. An arbitrary normalized state |ψ⟩ ∈ H can be represented

as

|ψ⟩= ∑
i

ci|ai⟩, ∑
i
|ci|2 = 1 (1.2.12)

If the operator P1 = |a1⟩⟨a1| is applied on an arbitrary state |ψ⟩, then the operator P1

project |ψ⟩ on one of its eigenstates |a1⟩. This type of operator is known as a projection

operator.

In general, for the ith eigenstate |ai⟩, we can have the projection operator Pi which is

given by

Pi = |ai⟩⟨ai|, i = 1,2, . . . (1.2.13)

Completeness condition gives ∑i Pi = I. Since ⟨ai|a j⟩= δi j, then

PiPj = δi jPj, where δi j =

1 if i = j

0 if i ̸= j
(1.2.14)

Therefore, the projection operator can be considered as an idempotent operator and

its eigenvalues are only 0 and 1 respectively.

1.2.2.4 Commuting observables

The commutator between two operators A and B can be defined as

[A,B] = AB−BA (1.2.15)

If AB = BA, i.e., [A,B] = 0, we say A commutes with B. Two operators A and B are

compatible if they commute, i.e., [A,B] = 0. In other words, two observables are com-

patible when their corresponding Hermitian operators commute. These two operators
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are called commuting sets of observables. If [A,B] ̸= 0, then the operators are incom-

patible. If two operators A and B commute, then they are simultaneously measurable.

1.2.2.5 Pauli matrices

Pauli matrices is a set of unitary and Hermitian operators which are represented in the

form of 2×2 complex matrices. The representation of Pauli matrices are as follows

σx =

0 1

1 0

 ,σy =

0 −i

i 0

 ,σz =

1 0

0 −1

 (1.2.16)

Properties of Pauli matrices:

1. σ†
x = σx, σ†

y = σy, σ†
z = σz.

2. Eigenvalues of all Pauli matrices belong to the set S = {±1}.

3. The determinant of Pauli matrices is -1.

4. σ2
x = σ2

y = σ2
z = I.

5. Tr(σx) = Tr(σy) = Tr(σz) = 0.

1.2.2.6 Heisenberg uncertainty relation

The uncertainty principle is a fundamental concept in quantum mechanics that limits

our ability to simultaneously determine certain pairs of properties such as the position

and momentum of quantum particles. In other words, if we intend to measure more

accurately one of these properties, then the accuracy of measuring the other property

will become less. Let A and B be two Hermitian operators that are incompatible, i.e.,

AB ̸= BA. By the Heisenberg uncertainty principle, the Hermitian operators A and B

are not simultaneously measurable. So, we can find an error in our measurement.

The difference between the product AB and BA of two incompatible operators A and B

is given by

AB−BA = [A,B] = iC (1.2.17)

where C is another Hermitian operator.

If the error occurred during the measurement is measured by the standard deviations

△A=
√
⟨A2⟩−⟨A⟩2 and △B=

√
⟨B2⟩−⟨B⟩2 of the incompatible operators A and B then

the uncertainty principle may be expressed as

△A△B ≥ ⟨C⟩
2

(1.2.18)
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1.3 Information theory

Gaining knowledge about anything through some process is known as information.

It is an essential component of the transmission of messages or knowledge and it

was being used with or without awareness in our everyday life long before computers

made their way into our life [9]. An event contains some information, if there is a

non-zero probability (less than unity) of happening the event. Therefore, if the event

is certain then it contains no information. Thus, information about any event may be

measured by the amount of uncertainty of happening the event. Alternatively, the

information in the random variable X can be expressed as the expectation value of

X ′s unexpectedness. The unexpectedness of the event x may be defined as −log(px),

where px is the probability of occurring an event x.

When information is entered into and stored in a computer, it is generally referred to

as data. After processing the input data, we obtain the output data that again can be

perceived as information. When information is compiled or used to better understand

something or to do something, it becomes knowledge. Information theory deals with

the study of data and storing and communicating data. In the present scenario, we

can divide the information theory into two parts: (i) Classical information theory and

(ii) Quantum information theory.

1.4 Quantum information theory

Quantum information theory is an interdisciplinary subject that deals with the transfer

of information using the principles of quantum mechanics. It extends classical infor-

mation theory to the quantum world, where quantum properties such as superposition

and entanglement can be used. Therefore, quantum information theory may provide

a way to overcome the limitations of classical information theory.

1.4.1 Basics of quantum information theory

1.4.1.1 Qubit

Quantum bit or qubit is the fundamental unit of quantum information. A qubit is nothing

but it is a superposition of |0⟩ and |1⟩. Mathematically, a qubit can be expressed as
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|ψ⟩= α|0⟩+β |1⟩, |α|2 + |β 2|= 1 (1.4.1)

where α and β are two complex numbers.

1.4.1.2 Density operator

An operator ρ which is associated with some ensemble (pi, |ψi⟩) is a density operator

if and only if it satisfies the following conditions:

1. Trace condition: Tr(ρ) = 1

2. Positive semi-definiteness: ρ is a positive semi-definite operator, i.e. ρ ≥ 0. This

implies that eigenvalues of ρ are either positive or zero.

3. Hermitianity: ρ must be a Hermitian operator, i.e. ρ† = ρ.

1.4.1.3 Pure and mixed state

Pure state: A pure state is described by the projector. A state described by the

density operator ρ is said to be pure if it satisfies

Tr(ρ2) = 1 (1.4.2)

Mixed state: A state ρ is said to be mixed if it is expressed as a convex combination

of pure states |ψi⟩, i = 1,2, . . . ,n. Mathematically, a mixed state ρ which is associated

to some ensemble (pi, |ψi⟩) can be expressed as

ρ = ∑
i

pi|ψi⟩⟨ψi|, ∑
i

pi = 1, 0 ≤ pi ≤ 1 (1.4.3)

Remark 1: A state ρ is mixed if it satisfies tr(ρ2)<1.

Remark 2: Generally, a single qubit may be described by the density operator

ρ =
1
2
(I2 + r⃗.⃗σ) (1.4.4)

where r⃗ = (rx,ry,rz) ∈ R3, σ⃗ = (σx,σy,σz) and I2 denote the identity matrix of order 2.

Remark 3: A qutrit system is described by the density operator [10]

ρ =
1
3
(I3 + b⃗.⃗Γ) (1.4.5)
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where b⃗ = (b1,b2, . . . ,b8) ∈ R8, Γ⃗ = (S1,S2, . . . ,S8) and I3 denote the identity matrix of

order 3. S1,S2, . . . ,S8 are known as Gell-Mann matrices and they are given by

S1 =


0 1 0

1 0 0

0 0 0

 , S2 =


0 0 1

0 0 0

1 0 0

 , S3 =


0 0 0

0 0 1

0 1 0

 (1.4.6)

S4 =


0 −i 0

i 0 0

0 0 0

 , S5 =


0 0 −i

0 0 0

i 0 0

 , S6 =


0 0 0

0 0 −i

0 i 0

 (1.4.7)

S7 =


1 0 0

0 −1 0

0 0 0

 , S8 =


1√
3

0 0

0 1√
3

0

0 0 −2√
3

 (1.4.8)

Here S1,S2 and S3 are three symmetric matrices; S4,S5 and S6 are three anti-symmetric

matrices; S7 and S8 are two diagonal matrices.

1.4.1.4 Partial trace

Suppose the composite system of two physical systems A and B is described by a

density operator ρAB. The reduced density operator of ρAB for subsystem A and B

respectively then defined as

ρA = TrB(ρAB) (1.4.9)

ρB = TrA(ρAB) (1.4.10)

where TrB and TrA denote the partial trace over the system B and A respectively. For

example, if the first and second system is represented by |a1⟩ and |b1⟩ respectively

then the partial traces over the system A and B are given by

TrB(|a1⟩⟨a2|⊗ |b1⟩⟨b2|) = |a1⟩⟨a2| Tr(|b1⟩⟨b2|) (1.4.11)

TrA(|a1⟩⟨a2|⊗ |b1⟩⟨b2|) = |b1⟩⟨b2| Tr(|a1⟩⟨a2|) (1.4.12)

Partial trace is a very common function of the composite system. It is not only viewed
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as a mathematical operation but also has operational meaning. Partial trace is a

unique mapping from a composite system to a subsystem and it can be described

as a density operator for the reduced system. The physical interpretation of par-

tial trace has also been provided by two different approaches [11–13]. In [14], the

numerical calculation of the partial trace function has been analyzed and have pre-

sented the number of operations required to calculate the partial trace function on

classical computers in bipartite and the multipartite system as well. For Instance,

for a bipartite system, HA ⊗HB with dimension d1 and d2 respectively, it has been

observed that the number of operations for calculating the partial trace may also be

optimized using Bloch’s parametrization with generalized Gell Mann’s matrices and

the optimized number of operations required to calculate partial trace function are of

the order O(d2
1d2) [14].

1.4.2 Quantum measurement

We again move on to the topic of quantum measurement as in this thesis, it needs

special attention. Being a physical theory, quantum mechanics significantly depends

on the results of experiments. Measurement is the process of obtaining the result of

an experiment, and it is described by the measurement operators. Let M = {Mi}n
i=1 be

a set of linear operators on a Hilbert space H of dimension n then M′
is may represent

a measurement operator satisfying the inequality

Σ
k
i=1M†

i Mi ≤ I, k = 2,3, . . . ,n (1.4.13)

where I is an identity operator.

If k = n i.e. if the number of measurement operators is equal to the dimension of the

Hilbert space then the measurement operators satisfying the relation

Σ
n
i=1M†

i Mi = I (1.4.14)

The property (1.4.14) is called the completeness property.

If the state |φ⟩ ∈ H is being measured then the probability to get the outcome i is

given by

p(i) = ⟨φ |M†
i Mi|φ⟩ (1.4.15)
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and the state |φ⟩ collapses onto the state |φ ′⟩, which is given by

|φ⟩ → Mi|φ⟩√
⟨φ |M†

i Mi|φ⟩
≡ |φ ′⟩ (1.4.16)

Let us consider a quantum state described by the density operator ρ, which is given

by

ρ = ∑
i

pi|ψi⟩⟨ψi| (1.4.17)

If the initial state is |ψi⟩, then the probability of getting result m is given by

p(m|i) = ⟨ψi|M†
mMm|ψi⟩= tr(M†

mMm|ψi⟩⟨ψi|) (1.4.18)

By the law of total probability, the probability of obtaining m is given by

p(m) = ∑
i

p(m|i)pi

= ∑
i
(tr(M†

mMm|ψi⟩⟨ψi|))pi

= Tr(M†
mMm ∑

i
pi|ψi⟩⟨ψi|)

= Tr(M†
mMmρ) (1.4.19)

Now, if the initial state is |ψi⟩ then after the measurement performed by the measure-

ment operator Mm, the post-measurement state described by the density operator

ρm = ∑
i

p(i|m)|ψm
i ⟩⟨ψm

i |

= ∑
i

pi
Mm|ψi⟩⟨ψi|M†

m

Tr(M†
mMmρ)

=
MmρM†

m

Tr(M†
mMmρ)

(1.4.20)

where |ψm
i ⟩=

Mm|ψi⟩√
⟨ψi|M†

mMm|ψi⟩
.

The concept of measurement presented above, provides the most general way to

define the measurement process. Hence, it is sometimes referred to as the general

measurement. Different types of measurements are as follows:

1) Projective measurement: A projective measurement is a type of measurement on

a quantum system that establishes the value of an observable corresponding to the
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physical property such as position, momentum, or spin. It is described by a Hermitian

operator M that can be expended using a spectral decomposition

M = ∑
m

mPm (1.4.21)

where Pm is the projector onto the eigenspace of M with eigenvalue m.

Von Neumann measurement is a type of projective measurement that enables the

determination of an observable without changing the quantum state. A single qubit

Von Neumann measurement in the computational basis may be described as {πk =

|k⟩⟨k|,k = 0,1}. In general, a single qubit measurement operator in an arbitrary basis

can be described as

Bk =V πkV † : k = 0,1 (1.4.22)

where V denotes the single qubit unitary operator which may be expressed as [15]

V = tI + i−→y .−→σ , t2 + y2
1 + y2

2 + y2
3 = 1 (1.4.23)

where t ∈ R and −→y = (y1,y2,y3) ∈ R3.

2) Positive operator valued measurements (POVM): POVM are known as general-

ization of projective measurements. In POVM, the set of measurements is described

by a set of positive semi-definite operators, and the sum of these operators is identity.

Let us suppose that a measurement is performed on a state |ψ⟩, which is described by

the measurement operators {Mm}. Define Em ≡ M†
mMm. From the definition, it is clear

that Em is a positive operator and it follows the completeness relation ∑m Em = I. When

the measurement operator Em performing on the system |psi⟩ then the probability of

obtaining an outcome m is given by p(m) = ⟨ψ|Em|ψ⟩. The operators Em are known as

POVM elements and the complete set of {Em} operators is known as POVM. POVM

is especially helpful when the measurement results are not orthogonal or when the

measuring tool is not precise or defined. Measurement errors and noise can also be

handled by POVMs.

1.5 Quantum entanglement

Ever since Einstein, Podolsky, and Rosen [16] raised the issue of the lack of compati-
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bility of quantum mechanics with the assumptions of local realism, quantum corre-

lation has been the subject of ongoing debates and studies. The violation of Bell-

type [17] inequalities confirms the fundamentally different nature of quantum corre-

lations as compared to classical correlations. In order to describe such correlations,

Schrodinger [18] first used the term entanglement and considered it to be the char-

acteristic trait of quantum mechanics. Bohm [19] later explored entanglement in a

simpler context, that of a pair of spins in the singlet state, which has since been

central to the investigation of the foundations of quantum mechanics and quantum

information. Following these developments, Bell greatly advanced the investigation of

quantum entanglement by deriving, what is now known as Bell’s inequality [17] that

must be obeyed by systems which are correlated but whose interactions are local

as against the systems whose correlations are spatially extended and cannot be ex-

plained by the assumption of locality. The potential offered by the efficient use of such

entangled systems as resources for quantum information, communication, cryptogra-

phy, and quantum computing has led to many interesting protocols.

The use of entangled resources to achieve efficient and optimal success in quan-

tum information and communication, in comparison to classical resources, is based

on quantum correlations existing between the particles. The existence of such long-

range correlations in quantum systems with no classical analogues thus distinguishes

the quantum world from its classical counterparts. Moreover, quantum correlations

not only shed light on the complex nature of entanglement but also provide physi-

cal insights into quantum computing and quantum communication protocols like tele-

portation [20], quantum cryptography [21, 22], superdense coding [23], quantum re-

peaters [24] or measurement based quantum computation [25].

1.5.1 Bipartite entanglement

A bipartite system described by the Hilbert space HAB is composed of two individual

systems A and B described by the Hilbert spaces HA and HB respectively. Therefore,

the composite system HAB is described by tensor product of HA and HB i.e. HAB ≡

HA ⊗HB. If ρA ∈ HA, ρB ∈ HB and a bipartite state ρAB ∈ HAB is expressed in the

form ρAB = ρA ⊗ ρB, then the state ρAB is said to be a product state. Moreover, if a

state ρAB ∈ HA ⊗HB is expressed as the convex combination of product states i.e. if

ρAB is expressed in the form as
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ρAB = ∑
i

piρ
A
i ⊗ρ

B
i ,0 ≤ pi ≤ 1,∑

i
pi = 1 (1.5.1)

then ρAB is said to be a separable state. Otherwise, the state ρAB is said to be an

entangled state.

A general form of pure two-qubit state |ψ⟩AB ∈ HAB (≡ HA ⊗HB) is given by

|ψ⟩AB = α|00⟩AB +β |01⟩AB + γ|10⟩AB +δ |11⟩AB, |α|2 + |β |2 + |γ|2 + |δ |2 = 1 (1.5.2)

(i) If γ = δ = 0, then the state |ψ⟩AB given in (1.5.2) reduces to

|ψ1⟩AB = α|00⟩AB +β |01⟩AB, |α|2 + |β |2 = 1

= |0⟩A ⊗ (α|0⟩B +β |1⟩B) (1.5.3)

Therefore, |ψ1⟩AB is a separable state.

(ii) If β = γ = 0, then the state |ψ⟩AB given in (1.5.2) reduces to

|ψ2⟩AB = α|00⟩AB +δ |11⟩AB, |α|2 + |δ |2 = 1 (1.5.4)

Therefore, |ψ2⟩AB represents an entangled state.

Let us consider a two-qubit state described by the density operator as

ρAB =
1
4
[I ⊗ I +−→a .−→σ ⊗ I + I ⊗

−→
b .−→σ +∑

i, j
ci jσi ⊗σ j] (1.5.5)

where a⃗ = (a1,a2,a3) ∈ R3, b⃗ = (b1,b2,b3) ∈ R3, ci j = Tr[ρAB(σi⊗σ j)] and σ ′
i s (i = x,y,z)

denotes the Pauli matrices.

If we are given the general form of a two-qubit system given in (1.5.5) then it would be

very difficult to say whether the state is entangled or not. This is due to the fact that

the representation of a quantum state is not unique, as one basis can be obtained

from the other basis just by using a unitary transformation. Thus, we have to check

for the given quantum state whether it can be expressed in the form (1.5.1) for every

possible basis.
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1.5.2 Tripartite entanglement

Let us consider a tripartite state ρABC ∈ HABC, which is composed of three individual

systems A, B and C described by the Hilbert spaces HA, HB and HC respectively. In

terms of quantum correlation, a tripartite system can be classified into three stochastic

local operation and classical communication (SLOCC) inequivalent classes: (i) fully

separable state, (ii) biseparable state, and (iii) genuinely entangled state [26].

(i) A fully separable state: A pure tripartite state |ψ⟩ABC is said to be a fully separable

state if it can be expressed as

|ψ⟩ABC = |ψ⟩A ⊗|ψ⟩B ⊗|ψ⟩C (1.5.6)

More generally, if a state ρABC is expressed as the convex combination of product

states then it is known as a fully separable state. Mathematically, it can be expressed

as

ρ
ABC
sep = ∑

i
piρ

A
i ⊗ρ

B
i ⊗ρ

C
i , 0 ≤ pi ≤ 1, ∑

i
pi = 1 (1.5.7)

(ii) Biseparable state: If a pure three-qubit state is expressed as

|φ⟩A−BC
bisep = |φ (1)⟩A ⊗|φ (2)⟩BC (1.5.8)

where |φ (1)⟩A represent a single-qubit state and |φ (2)⟩BC denote a two-qubit entangled

state in a composite system B and system C respectively.

A biseparable state in a tripartite system may be further classified into three sub-

classes: (a) Biseparable state in A−BC cut, (b) Biseparable state in B−AC cut, and

(c) Biseparable state in C −AB cut. The definition given in (1.5.8) denotes a pure

biseparable state in A−BC cut. In a similar manner, the pure biseparable state in

B−AC cut and C−AB cut may be defined as

|φ⟩B−AC
bisep = |φ (3)⟩B ⊗|φ (4)⟩AC

|φ⟩C−AB
bisep = |φ (5)⟩C ⊗|φ (6)⟩AB (1.5.9)

where |φ (3)⟩B, |φ (5)⟩C represent a single qubit pure state in system B and C respectively

and |φ (4)⟩AC, |φ (6)⟩AB denote the pure two-qubit entangled pure state.
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If |ai⟩, |bi⟩ and |ci⟩ denote the basis vectors in the system A, B and C respectively

and |φi⟩AB, |φi⟩BC and |φi⟩AC represent the two-qubit entangled state in their respective

composite system then a mixed biseparable state can be expressed as a convex

combination of pure biseparable states, which may be expressed as

ρABC = p1ρ
A−BC
bisep + p2ρ

B−AC
bisep + p3ρ

C−AB
bisep , 0 ≤ pi ≤ 1, p1 + p2 + p3 = 1 (1.5.10)

where, ρ
A−BC
bisep = ∑

i
|ai⟩A⟨ai|⊗ |φi⟩BC⟨φi|

ρ
B−AC
bisep = ∑

i
|bi⟩B⟨bi|⊗ |φi⟩AC⟨φi|

ρ
C−AB
bisep = ∑

i
|ci⟩C⟨ci|⊗ |φi⟩AB⟨φi|

(iii) Genuine entangled state: If a tripartite state described by the density operator

ρABC is not expressed in any of the forms given in (1.5.6), (1.5.7), (1.5.8), (1.5.9), and

(1.5.10), then the state ρABC is called a genuinely entangled state. In other words, a

three-qubit state is a genuine entangled state if there is a correlation between every

pair of particles. There are two types of SLOCC inequivalent classes of three-qubit

genuine entangled states known as GHZ and W class of state.

The general form of GHZ class of state can be expressed as

|ψG⟩ABC = λ0|000⟩ABC +λ1eiθ |100⟩ABC +λ2|101⟩ABC +λ3|110⟩ABC +λ4|111⟩ABC,
4

∑
i=0

λ
2
i = 1

(1.5.11)

where θ ∈ [0,π], λi ≥ 0 for i = 1,2,3 and λ0,λ4 > 0.

The general form of W class of state can be expressed either as |ψW1⟩ABC or |ψW2⟩ABC.

The form of |ψW1⟩ABC and |ψW2⟩ABC can be given as

|ψW1⟩ABC = λ0|000⟩ABC +λ1eiθ |100⟩ABC +λ2|101⟩ABC +λ3|110⟩ABC,

θ ∈ [0,π];λi ≥ 0, i = 0,1,2,3;
3

∑
i=0

λ
2
i = 1 (1.5.12)

|ψW2⟩ABC = λ1eiθ |100⟩ABC +λ2|101⟩ABC +λ3|110⟩ABC +λ4|111⟩ABC,

θ ∈ [0,π];λi ≥ 0, i = 1,2,3,4;
4

∑
i=1

λ
2
i = 1 (1.5.13)
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1.5.3 Detection of entanglement

Detection of entanglement in either higher dimensional or multipartite system is not

an easy task and thus it may be considered as an important problem in quantum

information theory. Now, we present a few important criteria for the detection of the

entanglement in a bipartite or multipartite system.

1a. PPT criteria for bipartite system: PPT criteria is the first entanglement detec-

tion criteria which has been introduced by A. Peres [27]. Let us consider a M ⊗N

dimensional bipartite state ρAB written in the form as

ρAB =
M

∑
i, j

N

∑
k,l

ρi j,kl|i⟩⟨ j|⊗ |k⟩⟨l| (1.5.14)

The partial transposition of ρAB with respect to the subsystem B may be expressed as

ρ
TB
AB =

M

∑
i, j

N

∑
k,l

ρi j,kl|i⟩⟨ j|⊗ |l⟩⟨k| (1.5.15)

Partial transposition of of ρAB with respect to subsystem A may be expressed as

ρ
TA
AB =

M

∑
i, j

N

∑
k,l

ρi j,kl| j⟩⟨i|⊗ |k⟩⟨l| (1.5.16)

PPT Criteria states that if a bipartite quantum state ρAB is separable, then the partial

transpose of ρAB with respect to system A or system B has zero or positive eigen-

values, i.e, ρ
TA
AB (or ρ

TB
AB) is a positive semidefinite operator. PPT Criterion is only

a necessary condition but not sufficient for M ⊗ N system, where MN > 6. Later,

Horodecki et. al. [28] proved PPT criterion to be a necessary and sufficient condition

for 2⊗2, 2⊗3 and 3⊗2 systems. PPT criterion is applicable for bipartite systems only

and since PPT criterion is computed with the help of partial transposition and it is a

positive map but not a completely positive map, so this criterion may not be directly

applicable in an experiment.

1b. PPT criteria for tripartite system: To develop the PPT criteria for tripartite

system, let us first define the partial transposition operation on three-qubit system. To

discuss this operation, let us first consider a three-qubit state described by a density

operator ρABC which is given by
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ρABC =


P Q R S

Q∗ T U V

R∗ U∗ W X

S∗ V ∗ X∗ Y

 (1.5.17)

where P,Q,R,S,T,U,V,W,X ,Y denote the 2×2 block matrices and “∗” denote the com-

plex conjugation.

When the partial transposition operation acts on the first subsystem A of the state

ρABC, the state ρABC transformed into ρ
TA
ABC, which can be expressed as

ρ
TA
ABC ≡ [T ⊗ I ⊗ I]ρABC =


P Q R∗ U∗

Q∗ T S∗ V ∗

R S W X

U V X∗ Y

 (1.5.18)

When the partial transposition operation acts on the second subsystem B of the state

ρABC, the state ρABC transformed into ρ
TB
ABC, which can be expressed as

ρ
TB
ABC ≡ [I ⊗T ⊗ I]ρABC =


P Q∗ R U

Q T S V

R∗ S∗ W X∗

U∗ V ∗ X Y

 (1.5.19)

When the partial transposition operation acts on the third subsystem C of the state

ρABC, the state ρABC transformed into ρ
TC
ABC, which can be expressed as

ρ
TC
ABC ≡ [I ⊗ I ⊗T ]ρABC =


P∗ Q∗ R∗ S∗

Q T ∗ U∗ V ∗

R U W ∗ X∗

S V X Y ∗

 (1.5.20)

If any one of the partial transpose of ρABC with respect to subsystem A, subsystem B

or subsystem C, i.e ρ
TA
ABC (or ρ

TB
ABC or ρ

TC
ABC) have at least one negative eigenvalue, then

the tripartite state ρABC is said to be an entangled state. PPT criteria for a tripartite

system is only a necessary condition for the detection of entanglement of a tripartite
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state. Further, PPT criteria is not a suitable criterion for the discrimination of the

biseparable state and a genuine entangled three-qubit state.

2. Structural physical approximation of partial transposition (SPA-PT): Partial

transposition operation is not directly accessible in an experiment as it is a positive

but not a completely positive map [28]. So, to make partial transposition operation

realizable in an experiment, we can approximate the partial transposition operation

by using structural physical approximation (SPA) which has been introduced by P.

Horodecki and A. Ekert [29]. Structural physical approximation generally refers to a

method or technique that can be used to approximate a non-physical system in such a

way so that it can be a physically realizable system. SPA map has been implemented

on a single qubit system [30], two-qubit system [31] and qutrit systems [32] as well.

In SPA, a precise amount of white noise is added to a non-physical operator ∧, such

that it gets approximated into a completely positive operator ∧̃. For a d-dimensional

system ρ, the approximate map ∧̃ can be written as

∧̃(ρ) = (1− p)∧ (ρ)+ pD(ρ) (1.5.21)

where 0 ≤ p ≤ 1, D(ρ) = Id
d is a depolarizing channel and Id is a d-dimensional identity

map.

Result 1.5: Let us consider an arbitrary two-qubit state described by the density

operator ρAB

ρAB =


e11 e12 e13 e14

e∗12 e22 e23 e24

e∗13 e∗23 e33 e34

e∗14 e∗24 e∗34 e44

 ,
4

∑
i=1

eii = 1 (1.5.22)

where (∗) denotes the complex conjugate.

The SPA-PT of ρAB is then given by [33,34]

ρ̃AB = [
1
3
(I ⊗ T̃ )+

2
3
(Θ̃⊗D)](ρAB)

=


E11 E12 E13 E14

E∗
12 E22 E23 E24

E∗
13 E∗

23 E33 E34

E∗
14 E∗

24 E∗
34 E44

 (1.5.23)
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where

E11 =
1
9
(2+ e11),E12 =

1
9

e∗12,E13 =
1
9

e13,

E14 =
1
9

e23,E22 =
1
9
(2+ e22),E23 =

1
9

e14,

E24 =
1
9

e24,E33 =
1
9
(2+ e33),E34 =

1
9

e∗34,

E44 =
1
9
(2+ e44) (1.5.24)

T̃ is the SPA of transpose map T and Θ̃ denotes the SPA of inversion map Θ. The

inversion map Θ is defined as Θ(ρAB) =−ρAB and the depolarisation map is given by

D(ρAB) =
I2
2 . SPA-PT for a two-qubit photonic system has been demonstrated using

single-photon polarization qubits and linear optical devices in [30].

Note: Like in two-qubit system, SPA-PT map for three-qubit system described by

the density operator ρABC can also be discussed with respect to the system A, B, C

respectively.

Result 1.6: If a tripartite state described by the density operator ρABC is a biseparable

state in A−BC (or B−AC or C −AB) cut or a separable state then either of these

holds [35]

λmin(ρ̃
TA
ABC) (or λmin(ρ̃

TB
ABC) or λmin(ρ̃

TC
ABC))≥

1
10

(1.5.25)

Result 1.7: Let us consider a tripartite state described by the density operator ρABC

[35]. For the discrimination of three-qubit system, the following inequality in terms of

minimum eigenvalue of SPA-PT of ρABC holds good.

a) If max{λmin(ρ̃
TA
ABC),λmin(ρ̃

TB
ABC),λmin(ρ̃

TC
ABC)} < 1

10 , then ρABC is a genuine entangled

state.

b) If λmin(ρ̃
TA
ABC)≥

1
10 , and either λmin(ρ̃

TB
ABC)<

1
10 or λmin(ρ̃

TC
ABC)<

1
10 or both are less than

1
10 holds, then the tripartite state ρABC is a A−BC biseparable state.

Note: We can obtain the similar results for B−AC or C−AB biseparable state.

c) If λmin(ρ̃
Ti
ABC)≥

1
10 holds for all i = A,B,C, then ρABC is a fully separable state.

3. Witness operator: The primary technique for detecting entanglement experimen-

tally is using the witness operator. Witness operators can detect the bipartite and

multipartite entangled state. Entanglement witnesses are Hermitian operators with at

least one negative eigenvalue [36].
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An observable W is said to be an entanglement witness if it satisfies the following:

C1. Tr[Wσsep]≥ 0,∀ separable state σsep (1.5.26)

C2. Tr[Wσent ]< 0, for at least one entangled state σent (1.5.27)

Therefore, we can say that if the expectation value of the witness operator W with

respect to any state ρ is less than zero, then the state ρ under investigation is an en-

tangled state detected by W . Witness operator criteria is an experimentally realizable

criterion, but it is not very easy to construct a witness operator to detect the entangle-

ment of a quantum state, especially the state in a higher dimensional system. Also,

different witness operators may be constructed to detect different classes of entan-

gled states, otherwise, the separability problem would be solved just by constructing

a single witness operator. Witness operators can be constructed by different methods

which are available in the literature [37,38].

1.5.4 Measures of entanglement

The amount of entanglement contained in the entangled state described by the den-

sity operator ρ can be quantified with entanglement measures E(ρ). The entangle-

ment measure E(ρ) satisfies some properties, which are given below:

(i) E(ρ) vanishes if ρ is separable.

(ii) E(ρ) is invariant under local unitary transformation.

(iii) Local operations and classical communication cannot increase the expected en-

tanglement.

(iv) E(ρ) satisfies convexity property i.e.

E(∑
k

pkρk)≤ ∑
k

pkE(ρk) (1.5.28)

It has been observed that some entanglement measures follow few properties but

not all properties while on the other hand, some measures may not be applied in

an experiment. Due to these difficulties, different entanglement measures have been

introduced in the literature. Some of the entanglement measures are discussed below.
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1.5.4.1 Measures of entanglement in bipartite system

1. Entanglement of formation: Consider the pure state decompositions of the bipar-

tite system comprising of the subsystems A and B such that ρAB = ∑i pi|ψi⟩⟨ψi|. The

entanglement of formation for a state described by the density operator ρAB may be

defined as [39]

E(ρAB) = min∑
i

piE(|ψi⟩⟨ψi|) (1.5.29)

The minimization in (1.5.29) is taken over all possible decompositions {pi, |ψi⟩} of the

density operator ρAB. Entanglement of formation for isotropic states in arbitrary dimen-

sion has been obtained [40]. The concept of entanglement of formation is important in

the study of quantum communication protocols, and quantum cryptography [41]. The

entanglement of formation is a valuable measure in quantum information theory, but

it does have limitations. It is limited to bipartite systems only and calculating the exact

entanglement of formation for mixed states is more complicated.

2. Negativity: Negativity of a bipartite state ρAB is defined as [42]

N(ρAB) = max[0,−2λmin(ρ
TA
AB)] (1.5.30)

where λmin is the minimum eigenvalue of the partial transpose of ρAB denoted as ρ
TA
AB.

Negativity is a useful measure because it provides information about the amount of

entanglement present in an arbitrary dimensional composite quantum system and can

be computed for both pure and mixed states. It has applications in quantum informa-

tion theory, quantum computing, and quantum communication protocols [42], but it

has limitations too. Since negativity is computed with the help of partial transposition

of the density operator and partial transposition is a positive map but not a completely

positive map, so it may not be directly accessible in an experiment.

3. Concurrence: For a two-qubit pure state |ψ⟩AB, the concurrence of |ψ⟩AB is defined

as [43]

C(|ψ⟩AB) =
√

2(1−Tr(ρ2
A)) (1.5.31)

where ρA = TrB(|ψ⟩AB⟨ψ|).

Let us define ρ̃AB = (σy ⊗ σy)ρ
∗
AB(σy ⊗ σy), where σy is the pauli matrices and ρ∗

AB
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denotes the complex conjugate of ρAB. The concurence of two-qubit mixed state ρAB

is defined as

C(ρAB) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4) (1.5.32)

where λi’s are the eigenvalues of ρABρ̃AB which are arranged in descending order, i.e.,

λ1 ≥ λ2 ≥ λ3 ≥ λ4.

Concurrence lies between zero and one. When concurrence is zero, it corresponds to

a separable state and when concurrence is one, it corresponds to a maximally entan-

gled state. Entanglement of formation and concurrence are related to each other, as

entanglement of formation is a monotonically increasing function of concurrence [44].

The formula for the calculation of the concurrence of higher dimensional mixed states

is still not known, in spite of only a few analytic formulae of concurrence for the higher

dimensional bipartite systems have been found [40,45].

1.5.4.2 Measures of entanglement in tripartite system

Tangle and partial tangle: To define tangle and partial tangle, let us consider a

general three-qubit pure state |ψ⟩ABC ∈HA⊗HB⊗HC expressed in the computational

basis as

|ψ⟩ABC =
1
N
(λ0|000⟩+λ1|001⟩+λ2|010⟩+λ3|011⟩+λ4|100⟩+λ5|101⟩+λ6|110⟩+λ7|111⟩)

(1.5.33)

where N =
√

∑
7
i=0 |λi|2 denote the normalization factor.

Tangle: The tangle for the pure state |ψ⟩ABC may be defined as [46]

τABC = 4|e1 −2e2 +4e3| (1.5.34)

where, e1 = λ
2
0 λ

2
7 +λ

2
1 λ

2
6 +λ

2
2 λ

2
5 +λ

2
3 λ

2
4

e2 = λ0λ7λ3λ4 +λ0λ7λ2λ5 +λ0λ7λ1λ6 +λ5λ2λ3λ4 +λ6λ1λ3λ4 +λ5λ2λ6λ1

e3 = λ0λ6λ3λ5 +λ7λ1λ2λ4 (1.5.35)

Remark 1: A relation between bipartite entanglement in a three-qubit pure state

has been presented in the form of an inequality which is known as Coffman-Kundu-
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Wootters (CKW) inequality [44]

C2
AB +C2

AC ≤C2
A(BC) (1.5.36)

where CAB = C(ρAB) denotes the concurrence between the system A and B, CAC =

C(ρAC) denotes the concurrence between the system A and C. The term CA(BC) is

given by

CA(BC) = 2
√

det[TrBC(ρABC)] (1.5.37)

where TrBC(ρABC) denote the reduced system obtained after tracing out the system

BC from ρABC. CA(BC) may be called as the concurrence between system A with the

joint system BC.

Residual entanglement: The term C2
A(BC)−C2

AB −C2
AC may be called as residual en-

tanglement and it may be expressed in terms of e1,e2,e3 as

C2
A(BC)−C2

AB −C2
AC = 4|e1 −2e2 +4e3| (1.5.38)

Therefore, the tangle can also be expressed in terms of residual entanglement as

[44,47]

τABC =C2
A(BC)−C2

AB −C2
AC (1.5.39)

Remark 2: It may be noted that τABC ̸= 0 for GHZ class of three-qubit states while

it vanishes for a certain classes of three-qubit states such as W class, biseparable

states, and separable states.

Partial tangle: The partial tangle of a tripartite pure state |ψ⟩ABC can be expressed

as [47]

τi j =
√

C2
i( jk)−C2

ik =
√

τABC +C2
i j (1.5.40)

for distinct i, j, k and i, j,k ∈ {A,B,C}.

1.6 Bell’s non-locality

In 1935, Einstein, Podolsky, and Rosen (EPR) [16] presented a theory in which they
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considered the wave function of two physical quantities and showed that the knowl-

edge of one physical quantity is not sufficient to gain the knowledge about the other

physical quantity, provided these two physical quantities are described by two non-

commutative operators. From the above argument, they have concluded that the

description of reality given by the wave function in quantum mechanics is not com-

plete [16]. Thus, according to EPR, quantum mechanics lacks a very important prop-

erty known as the element of reality, and hence quantum mechanics is an incomplete

theory. It turns out later that the experiment performed by the researchers supports

the theory of quantum mechanics and thus does not validate the EPR argument. The

main argument for the experimental invalidation of the EPR argument was provided

by John Bell in the form of an inequality, which is popularly known as Bell’s inequal-

ity [17]. The inequality has been constructed exploiting the following two assumptions:

1) Realism:- It tells us about the real existence of the physical system. If a physical

system exists then all the physical properties of it have a definite value independent

of the measurement performed on the system.

2) Locality :- It means that the result of the measurement performed on one system

does not influence the result of the measurement performed on another system.

In 1969, Clauser et. al. gave the first experimental form of Bell’s theory and pre-

sented a generalized form of Bell’s inequality known as CHSH inequality, which is

given by [48]

BCHSH = ⟨A1B1⟩ρAB + ⟨A1B2⟩ρAB + ⟨A2B1⟩ρAB −⟨A2B2⟩ρAB ≤ 2 (1.6.1)

where ⟨AiB j⟩ρAB = Tr[ρ(âi.⃗σ
A)(b̂ j .⃗σ

B)] known as the correlation functions, ρ denote

the two-qubit state shared between two distant parties, σ⃗ is the Pauli matrix vector, â1,

â2, b̂1 and b̂2 are the unit vectors for the first and the second measurements performed

on the subsystems A and B respectively. The Bell-CHSH inequality is tight, i.e. it

defines one of the facets of the convex polytope of local-realistic (LR) models. Later,

Freedman and Clauser [49] and after that Aspect, Grangier, and Roger [50] gave more

convincing experimental predictions of Bell’s inequality.

1.6.1 Experiment performed for the verification of Bell’s non-locality

John S. Bell [17] succeeded in proving the fact that there exists a correlation between

the outcome obtained by the measurement of one system with the outcome obtained
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by the measurement of another system. The discovered correlation may be termed

as non-local correlation. He has provided the mathematical framework in the form of

an inequality for the detection of non-locality in the bipartite system, which is known

as Bell’s inequality. In 1969, Clauser et. al. [48] generalized Bell’s inequality in such

a way that it may be implemented in the experiment. Also, they have proposed an

extension of the Kocher and Commin’s [51] experiment on the polarization correlation

of a pair of optical photons. In 1972, Freedman et. al. [49] performed an experiment

that was in agreement with the quantum mechanics with high accuracy and invalidated

the local hidden variable theory. Later, Aspect et. al. [50] presented a new violation

of Bell’s inequality with the new experimental scheme using optical analogs of Stern-

Gerlach filters and achieved the greatest violation of generalized Bell’s inequality till

the year 1982 [50]. In another experiment, Aspect et. al. [52] have shown that the

correlation of linear polarizations of pair of photons can be measured with time-varying

analyzers. Further, they found that their result violates Bell’s inequality and is in good

match with the predictions of quantum mechanics. The EPR paradox for the case of

continuous variables has also been implemented in an experiment [53]. P. G. Kwiat et.

al. [54] have shown experimentally, a violation of Bell non-locality by over 100 standard

deviations in less than 5 min. In 1998, G. Weihs et. al. [55], performed an experiment

for the first time when both the observers have no mutual influence on each other.

This condition is imposed within the realm of locality and to achieve this condition,

they separated both the observers by 400 m. They obtained a strong violation of

Bell’s inequality by considering the independent observers [55]. Tittel et. al. [56, 57]

performed two experiments where they found a strong violation of Bell’s inequality

when the two distant partners are separated over 10 km apart. The experimental

violation of Bell’s inequality has been observed over more than 10 Kms using energy

time entangled photons by W. Tittel et. al. [58].

1.7 Multipartite non-locality

John Bell [17] developed Bell’s inequality to detect the signature of non-locality in

the bipartite system but the concept of Bell’s inequality can be generalized to the

multipartite system also. Therefore, in multipartite systems, the violation of multipartite

Bell inequalities is a signature of multipartite non-locality. It signifies that the observed

correlations among multiple measurement outcomes cannot be accounted for by any
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local realistic theory. In particular, for a tripartite system, one can observe the non-

locality property within reduced two-qubit and also one can look into the non-locality

between all three-qubits. The non-locality in the reduced bipartite system may be

detected by Mermin’s inequality while the non-locality that existed between all three

qubits may be detected by Svetlichny’s inequality. The non-locality between all three

qubits in the tripartite system is known as genuine non-locality.

1.7.1 Mermin’s inequality

N. D. Mermin [59] presented a gedanken experiment of detecting the non-locality of

three-qubits, which was based on GHZ Bell’s theorem [60, 61]. He then demanded

that his thought experiment demonstrated the non-locality of three-qubit better than

the EPR experiment that analyzed the two-qubit non-locality [59]. Like Bell’s inequal-

ity, Mermin also developed an inequality that may capture the non-locality of a three-

qubit system. To proceed towards the development of an inequality, let us consider

a three-qubit state described by the density operator ρABC. N. D. Mermin [62] con-

structed an operator to detect the non-locality of a three-qubit state. The constructed

operator is known as Mermin’s Operator and can be written as

M = a⃗1.⃗σ ⊗ a⃗2 .⃗σ ⊗ a⃗3 .⃗σ − a⃗1.⃗σ ⊗ b⃗2.⃗σ ⊗ b⃗3.⃗σ

−b⃗1.⃗σ ⊗ a⃗2 .⃗σ ⊗ b⃗3 .⃗σ − b⃗1.⃗σ ⊗ b⃗2.⃗σ ⊗ a⃗3.⃗σ (1.7.1)

where a⃗i and b⃗ j (i, j = 1,2,3) are unit vectors in R3 and the component of σ⃗ =(σx,σy,σz)

denote the Pauli matrices. Using Mermin’s operator, the non-locality of a three-qubit

state ρABC may be detected by the inequality given as

|⟨M⟩ρABC | ≤ 2 (1.7.2)

The inequality (1.7.2) is known as Mermin’s inequality and it can be considered as

the generalized form of Bell-CHSH inequality [62]. If any three-qubit state violates

(1.7.2) then we may say that state ρABC has non-locality, but we cannot bifurcate the

type of non-locality from the violation of Mermin’s inequality. It can be biseparable

non-locality or can be genuine non-locality. C. Pagonis et. al. [63] extended the proof

of Mermin’s inequality to n-particle case. The first experimental generalization for

Bell’s inequality using 3 photons was shown by Klyshko [64] and the experimental
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generalization of Bell’s inequality using n photons was shown by Belinskii [65]. Later,

the generalization of Bell’s inequality for n-qubit state known as Bell-Klyshko inequality

or Mermin-Klyshko inequality has been presented by Gisin et. al. [66]. The maximum

violation of Bell-Klyshko inequality for n-qubit quantum state can be made up to a

factor of 2
(n−1)

2 . If we assume m out of n-qubits to be independent, then the violation of

Bell’s inequality can be increased with increasing m exponentially [66] which is more

than the maximum violation of Bell’s inequality achieved by Mermin’s work [62]. Bell’s

inequality for n-particle GHZ state has been studied by M. Ardehali [67]. The relation

between the entanglement measures and the maximal violation of Mermin’s inequality

has been studied in [68,69].

1.7.2 Svetlichny’s inequality

A lot of research has already been done in studying the problem of two-qubit non-

locality [70–79]. Therefore, the researcher turned on to the study of non-locality of

multi-partite state [80–85]. As the number of qubits increases in the system, the

complexity of the system also increases and thus, the study of the non-locality of

the multipartite system may become a difficult problem but in spite of that, some

progress has been achieved. In the literature, there exist inequality such as Mermin

inequality [62] that may be used to detect the non-locality in the tripartite system. The

problem is that the violation of it, which signifies the presence of non-locality, was

not only observed for all the three-qubit in the tripartite system but also observed for

the reduced two-qubit system. Thus, for a given three-qubit system, it is not always

possible to discriminate between the non-locality of the reduced two-qubit system

and the genuine non-locality of the three-qubit system. To sort out this problem, G.

Svetlichny [86] introduced an inequality, which is effective for the detection of genuine

non-locality in a tripartite system and is commonly known as Svetlichny’s inequality.

The inequality is given by [86]

|⟨Sv⟩ρABC | ≤ 4 (1.7.3)

where Sv denote the Svetlichny operator, which may be defined as

Sv = a⃗.σ⃗1 ⊗ [⃗b.σ⃗2 ⊗ (⃗c+ c⃗′).σ⃗3 + b⃗′.σ⃗2 ⊗ (⃗c− c⃗′).σ⃗3]

+ a⃗′.σ⃗1 ⊗ [⃗b.σ⃗2 ⊗ (⃗c− c⃗′).σ⃗3 − b⃗′.σ⃗2 ⊗ (⃗c+ c⃗′).σ⃗3] (1.7.4)
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Here a⃗, a⃗′; b⃗, b⃗′ and c⃗, c⃗′ are the unit vectors and the σ⃗i = (σ x
i ,σ

y
i ,σ

z
i ) denote the spin

projection operators. To obtain the maximal violation of the Svetlichny inequality, the

expectation value of the Svetlichny operator must achieve the value 4
√

2. In particular,

the violation of Svetlichny inequality by three-qubit generalized GHZ state, maximal

slice state, and W class state has been studied in [87, 88] and it has been found that

the maximal violation 4
√

2 may be obtained for GHZ state.

N. S. Jones et. al. [89] extended the 3-party non-locality described by Svetlichny’s in-

equality to m-party Svetlichny’s polynomial to detect the non-locality of m-qubit state.

In 2009, Bancal et. al. also generalized the Svetlichny’s inequality to n-qubit state and

verified it by the violation on n-qubit GHZ state and for some parameters of n-qubit

W state [84]. The experimental confirmation for the violation of Svetlichny’s inequality

has been reported by Lavoie et. al. [90]. The study of genuine non-locality of gener-

alized GHZ state and maximally slice state in terms of three tangle has been studied

and it has been found that maximally slice state always violates Svetlichny’s inequal-

ity and generalized GHZ state violates Svetlichny’s inequality when tangle is greater

than 1
4 [87]. D. Collins et. al. [91] re-derived the Svetlichny’s inequality and derived a

new Bell’s inequality for three particle system with the help of Mermin-Klyshko (MK)

inequalities [65, 66] and also further generalized their introduced Bell’s inequality for

n particle systems. The comparison between the re-derived Svetlichny’s inequality

and Mermin’s inequality has been studied in [91]. Zhang et. al. [92] also investigated

the genuine non-locality between three qubits possessed by Alice (A), Bob (B) and,

Charlie (C), using Svetlichny’s inequality and then showed that at most 2 Charlie can

shared the genuine non-locality with an Alice and a Bob.

1.8 Non-locality and entanglement

Entanglement and non-locality can be considered as two faces of a single coin. Both

of them represent the quantum correlation but one violates the Bell-type inequalities

while the other does not. The quantum correlation that violates the inequality con-

structed on the assumptions of the local realism principle is called quantum non-local

correlation but on the other hand, the correlation that existed in the entangled bipartite

or multipartite system, may or may not violate the Bell type inequality. If a quantum

state violates Bell’s inequality then the state is said to have non-local features and

hence entangled state. But the converse is not true. N. Gisin showed that all bipartite
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pure entangled states violate Bell’s inequality [93]. This was generalized to multi-

partite pure entangled states by S. Popescu and D. Rohrlich [94]. Gisin et. al. [95]

proved the fact that there may exist some mixed states which violate Bell’s inequality

as well. They also have been shown that if the state represents a singlet state then

the state maximally violates Bell’s inequality. Braunstein et. al. [96] have shown that

the maximum violation of CHSH inequality can even be achieved by mixed states.

Later, Horodecki family [97] derived another form of Bell’s inequality, which is a nec-

essary and sufficient criterion for the violation of Bell-CHSH inequality by any arbitrary

two-qubit quantum states. Let us now define a quantity M(ρAB) as

M(ρAB) = u1 +u2 (1.8.1)

where u1 and u2 are the two maximum eigenvalues of T †T . T denotes the correlation

matrix of order 3 and its entries ti j can be calculated as

ti j = Tr[ρAB(σi ⊗σ j)], i, j ∈ {1,2,3} (1.8.2)

Now we are in a position to state the necessary and sufficient conditions for the vio-

lation of Bell’s inequality. If a quantum state is described by the density operator ρAB

then the necessary and sufficient condition that the state ρAB violate the Bell-CHSH

inequality, is given by

M(ρAB)> 1 (1.8.3)

Since the expectation value of the Bell-CHSH operator with respect to the state ρAB

can go up to 2
√

2 so the maximum value of M(ρAB) can go up to 2 only. Later,

M. Zukowski and C. Brukner [98] generalized the necessary and sufficient condition

(1.8.1) to n-qubit state, and derived a necessary and sufficient condition for the satis-

faction of the generalized Bell inequality of an arbitrary n-qubit state.

For any two-qubit state ρAB, the upper bound of the non-locality can be expressed in

terms of the concurrence as [99]

NL(ρAB)≤ 2
√

1+C(ρAB)2 (1.8.4)

where NL(ρAB) denotes the non-locality of the state ρAB and C(ρAB) denotes the con-

currence of the state ρAB.
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The equality in (1.8.4) has been achieved for all the pure states. For the mixed two-

qubit states, equality can be achieved when the state belongs to Q

Q ≡ {(UA ⊗UB)(p|ψ1⟩⟨ψ1|+(1− p)|ψ2⟩⟨ψ2|)(UA ⊗UB)
†} (1.8.5)

where UA and UB are the arbitrary unitary operators, |ψ1⟩ = Cosθ |00⟩+ Sinθ |11⟩ and

|ψ2⟩= Sinθ |00⟩+Cosθ |11⟩, θ ∈ [0,Π) [99–101].

N. Gisin [102] showed that if we apply local filters on a quantum state that exhibits

local properties, then the quantum state may become non-local. This is an implication

of the hidden non-locality which may be revealed after the application of local filters.

Hirsch et. al. proved that the entangled states from the class of Werner state [103] still

admit local hidden variable theory even after applying local filters on the state. So, lo-

cal filters cannot always reveal non-locality from entanglement [104]. There also exist

some states whose non-locality is revealed after applying the most general local mea-

surements [105]. Also, it has been found that there exist entangled states on which

the application of a sequence of local measurements leads to the maximal violation

of Bell’s inequality [105]. Going one step forward, Masanes et. al. [106] have shown

that the violation of the CHSH inequality can be seen in some kind of Bell experiment

for all the entangled states. Thus, they have proved that all entangled states display

some hidden non-locality.

From the above discussion, it is clear that entanglement and non-locality are very

closely related concepts but they are not same. They can be considered as two dif-

ferent resources [107]. Before the work of Methot et. al. [71], it has been considered

that maximally entangled states have more non-locality than non-maximally entan-

gled states but this statement is not true in general. They discovered that in general,

a non-maximally entangled state can give more non-locality than maximally entangled

states with respect to all the measures such as Bell Inequalities, the Kullback Leibler

distance, entanglement simulation with communication or with non-local boxes, the

detection loophole, and efficiency of cryptography [71].

Non-locality and entanglement for two-qubits were studied by J. Batle and M. Cases

[79] and obtained the class of two-qubit states that violate Bell’s inequality maximally

in terms of the degree of mixedness or maximum eigenvalue. They further estab-

lished the relationship between the non-locality and distillability of three-qubit states.

The Bell non-locality of higher dimensional quantum systems based on quantum en-

tanglement has been studied by T. Zhang et. al. [108]. Su et. al. investigated the
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quantitative relationship between the entanglement and non-locality of a general two-

qubit system and obtained the necessary and sufficient condition for the achievement

of the upper bound on the non-locality of a general two-qubit system [99]. L. Tendick

et. al. [109] have shown that it is not always necessary that if we increase the mea-

surement resources then the requirement of the minimal state resources decreases

for a fixed Bell violation.

1.9 Non-locality in communications

Many novel applications of non-locality have been developed for quantum computa-

tion and quantum communication [110], including communication complexity [111],

quantum cryptography [112], randomness generation [113], and device-independent

quantum computation [114] etc. In this thesis, we mainly focus on the role of quantum

non-locality in communication protocols such as quantum teleportation, and controlled

quantum teleportation.

1.10 Quantum teleportation

The process of transferring an unknown quantum state between two parties at two dis-

tant locations without transferring the physical information about the unknown quan-

tum state itself is known as quantum teleportation [20]. In other words, it can also

be understood as neither any physical information about the state is transferred nor a

swap operation is performed between the sender and the receiver. Teleportation pro-

tocol makes use of the non-local correlations generated by using an entangled pair

between the sender, the receiver, and the exchange of classical information between

them. This concept plays a central role in quantum communication using quantum re-

peaters [22,115] and can also be used to implement logic gates for universal quantum

computation [116].

1.10.1 Bennett et. al. quantum teleportation protocol for 2⊗2 system

Originally, Bennett et. al. developed the quantum teleportation protocol in 1993, in

which they have shown that an unknown quantum state can be teleported with the

help of classical communication and a shared resource state, i.e., an entangled chan-

nel [20]. To understand the working principle of the protocol, we consider two parties,
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say, Alice (A) and Bob (B) residing far apart from each other. Suppose that Alice

wants to teleport an unknown qubit |φ⟩A = α|0⟩A +β |1⟩A, where |α|2 + |β |2 = 1, from

her location to Bob’s location. To do this task, an entangled EPR-pair is generated at

a source and then one qubit is sent to Alice and another to Bob respectively. Thus,

in principle, Alice and Bob share a two-qubit maximally entangled state as a resource

state that can be used in the teleportation protocol. Two-qubit maximally entangled

states are also known as Bell states, which are of the form as follows

|ϕ+⟩AB =
1√
2
(|01⟩AB + |10⟩AB) (1.10.1)

|ϕ−⟩AB =
1√
2
(|01⟩AB −|10⟩AB) (1.10.2)

|ψ+⟩AB =
1√
2
(|00⟩AB + |11⟩AB) (1.10.3)

|ψ−⟩AB =
1√
2
(|00⟩AB −|11⟩AB) (1.10.4)

The set of states {|ϕ+⟩AB, |ϕ−⟩AB, |ψ+⟩AB, |ψ−⟩AB} forms a basis and known as Bell

basis. Let us now consider the Bell state |ϕ+⟩AB as the resource state shared between

Alice and Bob. In the first step, Alice makes a joint measurement on her EPR particle

and the unknown quantum state she wishes to teleport. The composite system can

be written as

|φ⟩A ⊗|ϕ+⟩AB = (α|0⟩A +β |1⟩A)⊗
1√
2
(|01⟩AB + |10⟩AB)

=
1√
2
(α(|001⟩AAB + |010⟩AAB)+β (|101⟩AAB + |110⟩AAB)) (1.10.5)

The computational basis {|00⟩, |01⟩, |10⟩, |11⟩} in a four-dimensional Hilbert space can

be transformed to the Bell basis using the transformation given as

|00⟩AA =
1√
2
(|ψ+⟩AA + |ψ−⟩AA)

|11⟩AA =
1√
2
(|ψ+⟩AA −|ψ−⟩AA)

|10⟩AA =
1√
2
(|ϕ+⟩AA + |ϕ−⟩AA)

|01⟩AA =
1√
2
(|ϕ+⟩AA −|ϕ−⟩AA) (1.10.6)
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Using (1.10.6) in (1.10.5), and after re-arranging the terms, we get

|φ⟩A ⊗|ϕ+⟩AB =
1
2
[|ϕ+⟩AA ⊗ (α|0⟩B +β |1⟩B)+ |ϕ−⟩AA ⊗ (−α|0⟩B +β |1⟩B)

+ |ψ+⟩AA ⊗ (β |0⟩B +α|1⟩B)+ |ψ−⟩AA ⊗ (−β |0⟩B +α|1⟩B)](1.10.7)

Alice then makes the measurement on Bell basis. After the measurement, a state

will be projected at Bob’s location and the state that Alice wanted to be teleported

disappear from her site. This means that the no-cloning theorem [117] is not violated.

Bob can reveal the state that appears on his site only after Alice communicates her

result to Bob with the help of two bits of classical communication. After receiving two

classical bits, Bob will apply the appropriate local unitary operation {I ⊗ I, I ⊗σx, I ⊗

σy, I ⊗σz} to retrieve the state sent by Alice. For instance, if Alice’s measurement

outcome is |ϕ+⟩AA then the projected state is an exact replica of the state which was

teleported, and therefore in this case, Bob has nothing to do to retrieve the state sent

by Alice. The rest of the cases are discussed in Table 1.1.

Alice’s measurement State appeared at Local operation Final State
outcome Bob’s location performed by Bob at Bob’s location
|ϕ+⟩AA α|0⟩B +β |1⟩B I2

α|0⟩B +β |1⟩B
|ϕ−⟩AA −α|0⟩B +β |1⟩B −σz
|ψ+⟩AA β |0⟩B +α|1⟩B σx
|ψ−⟩AA −β |0⟩B +α|1⟩B −iσy

Table 1.1: Table of local operation to be applied on the received state to get the resulting state
as the teleported state

Definition 1.10.1. The fidelity of quantum teleportation may be defined as the overlapping

between the input state to be sent by the sender and the output state received by the receiver.

For a shared channel ρAB in quantum teleportation protocol teleportation fidelity is denoted by

(f(ρAB)).

Remark: If the maximally entangled state is shared between two distant partners,

then following Bennett’s protocol, the fidelity of the teleportation is found to be equal

to unity. Thus, it is called a perfect teleportation.

1.10.2 Revisiting quantum teleportation

In this section, let us revisit quantum teleportation and take a small tour of what has

been already done on this topic. To proceed forward, let us define a few terms that

may help us to go deeper into the detailed understanding of quantum teleportation.
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Figure 1.1: Pictorial representation of Bennett et. al. quantum teleportation protocol

Singlet fraction: It is defined as the maximum overlap between the quantum state

described by the density operator ρAB and a maximally entangled state in a finite-

dimensional Hilbert space. It is denoted by F(ρAB).

Mathematically, the singlet fraction F(ρAB) can be expressed as

F(ρAB) = Maxi(⟨ψi|ρAB|ψi⟩, i = 1,2, · · · ,d2 (1.10.8)

where |ψi⟩ denote the maximally entangled states lying in the Hilbert space of dimen-

sion d.

Alternatively, the singlet fraction may also be expressed as [118]

F(ρAB) = maxUA,UB{F [ρAB,(UA ⊗UB)|φ+
d ⟩⟨φ+

d |(U†
A ⊗U†

B)]} (1.10.9)

where |φ+
d ⟩= 1√

d ∑
d−1
i=0 |ii⟩ and maximum is taken over all unitary operators UA and UB.

A quantity V (ρAB): It is used to detect whether the shared state ρAB is useful in

quantum teleportation and it can be defined as

V (ρAB) = Tr
√

T †T = u1 +u2 +u3 (1.10.10)
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where u′is are the eigenvalues of
√

T †T and T denotes the correlation matrix of order

3. The entries ti j of the correlation matrix T can be calculated as

ti j = Tr[ρAB(σi ⊗σ j)], i, j ∈ {1,2,3} (1.10.11)

Remark: If we follow the prepare and measure strategy to extract information from a

given single copy of a quantum state then the maximum information we can gain about

the given system by performing the optimal measurement on the system is 2
3 [119].

1.10.2.1 Quantum teleportation: shared state lying in 2⊗2 dimensional Hilbert space

Braunstein et. al. [120] have shown that the teleportation of the polarization state of

a photon can be achieved by measuring an optical version of the Bell operator. The

conditional efficiency of the teleportation scheme has been shown to tend to 100%.

K. Banaszek has derived the necessary and sufficient conditions to obtain the optimal

teleportation in terms of maximal teleportation fidelity using arbitrary two-qubit pure

states [121]. G. Rigolin also considered arbitrary two-qubit quantum state of the form

|φ⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩ to demonstrate faithful quantum teleportation and

further showed that if a multipartite state acts as a genuine teleportation channel then

that state will have maximum entanglement [122]. Agrawal and Pati [123] reported

that the Bennett et. al. quantum teleportation protocol can also be implemented with

a non-maximally entangled pure state instead of the maximally entangled pure state

as a resource state but the price has to be given in terms of the teleportation fidelity.

The teleportation fidelity in this scenario reduces to a value, which is less than unity.

Moreover, the teleportation protocol losses its deterministic property, and the proto-

col succeded with some non-zero probability. Another quantum teleportation scheme

has been discussed in [124], where the shared entangled state between two distant

parties is a non-maximally entangled state. Lee et. al. [125] studied quantum tele-

portation protocol using Werner state as a resource state for the teleportation of a

two-qubit entangled state.

For 2⊗ 2 dimensional system, if the shared state is described by the density oper-

ator ρAB then the relation between singlet fraction (F(ρAB)) and teleportation fidelity

( f (ρAB)) can be expressed as [126]

f (ρAB) =
2F(ρAB)+1

3
(1.10.12)
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It is clear from the above relation (1.10.12) that if F(ρAB)>
1
2 then the shared state ρAB

is useful for teleportation [126]. Horodecki et. al. further expressed the teleportation

fidelity in terms of the quantity V (ρAB) as [127]

f (ρAB) =
1
2
(1+

V (ρAB)

3
) (1.10.13)

Using (1.10.13), Horodecki et. al. [127] also derived a general result for the usefulness

of a two-qubit shared state as a resource state in quantum teleportation that can be

stated as a result given below:

Result: Any general two-qubit state is useful for teleportation if and only if V (ρAB)> 1.

In an open quantum system, the shared two-qubit state between two distant partners

is always a mixed state. Therefore, if we use the mixed two-qubit entangled state ρAB

to implement the teleportation protocol then it may happen that either the teleportation

fidelity f (ρAB) ≤ 2
3 or the singlet fraction F(ρAB) ≤ 1

2 . Thus, the question arises that if

the singlet fraction of the certain shared two-qubit entangled state is less than or equal

to 1
2 , then can we increase the value of the singlet fraction of the shared state and go

beyond the critical value 1
2? Badziag et. al. [128] analyzed this question and applied

local trace-preserving transformation on these two-qubit entangled states to increase

the singlet fraction of the shared two-qubit states. They have derived this result for a

particular class of states. F. Verstraete and H. Verschelde [129] analyzed the above

question in a general setting and studied the teleportation of a single qubit using an

arbitrary mixed two-qubit state. They have shown that any two-qubit entangled state

described by the density operator ρAB can be useful as a resource state in quantum

teleportation and derived an expression of the optimal singlet fraction denoted by

Fopt
LOCC(ρAB). The optimal singlet fraction Fopt

LOCC(ρAB) is given by [129]

Fopt
LOCC(ρAB) =

1
2
−Tr(Xopt

ρ
TB
AB) (1.10.14)

where Xopt is the optimal filtering operation of rank one and it can be written as Xopt =

(A⊗ I2)|φ⟩⟨φ |(A† ⊗ I2), −I2 ≤ A ≤ I2. The matrix A can be expressed in the form as

A =

a 0

0 1

 , −1 ≤ a ≤ 1 (1.10.15)

It may be observed that the optimal singlet fraction given in (1.10.14) depends on the
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partial transposition operation, which is positive but not completely positive operation.

Thus, it is very difficult to realize the optimal singlet fraction in the laboratory. To tackle

this problem, S. Adhikari [33] re-expressed optimal singlet fraction Fopt
LOCC(ρAB) in terms

of the minimum eigenvalue of the resulting state obtained after applying the operation

known as structural physical approximation of the partial transpose (SPA-PT). The

optimal singlet fraction Fopt
LOCC(ρAB) given in (1.10.14) then reduces to

Fopt
LOCC(ρAB) =

1
2
− 9(a2 +1)

2
[λmin −

2
9
], −1 ≤ a ≤ 1 (1.10.16)

where λmin denote the minimum eigenvalue of SPA-PT of state ρAB.

A lot of work has already been done by using different types of noise in the quantum

teleportation protocol [130–132].

1.10.2.2 Quantum teleportation: shared state lying in d ⊗d dimensional Hilbert space

Horodecki et. al. [126] derived the relation between singlet fraction F(ρAB) and tele-

portation fidelity f (ρAB) for the state ρAB lying in d ⊗d dimensional Hilbert space. The

obtained relation is then given by

f (ρAB) =
dF(ρAB)+1

d +1
(1.10.17)

The maximum acheivable singlet fraction of a shared separable state ρAB lying in d⊗d

dimensional Hilbert space in quantum teleportation protocol cannot be greater than
1
d . In other words, it can be restated as if a shared separable state ρS

AB lying in d ⊗d

dimensional Hilbert space is used as a resource state in a quantum teleportation

protocol then F(ρS
AB)≤

1
d [126]. Thus, for any bipartite separable state ρAB in d ⊗d di-

mensional system, the teleportation fidelity f (ρAB) is always less than or equal to 2
d+1 ,

i.e., f (ρAB)≤ 2
d+1 . But there may also exist entangled states described by the density

operator ρe
AB for which f (ρe

AB) ≤
2

d+1 . So, for a given bipartite state ρAB, it will not be

possible to discriminate between separable and entangled state just by merely ob-

serving the inequality f (ρAB)≤ 2
d+1 . Thus, if we consider the contrapositive statement

then it may be possible to say something about the entangled state. Therefore, the

contrapositive statement may now be stated as: if f (ρAB)>
2

d+1 or in terms of singlet

fraction F(ρAB) >
1
d , then the quantum state ρAB may be considered as an entangled

state which may be useful in quantum teleportation.

From the above arguments, it is clear that the success of quantum teleportation de-
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pends on the shared resource state, but it is not always feasible to check whether

the shared resource state is useful for teleportation or not. N. Ganguly et. al. [133]

partially solved this problem by constructing a witness operator for the possible detec-

tion of the shared entangled state useful for quantum teleportation. Later Adhikari et.

al. [38] provided a systematic way to construct an optimal witness operator for qudit

systems and in particular, they have shown that the constructed witness operator is

optimal for both qubit-qubit and qutrit-qutrit system. Another higher dimensional tele-

portation scheme has been proposed using a partially entangled state as a resource

state in which Alice uses a less entangled quantum channel but uses more classical

bits to transfer a quantum state to Bob [134].

Till now, the teleportation of an arbitrary qubit has been studied in the quantum tele-

portation protocol but there is a scope of teleporting an arbitrary qudit using an en-

tangled two-qudit state. This is addressed by Luo et. al. [135]. They have studied

the teleportation of an arbitrarily high dimensional quantum state in a variant of the

quantum teleportation scheme. They have illustrated their scheme for transferring an

unknown qutrit via a maximally entangled two-qutrit state [135].

The effect of noise for d-dimensional bipartite state has been studied in [136] using

four different types of noises such as dit-flip, d-phase-flip, dit-phase-flip, and depolariz-

ing noise. The average fidelity of teleportation was derived using a different approach

when the qudit undergoes the generalized amplitude damping channel.

1.10.3 Quantum teleportation via multipartite state as a shared state

It is known that there are two types of genuine three-qubit entangled states, namely,

GHZ and W class of states, which are inequivalent under stochastic local operation

and classical communication (SLOCC) [26]. Quantum teleportation using three par-

ticle GHZ state as a resource state has been introduced by Karlson et. al. [137]. It

is an interesting fact that although the GHZ class of states can serve as a potential

candidate for quantum teleportation but W class of states does not. This fact is ev-

ident from the work [138] where it has been shown that W class of states are not

suitable for perfect quantum teleportation. The teleportation is perfect in the sense

that a quantum state can be teleported with unit fidelity. In this direction of research,

Gorbachev et. al. [139] have studied quantum teleportation by considering those W

class of states as a shared state, which can be obtained after the application of non-

local unitary operator on the inequivalent class of GHZ states. Further, Agrawal and
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Pati introduced a new class of three-qubit states, which is given by [140]

|Wn⟩ABC =
1√

2+2n
(|100⟩ABC +

√
neιγ |010⟩ABC +

√
n+1eιδ |001⟩ABC) (1.10.18)

They have shown that the pure three-qubit state given by (1.10.18) falls under W class

of state and this W class of state can be used for perfect teleportation.

Joo et. al. [141] developed two schemes S1 and S2 of teleportation protocol, when the

W class state is shared as a resource state in quantum teleportation protocol. They

have calculated the success probability and the average fidelity with respect to both

the schemes and found that the average fidelity of the scheme S2 is always less than

the scheme S1 [141]. Quantum teleportation of a two-qubit state using a constructed

genuine four-qubit entangled state as a resource state has been studied in [142],

where the constructed four-qubit state is not reducible to the pair of Bell state. Its

properties are compared with the four-party GHZ and W state [142]. Jung et. al. [143]

discussed the behavior of GHZ and W state when shared as a resource state in

quantum teleportation protocol under the effect of different kinds of noise and derived

a relation between fidelity and entanglement under different noise situtations [143].

Another scheme of teleportation using a GHZ-like state as a resource state which is

quite similar to W state has been proposed [144]. In the scheme they considered

one sender and two receivers and the unknown qubit can be teleported to any of

the receivers depending upon the outcome of the sender and the third party other

than the receiver [144]. Quantum teleportation using three-party non-symmetric or

asymmetric states as a resource state has been studied in [145]. J. Bae et. al. further

have shown that teleportation with an asymmetric three-qubit state would carry more

information than teleportation using a three-qubit symmetric state [145].

1.10.4 Realization of quantum teleportation in an experiment

First experimental approach of quantum teleportation has been reported by D. Bouwm-

eester et. al. [146]. The implementation of quantum teleportation of any arbitrary

quantum state has been achieved in an experiment. They have used parametric

down-conversion and two-photon interferometry for generating entanglement and an-

alyzing the Bell state in an experiment [147]. Experimental implementation of quan-

tum teleportation over interatomic distances using liquid-state nuclear magnetic reso-

nance has also been reported in [148]. In 2001, an experimental approach of deter-
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ministic teleportation of an arbitrary polarization state has been reported in [149]. In

this experiment, the Bell state measurements were distinguished completely, which

assured a perfect quantum teleportation scheme [149]. An experimental demonstra-

tion of teleportation with an average fidelity of 0.84 has been given in [150]. This

experiment has been performed to achieve teleportation using a C-not gate, which

opens the way toward quantum computing [150]. The teleportation of a two-qubit

composite system can be realized in an experiment [151]. The high-fidelity teleporta-

tion of photons over a distance of 600 meters using linear optics is presented in [152].

A free-space implementation of quantum teleportation over 16 km and later for 100

km and 143 km respectively has been proclaimed in [153–155]. Deterministic quan-

tum teleportation of photonic quantum bits has also been shown to be realized in an

experiment using a hybrid technique [156]. Recently, an experimental realization of

quantum teleportation of a high dimensional state has been recorded in [157].

1.11 Quantum teleportation and non-locality

S. Popescu [158] remarked that the non-locality given out by teleportation and the

non-locality of correlation may be considered as the two faces of the same physical

property but they are inequivalent. Further, he conjectured that if a bipartite entangled

state ρAB violates some Bell’s inequality, then the state ρAB can be used for telepor-

tation, and vice versa [158]. But this conjecture may not be true as there exist some

two-qubit mixed entangled states that are useful in teleportation but do not violate any

Bell’s inequality. Popescu [158,159] also raised a few questions on the topics of tele-

portation and non-locality such as (i) whether there exists any two-qubit mixed state

which violate Bell’s inequality but not useful in quantum teleportation? (ii) what is the

relation between the fidelity of teleportation and non-locality?

N. Gisin [160] obtained the lower bound of the teleportation fidelity f (ρAB), where the

state ρAB shared between two distant partners is non-local. Thus, the state ρAB is

non-local if the teleportation fidelity f (ρAB) satisfies

f (ρAB)> 0.87 (1.11.1)

Gisin [160] also cited an example of a two-qubit mixed state such as Werner state

[103] as a resource state in a quantum teleportation protocol and found that the fidelity

of the Werner state is more than the classical limit i.e. 2
3 but is not greater than 0.87.
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He then concluded that it does not mean that there exists non-locality in the Werner

state which is hidden. In 1996, Horodecki et. al. [127] took an important step in

this direction and derived a general relation between teleportation fidelity and Bell’s

inequality for any arbitrary two-qubit state. They stated that any two-qubit quantum

state which violates Bell’s inequality is useful for teleportation and provided the lower

bound of maximum teleportation fidelity denoted by fmax(ρAB) in terms of M(ρAB), is

given by

1
2
[1+

M(ρAB)

3
]≤ fmax(ρAB) (1.11.2)

where M(ρAB) may be considered as a quantifier for the estimation of non-locality and

is defined in (1.8.1). Also, it can be easily found out that the maximal value of M(ρAB)

is equal to B2
max
4 , where Bmax denotes the maximal value of Bell’s inequality of the state

ρAB. In 2013, Cavalcanti et. al. [161] showed that all the entangled states which are

useful for teleportation do violate Bell-CHSH inequality deterministically. Thus they

act as non-local resources in quantum teleportation. In this way, they established a

linkage between teleportation and non-locality. Chakrabarty et. al. [162] used the

output of the Pati-Braunstein deletion machine as a resource state for quantum tele-

portation and found that it is useful for teleportation but it follows the LHV model.

Wang et. al. [163] studied the effect of two-qubit noisy channels on quantum telepor-

tation, entanglement, and non-locality. In particular, they have considered the effect

of noise on the Bell state and the Werner state and derived the relation between non-

locality, entanglement and teleportation. They also found that there exists a critical

value of the correlation for which non-classical teleportation fidelity, non-vanishing en-

tanglement, and Bell non-local states have been achieved [163]. T. Jennewein et.

al. [164] proved that quantum teleportation indeed exhibits non-local nature by per-

forming an experiment. Non-locality and teleportation for three-qubit states were first

studied by S. Lee et. al. and provided a general result that if any three-qubit state

violates Mermin’s inequality then they are useful in three-qubit quantum teleporta-

tion [165].

1.12 Controlled quantum teleportation (CQT)

The original quantum teleportation scheme proposed by Bennett et. al. [20] is appli-

cable for two parties. In 1998, Karlsson et. al. [137] introduced another teleportation
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protocol that works for three parties, which is famously known as controlled quantum

teleportation (CQT). In this scheme, there are three parties Alice (the sender), Bob

(the receiver), and Charlie (the controller), shares a three-qubit entangled state known

as the resource state between them. Alice wants to teleport an unknown qubit to Bob

via the shared state with the participation of Charlie. Karlsson et. al. [137] considered

a genuine three-qubit GHZ state as a resource state. Therefore, the teleportation

protocol via GHZ state may be described as follows: firstly, Charlie will apply Von

Neumann measurement on his particle. After his measurement, an entangled state

will be projected between Alice and Bob in terms of Charlie’s measurement. After his

measurement, he uses classical bits to communicate his measurement outcome to

Alice and Bob. Then, Alice will perform a Bell-state measurement on her shared qubit

and the unknown quantum state which she wants to be teleported. Consequently, a

single qubit state will be projected at Bob’s location, which contains Charlie’s mea-

surement parameter. Finally, Alice will send one classical bit to Bob to inform him

about her measurement outcome so that he can apply the appropriate unitary opera-

tor to obtain the teleported state at his location. This protocol is known as controlled

quantum teleportation. This teleportation scheme is controlled by Charlie in the sense

that, he can adjust his parameter in such a way that it can increase or decrease the

fidelity of the teleportation.

Now the question arises that under what circumstances, we will be able to success-

fully teleport a qubit following the procedure of controlled quantum teleportation pro-

tocol with three-qubit state? Like in quantum teleportation, the success rate of con-

trolled quantum teleportation also depends on fidelity. Unlike teleportation, there are

two types of fidelities in controlled quantum teleportation. These fidelities may be

termed as (i) Conditioned fidelity and (ii) Non-conditioned fidelity.

Now, we are in a position to describe the CQT scheme. In CQT scheme, we may

consider that Alice, Bob and Charlie shared a three-qubit pure/mixed state described

by the density operator ρABC. Throughout the thesis, we assume that Charlie act

as a controller who perform Von Neumann measurement on his qubit. A single

qubit Von Neumann measurement in the computational basis may be described as

{πk = |k⟩⟨k|,k = 0,1}. Generally, a single qubit measurement in any arbitrary basis is

denoted by Bk, which is given in (1.4.22) and (1.4.23). When Charlie perform Von

Neumann measurement Bk on his qubit, the three-qubit state ρABC projected onto the
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two-qubit state

ρ
(k)
AB =

1
pk
(I ⊗ I ⊗Bk)ρABC(I ⊗ I ⊗B†

k), k = 0,1 (1.12.1)

where pk = tr((I⊗I⊗Bk)ρABC(I⊗I⊗B†
k)) denote the probability of collapsing the three-

qubit state to two-qubit state after the measurement performed on the third subsys-

tem. The two-qubit state ρ
(k)
AB shared between Alice and Bob may be used as a re-

source state when teleporting an arbitrary single qubit state possessed by Alice. We

further assume that in the process of single qubit teleportation using a shared two-

qubit state, Alice act as a sender and Bob, a receiver. Alternatively, we may also

describe the above equivalent situation with the reduced two-qubit state described by

the density operator ρAB = TrC(ρABC). The resulting two-qubit state described by the

density operator ρAB may also be used in transmitting an arbitrary single qubit state

through conventional teleportation scheme.

In CQT scheme, the faithfulness of the teleportation may be quantified by the condi-

tioned fidelity denoted by fC(ρ
(k)
AB ) and the non-conditioned fidelity fNC(ρAB).

(i) Conditioned fidelity: It is the fidelity of the state ρ
(k)
AB acheived with the participation

of the controller. It is denoted by fC(ρ
(k)
AB ).

(ii) Non-conditioned fidelity: It is the fidelity estimated without the controller’s par-

ticipation. It is denoted by fNC(ρAB).

Assumptions: For a successful controlled quantum teleportation, we assume the

following:

(i) For a qubit system, conditioned fidelity should be greater than the classical limit,

i.e. fC(ρ
(k)
AB )>

2
3 .

(ii) Non-conditioned fidelity should be less than or equal to classical fidelity, i.e. fNC(ρAB)≤
2
3 .

There are lot of work that can be found in the literature for the development of the

CQT scheme. In 2008, Gao et. al. [166] used partially entangled states called max-

imal slice (MS) states as a resource channel for CQT protocol. A deterministic CQT

scheme with the MS states and GHZ state as the resource state has been studied

in [137,167]. The efficiency of CQT protocol may be measured by the quantity known

as controller’s power (P(k)
CT ), which can be expressed as the difference between the

conditioned fidelity and non-conditioned fidelity. Mathematically, it can be written in
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the form as

P(k)
CT = fC(ρ

(k)
AB )− fNC(ρAB) (1.12.2)

Initially, Li et. al. [167] have considered fC(ρ
(k)
AB ) = 1 in their work and defined con-

troller’s power (P(k)
CT ) as 1− fNC(ρAB). One important point to note here that, we need

to minimize non-conditioned fidelity of teleportation to achieve the maximum value of

controller’s power. In this respect, they found that the non-conditioned fidelity cannot

attained the better value than the fidelity using a classical channel, when CQT is con-

sidered with the GHZ state. Thus the maximally entangled GHZ state is considered

as a suitable channel for the CQT scheme. On the other hand, when MS states are

used for controlled quantum teleportation, the non-conditioned fidelity can be greater

than the classical limit and hence these states are not suitable channels for the CQT

of arbitrary single-qubit states [167]. Later, they have generalized their CQT protocol

for multiqubit pure system [168]. A more general form of controller’s power for per-

fect controlled quantum teleportation of an entangled three-qubit pure state has been

studied by Jeong et. al. [169]. They defined a term known as the minimal control

power, and calculated the minimal control power for a class of GHZ states and W

states.

Further, Artur et. al. [170] characterize the three-qubit states with extreme proper-

ties and use them to derive tight lower and upper bounds for both the teleportation

fidelity and control power for a given amount of entanglement. In another piece of

work, Paulson et. al. [171] analyzed the CQT protocol using X maximally and non-

maximally entangled mixed state for a given spectrum and mixedness of the state.

Wang et. al. [172] studied d-dimensional control power, by teleporting a qudit using

2N-dimensional standard three-qudit GHZ state or GHZ-type state channels in the

perfect CQT scheme. Recently, controlled quantum teleportation was experimentally

realized using cluster states [173]. The potential application of controlled quantum

teleportation may be found in quantum computing algorithms, quantum communi-

cation protocols, and quantum error correction schemes [174]. The concept of CQT

may also be used in quantum networks [175], entanglement swapping [176], quantum

reapters [177], quantum key distribution [178], and quantum cryptography [179–181].

****************



Chapter 2

Eigenvalue Criteria for Quantum

Teleportation Protocol

�Teleportation is the closest we can get to a magic trick. It’s like saying, let’s make

this object disappear here and reappear there. And it’s not easy. �

- Anton Zeilinger

In this chapter 1, we study the problem of estimation of singlet fraction in higher

dimensional bipartite system. We derive criteria for the detection of d⊗d dimensional

negative partial transpose (NPT) entangled state useful for teleportation. The criteria

derived here are based on the maximum eigenvalue of the NPT entangled state, which

is in principle easier to determine experimentally than to completely reconstruct the

state via tomography. We then illustrate our criteria by considering a class of qubit-

qubit system and qutrit-qutrit system.

1This chapter is based on a published research paper “ Teleportation criteria based on maximum eigenvalue of
the shared d⊗d dimensional mixed state: Beyond Singlet Fraction, International Journal of Theoretical Physics
60, 1038 (2021)".
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2.1 Introduction

Quantum teleportation is an important topic to study in quantum information science.

It plays a vital role in the development of quantum information theory and quantum

technologies [1, 3]. Bennett et. al. [20] have developed the first protocol of quantum

teleportation for a two-qubit system. The developed protocol talks about the transfer

of information contained in a qubit from a sender (say, Alice) to a receiver (say, Bob).

To execute this protocol, firstly Alice and Bob shared an entangled state between

them. Then she performs a two-qubit Bell-state measurement on particles in her pos-

session. After that, she communicates the measurement result to Bob by sending two

classical bits. The receiver Bob then reconstruct the quantum state at his place by

applying suitable unitary operation such as I,σx,σy,σz on his qubit according to the

measurement outcome sent by the sender Alice.

The quantum teleportation protocol described above can be considered as a basic

protocol for other quantum schemes such as quantum repeater [115], quantum gate

teleportation [116], port-based teleportation [182]. The most important ingredient in

quantum teleportation protocol is the resource state, which is shared between two

distant parties because it would not be possible to realize quantum teleportation with-

out a shared entangled state. In a realistic situation, the shared entangled state in

general becomes a mixed entangled state. The usefulness of the shared entangled

state between two distant partners in a teleportation protocol depends on the value of

the singlet fraction [126]. For d ⊗d dimensional system, the shared state is useful in

quantum teleportation if the singlet fraction of the shared state is greater than 1
d .

The singlet fraction also characterizes the nature of the quantum state in the sense

that if the given state is separable then the singlet fraction of the given two-qubit mixed

state is less than or equal to 1
2 [126]. In another way, it can be stated tha if the singlet

fraction of an arbitrary given state is greater than 1
2 then the state is entangled. But

the converse of the statement is not true. This means that there exists a two-qubit

mixed entangled state whose singlet fraction is less than or equal to 1
2 and hence not

useful in quantum teleportation. In this perspective, Badziag et. al. [128] have shown

that a dissipative interaction with the environment is sufficient to improve the value of

the singlet fraction. They have presented a class of entangled quantum states whose

singlet fraction is exactly equal to 1
2 before interaction with the environment but after

the interaction with the environment, the value of the singlet fraction improves. Even



55

getting this result also, the question remains whether interaction with the environment

increases the singlet fraction of any two-qubit mixed state? The answer is in affirma-

tive. Verstraete et. al. [129] have studied this problem and obtained trace-preserving

LOCC that enhances the singlet fraction and makes its value greater than 1
2 for any

two-qubit mixed entangled state. They have derived a connection between the optimal

singlet fraction and the partial transpose of a given state. The established relation tells

us that the two-qubit state is useful as a resource state for teleportation if and only if

the optimal singlet fraction is greater than 1
2 .

Till now, we have discussed about the resource state useful in teleportation for 2⊗ 2

dimensional system. We now continue our discussion with a higher dimensional sys-

tem. Generally, it has been proved that to teleport an arbitrary d-dimensional pure

state, only a maximally entangled pure state in d ⊗ d is required [183]. Zhao et.

al. [184] have derived the necessary and sufficient conditions of faithful teleportation

of an arbitrary d-dimensional pure state with m⊗ d and d ⊗ n dimensional entangled

resource, where m and n denoting the dimension of the first subsystem in m⊗ d and

second subsystem in d ⊗ n dimensional entangled resource states respectively. A

general expression for the output state of the quantum channel associated with the

original teleportation protocol with an arbitrary d⊗d dimensional mixed resource state

has been obtained in [185].

The motivation of this chapter is as follows: (i) Since partial transposition is a non-

physical operation and cannot be implemented in a laboratory so we apply SPA on

partial transposition of the given state. Being SPA a completely positive map, the ex-

pression of singlet fraction gets free from partial transposition operation and thus it can

be implemented in an experiment. (ii) The second motivation comes from the problem

of estimation of singlet fraction in a higher dimensional bipartite system. Since singlet

fraction depends on bipartite maximally entangled states but in higher dimensional

system, it is very difficult to construct bipartite maximally entangled state so it would

not be an easy task to get the experimentally estimated value of singlet fraction for

higher dimensional bipartite system.

The above mentioned motivation enabled us to establish another criterion for the de-

tection of entangled state useful in teleportation and that must be easy to implement

in an experiment. Therefore, instead of singlet fraction if the criterion is expressed

in terms of the eigenvalue then it requires a lesser number of measurements than to

completely reconstruct the state via tomography [186]. Thus, in terms of a number

of required measurements, the criterion based on eigenvalue is more efficient than
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quantum tomography.

2.2 Revisiting maximal singlet fraction of mixed two-qubit

state

Verstraete et. al. [129] have derived the optimal trace-preserving local operation to-

gether with classical communication and have shown that it optimally increases the

singlet fraction of a mixed quantum state ρAB and hence maximizes its teleportation fi-

delity. They have studied the case of a two-qubit system and proved that if the state is

entangled then it is always possible to increase the singlet fraction above 1
2 and thus

make teleportation fidelity greater than 2
3 . Since their result is based on the partial

transposition operation so it is not possible to realize it in the experimental setup. In

this section, we revisit their result and apply structural physical approximation (SPA)

of partial transposition. By doing this, the final expression of the singlet fraction gets

modified, and since SPA of partial transposition is a completely positive map so the

singlet fraction can be estimated experimentally. However, we find that in this case,

the value of the singlet fraction is not always greater than 1
2 . Therefore, the result of

this section motivates us further to investigate new teleportation criteria that will be

studied in the following section.

The expression of optimal singlet fraction after LOCC for a two-qubit state ρAB is al-

ready discussed in (1.10.14). We may note here an important point is that the ex-

pression of the singlet fraction contains the partial transposition operation, which is

not a completely positive map so the partial transposition of state ρAB denoted by ρΓ
AB

is not a physically realizable operation. Thus the value of singlet fraction found in

the Verstraete et. al. [129] work may not be directly accessible in an experiment. To

overcome this problem, we use SPA-PT of ρAB and re-express Tr(XoptρΓ
AB) given in

(1.10.14) as [33,34]

Tr(Xopt
ρ

Γ
AB) = 9Tr(Xopt

ρ̃AB)−2 (2.2.1)

where ρ̃AB is the SPA-PT of ρAB.

Using (2.2.1), equation (1.10.14) can be re-expressed as

Fopt
LOCC(ρAB) =

5
2
−9Tr(Xopt

ρ̃AB) (2.2.2)
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Now it is possible to estimate the value of Fopt
LOCC(ρAB) experimentally but we have to

pay a cost in a way that the obtained value of Fopt
LOCC(ρAB) may not always be greater

than 1
2 . If it may happen that Tr(Xopt ρ̃AB) <

2
9 then only Fopt

LOCC(ρAB) is greater than 1
2 .

This implies that if there exist state for which Tr(Xopt ρ̃AB)≥ 2
9 then Fopt

LOCC(ρAB)≤ 1
2 . To

illustrate, let us consider a two-qubit state described by the density operator

σ12 =


0 0 0 0

0 b f 0

0 f ∗ d 0

0 0 0 e

 , b+d + e = 1 (2.2.3)

where ∗ denotes the complex conjugation.

The density matrix σ12 has been studied by many authors in different contexts [39,

187–191]. The state σ12 is an entangled state and its concurrence is given by [39,187]

C(σ12) = 2| f | (2.2.4)

Using (1.5.23), we can obtain the SPA-PT of σ12 as

σ̃12 =


2
9 0 0 f

9

0 2+b
9 0 0

0 0 2+d
9 0

f ∗
9 0 0 2+e

9

 (2.2.5)

Now if we consider the filter A of the form as

a 0

0 1

 ,0 ≤ a ≤ 1, then Xopt is given by

Xopt =


a2

2 0 0 a
2

0 0 0 0

0 0 0 0
a
2 0 0 1

2

 (2.2.6)

The optimal singlet fraction of σ12 is given by

Fopt
LOCC(σ12) =

5
2
−9Tr(Xopt

σ̃12) (2.2.7)
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where Tr(Xopt σ̃12) is given by

Tr(Xopt
σ̃12) =

2a2 +2aRe( f )+2+ e
18

(2.2.8)

The inequality 2a2+2aRe( f )+2+e
18 ≥ 2

9 holds if the filtering parameter a satisfies

−Re( f )+
√

Re( f )2 −2e+4
2

≤ a (2.2.9)

Therefore, Fopt
LOCC(σ12) is less than equal to 1

2 iff (2.2.9) holds.

Let us now consider a particular case where we can set the values of the state param-

eter as: b = 0.2, d = 0.4, e = 0.4, and f = 0.25+0.1i. Using these values, the density

matrix given in (2.2.3) reduces to

σ
(1)
12 =


0 0 0 0

0 0.2 0.25+0.1i 0

0 0.25−0.1i 0.4 0

0 0 0 0.4

 (2.2.10)

The SPA-PT of σ
(1)
12 is given by

σ̃
(1)
12 =


2
9 0 0 0.25+0.1i

9

0 2.2
9 0 0

0 0 2.4
9 0

0.25−0.1i
9 0 0 2.4

9

 (2.2.11)

The value of Tr(Xopt σ̃
(1)
12 ) is given by

Tr(Xopt
σ̃
(1)
12 ) =

2a2 +0.5a+2.4
18

(2.2.12)

Thus, the optimal singlet fraction of σ
(1)
12 is given by

Fopt
LOCC(σ

(1)
12 ) =

2.6−2a2 −0.5a
2

, 0.78 ≤ a ≤ 1 (2.2.13)

Figure 2.1 illustrate the fact that Fopt
LOCC(σ

(1)
12 ) is always less than or equal to 1

2 .
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Figure 2.1: Plot of optimal singlet fraction obtained after LOCC operation versus the filtering
parameter a.

This motivates us to investigate new teleportation criteria that may go beyond singlet

fraction and identify not only a two-qubit entangled state but also a higher dimensional

NPT entangled state, which may be useful in quantum teleportation.

2.3 Teleportation criteria in terms of maximum eigenvalue

In this section, we derive a criterion for the usefulness of the shared d⊗d dimensional

NPT entangled states in quantum teleportation. In particular, for 2⊗ 2 dimensional

entangled states, the derived criterion may be useful in a situation when the singlet

fraction calculated before sending a qubit through the local environment is less than

or equal to 1
2 . This means that if we don’t use the local environment to increase the

value of the singlet fraction, our criterion can still detect whether the shared resource

state is useful for teleportation or not. To achieve our main result, we need to go

through a few lemmas that we have discussed below.

Lemma 2.3.1. If λmax(ρAB) denotes the maximum eigenvalue of d ⊗d dimensional quantum

state ρAB, then

1
d2 ≤ λmax(ρAB)≤ 1 (2.3.1)

Proof: Let us consider a d ⊗d dimensional quantum state ρAB. Therefore, the density matrix

ρAB has d2 eigenvalues and let they are denoted by λ1, λ2,.........., λd2 . Using the properties of

a density matrix, we have
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1 = Tr(ρAB) =
d2

∑
i=1

λi ≤ d2
λmax(ρAB) (2.3.2)

Also, since it is known that λmax(ρAB)≤ 1, for a density matrix ρAB and using (2.3.2), we have

the inequality (2.3.1). ■

Lemma 2.3.2. The maximum eigenvalue of an arbitrary d ⊗ d dimensional quantum state

ρAB is always greater than or equal to the singlet fraction of ρAB. Mathematically, it can be

expressed as

λmax(ρAB)≥ F(ρAB) (2.3.3)

where λmax(ρAB) denote the maximum eigenvalue of ρAB.

Proof: Let us start with the definition of the singlet fraction given in (1.10.9), which can be

re-expressed as

F(ρAB) = maxUA,UBTr[ρAB(UA ⊗UB)|φ+
d ⟩⟨φ+

d |(U†
A ⊗U†

B)]

= maxUA,UBTr[(U†
A ⊗U†

B)ρAB(UA ⊗UB)|φ+
d ⟩⟨φ+

d |]

≤ {maxUA,UBλmax[(UA ⊗UB)ρAB(U
†
A ⊗U†

B)]}{Tr[|φ+
d ⟩⟨φ+

d |]}

= maxUA,UBλmax[(UA ⊗UB)ρAB(U
†
A ⊗U†

B)]

= λmax(ρAB) (2.3.4)

The inequality in the third step is a consequence of the Result 1.1 and the last equality follows

from a well known fact that the two quantum states (UA ⊗UB)ρAB(U
†
A ⊗U†

B) and ρAB have the

same set of eigenvalues [192]. Therefore, we have provided the alternative proof of this result

that has already been obtained in [193]. ■

Now, we are in a position to relate the usefulness of the entangled state ρAB as a

resource state in quantum teleportation and the maximum eigenvalue of ρAB. The

relation may be stated in the following way: In order to be useful in quantum telepor-

tation protocol, an arbitrary d⊗d dimensional entangled quantum state ρAB must have

λmax(ρAB)>
1
d . The proof of the statement can be done using Lemma 2.3.2.

Corollary 2.3.1. The upper bound of the maximum achievable teleportation fidelity from a

given bipartite state ρAB in d ⊗d dimensional Hilbert space is given by
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f (ρAB)≤
λmax(ρAB)d +1

d +1
(2.3.5)

Proof: Applying Lemma 2.3.2 in (1.10.17), the above inequality can be achieved. ■

Corollary 2.3.2. If an arbitrary d ⊗ d dimensional NPT entangled mixed state described by

the density operator ρAB and the maximum eigenvalue denoted by λmax(ρAB) satisfies

λmax(ρAB)>
1
d

then the maximum achievable teleportation fidelity can be written as

f (ρAB)<
2λmax(ρAB)

1+λmax(ρAB)

Proof: Applying λmax(ρAB) >
1
d in Corollary 2.3.1, we get the upper bound of the maximum

achievable teleportation fidelity in terms of maximum eigenvalue of ρAB. ■

Next, we will show that the separability condition is necessary and sufficient for only

the isotropic state.

Theorem 2.3.1. An arbitrary d ⊗ d dimensional isotropic quantum state ρp shared between

two distant partners is separable if and only if

λmax(ρp)≤
1
d

(2.3.6)

Proof: Let us consider the noisy singlet state of the form

ρp = p|φ+⟩⟨φ+|+(1− p)
I ⊗ I
d2 ,0 ≤ p ≤ 1 (2.3.7)

where |φ+⟩= 1√
d ∑

d−1
i=0 |ii⟩.

The maximum eigenvalue of the density matrix ρp is given by

λmax(ρp) = λmax[p|φ+⟩⟨φ+|+(1− p)
I ⊗ I
d2 ], 0 ≤ p ≤ 1

= p+
1− p

d2 (2.3.8)

Now, since it is known that the state ρp is separable if and only if 0 ≤ p ≤ 1
d+1 [194] so we

can say that the state ρp is separable if and only if λmax(ρp)≤ 1
d . ■
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2.3.1 Examples

In this subsection, we will study a few quantum states ρAB for which singlet fraction

F(ρAB) and maximum eigenvalue λmax(ρAB) satisfies the inequality

F(ρAB)≤
1
d
< λmax(ρAB) (2.3.9)

When the left part of the inequality (2.3.9) holds, then we are uncertain about the

usefulness of the entangled state ρAB as a resource state in quantum teleportation. If

the right part of the inequality (2.3.9) holds true, then we can say that the state ρAB

can be useful in teleportation. This means that when the singlet fraction is unable to

detect the useful of states for quantum teleportation, then the maximum eigenvalue

can serve the purpose. Also, we should note that for the above quantum state ρAB,

interaction with the environment is not taken into account.

Example 2.1: Let us now recall the quantum state described by the density operator

σ
(1)
12 given in (2.2.10). Firstly, we need to check whether the state σ

(1)
12 is entangled.

For the detection of the entangled state σ
(1)
12 , let us consider a witness operator of the

form [195]

W1 =
1
4
(I ⊗ I + I ⊗σz +σz ⊗ I −σx ⊗σx +σy ⊗σy) (2.3.10)

The expectation value of the operator W1 with respect to the state σ
(1)
12 is given by

Tr(W1σ
(1)
12 ) =−0.55 (2.3.11)

Since the expectation value of the witness operator W1 is negative for the state σ
(1)
12

so the state σ
(1)
12 is an entangled state. Now we are in a position to say whether

the entangled state is useful for teleportation by calculating its maximum eigenvalue.

The maximum eigenvalue of the state is λmax(σ
(1)
12 ) = 0.587 > 1

2 . Thus the state can

be useful in quantum teleportation. This example is important in the sense that the

value of the singlet fraction (after applying SPA-PT operation) is unable to detect the

state as a resource state in quantum teleportation but on the other hand, maximum

eigenvalue can help us to reach the correct conclusion.

Example 2.2: Let us consider a quantum state described by the density matrix ρ1,
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which is given by [128]

ρ1 =


0 0 0 0

0 3−2
√

2
2

1−
√

2
2 0

0 1−
√

2
2

1
2 0

0 0 0
√

2−1

 (2.3.12)

To detect whether the state ρ1 is entangled, let us construct a witness operator as

[195]

W2 =
1
4
(I ⊗ I +σz ⊗ I +σx ⊗σx +σy ⊗σy) (2.3.13)

Tr(W2ρ1) can be calculated as

Tr(W2ρ1) =−1.406 (2.3.14)

The negative value of Tr(W2ρ1) indicates that the state ρ1 is entangled. Also the singlet

fraction of ρ1 is found to be 1
2 . Since F(ρ1) =

1
2 so it can be concluded that the state

ρ1 is not useful as a resource state for teleportation. But it is known that all entangled

two-qubit mixed states are useful for teleportation [129]. Hence, the inference from

the singlet fraction that the state ρ1 is not useful as a resource state for teleportation

is not correct. Let us now calculate the eigenvalues of ρ1 and they are given by

{0.5858,0.4142,0,0}. The maximum eigenvalue is found to be λmax(ρ1)= 0.5858. Since

λmax(ρ1)> 1/2, we can conclude that the state ρ1 can be useful for teleportation.

Example 2.3: Let us take another quantum state from 3⊗3 dimensional Hilbert space

described by the density matrix ρ2

ρ2 =



1−a
2 0 0 0 0 0 0 0 −0.22
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 −a −0.22 0 0 0
0 0 0 0 −0.22 a 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−0.22 0 0 0 0 0 0 0 a
2


, 0.35 ≤ a ≤ 0.369 (2.3.15)

The witness operator that detects the state described by the density operator ρ2 is
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given by [196]

W3 = −3
2

S6 ⊗S6 +
3
2

S3 ⊗S3 −
2√
3

S8 ⊗S7 +
2
3

I ⊗S7 −
1
2

S7 ⊗S7 +
5
6

S8 ⊗S8 +
1
2

iS4 ⊗S1

+
1
2

iS1 ⊗S4 −
1
2

S2 ⊗S2 +
1
2

S5 ⊗S5 +
2
3

S7 ⊗ I − 2
3

I ⊗ I +
2
√

3
9

S8 ⊗ I − 2√
3

S7 ⊗S8

+
2
√

3
9

I ⊗S8 (2.3.16)

where S1,S2 and S3 are three symmetric Gell-Mann matrices given by (1.4.6), S4,S5

and S6 are three anti-symmetric Gell-Mann matrices given by (1.4.7) and S7 and S8

are two diagonal Gell-Mann matrices given by (1.4.8).

We note that Tr(W3ρ2) = 0.44− 3a, where 0.35 ≤ a ≤ 0.369. Thus, Tr(W3ρ2) < 0 for

0.35 ≤ a ≤ 0.369. Hence the state ρ2 is an entangled state.

Let us calculate the singlet fraction of ρ2. To do this, we need maximally entangled

basis states in 3⊗3 dimensional Hilbert space. The maximally entangled basis for the

two-qutrit system is given by [197]

|B0⟩=
1√
3
[|00⟩+ |22⟩− ei π

3 |11⟩], |B1⟩=
1√
3
[|01⟩+ |20⟩− ei π

3 |12⟩],

|B2⟩=
1√
3
[|02⟩+ |21⟩− ei π

3 |10⟩], |B3⟩=
1√
3
[|11⟩+ |00⟩− ei π

3 |22⟩],

|B4⟩=
1√
3
[|12⟩+ |01⟩− ei π

3 |20⟩], |B5⟩=
1√
3
[|10⟩+ |02⟩− ei π

3 |21⟩],

|B6⟩=
1√
3
[|11⟩+ |22⟩− ei π

3 |00⟩], |B7⟩=
1√
3
[|20⟩+ |12⟩− ei π

3 |01⟩],

|B8⟩=
1√
3
[|21⟩+ |10⟩− ei π

3 |02⟩] (2.3.17)

Then the singlet fraction of ρ2 can be calculated using the maximally entangled basis

(2.3.17) as

F(ρ2) = maxBi⟨Bi|ρ2|Bi⟩, i = 0,1, ....,8

=
1.22−a

3
(2.3.18)

Figure 2.2 shows that F(ρ2) decreases as the state parameter a increases. The sin-

glet fraction F(ρ2) is always less than 1
3 when the state parameter a lying in the interval

[0.35,0.369]. Therefore, according to the singlet fraction criterion, the state described

by the density operator ρ2 may or may not be useful in quantum teleportation.
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Figure 2.2: Plot of singlet fraction and maximum eigenvalue, i.e., y =(F(ρ2))/(λmax(ρ2)) ver-
sus the state parameter a. Green line denotes the maximum eigenvalue of ρ2, blue line denotes
the classical limit of teleportation in terms of singlet fraction for 3⊗3 dimensional system, i.e
1
3 and red line denotes the singlet fraction of state ρ2

Let us now calculate the eigenvalues of ρ2. The maximum eigenvalue of ρ2 is given

by

λmax(ρ2) =
1
4
+

1
2

√
0.4436−2a+4a2, 0.35 ≤ a ≤ 0.369 (2.3.19)

We have also shown in Figure 2.2 that λmax(ρ2) is always greater than 1
3 when a ∈

[0.35,0.369]. Thus, maximum eigenvalue ρ2 can help us to infer that the state ρ2 can

be useful in quantum teleportation.

2.4 Teleportation criteria in terms of upper bound of the

maximum eigenvalue in Dembo’s bound

In this section, we will study those cases where the maximum eigenvalue of ρAB is

unable to infer anything about the usefulness of ρAB in quantum teleportation, i.e., the

case where the maximum eigenvalue of a given quantum state satisfies the inequality

λmax(ρAB)≤
1
d

(2.4.1)

To overcome this problem, we have provided a criterion which is based on Dembo’s

bound to detect whether the state is useful for teleportation or not.
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Let us consider a qutrit-qutrit system described by the density operator

ρ3 =



a
2 0 0 0 0 0 0 0 0.015
0 a

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1−a

2 0
0.015 0 0 0 0 0 0 0 1−a

2


, 0.5 ≤ a ≤ 0.65 (2.4.2)

We find that Tr(W3ρ3) =−1.53+2a < 0, for 0.5 ≤ a ≤ 0.65. Thus, the witness operator

W3 detect the state ρ3 as an entangled state. But the question is whether the entan-

gled state ρ3 is useful in quantum teleportation.

Eigenvalues of ρ3 are given by: [0,0,0,0,0, 1−a
2 , a

2 ,0.125(2−
√

16a2 −16a+4.0144),0.125(2+
√

16a2 −16a+4.0144)]. The maximum eigenvalue is given by λmax(ρ3) = 0.125(2 +
√

16a2 −16a+4.0144). We can observe that λmax(ρ3)≤ 1
3 when 0.5 ≤ a ≤ 0.65. There-

fore, our criterion based on maximum eigenvalue fails to detect whether the state ρ3

is useful in teleportation. It motivates us to search for the maximal bound of maximum

eigenvalue that can be greater than 1
d for d ⊗d dimensional system.

To start our search, let us consider the upper bound of the maximal eigenvalue of the

d ⊗ d dimensional quantum state ρAB under investigation. The upper bound may be

denoted as λ D
max(ρAB) and it is given by R.H.S of the inequality (1.1.4)

λ
D
max(ρAB) =

c+ηd2−1

2
+

√
(c−ηd2−1)

2

2
+(b∗)T b (2.4.3)

where Rd2 =

Rd2−1 b

(b∗)T c

, η1 is the lower bound on minimal eigenvalue of Rd2−1, ηd2−1

is the upper bound on maximal eigenvalue of Rd2−1 and b is a vector of dimension

d2 −1. We are now in a position to provide a criterion in terms of the upper bound of

the maximal eigenvalue of the d ⊗d dimensional quantum state ρAB.

Corollary 2.4.1. In order to be useful in quantum teleportation protocol, an arbitrary d ⊗ d

dimensional entangled quantum state ρAB must have λ D
max(ρAB)>

1
d .

Proof: We know that λ D
max(ρAB) is the upper bound of maximum eigenvalue. Hence, λmax(ρAB)≤

λ D
max(ρAB). After applying this fact to the relation between the usefulness of ρAB in quantum

teleportation and the maximum eigenvalue of ρAB, the result will be proved. ■

Example 2.4: Recalling, the qutrit-qutrit system described by the density operator ρ3
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given in (2.4.2). The maximal bound of maximum eigenvalue of 3⊗ 3 dimensional

density matrix ρ3 is given by λ D
max(ρ3). For the 9×9 order density matrix ρ3, we have

c = 0.1750, (b∗)T =
(

0.015 0 0 0 0 0 0 0
)

and η8 = 0.325. Using the above

values, we find that λ D
max(ρ3) = 0.357. Thus using Corollary 2.4.1, we are able to show

that the state ρ3 can be useful in teleportation.

Example 2.5: Let us consider another qutrit-qutrit NPT entangled state, which is given

by the density matrix [198]

ρα =
2
7
|φ+

3 ⟩⟨φ+
3 |+ α

7
σ++

5−α

7
σ−,4 < α ≤ 5 (2.4.4)

where |φ+
3 ⟩= 1√

3 ∑
2
i=0 |ii⟩, σ+= 1

3(|01⟩⟨01|+|12⟩⟨12|+|20⟩⟨20|), σ−= 1
3(|10⟩⟨10|+|21⟩⟨21|+

|02⟩⟨02|). For the density matrix ρα , we have c = 2
21 , (b∗)T =

(
2
21 0 0 0 2

21 0 0 0
)

and η8 = 5
21 . In this case, λ D

max(ρα) = 0.3346, which is greater than 1
3 . Therefore, in

this case, also we can use Corollary 2.4.1 to conclude that the state described by the

density operator ρα can be useful in quantum teleportation.

2.5 Conclusion

In this chapter, we have modified the relationship between the optimal singlet fraction

and the partial transpose of a given state by approximating the partial transposition

operation through the procedure of structural physical approximation. The modifica-

tion is required because partial transposition is a non-physical operation and thus it

cannot be implemented in the laboratory. By using the SPA-PT method, we are able

to show that the modified value of the optimal singlet fraction can be estimated in an

experiment. Further, we have proposed a criterion for the detection of an entangled

state useful in quantum teleportation, which are based on the maximum eigenvalue

of the given state. Moreover, we have studied our criteria for the detection of d ⊗ d

dimensional NPT entangled states useful in quantum teleportation in the given two

cases: (i) F(ρAB) ≤ 1
d < λmax(ρAB) or (ii) λmax(ρAB) ≤ 1

d < λ D
max(ρAB). Our criteria can

in principle be determined in an experiment because maximum eigenvalue can be

estimated experimentally [186,199,200].

****************





Chapter 3

Quantification of Non-locality of

two-qubit Entangled state and its

application in Controlled Quantum

Teleportation

�The phenomenon of non-locality in quantum mechanics shows that the world is much

more mysterious and interconnected than we previously thought. �

- David Bohm

In this chapter 1, we quantify the non-locality of such entangled state ρAB which are

neither detected by WCHSH witness operator or nor by the quantity M(ρAB) given by

(1.8.1). Non-locality is a feature of quantum mechanics that cannot be explained

by local realistic theory. It can be detected by the violation of Bell’s inequality. In

this chapter, we have considered the evaluation of Bell’s inequality with the help of

the XOR game. In the XOR game, a two-qubit entangled state is shared between

the two distant players. It may generate a non-local correlation between the players

which contributes to the maximum probability of winning the game. We have aimed

to determine the strength of the non-locality through the XOR game. Thus, we have

defined a quantity SNL(ρAB) called the strength of non-locality, purely on the basis

1This chapter is based on a research paper “Strength of the nonlocality of two-qubit entangled state and its
applications, Physica Scripta 98, 055101 (2023)".
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of the maximum probability of winning the XOR game. We have also derived the

relation between the introduced quantity SNL(ρAB) and the quantity M(ρAB), to study

in depth, the problem of non-locality of a two-qubit entangled state. Interestingly, we

have found that the newly defined quantity SNL(ρAB) fails to detect the non-locality

of the entangled state, when the witness operator constructed from CHSH operator

cannot detect the entangled state. To overcome this problem, we have modified the

definition of the strength of non-locality and have shown that the modified definition

may detect the non-locality of such entangled states, which were earlier undetected

by SNL(ρAB). Furthermore, we have provided two applications of the strength of the

non-locality SNL(ρAB): (i) establishment of a link between the two-qubit non-locality

determined by SNL(ρAB) and the three-qubit non-locality determined by the Svetlichny

operator and (ii) determination of the upper bound of the power of the controller in

terms of SNL(ρAB) in controlled quantum teleportation.
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3.1 Introduction

In 1964, J. S. Bell [17] derived a criterion to detect the non-local correlation that may

exist in Einstein, Podolski, and Rosen (EPR) pair of particles. His work proved that

the predictions of quantum mechanics are incompatible with the local realistic theory.

Bell’s criterion for detecting non-locality can be expressed in terms of a mathematical

inequality, which is popularly known as Bell’s inequality [1, 3, 48], derived using the

local-realism principle. Thus, any classical system making local choices will produce

a classical correlation satisfying this inequality. In the late 1960s, many experiments

were performed to show the violation of Bell’s inequality for the EPR pair, but none

were successful. An experiment performed by Alain Aspect et. al. successfully shows

the violation of Bell’s Inequality [50,52]. After Bell’s seminal work, many studies were

devoted to non-locality.

The study of non-locality is relevant for many reasons. One is that it can be used

as a resource for the development of device-independent quantum information pro-

cessing [201]. A few other reasons that may attract the study of non-locality is that it

may have much application in a variety of quantum information processing tasks such

as self-testing [202,203], secure communication [21], randomness certification [204],

and distributed computing [205]. In recent work, a marginal problem has been studied

in the context of the computation of Bell inequalities [206].

Detection of an observed non-local correlation is one of the prime problems in the

study of non-locality. The foremost tool to detect non-locality is Bell’s inequality [17],

and it may be considered as the standard approach for detecting non-locality. The

violation of Bell’s inequality may indicate the presence of a non-local feature in a two-

qubit state described by the density operator ρAB. Therefore, if any two-qubit state ρAB

violates Bell’s inequality, then the state may exhibit a non-local correlation, and thus,

the state can be identified as an entangled state. But the converse of the statement

is not true. This means that there exists a two-qubit entangled state that may satisfy

Bell’s inequality. This shows that although, there is a connection between quantum en-

tanglement and non-locality [207,208], conceptually they are very much distinct [103].

These two counterintuitive features of quantum mechanics can be used as a physical

resource to enhance our computational power [209]. Thus, detecting these quantum

mechanical features before using them as a resource is necessary. Along this line of

research, I. S. Eliens et. al. [210] have studied the non-locality detection problem and



72

represent it as a tensor network problem. In [211], the generalized R-matrix has been

used to study the non-locality and entanglement of the three-qubit state. In [207], the

uncertainty-induced non-locality measure has been used to detect the non-locality of

a two-qubit state. Further, the classification and quantification of a pure three-qubit

state have been studied using the concurrence of a generic two-qubit pure state [212].

The witness operator method may also be used to detect non-locality, and it is very

useful because it can be implemented in the experiment.

In the last few years, testing of Bell’s inequality has been viewed as a Bell game [213].

In this game, Alice and Bob may be considered players, and Charlie acts as a referee

or verifier. There are many rounds of the game, and in each round, Charlie, who

acts as a verifier, sends a query (input) to other members, Alice and Bob. They will

have to send an answer (output) to Charlie. Before starting the game, the following

assumptions are made: (i) Players know the set of possible queries, (ii) Players know

the rules of the game (iii) Players know the common strategy in deciding the process

in each round of the game. Here we can consider an entangled state as a resource

that may be used in these processes. Therefore, in the perspective of a game, Bell

locality may be defined as the process by which the output generated by each player

is independent of the input of other players. Thus, if there is any correlation found be-

tween the players, then it is due to the presence of correlation in the shared entangled

state. When this definition of Bell’s locality does not hold, then we can talk of Bell’s

non-locality. Initially, Bell constructed the inequality in which two parties are there in

the composite system and each party measures dichotomic observables in two differ-

ent settings. Later, researchers have started generalizing the Bell’s non-locality with N

parties, k measurement settings, and d outcomes of the measurement [65,214–218].

It has been observed that two or more different non-local quantum behaviors may be

responsible for the maximal violation of Bell’s inequality. However, the extremal quan-

tum behavior can be realized by a unique (up to unitary equivalence) quantum rep-

resentation [219]. The non-local correlation that violate Bell’s inequalities maximally

by unique quantum behaviors has been studied in [78]. These Bell’s inequalities are

maximally violated by non-maximally entangled states, thus showing that these states

are necessary to characterize the boundary of the quantum region. The non-local

correlation characterized by Bell’s inequalities could be used as a resource for quan-

tum optics, quantum computation, and quantum information. In this direction, Obada

et. al. [220] have studied the link between non-locality and entanglement and have

shown that the entangled state may possess the phenomenon of the sudden death



73

of entanglement and non-locality under the effect of thermal noise. The influence of

the dissipation rate of the dissipative system on the quantum correlation has been

studied in [221], using the Hilbert–Schmidt distance and Bell’s inequality correlations.

They found that the quantum correlation can be enhanced for some specific values

of the dipole–dipole interaction. In another work [222], it has been shown that the

Bell’s non-locality can be enhanced when the two-mode parametric amplifier cavity is

initially prepared in the coherent states.

It is known that in any theory, the degree of steering is an equally important part of

the uncertainty principle to measure the degree of non-locality [223]. But J. Oppen-

heim and S. Wehner [224] have used the uncertainty principle alone to establish the

relation between the maximum probability of winning the XOR game and the expec-

tation value of the Bell-CHSH operator with respect to the shared state between the

players. Thus they have shown that the degree of non-locality can be determined by

the uncertainty principle alone. Therefore, one may ask whether only one factor, i.e.,

uncertainty principle is enough to measure the degree of non-locality for all non-local

games. The answer is negative because R. Ramanathan et. al. [223] have shown

that non-local games exist where the uncertainty principle and the degree of steering

are needed to measure the degree of non-locality. In particular, the degree of non-

locality for the XOR game can be measured using the uncertainty principle alone. In

the literature, there is a related work [225] where it has been shown that some points

that cannot maximize any XOR game lie on the quantum boundary.

The main motivation of this chapter is to investigate the following question: If the Bell’s

inequality, the quantity M(ρAB), and the maximum probability of winning of XOR game

fail to determine the non-locality of an entangled state, and if we further restrict the

usage of the filtering operation, then can we measure the strength of the non-locality

by any other means?

To address the above stated question, we first consider the evaluation of Bell’s in-

equality as an XOR game. The relation established in [224] suggests that if Bell’s

inequality is violated, then the maximum probability of winning the game is greater

than 3
4 . Thus, there is a relation between the non-locality of the shared state and the

maximum probability of winning the game. We found that there exists an entangled

shared state with which if players played the game, then the probability of winning the

game may be less than or equal to 3
4 . This indicates that the XOR game may be won

by adopting any local realistic theory, but this is not the case. We have investigated

this loophole and tried to fix it by defining the strength of the non-locality through the
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maximum probability of winning the game.

3.2 Revisiting the non-locality of two-qubit system

In a two-player Bell test game [110], the players may be referred to as Alice and Bob

who are far apart from each other. Each player will receive a query (input) and will

have to provide an answer (output). The game may be repeated in many rounds. The

players are allowed to prepare a common strategy before the game but after the game

starts, the players are not allowed to communicate with each other. The rules of the

game and the list of possible queries are known in advance. If the rules are set in a

way that the players must produce different answers if both receive a query “1” and

otherwise, the answer is the same, then the game cannot be trivially won with a list of

pre-determined answers. With respect to the defined game, Bell locality means that

the process by which both the players generate the output without considering the

other player’s input. Thus, if any correlations are generated between the players then

this is due to a shared resource. The Bell non-locality came into the picture when

Bell locality doesn’t hold. Bell non-locality can be demonstrated by the violation of

Bell-CHSH inequality. Generally, it has been shown by R. Horodecki et. al. [127] that

any two-qubit state described by the density matrix ρAB violates CHSH inequality if

and only if M(ρAB)> 1 and the quantity M(ρAB) is defined in (1.8.1). In this section, we

revisit the non-locality of a two-qubit entangled state ρent
AB by introducing a measure of

the strength of the non-locality of ρent
AB . The motivation of this section is to develop a

measure that may detect the non-local nature of the given entangled state ρent
AB , which

is neither detected by Bell-CHSH inequality (for a particular setting) nor detected by

any general setting described by the criterion M(ρent
AB )> 1.

3.2.1 A definition of the strength of the non-locality of two-qubit entan-

gled state

In this subsection, we will define the strength of the non-locality of two-qubit entangled

state ρent
AB in terms of the maximum probability of winning the game played between

two distant players which are sharing an entangled state ρent
AB .

Let us consider an XOR game played between two distant players Alice (A) and Bob

(B) [224,226]. In this game, the winner is decided by the XOR of the answers a⊕b =

a+b (mod2), where a,b ∈ {0,1} and it denote the answers given by the players A and
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B, when the referee asks them randomly selected questions (s, t)∈ S×T , where S and

T denote finite non-empty sets. The winning condition of the game may be expressed

in terms of the predicate given by

V (a⊕b/s, t) = 1, if and only if a⊕b = s.t (3.2.1)

The players A and B obtain outcomes (answers) a and b after performing measure-

ment operators Aa
s and Bb

t on their respective qubits. Here, we may consider s and t

as the corresponding measurement settings. The measurement operators Aa
s and Bb

t

may be expressed in terms of the observables as

Aa
s =

1
2
(I +(−1)aAs), Bb

t =
1
2
(I +(−1)bBt) (3.2.2)

The operators As and Bt are given by

As = ∑
j

a( j)
s Γ j, Bt = ∑

j
b( j)

t Γ j (3.2.3)

where a⃗s = (a(1)s ,a(2)s , ....,a(N)
s ) ∈ RN and b⃗t = (b(1)t ,b(2)t , ....,b(N)

t ) ∈ RN denote real unit

vectors of dimension N = min{|S|, |T |}. Γ1,Γ2, ......,ΓN are the anti-commuting genera-

tors of a Clifford algebra.

If we assume that the two distant players, A and B, play the game using the shared

state ρAB given in (1.5.5), then the maximum probability Pmax of winning the game

overall strategy is given by [224]

Pmax =
1
2
[1+

⟨BCHSH⟩ρAB

4
] (3.2.4)

where ⟨BCHSH⟩ρAB = Tr[(A0⊗B0+A0⊗B1+A1⊗B0−A1⊗B1)ρAB] denotes the expecta-

tion value of the Bell operator BCHSH with respect to the state ρAB. Since, the maximum

probability of winning the game depends on the expectation value of the Bell operator

BCHSH , Pmax is somehow related to the non-locality of the state ρAB. Thus, to determine

the non-locality of any arbitrary two-qubit state ρAB, we define here the strength of the

non-locality. The strength of the non-locality of ρAB denoted by SNL(ρAB) in terms of

Pmax may be defined as

SNL(ρAB) = max{Pmax − 3
4
,0} (3.2.5)
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Therefore, SNL(ρAB) can be considered as the quantifier of the strength of the non-

locality for any theory, and it can be calculated by calculating Pmax for different theories

such as (i) classical theory, (ii) theory based on quantum mechanics, and (iii) for any

non-signaling theory. For any classical theory, Pmax ≤ 3
4 and hence SNL(ρAB) = 0. For

quantum mechanical theory and for non-signaling correlation, we have Pmax > 3
4 and

thus SNL(ρAB) ̸= 0.

Furthermore, we can consider the situation where the players performed their mea-

surements in different measurement settings, such as measurements performed along

xy−, xz−, and yz− planes. In this scenario, the maximum probability of winning the

game depends upon the expectation value of the Bell operators in different planes.

To further illuminate this point, consider the Bell operators Bxy, Bxz, and Byz in xy−,

xz−, and yz− planes. In these planes, the maximum probability of winning the game

is denoted by Pxy, Pxz, and Pyz, respectively. Therefore, the relation between the ex-

pectation value of the Bell operators defined in different planes with respect to the

two-qubit quantum state described by the density operator ρAB and the corresponding

maximum probability of winning may be expressed as

Pmax
i j =

1
2
[1+

⟨Bi j⟩ρAB

4
], i, j = x,y,z & i ̸= j (3.2.6)

The Bell operators Bxy, Bxz, and Byz can be written in terms of the observables σx, σy,

and σz as [227]

Bi j = σi ⊗
σi +σ j√

2
+σi ⊗

σi −σ j√
2

+σ j ⊗
σi +σ j√

2
−σ j ⊗

σi −σ j√
2

, i, j = x,y,z & i ̸= j (3.2.7)

For the case discussed above, the strength of the non-locality S(i j)
NL (ρAB) may be de-

fined as

S(i j)
NL (ρAB) = max{P,0} (3.2.8)

where P = {Pmax
xy − 3

4 ,P
max
xz − 3

4 ,P
max
yz − 3

4}.

From the definition S(i j)
NL (ρAB) given in (3.2.8), it is clear that if ρAB is an entangled state,

and further if it satisfies the Bell-CHSH inequality in every xy, yz, xz setting, then all

quantities Pmax
i j − 3

4 ,(i ̸= j; i, j = x,y,z) will be negative. Hence, the value of S(i j)
NL (ρAB)

for i ̸= j; i, j = x,y,z will be equal to zero. This gives an absurd result because ρAB

represents an entangled state. Thus, we can apply the definition (3.2.8) only when at
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least one i ̸= j; (i, j = x,y,z) for which the quantity Pmax
i j − 3

4 is/are positive.

3.2.2 Dependence of the strength of non-locality on witness operator

Let us consider the game discussed above, which is played between two distant part-

ners Alice and Bob, using a shared state between them. If the shared state is any

entangled state described by ρent
AB and the maximum probability Pmax of winning the

game using the shared state ρent
AB satisfies the inequality Pmax > 3

4 , then as per the

definition of the strength of the non-locality of ρent
AB given in (3.2.5) could be non-zero.

Otherwise, if the players are playing the game with the classical state shared between

them, then Pmax ∈ [0, 3
4 ] and then the strength of the non-locality will be equal to zero.

This event may occur even if the players choose their measurement settings in dif-

ferent planes. In this perspective, we can ask the following question: Is it possible to

determine the strength of the non-locality when the maximum probability of winning

the game played with an entangled state, lies between 0 and 3
4?

To investigate the above question, we first express the maximum probability Pmax of

winning the game in terms of the expectation value of the witness operator with re-

spect to the general two-qubit state described by the density operator ρAB. Also, we

find that when ρAB represents an entangled state which is not detected by the witness

operator, then the maximum probability of winning the game lies between 0 and 3
4 . On

the contrary, if there exists any witness operator that detects the entangled state, then

Pmax ≥ 3
4 .

Now, our task is to first establish the relationship between the maximum probability of

winning the game played using a two-qubit state ρAB, and the expectation value of the

witness operator with respect to the state ρAB. The relationship may be stated as:

Result 3.2.1. If ρAB denotes any arbitrary two-qubit bipartite state shared between the two

distant players Alice and Bob and Pmax denotes the maximum probability of winning the game

overall strategy taken by the players, then Pmax is given by

Pmax =
3
4
− Tr[WCHSHρAB]

8
(3.2.9)

where, WCHSH(= 2I −BCHSH) denotes the witness operator.

Proof:- If any bipartite two-qubit state ρAB is shared between the players Alice and Bob, then

the maximum probability of winning the game is given by [224]
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Pmax =
1
2
[1+

Tr[BCHSHρAB]

4
] =

3
4
− Tr[WCHSHρAB]

8
(3.2.10)

In the second line of the proof, we have used BCHSH = 2I−WCHSH . Hence proved. ■

In the same spirit, we can relate the maximum probability of winning the game with

the expectation value of the witness operator in different xy, yz, and xz settings as

Pmax
xy =

3
4
−

Tr[W xy
CHSHρAB]

8
(3.2.11)

Pmax
yz =

3
4
−

Tr[W yz
CHSHρAB]

8
(3.2.12)

Pmax
xz =

3
4
−

Tr[W xz
CHSHρAB]

8
(3.2.13)

3.2.2.1 Strength of the non-locality when two-qubit entangled state detected by the wit-

ness operator WCHSH

In this subsection, we will discuss the case when the witness operator detects the

entangled state ρent
AB and then we show that the strength of the non-locality denoted

by SNL(ρ
ent
AB ) can be determined in this case.

Result 3.2.1 provides the relationship between the expectation value of the witness

operator WCHSH with respect to any arbitrary two-qubit state ρAB, and the maximum

winning probability Pmax. Therefore, the strength of the non-locality SNL(ρAB) defined

in (3.2.5) may be re-expressed in terms of witness operator WCHSH as

SNL(ρAB) = max{−Tr[WCHSHρAB]

8
,0} (3.2.14)

Let us discuss three cases when ρAB represents (i) a separable state, (ii) an entangled

state not detected by WCHSH , and (iii) an entangled state detected by WCHSH .

Case I: If any separable state is described by the density operator ρ
sep
AB , then

Tr[WCHSHρ
sep
AB ]≥ 0 and hence Pmax ≤ 3

4 . In this case, SNL(ρ
sep
AB ) = 0.

Case II: If the state ρentnd
AB denotes an entangled state not detected by witness operator

WCHSH , then also we obtain Tr[WCHSHρentnd
AB ]≥ 0 and hence Pmax ≤ 3

4 . In this case, the

amount of non-locality of the state ρentnd
AB can be estimated to be zero. Although the

state ρentnd
AB is an entangled state and thus may possess non-local properties but its

non-locality may not be revealed by the non-local quantifier SNL. Further, we may
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note that the state ρentnd
AB may not be detected by WCHSH , but there may exist other

witness operators that may detect it, and in that case, it may be possible to quantify

its non-locality through SNL.

Case III: If the state ρentd
AB represent an entangled state detected by the witness oper-

ator WCHSH , then Tr[WCHSHρentd
AB ] < 0 and hence Pmax > 3

4 . In this case, the amount of

non-locality of ρentd
AB can be calculated by the formula SNL =−Tr[WCHSHρentd

AB ]
8 .

Now, our aim is to show through the example that the two-qubit state under inves-

tigation is a quantum correlated state, and thus its strength of non-locality can be

determined. To proceed with our discussion, let us consider the two-qubit quantum

state described by the density operator ρ
(1)
AB

ρ
(1)
AB =

1
4
[I ⊗ I +0.001σx ⊗ I +0.8σ1 ⊗σ1 +0.89σ2 ⊗σ2 −0.9σ3 ⊗σ3] (3.2.15)

The state ρ
(1)
AB is an entangled state. In this case, we can construct the witness oper-

ator W (1)
CHSH as

W (1)
CHSH = 2I ⊗ I −A(1)

0 ⊗B(1)
0 +A(1)

0 ⊗B(1)
1 −A(1)

1 ⊗B(1)
0 −A(1)

1 ⊗B(1)
1 (3.2.16)

where, A(1)
0 = σx, A(1)

1 = σy,

B(1)
0 = 0.8σx +0.4σy +0.447σz, B(1)

1 =−0.4σx +0.8σy +0.447σz (3.2.17)

Therefore, the expectation value of W (1)
CHSH with respect to the state ρ

(1)
AB is given by

Tr[W (1)
CHSHρ

(1)
AB ] = −0.028 < 0 (3.2.18)

Hence, in this example, we can see the state ρ
(1)
AB is detected as an entangled state

by the witness operator W (1)
CHSH . Thus, the strength of the non-locality of the state ρ

(1)
AB

can be calculated using (3.2.14) as

SNL(ρ
(1)
AB ) = 0.0035 (3.2.19)

3.2.2.2 Strength of the non-locality when the witness operator WCHSH does not detect

the two-qubit entangled state

Till now, we don’t have sufficient information to make a definite conclusion about the

non-locality of an entangled state described by the density operator ρentnd
AB , which is

not detected by the witness operator WCHSH . Let us take an example to understand
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what we mean to say:

Consider the entangled state ρ
(2)
AB and witness operator W (2)

CHSH , which are given by

ρ
(2)
AB =

1
4
[I ⊗ I +0.7σ1 ⊗σ1 +0.2σ2 ⊗σ2 −0.5σ3 ⊗σ3] (3.2.20)

W (2)
CHSH = 2I ⊗ I −A(2)

0 ⊗B(2)
0 +A(2)

0 ⊗B(2)
1 −A(2)

1 ⊗B(2)
0 −A(2)

1 ⊗B(2)
1 (3.2.21)

where A(2)
0 , A(2)

1 , B(2)
0 , B(2)

1 are given by

A(2)
0 = A(2)

1 = 0.7σx +0.5σy +0.5099σz

B(2)
0 = 0.4σx +0.4σy +0.8246σz, B(2)

1 = 0.5σx +0.3σy +0.812404σz (3.2.22)

The expectation value of W (2)
CHSH with respect to the state ρ

(2)
AB can be calculated as

Tr[W (2)
CHSHρ

(2)
AB ] = 1.9845 ≥ 0 (3.2.23)

Thus, this example shows that there may exist entangled states which are not de-

tected by W (2)
CHSH operator given in (3.2.21), and from Result 3.2.1, we can remark

Pmax ≤ 3
4 . Hence, we conclude that there exist entangled states for which Pmax ≤ 3

4 .

Therefore, for those entangled states which are not detected by WCHSH , we find SNL =

0, and thus SNL is unable to measure the true strength of non-locality of such entan-

gled states. This problem may be sorted out if we construct another witness operator

that may detect such entangled states which are not detected by WCHSH . Since there

does not exist any general relationship between the maximum probability Pmax and

the expectation value of any arbitrary witness operator, it is not possible to define the

strength of the non-locality in terms of any arbitrary witness operator. Therefore, we

need to redefine the strength of the non-locality using a different approach.

It is known from (3.2.9) that if WCHSH fails to detect the entangled state ρent
AB , then the

value of the expression Pmax − 3
4 will be negative. Thus, our idea is to calculate the

upper bound of the expression Pmax− 3
4 and if we find that the calculated upper bound

is positive, then we may infer that there may be a possibility to get the non-zero value

of SNL(ρ
ent
AB ). To do this, recall (3.2.9) and re-express it as

Tr[WCHSHρ
ent
AB ] = 6−8Pmax (3.2.24)

We should note that in this scenario, it is assumed that WCHSH does not detect the

state ρent
AB and thus Tr[WCHSHρent

AB ]≥ 0, hence Pmax ≤ 3
4 .
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Let us now re-start with the quantity Tr[WCHSHρent
AB (ρ

ent
AB )

TB], where TB denotes the par-

tial transposition with respect to the subsystem B and using the Result 1.1 given in

(1.1.11), we may get the following inequality

Tr[WCHSHρ
ent
AB (ρ

ent
AB )

TB]≥ λmin((ρ
ent
AB )

TB)Tr[WCHSHρ
ent
AB ] (3.2.25)

Using (3.2.24) and (3.2.25), we get

Tr[WCHSHρ
ent
AB (ρ

ent
AB )

TB ]≥ λmin((ρ
ent
AB )

TB)(6−8Pmax) (3.2.26)

If ρent
AB is a bipartite two-qubit entangled state, then λmin((ρ

ent
AB )

TB)< 0, and its entangle-

ment may be quantified by negativity, which may be defined as

N(ρent
AB ) =−2λmin((ρ

ent
AB )

TB) (3.2.27)

Therefore, for the entangled state ρent
AB , the inequality (3.2.26) reduces to

Tr[WCHSHρ
ent
AB (ρ

ent
AB )

TB]≥−1
2

N(ρent
AB )(6−8Pmax)

=⇒ Pmax − 3
4
≤

Tr[WCHSHρent
AB (ρ

ent
AB )

TB]

4N(ρent
AB )

(3.2.28)

The inequality (3.2.28) motivates us to re-define the strength of the non-locality SNL(ρ
ent
AB )

of the entangled state ρent
AB undetected by WCHSH . Therefore, if the state ρent

AB is not de-

tected by WCHSH and then SNew
NL (ρent

AB ) may be defined as

SNew
NL (ρent

AB ) = q(Pmax − 3
4
)+(1−q)K (3.2.29)

where K =
Tr[WCHSHρent

AB (ρ
ent
AB )

TB ]

4N(ρent
AB )

and q (0≤ q< 1) is chosen in such a way that SNew
NL (ρent

AB )>

0.

The upper bound of q can be obtained by employing the condition SNew
NL (ρent

AB ) > 0.

Therefore, the upper bound of q is given by

q <
K

3
4 −Pmax +K

(3.2.30)

To illustrate our result, let us consider the two-qubit state described by the density

operator ρAB, which is given by
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ρAB =


x 0 0 0

0 1
3 x 0

0 x 1
3 0

0 0 0 1
3 − x

 , 0 ≤ x ≤ 1
3

(3.2.31)

It can be easily verified that ρAB is an entangled state for x ∈ (0.167,0.333). Also, we

found that for the same range of x, we have Tr[W xy
CHSHρAB] = 2−4

√
2x ≥ 0. Therefore,

the state ρAB is undetected by the witness operator W xy
CHSH .

To calculate the strength of the non-locality of ρAB, we follow the definition (3.2.29)

and accordingly determine the following quantities,

Pmax − 3
4
= 4

√
2x−2,K =

1−2(1+
√

2)x+6x2

2(
√

(72x2 −12x+1)−1)
(3.2.32)

Therefore, using (3.2.30), we find that

q < [0.55,1], when x ∈ (0.1667,0.333) (3.2.33)

Therefore, the strength of the non-locality of the state ρAB is given by

SNew
NL (ρAB) = q(Pmax − 3

4
)+(1−q)K, 0 < q < 0.55 (3.2.34)

where the expressions Pmax − 3
4 and K are given in (3.2.32). The value of SNew

NL (ρAB)

for x and q satisfying (3.2.33) are shown in Figure 3.1.

Figure 3.1: The curve represents the non-zero value of SNew
NL (ρAB) for the state ρAB. Here, x

denotes the state parameter, and q lies in the range (0,0.55).
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So, by exploiting the above procedure, we are able to calculate the strength of non-

locality for the entangled states probabilistically which are not detected by WCHSH .

3.2.3 Relation between SNL(ρ
ent
AB ) and the quantity M(ρent

AB )

In this subsection, we consider a two-qubit entangled state described by the den-

sity operator ρent
AB and obtain the relationship between the strength of the non-locality

SNL(ρ
ent
AB ) and the quantity M(ρent

AB ). To derive the required relationship, we need a few

lemmas which are given below:

Lemma 3.2.1. If Pmax(ρent
AB ) denotes the maximum probability of winning the game via the

shared state ρent
AB between the two players, then the upper bound of Pmax(ρent

AB ) in terms of

M(ρent
AB ) is given by

Pmax(ρent
AB )≤

1
2
(

√
M(ρent

AB )

2
+1) (3.2.35)

Proof: Recalling (3.2.4), Pmax(ρent
AB ) can be re-written as

Pmax(ρent
AB ) =

1
2
(1+

⟨BCHSH⟩ρent
AB

4
) (3.2.36)

Let us denote ⟨Bmax⟩ρent
AB

= maxBCHSH ⟨BCHSH⟩ρent
AB

. Therefore, Pmax(ρent
AB ) given in (3.2.36) re-

duces to the inequality as

Pmax(ρent
AB ) ≤ 1

2
(1+

⟨Bmax⟩ρent
AB

4
)

=
1
2
(1+

√
M(ρent

AB )

2
) (3.2.37)

In the last line, we have used ⟨Bmax⟩ρent
AB

= 2
√

M(ρent
AB ) [127]. ■

Using Lemma 3.2.1 and taking the upper bound of the inequality M(ρent
AB ) ≤ 2, it can

be easily observed that Pmax(ρent
AB )≤

1
2(1+

1√
2
).

Lemma 3.2.2. If WCHSH denotes the witness operator detecting the two-qubit entangled state

ρent
AB , then the lower bound of M(ρent

AB ) is given by

M(ρent
AB )≥ [1− 1

2
Tr[WCHSHρ

ent
AB ]]

2 (3.2.38)
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Proof: From (3.2.4), ⟨BCHSH⟩ρent
AB

can be expressed as

⟨BCHSH⟩ρent
AB

= 8Pmax(ρent
AB )−4 (3.2.39)

Using ⟨BCHSH⟩ρent
AB

≤ ⟨Bmax⟩ρent
AB

, the equation (3.2.39) can be re-expressed as

8Pmax(ρent
AB )−4 ≤ ⟨Bmax⟩ρent

AB
= 2

√
M(ρent

AB ) (3.2.40)

Using Result 3.2.1 and simplifying (3.2.40), we get the result given in (3.2.38). ■

Now, we are in a position to connect SNL(ρ
ent
AB ) and M(ρent

AB ).

Result 3.2.2. If ρent
AB denotes any two-qubit entangled state, which violates the CHSH inequal-

ity and is detected by WCHSH , then

SNL(ρ
ent
AB )<

√
M(ρent

AB )−1
4

(3.2.41)

Proof: Since the CHSH witness operator WCHSH detects the entangled state ρent
AB , so SNL(ρ

ent
AB )

is given by

SNL(ρ
ent
AB ) =−

Tr[WCHSHρent
AB ]

8
(3.2.42)

Using Lemma 3.2.2, SNL(ρ
ent
AB ) can be re-expressed in terms of M(ρent

AB ) as

SNL(ρ
ent
AB )<

√
M(ρent

AB )−1
4

(3.2.43)

Hence Proved. ■

Using Result 3.2.2, and the fact M(ρent
AB ) ≤ 2, we get the upper bound of SNL(ρ

ent
AB ),

which is given by

SNL(ρ
ent
AB )<

√
2−1
4

(3.2.44)

So far, we have discussed the relationship between SNL(ρ
ent
AB ) and M(ρent

AB ) when M(ρent
AB )>

1. But what, if M(ρent
AB )≤ 1? Let us now discuss this case in the form of another result

that can be stated as:
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Result 3.2.3. If we suppose that the two-qubit entangled state ρent
AB satisfies the CHSH inequal-

ity i.e., M(ρent
AB )≤ 1, and further, if it is not detected by the witness operator WCHSH , then the

relation between SNL(ρ
ent
AB ) and M(ρent

AB ) is given by

0 < SNL(ρ
ent
AB )≤ q(

√
M(ρent

AB )−1
4

)+(1−q)K (3.2.45)

where K =
Tr[WCHSHρent

AB (ρ
ent
AB )

TB ]

4N(ρent
AB )

and q satisfy the inequality

0 ≤ q <
4K

1−
√

M(ρent
AB )+4K

(3.2.46)

Proof: If the two-qubit entangled state ρent
AB is not detected by the witness operator WCHSH

then Pmax ≤ 3
4 . Thus, the strength of the non-locality SNew

NL (ρent
AB ) of ρent

AB may be defined by

(3.2.29). Therefore recalling (3.2.29), we get

SNL(ρ
ent
AB ) = q(Pmax − 3

4
)+(1−q)K

≤ q(

√
M(ρent

AB )−1
4

)+(1−q)K (3.2.47)

In the second line, we have used inequality (3.2.35). Since the inequality (3.2.47) gives the

upper bound of SNL(ρ
ent
AB ) in terms of M(ρent

AB ), so it may happen that the value of SNL(ρ
ent
AB )

may be negative also, which is not acceptable. Thus, to make it positive, we have to put some

restrictions on q. Therefore, We can choose q in such a way that the inequality (3.2.30) holds.

The inequality (3.2.30) may be re-expressed in terms of M(ρent
AB ) as

0 ≤ q <
4K

1−
√

M(ρent
AB )+4K

(3.2.48)

Hence Proved. ■

Further, employing the condition M(ρent
AB ) ≤ 1 again, it can be easily shown that the

inequality (3.2.47) reduces to

SNew
NL (ρent

AB )≤ (1−q)K (3.2.49)

Hence, we have shown here that we are capable of detecting the non-locality of ρent
AB

even if M(ρent
AB )≤ 1, for some entangled state ρent

AB .
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3.3 Strength of the non-locality of two-qubit entangled sys-

tem determined by optimal witness operator

In Section 3.2, we found that there may exist a shared entangled state ρent
AB which

is not detected by witness operator WCHSH , and as a consequence, the maximum

probability Pmax of winning the game played between two distant players with ρent
AB

must be less than or equal to 3
4 . But just by merely observing this fact, we cannot

say that the strength of the non-locality of the state ρent
AB is zero as there exist other

witness operators that may detect it. But the problem is that there does not exist

any general relationship between Pmax and any witness operator W a different from

WCHSH . Thus, in this perspective, we can ask the following question: for any two-

qubit entangled state ρent
AB shared between two distant players playing the XOR game

and if, Tr(WCHSHρent
AB ) ≥ 0 and Tr(W aρent

AB ) < 0, then can we measure the strength of

the non-locality of two-qubit entangled state ρent
AB ? We investigate this question for

a particular case, W a = W opt , and W opt denotes the optimal witness operator. The

reason behind this choice is that the optimal witness operator detects the maximum

number of entangled states.

3.3.1 Derivation of witness operator inequality

In this subsection, we start with the derivation of witness operator inequality using

Bell-CHSH inequality. To achieve this inequality, we may consider the optimal witness

operator as W opt = (|ψ⟩AB⟨ψ|)TB, where |ψ⟩AB = 1√
2
(|00⟩+ |11⟩) and TB denote the par-

tial transposition with respect to subsystem B. In the second step, we establish a

relationship between the optimal witness operator W opt and the CHSH witness opera-

tor WCHSH , and then we derive the lower and upper bound of W xy
CHSH +W xz

CHSH +W yz
CHSH ,

when the optimal witness operator W opt detects the entangled state ρent
AB .

To start with, let us consider W opt that may be expressed in terms of the Bell operators

Bxy, Bxz, and Byz as [227]

W opt =
1
4
[I4 +

1
2
√

2
(Bxy +Bxz +Byz)] (3.3.1)

The expectation value of W opt with respect to the two-qubit density operator ρent
AB is

given by
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Tr[W opt
ρ

ent
AB ] =

1
4
[1+

1
2
√

2
(⟨Bxy⟩ρent

AB
+ ⟨Bxz⟩ρent

AB
+ ⟨Byz⟩ρent

AB
)]

Recalling (3.2.6) and adding the expression of Pmax
i j for different i & j, we get

∑
i, j=x,y,z

i̸= j

Pmax
i, j =

3
2
+

∑i, j=x,y,z
i̸= j

⟨Bi j⟩ρent
AB

8
(3.3.2)

Using (3.3.1), we can re-express (3.3.2) in terms of the expectation value of W opt with

respect to the state ρent
AB as

Pmax
xy +Pmax

yz +Pmax
zx =

3
2
− 1

2
√

2
+
√

2Tr[W opt
ρ

ent
AB ] (3.3.3)

We should note an important fact that the expectation value of CHSH witness operator

WCHSH is positive i.e., ⟨WCHSH⟩ ≥ 0 when ⟨BCHSH⟩ lying in the subinterval [−2
√

2,0],

while it is positive or negative according to ⟨BCHSH⟩ ∈ (0,2] or ⟨BCHSH⟩ ∈ (2,2
√

2]. Since

we assume that the state ρent
AB satisfies the Bell’s inequality in every setting, so we

consider −2 ≤ ⟨Bi j⟩ρent
AB

≤ 2, i, j = x,y,z; i ̸= j. Thus, using (3.2.6) in the interval [−2,2],

we get

1
4
≤ Pmax

i j ≤ 3
4
, ∀i, j = x,y,z & i ̸= j (3.3.4)

Therefore, using (3.3.4) in (3.3.3) and after simplifying it, we get

−0.28033 ≤ Tr[W opt
ρ

ent
AB ]≤ 0.78033 (3.3.5)

Since the inequality (3.3.5) is derived using the Bell-CHSH inequality, and it involves

the expectation value of the witness operator, so it may be termed as witness operator

inequality. This inequality clearly shows that there exists a witness operator such as

W opt that may detect the entangled state ρent
AB , which may not be identified by the Bell

operator Bi j (i, j = x,y,z; i ̸= j). The existence of the subinterval [−0.28033,0] of the

witness operator inequality indicates the fact that we may have entangled states ρent
AB

that can be detected by W opt , although it satisfies the Bell-CHSH inequality.

Now we are in a position to derive the lower and upper bound of W xy
CHSH +W xz

CHSH +

W yz
CHSH . To derive the required lower and upper bound, we are exploiting the subinter-

val [−0.28033,0], where W opt detects the entangled state ρent
AB . We should note here a
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crucial point that the state ρent
AB is not detected by any of the operators W xy

CHSH , W xz
CHSH ,

and W yz
CHSH .

Result 3.3.1. If ρent
AB denotes an entangled state which is not detected by W xy

CHSH , W yz
CHSH , and

W zx
CHSH , and W opt is an optimal witness operator such that Tr[W optρent

AB ] ∈ [−0.28033,0], then

8.82843 ≤ ⟨W xy
CHSH⟩ρent

AB
+ ⟨W yz

CHSH⟩ρent
AB

+ ⟨W xz
CHSH⟩ρent

AB
≤ 11.9997 (3.3.6)

Proof: To start the derivation of the bounds, let us first express the expectation value of W opt

in terms of the expectation value of W xy
CHSH , W xz

CHSH and W yz
CHSH . It is given by

Tr[W opt
ρ

ent
AB ] =

1
4
[1+

1
2
√

2
(⟨Bxy⟩ρent

AB
+ ⟨Byz⟩ρent

AB
+ ⟨Bxz⟩ρent

AB
)]

=
1
4
[1+

1
2
√

2
(6−⟨W xy

CHSH⟩ρent
AB

−⟨W yz
CHSH⟩ρent

AB
−⟨W xz

CHSH⟩ρent
AB
)] (3.3.7)

Considering the witness operator inequality in the negative subinterval, i.e. when Tr[W optρent
AB ]∈

[−0.2803,0], (3.3.7) reduces to the inequality

8.82843 ≤ ⟨W xy
CHSH⟩ρent

AB
+ ⟨W yz

CHSH⟩ρent
AB

+ ⟨W xz
CHSH⟩ρent

AB
≤ 11.9997 ■

Thus, the witness operator inequality (3.3.6) in the negative region gives the lower

and upper bound of ⟨W xy
CHSH⟩ρent

AB
+ ⟨W yz

CHSH⟩ρent
AB

+ ⟨W xz
CHSH⟩ρent

AB
, provided ⟨W xy

CHSH⟩ρent
AB

≥

0,⟨W yz
CHSH⟩ρent

AB
≥ 0,⟨W zx

CHSH⟩ρent
AB

≥ 0.

To illustrate our Result 3.3.1, let us consider the state described by the density oper-

ator ρ
(3)
AB

ρ
(3)
AB =

1
4
[I ⊗ I −0.01σ1 ⊗ I +0.002I ⊗σ3 −0.7σ1 ⊗σ1 −0.7σ2 ⊗σ2 −0.67σ3 ⊗σ3] (3.3.8)

We find that the state ρ
(3)
AB is an entangled state, but it satisfies the Bell-CHSH inequal-

ity in different settings as ⟨Bxy⟩
ρ
(3)
AB

=−1.9799, ⟨Byz⟩
ρ
(3)
AB

=−1.93747, ⟨Bxz⟩
ρ
(3)
AB

=−1.93747.

Further, we find that the state ρ
(3)
AB is not detected by the CHSH witness operator as

⟨W xy
CHSH⟩ρ

(3)
AB

= 3.9799 ≥ 0,⟨W xz
CHSH⟩ρ

(3)
AB

= 3.93747 ≥ 0 and ⟨W yz
CHSH⟩ρ

(3)
AB

= 3.93747 ≥ 0.

Let us now probe whether the state ρ
(3)
AB is detected by W opt or not. To investigate this,

let us calculate the expectation value of W opt with respect to the state ρ
(3)
AB as

Tr[W opt
ρ
(3)
AB ] =

1
4
[1+

1
2
√

2
(⟨Bxy⟩

ρ
(3)
AB

+ ⟨Bxz⟩
ρ
(3)
AB

+ ⟨Byz⟩
ρ
(3)
AB
)]

= −0.2675 (3.3.9)
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Therefore, Tr[W optρ
(3)
AB ] satisfies the witness operator inequality, and thus, one can

easily verify that ⟨W xy
CHSH⟩ρ

(3)
AB
+⟨W yz

CHSH⟩ρ
(3)
AB
+⟨W xz

CHSH⟩ρ
(3)
AB

= 11.85484 satisfy the inequal-

ity (3.3.6).

3.3.2 Upper bound for the strength of non-locality of two-qubit entan-

gled system detected by optimal witness operator

In this subsection, we first derive the inequality that provides the upper bound of the

maximum probability of winning in terms of the expectation value of W opt . By doing

this, we can establish the connection between the maximum probability of winning and

the expectation value of W opt . This connection enables us to estimate the strength of

the non-locality of an entangled state which is undetected by WCHSH but detected by

W opt . The following result educates us about the question that we have in the starting

paragraph of this section.

Result 3.3.2. If the quantum state ρent
AB satisfies the Bell-CHSH inequality in xy−, yz− and zx−

setting i.e. if −2 ≤ ⟨Bi j⟩ρent
AB

≤ 2, ∀ i, j = x,y,z; i ̸= j, and if the state ρent
AB may be identified

as an entangled state by the witness operator W opt given in (3.3.1), then the strength of the

non-locality of ρent
AB may be estimated by the inequality

SNL(ρ
ent
AB ) ≤ 3

4
− 1

2
√

2
+
√

2Tr[W opt
ρ

ent
AB ] (3.3.10)

Proof: Without any loss of generality, we can assume max{Pmax
xy ,Pmax

xz ,Pmax
yz } = Pmax

xy . Then

we can have the following inequality

Pmax
xy ≤ Pmax

xy +Pmax
yz +Pmax

zx (3.3.11)

Recalling the expression given in (3.3.3) and using (3.3.11), we get

Pmax
xy ≤ 3

2
− 1

2
√

2
+
√

2Tr[W opt
ρ

ent
AB ]

⇒ Pmax
xy − 3

4
≤U =

3
4
− 1

2
√

2
+
√

2Tr[W opt
ρ

ent
AB ] (3.3.12)

■

Our task is now to check whether the upper bound of Pmax
xy − 3

4 is positive when W opt

detects the entangled state ρent
AB . We have to check this because it may indicate the

fact that there is a possibility of detecting non-locality via W opt . The truthfulness of the
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above statement is given in Table 3.1:

We are now in a position to estimate the non-locality of the entangled state described

S.No. Tr[W optρent
AB ] U = 3

4 −
1

2
√

2
+
√

2Tr[W optρent
AB ]

1 0 0.39645
2 -0.05 0.325736
3 -0.10 0.255025
4 -0.15 0.184315
5 -0.20 0.113604
6 -0.25 0.0428932
7 -0.28033 0.0001

Table 3.1: The table provides the different values of U = 3
4 −

1
2
√

2
+
√

2Tr[W optρent
AB ], which is

the upper bound of SNL(ρ
ent
AB ) when Tr[W optρent

AB ] ∈ [−0.28033,0]

by the density operator ρent
AB . Therefore, using the definition of the strength of the non-

locality S(xy)
NL (ρent

AB ) given in (3.2.8), the inequality (3.3.12) reduces to

S(xy)
NL (ρent

AB )≤
3
4
− 1

2
√

2
+
√

2Tr[W opt
ρ

ent
AB ] (3.3.13)

Similarly, if we assume either max{Pmax
xy ,Pmax

xz ,Pmax
yz } = Pmax

xz or max{Pmax
xy ,Pmax

xz ,Pmax
yz } =

Pmax
yz then, we obtain the same result. Since the upper bound of the strength of the

non-locality does not depend on any particular setting, so the inequality (3.3.13) may

be re-expressed as

SNL(ρ
ent
AB )≤

3
4
− 1

2
√

2
+
√

2Tr[W opt
ρ

ent
AB ] (3.3.14)

Hence the theorem is proved.

To illustrate our result, let us consider the state described by the density operator ρn,

which is given by

ρn =


1−a

6 0 0 0.0005

0 5
6 −a −0.251 0

0 −0.251 a 0

0.0005 0 0 a
6

 ,
1

10
< a <

13
20

(3.3.15)

Applying the partial transposition criterion, we can say that the state ρn is an entangled

state. The state satisfies the Bell-CHSH inequality, as we find that ⟨Bxy⟩ρn =−1.41987,

⟨Byz⟩ρn = −1.65416, and ⟨Bxz⟩ρn = −1.65133. But, the state ρn is detected by W opt as

Tr[W optρn] = −0.167667 < 0. Although the state ρn satisfies the Bell-CHSH inequality
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in different settings, but it is detected by W opt . Thus, we can use our Result 3.3.2, for

the estimation of the non-locality of ρn and the strength of the non-locality is given by

SNL(ρn)≤ 0.15933 (3.3.16)

3.4 Expression for the strength of the non-locality of two-

qubit entangled state in terms of measurement parame-

ter and state parameter

Theorem 3.4.1. If Alice (A) and Bob (B) share any arbitrary two-qubit entangled state de-

scribed by the density operator ρent
AB given in (1.5.5), and if the maximized winning probability

Pmax satisfies Pmax ≤ 3
4 then

c1[λ
(0)
1 (µ

(0)
1 −µ

(1)
1 )+λ

(1)
1 (µ

(0)
1 +µ

(1)
1 )]

+ c2[λ
(0)
2 (µ

(0)
2 −µ

(1)
2 )+λ

(1)
2 (µ

(0)
2 +µ

(1)
2 )]

+ c3[λ
(0)
3 (µ

(0)
3 −µ

(1)
3 )+λ

(1)
3 (µ

(0)
3 +µ

(1)
3 )]≤ 2. (3.4.1)

where λ i
j ∈ R3 and µ i

j ∈ R3 (i = 0,1; j = 1,2) denote the real parameter of the Bell operator,

which satisfies

(λ
(i)
1 )2 +(λ

(i)
2 )2 +(λ

(i)
3 )2 = 1, (µ

(i)
1 )2 +(µ

(i)
2 )2 +(µ

(i)
3 )2 = 1, i = 0,1 (3.4.2)

Proof:- Let us start with the Bell-CHSH operator BCHSH , which is given by

BCHSH = A0 ⊗B0 −A0 ⊗B1 +A1 ⊗B0 +A1 ⊗B1

The witness operator WCHSH can be constructed from the Bell-CHSH operator as

WCHSH = 2I ⊗ I −A0 ⊗B0 +A0 ⊗B1 −A1 ⊗B0 −A1 ⊗B1 (3.4.3)

where the Hermitian operators A0,A1,B0,B1 can be expressed in terms of the Pauli matrices

σi, i = x,y,z as

A0 = λ
0
1 σx +λ

0
2 σy +λ

0
3 σz, A1 = λ

1
1 σx +λ

1
2 σy +λ

1
3 σz
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B0 = µ
0
1 σx +µ

0
2 σy +µ

0
3 σz, B1 = µ

1
1 σx +µ

1
2 σy +µ

1
3 σz (3.4.4)

Recalling the two-qubit state ρent
AB given in (1.5.5), and then let us calculate the expectation

value of WCHSH with respect to the state ρent
AB . The expectation value is given by

Tr[WCHSHρ
ent
AB ] = 2− 1

4
[ ∑

j=x,y,z
c j{Tr(A0σ j)Tr[(B0 −B1)σ j]+Tr(A1σ j)Tr[(B0 +B1)σ j]}]

(3.4.5)

Using (3.4.4) in (3.4.5), we get

Tr[WCHSHρ
ent
AB ] = 2−{c1[λ

(0)
1 (µ

(0)
1 −µ

(1)
1 )+λ

(1)
1 (µ

(0)
1 +µ

(1)
1 )]+ c2[λ

(0)
2 (µ

(0)
2 −µ

(1)
2 )

+ λ
(1)
2 (µ

(0)
2 +µ

(1)
2 )]+ c3[λ

(0)
3 (µ

(0)
3 −µ

(1)
3 )+λ

(1)
3 (µ

(0)
3 +µ

(1)
3 )]} (3.4.6)

From Result 3.2.1, it is clear that Pmax ≤ 3
4 , only when Tr[WCHSHρent

AB ]≥ 0. Therefore,

Tr[WCHSHρ
ent
AB ]≥ 0 =⇒ c1[λ

(0)
1 (µ

(0)
1 −µ

(1)
1 )+λ

(1)
1 (µ

(0)
1 +µ

(1)
1 )]

+ c2[λ
(0)
2 (µ

(0)
2 −µ

(1)
2 )+λ

(1)
2 (µ

(0)
2 +µ

(1)
2 )]

+ c3[λ
(0)
3 (µ

(0)
3 −µ

(1)
3 )+λ

(1)
3 (µ

(0)
3 +µ

(1)
3 )]≤ 2. (3.4.7)

■

Corollary 3.4.1. If the following inequality is satisfied by any two-qubit arbitrary entangled

state ρent
AB ,

c1[λ
(0)
1 (µ

(0)
1 −µ

(1)
1 )+λ

(1)
1 (µ

(0)
1 +µ

(1)
1 )]+ c2[λ

(0)
2 (µ

(0)
2 −µ

(1)
2 )

+ λ
(1)
2 (µ

(0)
2 +µ

(1)
2 )]+ c3[λ

(0)
3 (µ

(0)
3 −µ

(1)
3 )+λ

(1)
3 (µ

(0)
3 +µ

(1)
3 )]> 2 (3.4.8)

and the state is detected by WCHSH , then Pmax > 3
4 .

Proof: This corollary follows from Result 3.2.1. ■

Now we are in a position to measure the strength of the non-locality of any general

two-qubit entangled state. The expression of the strength of the non-locality can be

expressed in terms of the measurement parameters and state parameters, and it is

given in the result below:

Result 3.4.1. If any arbitrary two-qubit state described by the density operator ρent
AB given in

(1.5.5) represents an entangled state, which is detected by the witness operator WCHSH then its
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non-locality can be determined using the following formula

SNL(ρ
ent
AB ) =

1
8
[c1(λ

(0)
1 (µ

(0)
1 −µ

(1)
1 )+λ

(1)
1 (µ

(0)
1 +µ

(1)
1 ))

+ c2(λ
(0)
2 (µ

(0)
2 −µ

(1)
2 )+λ

(1)
2 (µ

(0)
2 +µ

(1)
2 ))

+ c3(λ
(0)
3 (µ

(0)
3 −µ

(1)
3 )+λ

(1)
3 (µ

(0)
3 +µ

(1)
3 ))−2] (3.4.9)

Proof: Substituting (3.4.6) in (3.2.14), we get the desired result. ■

3.5 Applications

In this section, we will discuss two applications of the introduced quantity SNL(ρ
ent
AB )

such as (i) application of SNL(ρ
ent
AB ) in the determination of the genuine non-locality of

two particular classes of three-qubit GHZ state and W state, and (ii) application of

SNL(ρ
ent
AB ) in finding the upper limit of the power of the controller in controlled quantum

teleportation.

3.5.1 Linkage between the strength of the non-locality of two-qubit en-

tangled state and the expectation value of the Svetlichny operator

with respect to a pure three-qubit state

In this section, we give a brief discussion about the non-locality of the three-qubit

state, and then we establish a relationship between the two-qubit non-locality with the

non-locality of the pure three-qubit state. We measure the strength of the two-qubit

non-locality by SNL, and the pure three-qubit non-locality is measured by the expecta-

tion value of the Svetlichny operator.

Let us consider a tripartite system describing a pure three-qubit state. In a three-qubit

state, there may exist different types of correlation. The correlation may exist ei-

ther between two subsystems only or between all three subsystem. The correlations

are genuinely tripartite non-local if the correlations cannot be simulated by a hybrid

(non-local)-local ensemble of a three-qubit system. Here, a hybrid (non-local)-local

ensemble of a three-qubit system means that any two subsystems are non-locally

correlated but it is locally correlated, with the third subsystem. The genuine tripar-

tite non-local correlation exists in the three-qubit state ρABC that may be detected by
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Svetlichny inequality, which can be read as [86]

|⟨Sv⟩ρABC | ≤ 4 (3.5.1)

where Sv denotes the Svetlichny operator, which may be defined as

Sv = a⃗.σ⃗1 ⊗ [⃗b.σ⃗2 ⊗ (⃗c+ c⃗′).σ⃗3 + b⃗′.σ⃗2 ⊗ (⃗c− c⃗′).σ⃗3]

+ a⃗′.σ⃗1 ⊗ [⃗b.σ⃗2 ⊗ (⃗c− c⃗′).σ⃗3 − b⃗′.σ⃗2 ⊗ (⃗c+ c⃗′).σ⃗3] (3.5.2)

Here a⃗, a⃗′, b⃗, b⃗′, and c⃗, c⃗′ are the unit vectors and σ⃗i = (σ x
i ,σ

y
i ,σ

z
i ) denote the spin

projection operators.

The expectation value of the Svetlichny operator with respect to the three-qubit state

ρABC is given by [228,229]

⟨Sv⟩ρABC = Max⃗a,⃗b,⃗c,⃗a′ ,⃗b′ ,⃗c′([⃗a.σ⃗1 ⊗ b⃗.σ⃗2 − a⃗′.σ⃗1 ⊗ b⃗′.σ⃗2]
T M(⃗c+ c⃗′).σ⃗3

+ [⃗a.σ⃗1 ⊗ b⃗′.σ⃗2 + a⃗′.σ⃗1 ⊗ b⃗.σ⃗2]
T M(⃗c− c⃗′).σ⃗3) (3.5.3)

where M = (M j,ik) represents a matrix with the entries Mi jk = Tr(σi ⊗σi ⊗σk), i, j,k =

1,2,3.

If any three-qubit state ρABC violates the inequality (3.5.1) then ρABC can be considered

as a genuine tripartite non-local state. M. Li et. al. [228] derived the upper bound of

the expectation value of the Svetlichny operator Sv with respect to any three-qubit

state and it is given by

|⟨Sv⟩ρABC | ≤ 4µ1 (3.5.4)

where µ1 denotes the maximum singular value of the matrix M.

We are now in a position to establish a relationship between SNL(ρAB) and ⟨Sv⟩ρABC . To

do this, let us first consider a canonical form of a pure three-qubit state, which is given

by [230]

|ψ⟩ABC = λ0|000⟩ABC +λ1eiθ |100⟩ABC +λ2|101⟩ABC +λ3|110⟩ABC +λ4|111⟩ABC (3.5.5)

where ∑
4
i=0 λ 2

i = 1, 0 ≤ λi ≤ 1 and 0 ≤ θ ≤ π.

To achieve the required relation, we take into account the two-qubit state described

by the density operator ρAB, whose purification is the three-qubit state |ψ⟩ABC [231].
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The state ρAB is given by

ρAB =


λ 2

0 0 λ0λ1eiθ λ0λ3

0 0 0 0

λ0λ1e−iθ 0 λ 2
1 +λ 2

2 λ1λ3e−iθ +λ2λ4

λ0λ3 0 λ1λ3eiθ +λ2λ4 λ 2
3 +λ 2

4

 (3.5.6)

We can make an observation that it is not very easy to obtain the analytical rela-

tionship between the expectation value of the Svetlichny operator with respect to the

pure three-qubit state |ψ⟩ABC, and the strength of the non-locality of two-qubit mixed

state ρAB by keeping all the parameters. Thus to obtain the required relationship, we

consider a few particular types of three-qubit states.

3.5.1.1 A family of pure three-qubit states: GHZ class

Let us consider a pure three-qubit state, which can be expressed as

|ψMS⟩ABC =
1√
2
(|000⟩ABC + cosθ |110⟩ABC + sinθ |111⟩ABC), 0 < θ <

π

2
(3.5.7)

It is known as the maximal slice (MS) state [87]. The inherent symmetries of the MS

state make it very useful for quantum communication purposes [167]. The expectation

value of Svetlichny operator Sv with respect to the state |ψMS⟩ABC is given by [87]

⟨Sv⟩|ψMS⟩ABC
= 4

√
2−Cos2θ (3.5.8)

Using (3.5.6), we can obtain the two-qubit state described by the density operator

ρMS
AB , whose purification is the state |ψMS⟩ABC. The state ρMS

AB is given by

ρ
MS
AB =


1
2 0 0 cosθ

2

0 0 0 0

0 0 0 0
cosθ

2 0 0 1
2

 (3.5.9)

The negativity of the state ρMS
AB is given by

N(ρMS
AB ) =

√
1+ cos2θ

2
(3.5.10)

Consider the Bell-CHSH witness operator W i j
CHSH (i, j = x,y,z; i ̸= j) in xy−, yz− and
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zx− plane to detect the state ρMS
AB . The witness operator W i j

CHSH is given by

W i j
CHSH = 2I −Bi j, i, j = x,y,z; i ̸= j (3.5.11)

where Bi j =
√

2[σi ⊗σi +σ j ⊗σ j], i, j = x,y,z and i ̸= j.

Let us now discuss different cases by considering the witness operator in different

two-dimensional planes.

Case I: xy− plane.

The witness operator defined in this plane is given by

W xy
CHSH = 2I −

√
2[σx ⊗σx +σy ⊗σy] (3.5.12)

The expectation value of W xy
CHSH with respect to the state ρMS

AB is given by

Tr[W xy
CHSHρ

MS
AB ] = 2 > 0,∀ θ ∈ (0,

π

2
) (3.5.13)

The witness operator W xy
CHSH does not detect the state ρMS

AB for any value of θ ∈ (0, π

2 ).

Therefore, the strength of the non-locality of ρMS
AB can be obtained as

SNL(ρ
MS
AB ) = q.(Pmax

xy − 3
4
)+(1−q).K (3.5.14)

where K =
Tr[W xy

CHSH .ρ
MS
AB .(ρMS

AB )TB ]

4.N(ρMS
AB )

= 1
4cosθ

and q < (0.5,1]. Further, we have Pxy
max − 3

4 =−1
4 .

Using these values, we can get the expression for the strength of the non-locality of

ρMS
AB as

SNL(ρ
MS
AB ) =

1−q(1+ cosθ)

4cosθ
, q < (0.5,1] (3.5.15)

In particular, considering q= 0.3, the expression for SNL(ρ
MS
AB ) given in (3.5.15) reduces

to

SNL(ρ
MS
AB ) =

0.7−0.3cosθ

4cosθ
, 0 < θ <

π

2
(3.5.16)

As θ varies from 0 to π

2 , SNL(ρ
MS
AB ) ∈ (0.1,1.2].

Using (3.5.8) and (3.5.16), we obtain a relation between SNL(ρ
MS
AB ) and ⟨Sv⟩|ψMS⟩ABC

as

⟨Sv⟩|ψMS⟩ABC
= 4

√
2− 49

1600
.

1
(SNL((ρ

MS
AB )+ 3

40)
2
, 0.1 < SNL(ρ

MS
AB )≤ 1.2 (3.5.17)
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and the values of ⟨Sv⟩|ψMS⟩ABC
with respect to SNL(ρ

MS
AB ) in xy-plane are shown in Figure

3.2.

Figure 3.2: The graph depicts the relationship between ⟨Sv⟩|ψMS⟩ABC
and SNL(ρ

MS
AB ). It is clear

from the graph that for SNL(ρ
MS
AB ) belongs to (0.1,1.2] when q is taken as 0.3, ⟨Sv⟩|ψMS⟩ABC

is
always greater than 4, i.e., Sv inequality is violated.

Case II: yz− plane.

The witness operator defined in yz plane is given by

W yz
CHSH = 2I −

√
2[σy ⊗σy +σz ⊗σz] (3.5.18)

The expectation value of W yz
CHSH with respect to the state ρMS

AB is given by

Tr[W yz
CHSHρ

MS
AB ] = 2−

√
2+

√
2cosθ > 0,∀ θ ∈ (0,

π

2
) (3.5.19)

In this case also, the witness operator W yz
CHSH does not detect the state ρMS

AB for any

value of θ ∈ (0, π

2 ).

Therefore, the strength of the non-locality of ρMS
AB can be obtained as

SNL(ρ
MS
AB ) = q.(Pyz

max −
3
4
)+(1−q).K (3.5.20)

where K =
Tr[W yz

CHSH .ρ
MS
AB .(ρMS

AB )TB ]

4.N(ρMS
AB )

= 2−
√

2+
√

2cosθ

8cosθ
and q < (0.5,1) for θ ∈ (0, π

2 ). Further, we

have Pyz
max − 3

4 =−2−
√

2+
√

2cosθ

8 . Using these values, we can get the expression for the
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strength of the non-locality of ρMS
AB as

SNL(ρ
MS
AB ) =

2−2
√

2sin2 θ

2 −q(4cos2 θ

2 −
√

2Sin2θ))

8cosθ
(3.5.21)

In particular, considering q = 0.001, the expression for SNL(ρ
MS
AB ) given in (3.5.21) re-

duces to

SNL(ρ
MS
AB ) =−0.001(

2−
√

2+
√

2cosθ

8
)+0.999(

2−
√

2+
√

2cosθ

8cosθ
) (3.5.22)

As θ ∈ (0, π

2 ], SNL(ρ
MS
AB ) ∈ (0.25,0.7].

Using (3.5.8) and (3.5.22), we obtain a relation between SNL(ρ
MS
AB ) and ⟨Sv⟩|ψMS⟩ABC

as

⟨Sv⟩|ψMS⟩ABC
=
√

32−u2, 0.25 < SNL(ρ
MS
AB )≤ 0.7

where u =
−(8SNL−1.41221)+

√
(8SNL−1.41221)2+0.00330521

0.007 . The values of ⟨Sv⟩|ψMS⟩ABC
with re-

spect to SNL(ρ
MS
AB ) in yz-plane are shown in Figure 3.3.

Figure 3.3: The graph depicts the relationship between ⟨Sv⟩|ψMS⟩ABC
and SNL(ρ

MS
AB ). It is clear

from the graph that for SNL(ρ
MS
AB ) belongs to (0.25,0.7] when q is taken as 0.001, ⟨Sv⟩|ψMS⟩ABC

is always greater than 4, i.e., Sv inequality is violated.

Case III: zx− plane: In a similar fashion, we can obtain the relationship between

⟨Sv⟩|ψMS⟩ABC
and SNL(ρ

MS
AB ) when the witness operator WCHSH defined in zx− plane.
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3.5.1.2 A family of pure three-qubit states: W-class of Type-I

Let us consider a family of pure three-qubit states, which can be expressed in the form

as

|ψ1⟩ABC = λ0|000⟩ABC +0.3|101⟩ABC +
√

0.91−λ 2
0 |110⟩ABC, λ0 ∈ [0,0.953939]

The state |ψ1⟩ABC belongs to the W− class of states. Let us consider a two-qubit

state described by the density operator ρ
(t1)
AB which when purified, gives rise to the

three-qubit pure state |ψ1⟩ABC. The two-qubit state ρ
(t1)
AB is given by [231]

ρ
(t1)
AB =


λ 2

0 0 0 λ0

√
0.91−λ 2

0

0 0 0 0

0 0 0.09 0

λ0

√
0.91−λ 2

0 0 0 0.91−λ 2
0

 , λ0 ∈ [0,0.953939] (3.5.23)

In this interval of λ0, the state ρ
(t1)
AB is an entangled state, but it is not detected by the

CHSH witness operators W xy
CHSH and W yz

CHSH . The entangled state ρ
(t1)
AB is only detected

by the CHSH witness operator W xz
CHSH .

In the xz− plane, the expectation value of CHSH witness operator W xz
CHSH with respect

to the state ρ
(t1)
AB is given by

Tr[W xz
CHSHρ

(t1)
AB ] = 0.840345−2.82843λ0

√
0.91−λ 2

0 < 0, λ0 ∈ [0.335,0.85] (3.5.24)

where W xz
CHSH = 2I −Bxz and Bxz =

√
2[σx ⊗σx +σz ⊗σz].

Therefore, in this case, the non-locality of the two-qubit state ρ
(t1)
AB can be calculated

via the formula

SNL(ρ
(t1)
AB ) = −

Tr[W xz
CHSHρ

(t1)
AB ]

8

=
−(0.840345−2.82843λ0

√
0.91−λ 2

0 )

8
,λ0 ∈ [0.335,0.85] (3.5.25)

It can be easily found that the value of SNL(ρ
(t1)
AB ) lies in the interval [0,0.06] when

λ0 ∈ [0.335,0.85].

The expression (3.5.25) can be re-expressed as
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λ
2
0 =

0.91±
√
(0.91)2 − k
2

(3.5.26)

where k = [
8SNL(ρ

(1)
AB )+0.840305
2.82843 ]2.

Now, our task is to calculate the expectation value of the Svetlichny operator with

respect to the state |ψ1⟩ABC. To accomplish this task, firstly, we need to calculate the

matrix M1 [228], which is given by

M1 =


0 0 a 0 0 0 0 0 c

0 0 0 0 0 −a 0 0 0

0 0 b 0 0 0 0 0 0.82

 (3.5.27)

where a = 2λ0

√
0.91−λ 2

0 ,b =−0.6
√

0.91−λ 2
0 and c = 0.6λ0.

The maximum singular value of M1 is given by

µ1 = 0.707107

√
1+3.64λ 2

0 −4λ 4
0 +

√
1−7.28λ 2

0 +21.2496λ 4
0 −29.12λ 6

0 +16λ 8
0 (3.5.28)

Using the result (3.5.4) and (3.5.28), we get

⟨Sv⟩
ρ
(1)
ABC

≤ 4(0.707107
√

1+3.64λ 2
0 −4λ 4

0 +
√

J) (3.5.29)

where ρ
(1)
ABC = |ψ1⟩ABC⟨ψ1| and J = 1−7.28λ 2

0 +21.2496λ 4
0 −29.12λ 6

0 +16λ 8
0

When the state parameter λ0 is given by (3.5.26), then the relation between |⟨Sv⟩
ρ
(1)
ABC

|

and SNL(ρ
(t1)
AB ) may be written as

|⟨Sv(ρ
(1)
ABC)⟩| ≤ 4(0.707107

√
1+3.64λ 2

0 −4λ 4
0 +

√
J) (3.5.30)

One can now easily verify that the pure three-qubit state |ψ1⟩ABC satisfies the Svetlichny

inequality when SNL(ρ
(t1)
AB ) ∈ [0,0.06].

3.5.1.3 A family of pure three-qubit states: W-class of Type-II

Consider a family of pure three-qubit state

|ψ2⟩ABC = λ0|000⟩ABC +0.7|100⟩ABC +
√

0.51−λ 2
0 |110⟩ABC, λ0 ∈ [0.1,0.7]
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The state |ψ2⟩ABC belongs to W - class of states. The two-qubit state ρ
(t2)
AB can be

purified to |ψ2⟩ABC. The density matrix ρ
(t2)
AB is given by [231]

ρ
(t2)
AB =


λ 2

0 0 0.7λ0 λ0s

0 0 0 0

0.7λ0 0 0.49 0.7s

λ0s 0 0.7s s

 , λ0 ∈ [0.1,0.7] (3.5.31)

where s =
√

0.51−λ 2
0 . In the given interval of λ0, the state ρ

(t2)
AB is an entangled

state, but it is not detected by any of the CHSH witness operators W xy
CHSH , W yz

CHSH , and

W xz
CHSH . Therefore, we can proceed with any one of the CHSH witness operators. Let

us choose the witness operator W xy
CHSH . In the xy− plane, the expectation value of

CHSH witness operator W xy
CHSH with respect to the state ρ

(t2)
AB is given by

Tr[W xy
CHSHρ

(t2)
AB ] = 2 > 0, λ0 ∈ [0.1,0.7] (3.5.32)

where W xy
CHSH = 2I −Bxy and Bxy =

√
2[σx ⊗σx +σy ⊗σy].

Therefore, in this case, the non-locality of a two-qubit entangled state ρ
(t2)
AB can be

calculated as

SNL = q(Pxy
max −

3
4
)+(1−q)k (3.5.33)

where k = 2−2.04λ 2
0 +4λ 4

0 −1.38593λ0

√
0.51−λ 2

0 and Pxy
max =

1
2 .

The parameter q satisfies the inequality

q < [0.73,1] (3.5.34)

Considering q = 0.6, the strength of the non-locality of ρ
(t2)
AB is given by

SNL(ρ
(t2)
AB ) =

1+2λ 4
0 −K

λ0

√
51−100λ 2

0

(3.5.35)

where K = [1.02λ 2
0 +0.15λ0

√
51−100λ 2

0 +0.692965λ0

√
0.51−λ 2

0 ].

It can be easily seen that the value of SNL(ρ
(t2)
AB ) ∈ [0.1219,1.18077] for λ0 ∈ [0.1,0.7].
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For the state |ψ2⟩ABC, the matrix M2 is given by [228]

M2 =


0 0 a1 0 0 0 b1 0 0

0 0 0 0 0 −a1 0 b1 0

c1 0 0 0 −c1 0 0 0 1

 (3.5.36)

where a1 = 2λ0

√
0.51−λ 2

0 ,b1 =−1.4
√

0.51−λ 2
0 and c1 = 1.4λ0.

The maximum singular value of M2 is given by

µ2 =
√

1+3.92λ 2
0 (3.5.37)

Using the result (3.5.4) and (3.5.37), we get

⟨Sv⟩
ρ
(2)
ABC

≤ 4
√

1+3.92λ 2
0 (3.5.38)

where ρ
(2)
ABC = |ψ2⟩ABC⟨ψ2|.

The relation between |⟨Sv⟩
ρ
(2)
ABC

| and SNL(ρ
(2)
AB ) may be given by

4 < ⟨Sv⟩
ρ
(2)
ABC

≤
√

16+
33.1546

SNL(ρ
(t2)
AB )

One can now find that the pure three-qubit state |ψ2⟩ABC violates the Svetlichny in-

equality, when SNL(ρ
(t2)
AB ) ∈ [0.1219,1.18077].

3.5.2 Upper bound of the power of the controller in controlled quantum

teleportation in terms of SNL

Controlled quantum teleportation [137] is a variant of quantum teleportation protocol

[20], where a party controls the fidelity of the quantum teleportation. To explain the

controlled quantum teleportation, let us consider a three-qubit state described by the

density operator ρCAB, which is shared between three distant parties Alice, Bob, and

Charlie. Alice and Bob possess the qubit A and B, while the qubit C is with Charlie.

In the controlled quantum teleportation, Charlie performs measurement on his qubit

C, and as a result, Alice and Bob share a two-qubit state described by the density

operator ρAB. Alice and Bob then use the state ρAB as a resource state to teleport a

qubit. The state ρAB contains Charlie’s measurement parameter, and this parameter is
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also visible in the expression of the fidelity of teleportation. Thus, Charlie may control

the teleportation fidelity by choosing the measurement parameter, and hence he may

act as a controller in the teleportation protocol. To quantify Charlie’s strength, one

may define the power of the controller. To study the controller’s power in controlled

teleportation, we need to consider the two quantities: (i) Conditioned fidelity denoted

by fC, which is assumed to be greater than 2
3 , and (ii) Non-conditioned fidelity denoted

by fNC, which is assumed to be less than 2
3 . Therefore, the power denoted by P may

be defined as [167,169,170]

P = fC − fNC (3.5.39)

In this section, we will show that the controller’s power in the controlled quantum tele-

portation is upper bounded by the quantity M(ρAB) and hence the quantity SNL(ρAB).

To obtain the required results, we need to state two lemmas which are given below:

Lemma 3.5.1. If τ denotes the tangle of the three-qubit pure state described by the density

matrix ρCAB and N(ρAB) denotes the negativity of the two-qubit state ρAB = TrC(ρCAB), then

the conditioned fidelity fC is given by

2
3
< fC ≤ 2

3
+

√
τ +(

√
2
√

N2(ρAB)+N(ρAB)−N(ρAB))2

3
(3.5.40)

Proof: The conditioned fidelity fC is given by [47]

fC =
2+ τAB

3
=

2+
√

τ +(C(ρAB))2

3
(3.5.41)

where τAB denotes the partial tangle and it can be expressed in terms of τ as τAB =
√

τ +(C(ρAB))2

[47].

Verstraete et. al. [232] proved that the lower bound of the negativity (N(ρAB)) of any two-qubit

state ρAB can be expressed as a function of the concurrence C(ρAB), and it is given by

N(ρAB)≥
√

(1− (C(ρAB))2 +(C(ρAB))2 −1+C(ρAB) (3.5.42)

Simplifying (3.5.42) and writing C(ρAB) in terms of N(ρAB), we get

0 ≤C(ρAB)≤−N(ρAB)+
√

2
√

N2(ρAB)+N(ρAB) (3.5.43)

Using (3.5.43) in (3.5.41), we get the upper bound of fC in terms of N(ρAB). Furthermore,
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from (3.5.41), it is clear that fC > 2
3 . Hence the lemma. ■

Lemma 3.5.2. If ρCAB denotes the three-qubit pure state, then the non-conditioned fidelity fNC

is given by [127]

fNC ≥ 3+M(ρAB)

6
(3.5.44)

where ρAB = TrC(ρCAB) is the two-qubit mixed state shared between two distant parties as a

resource state to execute the teleportation protocol. ■

Result 3.5.1. If τ denotes the tangle of a three-qubit pure state described by the density matrix

ρCAB and if P denotes the power of the controller in controlled teleportation, then the upper

bound of the power is given by

P ≤ (
1−M(ρAB)

6
)+

√
τ +(

√
2
√

N2(ρAB)+N(ρAB)−N(ρAB))2

3
(3.5.45)

Proof: The power P of the controller can be re-written as

P = fC − fNC (3.5.46)

Using Lemma 3.5.1 and Lemma 3.5.2, the power P given in (3.5.46) reduces to the following

inequality

P ≤
(2

3
+

√
τ +(

√
2
√

N2(ρAB)+N(ρAB)−N(ρAB))2

3
− (

3+M(ρAB)

6
)
)

=
(
(
1−M(ρAB)

6
)+

√
τ +(

√
2
√

N2(ρAB)+N(ρAB)−N(ρAB))2

3
)

(3.5.47)

■

Since it is assumed that fC > 2
3 and fNC < 2

3 , so the power P of the controller cannot

be negative [167,170]. Thus, we may note the following:

Note 1: If the two-qubit reduced state ρAB does not violate the CHSH inequality, then

M(ρAB) ≤ 1, and thus the non-conditioned fidelity fNC will be less than 2
3 . Hence, the

power P is always positive.

Note 2: If the two-qubit reduced state ρAB does violate the CHSH inequality, then

M(ρAB) > 1 and, in this case, the non-conditioned fidelity fNC > 2
3 . Thus there may

be a chance to get the negative power, which is not acceptable. But if we impose
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restriction on M(ρAB), then we can make the power positive. Hence, the power P is

positive, only when the following conditions hold

1 < M(ρAB)< 1+2
√

L (3.5.48)

where L=τ +(
√

2
√

N2(ρAB)+N(ρAB)−N(ρAB))
2.

Result 3.5.2. If the reduced entangled state ρAB violates the CHSH inequality and is detected

by the witness operator WCHSH then the connection between the non-locality of ρAB determined

by SNL(ρAB) and the three-qubit tangle τ is given by

SNL(ρAB)<

√
1+2

√
L−1

4
(3.5.49)

Now we are in a position to express the controller’s power in terms of SNL(ρAB).

Result 3.5.3. Let us consider a three-qubit state ρCAB shared between three parties, Alice, Bob,

and Charlie. If the reduced entangled state ρAB = TrC(ρCAB) violates the CHSH inequality and

is detected by the witness operator WCHSH , then the controller’s power P can be determined by

SNL(ρAB), which is given by the following inequality

P <
1
6
− 4

3
(SNL(ρAB)(1+2SNL(ρAB)) (3.5.50)

Proof: Recalling and re-write (3.5.47) as

P <

√
L

3
+

1−M(ρAB)

6
(3.5.51)

where L= τ+(
√

2
√

N2(ρAB)+N(ρAB)−N(ρAB))
2, τ and N(ρAB) denotes tangle of the three-

qubit pure state and negativity of the reduced two-qubit state respectively.

Further, since SNL(ρAB)≥ 0 so, the upper limit of SNL(ρAB) given in (3.5.49) must be positive.

Therefore, the expression
√

1+2
√

L−1
4 in the R.H.S of (3.5.49) reduces to

√
1+2

√
L−1

4
≥ 0 =⇒ L <

1
4

(3.5.52)

Simplifying (3.2.43), we get

1−M(ρAB)

6
<−4SNL(ρAB)(2SNL(ρAB)+1)

3
(3.5.53)

Using (3.5.52) and (3.5.53) in the inequality (3.5.51), we get the required result. ■
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3.6 Conclusion

To summarize, we have considered the problem of detection of non-locality of a given

two-qubit state. It is now an accepted fact that non-locality and entanglement are two

different concepts, and thus if a two-qubit state is entangled, then it is not necessary

that it also depicts the non-local feature. Therefore, one can find many entangled

states in the literature that may satisfy Bell’s inequality. In the context of the detec-

tion of non-local property of a two-qubit entangled state, we consider a Bell game

where the maximum probability Pmax of winning the game is related to the expectation

value of the Bell operator. We have defined the strength of non-locality SNL in terms

of Pmax and, later on, re-expressed the expression of SNL in terms of witness oper-

ator. First, we made a connection between the strength of the non-locality and the

CHSH witness operator and then discussed the estimation of the non-locality of the

given entangled state in both cases when (i) the CHSH witness operator detects the

entangled state and (ii) CHSH witness operator does not detect the entangled state.

Also, we construct an inequality that gives the upper bound of the strength of the non-

locality in terms of the expectation value of the optimal witness operator with respect

to the two-qubit entangled state. By doing this, we are able to detect the non-locality in

the given two-qubit entangled state, which was undetected earlier by the Bell-CHSH

operator. Furthermore, we also developed an interconnection between the strength

of the non-locality of the two-qubit state and the expectation value of the Svetlichney

operator with respect to a pure three-qubit state. This link paves the way to study

the non-locality of a pure three-qubit state in terms of the non-locality of a two-qubit

system.

****************



Chapter 4

State dependent bounds of the expectation

value of the Svetlichny Operator

�When you change the way you look at things, the things you look at change.�

- Max Planck

In this chapter 1, we study the problem of the detection of the genuine non-locality

of any three-qubit state. It is known that the violation of Svetlichny inequality by any

three-qubit state described by the density operator ρABC witness the genuine non-

locality of ρABC. Further, it may be noted that the bounds of the Svetlichny inequal-

ity are state independent. However it is not an easy task to show the violation of

Svetlichny inequality as the problem reduces to a complicated optimization problem.

Thus, the detection of genuine non-locality of any three-qubit state may be consid-

ered a challenging task. Therefore, we have taken a different approach and derived

the lower and upper bound of the expectation value of the Svetlichny operator with

respect to any three-qubit state to study this problem. We have cited a few exam-

ples of three-qubit states whose non-locality was neither detected by the Svetlichny

inequality nor by any other method but it is detected by the violation of the bounds ob-

tained here. This is due to the fact that the obtained bounds are state dependent. The

expression of the obtained bounds depends on whether the reduced two-qubit entan-

gled state is detected by the CHSH witness operator or not. It may be expressed in

1This chapter is based on a published research paper “Detection of the genuine non-locality of any three-qubit
state, Annals of Physics 455, 169400 (2023)".
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terms of the following quantities such as (i) the eigenvalues of the product of the given

three-qubit state and the composite system of single qubit maximally mixed state and

reduced two-qubit state and (ii) the non-locality of reduced two-qubit state. Moreover,

we also discuss its possible implementation in the laboratory.
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4.1 Introduction

The correlation statistics between the subsystems obtained after performing a local

measurement on the entangled system [1, 3] may be incompatible with the princi-

ple of local realism. Since Bell’s inequality [17] has been derived using the princi-

ple of local realism so the generated correlation may violate Bell’s inequality. This

type of correlation may be called a non-local correlation [110, 233, 234]. The gener-

alized form of Bell’s inequality that may be realizable in an experiment was given by

Clauser et. al. [48] and it is popularly known as Bell-CHSH inequality. Freedman and

Clauser also have provided strong experimental evidence, using a generalized form

of Bell’s inequality, against the existence of local hidden-variable theories [49]. B. S.

Cirelson [235] proved that quantum mechanics allow up to 2
√

2 as an upper bound of

generalized Bell’s inequality. The upper bound of 2
√

2 has been achieved by the two-

qubit maximally entangled state. In 1982, A. Aspect et. al. [50] showed that maximum

violation of generalized Bell’s inequality can be achieved in an experiment. Later,

Horodecki et. al. [97] also studied the problem of non-locality for two-qubit states and

provided a criterion to check the non-locality of ρAB in terms of the quantity M(ρAB)

which is given by (1.8.1). The criterion states that any two-qubit state violates Bell’s

inequality if and only if M(ρAB)> 1.

The study of the non-locality of the multipartite system is a difficult problem but in

spite of that, some progress has been achieved. In particular, the non-locality of the

three-qubit system is relatively easier to handle. Non-locality of a three-qubit state

can be tested by various inequalities such as Svetlichny inequality [86], Mermin in-

equality [62], and logical inequality based on GHZ type event probabilities [236]. The

experimental verification of the non-locality of the three-qubit GHZ state is reported

in [237]. The non-locality of a three-qubit pure symmetric state has been explored

in [238]. The standard non-locality and genuine non-locality of GHZ symmetric state

have been studied in [239].

Mermin inequality [62] can be violated by not only genuine entangled three-qubit

states but also by biseparable states. Thus, the discrimination of the classes of three-

qubit entangled states is not possible by merely observing the violation of Mermin

inequality. But fortunately, there exists another inequality known as Svetlchny in-

equality [86], a violation of which guarantees the fact that the three-qubit state under

investigation is a genuine entangled state. Therefore, the genuine tripartite non-local
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correlation that may exist in the three-qubit state ρABC may be detected by Svetlichny

inequality, which is given by [86]

|⟨Sv⟩ρABC | ≤ 4 (4.1.1)

where Sv denote the Svetlichny operator, which may be defined as

Sv = a⃗.σ⃗1 ⊗ [⃗b.σ⃗2 ⊗ (⃗c+ c⃗′).σ⃗3 + b⃗′.σ⃗2 ⊗ (⃗c− c⃗′).σ⃗3]

+ a⃗′.σ⃗1 ⊗ [⃗b.σ⃗2 ⊗ (⃗c− c⃗′).σ⃗3 − b⃗′.σ⃗2 ⊗ (⃗c+ c⃗′).σ⃗3] (4.1.2)

Here a⃗, a⃗′; b⃗, b⃗′ and c⃗, c⃗′ are the unit vectors and the σ⃗i = (σ x
i ,σ

y
i ,σ

z
i ) denote the spin

projection operators. It may be noted that the bounds of the inequality (4.1.1) are

state independent. The violation of Svetlichny inequality by three-qubit generalized

GHZ state, maximal slice state, and W class state has been studied in [87,88], and it

has been found that the maximal violation 4
√

2 may be obtained for GHZ state. The

theoretical result of Ghose et. al. has been demonstrated experimentally in [240].

An operational method to detect the genuine multipartite non-locality for three-qubit

mixed states has been investigated in [228]. Also, the genuine non-locality of three-

qubit pure and mixed states has been extensively studied in [229].

In order to obtain the violation of the Svetlichny inequality, one has to calculate the ex-

pectation of the Svetlichny operator by maximizing overall measurements of spin in the

directions a⃗, a⃗′ ,⃗b, b⃗′, c⃗, c⃗′. Consequently, the problem of the violation of the Svetlichny

inequality reduces to an optimization problem, which is not a very easy task to solve

for any arbitrary three-qubit state. This motivates us to find a way by which we can

overcome this problem. To achieve our task, we derive the upper and lower bound of

the expectation value of the Svetlichny operator with respect to any three-qubit state.

These newly obtained upper and lower bounds depend on the non-locality of the re-

duced two-qubit state of the three-qubit system and we have shown that this may pave

the way to study the genuine non-locality of any three-qubit state.

4.2 Lower and upper bound of the expectation value of the

Svetlichny operator

In this section, we construct the Hermitian operators to derive a connection between
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the two-qubit non-locality determined by the strength of the non-locality SNL and the

non-locality of an arbitrary (either pure or mixed) three-qubit state determined by the

Svetlichny operator Sv. The construction of the Hermitian operator makes us enable to

derive the lower and upper bound of the expectation value of the Svetlichny operator

with respect to an arbitrary three-qubit state. The derived bound of the expectation

value of the Svetlichny operator provides us with a new way to discriminate the gen-

uine three-qubit entangled state.

To proceed forward, let us consider a three-qubit state (pure or mixed) described

by the density operator ρABC and its reduced two-qubit entangled state ρi j, i, j =

A,B,C and i ̸= j, which can be related by the following way:

ρi j = Trk[ρABC], i, j,k = A,B,C and i ̸= j ̸= k (4.2.1)

The two operators may be constructed as

Al = pSv +(1− p)(I2 ⊗WCHSH) (4.2.2)

Bl = ρABC(I2 ⊗ρi j), i, j = A,B,C, i ̸= j (4.2.3)

where p ∈ [0,1] and WCHSH(= 2I2 − BCHSH) denote the CHSH witness operator. I2

denotes the identity matrix of order 2. Now, in the subsequent subsections, we derive

the lower and upper bound of the expectation value of the Svetlichny operator in terms

of two-qubit non-locality determined by SNL(ρi j).

4.2.1 Lower bound of the expectation value of Svetlichny operator in

terms of two-qubit non-locality determined by SNL

To derive the lower bound of the expectation value of Svetlichny operator Sv, let us

start with the quantity R(Tr[AlBl]). It can be expressed as

R(Tr[AlBl]) = R(Tr[(pSv +(1− p)(I2 ⊗WCHSH))×ρABC(I2 ⊗ρi j)])

= pR(Tr[SvρABC(I2 ⊗ρi j)])+(1− p)×R(Tr[(I2 ⊗ρi jWCHSH)ρABC])

(4.2.4)

Since (I2 ⊗ρi j) and ρABC is a Hermitian operator, and SvρABC and (I2 ⊗ρi jWCHSH) are

complex matrices so after applying Result 1.3 on (4.2.4), we get
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R(Tr[SvρABC(I2 ⊗ρi j)])≤ λmax(I2 ⊗ρi j)Tr[SvρABC] (4.2.5)

R(Tr[(I2 ⊗ρi jWCHSH)ρABC])≤ Tr[I2 ⊗ρi jWCHSH ]λmax(ρABC) (4.2.6)

Using (4.2.5) and (4.2.6) in (4.2.4), we obtain

R(Tr[AlBl]) = R(pTr[SvρABC(I2 ⊗ρi j)])+(1− p)×R(Tr[(I2 ⊗ρi jWCHSH)ρABC])

≤ pλmax(I2 ⊗ρi j)Tr[SvρABC]+ (1− p)λmax(ρABC)Tr[I2 ⊗ρi jWCHSH ]

= pλmax(I2 ⊗ρi j)⟨Sv⟩ρABC +2(1− p)Tr[WCHSHρi j]λmax(ρABC) (4.2.7)

In the last step, one can easily check that Tr[SvρABC]= Tr[SvρABC], Tr[I2 ⊗ρi jWCHSH ] =

Tr[I2 ⊗ρi jWCHSH ], and Tr[I2 ⊗ρi jWCHSH ] = 2Tr[WCHSHρi j].

Again applying LHS of Result 1.2 on Hermitian operator pSv +(1− p)(I2 ⊗WCHSH)),

and ρABC(I2 ⊗ρi j) be any complex matrix and using Tr[Sv] = 0, we get

R(Tr[(pSv +(1− p)(I2 ⊗WCHSH))ρABC(I2 ⊗ρi j)])

≥ Tr[pSv +(1− p)(I2 ⊗WCHSH)]λmin(ρABC(I2 ⊗ρi j))

= 8(1− p)λmin(ρABC(I2 ⊗ρi j)) (4.2.8)

In the second line of (4.2.8), we have used the linearity property of trace and Tr(WCHSH)=

4, where WCHSH = 2I −BCHSH . Combining the inequalities (4.2.7) and (4.2.8), we get

[pλmax(I2 ⊗ρi j)⟨Sv⟩ρABC +2(1− p)Tr[WCHSHρi j]λmax(ρABC)]≥ 8(1− p)λmin(ρABC(I2 ⊗ρi j))

(4.2.9)

After simplification, the inequality (4.2.9) can be re-expressed as

⟨Sv⟩ρABC ≥
8(1− p)λmin(ρABC(I2 ⊗ρi j))

pλmax(I2 ⊗ρi j)
−

2(1− p)Tr[WCHSHρi j]λmax(ρABC)

pλmax(I2 ⊗ρi j)
(4.2.10)

Since our aim is to establish the relationship between ⟨Sv⟩ρABC and the strength of the

non-locality SNL(ρi j) of two-qubit entangled state ρi j so we shall consider two cases in

which we discuss the following: (i) when ρi j is detected by the witness operator WCHSH

and (ii) when WCHSH does not detect the state ρi j.
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4.2.1.1 When the entangled state ρi j is detected by the witness operator WCHSH

Let us recall the definition (3.2.14) of SNL(ρi j) and can be re-expressed for the entan-

gled state ρi j as

SNL(ρi j) =
−Tr[WCHSHρi j]

8

Putting this value of SNL(ρi j) in (4.2.10), we get

⟨Sv⟩ρABC ≥
8(1− p)λmin(ρABC(I2 ⊗ρi j))

pλmax(I2 ⊗ρi j)
+

16(1− p)λmax(ρABC)SNL(ρi j)

pλmax(I2 ⊗ρi j)
(4.2.11)

4.2.1.2 When WCHSH does not detected the entangled state ρi j

In this case, SNL(ρi j) is defined in a different way and it is given by (3.2.29)

SNew
NL (ρi j) = r(Pmax − 3

4
)+(1− r)K, i, j = A,B,C; i ̸= j (4.2.12)

where Pmax is given in (3.2.6), r and K are given as

r <
K

3
4 −Pmax +K

(4.2.13)

K =
Tr[WCHSHρi j(ρ

Tj
i j )]

4N(ρi j)
(4.2.14)

Tj represent the partial transposition with respect to the qubit ” j” and N(ρi j) denote

the negativity of the two-qubit entangled state ρi j.

To derive the lower bound of ⟨Sv⟩ for this case, we need a lemma which can be stated

as

Lemma 4.2.1. If an entangled state described by the density operator ρi j and the witness

operator WCHSH does not detect it then

K ≥
λmin[(ρ

Tj
i j )

2]Tr[WCHSHρi j]

4λmax[ρ
Tj
i j ]N(ρi j)

, i, j = A,B,C; i ̸= j (4.2.15)

where K is given by (4.2.14).

Proof: Let us start with the quantity R(Tr[WCHSHρi j(ρ
Tj
i j )

2]). Applying LHS of Result 1.3 on
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Hermitian operator (ρTj
i j )

2 and WCHSHρi j be any complex matrix, we get

R(Tr[WCHSHρi j(ρ
Tj
i j )

2])≥ λmin[(ρ
Tj
i j )

2]×Tr[WCHSHρi j] (4.2.16)

where, Tr[WCHSHρi j] = Tr[WCHSHρi j].

Again applying RHS of Result 1.3 on Hermitian operator ρ
Tj
i j and WCHSHρi jρ

Tj
i j be any com-

plex matrix, the quantity R(Tr[WCHSHρi j(ρ
Tj
i j )

2]) can also be expressed as

R(Tr[WCHSHρi j(ρ
Tj
i j )

2]) ≤ λmax[ρ
Tj
i j ]Tr[WCHSHρi jρ

Tj
i j ]

= 4λmax[ρ
Tj
i j ]N(ρi j)K (4.2.17)

Since, Tr[WCHSHρi jρ
Tj
i j ] = Tr[WCHSHρi jρ

Tj
i j ]. So, in the second line of (4.2.17), we have used

the relation (4.2.14) i.e. Tr[WCHSHρi jρ
Tj
i j ] = 4N(ρi j)K.

Using (4.2.16), the equation (4.2.17) can be re-expressed as

K ≥
λmin[(ρ

Tj
i j )

2]Tr[WCHSHρi j]

4λmax[ρ
Tj
i j ]N(ρi j)

(4.2.18)

■

Now we are in a position to establish the relationship between SNew
NL (ρi j) and ⟨Sv⟩ρABC

when the witness operator WCHSH does not detect the entangled state ρi j.

Using (4.2.15), the expression for the strength of the non-locality SNew
NL (ρi j) given in

(4.2.12) can be written as

SNew
NL (ρi j)≥ r(Pmax − 3

4
)+(1− r)

Tr[WCHSHρi j]λmin[(ρ
Tj
i j )

2]

4λmax[ρ
Tj
i j ]N(ρi j)

(4.2.19)

The above inequality (4.2.19) may be re-expressed as

Tr[WCHSHρi j] ≤
4Z[SNew

NL (ρi j)− r(Pmax − 3
4)]

(1− r)λmin[(ρ
Tj
i j )

2]
(4.2.20)

where Z = N(ρi j)λmax[ρ
Tj
i j ].

Using the inequality (4.2.20) in (4.2.10), we get

⟨Sv⟩ρABC ≥ 8(1− p)[
λmin(ρABC(I2 ⊗ρi j))

pλmax(I2 ⊗ρi j)
−G] (4.2.21)
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where G =
λmax(ρABC)[SNew

NL (ρi j)−r(Pmax− 3
4 )]N(ρi j)λmax[ρ

Tj
i j ]

p(1−r)λmin[(ρ
Tj
i j )

2]λmax(I2⊗ρi j)
.

We are now in a position to collect all the above obtained results in the following

theorem:

Theorem 4.2.1. The lower bound of the expectation value of the Svetlichny operator Sv with

respect to three-qubit state ρABC is given by

(i) ⟨Sv⟩ρABC ≥
8(1− p)λmin(ρABC(I2 ⊗ρi j))

pλmax(I2 ⊗ρi j)
+

16(1− p)λmax(ρABC)SNL(ρi j)

pλmax(I2 ⊗ρi j)
(4.2.22)

and

(ii) ⟨Sv⟩ρABC ≥ 8(1− p)
[

λmin(ρABC(I2 ⊗ρi j))

pλmax(I2 ⊗ρi j)
−

(
SNew

NL (ρi j)− r(Pmax − 3
4)
)
×A1

p(1− r)λmin[(ρ
Tj
i j )

2]λmax(I2 ⊗ρi j)

]
(4.2.23)

where A1 = (N(ρi j)λmax(ρ
Tj
i j )λmax(ρABC))

The results (i) and (ii) can be applied according as when the entangled state ρi j does or does

not detected by the witness operator WCHSH . ■

4.2.2 Upper bound of the expectation value of Svetlichny operator in

terms of two-qubit non-locality determined by SNL

Let us consider two operators Au and Bu, which may be defined as

Au = qSv +(1−q)(I2 ⊗WCHSH), 0 ≤ q ≤ 1 (4.2.24)

Bu = ρABC(I2 ⊗ρi j) (4.2.25)

The expression for R(Tr[AuBu]) is given by

R(Tr[(qSv +(1−q)(I2 ⊗WCHSH))ρABC(I2 ⊗ρi j)])

= qR(Tr[SvρABC(I2 ⊗ρi j)])+(1−q)R(Tr[(I2 ⊗WCHSH)×ρABC(I2 ⊗ρi j)])

= qR(Tr[SvρABC(I2 ⊗ρi j)])+(1−q)R(Tr[(I2 ⊗ρi j ×WCHSH)ρABC])

≥ qR(Tr[SvρABC(I2 ⊗ρi j)])+(1−q)Tr[(I2 ⊗ρi jWCHSH)]×λmin(ρABC)

= qR(Tr[SvρABC(I2 ⊗ρi j)])+2(1−q)Tr[WCHSHρi j]×λmin(ρABC) (4.2.26)

In the second and third lines, we have used the linearity and cyclic property of the
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trace. We have used the LHS inequality of Result 1.3 on Hermitian operator ρABC and

considering (I2 ⊗ρi jWCHSH) as any complex matrix in the fourth line. In the last line,

we have used Tr[I2 ⊗ ρi jWCHSH ] = Tr[I2 ⊗ρi jWCHSH ] and one of the properties of the

trace i.e. Tr[(I2 ⊗ρi jWCHSH)]=2Tr[WCHSHρi j].

Applying RHS inequality of Result 1.2 on the Hermitian operator qSv + (1− q)(I2 ⊗

WCHSH) and considering ρABC(I2 ⊗ρi j) be any complex matrix, we get

R(Tr[(qSv +(1−q)(I2 ⊗WCHSH))ρABC(I2 ⊗ρi j)])

≤ Tr[qSv +(1−q)(I2 ⊗WCHSH)]λmax(ρABC(I2 ⊗ρi j))

= 8(1−q)λmax(ρABC(I2 ⊗ρi j)) (4.2.27)

In the third line, we find Tr[Sv] = 0 and Tr[I2 ⊗WCHSH ] = 8.

Combining (4.2.26) and (4.2.27), we get

qR(Tr[SvρABC(I2 ⊗ρi j)])+2(1−q)Tr[WCHSHρi j]×λmin(ρABC)

≤ 8(1−q)λmax(ρABC(I2 ⊗ρi j)) (4.2.28)

Again using Result 1.4 on Hermitian operators I2 ⊗ ρi j and SvρABC be any complex

matrix, we get

Tr[SvρABC]λk((I2 ⊗ρi j))≤ R(Tr[SvρABC(I2 ⊗ρi j)])

=⇒ Tr[SvρABC]λk((I2 ⊗ρi j))≤ R(Tr[SvρABC(I2 ⊗ρi j)]) (4.2.29)

where Tr[SvρABC] = Tr[SvρABC].

Using (4.2.29), the inequality (4.2.28) may be re-expressed as

⟨Sv⟩ρABC ≤
8(1−q)λmax(ρABC(I2 ⊗ρi j))

qλk(I2 ⊗ρi j)
−

2(1−q)Tr[WCHSHρi j]λmin(ρABC)

qλk(I2 ⊗ρi j)
(4.2.30)

where λk(I2 ⊗ρi j) is the first non-zero eigenvalue of (I2 ⊗ρi j).

The upper bound (4.2.30) of the expectation value of the operator Sv with respect to

any three-qubit state ρABC can be further studied in terms of the non-locality SNL(ρi j)

of two-qubit state by considering the following two cases: (i) when the state ρi j is

detected by WCHSH and (ii) when the state ρi j is not detected by WCHSH .
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4.2.2.1 When the state ρi j is detected by WCHSH

In this case, we are considering the two-qubit entangled state ρi j, which is detected

by the witness operator WCHSH . Therefore, using the definition of SNL(ρi j) given in

(3.2.14), the inequality (4.2.30) reduces to

⟨Sv⟩ρABC ≤
8(1−q)λmax(ρABC(I2 ⊗ρi j))

qλk(I2 ⊗ρi j)
+

16(1−q)SNL(ρi j)λmin(ρABC)

qλk(I2 ⊗ρi j)
(4.2.31)

4.2.2.2 When ρi j is not detected by WCHSH

When the entangled state ρi j is not detected by WCHSH , the expression of the strength

of the non-locality is given by SNew
NL (ρi j). Therefore, we can re-write (3.2.29) for the

entangled state ρi j as

SNew
NL (ρi j) = r(Pmax − 3

4
)+(1− r)K, 0 ≤ r ≤ 1 (4.2.32)

where Pmax, r and K are given by (3.2.6), (4.2.13), and (4.2.14). Now, our task is to

find out the upper bound of K, which is given by the following lemma.

Lemma 4.2.2. If ρABC denote an arbitrary three-qubit state and ρi j, i, j = A,B,C, i ̸= j be its

reduced two-qubit entangled state, which is not detected by CHSH witness operator WCHSH

then the non-locality of ρi j may be determined by SNew
NL (ρi j) given in (3.2.29). The quantity K

involved in the expression of SNew
NL (ρi j) is bounded above and its upper bound is given by

K ≤
λmax(WCHSH)λmax(ρi j)Tr[WCHSHρi j]+Tr[(ρTj

i j )
2]

8N(ρi j)
(4.2.33)

Proof: Let us consider the two operators given by

A2 =WCHSHρi j, B2 = ρ
Tj
i j (4.2.34)

For the two operators A2 and B2 defined in (4.2.34), we have

(A2 −B2)
2 ≥ 0

=⇒ A2
2 −A2B2 −B2A2 +B2

2 ≥ 0 (4.2.35)

Taking trace both sides of (4.2.35) and simplifying, we get
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2Tr(A2B2)≤ Tr(A2
2)+Tr(B2

2) (4.2.36)

Using (4.2.34) and (4.2.36), we get

2Tr(WCHSHρi jρ
Tj
i j )≤ Tr((WCHSHρi j)

2)+Tr((ρTj
i j )

2) (4.2.37)

Also, applying Result 1.3 on Hermitian operator WCHSH and considering WCHSH(ρi j)
2 be any

complex matrix, and using the fact that Tr[WCHSH(ρi j)
2] = Tr[WCHSH(ρi j)2] we get

Tr((WCHSHρi j)
2)≤ λmax(WCHSH)×Tr[WCHSH(ρi j)

2] (4.2.38)

Again applying Result 1.3 on Hermitian operator ρi j and WCHSHρi j be any complex matrix,

and using the fact that Tr[WCHSHρi j] = Tr[WCHSHρi j]

Tr[WCHSH(ρi j)
2] ≤ λmax(ρi j)Tr[WCHSHρi j] (4.2.39)

Using (4.2.38) and (4.2.39), we get

Tr((WCHSHρi j)
2)≤ λmax(WCHSH)×λmax(ρi j)Tr[WCHSHρi j] (4.2.40)

Using (4.2.37) and (4.2.40), we get

2Tr(WCHSHρi jρ
Tj
i j )≤ λmax(WCHSH)λmax(ρi j)×Tr[WCHSHρi j]+Tr[(ρTj

i j )
2] (4.2.41)

Putting Tr[WCHSHρi j(ρi j)
Tj ] = 4N(ρi j)K in (4.2.41), we get

K ≤
λmax(WCHSH)λmax(ρi j)Tr[WCHSHρi j]+Tr[(ρTj

i j )
2]

8N(ρi j)
■

Now, we are in a position to estimate Tr(WCHSHρi j). Using (4.2.33) in (4.2.32),

Tr(WCHSHρi j) may be estimated as

Tr[WCHSHρi j]≥
1

λmax(WCHSH)λmax(ρi j)
×
[8N(ρi j)(SNew

NL (ρi j)− r(Pmax − 3
4))

1− r
−Tr[(ρTj

i j )
2]
]

(4.2.42)
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Using (4.2.42), the inequality (4.2.30) for the upper bound of ⟨Sv⟩ reduces to

⟨Sv⟩ρABC ≤ 2(1−q)
qλk(I2 ⊗ρi j)

[
4λmax(ρABC(I2 ⊗ρi j))−

λmin(ρABC)×A2

λmax(WCHSH)λmax(ρi j)

]
(4.2.43)

where A2 =
8N(ρi j)(SNew

NL (ρi j)−r(Pmax− 3
4 ))

1−r −Tr[(ρTj
i j )

2].

The results given by (4.2.31) and (4.2.43) can be collectively given by the following

theorem:

Theorem 4.2.2. The upper bound of the expectation value of the Svetlichny operator Sv with

respect to any three-qubit state ρABC can be expressed in terms of SNL(ρi j) and SNew
NL (ρi j) as

(i) ⟨Sv⟩ρABC ≤
8(1−q)λmax(ρABC(I2 ⊗ρi j))

qλk(I2 ⊗ρi j)
+

16(1−q)SNL(ρi j)λmin(ρABC)

qλk(I2 ⊗ρi j)
(4.2.44)

and

(ii) ⟨Sv⟩ρABC ≤ 2(1−q)
qλk(I2 ⊗ρi j)

[
4λmax(ρABC(I2 ⊗ρi j))−

λmin(ρABC)×A2

λmax(WCHSH)λmax(ρi j)

]
(4.2.45)

where A2 =
8N(ρi j)(SNew

NL (ρi j)−r(Pmax− 3
4 ))

1−r −Tr[(ρTj
i j )

2].

The results given in (4.2.44) and (4.2.45) holds according as when the entangled state ρi j does

or does not detected by the witness operator WCHSH . ■

4.3 Detection of genuine three-qubit non-local states

In this section, we will derive conditions to identify whether the given three-qubit state

(pure or mixed) is a genuine non-local state. We will use the Svetlichny inequality

and the lower and upper bound given in Theorem 4.3.1 and Theorem 4.3.2 stated in

the previous section, to derive much simpler conditions for the detection of genuine

non-locality of the three-qubit state. We will show that the genuine non-locality of

the three-qubit state depends on the non-locality of the two-qubit reduced entangled

state. The non-locality of two-qubit reduced entangled state ρi j may be determined

by SNL(ρi j) or SNew
NL (ρi j) accordingly the entangled state ρi j detected or not detected

by the CHSH witness operator WCHSH .

4.3.1 When ρi j is detected by the witness operator WCHSH

In this section, we will derive the condition of non-locality of the three-qubit state



120

described by the density operator ρABC when its reduced two-qubit entangled state ρi j

is detected by the witness operator WCHSH .

Theorem 4.3.1. If any three-qubit state (either pure or mixed) satisfies the Svetlichny inequal-

ity and if the reduced two-qubit state of it is detected by the CHSH witness operator then the

operators Al and Bl given in (4.2.2) and (4.2.3) must be chosen in such a way that the parame-

ter p given by (4.2.2) satisfies the following inequality

(i) If λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)> 0, then

0 ≤ p ≤ u1,when d(−)
1 > 0 (4.3.1)

OR, l1 ≤ p ≤ 1,when d(+)
1 > 0 (4.3.2)

(ii) If λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)< 0, then

u1 ≤ p ≤ 1,when d(−)
1 < 0 (4.3.3)

OR, 0 ≤ p ≤ l1,when d(+)
1 < 0 (4.3.4)

The lower bound l1 and upper bound u1 are given by

l1 =
2

d(+)
1

× [λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)×λmax(ρABC)] (4.3.5)

u1 =
2

d(−)
1

× [λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)×λmax(ρABC)] (4.3.6)

where d(+)
1 = 2[λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)]+λmax(I2 ⊗ρi j) and

d(−)
1 = 2[λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)]−λmax(I2 ⊗ρi j).

Proof: Let us consider a three-qubit state ρABC which satisfies the Svetlichny inequality.

Therefore, we have

−4 ≤ ⟨Sv⟩ρABC ≤ 4 (4.3.7)

Now, if a three-qubit state ρABC satisfies the Svetlichny inequality then our task is to construct

the operator Al . To accomplish this task, we need to specify the parameter p. Thus, recalling

the lower bound of the expectation value of the Svetlichny operator Sv given in (4.2.11) and

using (4.3.7), the restriction on p may be obtained by solving the inequality

−4 ≤
8(1− p)λmin(ρABC(I2 ⊗ρi j))

pλmax(I2 ⊗ρi j)
+

16(1− p)λmax(ρABC)SNL(ρi j)

pλmax(I2 ⊗ρi j)
≤ 4 (4.3.8)



121

Solving the inequality (4.3.8) for the parameter p while considering all the cases when

λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)> 0, and

λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)< 0, we get the required result. ■

Corollary 4.3.1. Let us define the quantity U (1)
n =

√
2[λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)],

U (1)
− =

√
2[λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)]−λmax(I2 ⊗ρi j), and

U (1)
+ =

√
2[λmin(ρABC(I2 ⊗ρi j))+ 2SNL(ρi j)λmax(ρABC)]+λmax(I2 ⊗ρi j). If the parameter p

violate (4.3.2) and (4.3.3) for some three-qubit (pure or mixed) state ρABC i.e. if it satisfies the

inequality

U (1)
n

U (1)
+

< p < l1 (4.3.9)

when, λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)> 0

OR,
U (1)

n

U (1)
−

< p < u1 (4.3.10)

when λmin(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmax(ρABC)< 0,

then the state ρABC violates the Svetlichny inequality and thus exhibits the genuine non-

locality. ■

Note 1: We should note here that the expression of U (1)
n

U (1)
+

and U (1)
n

U (1)
−

has been obtained

by using the upper limit of ⟨Sv⟩ρABC i.e. ⟨Sv⟩ρABC ≤ 4
√

2.

Theorem 4.3.2. If any three-qubit state (either pure or mixed) satisfies the Svetlichny inequal-

ity and if the reduced two-qubit state of it is detected by the CHSH witness operator then

the operators Au and Bu given in (4.2.24) and (4.2.25) must be chosen in such a way that the

parameter q given by (4.2.24) satisfies the inequality

l2 ≤ q ≤ 1 (4.3.11)

The lower bound l2 is given by

l2 =
2

d(+)
2

× [λmax(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmin(ρABC)] (4.3.12)

where d(+)
2 = 2[λmax(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmin(ρABC)]+λk(I2 ⊗ρi j).

Proof: Let us consider a three-qubit state ρABC which satisfies the Svetlichny inequality given

by (4.3.7). Now, if a three-qubit state ρABC satisfies the Svetlichny inequality then our task
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is to construct the operator Au. To accomplish this task, we need to specify the parameter q.

Thus, recalling the upper bound of the expectation value of the Svetlichny operator Sv given in

(4.2.31) and using (4.3.7), the restriction on q may be obtained by solving the inequality

−4 ≤
8(1−q)λmax(ρABC(I2 ⊗ρi j))

qλk(I2 ⊗ρi j)
+

16(1−q)SNL(ρi j)λmin(ρABC)

qλk(I2 ⊗ρi j)
≤ 4 (4.3.13)

Solving the L.H.S. of inequality (4.3.13) for the parameter q and simplifying, we get

q ≥ l2 =
2

d(+)
2

× [λmax(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmin(ρABC)]

where d(+)
2 = 2[λmax(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmin(ρABC)]+λk(I2 ⊗ρi j).

Then, by solving the L.H.S. of the inequality (4.3.13), we get q ≥ 1 which is not possible.

Thus, considering q ≤ min{ 2
d(−)

2

× [λmax(ρABC(I2 ⊗ρi j)) + 2SNL(ρi j)λmin(ρABC)],1}, where

d(−)
2 = 2[λmax(ρABC(I2 ⊗ρi j))+ 2SNL(ρi j)λmin(ρABC)]−λk(I2 ⊗ρi j), we get the required re-

sult. Hence proved. ■

Corollary 4.3.2. Let us define the quantity U (2)
n =

√
2[λmax(ρABC(I2 ⊗ρi j))+2SNL(ρi j)λmin(ρABC)]

and U (2)
d =

√
2[λmax(ρABC(I2 ⊗ρi j))+ 2SNL(ρi j)λmin(ρABC)]+λk(I2 ⊗ρi j). If the parameter

q violates the inequality given in (4.3.11) for some three-qubit (pure or mixed) state ρABC i.e.

if it satisfies the inequality

U (2) ≡ U (2)
n

U (2)
d

< q < l2 (4.3.14)

then the state ρABC violates the Svetlichny inequality and thus exhibits the genuine non-

locality. ■

Result 4.3.1. If any three-qubit state (either pure or mixed) satisfies the Svetlichny inequality

then the Svetlichny operator also satisfies the inequality

S(1)v ≤ ⟨Sv⟩ρABC ≤ S(2)v (4.3.15)

where S(1)v and S(2)v are given by

S(1)v =
8(1− p)

pλmax(I2 ⊗ρi j)
[λmin(ρABC(I2 ⊗ρi j))+2λmax(ρABC)SNL(ρi j)] (4.3.16)
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S(2)v =
8(1−q)

qλk(I2 ⊗ρi j)
[λmax(ρABC(I2 ⊗ρi j))+2λmin(ρABC)SNL(ρi j)] (4.3.17)

The two parameters p and q satisfies the inequality (4.3.1), (4.3.2), (4.3.3), (4.3.4) and (4.3.11).

■

Corollary 4.3.3. If any three-qubit state (either pure or mixed) violates the inequality (4.3.15)

and if p and q satisfy the inequality (4.3.9), (4.3.10) and (4.3.14) then the given three-qubit

state exhibit genuine non-locality. In other words, for any three-qubit state (either pure or

mixed) described by the density operator ρABC if

⟨Sv⟩ρABC < S(1)v , ⟨Sv⟩ρABC > S(2)v (4.3.18)

then ρABC exhibit genuine non-locality. ■

4.3.2 When ρi j is not detected by the witness operator WCHSH

In this section, we will derive the condition of the non-locality of the three-qubit state

described by the density operator ρABC when its reduced two-qubit entangled state ρi j

is not detected by the Witness operator WCHSH .

Theorem 4.3.3. If any three-qubit state (either pure or mixed) satisfies the Svetlichny inequal-

ity and if the reduced two-qubit state of it is not detected by the CHSH witness operator then

the operators Al and Bl given in (4.2.2) and (4.2.3) must be chosen in such a way that the

parameter p given by (4.2.2) satisfies the following inequality

l3 ≤ p ≤ 1 (4.3.19)

The bound l3 is given by

l3 =
2H

2H −λmax(I2 ⊗ρi j)
(4.3.20)

where H = λmin(ρABC(I2 ⊗ρi j))− (
SNew

NL (ρi j)−r(Pmax− 3
4 )

(1−r)λmin[(ρ
Tj
i j )

2]
)× (N(ρi j)λmax(ρ

Tj
i j )λmax(ρABC)).

Proof: Let us consider a three-qubit state ρABC which satisfies the Svetlichny inequality

(4.3.7). Now, if a three-qubit state ρABC satisfies the Svetlichny inequality then our task is

to construct the operator Al . To accomplish this task, we need to specify the parameter p.

Thus, recalling the lower bound of the expectation value of the Svetlichny operator Sv given in
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(4.2.23) and using (4.3.7), the restriction on p may be obtained by solving the inequality

−4 ≤ 8(1− p)
[

λmin(ρABC(I2 ⊗ρi j))

pλmax(I2 ⊗ρi j)
−

(
SNew

NL (ρi j)− r(Pmax − 3
4)×A1

)
p(1− r)λmin[(ρ

Tj
i j )

2]λmax(I2 ⊗ρi j)

]
≤ 4 (4.3.21)

where A1 = N(ρi j)λmax(ρ
Tj
i j )λmax(ρABC).

Solving the L.H.S. of inequality (4.3.21) for the parameter p and simplifying, we get

p ≥ l3 =
2H

2H −λmax(I2 ⊗ρi j)
(4.3.22)

where H = λmin(ρABC(I2 ⊗ρi j))− (
SNew

NL (ρi j)−r(Pmax− 3
4 )

(1−r)λmin[(ρ
Tj
i j )

2]
)× (N(ρi j)λmax(ρ

Tj
i j )λmax(ρABC)).

Then, by solving the R.H.S. of the inequality (4.3.21), we get p ≥ 1 which is not possible.

Thus, considering p ≤ min{ 2H
2H−λmax(I2⊗ρi j)

,1}, we get the required result. ■

Corollary 4.3.4. If the parameter p violate the inequality given in (4.3.19) for some three-

qubit (pure or mixed) state ρABC i.e. if p satisfies the inequality

U (3) ≡
√

2H√
2H −λmax(I2 ⊗ρi j)

< p < l3 (4.3.23)

then the three-qubit state ρABC violates the Svetlichny inequality and thus exhibits the genuine

non-locality. ■

Theorem 4.3.4. If any three-qubit state (either pure or mixed) satisfies the Svetlichny inequal-

ity and if the reduced two-qubit state of it is not detected by the CHSH witness operator then

the operators Au and Bu given in (4.2.24) and (4.2.25) must be chosen in such a way that the

parameter q given by (4.2.24) satisfies the inequality

l4 ≤ q ≤ 1 (4.3.24)

The lower bound l4 is given by

l4 =
F

F +2λk(I2 ⊗ρi j)
(4.3.25)

where F =(4λmax(ρABC(I2 ⊗ρi j))− λmin(ρABC)
λmax(WCHSH)λmax(ρi j)

(
8N(ρi j)(SNew

NL (ρi j)−r(Pmax− 3
4 ))

1−r −Tr[(ρTj
i j )

2])).

Proof: Let us consider a three-qubit state ρABC which satisfies the Svetlichny inequality

(4.3.7). Now, if a three-qubit state ρABC satisfies the Svetlichny inequality then our task is

to construct the operator Au. To accomplish this task, we need to specify the parameter q.

Thus, recalling the upper bound of the expectation value of the Svetlichny operator Sv given in
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(4.2.43) and using (4.3.7), the restriction on q may be obtained by solving the inequality

−4 ≤ 2(1−q)
qλk(I2 ⊗ρi j)

[
4λmax(ρABC(I2 ⊗ρi j))−

λmin(ρABC)×A2

λmax(WCHSH)λmax(ρi j)

]
≤ 4 (4.3.26)

where A2 =
8N(ρi j)(SNew

NL (ρi j)−r(Pmax− 3
4 ))

1−r −Tr[(ρTj
i j )

2].

Solving the R.H.S. of inequality (4.3.26) for the parameter q and simplifying, we get

q ≥ l4 =
F

F +2λk(I2 ⊗ρi j)
(4.3.27)

where F =(4λmax(ρABC(I2 ⊗ρi j))− λmin(ρABC)
λmax(WCHSH)λmax(ρi j)

(
8N(ρi j)(SNew

NL (ρi j)−r(Pmax− 3
4 ))

1−r −Tr[(ρTj
i j )

2])).

Then, by solving the L.H.S. of the inequality (4.3.26), we get q≥ 1 which is not possible. Thus,

considering q≤min{ F
F−2λk(I2⊗ρi j)

,1}, we get the required result. ■

Corollary 4.3.5. If the parameter q violates the inequality given in (4.3.24) for some three-

qubit (pure or mixed) state ρABC i.e. if it satisfies the inequality

U (4) ≡ F
F +2

√
2λk(I2 ⊗ρi j)

< q < l4 (4.3.28)

then the three-qubit state violates the Svetlichny inequality and thus exhibits the genuine non-

locality. ■

Result 4.3.2. If any three-qubit state (either pure or mixed) satisfies the Svetlichny inequality

and if p and q are given by (4.3.19) and (4.3.24) then the Svetlichny operator also satisfies the

inequality

S(3)v ≤ ⟨Sv⟩ρABC ≤ S(4)v (4.3.29)

where S(3)v and S(4)v are given by

S(3)v =
8(1− p)

pλmax(I2 ⊗ρi j)

[
λmin(ρABC(I2 ⊗ρi j))−

(
SNew

NL (ρi j)− r(Pmax − 3
4)×A1

)
(1− r)λmin[(ρ

Tj
i j )

2]

]
(4.3.30)

S(4)v =
2(1−q)

qλk(I2 ⊗ρi j)

[
4λmax(ρABC(I2 ⊗ρi j))−

λmin(ρABC)×A2

λmax(WCHSH)λmax(ρi j)

]
(4.3.31)

where A1 = N(ρi j)λmax(ρ
Tj
i j )λmax(ρABC) and A2 =

8N(ρi j)(SNew
NL (ρi j)−r(Pmax− 3

4 ))
1−r −Tr[(ρTj

i j )
2]. ■

Corollary 4.3.6. If any three-qubit state (either pure or mixed) violates the inequality (4.3.29)
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and if p and q satisfy the inequality given by (4.3.23) and (4.3.28) then the given three-qubit

state exhibit genuine non-locality. In other words, for any three-qubit state (either pure or

mixed) described by the density operator ρABC if

⟨Sv⟩ρABC < S(3)v , ⟨Sv⟩ρABC > S(4)v (4.3.32)

then ρABC exhibit genuine non-locality. ■

4.4 Illustrations

We are now in a position to illustrate our scheme of detecting the genuine non-locality

of a given three-qubit state (pure or mixed) with a few examples.

4.4.1 Examples of three-qubit states for which the reduced two-qubit

state detected by the CHSH witness operator

In this section, we will illustrate our results given in (4.3.18) with the help of the fol-

lowing two examples of three-qubit states for which the reduced two-qubit state is

detected by the CHSH witness operator. Examples of three-qubit states fall under the

following two categories: (i) A pure three-qubit state belongs to the W class and (ii)

A mixed three-qubit state which may be taken as a convex combination of GHZ state

and two other states belongs to W class.

Example 4.1: A pure three-qubit W class of state

Let us consider a pure three-qubit state of the form

|ψ(1)⟩ABC = λ0|000⟩+0.3|101⟩+
√

0.91−λ 2
0 |110⟩, λ0 ∈ [0,0.953939] (4.4.1)

The pure state described by the density operator ρ
(1)
ABC = |ψ(1)⟩ABC⟨ψ(1)| is an entan-

gled state and also we have

λmax(ρ
(1)
ABC) = 1, λmin(ρ

(1)
ABC) = 0 (4.4.2)

Tracing out system B from the three-qubit state ρ
(1)
ABC, the reduced state ρ

(1)
AC is given

by



127

ρ
(1)
AC =


λ 2

0 0 0 0.3λ0

0 0 0 0

0 0 0.91−λ 2
0 0

0.3λ0 0 0 0.09

 (4.4.3)

The state ρ
(1)
AC is an entangled state as there exist a witness operator W (xz)

CHSH(= 2I −

B(xz)
CHSH) that detect it. The CHSH witness operator B(xz)

CHSH is given by (3.2.7). This is

clear from the following fact

Tr[W (xz)
CHSHρ

(1)
AC ] = 3.15966−0.848528λ0 −2.82843λ

2
0

< 0, for λ0 ∈ [0.91753,0.953939] (4.4.4)

Since the two-qubit state ρ
(1)
AC is an entangled state and it is detected by W (xz)

CHSH so the

strength of its non-locality may be measured by SNL(ρ
(1)
AC ). It is then given by

SNL(ρ
(1)
AC ) =

−Tr[W (xz)
CHSHρ

(1)
AC ]

8
∈ [0,0.030], for λ0 ∈ [0.917,0.953] (4.4.5)

Further, we can calculate the following using the three-qubit state ρ
(1)
ABC and the re-

duced two-qubit state ρ
(1)
AC

λmax(I2 ⊗ρ
(1)
AC ) = 0.09+λ

2
0 , λk(I2 ⊗ρ

(1)
AC ) = 0.91−λ

2
0

λmin(ρ
(1)
ABC(I2 ⊗ρ

(1)
AC )) =

λ 4
0 −λ 3

0
2

+
9(λ 2

0 −λ0)

200

λmax(ρ
(1)
ABC(I2 ⊗ρ

(1)
AC )) =

λ 4
0 +λ 3

0
2

+
9(λ 2

0 +λ0)

200
(4.4.6)

Also, the range of p and q are given by

0 < p < 0.07 (4.4.7)

0.93 < q < 1 (4.4.8)

Using the information given in (4.4.2), (4.4.5), (4.4.6), (4.4.7), and (4.4.8), the value

of the expression of S(1)v and S(2)v can be calculated for the three-qubit state ρ
(1)
ABC and

they are tabulated in the Table 4.1.
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State parameter Operator parameter Operator parameter ⟨S(1)v ⟩
ρ
(1)
ABC

⟨S(2)v ⟩
ρ
(1)
ABC

(λ0) (p) (q)
0.92 0.05 0.95 -4.98604 5.4752
0.93 0.019 0.97 -5.2497 4.70144
0.94 0.012 0.98 4.62363 5.48997
0.95 0.04 0.9943 5.06912 5.62141

Table 4.1: We have chosen different values of the three-qubit state parameter λ0 for which its
reduced two-qubit state is entangled. Then we get a value of SNL(ρ

(1)
AC ) and corresponding to

it, we have chosen a value of the parameters p and q given in (4.4.7) and (4.4.8) respectively.
Using the information given in (4.4.6) and considering few values of p, q and λ0, Table 4.1
is prepared. It depicts the values of ⟨S(1)v ⟩

ρ
(1)
ABC

& ⟨S(2)v ⟩
ρ
(1)
ABC

given in (4.3.16) and (4.3.17)

indicating the fact that the state |ψ(1)⟩ABC exhibit genuine non-locality.

Example 4.2: A mixed three-qubit state: Combination of GHZ state and two W

class of states

Let us consider a mixed three-qubit state of the form [241]

ρ
(2)
ABC = 0.2|GHZ⟩⟨GHZ|+ t|W1⟩⟨W1|+(0.8− t)|W2⟩⟨W2|, t ∈ [0,0.8] (4.4.9)

where |GHZ⟩ = 1√
2
(|000⟩+ |111⟩), |W1⟩ = 1√

3
(|001⟩+ |010⟩+ |100⟩), |W2⟩ = 1√

3
(|110⟩+

|101⟩+ |011⟩).

The mixed three-qubit state described by the density operator ρ
(2)
ABC is an entangled

state when t ∈ [0,0.8] and also we have

λmax(ρ
(2)
ABC) = t, λmin(ρ

(2)
ABC) = 0 (4.4.10)

Tracing out system A from the three-qubit state ρ
(2)
ABC, the reduced state ρ

(2)
BC is given

by

ρ
(2)
BC =


0.6+2t

6 0 0 0

0 0.8
3

0.8
3 0

0 0.8
3

0.8
3 0

0 0 0 2.2−2t
6

 (4.4.11)

The state ρ
(2)
BC is an entangled state for t ∈ [0.5,0.8].

Let us now consider the witness operator WCHSH , which is given by

WCHSH = 2I ⊗ I −A0 ⊗B0 +A0 ⊗B1 −A1 ⊗B0 −A1 ⊗B1 (4.4.12)
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where the Hermitian operators A0, A1, B0, B1 are given by

A0 = σx, A1 = σy, B0 = 0.95σx +0.95σy +0.447σz, B1 =−0.95σx +0.95σy +0.447σz

(4.4.13)

The expectation value of WCHSH with respect to the two-qubit state ρ
(2)
BC can be calcu-

lated as

Tr[WCHSHρ
(2)
BC ] =−0.0266667 < 0 (4.4.14)

Therefore, the two-qubit state ρ
(2)
BC is detected by witness operator WCHSH . Thus, the

strength of its non-locality may be measured by SNL(ρ
(2)
BC ), which is given by

SNL(ρ
(2)
BC ) =

−Tr[WCHSHρ
(2)
BC ]

8
= 0.00333, for t ∈ [0.5,0.8] (4.4.15)

Further, we are now in a position to calculate the value of the following expressions

involving the three-qubit state ρ
(2)
ABC and the reduced two-qubit state ρ

(2)
BC

λmax(I2 ⊗ρ
(2)
BC ) = 0.5333, λk(I2 ⊗ρ

(2)
BC ) = 0.333(1.1− t) (4.4.16)

Also, the range of p and q are given by

0 < p < 0.05 (4.4.17)

0.34 < q < 0.37 (4.4.18)

Using the information given in (4.4.10), (4.4.15), (4.4.16), (4.4.17), and (4.4.18), the

value of the expression of S(1)v and S(2)v can be tabulated for the three-qubit state ρ
(2)
ABC

in Table 4.2.

4.4.2 Examples of three-qubit states for which the reduced two-qubit

state is not detected by WCHSH

In this section, we have considered three examples of three-qubit states in which the

reduced two-qubit states are not detected by CHSH witness operator WCHSH . The

three examples are given in the following form: (i) A pure three-qubit state which be-

long to the GHZ class (ii) A mixed state which may be taken as a convex combination
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State Parameter Operator parameter Operator parameter ⟨S(1)v ⟩
ρ
(2)
ABC

⟨S(2)v ⟩
ρ
(2)
ABC

(t) (p) (q)
0.55 0.006 0.48 -4.96125 5.40786
0.65 0.019 0.44 -4.5171 4.75185
0.72 0.025 0.38 -5.32538 5.04819
0.79 0.039 0.46 -4.77032 4.54815

Table 4.2: We have chosen different values of the three-qubit state parameter t for which its
reduced two-qubit state is entangled. Then we get a value of SNL(ρ

(2)
BC ) and corresponding to

it, we have chosen a value of the operator parameters p and q given in (4.4.17) and (4.4.18)
respectively. Using the information given in (4.4.16) and considering few values of p, q and
t, Table 4.2 is prepared. It depicts the values of ⟨S(1)v ⟩

ρ
(2)
ABC

& ⟨S(2)v ⟩
ρ
(2)
ABC

given in (4.3.16) and

(4.3.17) indicating the fact that the state ρ
(2)
ABC exhibit genuine non-locality.

of three-qubit GHZ and W state and (iii) A mixed state which may be taken as a con-

vex combination of three-qubit maximally mixed state and W state.

Example 4.3: A pure three-qubit GHZ class of state: Maximal Slice State

Let us consider a pure three-qubit GHZ class of state, which can be taken in the

form [242]

|ψ(3)⟩ABC =
1√
2
(|000⟩ABC +Cosθ |110⟩ABC +Sinθ |111⟩ABC), θ ∈ [0,

π

2
] (4.4.19)

The pure state described by the density operator ρ
(3)
ABC = |ψ(3)⟩ABC⟨ψ(3)| is an entan-

gled state for θ ∈ (0, π

2 ).

Also, for the state ρ
(3)
ABC, we have

λmax(ρ
(3)
ABC) = 1, λmin(ρ

(3)
ABC) = 0 (4.4.20)

Tracing out system A from the three-qubit state ρ
(3)
ABC, the reduced two-qubit state ρ

(3)
BC

is given by

ρ
(3)
BC =


1
2 0 0 Cosθ

0 0 0 0

0 0 0 0

Cosθ 0 0 1
2

 (4.4.21)

It can be easily verified that ρ
(3)
BC is an entangled state for the state parameter θ ∈

[1.05, Π

2 ]. Thus there must exist a witness operator that may detect ρ
(3)
BC as an entan-

gled state. But, in this example, our task is to show that even if some witness operator
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does not detect the reduced two-qubit entangled state then also we are able to detect

the non-locality of the three-qubit state described by the density operator ρ
(3)
BC .

To serve our purpose, we find here a witness operator W (xy)
CHSH = 2I −B(xy)

CHSH , whose

expectation value with respect to the state ρ
(3)
BC is given by Tr[W (xy)

CHSHρ
(3)
BC ] = 2 > 0.

Thus, the CHSH witness operator W (xy)
CHSH does not detect ρ

(3)
BC as an entangled state.

Since the two-qubit state ρ
(3)
BC is an entangled state and it is not detected by W (xy)

CHSH

so the strength of its non-locality may be measured by SNew
NL (ρ

(3)
BC ). Using (3.2.29) and

(4.2.13), we can calculate the range of SNew
NL (ρ

(3)
BC ) and r. Therefore, we have

SNew
NL (ρ

(3)
BC ) ∈ [0.05,1.5], θ ∈ [

147π

440
,
π

2
] (4.4.22)

and, r < [0.5,1], θ ∈ [
147π

440
,
π

2
] (4.4.23)

Further, we can calculate the following using the three-qubit state ρ
(3)
ABC and the re-

duced two-qubit state ρ
(3)
BC

λmax(I2 ⊗ρ
(3)
BC ) =

1+2Cosθ

2
, λk(I2 ⊗ρ

(3)
BC ) =

1−2Cosθ

2
, λmax((ρ

(3)
BC )

TC) = 0.5

λmin[ρ
(3)
ABC(I2 ⊗ρ

(3)
BC )] =

3−Cos2θ −2
√

8+3Cos2θ −Cos4θ

16

λmax[ρ
(3)
ABC(I2 ⊗ρ

(3)
BC )] =

3−Cos2θ +2
√

8+3Cos2θ −Cos4θ

16
Tr[W (xy)

CHSHρ
(3)
BC (ρ

(3)
BC )

TC ] = 1, λmin[((ρ
(3)
BC )

TC)2] =Cos2
θ (4.4.24)

Moreover, the range of p and q are given by

0.75 < p < 1 (4.4.25)

0.59 < q < 1 (4.4.26)

Using the information given in (4.4.20), (4.4.24), (4.4.25), and (4.4.26), the value of

the expression of S(3)v and S(4)v can be calculated for the three-qubit state ρ
(3)
ABC and

they are tabulated in the Table 4.3.

Example 4.4: A three-qubit mixed state: A convex combination of three-qubit W

state and a state belong to GHZ class

Let us take a mixed three-qubit state of the form

ρ
(4)
ABC = ps|GHZ⟩⟨GHZ|+(1− ps)|W ⟩⟨W |, ps ∈ [0,1]
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State Parameter Operator parameter Operator parameter ⟨S(3)v ⟩
ρ
(3)
ABC

⟨S(4)v ⟩
ρ
(3)
ABC

(θ(in radian)) (p) (q)
1.2 0.67 0.86 -4.64621 5.03388
1.3 0.78 0.79 -5.24561 4.75133
1.4 0.915 0.69 -4.81717 5.53806
1.5 0.985 0.64 -5.333 5.25777

Table 4.3: We have chosen different values of the three-qubit state parameter θ for which its
reduced two-qubit state is entangled. Then we get a value of SNew

NL (ρ
(3)
BC ) and corresponding to

it, we have chosen a value of the operator parameters p and q given in (4.4.25) and (4.4.26)
respectively. Using the information given in (4.4.24) and considering a few values of p, q, and
θ , Table 4.3 is prepared. It depicts the values of ⟨S(3)v ⟩

ρ
(3)
ABC

& ⟨S(4)v ⟩
ρ
(3)
ABC

given in (4.3.30) and

(4.3.31) indicating the fact that the state ρ
(3)
ABC exhibit genuine non-locality.

where |GHZ⟩= 1√
2
(|010⟩+ |101⟩), |W ⟩= 1√

3
(|001⟩+ |010⟩+ |100⟩).

The mixed three-qubit state described by the density operator ρ
(4)
ABC is an entangled

state when ps ∈ [0.4,0.9] and also we have

λmax(ρ
(4)
ABC) =

3+
√

3
√

3−10ps +10p2
s

6
, λmin(ρ

(4)
ABC) = 0 (4.4.27)

Tracing out system A from the three-qubit state ρ
(4)
ABC, the reduced state ρ

(4)
BC is given

by

ρ
(4)
BC =


1−ps

3 0 0 0

0 2+ps
6

1−ps
3 0

0 1−ps
3

2+ps
6 0

0 0 0 0

 (4.4.28)

ρ
(4)
BC is an entangled state for ps ∈ [0.4,0.9]. Also, we have

Tr[W (xy)
CHSHρ

(4)
BC ] =

2(3−2
√

2+2
√

2ps)

3
> 0, 0.4 ≤ ps ≤ 0.9 (4.4.29)

In this example also, we find that the same CHSH witness operator W (xy)
CHSH given in

the previous example, is not able to detect the entangled state ρ
(4)
BC . The strength

of the non-locality of ρ
(4)
BC may be measured by SNew

NL (ρ
(4)
BC ) using (3.2.29). Therefore,

SNew
NL (ρ

(4)
BC ) may be calculated as

SNew
NL (ρ

(4)
BC ) ∈ [0.04,1.91628], ps ∈ [0.4,0.9] (4.4.30)
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and the parameter r is given by

r < [0.59,1], ps ∈ [0.4,0.9] (4.4.31)

Further, we can calculate the following using the three-qubit state ρ
(4)
ABC and the re-

duced two-qubit state ρ
(4)
BC

λmax(I2 ⊗ρ
(4)
BC ) =

4− ps

6
, λk(I2 ⊗ρ

(4)
BC ) =

1− ps

3
, λmax((ρ

(4)
BC )

TC) =
2+ ps

6

Tr[W (xy)
CHSHρ

(4)
BC (ρ

(4)
BC )

TC ] =
6−4

√
2+2

√
2ps +(3+2

√
2)p2

s
9

λmin[((ρ
(4)
BC )

TC)2] =
3−6ps +3p2

s −
√

5
√

1−4ps +6p2
s −4p3

s + p4
s

18
(4.4.32)

Also, the range of p in terms of state parameter ps is given by

√
2H

√
2H − 4−ps

6

< p <
2H

2H − 4−ps
6

(4.4.33)

The range of q in terms of state parameter ps is given by

F

F +2
√

21−ps
3

< q <
F

F −2
√

21−ps
3

(4.4.34)

where F and H given in the previous section can be calculated using the information

given in (4.4.32).

Using the information given in (4.4.27), (4.4.32), (4.4.33), and (4.4.34), the value of

the expression of S(3)v and S(4)v can be calculated for the three-qubit state ρ
(4)
ABC and

they are tabulated in the Table 4.4.

State Parameter Operator parameter Operator parameter ⟨S(3)v ⟩
ρ
(4)
ABC

⟨S(4)v ⟩
ρ
(4)
ABC

(ps) (p) (q)
0.5 0.9 0.75 -5.3768 4.99623
0.6 0.95 0.8 -5.46426 4.39912
0.7 0.98 0.82 -5.03592 4.96321
0.8 0.993 0.86 -5.11832 5.48576

Table 4.4: We have chosen different values of the three-qubit state parameter ps for which its
reduced two-qubit state is entangled. Then we get a value of SNew

NL (ρ
(4)
BC ) and corresponding to

it, we have chosen a value of the operator parameters p and q given in (4.4.33) and (4.4.34)
respectively. Using the information given in (4.4.32) and considering a few values of p, q, and
ps, Table 4.4 is prepared. It depicts the values of ⟨S(3)v ⟩

ρ
(4)
ABC

& ⟨S(4)v ⟩
ρ
(4)
ABC

given in (4.3.30) and

(4.3.31) indicating the fact that the state ρ
(4)
ABC exhibit genuine non-locality.
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Example 4.5: A three-qubit mixed State: A convex combination of maximally

mixed state and W state

Let us consider a mixed three-qubit state of the form [243]

ρ
(5)
ABC =

1− ps

8
I8 + ps|W ⟩ABC⟨W |, ps ∈ (0.816,1] (4.4.35)

where I8 denotes the maximally mixed state represented by the Identity matrix and

|W ⟩= 1√
3
(|001⟩+ |010⟩+ |100⟩).

The mixed three-qubit state described by the density operator ρ
(5)
ABC is an entangled

state when ps ∈ (0.816,1] and also we have

λmax(ρ
(5)
ABC) =

1+7ps

8
, λmin(ρ

(5)
ABC) =

1− ps

8
(4.4.36)

Taking partial trace over the system A, the three-qubit state ρ
(5)
ABC reduces to the two-

qubit state described by the density operator ρ
(5)
BC , which is given by

ρ
(5)
BC =


ps+3

12 0 0 0

0 ps+3
12

ps
3 0

0 ps
3

ps+3
12 0

0 0 0 1−ps
4

 , 0.816 < ps ≤ 1 (4.4.37)

ρ
(5)
BC is an entangled state for ps ∈ (0.816,1] but we find that

Tr[W (xy)
CHSHρ

(5)
BC ] = 2− 4

√
2ps

3
> 0, 0.816 < ps ≤ 1 (4.4.38)

(4.4.38) implies that the CHSH witness operator does not detect the entangled state

ρ
(5)
BC . The strength of the non-locality of the two-qubit reduced state may be measured

by SNew
NL (ρ

(5)
BC ). The strength SNew

NL (ρ
(5)
BC ) and the parameter r is given by

SNew
NL (ρ

(5)
BC ) ∈ [0.54124,0.5484], 0.816 < ps ≤ 1, r ∈ [0.61,0.69] (4.4.39)

Further, we can now calculate the following eigenvalues and traces, which are given
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by

λmax(I2 ⊗ρ
(5)
BC ) =

3+5ps

12
, λk(I2 ⊗ρ

(5)
BC ) =

1− ps

4
, Tr[((ρ(5)

BC )
TC)2] =

9+11p2
s

36

λmin(ρ
(5)
ABC(I2 ⊗ρ

(5)
BC )) =

9+30ps +25p2
s −8

√
3
√

9p2
s +14p3

s +9p4
s

288

λmax(ρ
(5)
ABC(I2 ⊗ρ

(5)
BC )) =

9+30ps +25p2
s +8

√
3
√

9p2
s +14p3

s +9p4
s

288

Tr[W (xy)
CHSHρ

(5)
BC (ρ

(5)
BC )

TC ] =
9−6

√
2ps +(3−2

√
2)p2

s
18

λmin[((ρ
(5)
BC )

TC)2] =
9−6ps +21p2

s −4
√

5
√

9p2
s −6p3

s + p4
s

144

λmax((ρ
(5)
BC )

TC) =
3− ps +2

√
5ps

12
, λmax(W

(xy)
CHSH) = 2(1+

√
2) (4.4.40)

Also, the range of p and q in terms of state parameter ps are given by

√
2H

√
2H − 3+ps

12

< p <
2H

2H − 3+ps
12

(4.4.41)

and,
F

F +2
√

23+ps
12

< q <
F

F −2
√

23+ps
12

(4.4.42)

where F and H given in the previous section can be calculated using the information

given in (4.4.40).

Therefore, using the information given in (4.4.36), (4.4.40), (4.4.41), and (4.4.42), the

value of the expression of S(3)v and S(4)v can be calculated for the three-qubit state ρ
(5)
ABC

and they are tabulated in the Table 4.5.

State Parameter Operator parameter Operator parameter ⟨S(3)v ⟩
ρ
(5)
ABC

⟨S(4)v ⟩
ρ
(5)
ABC

(ps) (p) (q)
0.82 0.72 0.93 -4.35959 5.06538
0.87 0.6 0.95 -4.6602 5.30281
0.92 0.45 0.97 -5.4101 5.45763
0.97 0.35 0.99 -5.147 5.10813

Table 4.5: We have chosen different values of the three-qubit state parameter ps for which its
reduced two-qubit state is entangled. Then we get a value of SNew

NL (ρ
(5)
BC ) and corresponding to

it, we have chosen a value of the operator parameters p and q given in (4.4.41) and (4.4.42)
respectively. Using the information given in (4.4.40) and considering a few values of p, q, and
ps, Table 4.5 is prepared. It depicts the values of ⟨S(3)v ⟩

ρ
(5)
ABC

& ⟨S(4)v ⟩
ρ
(5)
ABC

given in (4.3.30) and

(4.3.31) indicating the fact that the state ρ
(5)
ABC exhibit genuine non-locality.
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4.5 Comparing our criterion with other existing criteria

In this section, we have compared our results with other pre-existing criteria such as (i)

M. Li’s criterion [228] (ii) Different types of Svetlichny inequality [80], for the detection

of genuine non-locality of pure or mixed three-qubit states.

We may re-state M. Li’s criterion as [228]: If Sv denote the Svetlichny operator and if

any pure or mixed three-qubit states described by the density operator ρ violate the

inequality

max|⟨Sv⟩ρ | ≤ 4λ1 (4.5.1)

then the state ρ may possess genuine non-local property.

Here maximum is taken over all measurement settings and λ1 denoting the maximum

singular value of the matrix M = [M j,ik] with Mi jk = Tr[ρ(σi ⊗σ j ⊗σk)]. We note that

the upper bound given in (4.5.1) is state dependent.

Example 4.6: Let us consider a mixed three-qubit state of the form [228]

ρ
(6)
ABC = t|φgs⟩⟨φgs|+

1− t
8

I, t ∈ [0,1] (4.5.2)

where I denote an identity matrix of order 8. The state |φgs⟩ is given by

|φgs⟩=
1
2
|000⟩+

√
3

2
|11⟩(Cosθ3|0⟩+Sinθ3|1⟩), θ3 ∈ [0,

π

2
] (4.5.3)

The maximum and minimum eigenvalue of ρ
(6)
ABC is given by

λmax(ρ
(6)
ABC) =

1+7t
8

, λmin(ρ
(6)
ABC) =

1− t
8

(4.5.4)

It can be observed that if we trace out either system A or system B then the resulting

two-qubit state will become a separable state and thus we cannot apply our result.

So, we consider the two-qubit state resulting from tracing out the system C from the

three-qubit state ρ
(6)
ABC. The reduced two-qubit state ρ

(6)
AB is given by
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ρ
(6)
AB =


1
4 0 0

√
3t

4 Cosθ3

0 1−t
4 0 0

0 0 1−t
4 0

√
3t

4 Cosθ3 0 0 1+2t
4

 (4.5.5)

The state ρ
(6)
AB is an entangled state for t ∈ [0.83,1] and θ3 ∈ [0.615,0.6219] as there

exists a witness operator W (xz)
CHSH(= 2I −B(xz)

CHSH) that detects it. The CHSH witness

operator B(xz)
CHSH is given by (3.2.7). This is clear from the following fact

Tr[W (xz)
CHSHρ

(6)
AB ] = 2− t(2+

√
3Cosθ3)√
2

< 0, for t ∈ [0.83,1] & θ3 ∈ [0.615,0.6219] (4.5.6)

Since the two-qubit state ρ
(6)
AB is an entangled state and it is detected by W (xz)

CHSH so the

strength of its non-locality may be measured by SNL(ρ
(6)
AB ). It is then given by

SNL(ρ
(6)
AB ) =

−Tr[W (xz)
CHSHρ

(6)
AB ]

8
∈ [0,0.04], for t ∈ [0.83,1] & θ3 ∈ [0.615,0.6219] (4.5.7)

Further, we are now in a position to calculate the value of the following quantities,

which are given by

λmax(I2 ⊗ρ
(6)
AB ) =

2+2t +
√

2t
√

5+3Cos2θ3

8
, λk(I2 ⊗ρ

(6)
AB ) =

1− t
4

(4.5.8)

Moreover, the range of p and q in terms of state parameter θ are given by

√
2A

√
2A− 2+2t+

√
2t
√

5+3Cos2θ3
8

< p <
2A

2A− 2+2t+
√

2t
√

5+3Cos2θ3
8

(4.5.9)

√
2B√

2B+ 1−t
4

< q <
2B

2B+ 1−t
4

(4.5.10)

where A = λmin(ρ
(6)
ABC(I2 ⊗ρ

(6)
AB ))+2λmax(ρ

(6)
ABC)SNL(ρ

(6)
AB ) and B = λmax(ρ

(6)
ABC(I2 ⊗ρ

(6)
AB ))+

2λmin(ρ
(6)
ABC)SNL(ρ

(6)
AB ) can be calculated using the information given in (4.5.8).

Further, using the information given in (4.5.4), (4.5.7), (4.5.8), (4.5.9), and (4.5.10),

the value of the expression of S(1)v and S(2)v can be tabulated for the three-qubit state
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ρ
(6)
ABC in Table 4.6.

Comparison Analysis
Our Work M.Li et. al. Work [228]

State Parameter Operator Parameter ⟨S(1)v ⟩
ρ
(6)
ABC

⟨S(2)v ⟩
ρ
(6)
ABC

Whether (4.3.15) Upper Bound of Whether (4.5.1 )

t,θ3 p,q
satisfied or
violated? ⟨Sv⟩

ρ
(6)
ABC

= 4λ1
satisfied or
violated?

t = 0.84,
θ3 = 0.616

p = 0.1,
q = 0.92 -5.07155 5.07541 Violated 3.36062 Satisfied

t = 0.87,
θ3 = 0.618

p = 0.09,
q = 0.93 -4.76827 5.65134 Violated 3.4831 Satisfied

t = 0.9,
θ3 = 0.62

p = 0.07,
q = 0.959 -5.02466 4.35569 Violated 3.60576 Satisfied

t = 0.95
θ3 = 0.6205

p = 0.04,
q = 0.979 -5.19447 4.66488 Violated 3.80675 Satisfied

t = 0.99,
θ3 = 0.6215

p = 0.019,
q = 0.996 -4.403 4.59326 Violated 3.96844 Satisfied

t = 0.998,
θ3 = 0.6216

p = 0.012,
q = 0.9992 -4.83292 4.62339 Violated 4.00064

May
violate

t = 0.999,
θ3 = 0.6217

p = 0.01,
q = 0.9996 -5.4911 4.62769 Violated 4.0048

May
violate

Table 4.6: We have chosen different values of the three-qubit state parameter (t,θ3) for which
its reduced two-qubit state ρ

(6)
AB is entangled. Then we get a value of SNL(ρ

(6)
AB ) and corre-

sponding to it, we have chosen a value of the operator parameters p and q given in (4.5.9) and
(4.5.10) respectively. . Using the information given in (4.5.8) and considering few values of
p, q, t and θ3, Table 4.6 is prepared. It depicts the values of ⟨S(1)v ⟩

ρ
(6)
ABC

& ⟨S(2)v ⟩
ρ
(6)
ABC

given in

(4.3.16) and (4.3.17) indicating the fact that the state ρ
(6)
ABC exhibit genuine non-locality.

We are now in a position to compare our result with the result given in [228]. We

have calculated the maximum singular value λ1 of the matrix M = [M j,ik], where Mi jk =

Tr[ρ(6)
ABC(σi ⊗σ j ⊗σk)] and the values of λ1 given in Table 4.6. It is clear from Table

4.6 that the state ρ
(6)
ABC with parameters t ∈ [0.83,1] and θ3 ∈ [0.615,0.6219] violate the

bounds given in Result 4.4.1 and thus able to detect the genuine non-locality of ρ
(6)
ABC.

On the other hand, the state ρ
(6)
ABC satisfies (4.5.1) and thus we can say that M. Li et.

al.’s criterion is unable to detect the genuine non-locality of the state ρ
(6)
ABC.

Example 4.7: In [80], J.-D. Bancal et. al. have considered a pure state |ψ(7)⟩ABC of

the form

|ψ(7)⟩ABC =

√
3

2
|000⟩+

√
3

4
|110⟩+ 1

4
|111⟩ (4.5.11)

The state (4.5.11) is peculiar in the sense that it does not violate 1087 types of

Svetlichny Inequality, which have been constructed in [80]. Thus, our task is to en-

quire whether the genuine non-locality of the pure state (4.5.11) is detected by our

criterion.

The pure state (4.5.11) described by the density operator ρ
(7)
ABC = |ψ(7)⟩ABC⟨ψ(7)|, is an
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entangled state, and also we have

λmax(ρ
(7)
ABC) = 1, λmin(ρ

(7)
ABC) = 0 (4.5.12)

Tracing out system C from the three-qubit state ρ
(7)
ABC, the reduced two-qubit state ρ

(7)
AB

is given by

ρ
(7)
AB =


3
4 0 0 3

8

0 0 0 0

0 0 0 0
3
8 0 0 1

4

 (4.5.13)

The state ρ
(7)
AB is an entangled state and it is detected by the witness operator W (xz)

CHSH(=

2I −B(xz)
CHSH). It is clear from the following fact

Tr[W (xz)
CHSHρ

(7)
AB ] =−0.47487 (4.5.14)

The strength of the non-locality of two-qubit state ρ
(7)
AB may be measured by SNL(ρ

(7)
AB )

and it is given by

SNL(ρ
(7)
AB ) =

−Tr[W (xz)
CHSHρ

(7)
AB ]

8
= 0.0593588 (4.5.15)

Further, the eigenvalues and traces are given by

λmax(I2 ⊗ρ
(7)
AB ) = 0.950694, λmin(ρ

(7)
ABC(I2 ⊗ρ

(7)
AB )) =−0.0783743

λmax(ρ
(7)
ABC(I2 ⊗ρ

(7)
AB )) = 0.656499, λk(I2 ⊗ρ

(7)
AB ) = 0.0493061 (4.5.16)

Moreover, the range of p and q is given by

0.00687286 < p < 0.0096921 (4.5.17)

0.949571 < q < 0.963807 (4.5.18)

Using the information given in (4.5.12), (4.5.15), (4.5.16), (4.5.17), and (4.5.18), the

value of the expression of S(1)v and S(2)v can be calculated for the three-qubit state ρ
(7)
ABC

and they are tabulated in Table 4.7.
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Operator parameter Operator parameter ⟨S(1)v ⟩
ρ
(7)
ABC

⟨S(2)v ⟩
ρ
(7)
ABC

(p) (q)
0.007 0.95 -5.5534 5.60622
0.0075 0.955 -5.18056 5.01918
0.008 0.959 -4.85433 4.55396
0.0085 0.96 -4.56648 4.43826
0.009 0.963 -4.31061 4.0926

Table 4.7: We traced out system C from ρABC and got a reduced two-qubit state which is
entangled. Then we calculated SNL(ρ

(7)
AB ) and corresponding to it, we have chosen a value

of the parameters p and q given in (4.5.17) and (4.5.18) respectively. Using the information
given in (4.5.16) and considering a few values of p, and q, Table 4.7 is prepared. It depicts the
values of ⟨S(1)v ⟩

ρ
(7)
ABC

& ⟨S(2)v ⟩
ρ
(7)
ABC

given in (4.3.16) and (4.3.17) indicating the fact that the state

|ψ(7)⟩ABC exhibit genuine non-locality.

Therefore, we can infer that for the corresponding p and q, the state |ψ(7)⟩ABC exhibits

genuine non-locality. So, by using our approach, we can say that the state |ψ(7)⟩ABC

may exhibit genuine non-locality.

Example 4.8: Let us take a mixed three-qubit state of the form [244]

ρ
(8)
ABC =

1
8

I ⊗ I ⊗ I + ∑
k=x,y,z

( 1
24

(I ⊗σk ⊗σk)−
c

16
(σk ⊗ I ⊗σk +σk ⊗σk ⊗ I)

)
, c ∈ (0,1]

(4.5.19)

where σk are the Pauli matrices k = x,y,z. Toth and Acin [244] have shown that the

mixed three-qubit state (4.5.19) is a genuine entangled state for c ∈ (0.869,1] although

it admits a local hidden variable model. Now we will show that the state ρ
(8)
ABC violate

the bound (4.3.29). To execute this task, let us calculate the maximum and minimum

eigenvalue of ρ
(8)
ABC. They are given by

λmax(ρ
(8)
ABC) =

2+3c
12

,λmin(ρ
(8)
ABC) = 0 (4.5.20)

Tracing out system C from the three-qubit state ρ
(8)
ABC, the reduced two-qubit state ρ

(8)
AB

is given by

ρ
(8)
AB =


2−c

8 0 0 0
0 2+c

8
−c
4 0

0 −c
4

2+c
8 0

0 0 0 2−c
8

 (4.5.21)

ρ
(8)
AB is an entangled state for c ∈ (0.869,1]. Also, we have
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Tr[W (xy)
CHSHρ

(8)
AB ] = 2−

√
2c > 0, 0.869 < c ≤ 1

We find that CHSH witness operator W (xy)
CHSH is not able to detect the entangled state

ρ
(8)
AB . The strength of the non-locality of ρ

(8)
AB may be measured by SNew

NL (ρ
(8)
AB ). There-

fore, using (3.2.48), the parameter r is given by

r < [0.73,0.815), c ∈ (0.869,1] (4.5.22)

Hence, using (3.2.29), the strength of the non-locality SNew
NL (ρ

(8)
AB ) may be calculated as

SNew
NL (ρ

(8)
AB ) ∈ [0.21,0.44), c ∈ (0.869,1] (4.5.23)

Further, we can calculate the following using the three-qubit state ρ
(8)
ABC and the re-

duced two-qubit state ρ
(8)
AB

λmax(I2 ⊗ρ
(8)
AB ) =

2+3c
8

, λk(I2 ⊗ρ
(8)
AB ) = λmax((ρ

(8)
AB )

TB) =
2− c

8
,

λmax(ρ
(8)
ABC(I2 ⊗ρ

(8)
AB )) =−(c−2)(2+3c)

96
, λmin[((ρ

(8)
AB )

TB)2] =
4−12c+9c2

64

λmin(ρ
(8)
ABC(I2 ⊗ρ

(8)
AB )) = 0, Tr[W (xy)

CHSHρ
(8)
AB (ρ

(8)
AB )

TB] =
4+2

√
2c+(1+

√
2)c2

8
(4.5.24)

Also, the range of p and q in terms of state parameter c is given by

√
2H√

2H − 2+3c
8

< p <
2H

2H − 2+3c
8

(4.5.25)

F
F +2

√
2(2−c

8 )
< q <

F
F +2(2−c

8 )
(4.5.26)

where H = (c−2)(2+3c)
6(4−12c+9c2)

, F =− (c−2)(2+3c)
24 .

Using the information given in (4.5.20), (4.5.24), (4.5.25), and (4.5.26), the value of

the expression of S(3)v and S(4)v can be calculated for the three-qubit state ρ
(8)
ABC and

they are tabulated in the Table 4.8.
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State Parameter Operator parameter Operator parameter ⟨S(3)v ⟩
ρ
(8)
ABC

⟨S(4)v ⟩
ρ
(8)
ABC

(c) (p) (q)
0.87 0.89 0.36 -4.14775 5.4637
0.89 0.87 0.37 -4.15282 5.30108
0.92 0.82 0.38 -4.73136 5.17754
0.95 0.8 0.43 -4.29487 4.28605
0.99 0.76 0.44 -4.14294 4.21697

Table 4.8: We have chosen different values of the three-qubit state parameter c for which
its reduced two-qubit state is entangled. Since ρ

(8)
BC is not detected by W (xy)

CHSH so we have

calculated the value of SNew
NL (ρ

(8)
BC ) and corresponding to it, we have chosen a value of the

operator parameters p and q given in (4.5.25) and (4.5.26) respectively. Using the information
given in (4.5.24) and considering few values of p, q and c, Table 4.8 is prepared. It depicts the
values of ⟨S(3)v ⟩

ρ
(8)
ABC

& ⟨S(4)v ⟩
ρ
(8)
ABC

given in (4.3.30) and (4.3.31) indicating the fact that the state

ρ
(8)
ABC exhibit genuine non-locality.

4.6 Conclusion

In this chapter, we have considered the problem of detection of non-locality of an arbi-

trary three-qubit state (pure or mixed). This problem may be handled by the violation

of Svetlichny inequality but to do this, we have to maximize the expectation value

of the Svetlichny operator overall measurements of unit spin vectors. This optimiza-

tion problem may not be very simple so we have adopted a new procedure to detect

the genuine non-locality of an arbitrary three-qubit state. We have derived a state-

dependent lower and upper bound of the expectation value of the Svetlichny operator

Sv with respect to any pure or mixed three-qubit state described by the density oper-

ator ρABC. These bounds established a connection between ⟨Sv⟩ρABC and the strength

of the non-locality of the reduced two-qubit entangled state ρi j, i ̸= j, i, j = A,B,C. We

should note here that the considered reduced two-qubit state must be an entangled

state. The strength of the non-locality of the reduced two-qubit state may be mea-

sured either by SNL(ρi j) or by SNew
NL (ρi j) depending on whether it is detected or not

detected by CHSH witness operator. We have shown that the modified lower and up-

per bound of the expectation value of the Svetlichny operator may help in getting the

violation of the inequality for those three-qubit genuine entangled states which was

earlier not detected by Svetlichny inequality or by any other inequalities. To imple-

ment our results in an experiment, let us discuss briefly the possible implementation

of the partial trace, eigenvalues, and partial transposition in an experiment: (i) Par-

tial Trace- Possible experimental implementation of partial trace has been discussed



143

in [11–14]. (ii) Eigenvalues- It is shown that there exist methods by which one may

determine the eigenvalues of a state experimentally in a relatively easier way than full

state tomography [186, 200]. (iii) Partial Transposition- Partially transposed density

matrices are generically unphysical because it is a positive but not completely posi-

tive map. In spite of this limitation, measurement of their moments is possible [245].

Using their moments, one may estimate the values of the trace of a function of partial

transposition [246]. Since the inequalities derived here for the purpose of detecting

the genuine entanglement in the three-qubit system depends on partial trace, eigen-

values, and partial transposition operation so we may expect that our result may be

verified in an experiment also.

****************





Chapter 5

Controlled Quantum Teleportation:

Estimation of Controller’s Power through

Witness Operator

�Teleportation is not a dream anymore. It’s a daily routine, at least for particles. �

- Charles Bennett

In this chapter 1, we estimate the controller’s power through the witness operator.

Controlled quantum teleportation (CQT) can be considered as a variant of quantum

teleportation in which three parties are involved where one party acts as the controller.

The usability of the CQT scheme depends on two types of fidelities viz. conditioned

fidelity and non-conditioned fidelity. The difference between these fidelities may be

termed as the power of the controller and it plays a vital role in the CQT scheme.

Thus, our aim is to estimate the power of the controller in such a way that its estimated

value can be obtained in an experiment. To achieve our goal, we have constructed a

witness operator and have shown that its expected value may be used in the estima-

tion of the lower bound of the power of the controller. Furthermore, we have shown

that it is possible to make the standard W state useful in the CQT scheme if one of

its qubits either passes through the amplitude damping channel or the phase damp-

ing channel. We have also shown that the phase damping channel performs better

1This chapter is based on a accepted research paper “Estimation of Power in the Controlled Quantum Tele-
portation through the Witness Operator", Accepted in The European Physical Journal D (EPJ D) (2024).
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than the amplitude damping channel in the sense of generating more power for the

controller in the CQT scheme.
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5.1 Introduction

The process of transferring an unknown quantum state between two parties at two dis-

tant locations without transferring the physical information about the unknown quan-

tum state itself is known as quantum teleportation [1, 3, 20]. This means that neither

any physical information about the state is transferred nor a swap operation between

the sender and the receiver is performed. Teleportation protocol makes use of the

non-local correlations generated by using an entangled pair between the sender and

the receiver, and the exchange of classical information between them. This concept

plays a central role in quantum communication using quantum repeaters [22,115] and

can also be used to implement logic gates for universal quantum computation [116].

Quantum teleportation was also demonstrated experimentally [54,146,247,248].

We call the Bennett et. al. [20] protocol of teleporting a single qubit using a two-qubit

shared state as standard quantum teleportation protocol and it has already been dis-

cussed in Chapter 1. Quantum teleportation using a three-qubit state as a resource

state was introduced by Karlsson et. al. [137]. It is a variant of teleportation in which

three members such as Alice (A), Bob (B), and Charlie (C) are participating with one

qubit each. Later, this type of quantum teleportation protocol is popularly called the

controlled quantum teleportation (CQT). A lot of studies on CQT schemes have been

studied in the literature [166–181].

In the CQT scheme, we may consider that Alice, Bob, and Charlie share a three-qubit

pure/mixed state described by the density operator ρABC. We assume throughout

the chapter that Charlie acts as a controller who performs single-qubit Von Neumann

measurement on his qubit which is given in (1.4.22) and (1.4.23). And the three-qubit

state ρABC after the measurement is projected onto the two-qubit state which is given

in (1.12.1). And by tracing out Charlie’s qubit a reduced two-qubit state described

by the density operator ρAB = TrC(ρABC). In the CQT scheme, the faithfulness of the

teleportation may be quantified by the conditioned fidelity denoted by fC(ρ
(k)
AB ) and the

non-conditioned fidelity fNC(ρAB).

If we are not allowing any filtering operation then we may observe that the two-qubit

state obtained either through the Von Neumann measurement or through the appli-

cation of partial trace operation, may or may not be useful as a resource state in

quantum teleportation. In this scenario, the controlled teleportation scheme may be

helpful in the sense that by controlling the measurement parameter, the controller may
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be able to increase the teleportation fidelity in the conventional teleportation scheme.

Therefore, the enhancement of the teleportation fidelity may be measured by a quan-

tity known as the controller’s power (P(k)
CT ) of the controlled quantum teleportation. It

may be defined as the difference between the conditioned fidelity ( fC(ρ
(k)
AB )) and the

non-conditioned fidelity ( fNC(ρAB))

P(k)
CT = fC(ρ

(k)
AB )− fNC(ρAB), k = 0,1 (5.1.1)

In the controlled quantum teleportation scheme, there are two basic assumptions: (i)

fC(ρ
(k)
AB ) >

2
3 and (ii) fNC(ρAB) ≤ 2

3 . If these two conditions are satisfied by any three-

qubit states then we say that the given three-qubit state is useful in the CQT scheme.

5.2 Witness operators

In this section, our task is to construct a witness operator and study the relationship

between the expected value of the constructed witness operator and the Bell-CHSH

inequality. We have shown that the constructed witness operator may detect the two-

qubit entangled state even when Bell-CHSH inequality is unable to detect it. Moreover,

we find that the two-qubit entangled states, which are not detected by Bell-CHSH

inequality but detected by the witness operator, are useful for teleportation. In general,

it has already been shown in the literature [97] that any two-qubit state described by

the density matrix ρAB violates CHSH inequality if and only if M(ρAB) > 1, where the

quantity M(ρAB) is defined in (1.8.1).

5.2.1 Construction of witness operator W (1)
i j

To start with, let us first recall different Bell-CHSH operator defined in xy−, yz−, and

zx− plane, which are collectively denoted as B(i j)
CHSH (i, j = x,y,z; i ̸= j) and it is given

by [227]

B(i j)
CHSH = σi ⊗

σi +σ j√
2

+σi ⊗
σi −σ j√

2
+σ j ⊗

σi +σ j√
2

−σ j ⊗
σi −σ j√

2
(5.2.1)

Afterward, we will use the short form Bi j instead of using the long form B(i j)
CHSH through-

out the chapter. The four Bell states in the computational basis are denoted by |φ±⟩AB,

|ψ±⟩AB and can be expressed as (1.10.1), (1.10.2), (1.10.3),and (1.10.4).
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Now we are in a position to construct the operator Wi j that may be expressed in the

form as

Wi j = (
1
2
+2a)I −A−aBi j, i, j = x,y,z & i ̸= j (5.2.2)

where a is a positive real number. The operator A given in (5.2.2) may take any form

of two-qubit Bell states and other operators have their usual meaning. In particular, if

we take A = |φ+⟩AB⟨φ+| then the operator Wi j reduces to W (φ+)
i j , where W (φ+)

i j is given

by

W (φ+)
i j = (

1
2
+2a)I −|φ+⟩AB⟨φ+|−aBi j, i, j = x,y,z & i ̸= j (5.2.3)

Theorem 5.2.1. The operator W (φ+)
i j given in (5.2.3) is a witness operator.

Proof: We call the operator W (φ+)
i j , a witness operator if it satisfies the conditions C1 and C2

given in (1.5.26) and (1.5.27) respectively.

(a) To show the validity of condition C1, take the operator W (φ+)
i j and consider an arbitrary

two-qubit separable state described by the density operator σsep. The expectation value of the

operator W (φ+)
i j with respect to σsep is given by

Tr[W (φ+)
i j σsep] = (

1
2
+2a)−⟨φ+|σsep|φ+⟩−aTr[Bi jσsep] (5.2.4)

If F(σsep) denote the singlet fraction [249] of the state σsep then we have

F(σsep)≥ ⟨φ+|σsep|φ+⟩ (5.2.5)

Using (5.2.5) in (5.2.4), we get

Tr[W (φ+)
i j σsep] ≥ (

1
2
+2a)−F(σsep)−aTr[Bi jσsep] (5.2.6)

For any separable state σsep, we have −2 ≤ Tr[Bi jσsep] ≤ 2. Thus, for a > 0, the inequality

(5.2.6) reduces to

Tr[W (φ+)
i j σsep]≥


1
2 −F(σsep)+2a, Tr[Bi jσsep] ∈ [−2,0]

1
2 −F(σsep), Tr[Bi jσsep] ∈ [0,2]

(5.2.7)

Since the singlet fraction of any separable state σsep satisfies the inequality F(σsep)≤ 1
2 so for

any a > 0 and for any separable state σsep, we have Tr[W (φ+)
i j σsep]≥ 0. Hence C1 is verified.

(b) To prove the validity of the condition C2, it is enough to show that there exists an entangled

state σent for which Tr[W (φ+)
i j σent ]< 0. For this, let us consider an entangled state σ

(p)
ent , which
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may be defined as [194]

σ
(p)
ent = p|φ+⟩AB⟨φ+|+ 1− p

4
I,

1
3
< p ≤ 1 (5.2.8)

Let us now consider the operator Byz which is defined in (5.2.1). In the interval 1
3 < p ≤ 1, we

find that the state σ
(p)
ent satisfy the Bell-CHSH inequality using the operator Byz, i.e.,

Tr[Byzσ
(p)
ent ] = 0,

1
3
< p ≤ 1 (5.2.9)

Here, we observe that the entangled state σ
(p)
ent is not detected by the operator Byz. The operator

W (φ+)
yz may be expressed as

W (φ+)
yz = (

1
2
+2a)I −|φ+⟩AB⟨φ+|−aByz, a > 0 (5.2.10)

The expectation value of the operator W (φ+)
yz with respect to the state σ

(p)
ent is given by

Tr[W (φ+)
yz σ

(p)
ent ] =

1
2
+2a−⟨φ+|σ (p)

ent |φ+⟩−aTr[Byzσ
(p)
ent ]

=
1
2
+2a− 1+3p

4

=
1−3p

4
+2a < 0, a ∈ [0,0.001],

1
3
< p ≤ 1

Thus, there exist an entangled state σ
(p)
ent for which Tr[W (φ+)

yz σ
(p)
ent ]< 0. Therefore, C2 is veri-

fied.

Thus, we can now say that the operator W (φ+)
yz may serve as a valid entanglement witness op-

erator. Similarly, it can be shown that there exists a finite range of the parameter a for which

Tr[W (φ+)
xy σ

(p)
ent ]< 0 and Tr[W (φ+)

zx σ
(p)
ent ]< 0. Hence, the operator W (φ+)

i j for any i, j = x,y,z; i ̸= j

is a witness operator. ■

Moreover, if we replace the operator A by other Bell states like |φ−⟩AB⟨φ−| or |ψ±⟩AB⟨ψ±|

then it can be shown that the corresponding operators W (φ−)
i j or W (ψ±)

i j may serve as

witness operator for any i, j = x,y,z; i ̸= j. Therefore, the witness operators W (φ−)
i j ,

W (ψ±)
i j may be expressed in the following way:

W (φ−)
i j = (

1
2
+2a)I −|φ−⟩AB⟨φ−|−aBi j, i, j = x,y,z i ̸= j (5.2.11)

W (ψ±)
i j = (

1
2
+2a)I −|ψ±⟩AB⟨ψ±|−aBi j, i, j = x,y,z i ̸= j (5.2.12)
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5.2.2 Characteristic of the introduced witness operator

In this section, we may take into account the Bell state |φ+⟩AB and then discuss the

relation between the three quantities such as (i) M(ρAB), which determine whether

the quantum state violating the Bell-CHSH inequality (ii) F(ρAB) denoting the singlet

fraction of the state ρAB that determine whether the state is useful as a resource state

in quantum teleportation [127] and (iii) the expectation value of the witness operator

W (φ+)
i j that detect the signature of the entanglement. Specifically, we derived here the

lower and upper bound of the expectation value of the witness operator W (φ+)
i j . Using

these bounds, we have obtained a few results that focus on the condition for which the

witness operator may or may not detect the entangled state. Furthermore, we note

that all the results obtained by considering the operator |φ+⟩AB⟨φ+| may also be ob-

tained by considering the other three Bell operators such as |φ−⟩AB⟨φ−|, |ψ±⟩AB⟨ψ±|.

Result 5.2.1. Consider an entangled state ρent such that M(ρent)≤ 1. Then the lower and upper

bound of the expectation value of the witness operator W (φ+)
i j with respect to an entangled state

ρent is given by

U(a)≤ Tr[W (φ+)
i j ρent ]≤ L(a), a > 0 (5.2.13)

where U(a) = 1
2 −F(ρent)+2a(1−

√
M(ρent)) and L(a) = 1

2 −⟨φ+|ρent |φ+⟩+4a.

Proof: To derive the required lower bound of the expectation value of the witness operator

W (φ+)
i j , let us recall the witness operator defined in (5.2.3). The expectation value of W (φ+)

i j

with respect to an entangled state ρent , is given by

Tr[W (φ+)
i j ρent ] = (

1
2
+2a)−⟨φ+|ρent |φ+⟩−aTr[Bi jρent ]

≥ (
1
2
+2a)−F(ρent)−aTr[Bi jρent ]

≥ (
1
2
−F(ρent))+2a(1−

√
M(ρent)) (5.2.14)

In the second step, we have used ⟨φ+|ρent |φ+⟩ ≤ F(ρent). In the third step, we use the follow-

ing Tr[Bi jρent ] = ⟨Bi j⟩ρent ≤ maxBi j⟨Bi j⟩ρent = 2
√

M(ρent) for any (i, j), where i, j = x,y,z; i ̸=

j [97].

Let us now derive the upper bound of the expectation value of the witness operator W (φ+)
i j .

Again, the expectation value of Tr[W (φ+)
i j ρent ] can be expressed as
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Tr[W (φ+)
i j ρent ] =

1
2
−⟨φ+|ρent |φ+⟩+a(2−Tr[Bi jρent ]) (5.2.15)

Let us assume that the two-qubit entangled state ρent satisfies the Bell-CHSH inequality, i.e.,

Tr[Bi jρent ] ∈ [−2,2] for any i, j = x,y,z; i ̸= j. If we split the interval [−2,2] into two subin-

tervals [−2,0) and [0,2], then we have the following two cases:

(i) If Tr[Bi jρent ] ∈ [0,2] then we get

Tr[W (φ+)
i j ρent ]≤

1
2
−⟨φ+|ρent |φ+⟩+2a (5.2.16)

(ii) If Tr[Bi jρent ] ∈ [−2,0], we get

Tr[W (φ+)
i j ρent ]≤

1
2
−⟨φ+|ρent |φ+⟩+4a (5.2.17)

Thus, combining (5.2.16) and (5.2.17) and since a > 0, we get

Tr[W (φ+)
i j ρent ]≤

1
2
−⟨φ+|ρent |φ+⟩+4a (5.2.18)

Hence, if M(ρent)≤ 1 then the lower and upper bound of the expectation value of the witness

operator W (φ+)
i j is given by

(
1
2
−F(ρent))+2a(1−

√
M(ρent))≤ Tr[W (φ+)

i j ρent ]≤
1
2
−⟨φ+|ρent |φ+⟩+4a, a > 0 ■

The inequality (5.2.13) estimates the lower and upper bound of the expectation value

of the witness operator W (φ+)
i j with respect to any two-qubit entangled state. Further,

we note that the lower bound of Tr[W (φ+)
i j ρent ] depends on two quantities such as (i)

F(ρent) and (ii) M(ρent). Based on these two quantities, we can make the following

observations from the inequality (5.2.13):

Observation 1: If there exist any two-qubit entangled state ρent such that M(ρent)≤ 1

and F(ρent) ≤ 1
2 then it is clear from (5.2.13) that the witness operator W (φ+)

i j cannot

detect the entangled state ρent .

This observation may be illustrated by the following example: Let us consider the

two-qubit state [129]

ρF = F |φ+⟩⟨φ+|+(1−F)|01⟩⟨01|, 1
3
< F ≤ 1

2
(5.2.19)
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where F denotes the singlet fraction of the state. One may easily verify that the state

ρF is an entangled state when 1
3 < F ≤ 1

2 .

The expectation value of the Bell operators Bxy, Byz and Bxz in different setting with

respect to the state ρF is given by

⟨Bxy⟩ρF = 0, ⟨Byz⟩ρF ∈ (−0.9428,−0.7071), ⟨Bxz⟩ρF ∈ (0,0.707107) (5.2.20)

Therefore, using (5.2.20), we can find that the state ρF satisfies the Bell-CHSH in-

equality i.e. M(ρF) ≤ 1. Let us now calculate the expectation value of the corre-

sponding witness operators W (φ+)
xy , W (φ+)

yz , and W (φ+)
zx with respect to the state ρF . For

positive ’a’, the expectation values are given by

Tr[W (φ+)
xy ρF ] =

1
2
+2a−F > 0 (5.2.21)

Tr[W (φ+)
yz ρF ] = (

1
2
−F)+a[2+

√
2(1−F)]> 0 (5.2.22)

Tr[W (φ+)
zx ρF ] = (

1
2
−F)+a[2+

√
2(1−3F)]> 0 (5.2.23)

Thus, it is clear from (5.2.21), (5.2.22) and (5.2.23) that the entangled state ρF ,is

not detected by the witness operator W (φ+)
xy . The observation-1 is now verified for a

particular quantum state described by the density operator ρF .

But, in general, from the inequality (5.2.13) we can conclude that if any quantum

entangled state ρent satisfies M(ρent) ≤ 1 and F(ρent) ≤ 1
2 then the witness operator

W (φ+)
i j , i, j = x,y,z, i ̸= j does not detect the entangled state ρent .

Observation 2: If there exist any two-qubit entangled state ρent which is useful in

teleportation i.e. F(ρent)>
1
2 then the witness operator W (φ+)

i j may detect the entangled

state ρent when the parameter a lies in some specific range. This observation may be

written in the form of another result, which is stated below:

Result 5.2.2. Let us consider a two-qubit entangled state described by a density operator ρent .

If F(ρent)>
1
2 and if the parameter a lies in the range 0 < a ≤ ⟨φ+|ρent |φ+⟩− 1

2
4 then the witness

operator W (φ+)
i j detect the entangled state ρent .

Proof: The expectation value of the witness operator W (φ+)
i j (i, j = x,y,z; i ̸= j) with respect

to the entangled state ρent can be written as

Tr[W (φ+)
i j ρent ] =

1
2
−⟨φ+|ρent |φ+⟩+a(2−Tr[Bi jρent ]) (5.2.24)

Using (5.2.13), it can be easily shown that if F(ρent)>
1
2 and if whether the state ρent satisfies
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the Bell-CHSH inequality or violate it, the upper and lower bound of Tr[W (φ+)
i j ρent ] will be a

negative quantity. Thus, we have

Tr[W (φ+)
i j ρent ] = a negative quantity (5.2.25)

Therefore, (5.2.25) clearly indicate the fact that the witness operator W (φ+)
i j (i, j = x,y,z; i ̸= j)

detect the entangled state ρent . Hence proved. ■

We will now verify Result 5.2.2 by considering the Bell state |ψ−⟩AB instead of taking

|φ+⟩AB. To verify Result 5.2.2, let us consider the two-qubit state described by the

density operator ρ(θ)

ρ(θ) =
1
2


a(θ) 0 0 0

0 b(θ) c(θ) 0

0 c(θ) d(θ) 0

0 0 0 e(θ)

 , 0 ≤ θ ≤ 0.4175π (5.2.26)

where a(θ) = (3− 2
√

2)Sin2θ , b(θ) = (3− 2
√

2)Cos2θ , c(θ) = (1−
√

2)Cosθ , d(θ) =

1+(2
√

2−2)Sin2θ and e(θ) = (2
√

2−2)Cos2θ .

It can be easily verified that ρ(θ) is an entangled state and M(ρ(θ)) < 1 for θ ∈

[0,0.4175π]. Thus, the entangled state ρ(θ) will satisfy Bell-CHSH inequality for θ ∈

[0,0.4175π], and thus it is undetected by the Bell-CHSH operator. Further, the singlet

fraction of ρ(θ), i.e., F(ρ(θ)) can be calculated as

F(ρ(θ)) =
1
8
(3+4(−1+

√
2)Cosθ +(5−4

√
2)Cos(2θ))

We can verify that F(ρ(θ))> 1
2 when θ ∈ [0,0.4175π] and a ∈ (0,0.00560188].

By direct calculation, we obtain the value of the following expressions in terms of the

state parameter θ as

⟨Bxy⟩ρ(θ) = 2(−2+
√

2)Cosθ

⟨Byz⟩ρ(θ) = ⟨Bxz⟩ρ(θ) =
1√
2
(−1−2(−1+

√
2)Cosθ +(−5+4

√
2)Cos2θ)

Tr[ρ(θ)|ψ−⟩⟨ψ−|] =
1
8
(3+4(−1+

√
2)Cosθ +(5−4

√
2)Cos(2θ)) (5.2.27)

We are now in a position to calculate the expectation value of the witness operator

W (ψ−)
i j with respect to the state ρ(θ). It is given by
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Tr[W (ψ−)
xy ρ(θ)] =

1
8
(1+16a−4(−1+

√
2+4(−2+

√
2)a)Cosθ +(−5+4

√
2)Cos2θ)

Tr[W (ψ−)
yz ρ(θ)] =

1
8
(1+16a+4

√
2a−4(−1+

√
2+2(−2+

√
2)a)Cosθ +(−5+4

√
2+

4(−8+5
√

2)a)Cos2θ)

Tr[W (ψ−)
xz ρ(θ)] = Tr[W (ψ−)

yz ρ(θ)] (5.2.28)

We find that the witness operator W (ψ−)
xy detect the state ρ(θ) when a ∈ (0,0.00032]

& θ ∈ [0,0.4175π]. We also find that witness operator W (ψ−)
yz & W (ψ−)

xz detect the state

ρ(θ) when a ∈ (0,0.00016] & 0 ≤ θ < 0.4175π. Therefore, there exist a range of the

parameter a for which the entangled state ρ(θ) is detected by the witness operator

W (ψ−)
i j when i, j = x,y,z; i ̸= j.

Now, we are in a position to derive the non-trivial lower bound of the teleportation

fidelity when ρent is used as a resource state in quantum teleportation. It may be

expressed in terms of the expectation value of the witness operator and M(ρent).

Result 5.2.3. If there exists an entangled state described by the density operator ρent , which

satisfies the Bell-CHSH inequality but detected by the witness operator W (φ+)
i j , then the entan-

gled state ρent is useful in teleportation with teleportation fidelity f (ρent), which satisfies the

inequality

f (ρent)≥
2
3
{1−Tr[W (φ+)

i j ρent ]+2a(1−
√

M(ρent))} (5.2.29)

where a ∈ (0,
1
2+Tr[W (φ+)

i j ρent ]

2(1−
√

M(ρent))
].

Proof: Let us start with the lower bound of the expectation value of the witness operator W (φ+)
i j

(i, j = x,y,z; i ̸= j). Therefore, the inequality (5.2.14) can be re-expressed as

F(ρent)≥
1
2
−Tr[W (φ+)

i j ρent ]+2a(1−
√

M(ρent)) (5.2.30)

The relation between the teleportation fidelity f (ρent) and singlet fraction F(ρent) of an entan-

gled state ρent is given by [126]

f (ρent) =
2F(ρent)+1

3
(5.2.31)

Using (5.2.30) and (5.2.31), we get
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f (ρent)≥
2
3
{1−Tr[W (φ+)

i j ρent ]+2a(1−
√

M(ρent))} (5.2.32)

Using the fact that M(ρent)≤ 1 and the witness operator W (φ+)
i j detect the entangled state ρent ,

it can be easily verified that f (ρent)>
2
3 . Further, imposing the condition that f (ρent)≤ 1, we

can obtain the upper bound of the parameter a, which is given by

a ≤
1
2 +Tr[W (φ+)

i j (ρent)]

2(1−
√

M(ρent))
(5.2.33)

Therefore, the interval of the parameter a for which the entangled state ρent satisfies the in-

equality M(ρent)≤ 1 and useful for teleportation is given by

a ∈
(

0,
1
2 +Tr[W (φ+)

i j (ρent)]

2(1−
√

M(ρent))

]
■

5.3 Estimation of controller’s power

We have assumed here that the controlled teleportation scheme involves three parties

namely Alice (A), Bob (B), and Charlie (C), who have shared a three-qubit state. In

this protocol, the measurement is performed by Charlie (acting as a controller) on his

qubit. As a result of the measurement, the two-qubit state will be shared between Alice

and Bob described by the density operator ρAB. The shared state ρAB may or may not

violate the Bell-CHSH inequality and accordingly the state may or may not be useful

in the conventional teleportation scheme [127]. Therefore, the study of the violation

of Bell-CHSH inequality is important in this scenario and thus we consider it here as

the CHSH game [224]. In the CHSH game, we assume that the two distant players,

Alice (A) and Bob (B) receive binary questions s, t ∈ {0,1} respectively, and similarly

their answers a,b ∈ {0,1} are single bits. Alice and Bob win the CHSH game if their

answers satisfy a⊕ b = st. Thus, the CHSH game can be considered as a particular

example of XOR games. In this game, the non-locality of the shared state ρAB may

be determined when Alice and Bob perform measurements on their respective qubit

and the outcomes of their measurements are correlated. Therefore, the maximum

probability Pi j of winning the game overall strategy is given by (3.2.6). Since the

maximum probability of winning the game depends on the expectation value of the
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Bell operator Bi j, so Pmax is somehow related to the non-locality of the state ρAB.

Adding the known fact that the state ρAB violate the Bell-CHSH inequality if ⟨Bi j⟩ρAB > 2

and thus, we find that the state ρAB is non-local when Pmax > 3
4 . Hence, the shared

state ρAB may be useful for teleportation when Pmax > 3
4 .

It may be easily shown that the winning probability Pi j may be estimated in terms of

the expectation value of the witness operator Wi j with respect to the state ρAB. The

result may be stated as

Lemma 5.3.1. The probability Pi j of the CHSH game may be estimated as

(i) When F(ρAB)≤ 1
2

3
4
−

Tr[W (φ+)
i j ρAB]

8a
≤ Pi j ≤ 1 (5.3.1)

(i) When F(ρAB)>
1
2

0 ≤ Pi j <
3
4
−

Tr[W (φ+)
i j ρAB]

8a
(5.3.2)

where F(ρAB) denote the singlet fraction of the state ρAB.

Proof: Let us recall the witness operator W (φ+)
i j given in (5.2.3). Therefore, Using (5.2.3) and

(3.2.6), the expression for Pi j may be re-written as

Pi j =
3
4
+

1
8a

[
1
2
−⟨φ+|ρAB|φ+⟩−Tr[W (φ+)

i j ρAB]] (5.3.3)

Using the fact that ⟨φ+|ρAB|φ+⟩ ≤F(ρAB) and considering the two different cases i) F(ρAB)≤
1
2 and ii) F(ρAB)>

1
2 separately, we can easily obtain the above estimation given in (5.3.1) and

(5.3.2). The above result may be proved in the same way for W (φ−)
i j , W (ψ+)

i j and W (ψ−)
i j . ■

5.3.1 Estimation of non-conditioned teleportation fidelity

Let us suppose that the three-qubit state shared between Alice (A), Bob (B), and

Charlie (C) is described by the density operator ρABC. The reduced two-qubit state

shared between Alice and Bob is described by the density operator ρAB = TrC(ρABC).

If ρAB is used as a resource state in quantum teleportation then the faithfulness of

the teleportation is determined by the non-conditioned teleportation fidelity which is

denoted by fNC(ρAB). The non-conditioned fidelity can be expressed in terms of the

correlation tensor TAB as [127]
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fNC(ρAB) =
3+ ||TAB||1

6
(5.3.4)

where ||.||1 denote the trace norm.

To express fNC(ρAB) in terms of witness operator, we recall the expression of Pi j given

in (5.3.3). It may be re-written as

Pi j =
3
4
+

1
8a

(
1
2
−⟨φ+|ρAB|φ+⟩−Tr[W (φ+)

i j ρAB])

Using ⟨φ+|ρAB|φ+⟩ ≤ F(ρAB) in the expression of Pi j, we get the inequality as

Tr[W (φ+)
i j ρAB]≥ 8a(

3
4
−Pi j)+

1
2
−F(ρAB) (5.3.5)

One of the assumptions to execute the controlled quantum teleportation scheme is

that the non-conditioned teleportation fidelity must be less than 2
3 . Thus, considering

F(ρAB)≤ 1
2 and Pi j ≤ 3

4 , we get

1
2
−Tr[W (φ+)

i j ρAB]≤ F(ρAB)≤
1
2

(5.3.6)

Using the relation between singlet fraction (F(ρAB)) and non-conditioned teleporta-

tion fidelity ( fNC(ρAB)), the inequality (5.3.6) may be expressed in terms of fNC(ρAB).

Therefore, the inequality (5.3.6) may be re-expressed as

2
3
(1−Tr[W (φ+)

i j ρAB])≤ fNC(ρAB)≤
2
3

(5.3.7)

While constructing the witness operator W (φ+)
i j , we should be careful in choosing the

positive value of the parameter a. The value of a is choosen in such a way that

Tr[W (φ+)
i j ρAB]≥ 0.

5.3.2 Estimation of the conditioned teleportation fidelity

In the controlled teleportation protocol, when the controller Charlie measures on his

qubit, the three-qubit state ρABC reduces to ρ
(k)
AB according to the measurement out-

come k = 0,1. If Alice and Bob use the shared state ρ
(k)
AB as a resource state in the tele-

portation protocol then the fidelity of the teleportation may be termed as conditioned

teleportation fidelity and it is denoted by fC(ρ
(k)
AB ). There is an interesting relationship
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between the conditioned teleportation fidelity and the partial tangle τAB and it is given

by [47]

fC(ρ
(k)
AB ) =

2+ τ
(k)
AB

3
, k = 0,1 (5.3.8)

To implement the controlled quantum teleportation, it is assumed that fC(ρ
(k)
AB ) >

2
3

[167, 169–171]. Therefore, the conditioned teleportation fidelity fC(ρ
(k)
AB ) may be esti-

mated by using the Result 5.2.3

2
3
{1−Tr[W (φ+)

i j ρ
(k)
AB ]+2a(1−

√
M(ρ

(k)
AB ))} ≤ fC(ρ

(k)
AB ) (5.3.9)

The condition of controlled teleportation will be met when the witness operator detects

the entangled state ρ
(k)
AB that satisfies the Bell-CHSH inequality. The value of the

parameter a involved in the witness operator will be chosen in such a way that the

witness operator detects ρ
(k)
AB .

5.3.3 Lower and upper bound of the controller’s power

The power of the controlled quantum teleportation for the kth measurement outcome

may be defined as

P(k)
CT = fC(ρ

(k)
AB )− fNC(ρAB), k = 0,1 (5.3.10)

Using (5.3.4) and (5.3.8), the expression of the power given in (5.3.10) reduces to

P(k)
CT =

1
6
+

1
6
(2τ

(k)
AB −||TAB||1) (5.3.11)

Our task is now to estimate the value of ||TAB||1 and τ
(k)
AB .

(i) Estimation of ||TAB||1: Let us recall (5.3.7) and using (5.3.4) in it, we get the

estimation of ||TAB||1 which is given by

1−4Tr[W NC
i j ρAB]≤ ||TAB||1 ≤ 1 (5.3.12)

In this case, the parameter a is chosen in such a way that the witness operator W NC
i j

does not detect the state ρAB. Therefore, we can put the restriction on Tr[W NC
i j ρAB] as
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0 ≤ Tr[W NC
i j ρAB]≤

1
4

(5.3.13)

The upper bound of Tr[W NC
i j ρAB] is obtained by using the condition ||TAB||1 ≥ 0.

(ii) Estimation of τ
(k)
AB : Using (5.3.8) and (5.3.9) and simplifying the inequality, we get

4a(1−
√

M(ρ
(k)
AB ))−2Tr[WC

i j ρ
(k)
AB ]≤ τ

(k)
AB ≤ 1 (5.3.14)

The parameter a in the LHS of the above inequality (5.3.14) can be chosen in such a

way that the witness operator WC
i j detects the state ρk

AB.

Now, we are in a position to derive the lower and upper bound of the power P(k)
CT . To

start with, let us use the upper bound of ||TAB||1 and the lower bound of τ
(k)
AB in the

expression (5.3.11) of the power of the controlled teleportation. Therefore, it reduces

the power given in (5.3.11) to the inequality that gives the lower bound as

4a
3
(1−

√
M(ρ

(k)
AB ))−

2
3

Tr[W (C)
i j ρ

(k)
AB ]≤ P(k)

CT (5.3.15)

Similarly, using the lower bound of ||TAB||1 and the upper bound of τ
(k)
AB in the expres-

sion of the power of the controlled teleportation, we get the upper bound of the power

which is given by

P(k)
CT ≤ 1

3
+

2
3

Tr[W NC
i j ρAB] (5.3.16)

Further, if we use the restriction given in (5.3.13) then the inequality (5.3.16) reduces

to

P(k)
CT ≤ 1

2
(5.3.17)

Combining (5.3.15) and (5.3.17), we get

4a
3
(1−

√
M(ρ

(k)
AB ))−

2
3

Tr[W (C)
i j ρ

(k)
AB ]≤ P(k)

CT ≤ 1
2

(5.3.18)
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5.3.4 Estimation of the lower bound of the power for pure three-qubit

states

In this section, we study the controlled quantum teleportation protocol by considering

the pure three-qubit states such as standard GHZ state, Maximally Slice State (MSS),

and a W class of states. Then we estimate the lower bound of the power of the

controller for all the above mentioned states.

Let us consider a three-qubit standard GHZ state of the form

|ψ(1)⟩CAB = λ0|000⟩+λ4|111⟩, λ
2
0 +λ

2
4 = 1 (5.3.19)

Now, to execute the controlled teleportation scheme with the three-qubit state de-

scribed by the density operator ρ
(1)
CAB = |ψ(1)⟩CAB⟨ψ(1)|, the assumptions on the non-

conditioned fidelity and conditioned fidelity must be fulfilled. Therefore, we need to

calculate the non-conditioned fidelity and conditioned fidelity and thus the power of

the controller.

(i) Non-conditioned fidelity: We trace out system C from the three-qubit state ρ
(1)
CAB.

The resulting two-qubit state ρ
(1)
AB is given by

ρ
(1)
AB = TrC(ρ

(1)
CAB) = λ

2
0 |00⟩⟨00|+λ

2
4 |11⟩⟨11| (5.3.20)

Using ρ
(1)
AB as a resource state in quantum teleportation, the non-conditioned fidelity

can be calculated as

fNC(ρ
(1)
AB ) =

2
3

(5.3.21)

(ii) Conditioned fidelity: Charlie, performed measurement on his qubit in the single

qubit generalized basis {B0,B1}. After the measurement, the state collapses either to

ρ
G(0)
AB or ρ

G(1)
AB , where

ρ
G(0)
AB =

1
p0

(
(t2 + y2

3)λ
2
0 |00⟩⟨00|+λ0λ4(−ty2 + y1y3 + ι(ty1 + y2y3))|00⟩⟨11|

+ λ0λ4(−ty2 + y1y3 − ι(ty1 + y2y3))|11⟩⟨00|+λ
2
4 (y

2
1 + y2

2)|11⟩⟨11|
)
,

where p0 = (t2 + y2
3)λ

2
0 +(y2

1 + y2
2)λ

2
4 (5.3.22)
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ρ
G(1)
AB =

1
p1

(
(y2

1 + y2
2)λ

2
0 |00⟩⟨00|+λ0λ4(ty2 − y1y3 − i(ty1 + y2y3))|00⟩⟨11|

+ λ0λ4(ty2 − y1y3 + i(ty1 + y2y3))|11⟩⟨00|+λ
2
4 (t

2 + y2
3)|11⟩⟨11|

)
,

where p1 = (y2
1 + y2

2)λ
2
0 +(y2

3 + t2)λ 2
4 (5.3.23)

Let us now use the state ρ
G(0)
AB for the teleportation of a single qubit. We choose the

normalized measurement parameters (y1,y2,y3, t) in such a way that the conditioned

fidelity is greater than 2
3 i.e. fC(ρ

G(0)
AB )> 2

3 and also the normalization condition (1.4.23)

holds. Therefore, choosing the measurement parameters y1 = −0.25, y2 = −0.49,

y3 = 0.39 and t =−0.74, we can calculate the conditioned fidelity in terms of the state

parameter λ4 as

fC(ρ
G(0)
AB ) =

1
1.79958−λ 2

4

(
1.19972−0.666667λ

2
4 +0.799676λ4

√
1−λ 2

4
)

(5.3.24)

We may observe that fC(ρ
G(0)
AB ) varies from [0.66667,0.99997] when λ4 varies from [0,1].

Thus, the assumptions on non-conditioned fidelity and conditioned fidelity are met. It

can be easily verified that these assumptions still hold if we consider the state ρ
G(1)
AB .

This means that the GHZ state described by the density operator ρ
(1)
CAB is useful for

controlled quantum teleportation.

Now, our task is to calculate the power of the controller when a three-qubit GHZ state

(5.3.19) is shared between Alice, Bob, and Charlie (controller). To estimate the power

of the controller, we again consider the state ρ
G(0)
AB and proceed toward the calculation

of the lower bound of the power that needs the following information:

(i) M(ρ
G(0)
AB ) > 1 for λ4 ∈ [0,1]. This indicates that the state ρ

G(0)
AB violates the Bell-

CHSH inequality and therefore, the state is useful in conventional quantum teleporta-

tion [127].

(ii) The expectation value of the witness operator W (φ+)
xy with respect to the state ρ

G(0)
AB

is given by

Tr[W (φ+)
xy (ρ

G(0)
AB )] =

1
2
−2a−

0.90−0.5λ 2
4 +1.2λ4

√
1−λ 2

4

1.8−λ 2
4

(5.3.25)

The value of a (> 0) is chosen in such a way that the witness operator W (φ+)
xy detects

the state ρ
G(0)
AB . Thus, we find that when a ∈ (0,0.232) & 0.598 ≤ λ4 ≤ 0.95, the witness

operator detect the state ρ
G(0)
AB . Therefore, the lower bound of the controller’s power
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can be estimated using the formula given below:

PG(0)
CT ≥ 4a

3
(1−

√
M(ρ

G(0)
AB ))− 2

3
Tr[W (φ+)

i j ρ
G(0)
AB ] (5.3.26)

It can be easily verified that the lower bound of power lies in the interval (0.001472,0.333)

for a ∈ (0,0.1555) & 0.598 ≤ λ4 ≤ 0.95.

Also, we note that the calculation of the power of the controller for the state ρ
G(1)
AB may

be done in a similar way.

Moreover, we may consider other pure three-qubit states such as maximally slice

state |ψ(2)⟩ABC = λ0|000⟩+λ1|100⟩+ 1√
2
|111⟩ given in [167] and W class states |Wn⟩=

1√
2+2n

(|100⟩+
√

n|010⟩+
√

n+1|001⟩) introduced in [140]. We have analyzed the power

of the controller for these classes of states, which is given in Table 5.1.

Further, we find that the pure three-qubit W class of state described by |W1⟩ is more

useful in the CQT scheme than all other W class of states such as |W2⟩, |W3⟩ etc. |W1⟩

is more useful in the CQT scheme in the sense that when |W1⟩ is used, the power of

the controller is greater than all the power calculated over the states |W2⟩, |W3⟩ etc.

This finding is shown in Figure 5.1.

Figure 5.1: This graph shows the relation between parameter (a) of the witness operator and
the lower limit of controller’s power PW1(0)

CT , PW2(0)
CT , PW3(0)

CT when the measurement is performed
on one of the qubit of W1, W2, W3 and the measurement outcome is k = 0. Blue line denotes
the power of W1 state, Yellow line denotes the power of W2 state, and Green line denotes the
power of W3 state
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Three-qubit Non-Conditioned Conditioned Estimated lower
State Fidelity Fidelity bound of the power

|ψ(2)⟩ [0.5,0.6667] fC(ρ
MSS(0)
AB )= fC(ρ

MSS(1)
AB )= [0.667538,1]

λ4 ∈ [0,0.643]
(0,0.3333), a ∈ (0,0.0402]

λ4 ∈ [0,0.6]

|W1⟩ 2
3

fC(ρ
W1(0)
AB )= 0.9999999999968732

[0.00146455,0.33333),
a ∈ (0,0.1767]

fC(ρ
W1(1)
AB )=0.99999999976277

[0.00146455,0.33333),
a ∈ (0,0.1767]

|W2⟩ 0.657135 fC(ρ
W2(0)
AB )= fC(ρ

W2(1)
AB )=0.980937

[0.0001815,0.31427),
a ∈ (0,0.1665]

|W3⟩ 0.644337 fC(ρ
W3(0)
AB )= fC(ρ

W3(1)
AB )=0.955342

[0.000427,0.288675),
a ∈ (0,0.1525]

Table 5.1: In this table, we have estimated the lower bound of the controller’s power using var-
ious three-qubit pure states such as maximally slice state |ψ(2)⟩, and |Wn⟩, n = 1,2,3 states.
We have found that all the three-qubit states are useful for controlled teleportation and further-
more, we obtain that |W1⟩ is more useful in controlled teleportation in comparison to |W2⟩ and
|W3⟩ state.

5.4 Controlled teleportation in noisy environment

In this section, we analyze the power of controlled quantum teleportation when one of

the qubit of the shared state interacts with the noisy environment. We have considered

here amplitude damping channel and phase damping channel as a noisy channel for

our study. As it is known that the standard W state is not useful in controlled quantum

teleportation [170] so we study controlled quantum teleportation using the standard W

state. Therefore, we investigate the possibility of using the standard W state in CQT

protocol when one of the qubit passes through the noisy environment.

To start with, let us consider the standard W state, which is given by

|ψ(W )⟩BAC =
1√
3
(|000⟩+ |101⟩+ |110⟩) (5.4.1)

To execute our protocol, we assume that a source generates three-qubit entangled

state ρ
(W )
BAC = |ψ(W )⟩BAC⟨ψ(W )|, where |ψ(W )⟩BAC is given in the form (5.4.1). In this

protocol, let us further assume that the two parties Alice and Charlie are in one place

while Bob is residing in some distant place. Alice possesses the two qubits A and B

respectively. On the other hand, Charlie has the qubit C. Since Alice would like to send

some information to Bob via a shared quantum state so she needs to construct an

entangled channel between them. Thus, Alice has to send a qubit (suppose, a qubit B)

involved in the three-qubit entangled state ρ
(W )
BAC to Bob through the noisy environment.

The noisy environment may be described either as (i) Amplitude Damping Channel or

(ii) Phase Damping Channel. The qubit B then interacts with the noisy environment
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while travelling to Bob’s place and assuming that finally, it reaches to Bob. In this

way, a channel is constructed between Alice and Bob through which Alice can send

her information to Bob using quantum teleportation protocol. Since the qubit B has

interacted with the noisy environment so there may be a possibility of the degradation

of the entanglement of the established channel between Alice and Bob. Thus, the

teleportation fidelity may become less than 2
3 . In this scenario, Charlie may play a

major role as a controller to enhance the teleportation fidelity. Hence, we can calculate

the power of the controller in this version of controlled teleportation.

5.4.1 Amplitude damping channel

Recalling the standard W state given in (5.4.1) and follows the above described pro-

tocol where the qubit B is interacting with the noisy environment. Let us consider first

the amplitude damping channel as the noisy environment through which the qubit B

is passing. Amplitude damping channel is described by the Kraus operators defined

as [250]

K1 = |0⟩⟨0|+
√

1− p|1⟩⟨1|,K2 =
√

p|0⟩⟨1|, 0 ≤ p ≤ 1 (5.4.2)

The Kraus operator satisfies K†
1 K1 +K†

2 K2 = I. I denote the identity operator.

When the qubit B passes through the amplitude damping channel, the state ρ
(W )
BAC

reduces to

ρ
(W1)
BAC = (K1 ⊗ I ⊗ I)ρ(W )

BAC(K
†
1 ⊗ I ⊗ I)+(K2 ⊗ I ⊗ I)ρ(W )

BAC(K
†
2 ⊗ I ⊗ I)

=
1
3
(|000⟩⟨000|+ p(|001⟩⟨001|+ |001⟩⟨010|+ |010⟩⟨001|+ |010⟩⟨010|)

+
√

1− p(|000⟩⟨101|+ |000⟩⟨110|+ |101⟩⟨000|+ |110⟩⟨000|)

+ (1− p)(|101⟩⟨101|+ |101⟩⟨110|+ |110⟩⟨101|+ |110⟩⟨110|)) (5.4.3)

Now, our task is to see whether the channel generated between Alice and Bob is

useful for conventional teleportation. To verify this, we trace out the system C from the

state described by the density operator ρ
(W1)
BAC . The resulting two-qubit state is then

given by

ρ
(W1)
BA =

1
3
(|00⟩⟨00|+ p(|00⟩⟨00|+ |01⟩⟨01|)+

√
1− p(|00⟩⟨11|+ |11⟩⟨00|)

+ (1− p)(|10⟩⟨10|+ |11⟩⟨11|)) (5.4.4)
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The non-conditioned fidelity of teleportation when ρ
(W1)
BA is used as a resource state,

is given by

fNC(ρ
(W1)
BA ) =

5+2
√

1− p
9

≤ 2
3
, for

3
4
≤ p ≤ 1 (5.4.5)

Therefore, we find here that there exists a range of the noisy parameter p (3
4 ≤ p ≤ 1)

for which fNC(ρ
(W1)
BA )≤ 2

3 . Let us recall again the three-qubit state ρ
(W1)
BAC . Now, Charlie

performs Von Neumann measurement {Bk, k = 0,1} on his qubit C. According to the

measurement result, the resulting two-qubit states are given by

ρ
W1(0)
BA =

1
3N0

(
(t2 + y2

3)(|00⟩⟨00|+ p|01⟩⟨01|+
√

1− p(|00⟩⟨11|+ |11⟩⟨00|)+(1− p)|11⟩⟨11|)

+ (−ty2 + y1y3 + i(ty1 + y2y3))(p|01⟩⟨00|+
√

1− p|00⟩⟨10|+(1− p)|11⟩⟨10|)

+ (−ty2 + y1y3 − i(ty1 + y2y3))(p|00⟩⟨01|+
√

1− p|10⟩⟨00|+(1− p)|10⟩⟨11|)

+ (y2
1 + y2

2)(p|00⟩⟨00|+(1− p)|10⟩⟨10|)
)

(5.4.6)

ρ
W1(1)
BA =

1
3N1

(
(y2

1 + y2
2)(|00⟩⟨00|+ p|01⟩⟨01|+

√
1− p(|00⟩⟨11|+ |11⟩⟨00|)+(1− p)|11⟩⟨11|)

+ (ty2 − y1y3 − i(ty1 + y2y3))(p|01⟩⟨00|+
√

1− p|00⟩⟨10|+(1− p)|11⟩⟨10|)

+ (ty2 − y1y3 + i(ty1 + y2y3))(p|00⟩⟨01|+
√

1− p|10⟩⟨00|+(1− p)|10⟩⟨11|)

+ (t2 + y2
3)(p|00⟩⟨00|+(1− p)|10⟩⟨10|)

)
(5.4.7)

where N0 =
2(t2+y2

3)+(y2
1+y2

2)
3 and N1 =

(t2+y2
3)+2(y2

1+y2
2)

3 .

In the first case, we consider the two-qubit state ρ
W1(0)
BA shared between Alice and Bob.

We now choose the measurement parameter (t,y1,y2,y3) in such a way that the con-

ditioned fidelity of teleportation would be greater than 2
3 . Therefore, the measurement

parameters may be chosen as

t = 0.9615239544277027, y1 =−0.00000006450287021375004

y2 =−0.000000029154369318260298, y3 = 0.2747211110648374 (5.4.8)

The conditioned fidelity of teleportation is then given by

fC(ρ
W1(0)
BA ) = 0.666667+0.333333

√
1− p−0.166667p, 0.75 ≤ p ≤ 0.82842 (5.4.9)
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We may observe that the conditioned fidelity fC(ρ
W1(0)
BA ) is greater than 2

3 when 0.75 ≤

p ≤ 0.82842. In all other range of the parameter p, either fNC > 2
3 or fC ≤ 2

3 . Thus,

we will consider 0.75 ≤ p ≤ 0.82842 where all conditions of controlled teleportation are

met. In a similar way, the condition for the controlled teleportation can be studied by

considering the second case when the measurement on the Charlie’s qubit generates

a two-qubit state described by the density operator ρ
W1(1)
AB . In any case, we find that

both the states ρ
W1(0)
AB and ρ

W1(1)
AB are useful in the controlled quantum teleportation

scheme.

5.4.2 Phase damping channel

The phase damping channel is described by the Kraus Operator, which may be de-

fined as [251]

K1 =
√

1− p(|0⟩⟨0|+ |1⟩⟨1|), K2 =
√

p|0⟩⟨0|, K3 =
√

p|1⟩⟨1|, 0 ≤ p ≤ 1 (5.4.10)

Let us recall the standard W state described by the density operator ρ
(W )
BAC = |ψ(W )⟩BAC⟨ψ(W )|

where |ψ(W )⟩BAC is given in (5.4.1) and follow the same protocol, as we did for ampli-

tude damping channel. When a qubit B interacted with the phase damping channel,

the state ρ
(W )
BAC reduces to

ρ
(W2)
BAC = (K1 ⊗ I ⊗ I)ρ(W )

BAC(K
†
1 ⊗ I ⊗ I)+(K2 ⊗ I ⊗ I)ρ(W )

BAC(K
†
2 ⊗ I ⊗ I)

+ (K3 ⊗ I ⊗ I)ρ(W )
BAC(K

†
3 ⊗ I ⊗ I)

=
1
3
(
|000⟩⟨000|+ |101⟩⟨101|+ |110⟩⟨101|+ |101⟩⟨110|+ |110⟩⟨110|

+ |101⟩⟨000|+ |110⟩⟨000|+ |000⟩⟨101|+ |000⟩⟨110|− p(|101⟩⟨000|

+ |110⟩⟨000|+ |000⟩⟨101|+ |000⟩⟨110|)
)

(5.4.11)

To verify whether the controlled teleportation scheme is applicable for the state ρ
(W2)
BAC ,

we need to calculate non-conditioned fidelity and conditioned fidelity.

(i) Non-conditioned fidelity: The non-conditioned fidelity can be calculated as

fNC(ρ
(W2)
BA ) =

7−2p
9

≤ 2
3
, for

1
2
< p ≤ 1 (5.4.12)

where ρ
(W2)
BA = TrC(ρ

(W2)
BAC ).

(ii) Conditioned fidelity: To calculate it, Charlie applies the measurement on his qubit
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in the basis {B0,B1}. According to the measurement result, the resulting two-qubit

states are given by

ρ
W2(0)
BA =

1
3N2

(
(t2 + y2

3)(|00⟩⟨00|+ |11⟩⟨11|+ |11⟩⟨00|+ |00⟩⟨11|− p(|11⟩⟨00|+ |00⟩⟨11|))

+ +(−ty2 + y1y3 + ι(ty1 + y2y3))(|11⟩⟨10|+ |00⟩⟨10|− p|00⟩⟨10|)+(−ty2 + y1y3

− ι(ty1 + y2y3))(|10⟩⟨11|+ |10⟩⟨00|− p|10⟩⟨00|)+(y2
1 + y2

2)|10⟩⟨10|
)

(5.4.13)

ρ
W2(1)
BA =

1
3N3

(
(y2

1 + y2
2)(|00⟩⟨00|+ |11⟩⟨11|+ |11⟩⟨00|+ |00⟩⟨11|− p(|11⟩⟨00|+ |00⟩⟨11|))

+ (ty2 − y1y3 − i(ty1 + y2y3))(|11⟩⟨10|+ |00⟩⟨10|− p|00⟩⟨10|)+(ty2 − y1y3

+ i(ty1 + y2y3))(|10⟩⟨11|+ |10⟩⟨00|− p|10⟩⟨00|)+(t2 + y2
3)|10⟩⟨10|

)
(5.4.14)

where N2 =
2(t2+y2

3)+(y2
1+y2

2)
3 and N3 =

(t2+y2
3)+2(y2

1+y2
2)

3 .

If the measurement parameters are given by

t = 0.9615239543413954, y1 = 0.000002698965323056848

y2 =−0.000000004258892841348826, y3 = 0.2747211523762679 (5.4.15)

then the conditioned fidelity fC(ρ
W2(0)
BA ) is given by

fC(ρ
W2(0)
BA ) = 1−0.333333p,

1
2
≤ p ≤ 1 (5.4.16)

It may be easily verified that fC(ρ
W2(0)
BA ) ∈ [0.66667,0.833333] for p ∈ [0.5,1]. Thus, the

controlled teleportation protocol may be implemented using the state ρ
W2(0)
BA . In a sim-

ilar fashion, it may be shown that the state ρ
W2(1)
BA is useful in controlled teleportation.

5.4.3 Comparision analysis of the power of the controlled teleportation

In this section, we compare the power of the controlled teleportation when the stan-

dard W state given by (5.4.1) is evolved under the amplitude damping channel and

phase damping channel. We will show here that the power of the controlled telepor-

tation in the case of phase damping channel is greater than the power in the case of

amplitude damping channel.

(a) Power of the controlled teleportation when standard W state is evolved under

amplitude damping channel: Since we find that both the state ρ
W1(0)
AB and ρ

W1(1)
AB are
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useful in the controlled teleportation scheme so we can consider any one of the state

ρ
W1(0)
AB or ρ

W1(1)
AB to calculate the power of the controller. Let us consider the two-qubit

state ρ
W1(0)
AB for the estimation of the power of the controller. To estimate it, we need

to calculate the following:

(i) The quantity M(ρ
W1(0)
AB ) is calculated and found out to be less than one.

(ii) The expectation value of the constructed witness operator W (φ+)
i j with respect to

the state ρ
W1(0)
BA , which is given by

Tr[W (φ+)
xy (ρ

W1(0)
BA )] =

p
4
−

√
1− p
2

+2a, 0.75 ≤ p ≤ 0.82842 (5.4.17)

The value of a > 0 is chosen in such a way that the witness operator W (φ+)
xy detect the

state ρ
W1(0)
BA . We find that the witness operator W (φ+)

xy detects the state ρ
W1(0)
BA when

a ∈ (0,0.005].

With all the above information, we can estimate the power (PW1(0)
CT ), which is given by

4a
3
(1−

√
M(ρ

W1(0)
BA ))− 2

3
Tr[W (φ+)

i j ρ
W1(0)
BA ]≤ PW1(0)

CT ≤ 1
2

(5.4.18)

We have calculated the lower limit of the power PW1(0)
CT and found that the lower limit

varies in the interval [0.0056075,0.041667) when a ∈ (0,0.005] & 0.75 ≤ p ≤ 0.8164.

(b) Power of the controlled teleportation when standard W state is evolved under

phase damping channel: In this scenario also, we find that both the state ρ
W2(0)
AB and

ρ
W2(1)
AB are useful in the controlled teleportation scheme so we can consider any one

of the state ρ
W2(0)
AB or ρ

W2(1)
AB to calculate the power of the controller. Let us consider

the two-qubit state ρ
W2(0)
AB for the estimation of the power of the controller. The power

of the controller can be estimated by

4a
3
(1−

√
M(ρ

W2(0)
BA ))− 2

3
Tr[W (φ+)

i j ρ
W2(0)
BA ]≤ PW2(0)

CT ≤ 1
2

(5.4.19)

where the expectation value of the witness operator W (φ+)
xy with respect to the state

ρ
W2(0)
BA is given by

Tr[W (φ+)
xy ρ

W2(0)
BA ] =

1
2
+2a− (1−0.5p)< 0 for a ∈ (0,0.035], p ∈ [0.5,0.859] (5.4.20)

Also, the quantity M(ρW2(0)
BA ) can be easily calculated and found to be greater than

1. Therefore, the lower bound of power P(0)
W2 lying in the interval [0,0.16667) for a ∈
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(0,0.005] & 0.5 ≤ p ≤ 0.859.

Figure 5.2: This graph shows the relationship between the witness parameter (a), noise param-
eter (p), and the controller’s power. Yellow region indicates the controller’s power of standard
W state with phase damping channel and Blue region indicates the controller’s power of stan-
dard W state with amplitude damping channel

Now, we are in a position to compare the estimation of the power of the controlled

quantum teleportation when one of the qubit of standard W state is passing through

the amplitude damping channel and phase damping channel. In the comparison, it

can be clearly seen from Figure 5.2 that the controller’s power is more for the standard

W state when it is under phase damping channel. Though when one of the qubit of

the standard W state is passing either through amplitude damping channel or phase

damping channel then the resulting states are useful in controlled quantum channel

but phase damping channel is more effective than amplitude damping channel.

5.5 Conclusion

To summarize, we have considered the problem of estimation of the power of the con-

troller in the CQT scheme. To investigate it, we have constructed a witness operator

and have shown that the entangled state will be useful for teleportation as a resource

state if the same entangled state is detected by the constructed witness operator and
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if it satisfies the Bell-CHSH inequality. Thus, at least for some cases, we need not

have to use the filtering operation [129] to increase the teleportation fidelity. On the

other hand, the study of the violation of Bell-CHSH inequality is equally important in

the CQT scheme and thus we have considered the CHSH game for the estimation of

the probability of success of the game through the constructed witness operator. The

estimated probability of success helps in the derivation of the lower bound of the con-

ditioned and non-conditioned fidelity in terms of the expectation value of the witness

operator. Therefore, we are now able to estimate the lower and upper bound of the

power of the controller in terms of the witness operator. Thus, this can pave a way

to estimate the power of the controlled teleportation in an experiment. Moreover, we

have found that the state |W1⟩ is not only useful for conventional teleportation between

two parties but also useful in the CQT scheme and performs better than all the other

W -class of states described by |Wn⟩, n = 2,3, ... [140]. We have also studied the CQT

scheme using the standard W state under a noisy environment. We found that when

one of the qubits of the standard W state passes either through the amplitude damping

channel or the phase damping channel, the resulting state will be a mixed state which

will be useful in controlled quantum teleportation protocol. We also observe that the

phase damping channel makes the controller power more positive than the amplitude

damping channel. Thus, we may conclude that the phase damping channel is more

useful than the amplitude damping channel while performing the CQT protocol with

the standard W state.

****************





Conclusion and Future scope

Conclusion

In this thesis, we have derived a different form of criteria, which is based on the maxi-

mum eigenvalue, for the detection of entangled state which is useful in quantum tele-

portation. Secondly, we have extensively studied the non-locality of two-qubit entan-

gled states and also we have connected the non-locality of two-qubit quantum states

with controlled quantum teleportation. Moreover, we have studied the non-locality

problem for three-qubit system. To achieve the aim, we considered the Svetlichny

operator and derived state dependent upper and lower bound of the Svetlichny oper-

ator. We have shown that using the derived bounds, one can detect the non-locality

of any general three-qubit quantum state. Further, we have detected the non-locality

existed in those three-qubit states which were not detected earlier. Finally, in the CQT

protocol, we have expressed the lower bound of the controller’s power in terms of the

defined witness operator. This study may be useful in the estimation of the power of

the controller in an experiment.

In Chapter 1, we have given some basic definitions, and a few concepts of linear

algebra and quantum mechanics, with some results obtained in the literature. We

then provide a brief review of the theory of bipartite and tripartite non-locality. We

have reviewed quantum teleportation using bipartite system as a resource state. The

discussion of controlled quantum teleportation is also presented, which is helpful for

three-party communication.

In Chapter 2, we derive a criterion to detect the usefulness of a two-qudit entangled

state in quantum teleportation. The state usefulness in quantum teleportation can be

detected through the singlet fraction criterion but it has some drawbacks which can be

listed as: i) it is not an easy task to calculate the singlet fraction in higher dimensions,

173
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ii) Maximally entangled states are not known for higher dimensions and iii) Singlet

fraction criteria may not serve as a potential candidate for experiment. This motivated

us to derive another criterion which is beyond singlet fraction and is applicable for

higher dimensions as well. The proposed criteria are based on maximum eigenval-

ues. We have shown our criteria works for those entangled states as well which were

not detected by singlet fraction criteria. Our criteria can in principle be determined in

an experiment because the maximum eigenvalue can be determined experimentally.

Chapter 3 basically deals with the non-locality of two-qubit entangled states. The

main motivation for this work comes from the fact that there exist 2⊗ 2 dimensional

entangled states, which satisfies Bell’s inequality. Thus, one may think that those

states may not possess the non-local properties, which may not be true. Since their

non-locality is in hidden mode. So, we have taken a step to fill this loophole in our

work by considering the XOR game which is also known as the Bell game. We have

investigated this problem and tried to fix it by revisiting the non-locality of the two-qubit

entangled state by defining the strength of non-locality denoted by SNL. The strength

of non-locality may be expressed in terms of the maximum probability of winning the

game Pmax but we found that the developed relation works only for those states that are

detected by BCHSH operator. So, we also derive other criteria to detect the non-locality

of those entangled states that are not detected by the BCHSH operator. Moreover, we

have studied the relation between SNL and M(ρ), which are considered as the two

measures of non-locality of two-qubit entangled state ρ. Then, we have also consid-

ered the optimal witness operator to study the strength of the non-locality. Lastly, we

have cited two applications where the strength of non-locality SNL may be used for (i)

the detection of genuine non-locality in pure three-qubit system and (ii) deriving the

upper bound of the controller’s power in controlled quantum teleportation.

Chapter 4 deals with the detection of non-locality of the three-qubit state. Non-locality

of a three-qubit state can be tested by various inequalities such as Svetlichny inequal-

ity, Mermin inequality, and logical inequality based on GHZ-type event probabilities. In

order to obtain the expectation value of the Svetlichny inequality, one has to calculate

the expectation value of the Svetlichny operator by maximizing over measurements of

spin in all directions but it is not an easy task as the problem of showing the genuine

non-locality of any three-qubit state reduces to the problem of a complicated optimiza-

tion problem. Thus, the detection of genuine non-locality of any three-qubit state may

be considered a challenging task. This motivate us to find a way by which we can

overcome this problem. To do our task, we have taken a different approach to identify
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the genuine non-locality of an arbitrary three-qubit state. We have derived a state-

dependent upper and lower bound of the expectation value of the Svetlichny operator

with respect to any three-qubit state. The derived upper and lower bound depends

on the non-locality of the reduced two-qubit state of the three-qubit system. Thus,

we have shown how to avoid the complicated optimization problem while verifying the

non-locality of the three-qubit system.

In Chapter 5, we have studied the protocol for controlled quantum teleportation. In

this work, we have estimated the power of the controller in the controlled quantum

teleportation. To achieve this task, we have derived the lower and upper bound of

the controller’s power. We find that the upper bound assumes the constant value 1
2

whereas the lower bound depends on the two-qubit state obtained after the controller

measures on his qubit. We have shown that the derived lower bound may be ex-

pressed in terms of a newly defined witness operator. Thus, it may be considered

that the power of the controller may be estimated in an experiment. We also have

considered the pure three-qubit states which were not useful in controlled quantum

teleportation but we have shown that if one of the qubits undergoes the amplitude

damping channel or phase damping channel then the reduced three-qubit mixed state

may be useful in the CQT. Further, we find that the controller’s power will be larger in

the case of the phase damping channel than the amplitude damping channel.

Future Scope

A lot of literature is available regarding the topics of non-locality, quantum teleporta-

tion, and control quantum teleportation as well. There are still many open problems

related to this, which may be explored in the near future. A few problems are dis-

cussed below:

(i) The strength of non-locality may be defined for higher dimensional or multiparty

systems. To do this, we have to generalize the idea of the XOR game for the higher

dimensional and multiparty system and derive the maximum probability of success of

the game. Thereafter, we may verify the non-locality of higher dimensional and multi-

party systems, which were not detected by the current available methods.

(ii) Horodecki et. al. have re-expressed the Bell-CHSH inequality for two-qubits in

terms of another easily accessible inequality that involve the quantity M(ρ), where the

two-qubit state is described by the density operator ρ. The quantity M(ρ) is equal
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to the sum of the two largest eigenvalues of the correlation matrix. Till today, there

does not exist any similar-looking inequality that involves the quantity M(σ), where σ

describes the higher dimensional or multipartite system.

(iii) If problem (ii) is solved then the next problem would be to connect the quantity

M(σ) with the teleportation fidelity of the multiparty teleportation protocol in which the

multiparty system described by the density operator σ act as a resource state shared

between different parties.

(iv) In this thesis, we have obtained the state-dependent lower and upper bound of

the expectation value of the Svetlichny operator but one may also explore the state-

dependent lower and upper bound of Mermin’s inequality to detect the non-locality of

biseparable state.

(v) One may also deal with the problem of controlled quantum teleportation using the

biseparable state and accordingly define the power of the controller in such a way that

it may be linked with the non-locality of the entangled qubit lying in the biseparable

state.

****************
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