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ABSTRACT

Fourier analysis and signal processing are vital aspects in the various scientific fields of
mathematics, engineering and physics, among others. This abstract provides an extensive
overview of the essential aspects, approached and applications of Fourier analysis and signal
processing. Fourier analysis is a process invented by the renowned scientist Joseph Fourier,
revolving around the decomposition of complicated signals into simple units known as Fourier
series or transforms.

The central theme to Fourier’s discovery is expressing a signal as a sum of sinusoidal functions,
and this representation facilitates the analysis and the synthesis of signals, including time and
frequency domains. Signal processing, on the other hand, entails the manipulation,
improvement, and extraction of significant content from the signals.

This includes a variety of approaches and algorithms that intend to optimize, clean, or evaluate
signals for numerous uses. The connection between Fourier analysis and signal processing can
be seen in different fields, including speech and picture processing, data compression, pattern
recognition, and wireless communication.

Therefore, this method may deliver the ability of Fourier analysis to effectively extract
important components from complicated signals. It can help advance performance in various
realms where the presented summarized perspective. This means that Fourier analysis and
signal processing themselves form a critical but insufficiently explored aspect in which further
discoveries and enhancements are possible. I anticipate that more comprehensive study will
reveal new possibilities, allowing me and other scholars and professionals to be more creative.
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Chapter 1

INTRODUCTION

Any function, continuous or discontinuous, can be expanded into a sequence of
sines, (see Joseph Fourier § The Analytic Theory of Heat) according to Fourier’s
1822 assertion. Others improved and refined that significant work, which laid the
groundwork for the different implementations of the Fourier transform that have
been in use ever since.

Fourier analysis and the Fourier transform have a special status in the annals
of mathematics and signal processing, having revolutionized the areas of analysis
and understanding of signals. From their initial inception by the French mathe-
matician Jean Baptiste Joseph Fourie, these related concepts have become indis-
pensable tools in many scientific and engineering disciplines. Our main objective
in this introduction is to provide a comprehensive overview of Fourier analysis
and the Fourier transform, pointing out the central concepts, the points of similar-
ity and difference, and broad applications of each.

The essence of the Fourier analysis process is that complicated signals are re-
solved into small, manageable components called sinusoidal functions. The reso-
lution provides insightful information into the original structure and nature of the
signal in both temporal and frequency domains. Such an analysis method has nu-
merous applications in diverse fields, including data processing, image processing,
signal processing, and communications. The process is versatile and powerful.

The Fourier Transform is a method applied to mathematics that trans- fers a signal
from its original domain, usually time, to the frequency do- main. It is a natural
extension of Fourier analysis. It plays a significant role in linking a signal’s spec-
trum representation to that in time. In so doing, it offers a deeper understanding
of the properties and composition of the signal. With these two concepts being
very similar and coming from the same roots, the terms Fourier Transform and



Fourier Analysis are often used interchangeably, even though the former can be
considered an extension of the latter. In summary, the related concepts of Fourier
Analysis and the Fourier Transform have had a huge impact on the fields of math-
ematics, engineering, and science. As we try to explore these two concepts in
depth, we realize that there is a wide range of applications that include data com-
pression, pattern detection, wireless communication systems, voice, and image
processing. In the creation of new technologies and the advancement of scien-
tific— depend critically on the understanding and the expertise in these methods.

Signals
An information, that varies with time, space or some other independent variable is
called a signal. Signals are patterns that carry data in a wide variety of disciplines,
such as telecommunications, electronics, and data processing. Some examples of
such patterns are electrical voltage variations, audio waves, or fluctuations in the
intensity of light. The messages, data, or instructions, such data carry, whether
analog or digital are applied to a wide variety of uses such as communication,
measurement, control systems, among others. Understanding signals, therefore,
becomes essential for interpretation and application of data for many technical
and scientific applications.

Basic Signals -

Most of the naturally occurring signals have arbitrary amplitude configura-
tions. Fundamental signals with well-defined characteristics, such as pulses, steps,
ramps, sinusoidal, and exponential signals are used to analyse. Furthermore, sys-
tems are implemented using either hardware or software that alters signals or
collects data from them. Their response to these cues identifies them too. The
underlying bandwidth or duration of the signal is unlimited. They achieve ideal
precision to a close approximation because of practical considerations. Each of
these variants of Fourier analysis utilizes the characteristics of the signal. There-
fore, it is necessary to study both continuous and discrete types of signals.



Chapter 2

FOURIER SERIES AND TRANSFORM

Joseph Fourier was a French mathematician and scientist credited with the foun-
dation of both the Fourier Transform and Fourier Series. He was born in Auxerre,
France, and educated in mathematics at the Ecole Normale Supérieure in Paris.
He later became a mathematics professor at the Ecole Polytechnique, instructing
famous students such as Claude-Louis Navier and Siméon Poisson.

During the early 19th century, Fourier worked on a problem involving heat con-
duction, a field of major interest for the development of the theories of thermody-
namics. He tried to find a mathematical solution that could describe in detail how
heat diffuses in a solid body, taking into account the temperature distribution in
the body.

2.1 Background

In 1807, Fourier published "Mémoire sur la propagation de la chaleur", in which
he introduced The concept of representing a periodic function as a combination
of sine and cosine functions. Consequently, technique of decomposing a func-
tion into an unending series of trigonometric functions became recognized as the
Fourier Series.

During the mid 19th century, mathematicians such as Augustin-Louis Cauchy
and Bernhard Riemann extended the concept Fourier Series to encompass func-
tions that do not exhibit periodic behavior. This advancement resulted in the es-
tablishment of the Fourier Transform as it is recognized today. Fourier Transform
is a mathematical procedure that breaks down function into an infinite series of
sine and cosine functions across all possible frequencies.



2.2 Fourier Series

In the context of Fourier series representation, a continuous periodic signal, indi-
cated as p(t), with a period T and cyclic frequency fy = 1/T, can be expressed as
the summation of a constant term and sinusoidal components with frequencies fp.
These sinusoids, known as the fundamental frequencies, contribute to the overall
representation of the signal, and

{2£0,3f0, .- ,00}

referred to as the harmonic frequencies. The kth harmonic of a sinusoid along a
fundamental frequency of fy is a sinusoid with a frequency of kfy. The frequen-
cies that are connected or associated with each other, expressed in radians, will be
{wy =27f, 200 =27(2fp),300 = 27(3fp), ------ ,o0}

Then, using sinusoids, x(t) is expressed as,

p(t) =P5(0) + (1) cos (ot + ¢1)
+ Ps(2) cos (2axt + ¢2) + - - - + Py(o0) cos (copt + o)
=P(0)+ Y P(K)cos (kani + ), an = o
k=1
The frequencies of the sinusoids and x(t) are specified in the given equation. The
Fourier analysis problem involves determining the amplitudes and phases of sinu-
soids in order to satisfy the equation with the least squares error. While it is not
possible for any physical instrument to generate an infinite number of harmonics,
theoretically, the frequency range of sinusoids is unlimited. However, in practice,
only a finite number of harmonics are used.
The equation can be expressed in an equivalent manner by utilizing trigono-
metric identities to represent it in terms of sine and cosine waveforms.

— ) 2n
p(t) = Pe(0) + Y (Pe(k)cos (kat) + Py (k) sin (kayt ), @p = £a
k=1
Euler’s formula can also be used to write this equation in terms of complex expo-

nentials with an exponent that is only imaginary.

> : 21
pt) =Y Pr(k)e/* ™ ay= T
k=—oo

Fourier Analysis has two types of classification -
In first type we have the time domain classification.
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Table 1

Time-domain classification
Periodic | Aperiodic

Continuous | FS FT
Discrete DFT DTFT

In second type we have frequency domain classification.

Table 2
Frequency-domain classification
Periodic | Aperiodic

Continuous | DTFT FT
Discrete DFT FS

Fourier Series as a Limiting case of DFT
DFT is a computational procedure used in Fourier analysis and signal process-
ing to calculate discrete-time Fourier transform (DTFT) for a finite-duration sig-
nal. The continuous-time Fourier transform (DTFT) depicts a signal as a summa-
tion of complex sinusoids at different frequencies.

The duration of the signal being analyzed by the Discrete Fourier Transform
(DFT) directly affects the level of accuracy with which the DFT approximates
Discrete-Time Fourier Transform (DTFT).

Here DFT converges to DTFT in limit as the signal’s length becomes closer
to infinity. The DTFT is comparable to the continuous-time Fourier transform
(CTFT) for periodic signals.

For periodic signals, we can think of the Fourier series as a limiting instance
of the DFT. An infinite sum of complex sinusoids at various frequencies, with
coefficients that are calculated through integration or other techniques, is how the
periodic signal is represented by Fourier series. Which is the same as taking the
limit as the signal’s length approaches infinity, which is effectively the same as
computing the DTFT of an infinitely long periodic signal using DFT.

The orthogonality attribute of sinusoids can be utilized to construct Fourier
Series (FS) in a manner analogous to that of Discrete Fourier Transform (DFT).
In this section, we obtain Fourier Series (FS) by considering Discrete Fourier
Transform (DFT) when the time-domain sequence’s sampling interval approaches
zero. For ease of usage, we choose the center-zero format. Let P(k),N <k <N
be DFT of the sequence p(n),N < n < N. Next, p(n) ’s Fourier representation is
provided as




_om
p() N1 Z P(k)el(zzvﬂ)ﬂk, n=0,+1,+£2,..., &N
where
o k
P)= Y plm)e /T
m=—N

Replacing P(k) , we get

1 N mk j nk
p(n) — Z ( Z p 2N+l) )e (2N+1)
2N+ 1, =,

m=—N

Assume that a periodic signal of period is sampled to produce the 2N + 1
samples. T s, During the time period which has a sampling interval of 7y s,

T
— =2N+1
T

Time-domain sample index must be changed to n7; s. Here, fundamental fre-
quency refers to the minimum frequency at which a periodic waveform exhibits
repetition.

2 2
DT T oNT L
radians per second. Substituting these changes, we get
p(nTy) = Z — Z p (mTy) e /TR ) oI 71T
k=N \T mn=n

N
_ Z Z p mT)e onmTkT e]a)OnTk
m* -N

@y is fixed for a given T, independent of 7;. As sample period 7 drops,
spectrum broadens and time-domain waveform gets more compressed. As 7T ap-
proaches zero, the variables mT; and n7; become continuous and are represented
by the symbols 7 and ¢, respectively. Within the range of —7 /2 to T /2, the inner
summation is replaced by an integral, and 7 is represented by the differential dt.
An unlimited number of harmonics, namely 2N + 1 of them, are present. These
changes result in the discrete periodic waveform changing into a continuous pe-
riodic waveform and the discrete periodic spectrum changing into an aperiodic
discrete spectrum. Formula is converted to

6



oy (LT ~ jantk ) jntk
p= T (7 [, pee o)

Periodicity of Fourier Series
The periodicity of a Fourier series refers to the recurrence of the sum of sinu-
soidal components generated by representing a periodic signal with a Fourier se-
ries, where the period of the signal being analyzed is equal to the fundamental
period.For any time shift that is a whole number multiple of the fundamental pe-
riod, the addition of the sinusoidal components utilizing the Fourier series formula
results in a signal that is identical to the original periodic signal. Put another way,
a periodic signal’s Fourier series representation is periodic as well, having the
same fundamental period as the original signal. This characteristic is necessary
for Fourier analysis and other signal processing methods to comprehend and work
with periodic signals.

Existence of Fourier Series
It is not necessarily certain that a particular periodic signal has a Fourier series.
The Dirichlet conditions are the circumstances in which a Fourier series represen-
tation is present. In order to meet these requirements, the signal must be absolutely
integrable over a single period, which means that its magnitude’s integral over that
period must be finite. The signal must exhibit limited number of maximum and
minimum points within each specified interval, as well as a limited number of
points where it is not continuous.

If these conditions are met, the Fourier series representation of the signal ex-
ists, and it converges to the original signal on all points of continuity and to either
the left or the right limit on all discontinuities. The Fourier series can fail to exist,
or can converge to a value that is different from the original signal, if some con-
ditions are violated. These can be represented using other forms of expansions,
such as the generalized Fourier series, or other expansion types.

2.3 Fourier Transforms

The Fourier transform (FT) is the most commonly employed method of Fourier
analysis. Main purpose of this technique - to depict continuous signals that do not
have a recurring pattern, together with their accompanying continuous spectra.
Moreover, it serves as a tool for examining mixed classes of signals as it may
depict signals that are characterized by various versions of Fourier analysis. One
can conceptualize it as a Discrete-Time Fourier Transform (DTFT) expansion. As

7



the sample interval approaches zero, time-domain signal becomes continuous, and
theere, periodic spectrum becomes continuous and aperiodic. Considering that the
period of the periodic signal is tending towards infinity, it can be perceived as an
expansion of the Fourier Series (FS). Periodicity is a defining characteristic of
a time-domain signal that corresponds to a discrete spectrum. Nevertheless, the
time-domain signal corresponding to a continuous spectrum lacks periodicity.

Fourier Transform as a Limiting case of Fourier Series

The Fourier series is a mathematical representation of a periodic function that
can be expressed as the combination of sinusoids with different frequencies and
amplitudes. Conversely, the Fourier transform is a mathematical operation that
converts a function dependent on time (or space) into a function dependent on
frequency (or wavenumber).

The Fourier series can be thought of as a limiting case of the Fourier transform
under specific situations. This is the result of the function becoming non-periodic
as its period gets closer to infinity. The Fourier series becomes the Fourier trans-
form in this limit.

Let’s consider a function that is zero outside of a finite interval and non-zero
within one to see this. Such a function is called a time-limited or windowed signal.
Its Fourier transform is called the short-time Fourier transform, or STFT.

Let us take a signal and window it with a width of T seconds, for example.
As T = oo, then our signal becomes more and more periodic, with period T
seconds. As T = oo, the Fourier series of the signal approaches its STFT.
This is because the STFT is essentially the window function times the Fourier
transform of the windowed signal.

In conclusion, the Fourier series is non-periodic and can be understood as
a limiting case of the Fourier transform as the period approaches infinity. The
relationship between the two ideas demonstrates their essential function in signal
processing and offers information on the range of applications in which they can
be applied to the analysis and manipulation of signals.

Examine the FS synthesis and analysis formulas for a continuous periodic
signal p(t) which has period T -

pi)= Y Pr(k)elot
k=—oco

and,

P =1 [ plnetan =22 [ e iosta



0 (kay) represents the frequency increment, or the fundamental frequency wy. At
the extreme,

T — o0, ad) — 0,k — 00, 8 (k) = dw, T Pys(k) = P(jo)

At the end of the limiting process, there we get fourier Transformation, also In-
verse Fourier Transformation Expression.
The Fourier Transformation P(j®) of p(t) is defined by

[e]

P(jo) = /_ ploye

The Inverse Fourier Transformation p(t) of P(j®) is defined by

1 [ .
x(t):E/_ X(jw)e!”dw

The given signal is a square pulse with a period of 27 and whose Fourier Series
spectrum consists of harmonics plus a fundamental frequency of @y = 1 radian.
Furthermore, the equivalent scaled FT is also presented as a continuous line. The
square pulse has a period of 47 and whose Fourier series spectrum is scaled with a
frequency of wy = 0.5 radians. A denser spectrum results from a drop in the fun-
damental frequency with an increase in period. As the limit approaches, the ratio
of Pr(k)/ax converges to a finite limiting function. Ultimately, the fundamental
frequency tends towards 0 and the period tends towards infinity. Consequently, the
signal becomes uninterrupted and lacking a specific pattern, just as its spectrum.
Here, square pulse has a period of 87. and also we can see that whose Fourier
series spectrum is scaled with @y = 0.25 rad.

The limiting process can be conceptualized as the time T being doubled and
then doubled again. When a period doubles, the order k of a certain frequency
component also doubles. Frequency is divided by two when the period is twice.
Consequently, kay does not change. T Py(k) is multiplied to get a finite function
P(jw).

Each frequency component has an infinitesimal amplitude, which is P(jw)dw/(27).
On the other hand, P(j®) is equal to P(j®)dw/(27). The plot of P(j®) versus
o represents the Fourier Transform spectrum since P(j®) is finite. The relative
fluctuations of a harmonic amplitudes versus frequency are displayed by the FT
spectrum, which is a relative amplitude spectrum.

Fourier Transformation using Orthogonality



Unlike in the discrete Fourier transform (DFT), where the signal is recon-
structed by summing finite exponentials, in this case, the signal is reconstructed
by integrating continuous-time complex exponentials with all frequencies, along
with their corresponding coefficients. This is because the original signal and the
spectrum are continuous and extend infinitely. The continuous aperiodic signal is
created as

| I ;
p(t) = %/wP(ja))ef“”da)

Existence of Fourier Transformation

A mathematical idea known as the Fourier transformation has been proven via
exacting mathematical demonstrations. The following criteria must be met for the
Fourier transformation to exist:

1. Over the whole real line, the function to be changed must be integrable.
This implies that across every finite interval, the function must have a finite
integral.

2. The integral of the function multiplied by an exponential function with a
complex argument is the definition of Fourier transform of function. The
order for the Fourier transform to exist, the integral needs to converge.

3. The Riemann-Lebesgue lemma, which states that if a function is integrable,
then its integral over an infinite interval goes to zero as the interval goes
to infinity, guarantees the existence of the Fourier transform, which is a
complex-valued function of frequency.

4. A familiar mathematical concept is that the Fourier transform of the product
of two functions is the convolution of the two respective Fourier transforms.

In summary, the functions which are integrable over the entire real line and con-
verge under certain conditions can be transformed using the Fourier transform. Its
existence depends upon well-established mathematical concepts, which have been
rigorously examined and applied in numerous fields of science and engineering.

Determination of Fourier Series From Fourier Transformation

Consider a periodic signal ps(¢) with period T. Let us define an aperiodic sig-
nal, p(r), where #; is an arbitrary time. This signal is identical to p(¢) over one
period, beginning at #; and ending at ¢; + T, and zero otherwise. The FT for this
signal is

10



oo t1+T

Pljo) = [ pe = [ pr)eas

3]

The Spectrum Fourier Series for pg(t) is

IR ; 2r
Pu) =7 [ ple " ar oy =T
n

T

Comparing the definitions of the signals by means of Fourier Series and by means
of Fourier Transformation, we get there

Prs(k) = P(j0) oty = 7:P(jkov)
Thus, the Fourier series spectrum consists of samples of
fraclT(j
omega) spaced at increments of
omegay and obtained from a periodic signal, p,(¢). To perform the inverse Fourier
transform, spectral values must be known for a continuum of frequencies in order
to reconstruct a single period of a periodic waveform or infinite extent of zero
values of an aperiodic waveform. However, to perform the inverse Fourier series,
spectral values are only required at discrete frequencies in order to reconstruct
a single period of a periodic waveform. There is an analogous correspondence
between the DFT and the DTFT.

11



Chapter 3

DISCRETE FOURIER TRANSFORM

In the field of signal analysis, transformations stand as powerful mathematical
tools that make the detection and understanding of signals in various fields pos-
sible. A transformation changes the signal from one representation to another,
thus revealing unique information which may otherwise stay hidden in its original
form. The transformations help untangle patterns, harmonics, and characteristics
embedded within the signal by converting signals between domains such as time,
frequency, and spatial dimensions.

In that line, these tools are used extensively for noise reduction, compression,
feature extraction, and data visualization. The analysis has a flexible toolkit to
decipher the complex signaling language and unlock the valuable insights hidden
within using signal transduction.

The DFT—Discrete Fourier Transform—is a mathematical technique and is
of pivotal importance for signal processing. It provides a way to analyze and con-
vert the digital signal to time from the frequency domain. The DFT brings out
more characteristics of a signal by representing a sequence of discrete data points
in terms of its constituent frequencies, thereby allowing huge flexibility in appli-
cations that span from processing and signal processing to audio management,
image analysis, communication, and several others.

Unlike a continuous signal, a digital signal can be represented by the finite set
of discrete values recorded at specific time intervals. The DFT acts as a bridge
between these discrete signals and their frequency components, allowing us to
explore the oscillations, harmonics, and fundamental patterns that define signal
behavior. Using DFT, complex data sequences can be broken down into simpler
sinusoidal components, each of which is associated with a unique frequency and
amplitude. The heart of the DFT lies in its transform formula, which calculates

12



the contribution of the different frequency components present in the input signal.

Although the direct application of this formula involves computational chal-
lenges, the development of efficient algorithms, especially the fast Fourier trans-
form (FFT), has revolutionized the real implementation economy DFT. FFT sig-
nificantly reduces computational complexity, making it possible to analyze and
process large data sets in real-time applications.

In whole, the main perspective of the transformation is to approximate the
practical signals, which usually in their original forms are more complex, with
arbitrary amplitude profiles, which makes it difficult to analyse.

Fourier transforms effectively convert signals into clearly defined basis sig-
nals, such as sine and cosine. In addition to other benefits that are mostly related
to the fact that this decomposition makes it possible to determine a system’s output
faster than any other technique

1. Orthogonality of Sinusoids

2. Fast algorithms are available for its practical implementation..

There are four alternative variants of Fourier analysis, but DFT is the only one
that has fast algorithms available for its implementation and can represent signals
in both discrete and finite form in both domains.
The Exponential Function

In Fourier analysis, any periodic signal can be expressed as a sum (or integral)
of sinusoidal functions with different frequencies, amplitudes, and phases. These
sinusoidal functions are often represented using complex exponential functions.
The Exponent is of the form

x(n)=>b"

and
log,x =niff x=b"

e.g. log,8 =3 as 8 =23, log;, 100 = 2 as 100 = 102,
e=1lim, — o (1+1)" ~2.71828

The multiplication operation is reduced to an addition operation in the expo-
nential form of the integers, if that is possible to describe.
The Complex Exponential Function

The complex exponential is of the form e/¢ and it can be written as the p + jg
where p is the real part coefficient and q is the imaginary part coefficient, and j is
the imaginary unit.

13



The signals can be represented in their complex exponential forms using this
representation technique, which reduces the convolution action to a multiplication
operation.

Euler’s Formula
It is discovered that the complex exponential facilitates the signals’ examination.
In essence, Euler’s formula provides the relationship between complex exponen-
tial and sinusoidal functions.

e/? = cos(¢) +sin(¢)

Real Sinusoids in terms of Comlpex Exponentials
On solving the equations of Euler’s formula

el? = cos(@) +sin(¢) and eI = cos(¢) —sin(¢)

we get
JO 4 o—J0
cos(9) =
2
. e/‘P — e_j(P
sin(¢) = 2
The DFT and IDFT

Essential ideas in Fourier analysis are the Discrete Fourier Transform (DFT)
and its inverse, the Inverse Discrete Fourier Transform (IDFT). They serve as
the foundation for transforming signals between the frequency and time domains,
which enables us to process and analyze the signal in a number of ways.

3.1 Discrete Fourier Transform - DFT

A discrete sample sequence in the time domain can be transformed mathemat-
ically into its matching sequence in the frequency domain using the DFT.. It
reveals the frequency components present in the signal as well as their respec-
tive amplitudes and phases. DFT is especially useful for analyzing periodic or
time-limited signals.

Mathematically, for a sequence of N samples p[n] in the time domain, the DFT
P[k] is calculated using the formula:

N-1
P[k] _ Z p[l’l] _€—127rkn/N
n=0

14



1le-12 Discrete Time Signal 1le-10 Discrete Fourier Transform

Amplitude

Time {s) Frequency (Hz)

Figure 3.1: DFT

Here N is the number of samples, p[n] is the input sample at time n and P[k] is
the frequency component corresponding to just frequency number k.
Here is the example -
Let
p(n) =16,28,28,24,46,27,23,29,38,2,44

on Solving - 305 + 0j, -16.88 - 15.117j, -1.835 + 9.95j, 33.075 - 1.787j, -
34.453 + 44.245j, -44.407 + 40.649j, -44.407 - 40.649j, -34.453 - 44.245j, 33.075
+ 1.787j, -1.835 - 9.95j, -16.88 + 15.117]

Graphical representation of the Discrete Fourier Transformation has been de-
picted in the figure 3.1

3.2 Inverse Discrete Fourier Transform - IDFT

IDFT is the reverse of DFT. It takes a sequence of frequency domain components
and reconstructs the original time domain sequence. In other words, it transforms
the signal from the frequency domain to the time domain.

Mathematically, for a sequence of N frequency domain components P[k], the
IDFT pln] is calculated using the formula:

1 N—1

p[n] _ Z P[k] _ei27rkn/N
k=0

15



Here, N is the number of samples, P[k] is the frequency component at fre-
quency index k and p[n] is the signal in the domain time is rebuilt . .

The combination of DFT and IDFT allows for the analysis of signals in both
the frequency and time domains. They are extensively employed in many different
domains, including as image analysis, audio processing, telecommunications, and
signal processing. Algorithms like the Fast Fourier Transform (FFT) for the DFT
and its inverse for the IDFT improve computational performance, making these
transformations a crucial tool for comprehending and handling data.

Example

Identifying objects in a picture is a necessary in the image processing step.

The image is segmented using the object characteristics for that reason. Compact
representation of the split objects is required. An item can be described using its
border representation. The coordinates of a boundary can be used to characterize
it. Reducing the amount of storage needed to represent it is the goal. One useful
tool for representing an object’s boundary is the Fourier boundary descriptor.
A set of coordinates represents a closed boundary in the spatial domain. Each
point on the border creates the p-coordinate on x axis, which is the imaginary
portion of a complex number, and the g-coordinate on y axis, which is the real
part. The number of points on the boundary determines the period of the complex
number set, which is a periodic complex data collection.

Let us consider an example for the same

3.3 Properties Of DFT

1. Linearity

Let us consider p(n) <= P(k) and g(n) «+» Q(k), be the sequences which
has period N. Then,

ap(n) +bq(n) < aP (k) +bQ(k)

where a,b are arbitrary constants, V a,b € Constant. The DFT of the individ-
ual signals is the same as the DFT(Discrete Fourier Transform) of a linear
combination of a collection of signals.

Let’s look at a straight forward example to demonstrate this feature.
Assume we have two signals with discrete times: where

pln] =[1, -2, 3, 4] ans q[n] = [2, 4, 5, O]as well.

Taking p[n] and q[n]’s DFT, we obtain:
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[6, -4 + 2j, -2, -4 - 2j] is what P[k] is. Q[k] is equal to [11, 4 + 2j, -1, 4 - 2j].
Let’s now calculate the DFT of a*p[n] + q[n] using the scalar variable a =
-0.5:

-0.5, 3, 3.5, 2 is equal to a*p[n] + q[n].
By calculating this linear combination’s DFT, we get:

DFT of [9, -4 + 2j, -4, -4 - 2] for a*p[n] + q[n]
Let’s now compute p*X[k] + Y[k]:

-2.5,-2-2j,-3.5,-2 - 2j = a*P[k] + Q[k]
It is evident that the DFT of a*p[n] + q[n] equals the linear combination of
a*P[k] + Q[k], the DFTs of the individual components.

. Priodicity
Let us consider p(n) <+ P(k) be the sequence which has period N. Then,

p(n+aN) = p(n)

and
P(k+aN) = P(k)

V n,k €, where a is any arbitrary integer. When a signal p(n) exhibits pe-
riodicity with a period of N samples, its values remain constant throughout
any subsequent N samples.

In Fourier analysis, periodicity property of the Discrete Fourier Transform
(DFT) asserts that if a discrete-time signal p[n] has a period of N, then its
DFT, P[k], will also have a period of N.

To demonstrate this characteristic, let us examine an example:

Assume that p[n] = [1, 2, 3, 4, 5] is a discrete-time signal with period N =
5. The DFT for p[n] is as follows:P[k| =Y. p[n| * exp(—j * 2mkn/N), where
n = 0 to N-1 is the summation. When we calculate the DFT, we obtain

P[0] = 15.

P[1] ~ 1.081] - -2.688
]~ 0.475 - 0.688
]

P[3] =~ 0.475j + -0.688
P[4] ~ 1.581j + 2.688
It is evident that P[k] recurs after each N = 5 index. Now, let’s compute
the DFT of a shifted version of p[n] to confirm the periodicity feature. The
shifted signal p.shifted[n] = [4, 5, 1, 2, 3] is to be considered. P.shifted[k]

[
P[2
[

[

17



= Y p.shifted[n]*exp(-j*27kn/N) is the DFT of p.shifted[n], where the sum-
mation is across n = 0 to N-1.

P.shifted[0] = 15 is the result of computing the DFT of p.shifted[n].
P.shifted[1] 0.081j - -2.688

P.shifted[2] 0.475j - 0.688

P.shifted[3] 0.475j + -0.688

P shifted[4] 1.081j + 2.688

It is evident that the DFT of p.shifted[n], P.shifted[k] and the DFT of p[n],
P[k] are identical.

This proves the periodicity property of the DFT, which states that if a discrete-
time signal p[n] has a period of N, then so will its DFT P[k].

. Circular Time shifting
Let us consider p(n) <= P(k), be the sequence which has period N. Then,

p(nEny) < expt ¥k p(k)

where n,, is any random sampling interval. A sinusoidal waveform’s shift
alone modifies its phase. The magnitude has not changed. .

As a result, when a waveform is shifted in the time domain, the frequency
component’s phase is increased, and this increase is linearly proportional to
the corresponding frequency indices.

Aim:The computational cost of computing the DFT of p(n) can be reduced
by shifting p(n) to pS(n), calculating its DFT PS(k), and then inferring the
DFT of p(n) from PS(k) using the shift theorem.

When a discrete-time signal p[n] is circularly shifted by a certain number of
samples, the corresponding DFT P[k] will also be circularly shifted by the
same number of samples, according to the circular time shifting property of
the Discrete Fourier Transform (DFT) in Fourier analysis.

To demonstrate this characteristic, let us examine an example:

Assume p[n] =[1, 2, 3, 4, 5] is a discrete-time signal. Using p[n]’s DFT, we
obtain:

P[k] = Y p[n]*exp(-j*27kn/N), where n = 0 to N-1 is the summation range.
When we compute the DFT of p[n], we obtain: P[0] = 15

P[1] ~ 1.081] - -2.688

P[2] ~ 0.475j - 0.688
P[3] ~ 0.475j + -0.688
P[4] ~ 1.581j + 2.688
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Let’s now shift x[n] two samples to the right in a circular time shift. [4, 5,
1, 2, 3] is the signal p.shifted[n] that results.

The DFT of p.shifted[n], let’s call it P.shifted[k], will likewise be circularly
shifted by the same amount in accordance with the circular time shifting
property.

Let’s compute the DFT of p.shifted[n] to confirm this:

When we compute the DFT of p.shifted[n], we obtain: P.shifted[0] ~ 15
P.shifted[1] ~ 1.081j + 2.688

P.shifted[2] ~ 0.475j + -0.688

P.shifted[3] ~1.081j - -2.688

P.shifted[4] ~ 0.475j - 0.688

As we can see, in comparison to the original DFT P[k], the DFT of p.shifted[n],
P.shifted[k], is circularly shifted by two samples.

In other words, if we circularly shift a discrete-time signal p[n] by a certain
number of samples, the corresponding DFT P[k] will likewise be circularly
shifted by the same number of samples. This illustrates the circular time
shifting property of the DFT.

. Circular Frequency Shifting
Let us consider p(n) & (k) be the sequence which has period N, Then,

IR () 5 P (k F ko)

where kO is an sampling intervals’ arbitrary number, In the definition of
DFT, The spectral values occur at frequency index k + kO and are delayed
by kO sampling intervals.

Assume the following: a 10 Hz sinusoidal signal (radian frequency: 27 f =
62.83 rad/s) p(t) equals sin(62.83t).

We increase the Fourier transform of this signal by a complex exponential
at this frequency in order to shift it up by 5 Hz, or 31.41 rad/s, the radian
frequency:

ePIMT . P(f) = P(f —31.41) +P(f +31.41)

Two components will make up the final spectrum: one at the original fre-
quency, which has been shifted down by -5 Hz, and one at the newly shifted
frequency, which is now at +5 Hz. The initial spectrum and the complex
exponential’s phase will determine the size and phase of these components.
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5. Circular Time Reversal
Let p(n) <> P(k) with period N. Then,

p(N —n) < P(N —k)

For a DFT with N = 8, the function mod (nk,8) for each nk in e~/ ok in
the DFT definition, with k = {0, 1,2,3,4,5,6,7}, yields

000O0OO0OO

mod (nk,8) =

AN N BN -
A DO OB
NN k=N W
S O O B+
AN = B I W
N Wk 0oy O

S OO oo o0
N A NO N PR~

76 5 43 1

The residual of nk divided by 8 is returned by the mod function. Every
row of values represents the time-reversal of that of (Nk) for a given k.
Therefore, p(N —n) <> P(N —k)

Assume the following: a 10 Hz sinusoidal signal (radian frequency: 27zf =
62.83 rad/s)

p(t) = sin(62.83t).
We multiply this signal’s Fourier transform by a complex exponential with

a phase shift of —x radians in order to reverse it in time and then wrap it
around:

e R P(f) = P(=)
For frequencies above the Nyquist frequency, which is half the sampling
rate, the resulting spectrum will have the same magnitude but the opposite

phase. This is because the original signal’s positive frequencies are matched
by negative frequencies introduced by the time reversal procedure.

6. Duality
The basic Fourier analysis theory known as duality states that the Fourier
transform of a time-domain function is equivalent to the inverse Fourier
transform of its frequency-domain representation. Let us consider p(n) <>
P(k) with period N. Then,

P(n) <> Np(N —k)
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A signal p(n) can be calculated twice in succession using the DFT to get
N times its time reversal. If we multiply the input vector by the transform
matrix, then we get a scaled and time-reversed version of the input because
the product of the transform matrix by itself, gives a matrix with N elements
(except for the first entry) below the reverse diagonal.

To illustrate the duality property of Fourier analysis, let’s consider a simple
example using a discrete signal of length 4(

mathrm N = 4).

The definition the signal is p[n] = {1,2,3,4}.

We can now use the formula for the DFT to compute its Fourier transform:
Forevery k=0,1,...,N— 1, Pk = Y| pln]e—i2mkn/N)

Now let’s compute our signal’s DFT:
PO =Y. _,p[n] =10

Pl1] =Y plnje 2™V = — j(1 - 2i)
P2 =Y, _oplnle 202 = —j(1 4 2i)
P3] =Y, _oplne 27" = —4

Let’s now determine X[k]’s inverse DFT: Foreachn=0,1,...,N—1,

pinv[n] = (1/4) i P[k]e2mkn/4
k=0

Let’s figure out the DFT in reverse: For every pinv[0] = (1/4)(P[0]+ P[1] +
P2]+P3])=1

pinv[1] = (1/4)(P[0] + P[1] — P[2] — P[3]) = —2

pinv[2] = (1/4)(P[0] — P[1] + P[2] = P[3]) = 1

pinv[3] = (1/4)(P[0] - P[1] — P[2] + P[3]) = 1

As you can see, the duality property in Fourier analysis for discrete signals
is confirmed by the fact that the inverse DFT of P(k) is equal to the original
signal p(n). This feature is very important in a number of applications rang-
ing from digital signal processing to communication systems, all of which
are very important in understanding and changing signals.

. Transform of Complex Conjugate
Let us consider p(n) <> P(k) with period N. Then,

p*(n) <> P*(N —k) and p*(N —n) <> P*(k)
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Conjugating both sides of Eq. and replacing k by N — k, we get
N-1 .
PAN—K) = Y p(n)e ik
n=0

For example,
Let’s take a simple example of a real and even function f(z) = e “cos(bt)",
here a,b are positive constants.

To find the Fourier transform of the complex conjugate of f(t), we first find
the complex conjugate:

() =e “cos(bt)

The Fourier transform of f*(z) is:

F*(co):/ e Ycos(bt)e " dr

Now, let’s substitute -t for t in the integral:

F*(a)):/ e Y cos(bt)e'® dt

Next, we use the fact that cos(-bt) = cos(bt) and change the sign of @ in the
exponent:

F' (o) = / e “cos(bt)e ") gy
Finally, we recognize that this is the Fourier transform of the original func-
tion with a frequency shift of —w, which is:
F*(0)=F(—o)

Thus, we have demonstrated that the Fourier transform of a real and even
function’s complex conjugate is equal to the Fourier transform of the origi-
nal function with a —® frequency shift. We call this characteristic conjugate
symmetry.

8. Circular Convulation and Correlation
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10.

Circular Convolution of Time-Domain Sequence

Digital signal processing uses circular convolution, a type of convolution
procedure, for signals with finite length that are wrapped around a circle
or periodic boundary. It entails taking the inverse Fourier transform of the
product after multiplying the Fourier transforms of two sequences. Circular
convolution is employed in filtering, coding, and pattern recognition for
periodic or cyclic signals. Its length is equal to that of the input sequences.

Circular Convolution of the Frequency-Domain Sequence

Circular convolution is a procedure that takes two complex-valued sequences,
multiplies them in the frequency domain, and then does an inverse Fourier
transform. In short, it is the time domain Fourier transform of circular con-
volution. This procedure is very often applied in digital signal processing,
usually for signals of finite length, which are taken to wrap around some cir-
cular or periodic boundary. It may be used in pattern recognition, coding,
and filtering for periodic or cyclic signals.

Circular Correlation of the Time-Domain Sequences

The kind of correlation operation that uses digital signal processing is called
circular correlation for signals of finite length, wrapped around a circle or
periodic boundary. It is a process that involves the calculation of the cross-
correlation between two sequences wrapped around a circle, but with circu-
lar boundary conditions. In signal processing, for periodic or cyclic signals,
filtering, and pattern recognition, circular correlation does enjoy the same
length as the input sequences. Circular correlation, in a nutshell, is the time
domain analogue of the cross-correlation operation.

Sum and Difference of Sequence

P(0) is the total of the values in the input sequence, p(n), as all of the trans-
form matrix coefficients have a value of unity when k = 0. The transform
matrix coefficients produce the alternating sequence {1,1,1,1,...,1} when
N is even and k = N/2. The difference between the sum of the even and
odd indexed values of p(n) is therefore P(N/2).

Upsampling of the Sequence

Upsampling, commonly referred to as interpolation, is a Fourier analysis
technique that raises a signal’s sampling rate without altering its frequency
content. The sampling rate controls the frequency resolution of the spec-
trum when a signal is subjected to the discrete Fourier transform (DFT).
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11.

Upsampling boosts the frequency resolution and sampling rate by sand-
wiching fresh samples between old ones. Upsampling, however, can cause
distortion of the signal’s frequency content if done incorrectly, increasing
the DFT’s processing complexity and introducing aliasing. Making sure the
upsampling factor is a power of two and applying the proper anti-aliasing
filters prior to upsampling are crucial steps in preventing aliasing.

Let p(n) <> P(k) n,k=0,1,......N-1. Upsampling x(n) with zeros is defined as

p(#) forn=0,L2L,....L(N—1
pu(”) = (L) . ( )
0 otherwise

where L € Z, then
P,(k) = P(k mod N),wherek =0,1,...,LN — 1
Where p,(n) is given by,

IN—1
P, (k)= Z pu(n)efj%”k,wherek =0,1,....,LN—1
n=0

We can replace n = m L since we only have nonzero input values at intervals
of L. then we will get,

N—1
Puk)= Y pu(mL)e Jikmk

m=0

N—1
— Y p(m)e 7 ¥ = P(k mod N),wherek = 0,1,...,LN — 1
m=0

As N-point DFT is periodic of period N.P,(k) is the L-times repetition of
P(k) is seen.

Zero Padding of Data

In Fourier analysis, zero padding is a method for lengthening a signal with-
out altering its frequency content. The resolution of the frequency spectrum
is determined by the length of the signal when it is subjected to the discrete
Fourier transform (DFT). By adding zeros to the end of the signal, or zero
padding, we can extend its length and improve the frequency spectrum’s
resolution. When analyzing signals at higher frequencies or with finer res-
olution than what is achievable with the original signal length, this can be
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12.

helpful. It should be noted, however, that zero padding may also increase
DFT computational expenses since processing of the longer signal requires
more complex computations. Let p(n) <> P(k),n,k=0,1,...,N — 1. If we
append p(n) with zeros to get p,(n),n=0,1,...,LN — 1 defined as

{p(n) forn=0,1,...,N—1

n)—
pe(n) 0 otherwise

where L is any positive integer, then

P.(Lk)=P(k),k=0,1,...,N—1

The DFT of the signal p,(n) is given by

LN—1 .
P(k)="Y p(n)e /™ k=0,1,...,LN—1
n=0

Since p,(n) is zero forn > N — 1, we get
N-1 .
P(k)= Y p.(n)e /™ k=0,1,...,LN—1
n=0
Replacing k by Lk, we get

N—1
P(Lk) =Y p(n)e ¥ = P(k),k=0,1,...,N— 1
n=0

Symmetry Properties
In Fourier analysis, symmetry properties describe how a function behaves
and how its Fourier transforms under specific symmetries.

There are various kinds of symmetries that can influence a function’s Fourier
transform:

1. Real-valued functions: In the time domain, a real-valued function is
symmetric about the y-axis. In the frequency domain, its Fourier transform
is also symmetric about the origin and real-valued.

2. Even functions: In the time domain, an even function is symmetric about
the origin. In the frequency domain, its Fourier transform is also symmetric
about the origin and real-valued.
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3. Odd functions: In the time domain, an odd function is antisymmetric
about the origin. In the frequency domain, its Fourier transform is entirely
imaginary and antisymmetric about the origin.

4. Periodic functions: In the time domain, a periodic function repeats it-
self at regular intervals. Each term in the Fourier transform represents a
frequency component of the signal, and it is equal to the sum of complex
exponentials. The amplitude of the appropriate term in the Fourier series
expansion of the periodic function determines the magnitudes of these com-
ponents.

Because they permit simplifications and reductions in computational com-
plexity, these symmetry features can have significant effects on signal pro-
cessing applications, including filter design and signal compression.

13. Parseval’s Theorem

The frequency domain representation of the signal p(n) is determined by
the DFT coefficients P(k), which are obtained through an orthogonal trans-
form. Consequently, P(k) is a precise and thorough depiction of p(n) in
every aspect. It is essentially an alternative way of representing p(n) in
a new domain or a straightforward modification to the independent vari-
able. Consequently, in both representations, the power of the signal during
a single period can be accurately measured.Let N represent the length of
the sequence p(n) <> P(k). The Discrete Fourier Transform (DFT) utilizes
complex exponentials with harmonic frequencies to precisely depict signals.
When the samples of a complex exponential are placed on the unit circle,
the magnitude of the exponential throughout one complete cycle is denoted
as N. Therefore,

1 N—1

N-1
Y [p(n)]* = N Y 1Pk
n=0 k=0

Fourier analysis and other orthogonal transforms has the property of power
preservation.

3.4 2 Dimensional DFT

The 1D-DFT, Discrete Fourier Transform, is extended to the two dimensions in
the 2D DFT. It is employed in the analysis and processing of two-dimensional
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Figure 3.2: 2 Dimensional-DFT

signals and images, such as those from digital photography or 2D spectroscopy.

A 2D array of complex numbers represents a signal or image, which is con-
verted into a 2D array of complex numbers in the frequency domain via the 2D
DFT. The spatial frequencies contained in the original image or signal are revealed
by the frequency domain representation. The 2D DFT formula -

1 M—-1N-1 2( /M+ /N)
F J2n(up/M+vq
(u,v) = MNI;)(Iprqe

where M and N are the original array’s dimensions, u is spatial frequencies in the
horizontal and v is spatial frequencies in the vertical directions, and f(p, q) is the
original image or signal and F(u, v) is converted image or signal.

whose inverse 2D DFT is:

M—1N—
f(p,Q) _ Z Z e]27£ (up/M+vp/N)

Figure 3.2 depicts the 2 Dimensional Discrete Fourier Transformation
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Chapter 4

4.1 Convolution

Convolution is a mathematical procedure used in Fourier analysis that creates a
new signal by combining two existing signals. It shows what would happen if the
input signals were convolved in the time domain. Convolution is a fundamental
idea in several disciplines, including engineering, physics, and signal processing,
since it enables us to examine and modify information in many ways.

For continuous time signal, convolution formula is:

oo oo

at) = p(0) i) = [ p@ile—)de= [ ple-oji(v)dr

—o0 —o0

Properties of Convulation

1. Commutative Property
q1(t) *q2(1) = q2(t) * q1 (1)

2. Distributive Property
q1(t) *q2(t) + q3(t)] = q1(t) * q2(1) + q1 (1) * q3(7)

3. Associative Property
q1(2) * q2(t) * q3(2)] = [q1(2) * q2(2)] % q3(2)

4. Shifting property
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10.

q1(1) ¥ q2(1) = w(t)
m()*%(f—ll): w(t—1)
qi(t —t1)xqa2(t) =w(t —11)

q(t—t)xqt—n)=wlt—1t —1)

. Convulation with Impulse

q()*6(t)=q()
q)*0(t —t1) = q(t —t1) with shifting property
O(ar) = |716|6(t)

Additional Properties of Convulation

- p(O*h(H=q(t)

= h(e) = ple) » G

cu(t)xu(t) =r(r)

Convolution of two unit signals is ramp signal.

dnp(l) dmi(l‘) . dn+mq(t)
di" drm T dpvtm

Scaling of Convolution

Whenever the input and impulse signals are scaled by o then the output will

be
For p(1) *i(t) = q(r)
= plar) «i(or) = q(ar)

Area of the convoluted signals

Let the input signal p(t) has the area A;

Let the other input signal i(t) has the area A,
Then the area A of the convoluted signal

A=AA,
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Limits of the Convoluted Signal

Letw(t) = p(t) xq(z)

Then,

Lowerlimit of w(t) = Lowerlimit of p(t) + Lowerlimit of q(t)
Upperlimit of w(t) = UpperLimit of p(t) + Upperlimit of q(t)
So, limit of w(t) = Lowerlimit of w(t)<t<Upperlimit of w(t)

Convolution using Slide and Shift Method
The slide and shift method provides a visual picture of convolution in its con-
text. In order to calculate the product of the overlapping sections at each time
shift, one signal—referred to as the input signal or impulse response—is slid over
another—referred to as the input signal.

The slide and shift method operates as follows: 1. Slide the impulse response:
To form a new function i(t tau), where tau represents the time shift, we first shift
impulse response—i(t)—across input signal—p(t). This is equivalent to saying
it’s the same asof convolving i(t) with p(t) at some time shift tau.

2. Calculate the product: For every time shift tau, we now calculate the product
of i(t7) and p(tau). This gives us a new function, which represents the way i(t tau)
and p(tau) overlap with one another.

3. Sum all products: Finally, we sum up all these products for all possible
time shifts tau in order to obtain the output signal q(t). Mathematically, this sum-
ming up is represented by integration, which denotes the sum of all overlapping
products between i(t tau) and p(tau).

4.2 Correlation

Correlation is a mathematical process used in Fourier analysis that quantifies the
degree of linear dependency or resemblance between two signals. It is a signal-
specific extension of vector algebra’s dot product idea.

The correlation coefficient between two discrete-time signals, p[n] and q[n],
is equal to:

[}

rpg(m) = i p()g*(n—m)="Y pn+m)g*(n), m=0,+1,+2,...

Nn——oo Nn——oo

where the summation is over all values of n, and * denotes correlation. Using this
formula, one signal (q[n]) is slid over another signal (p[n]), and at each time shift,
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m, the product of the overlapping parts is computed. The final output correlation
function, R[m], is then determined by adding the resulting products.

Here is a step-by-step breakdown of how the correlation functions:

1. Slide q[n] over p[n]: To begin with, we first slide q[n] over p[n], which
time-shifts q[n] to the left or right by different times m. A new function, q[n-m],
1s thus created, where m is the time shift.

2. Multiply p[n] and g[n-m]: Then we multiply p[n] by q[n-m], which is the
time shift, giving us the time-shifted form of q[n]. This gives us a product function
that represents how p[n] and q[n-m] overlap with each other.

3. Add up all products: To get the final output correlation function, R[m], we
add up this product function over all possible time shifts, m. This sum indicates
the total of all the overlapping products between p[n] and q[n-m].

One interesting property of correlation in Fourier analysis is that, for discrete-
time signals, it is equivalent to complex conjugation in the frequency domain.
Consequently, the act of complex conjugating the pertinent frequency components
in the frequency domain is tantamount to doing a Discrete Fourier Transform
(DFT) of a correlation operation. Due to this property, correlation becomes a
good way to analyze the relationship of the phases and amplitudes in digital data.
Properties of Correlation
Correlation in Fourier analysis is a helpful method for studying digital signals
because of a number of significant properties:

1. Linearity: Since correlation is a linear operation, it produces the same linear
combination of correlations when applied to a linear combination of signals.
Commutativity: Since correlation is commutative, it is unaffected by the
signals’ chronological order. This means that g[n] * p[n] = p[n] *g[n].

2. Time reversal: Correlation is symmetric with regard to time reversal. This
implies that if we correlate one signal with the original signal and another
with the order of samples reversed, the outcome will be the same as if we
correlate the original signal with the reversed signal. p[—n]*g[n] = p[n] *
q[—n], in other words.

3. Conjugate symmetry: In the frequency domain, correlation is conjugate
symmetric. This means that the corresponding frequency components can
be obtained using the complex conjugation of the discrete Fourier transform
(DFT) of a correlation operation. This characteristic enables us to extract
phase and amplitude information from signals using correlation.
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4. Normalization: By dividing by the product of the lengths of the correlated
signals, one can normalize correlation. When the signals are identical, this
normalization guarantees that the correlation function’s maximum value is
1.

Due to these attributes, correlation is a versatile tool that may be employed
for various tasks in digital signal analysis, such as extracting features, matching
signals, and recognizing patterns.

4.3 Aliasing Effect

The Fourier analysis is available in four different forms. The only one that can
be implemented with a digital system is DFT since it is discrete and finite in
both domains. It is necessary to make sure that data is accurately represented
by DFT in anyof given timeperiod while approaching other Fourier analysis ver-
sions. Physical devices can only produce signals for a limited amount of time
and finite order frequency components, which makes it feasible. As a result, it is
necessary to select the sample interval and record duration carefully. Then, the
DFT may effectively represent all waveforms produced by physical devices, prac-
tically speaking. This chapter instructs us on how to choose the suitable sampling
interval and measure its duration.

When we sample a continuous-time signal at a rate that is less than twice the
highest frequency component in the signal, we experience a phenomena known as
aliasing. In this instance, the sampling procedure results in frequency components
in the discrete-time signal that appear lower than their true frequencies. This phe-
nomenon is called aliasing, and it can lead to spectral estimates that are inaccurate
or deceptive.

In order to comprehend aliasing, let’s look at a basic illustration. Assume
for the moment that we sample a 10 Hz sinusoidal signal at a rate of 5 Hz, or 10
samples per second. The sampled signal seems to oscillate at a lower frequency of
2 Hz when shown. That is, ten samples every five seconds. This is because extra
frequency components, or "aliases," were added to the signal during the sampling
process.

The Nyquist sampling theorem dictates that for precise reconstruction of a
continuous-time signal from its samples, the sampling rate must be no less than
twice the frequency of the highest component in the signal. The reason for this
is that when sampling at a lower rate, aliasing occurs as certain high-frequency
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elements of the signal are compressed into the baseband or frequencies that are
lower than half of the sampling rate.

Consider a sinusoidal signal with a frequency of 20 Hz and a sampling rate
of 10 Hz, or 10 samples per second, to demonstrate this. The recorded signal
appears to fluctuate at two distinct frequencies when plotted, which are 2 Hz and
18 Hz (10 samples per 5 seconds and 90 samples per second). This is because the
high-frequency component at 20 Hz caused the sampling process to generate an
alias at -18 Hz (i.e., below half the sampling rate).

In the real world, where signals are not strictly periodic or where they are
sampled at rates that are not high enough, aliasing can have drastic effects on the
accuracy and reliability of inferences made from a Fourier analysis.

For this reason, this concept is critical to understand, and measures must be
taken that will help to mitigate its effects on real-world applications of Fourier
analysis. One way to achieve this is by employing anti-aliasing filters to eliminate
high-frequency elements prior to data sampling, or by increasing the sampling
rate.

4.4 Leakage Effect

When we compute the discrete Fourier transform of a signal that has a finite dura-
tion but is not precisely periodic, we get a phenomenon called leakage in Fourier
analysis. Because of its finite duration in this case, the resulting spectral estimate
has energy coming from neighboring frequency components. This loss of energy
means that the spectral estimates can be distorted or erroneous, particularly for
signals with small spectral peaks.

For a basic understanding of leakage, let us look at a simple example. Sup-
pose we have a one-second sinusoidal signal at a frequency of 10 Hz. When we
compute the DFT of the signal, we find that instead of the spectral estimate at 10
Hz being a perfect delta function—or a single spike at the right frequency—it has
a wider shape, with energy spreading out over the nearby frequency components.
This is due to leakage, energy spreading from the nearby frequency components,
caused by the signal’s finite duration and its lack of periodicity.

From a mathematical standpoint, the most common reason for leakage is that
the DFT assumes a perfectly periodic signal. However, signals that are not nec-
essarily periodic—that is, signals that have a finite duration—constitute real-life
signals. This assumption brings about spectrum leakage that can lead to spectral
estimations which are inaccurate or misleading, particularly for signals with small
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spectral peaks.

For example, let’s take a sinusoidal signal at a frequency of 20 Hz that lasts for
one second. We can see that the spectral estimate at 20 Hz is not a perfect delta
function but has energy spreading out over the nearby frequency components due
to leakage. We can demonstrate this by computing the DFT of such a signal.
However, the leakage can be reduced by tapering the signal using windowing
techniques before calculating the DFT. This will depress the energy of nearby
frequency components and thereby make the spectral estimate more precise.
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Chapter 5

APPLICATIONS

5.1 Image Restoration

Image restoration in Fourier transforms refers to the act of restoring
the original image from a distorted or corrupted version.
The Fourier transform, which changes a picture from the spatial
domain to the frequency domain, serves as the foundation for this
method.
A blurry or noisy image is the result of some frequency components
being lost or attenuated when an image is distorted.
Estimating the absent frequency components and reconstructing the
original image are the objectives of image restoration.
Using Wiener filtering, deconvolution, and iterative techniques,
the original image is restored by extrapolating the noise and blur
parameters from the deteriorated image.

Image degradation or restoration degradation phenomenon
Let f(x, y) be an original function.Let h(x,y) be a degradation func-
tion.Let g(x,y) represent a deteriorated image.Let 1 (x,y) represent
the noise.The user’s text is simply two backslashes.

When an image is aquired by the imaging system, the process of
degradation starts
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Figure 5.1: Image degradation Restoration Block Diagram

Additive Noise -

g(p,q) = f(p,q) +n(p,q)

Linear blurring -

g(p,q) = f(p,q) *h(p,q)

Degraded image is expressed as -

g(p,q) = f(p,q) *h(p,q) +n(p,q)

Now applying the Fourier Transformation, the equation in fre-
quency domain becomes as -

G(u,v) = H(u,v)F (u,v) +N(u,v)
The original image can be restored by rearranging this equation -
F(M,V) — G(M,V)/H(M,V) —N(u,v)/H(u,v)

After this, f(p,q) can be obtained by applying an Inverse Fourier
Transformation to F(u,v).(Deconvolution or Inverse Filtering)

5.2 Time Series Analysis using Discrete Fourier Trans-
form for Financial Forecasting

Time series analysis is an essential undertaking in finance for com-
prehending and forecasting the behavior of financial markets. An
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effective method for analyzing financial time series is through the
utilization of Discrete Fourier Transforms (DFTSs), which enable the
breakdown of a time series into its individual frequencies. This ex-
planation will examine the application of Discrete Fourier Trans-
forms (DFTs) in the classification of financial time series.

What is the rationale for employing Discrete Fourier Transforms
(DFTs) in the analysis of financial time series?
Financial time series frequently display intricate patterns, including
trends, cycles, and noise. The Discrete Fourier Transform (DFT) is
highly advantageous for evaluating signals of this nature due to its
specific characteristics:

1. Periodic components are extracted by dividing the time series
into its frequency components. This allows us to spot recurring
patterns, such as daily or weekly cycles.

2. Distinguishes between the underlying trend and random fluc-
tuations: Here Discrete Fourier Transform (DFT) enables ex-
traction of fundamental pattern in data by isolating it from the
random fluctuations, hence facilitating the identification of pat-
terns.

3. Frequency band identification: Through analysis of the fre-
quency spectrum, we can discern particular frequency bands
that hold significance in the financial market, such as those as-
sociated with high-frequency trading.

Applying Discrete Fourier Transforms (DFTs) to categorize finan-
cial time series To categorize financial time series using Discrete
Fourier Transforms (DFTs), we can proceed as follows:

1. Calculate the Discrete Fourier Transform (DFT): Utilize the
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Figure 5.2: This figure is taken from ARIMA (AutoRegressive Integrated Moving
Average) and Fourier Transform Analysis of predicting stock prices.

DFT on the financial time series to acquire its representation
in the frequency domain.

2. Retrieve characteristics: Identify and isolate important charac-
teristics from the representation of the frequency domain, such
as:

» Peak frequencies refer to the frequencies in a spectrum that
have the highest amplitude.

* Frequency bands: Determine the particular frequency bands
that are pertinent to the financial market.

* Spectral power: Determine the overall power present in the

spectrum

3. Apply machine learning methods, such as classification trees,
random forests, and neural networks, to categorize the financial
time series according to the extracted attributes.

Example:
Categorizing stock values using Discrete Fourier Transforms (DFTs).
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Let us examine a scenario in which we aim to categorize stock prices
as either "bullish" or "bearish" by analyzing their frequency domain
characteristics.

1. Calculate the Discrete Fourier Transform (DFT) of the time se-
ries data representing the stock prices.

2. Derive features from representation of signal in frequency do-
main:

* Highest frequencies: Determine frequencies that exhibit
the greatest magnitude (e.g., daily or weekly patterns).

* Frequency bands: Determine the particular frequency bands
that are pertinent to the stock price, such as those associ-
ated with high-frequency trading.

3. Apply a machine learning algorithm, such as a classification
tree, to categorize the stock price.

* Classify as "bullish" if the peak frequencies are linked to
high-amplitude values.

» Assign the label "bearish" to instances where the highest
frequencies are linked to low levels of amplitude.

By implementing this methodology, we can construct a classification
model that utilizes Discrete Fourier Transforms (DFTs) to scrutinize
and forecast the behavior of stock prices.

In conclusion, To summarize, Discrete Fourier Transforms (DFT's)
can be an effective method for categorizing financial time series by
extracting significant characteristics from their frequency domain
representations. By utilizing machine learning algorithms on these
characteristics, we can create precise categorization models that fore-
cast the behavior of stock prices and other trends in the financial
market.
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5.3 5G and future advancements: The significance

of Fourier Transformations in wireless commu-
nications

Wireless communication systems have been transformed by the fifth
generation (5G), offering faster data throughput, reduced latency,
and improved connectivity. As we progress towards the upcoming
era of wireless communications, referred to as 6G, the significance
of Fourier transforms will inevitably increase.

Utilizations of Fourier Transformations in 5G and future tech-
nologies

1.

Spectrum Analysis: Fourier transformation is employed to ex-
amine the frequency spectrum of wireless signals, facilitating
the identification of undesired interference and the enhance-
ment of signal transmission.

Channel Estimation: The channel properties, such as the chan-
nel impulse response, are estimated using Fourier transforma-
tion. This estimation is crucial for ensuring high-quality con-
nections.

Pulse shaping involves the use of Fourier transformation to ma-
nipulate the pulse of transmitted signals, guaranteeing their ac-
curate modulation and demodulation.

Modulation Analysis: Fourier transformation is employed to
examine the modulation scheme employed by wireless signals,
facilitating the identification of unlicensed communications and
the enhancement of signal transmission.

Synthetic Aperture Radar (SAR) technology utilizes Fourier
transformation to produce high-resolution pictures of targets.
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6. Fourier transformation is employed to enhance the efficiency of

huge multiple-input multiple-output (MIMO) systems, which
necessitate intricate signal processing methods.

Machine Learning: Fourier transformation is employed in ma-
chine learning algorithms to handle vast quantities of data and
enhance the efficacy of wireless communication networks.

Fourier transformations’ benefits in SG and beyond increased

1.

Signal Quality: By lowering noise and interference, Fourier
transforms can enhance signal quality.

Enhanced Efficiency: Signal processing can be optimised and
computing complexity can be lowered by using Fourier trans-
forms.

Enhanced Security: Unauthorised signals can be found and cy-
ber attacks can be defended against by Fourier transforms.

Enhanced Capacity: By maximizing spectral efficiency, Fourier
transforms can be applied to enhance the capacity of wireless
communication networks.

. Increased Reliability: By lowering mistakes and raising signal

quality, Fourier transforms can be applied to raise the reliability
of wireless communication systems.

Problems and Prospects

There are several opportunities and problems that need to be ad-
dressed even if Fourier transforms provide several advantages in 5G
and beyond:

1.

Complexity: Fourier transforms are one of the more sophisti-
cated signal processing methods needed by the growing com-
plexity of wireless communication systems.
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2. New Interference situations: New signal processing methods
that can manage these issues are needed as new interference
situations, such as the use of unlicensed spectrum and Internet
of Things devices, emerge.

3. Modulation Schemes New: Development of new signal pro-
cessing algorithms is necessary to construct novel modulation
schemes, such as orthogonal frequency division multiplexing
(OFDM).

4. More Bandwidth: The growing need for bandwidth calls for
more sophisticated signal processing methods that can manage
bigger data sets and higher frequencies.

Conclusion

Ultimately, Fourier transformations are essential to 5G and beyond
wireless communication systems since they allow for better capac-
ity, reliability, security, efficiency, and signal quality. The signifi-
cance of Fourier transforms will only increase as we approach the
6G wireless communications technology.

5.4 Fourier Transform Spectroscopy

Nowadays, a method for measuring a substance’s spectrum that in-
volves computing the Fourier transform of physical data as a nec-
essary step in the process is called Fourier transform spectroscopy.
The fundamental ideas behind this method date back to Michelsont,
who created the interferometer in 1880 and showed how to use it for
spectroscopic measurements.

It seems clear that Michelson could have created Fourier trans-
form spectroscopy (FE) almost a century ago if he had access to
modern computers and other electrical devices at the time. The
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advancements in specialized mini-computers and related hardware
have been the main cause of the explosive growth in FTS applica-
tions during the past ten years.

One kind of spectroscopy called Fourier Transform Spectroscopy
(FTS) analyzes a sample’s spectrum characteristics by use of the
Fourier transform. With several benefits above conventional tech-
niques, this potent approach has completely changed the area of
spectroscopy.

Principle In conventional spectroscopy, a spectrometer analyzes
the transmitted or reflected light after a light source illuminates the
sample. The content and characteristics of the sample are then ex-
tracted by processing the spectrum that results.

A time-varying signal is produced in Fourier Transform Spectroscopy
by modulating the light source used to illuminate the sample. Fol-

lowing measurement of this signal with a detector, the Fourier trans-

form technique is used to process the data.

The spectrum characteristics of the sample are correlated with a fre-

quency domain representation of time-dependent signal obtained by

Fourier transform. This makes composition and characteristics of

the sample more precisely and efficiently analyzed.

Features
FTS surpasses conventional spectroscopic techniques in a number
of ways:

1. Greater Sensitivity: FTS can identify lower concentrations of
analytes than conventional spectroscopic techniques because of
its greater sensitivity.

2. Faster Acquisition: Real-time analysis benefits greatly from
FTS’s ability to acquire spectra more quickly than conventional
techniques.
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3. Greater Resolution: FTS enables the study of minute molecular
characteristics by achieving better resolution than conventional
techniques.

4. Less Sample Preparation: Generally speaking, FTS is more
convenient and lowers the chance of contamination than con-
ventional techniques.

Category of FTS
Among the numerous forms of Fourier Transform Spectroscopy are:

1. Molecular vibrations in the infrared are analysed using infrared
(IR) FTS.

2. FTS for Nuclear Magnetic Resonance (NMR): Used for solu-
tion molecule structure analysis.

3. Raman FTS: Molecular vibration analysis in the Raman scat-
tering area.

4. Mass Spectrometry (MS) FTS: Gas phase molecular mass anal-
ysis.

usages
Applications of FTS are many and include:

1. The purity and composition of materials are monitored in qual-
ity control using FTS.

2. Materials science is the study of material characteristics and
behavior under various circumstances using FTS.

3. FTS is applied to biological research to investigate the compo-
sition and operation of biological molecules like proteins and
nucleic acids.
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4. Environment Monitoring: FTS is applied to track changes in
ecosystems and environmental contaminants.

Problems
There are certain difficulties with FTS even if it has many benefits:

1. Information extraction from the data via FTS calls for advanced
data analysis methods.

2. Spectrophroscopy and chemical knowledge are necessary for
the often difficult interpretation of FTS results.

3. Equipment cost: Some researchers are unable to afford the fre-
quently costly FTS equipment.

Conclusion

Fourier Transform - The discipline of spectroscopy has been com-
pletely transformed by the potent approach. Its benefits over more
conventional spectroscopic techniques include faster acquisition, greater
resolution, and less sample preparation. Despite certain difficulties,
this approach has many uses in many domains and is nevertheless
crucial to contemporary research and development.

45



Chapter 6

Conclusion

This thesis examines the fundamental ideas and current advance-
ments in Fourier analysis and signal processing, which have been
pivotal in the progress of modern science and engineering. For al-
most two centuries, Fourier analysis has served as a fundamental
tool in signal processing by offering a mathematical framework to
break down signals into their individual frequencies.

Since its initial implementation in physics and engineering, Fourier
analysis has undergone continuous development and adjustment to
cater to the requirements of emerging technologies and applications,
including audio processing, image compression, and biomedical sig-
nal processing. Over the past ten years, there have been notable ad-
vancements in Fourier analysis and signal processing, largely due to
the growing accessibility of extensive datasets and powerful compu-
tational resources.

These advancements have facilitated the creation of novel algo-
rithms and methodologies for examining and manipulating signals
in diverse fields, such as audio, image, and biological data. Re-
cent advancements have been made in the field of signal process-
ing, specifically in the development of sophisticated approaches that
are capable of properly managing complicated and non-stationary
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data. The demand for increasingly advanced techniques to analyze
and process signals in practical scenarios, such as audio processing,
voice recognition, and biological signal processing, has prompted
this development.

Furthermore, notable progress has been made in the field of com-
putational complexity and parallelization, with the aforementioned
advancements in signal processing techniques. These technologi-
cal advancements have facilitated the creation of more effective al-
gorithms for Fourier analysis and signal processing, which may be
simultaneously implemented across several CPU cores.

Recent research has focused on developing advanced algorithms
and strategies to perform Fourier analysis on huge datasets. The
rise of enormous datasets in domains such as genomics, proteomics,
and other areas of biological study has been the driving force behind
this phenomenon. This thesis examines significant advancements in
Fourier analysis and signal processing, encompassing the creation
of novel algorithms and methodologies for the analysis and manip-
ulation of signals across many domains.

We have also examined the obstacles and constraints that arise
from these advancements, such as concerns over computational com-
plexity and scalability. Ultimately, Fourier analysis and signal pro-
cessing remain essential in various scientific and engineering do-
mains. The recent advancements outlined in this thesis highlight
the continuous significance of these techniques in various domains,
including audio processing, image compression, biomedical signal
processing, and others.

As we progress in this domain, it is probable that we will wit-
ness substantial advancements in both the theoretical underpinnings
of Fourier analysis and signal processing, as well as the creation of
novel algorithms and approaches for implementing these methods
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in practical situations. The growing accessibility of powerful com-
puting resources and extensive datasets will surely fuel additional
advancements in this domain.

In conclusion, the ongoing progress in Fourier analysis and signal
processing has significant potential to enhance our comprehension
of intricate phenomena across various disciplines, including biol-
ogy, medicine, physics, and engineering. By persistently challeng-
ing the limitations of these methodologies, we might uncover fresh
perspectives on the surrounding universe and stimulate advancement
in various scientific and engineering domains.
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