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Abstract 

 
This thesis investigates the complex relationship between composition operators and 

function spaces, attempting to understand their behaviour, properties, and practical 

applications. Composition operators are useful tools in a variety of mathematical 

disciplines, including functional analysis and operator theory. The paper looks at the 

theoretical foundations of composition operators, examining their impact on various 

function space structures such as Banach and Hilbert spaces. The emphasis is on 

understanding how composition operators alter the properties and characteristics of 

these function spaces. Furthermore, this study investigates the practical implications 

of composition operators in signal processing, control theory, and approximation 

theory. This thesis gives useful insights into the uses of composition operators in 

several scientific and technical disciplines by investigating their effectiveness in 

tackling real-world situations. This thesis advances our understanding of composition 

operators in function spaces through rigorous analysis and investigation, setting the 

path for future research and applications in a variety of mathematical and scientific 

disciplines. 
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CHAPTER 1   

 

INTRODUCTION  

 

1.1Definitions and HistoricaliBackground 

 

               Let 𝐹𝑋ibe a vectorispace overithe [1]field K (where K = R or C ) for any x ∈

X, and let X beia non-empty set[1]. Under linearioperations defined pointwise, ithe 

Cartesianiproduct of  ∏ 𝐹𝑋𝒙∈𝑿  theifamily (𝐹𝑋: x ∈ X) is a vectorispace. Thefamily 

(𝐹𝑋: x ∈ X) is knownias a vector-fibrationiover X, and eachielement of  ∏ 𝐹𝑋𝒙∈𝑿   is 

known as aicross-sectioniover X. A topological vector spaceiof theicross-sections[1] 

over X is indicated by L(X). Let T : X → X be a mappingisuch ithat, whenever f ∈ 

L(X), f o T ∈  ∏ 𝐹𝑋𝒙∈𝑿 . The compositionitransformation caused by T refers[1] to the 

linearitransformation f → f oT from L(X) to 𝑇𝑋. CT [1]denotes thisimetamorphosis. 

Suppose π is a mappingidefined on X such that[1] If f ∈ L(X), then f → π.  f o T is a 

linearitransformationifrom L(X) to π ∏ 𝐹𝑋𝒙∈𝑿 . The transformationicaused by π and T 

is knownias the weightedicomposition v transformation[1] (𝑊π,T). 

Three keyicircumstances ariseiwhile studyingitheseioperators:  

(i) The underlying space X isia measureispace; theiinducing mappings are 

measurableitransformations. 

(ii) Theiunderlying [1]space X is airegion in C or 𝐶𝑛 and theiinducingimaps are 

holomorphicifunctions. 

(iii) The underlyingispace X is aitopologicalispace with v continuousifunctions. 

               L(X) is assumed to be aitopological vectorispace of [1]measurable functions 

in the first scenario, isuch as  𝐿𝑃  –spaces[1]; in the secondiscenario, L(X) isiassumed 

to be a topologicalivector space of analyticifunctions, such as a Dirichlet[1], Hardy, or 

Bergmanispace.  

space: in the third instance, aitopological vector v space oficontinuous functions is 

assumed to be L(X)[1]. 

These areas can be defined intoithree v broadicategories:  

(i) 𝐿𝑃  – ispaces. 

(ii) Functional Banachispaces ofifunctions.  

(iii) Locallyiconvex functionispaces. 
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1.2 𝐿𝑃 -Spaces  

               Assume (X, Y, m) is a measureispace and p is a realinumber suchithat 1 ≤ p 

<∞. Let ℓP(m) beithe set of allicomplex-valuedimeasurableifunctionsion X suchithat 

If |F|P is m-integrable. ℓP(m) is aicomplexilinearispaceithat supportsipointwise 

addition andiscalar multiplication[1]. If 𝑁𝑃(m) representsithe set of all nullifunctions 

on X, it is a subspace[1] of ℓP(m). Let LP(m) be theiquotientispace ℓP (m)/ 𝑁𝑃(m).The

element in is LP a cosetiof theitype f + 𝑁𝑃(m), whichibelongs to lP(m). Theicoset f + 

𝑁𝑃(m) isirepresented as [ f ]. [1]Thus, two ℓP(m) functions, giand h, belong to theisame 

coset if andionlyiif g and h are virtuallyialwaysithe same. [1]On 𝐿𝑃(m) weidefineia 

norm as: 

                                 ∥ f ∥𝑃= ( ∫ | f |P  dm )1/p 

 

The Minkowskiiinequality indicatesithat 𝐿𝑃(m) is a normedilinear space[1] with the 

specified norm[1]. Under thisinorm, 𝐿𝑃(m) is complete[1]. Thus, 𝐿𝑃(m) is a Banach 

space .  𝐿𝑃(m)  and 𝐿𝑃(m) is conjugate space[1] , withiconjugateiindices p and q. For 

p = 2, 𝐿𝑃(m) is a [1]Hilbert space with the inneriproductidefined as: 

 

                               〈 [ f ], [ g ] 〉 = ∫ f 𝑔̅ dm  

If X containsiainon-empty subset ofimeasure zero, [1]the members of 𝐿𝑃(m) are not 

functions on X, but rather equivalenceiclasses of functions. Twoicomponents of ℓP 

(m) are considerediequal if theyiagree practically everywhere. Underithis [1]We view 

𝐿𝑃(m) as a Banachispace ofifunctions. A complexivalued measurableifunction f on X 

is considereiessentially bounded if theiset (x: x ∈ X and { | f( x) | > M} has a measure[1]

 greater than M. The value is zero[1]. Theiessential supremum of f is the lowest such 

M, shown as ∥ f ∥∞. Let ℓ∞( (m) be the setiof basically boundedifunctions on X. 

ℓ∞(m) is a linearispace. 𝐿∞(m) irepresents the quotientispace ℓ∞(m)/ N∞, where N∞ 

is the subspace[1] ofinullifunctions. Using theibasicisupremum norm, L∞(m) becomes 

a Banachispace. The sign ℓ∞ represents theiBanach space of all boundedisequences of 

complex numbers[2].  

 

1.3 Functional Banach Space for Functions 

               Assume X isia non-emptyiset, and  H(X) is a Banachispaceiof complex-

valued functionsiwith pointwise additioniand scalarimultiplication. Let x ∈ X. Let δ𝑋 

be theimappingifrom H(X) to f(x). [11]Then it's clear that δ𝑋 isia linearifunctional on 
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H(X); it is known as the evaluationifunctionaliinduced by x. H(X) is aifunctional 

Banachispace if eachievaluationifunction δx isicontinuous, i.e., [3]if   δ𝑋  ∈ 𝐻∗ (X) for 

every x ∈ X, where 𝐻∗(X) is the dualispace of H(X). If H(X) is a functionaliHilbert 

space, theiRiesz-representationitheoremiallows us to discover[3] aiunique F𝑋 ∈ H(X), 

suchithat  

                               [11]g(x) = δ𝑋(g) = (g, 𝑓𝑋).  

For each g ∈ H(X). Theifunction fx is known as the kernelifunction[3] of X inducediby 

x. Consider K(X) ={ F𝑋: x ∈ X}. [1]Then K(X) is a subsetiof H(X). Theicomplex 

function K definedion X × X is as follows:  

                               K(x, y) = 〈𝑓𝑥 , 𝑓𝑦〉 

is represent as the replicatingikernel of H(X).  

Examples :  

The following are some commoniinstances of functionaliBanach spaces[11].  

 

(1.3.1)  ℓP – Spaces.  

             Let X be anyicountable set, and mibe theicountingimeasure specified on its 

power set. LP(m)[11], often known as ℓP(X), isia functionaliBanach space for 1 ≤ p ≥ 

∞. Theicontinuity of theievaluationifunctionals arisesifrom the fact that 

                                    [3]| (f) | = | f(x) | ≤ ∥ f ∥   

 

Both the unitaryispace Cn and the classicalisequence space[3] ℓP are 

functionaliBanach spaces. For p = 2, ℓP(X) is a functionaliHilbert space. 

Theireproducingikernel of ℓ2(X) is giveniby  

                         K(x, y) = {
0, 𝑥 = 𝑦
1, 𝑥 ≠ 𝑦

           

L2 replicating kernelicorresponds to the diagonal[3] of ℕ×ℕ.  

 

(1.3.2)  Space of bounded functions  

               Let 𝐻𝑏 (X) showing theivector spaceiof allicomplex-valuedibounded 

functionsion X. [1]For f ∈  𝐻𝑏(X), define ∥ f ∥  as  

                         ∥ f ∥ = sup{ | f(x) | : x ∈ X 
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Usingithis norm, 𝐻𝑏(x) is a functionaliBanach space[11] since 

                         | f(x) | ≤ ∥ f ∥ 

 

1.4 Locally ConvexiFunction Spaces  

 

               Assume X isia topologicalispace, E is a topologicalivector space, iand A(X, 

E) is theivector spaceicontaining all linearifunctionsifrom X to E definedipointwise. 

Then by a locallyiconvex spaceiof functions on X, weimean a [3]seminormed linear 

space is formed by combining theisubspace F(X, E) of A(X, E) [1]with aifamily of 

seminorms. If E = K, weiwrite F(X) as F(X, K). Not all [3]locally convexispaces of 

functions are Banach spaces[11] or normedilinear spaces. For instance, [1]the space J(X, 

E) oficontinuous E-valued[1] functionsiwith compect-openitopology, where X is non-

compactiand E isia locallyiconvexispace, is locallyiconvex but not normable. 

We define theiweighted spacesiof continuousiE-valuedifunctionsias follows:  

𝑉0𝐽(𝑋, 𝐸) ={f ∈  𝐽(𝑋, 𝐸) : iv f vanishes[3] atiinfinity on X for each v ∈ V}.  

𝐽𝑉𝑃(𝑋, 𝐸) ={f ∈  𝐽(𝑋, 𝐸): vf(X) is precompact[1] iniE for all v ∈V},iand  

𝑉𝑏𝐽(𝑋, 𝐸) ={f ∈  𝐽(𝑋, 𝐸): vf(X) isiboundediin E for all v ∈V}.iObviously, 𝐽𝑉0(𝑋, 𝐸) 

and 𝐽𝑉𝑃(𝑋, 𝐸)  and 𝐽𝑉𝑏(𝑋, 𝐸)are vectorispacesiand  

𝐽𝑉𝑝(𝑋, 𝐸) 𝐽𝑉𝑏(𝑋, 𝐸) whileithe upperisemicontinuity of the weightsiyields that 

𝐽𝑉0(𝑋, 𝐸)4 𝐽𝑉𝑃(𝑋, 𝐸). [1]Let v ∈ V, q ∈ cs(E) and f ∈ J(X,E). If we define  

                       ∥ f ∥𝑣,𝑞 =  sup { q(v(x) q(f(x)) ∶  x ∈  X} 

Theiseminorm ∥. ∥𝑣,𝑞  can beiapplied to JVb(X, E), JVp(X, E), or JVo(X,E). The 

seminormifamily  { ∥. ∥𝑣,𝑞: v ∈ V, q ∈ cs(E) }[3] defines a Hausdorffilocallyiconvex 

topologyion theseispaces. This topologyiwill beidesignated.  

               The vectorispaces 𝐽𝑉0(𝑋, 𝐸)  and 𝐽𝑉𝑏(𝑋, 𝐸)  with wv are referred[3] to as 

weighted locallyiconvex spaces forivector-valuedicontinuousifunctions.  

 

Example 1.4.1.  Let X be a locallyicompact [3]Hausdorff space, andilet E be ailocally 

convexispace. 

Then,  

(i) J𝑉0
2 (X, E)  =  J𝑉𝑃

′(X, E)  =  J𝑉𝑃
′(X, E)  =  (J(X, E), k), whereik denotesithe  

compact -openvtopology :  

(ii) J𝑉0
2 (X, E)  =  J𝑉𝑃

2(X, E)  =  J𝑉𝑃
2(X, E)  =  (J(X, E), k);  
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(iii) J𝑉0
3 (X, E) = 𝐽0(𝑋, 𝐸), 𝑢), 

J𝑉0
3 (X, E) = 𝐽𝑃(𝑋, 𝐸), 𝑢),and[3]  

J𝑉0
3 (X, E) = 𝐽 𝑏(𝑋, 𝐸), 𝑢),whereiu denotesithe topology ofiuniformiconvergence on 

X, and.  

(iv) J𝑉0
4 (X, E) = J𝑉𝑃

4(𝑋, 𝐸) = 𝐽𝑉𝑏
4(𝑋, 𝐸) = 𝐽𝑏(𝑋, 𝐸), 𝛽), [3]where p denotesitheistrict 

topology.  

Toiintroduce weightedispaces  oficross-sections, we needithe followingidefinitions. 

Let {F, : x ∈  X}  denote aivector fibration  over X. Then addia weight to X.  

 

We define aifunction w on X that isia seminorm on F forveach x in X. [3]We'll useithe 

notationiw toirepresent the seminormiw(x) for each x in X. Weidefine w ≤ w' as wx ≤ 

wx', for any x € X. Let W represent[1] aiset of weights on X. W isiconsideredidirected 

upwardiif for anyipair w, w' € W and ⅄> 0, there exists w" ≤ W [2]such that h w ≤ w". 

If f is a [3]cross-sectioniacross X and w isiaiweight on X, we shall refer to w. If, the 

positive-valuedifunction on X thatitransforms x into wx[f(x)][2]. The weightedispaces 

of cross-sections over X withirespect to theisystem of weights W areidefined as: 

 LWo(X) = {f ∈ L(X): w[f]} is upper[1] semicontinuousiandidisappears at infinity on 

X forieach w ∈ Wand LWb(X)={f ∈ L(X): w[f] is[3] a boundedifunction on X for each 

w € W}[3]. It isiobvious that LWo(X) and LWb(X) are vectorispaces, and LWo(X) 

subset LWb(x). Now, iconsider w ∈ W[3] and f ∈ L(X). If weidefine  

                               || f || = sup{wx[f(x)] : x ∈ X}[3] 

The seminorm || . ||w  can be applied toieitheriLWb(X) or LWo(X)[3], and theifamily { 

|| . || : w ∈ W} defines a Hausdorff locallyiconvex topology on bothispaces. We will 

refer to thisitopology as 𝜏W, and theivector spaces[11] as LWo(X). and LWb(X) with 

ἰw is referredito as the weightedilocallyiconvex spaces oficross sections. The formihas 

closed, icompletely convex neighborhwds at itsiorigin. 

                             Bw = { f ∈ LWb(X) : || f ||w ≤1 }[3] 
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CHAPTER 2    

   

              COMPOSITION OPERATORS ON LP -SPACES             

 

 

2.1 Definitions, CharacterizationsiAnd Example. 

               Let (X, Y, m) represent aimeasure space. A mapping T from X to X is 

consideredimeasurable if 𝑇−1(𝑠) ∈ Y  forievery S in Y. A measurableitransformation 

T is non-singulariif m(𝑇−1(𝑠 ))= 0 for any m(S) = 0. If  T isinon-singular, 

theimeasure m𝑇−1, definedias m𝑇−1(𝑠) = m𝑇−1(𝑠) for all S ∈ Y, isiabsolutely 

continuousion Y in relationito m. If m is an 𝜎 -finiteimeasure, theiRadon-Nikodym 

theorem statesithat thereiis a non-negativeifunction fT in L' (m) that 

 

                                                 m𝑇−1(𝑆) = ʃs  fT dm 

 

Every S ∈ Y. Theifunction fT is known asithe Radon-Nikodymiderivative of m with 

respect to m𝑇−1. Ainon-singularitransformation T from X to itselfiresults in a linear 

transformationiCT on LP(m) into theilinear space of allimeasurableifunctions on X, 

defined as 

                                                    CTf = f o T 

 

For every f ∈ LP(m). If CT isicontinuous from LP(m) to itself, itiis considered a 

compositionioperator on LP(m) induced by T.  

 

Theorem 2.1.1. Assume (X, Y, m) isian 𝜎-finiteimeasure space and T : X →  X is a 

measurableitransformation. If b > 0, T generates a compositionioperator CT on 

LP(m).  

                                m𝑇−1(𝑆)   =  b m(S)           for all S ∈  Y. 

 

Proof.  Assume CT is theicomposition operatorigenerated by T. If S ∈ Y and m (S) < 

∞, then χs ∈  LP(m).  

                                  m𝑇−1(𝑆)  =  || CT χs ||
P  ≤ || CT  ||

P || χs ||
P  = || CT ||P m(S) 

                            

Let b = || CT ||
P. Then 

                                                   m𝑇−1(𝑆)   ≤  b m(S)            
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  If m(S) = ∞, then inequality will be trivial.  

Assume the condition is true. If m𝑇−1 <<   m, the Radon-Nikodymiderivative (fT) of 

m𝑇−1 with regard to m exists.  

 

                                                  fT ≤ b    a.e 

Let f ∈ LP(m). Then 

  

                      || CTf ||P = ʃ | foT |P dm =  ʃ | f |P dm 𝑇−1 =  ʃ | f |P fT dm ≤  b || f ||P  

 

This demonstrates that CT is a bounded operator in LP(m). Thisiconcludes the proof 

of the theorem.  

 

Example 2.1.1:  let X be a locally compact abelian groupiand m represent the Haar 

measure on the 𝜎-algebra of Bore1 sets. Let you  y ∈ X. Then specify Ty: X →X as 

 

                                        Ty(x) = yx 

 

For each x ∈ X. CTy is a compositionioperator on LP(m) for 1 ≤ p ≤  ∞. Assume X is 

the real line with standarditopology and addition as the group operation. Then Ty(x) 

=  x + y. Koopman's work on classical mechanics introduced the composition 

operators C, sometimes known as translation operators.  

 

Theorem 2.1.2.  Let (X, Y, m) be a standard Bore1 space, and A be anioperator on 

LP(m). 

Then A is a (generalized) composition operatoriif and only if ƙP  is A-invariant, that 

is, AƙP ⊂ ƙP . 

  

Proof. Assume A is a (generalized) compositionioperator for LP(m). A measurable 

set Y∈ Y and a measurableitransformation T from Y to X result in A= CT. If χs ∈ ƙP , 

then A χs ∈ LP(m). But  

 

                                           Aχs = CT χs =  χT
-1(s) 

 

Thus A χs ∈ ƙP . 

Assuming AƙP ⊂ ƙP . let S ∈ Y be of finiteimeasure. Then χs ∈ ƙP. Hence A χs ∈ ƙP. 

There exists W ∈ Y such that A χs = χw. Let us define  ϕo(S)= W. Thus, ϕo is defined 

on the collection of sets of finiteimeasures. If S1 and S2 are disjoint measurable sets 

of finite measures, then 

                                           A (χ  s1∪ s2 )  =  A (   χ𝑠1   +  χ𝑠2    )   χ𝑠2   𝑠2 

                                                                         =  A   χ𝑠1   +   χ𝑠2   A   

                                                                         =    χ𝑤1  +   χ𝑤2
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This represent that m (W1 ∩ W2) = 0 and  

 

                    ϕo(S1 ∪  S2) =   ϕo(S1) ∪ ϕo(S2) 

 

It can be demonstrated that  ϕo  maintains intersectioniand difference. Given that m is 

an 𝜎 -finite measure, there exists aisequence {Si} of pairwise disjoint measurable sets 

of finite measures. 

                                       x = ⋃ 𝑆𝑖∞
𝑖=1 . 

 

Let Xi =  ϕo (Si), i.e., A χsi = χxi for i ∈ ℕ, and let X' = ⋃ 𝑋𝑖∞
𝑖=1  . If S is an arbitrary 

member of Y, ϕo(S) can be written as:  

 

                                      ϕo(S) = ⋃ ϕo∞
𝑖=1   (S ∩ Si  ) 

               

 ϕo : Y  → Y' is an  𝜎-homomorphism, iwhereas Y' is an 𝜎 -algebra of measurable 

subsets of X'. This 𝜎 -homomorphism generates Cp: Y/ £ → Y'/ £' , which is defined 

as  

 

                                       ϕ (S Δ £ ) = ϕo(S) Δ £'. 

 

According to Theorem, there exists a measurableitransformation T: X' →  X such 

that ϕ  = h'
T. If m (S) equals ∞, then 

 

                                        A χs = χT
-1

(s) = CT χs 

 

Thus, A and CT agree on   ƙP and, by extension, on LP(m). This indicatesithat A 

equals CT. This concludes the proof of the theorem.  

 

 

2.2 Invertible Composition Operators 

 

               If 𝜋 is a boundedicomplex-valuedimeasurable function on X, the mapping 

M 𝜋 on L2 (m) defined by Mπ  f= π . 𝑓  is a continuousioperatoriwith a range in L2 

(m). This operator M π, is called the multiplicationioperator induced by π. 

If CT is a compositionioperator on L2 (m), then CT. 𝐶𝑇
∗  is a multiplicationioperator, 

and CT 𝐶𝑇
∗  is similar to a multiplication operator. The followingitheorem explains 

these findings.  

 

Theorem 2.2.1 Let CT be the compositionioperator on L2 (m). Then 

 (i) 𝐶𝑇
∗ CT = MfT. 
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 (ii) CT 𝐶𝑇
∗  = MfT o T

p, where P is L2 (m) projection onto the CT range closure. 

 (iii) CT has dense rangeiif andionly if CT 𝐶𝑇
∗; = MfT o T.  

 

Proof. (i)  Let f,g ∈ L2 (m). Then 

 

                                                             〈 𝐶𝑇
∗  𝐶𝑇f , g  〉 =  〈𝐶𝑇𝑓, 𝐶𝑇𝑔  〉 =  ʃ  f 𝑔̅ dm 𝑇−1 

 

                                                                                   =   fT  f 𝑔̅ dm 

 

                                                                                   =  〈𝑀𝑓𝑇 f , g   〉 

Thus 𝐶𝑇
∗ CT = MfT. 

 

(ii)   Assume f ∈ L2 (m). Then Pf belongs to theiclosureiof CT range. Hence, there 

exists a sequence {CT fn} inithe range of C, whichiconverges to P f in norm. Thus  

 

                                             CT𝐶𝑇
∗Pf =  lim

𝑛
 𝐶𝑇 𝐶𝑇

∗ 𝐶𝑇 𝑓𝑛 

 

                                                          = lim
𝑛

 𝐶𝑇( 𝑓𝑇 𝑓𝑛) 

 

                                                           =  MfToT Pf 

 

We can deduce that f - P f is in the orthogonalicomplement of CT range, which is 

equivalent to the kernel of   CT𝐶𝑇
∗f = CT𝐶𝑇

∗Pf. Thus  CT𝐶𝑇
∗f = CT𝐶𝑇

∗Pf for all f ∈ L2 

(m). Hence CT𝐶𝑇
∗ = MfToT P 

 

(iii)   If CT has a dense range, then (ii) P equals I, the identity operator.  

Hence  CT𝐶𝑇
∗  = MfToT P.  Since fT o T not equal 0 at., CT𝐶𝑇

∗  is an injection. Since 𝐶𝑇
∗   

and CT𝐶𝑇
∗  share the same ,We now got the desiredioutcome. This concludes the proof 

of the theorem. 

 

Theorem 2.2.2:   Let CT be a compositionioperator on L2(m)[7]. Then the 

followingiare equivalent.  

(i)   CT isianiinjection.  

(ii)  f and f o T have theisame essentialirange for any f ∈ L2 (m) 

(iii)  m << m o 𝑇−1 

(iv)  fT varies from zero practicalleieverywhere. 

 

Proof: (i) ⟹ (ii) Assume CT  representsian injection. The essentialirange of f o T is 

always theisame as the essentialirange of f in L2 (m). To demonstrate reverse 

inclusion, let a be in theiessential range of f. Let G be the neighborhood of a. Then, 
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using the notion of essential range, m (𝑇−1 (𝑓−1(G))) ≠ 0. As CT is aniinjection, we 

can conclude that m (𝑇−1 (𝑓−1(G))) = 0. Thus, a falls within the fundamental range 

of f oT.  

(ii) ⟹ (iii): Let S ∈Y be such that m 𝑇−1(S) = 0. The essentialirange of CT χs is 

equivalent to theisingleton set (0). According to (ii), the basic range of χs is equal to 

zero. This means that m (S) equals 0. Thus, m << m o 𝑇−1.  

(iii) ⟹  (iv): This implication stems from theifollowing equation:  

             m 𝑇−1(S) = ʃs fT dm 

(iv) ⟹ (i): Assume fT differs from zero practicallyieverywhere. It is well-known that 

the multiplication operator MfT is an injection. As per portion (i) of Theorem 2.2.1,  

𝐶𝑇
∗ CT is an injection. Therefore, CT is an injection. Thisiconcludes the proof of the 

theorem. 

 

 

Corollary 2.2.1: Let CT be a compositionioperator on L2(m). Let T be right 

invertible and its right inverse be non-singular. The CT scan is theniadministered as 

an injection.  

Let Y1 and Y2 be two 𝜎-subalgebras in Y. Y1 and Y2 are considered equal (written as 

Y1 = Y2) if for any S1 ∈ Y1, there exists S2 ∈ Y2, such that S1 = S2, and vice versa. If 

T is a measurableitransformation, then 𝑇−1(𝑌) is an  𝜎-subalgebra of Y, where 

 

                                          𝑇−1(𝑌)   =   {𝑇−1(𝑆) ∶  S ∈  Y} 

 

The L2-space with respect to the 𝜎-subalgebra  𝑇−1(𝑌) , denoted as L2 (X,  𝑇−1(𝑆), 
m), is a subspace of L2 (m). The range of anyicomposition operator is a subspace 

(not necessarily closed) of this space.  

 Each composition operator isidense in   L2 (X,  𝑇−1(𝑆), m).  We will demonstrate 

this in the following theorem. 

 

 

2.3 Compact Composition Operators 

 

               In a separable Hilbert space, an operator'sicompactness means it converts 

weakly convergent sequencesiinto norm convergent sequences. For example, if xn 

⟶ x are weakly convergent, then Axn⟶  Ax in the Hilbert space'sinorm. This 

section covers compact compositionioperators on L2 (m). There aren't many compact 

composition operators. No composition operator exists on theisecond level of a non-

atomic measure space is compact. Noicomposition operator is compatible with ℓ2, 

the L2-space of an atomic measurement space. However, some weighted sequence 

spaces have compact composition operators. 
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Let (X, Y, m) be a measureispace, with ℰ > 0 and 𝜋 a complex-valuedimeasurable 

function on X. The set (x: x ∈ X and | 𝜋 (x) | > ℰ ) is denoted by  𝑋𝜀
𝜋. Let  𝑍𝜀

𝜋be 

defined by. 

 

                                             𝑍𝜀
𝜋 = 〈 fχ𝑋𝜀

𝜋 ∶   𝑓 ∈  𝐿2 (𝑚)〉  

 

Then    𝑍𝜀
𝜋 is a subspace of L2(m). If an element from L2 (m) vanishes outside of X, it 

belongs to Z. The theorem describesicompact multiplication operators on L2 (m) 

based on Z dimension.  

 

Theorem 2.3.1: Let 𝑀𝜋 be a multiplicationioperator on L2(m). Then 𝑀𝜋 is compact 

if and only if  𝑍𝜀
𝜋 has finite dimension for all ℰ > 0. 

 

Proof. Let  𝑀𝜋be compact. Since 𝑍𝜀
𝜋 is invariant under 𝑀𝜋, it follows that the 

restriction of 𝑀𝜋  to 𝑍𝜀
𝜋 is also compact. As x is constrained away from zero on 𝑋𝜀

𝜋, 

we can conclude that 𝑀𝜋  , 𝑍𝜀
𝜋 . Thus 𝑍𝜀

𝜋  is finite-dimensional.  

 

In contrast, if  𝑋𝜀
𝜋 is finite-dimensional for every ℰ , it is alsoifinite-dimensional fori 

every n ∈ ℕ . Let x be defined as.  

 

                                              𝜋𝑛 = 𝜋  χ𝑋1/𝑛
𝜋  

 

Then 𝑀𝜋𝑛
, is a finite rank operator, and  𝑀𝜋𝑛

+ 𝑀𝜋 is a norm. Hence, 𝑀𝜋 is a 

compact operator. This concludesithe proof. 

 

Theorem 2.3.2 : (i) states that a multiplication operator 𝑀𝜋 on L2(m) is compact if 𝜋  

= o a.e. on  

(ii) If  𝑀𝜋 is an injective multiplicationioperator on L2 (m), then it is compact.  

indicates that (X, Y, and m) is an atomicimeasureispace.  

(iii) If CT is a compositionioperator on L2 (m),   𝑇−1 (X2 ) = X equals X when CT is 

compact.  

(iv) If m(X) = ∞, the compactness of a compositionioperator C implies that m(X2) = 

∞. 

 

Proof. (i) Define m2 as the limitation ofithe measure m on X2, and m1 = m – m2. 

L2(m1) is an invariantisubspace of 𝑀𝜋 , resulting in 𝜋  = 0 a.e. on X1.  

(ii) If  𝑀𝜋 is compact, the kernel of 𝑀𝜋 contains L2(m1). Because 𝑀𝜋 is one-to-one, 

L2 (M1) equals zero. Hence, m1 = 0. Thus, m equals m2.  

 

(iii) If CT is compact, then  𝑀𝑓𝑇  is also compact. Hence, by section (i), fT is zero 

practically everywhere on X1.   
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                                                         X =   𝑇−1 (X2 )  

(iv) If CT is compact and m(X2) < ∞, part (iii) and Theorem 2.1.1 provide a 

contradiction.  

From the previous theorems, it isiclear that the hope for the existence of the compact 

.Composition operators occur when the underlying measure space is atomic. Sequence 

spaces are examples of L2-spaces within atomic measure spaces. This section covers 

compact  composition operations on Hilbert spaces of sequences. 

Let T: ℕ ⟶ ℕ be aimapping, with 𝜀 > 0. Thenidefinetheiset 𝑁𝜀 as: 

 

                                  𝑁𝜀   =    { n ∶  n 𝜖 ℕ and m 𝑇−1 ({𝑛}) > 𝜀 𝑚({𝑛}) }   Nε 

 

Theorem 2.3.3. Let CT be aicomposition operator for ℓ2(w). CT is compact if and 

only if N contains a finiteisubset for all 𝜀 > 0. 

 

Proof. Assume (fi) is a weakly convergentisequence in ℓ2 (w), with 𝜀 > 0. Assume 

𝑁ℰ is finiteiwith k components. Theorem 2.1.1 states that if b > 0, then 

m 𝑇−1 ({𝑛}) > 𝜀 𝑚({𝑛}) for all n 𝜀 ℕ. Thus 

 

                         || CTfi ||
2  = . ʃ N | fi |

2 dm 𝑇−1  =  ʃ Nε   | fi |
2 dm 𝑇−1  +   ʃ N/Nε  | fi |

2 

dm 𝑇−1  

 

                                                                       ≤  b k | fi (ni ) |
2 m({ns}) + || fi ||

2 
 

 where | fi (nr ) | = max { | fi (ni ) |: nt ∈ 𝑁𝜀 and m ({ns}) = max{m({nt}):nt ∈ 𝑁𝜀} goes 

to zero pointwise, we can identify j 𝜖  N such that for i > j. we have N  
 

                             || CTfi ||
2 ≤  ε1 bk . m({ns}) + ε || fi ||

2 

 

Since weakly convergent sequences are normiconstrained, we may concludeithat the 

sequence { || CTfi ||} convergesito zero. This demonstratesithat CT is compact.  

In contrast, suppose Nε has an unlimited number of elements for any ε > 0. CT is 

boundediaway fromizero at the end of theispan {ej : j 𝜖 Nε }. According to Problem, 

CT is not compact sinceithe range of itsilimitation is a closed, infinite-dimensional 

subspaceiwithin CT. This concludesithe proof ofithe theorem.  
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2.4 Normality Of Composition Operators  

              In Hilbert space, anioperator A isiconsidered normal if iticommutesiwith its 

adjoint 𝐴∗, and quasinormal if iticommutes with 𝐴∗A. If 𝐴∗A  -𝐴𝐴∗ is positive, then 

A is consideredia hyponormalioperator. If either If A or 𝐴∗ is aihyponormal, ithen A 

is considerediseminormal. Unitaryimeans  𝐴∗A = 𝐴𝐴∗ = I. 

 

Theorem 2.4.1: Let (X, Y, m)[7] be a typicaliBorel space, iand let CT be a

icomposition operatorionL2(m). Then theifollowing areiequivalent.  

 (i) CT isiunitary.  

(ii) T is aniinjectioniwith fT = 1 a.e., (iii) CT isiinvertible with fT = 1 a.e., and (iv) C 

is aicompositionioperator.  

 

Proof: (i) ⟹ (ii) If CT isiunitary, then 

 

                                        𝐶𝑇
∗CT  = CT 𝐶𝑇

∗  = I 

 

Hence MfT = I. Thus, fT equals 1 a.c. Theorem 2.2.14 states that CT isiinvertible, 

which implies that T is aniinjection.  

(ii) ⟹  (i) fT = 1 a.e., CT is an isometry with closedirange. If T is aniinjection, then 

CT has a discreteirange, accordingito Corollary 2.2.1. Hence, CT isiinvertible.  

 

(iii) ⟹ (iv) Given that CT isiinvertible and fT = 1 a.e., we obtain 

  

                                  𝐶𝑇
∗ = MfT 𝐶𝑇

−1 = 𝐶𝑇
−1 = 𝐶𝑇−1   

       

(iv) ⟹ (i) Assume 𝐶𝑇
∗  = CU for a measurableitransformation U. Then 

 

                                MfT   =   𝐶𝑇
∗CT    = CUCT = CToU 

 

Thus, using the argumentipresented beforeithe theorem, weiobtain 

                                

                                 fT = 1 a.e 

 

This demonstratesihow CT is aniisometry. If CT has aidense range, it will beiunitary. 

To proveithat CT has a denseirange, simplyishow that 𝑇−1 (𝑌)  = Y. Let S 𝜖 Y be 

finite[7] inimeasure. If  χ𝑠 𝜖  ran CT, thenithere is a h 𝜖 L2(m). Such that 

 

                                       CTh = χ𝑠   

 

Because CT is aniinjection, iCorollary[7]  statesithat h = χs2
  for some S2 𝜖 Y. Hence, 

S =𝑇−1 (s2) 𝜖 𝑇−1 (𝑌) . If  χ𝑠    is not in theirange of CT, we can write 
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                                        χ𝑠   = CT g +  f 

 

where f 𝜖 (ran 𝐶𝑇) ⊥ . Now we have 

 

                                       CU  χ𝑠 =   𝐶𝑇
∗CT  g + 𝐶𝑇

∗  f 

                                                   = g                                       

 

Thus, g equals χ𝑇−1 (𝑆)  . It is proven that χ𝑠 = χ
𝑇−1 (𝑈−1 (𝑆))

 . Hence S 𝜖𝑇−1 (𝑌) . It is 

proven that S 𝜖 𝑇−1 (𝑌) for any S 𝜖 Y. Hence  Y ⊂  𝑇−1 (𝑌)  ⊂ Y . Thus 

 

                                          Y = 𝑇−1 (𝑌) 

This proves the  statement.  

 

Theorem 2.4.2. Let (X, Y, m) be an a-finiteimeasure space with CT as aicomposition 

operatorion L2 (m).  

 (i) CT isihyponormal if || √𝑓𝑇  f ||  ≥ || √𝑓𝑇 o T pf || for everyone  f  𝜖 L2(m).  

 (ii)  𝐶𝑇
∗ is hyponormal if and only if fT o T  ≥ fT a.e. and the completioniof the 𝜎-

algebra given by the set ofitype S interception )  𝑋𝑜
𝑓𝑇

  for S 𝜖 Y isicontained in  𝑇−1  

(Y), where  

                         𝑋𝑜
𝑓𝑇

 = { x : fT (x) > 0 } 

  

Proof: (i) CT isihyponormal if andionly if  𝐶𝑇
∗CT - CT𝐶𝑇

∗  ≥ 0  . Hyponormaliif and 

only if. 

  

                      〈( 𝐶𝑇
∗  𝐶𝑇   −    𝐶𝑇 𝐶𝑇

∗) 𝑓 , 𝑓〉  ≥ 0                     

 

According to Theoremi2.2.1, CT is consideredihyponormaliif andionly if  

 

                      〈𝑀𝑓𝑇 𝑓 , 𝑓 〉 ≥  〈𝑀𝑓𝑇𝑜𝑇  𝑝𝑓 , 𝑓〉         for all  f  𝜖 L2(m) 

 

Based on this, we can conclude that CT is hyponormaliif andionly 

 

                    || √𝑓𝑇  f || ≥ || √𝑓𝑇 𝑜 𝑇 pf ||              for all  f  𝜖 L2(m) 

 

Thisidemonstrates (i) (because P is theiprojection of L2(m) on the CT, P2 = P, and 

P(fT o T f) = fT O T pf  

(ii) Assume  𝐶𝑇
∗ isihyponormal. Theikernel of  𝐶𝑇

∗  is found in theikernel of  CT . 

Assume S is a finiteimeasure setithat does notibelong to 𝑇−1 (𝑌) andihas a 
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correlatioi with X. Then χ𝑠 is notiwithin the CT range'siclosure. There is a function f 

in the orthogonal complementiof the CT rangeiclosure that has avalue of zero (f, χ𝑠) 

≠ 0. Since f 𝜖 ker 𝐶𝑇
∗  subset ker CT equal ker MfT, we have 

 

                               fT f = 0 

 

Thus, we arriveiat aicontradiction. Hence, S 𝜖 𝑇−1 (𝑌) . Let 

 

                               S1 = {(x : (fT o T) (x) < fT (x)}  

 

Then S1 𝜖 𝑇−1 (𝑌) . Using the hyponormalityiof 𝐶𝑇
∗ , it can be provedithat m(S1) = 0. 

Hence fT o T  ≥ fT a. e. For theiconverse, isuppose conditionsiare true. 

Let f  𝜖 L2(m)[7]. Then f canibeiwritten as  

 

                              f = f1+ f2 

 

where f1 is theiclosure of ranCT and f2 itsiorthogonal complement. It is possible to 

prove that  

 

                             || 𝐶𝑇
∗ f ||2 - || CT f ||2 = ʃ ( fT o T – fT ) | f1 |

2 dm 

 

Since fT o T ≥  fT, we haveitheihyponormality of  𝐶𝑇
∗.  

 

 

2.5 WeightediComposition Operators 

 

               The weighted compositionioperator  𝑊𝜋,𝑇 on a functionispace H(X) over a 

set X is aicontinuous linearitransformation from H(X) to itself, idefined as  𝑊𝜋,𝑇(f) =  

𝜋. f o T, where 𝜋 is aifunction in X and T is a [7]self mapiof X. If  𝜋 inducesithei

multiplicationioperator 𝑀𝜋  on H( x), and T induces theicompositionioperator CT on 

H(X), then  𝑊𝜋,𝑇 =  𝑀𝜋 CT.  However, ithe weightedicomposition operator 𝑊𝜋,𝑇  

may be induced byithe pair (𝜋,T), but notiby T. For example, if 𝜋 (x) = 0 forievery x 

𝜖 X and T: X  →X is a map, ithen 𝑊𝜋,𝑇  is a weightedicomposition operatoriwhether 

T causes anioperatorior not. The compositeifunction f o T is multiplied by R to 

obtain the function 𝑊𝜋,𝑇 (f). Multiplyingiby  𝜋 and composing theifunction  𝜋.f 

withiT yieldsithe operator f  →  (𝜋. f)o T, denotedias 𝑊 𝑇,𝜋 .  

 

We suppose : X  → C is a boundedimeasurableifunction and T: X   → X is a non-

singularimeasurableitransformation. For more generalizediweighted compositioni 

operators, we caniuse the support of  𝜋 as theidomain of T.  

Now, define theimeasure  𝑚𝑇
𝜋 on Y as Since m(S) = 0, m𝑇−1  (S) = 0, and 𝑚𝑇

𝜋 (S) = 0, 
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we caniconclude that  𝑚𝑇
𝜋 << m. Define f asithe Radon-Nikodymiderivativeiof m 

withirespect to m, with 0 equaling  ϕ = (𝑓𝑇
𝜋)1/p . If fT is essentially bounded, 𝑊𝜋,𝑇  is 

also bounded on LP(m). However, theiopposite is not true. Theifollowing theorem 

defines  𝑊𝜋,𝑇  boundednessias the boundedness of  ϕ.  

 

Theorem 2.5.1 states that a weighted composition operator  𝑊𝜋,𝑇 on L2 (m), is 

compact if and only if   m𝑇−1 (X1) = 0. 

 

                        
𝑚𝑇

𝜋({𝑥𝑖})

𝛼𝑖
 → 0  𝑎𝑠  →  ∞ 

 

This limit is assumedvto be 0 if X2 is finite. 

 

Proof. Let Xo = {x 𝜖 X1 :  ϕ (x) > 0}. 

Now, 

 

                        ʃ     | 𝜋|P dm =  𝑚𝑇
𝜋(𝑋) =  ϕP dm 

 

As a result, m𝑇−1  (X1) = 0 if and only if m(Xo) = 0. That is, ϕ (x) = 0 a.e. on X1 if and 

only if 𝜋(x) = 0 a.e. on  𝑇−1  (X1)  . Now,  

 

                              𝛼𝑖 ϕ
P (Xi) =  ϕP dm = 𝑚𝑇

𝜋 ({Xi})              

 

and  hence     

 

 

                               ϕ (xi) =   {〈
𝑚𝑇

𝜋 ({Xi})

𝛼𝑖
〉}1/p 

 

 𝑊𝜋,𝑇 is compact only when m(Xo) = 0 and   lim
𝑖→∞

 ϕ (𝑥𝑖)  = 0. If m(Xo) = 0 and                                 

ϕ (xi) →  0, then for each ε > 0, the set 𝑋 ε
ϕ

 is a union of finitelyimany atoms with 

measure zero. As a result of theorem,  𝑍 ε
ϕ

 has finite dimensions.  𝑊𝜋,𝑇 is compact. 
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CHAPTER 3 

 

    COMPOSITIONiOPERATORS ONiFUNCTIONAL BANACH 

SPACES 

 

3.1 GeneraliCharacterizations 

               If X is ainon-empty setiand H(X) is aifunctional Banachispace oficomplex-

valuedifunctions, then theievaluationifunctionals δx, defined as δx(f) = f(x), are 

continuous andibelongito 𝐻∗( (X), the conjugateispace of H(X). If T : X →X is a 

mappingiwith f oT belonging to H(X) whenever f belongs to H(X), then the [11]mapping 

f into f oT is ailinearitransformation from H(X) intoiitself. Accordingito theiclosed 

graphitheorem, this linearitransformation isicontinuous andibounded. CT represents the 

compositionioperator on H (X) caused by T.   

 

If A is an operatorion H(X), then itsiadjoint,  𝐴∗, is anioperator on 𝐻∗(X). 

defined as:  

                                    (𝐴∗F)(f)=F(Af) 

 

for every[11] F ϵ 𝐻∗( (X) and f ϵ H(X). It is clear that  𝐴∗ is theicomposition operator[7].  

on 𝐻∗( (X) caused byithe operatoriA. If CT is a compositionioperator on H(X),  

 Then clearly, ∆ is invariantiunder 𝐶𝑇
∗ really 

 

                                   𝐶𝑇
∗ δx = δT (x) 

 

Theorem 3.1.1: Let A be anioperatorion H(X) and let H(X) be a functionalvBanach 

spaceiover ainon-empty set X. If A is invariantiunder 𝐴∗, that is,  𝐴∗(∆) subset ∆, then 

A is a compositionioperator ifiandionly if.  

 

Proof: Assumeithat for some  A = CT. Let  δx ∈ ∆ and  f ∈ H(X). (𝐶𝑇
∗  δx) (f) = δx ( CT 

f) = δx (f o T) = δT(x) (f) is the result then. Consequently, 𝐶𝑇
∗  δx  =  δT(x) ∈ ∆ 

Alternatively, consider that ∆  is invariantiunder   𝐴∗. Assume x∈  X. Next, δx ∈ A, 

and hence ,  𝐴∗ δx,∈ ∆. As a result, T(x) ∈ X exists such that  𝐴∗δx  =  δT(x). It is clear 

what mapping T takes x to T(x) is. 

                                             

                                 (foT)(x) =  f(T(x)) = δT(x)(f) = (𝐴∗δx  )(f) = (Af)(x) 

 

 This nowidemonstrates that CT = A. This concludes theitheorem's proof.  
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3.2 Operators Of CompositioniOn Spaces HP(D), HP(DN) AND HP(DN) 

 

Theorem 3.2.1. 

(i) A compositionioperator CT on Hp(D) for 1 ≤ p ≤  ∞ is induced by each 

holomorphic map T from D into itself. And 

 

                                 || CT ||P  ≤  
1+|𝑇(0)|

1−|𝑇(0)|
            p ≠∞ 

  

(ii) The following are identical if A is a non-zeroibounded operator on HP(D) and fn 

(z) = zn for n  ∈ Z:  

 

(a) A is a compositionioperator;  

(b) for every n ∈ Z, A fn = (Af1)
n  

(c) for every boundedianalytic function f and g in HP(D), A(f.g) = Af.  

 

(iii) T is a conformal automorphismiof D if and only if the compositionioperator CT 

on HP(D) is invertible. 

 

Proof. (i) Rudin's results ( state that an analyticifunction f on D is only included in HP 

(D) if and only if If  |f|P is the least harmonicimajorant of f and possesses a harmonic 

majorant, then   ||f||P  = 𝜓𝑓(0). Hence, fo T is analytic on D and 

 

                                | (foT)(z)|P  = | f(T(z)) |P ≤   𝜓𝑓(T(z))       for all z ∈ D 

 

𝜓𝑓𝑜 𝑇  is a harmonicimajorant for f o T and consequently f oT ∈ HP (D) if T: D → D 

isianalytic and f ∈ HP (D). This demonstratesihow theicomposition operator CT is 

induced by T. In this instance,  

 

                                   || CTf ||P = || foT ||P = 𝜓𝑓𝑜 𝑇(0) ≤ 𝜓𝑓𝑜 (𝑇(0))   

 

we therefore get  
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                                 || CT ||P  ≤  
1+|𝑇(0)|

1−|𝑇(0)|
  || f ||P        

    

(ii) Suppose Afn =(Af1 )
n  for n ∈  ℤ+ according to Harnack'siinequality. Assuming T 

= Af1 , T is aimember of HP (D). We currently have every n ∈  ℤ+   

. 

                          || Tn ||1/n = || Afn ||
1/n ≤  || A ||1/n 

 

It is possible toidemonstrate this by taking the limitsiof both sides as n  → ∞ 

 

                           ||  𝑇̃ ||∞ ≤ 1 

 

where 𝑇̃   represents the radialilimit of T, which isialmost always present on the unit 

circle.  

T cannot be a constant function of unit modulusisince it translates D into D according 

to the maximum modulusiprinciple. Consequently, T generates theicomposition 

operator CT, which concurs with A on fn
's meaning that A=CT. On the other hand, Afn  

= (Af1 )
n  follows naturally if A is a composition operator. Thisidemonstrates how (a) 

and (b) are equivalent.  

This makes the equivalency of (a) and (c) obvious.  

(iii) Assume f and g are bounded analyticifunctions in HP (D) and that A is the inverse 

of CT. 

                               CT A(fg) = A(fg)oT = f.g = ( CT Af) (CTAg) 

                                                                        = (Af.Ag)o T 

 

 hence (A(fg)-Af.Ag)oT = 0. T  range is considered to be aniopen set since T is non-

constant as CT. is therefore invertible, therefore we get  

 

                                 A(fg) = Af . Ag 

 

As a result, by (ii), an analyticifunction U from D onto itself exists, making A = CU . 

Given that, 

                                ( CU CT f1)(z) = (ToU)(z) = z = (UoT)(z)     for all z ∈ D 

 

we can argue that T has an analyticiinverse. T is a conformaliautomorphism as a 

result. It is simple toiprove the opposite.  
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Theorem 3.2.2: Let T: Dn  → Dn be a holomorphicifunction with 1 < p <  ∞.  

(i) CT is a compositionioperator on HP (Dn ) if and only if  uT (S(G)) < c mn (G) for 

everyiopen set G in  𝜕Dn and a [11]constant c > 0.  |zi|
   |𝑧𝑖|

2  

 

(ii) If  sup
𝑧∈𝐷𝑛

   ∏
(1−|𝑧𝑖|2)

1−|𝑇𝑖(𝑧)|2
𝑛
𝑖=1    is infinite, T doesinot provide theicomposition  operator 

on HP (Dn ), where 

 

                        T(z) = ( T1(z), T2(z),…….Tn(z) 

 

Proof. (i) We infer that uT is a well-defined measure since    ∫ 𝑓𝑑𝑢𝑇 =  ʃ (fo 𝑇̃ )dmn  

generates a continuousilinear Dn functional on C ( 𝐷𝑛̅̅ ̅̅ ).  . If f ∈ HP (Dn ) intersection  

C( 𝐷𝑛̅̅ ̅̅ ). then  

 

                         ||𝑓𝑜𝑇||𝑃
𝑃 = ∫

𝜕𝐷𝑛    |f|
Po 𝑇̃ dmn 

 

                                        = |f|P duT 

 

If  uT is a Carleson measure, the foregoing assertioniimplies that CT is continuous on 

H and so on HP(Dn) intersection C( 𝐷𝑛̅̅ ̅̅ )as it is dense in HP (Dn ). If CT is bounded, the 

following argument implies that  u  is a Carlesonimeasure. This describes theiproof of 

component (i). 

 

(ii) It isisufficient to assume p = 2. Let z ∈Dn . Define gz : D
n   →  ℂ as 

 

                                   gz (w) = ∏
1

1− 𝑤𝑖̅̅̅̅  𝑧𝑖

𝑛
𝑖=1  

                          

Then   

                                         gz ∈ H2 (Dn), and thus 

  

                                         || gz ||
2 = gz(z) = ∏

1

1−|𝑧𝑖|2
𝑛
𝑖=1  
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we also have  

 

                                       ||  𝑔𝑇(𝑧) ||
2  = 𝑔𝑇(𝑧)(T(z)) = ∏

1

1−|𝑇𝑖(𝑧)|2
𝑛
𝑖=1  

 

Also 

 

                                       || 𝑔𝑇(𝑧)||
2 = (𝑔𝑇(𝑧)oT)(z) = ( CT 𝑔𝑇(𝑧)) (z) 

 

Therefore   

  

                                       || 𝑔𝑇(𝑧)||
2  ≤  || CT 𝑔𝑇(𝑧)||2 〈∏

1

1−|𝑧𝑖|2
𝑛
𝑖=1 〉1/2 

 

Therefore, it follows that  

 

                                          || CT||2 ≥ || 𝑔𝑇(𝑧)||
2   ∏ (1 − |𝑧𝑖|

2)𝑛
𝑖=1    =   ∏

(1−|𝑧𝑖|2)

1−|𝑇𝑖(𝑧)|2
𝑛
𝑖=1  

 

This is true for every z ∈ Dn  thus, 

 

                                                       || CT||2 = sup
𝑧∈𝐷𝑛

   ∏
(1−|𝑧𝑖|2)

1−|𝑇𝑖(𝑧)|2
𝑛
𝑖=1  

 

This concludes the proof of Part II.  

  

Theorem 3.2.3: Let CT be aicompositionioperator on HP (D). 

(i) CT is compactiif andionly if theinorm-boundedisequence {fn } in HP (D) that 

convergesiuniformly on compactisubsets of the unit disc alsoiconverges to zero in the 

norm.  

(ii) CT isicompact, implying that | 𝑇̃ (𝑒𝜄𝜃)|  < 1 a.e. 

(iii) CT is noticompact if T hasian angular derivativeiat some point  .  

(iv) CT isiHilbert-Schmidt if and only if 1 / (1-| 𝑇̃ |2 ) is integrable in theiLebesgue 

measure on 𝜕𝐷  at p = 2.  
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Proof. (i) This conclusioniis valid over multipleiBanachispaces of analyticifunctions, 

and the proof isistraightforward. It can beilocated at .  

(ii) Because T maps D to D, it is clear that  | 𝑇̃ (𝑒𝜄𝜃 ) | < 1 a.e. Define fn on D as fn 

(t)=zn  where n isiin ∈ N. {fn } is a norm-boundedisequence that converges toizero 

uniformly onicompactisubsetsiof D. If  | 𝑇̃ (𝑒𝜄𝜃 ) |   = 1=1 for a set ofinon-zero 

measures,  

                      || CT fn ||
2 = || fn o T ||2 = ʃ |T(𝑒𝜄𝜃 )|2n d𝜃 ↛ 0 

 

as n  →  ∞. According to (i), CT is noticompact.  

(iii) Assume T's angulariderivative at eie equals 1 without loss of generality. The 

angular derivativeirequires aiconstant k > 0 to exist, as defined. 

  

                      
|1−𝑇(𝑡)|

|1−𝑡|
 ≤ 𝑘          for   -1 < t <1 

 

Let   

 

                    fn(z) =  
1

√𝑛(1−𝑧)(𝑛−1)/𝑛
         for  z ∈ D 

In H2 (D), {fn } is a weak nullisequence, while {fn oT} is boundedifrom zero. Hence, 

CT is noticompact .  

(iv) CT is Hilbert-Schmidtiif and only if      ∑ || 𝐶𝑇 
∞
𝑛=1 𝑓𝑛  ||

2 <  ∞ , where fn is the 

same asispecified in (2). Since  

 

                    ∑ || 𝐶𝑇 
∞
𝑛=1 𝑓𝑛  ||

2 = ∑ ∫ (|𝑇̃ (𝑒𝜄𝜃)|2𝑛)∞
𝑛=1 d𝜃 = ʃ 

1

1−|𝑇̃ (𝑒𝜄𝜃)|2 d𝜃 

 

We finish theiresults. 

 

3.3 Composition Operators On HP (P+ ) 

 

               P+  denotesithe upperihalf plane, idefined as {w: w ∈ C and Im w > 0}, 

whereiIm w represents the imaginaryipart of w. Then theihardy space Theidefinition 

of  HP (P+ ) for 1  ≤ p < ∞  is:  

                          HP (P+ ) = { f : f is analyticion P+ and  sup
𝑦>0

 ∫ |𝑓(𝑥 + 𝜄𝑦|𝑝∞

−∞
dx < ∞ 
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The pointwiseivector spaceioperations andithe norm are defined as  

 

                            || f ||P = sup
𝑦>0

 ∫ |𝑓(𝑥 + 𝜄𝑦|𝑝∞

−∞
 dx 

 

   HP (P+ )   becomesia functionaliBanach space.  

 

𝐿𝑒𝑡 𝐿(𝑧)  =   
𝜄(1+𝑧)

1−𝑧
   maps D to P+  and 𝜕𝐷  to theireal line, with  𝐿−1 given as 

 

                            𝐿−1 = (w-𝜄)/(w +𝜄) 
 

 Let Q be defined as  

 

                           (Qf)(x) = (1/√𝜋)(f o 𝐿−1)(𝑥)/(x + 𝜄) 
              

Then Q is a well-known isometriciisomorphism from LP (m) to LP ( −∞  , ∞ ). Let t: 

D → D be an analyticimap, and T=Loto 𝐿−1 . Let   𝛽(z) =    
1−𝑡(𝑧)

1−𝑧
       for Z ∈ D.  

In , it was demonstrated using Poissoniintegrals in the disk andiupper half plane that 

CT is a compositionioperator on   HP (P+ )   if and only if 𝑀𝛽  A(P+ ) refers to any 

analytic mappings T that take P+  into itself and only have a pole at - as their  

singularity. The following theorem presentsifindings on compositionioperators on 

H2(P+).  

 

Theorem 3.3.1.  

(i) Assume T ∈  A(P+ ). T thus induces aicompositionioperator on If (P) if and only if 

it has a pole at zero.  

(ii) CT is a compositionioperator on H2 (P+ ), then 

 

                        sup
𝑤∈𝑝+

{(Im w)/(Im T(w))} ≤ || CT ||2 

 

(iii) CT is invertibleiif induced by T ∈ A(P+ ) and T is a conformaliautomorphism of P. 

 

Proof. (i) Assumeithat T has a pole at  ∞ . If T is analyticiin a neighborhood of  ∞, the 

function t =  𝐿−1oTo L is analytic in aineighborhood of 1 with 𝜄 ̃ (l)=l. T inducesia 

compositionioperator CT on H2 (P+) via an earlier statement. If f oT ∈ H2 (P+) for every 
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f  ∈ H2 (P+), (foT)(w) tends to zero as w  →  ∞  within eachihalf-planeiIm w  ≥ 𝛿 > 0. 

Since theifunction from w to   1/(𝜄 + 𝑤) belongs to H2 (P+), we can conclude that it 

tends to zero at w →  ∞ . Thus, T has a pole at ∞.  

 

(ii) The replicating kernel K for H2 (P+) is given as  

  

                        K(w,u) = 
𝜄

2𝜋(𝑤−𝑢)̅̅ ̅ 

 

Also,  || fu ||
2 = (fu , fu) = K(u,u) = 

𝜄

4𝜋𝐼𝑚 𝑢
 

 

We know that  𝐶𝑇
∗  fw = fT(w)  for all w ∈ P+.  

 

Therefore ,  
𝐼𝑚 𝑤

𝐼𝑚 𝑇(𝑤)
 = ||fT(w) ||2 / || fw ||2 = || 𝐶𝑇

∗  fw||2 / || fw ||2 

 

Hence, sup(
𝐼𝑚 𝑤

𝐼𝑚 𝑇(𝑊)
∶ 𝑤𝜖 𝑝+) ≤ || CT ||2 

 

(iii) If T is a conformaliautomorphism,  𝑇−1 is analytic andihas a pole at  ∞, justias T 

does.  𝐶𝑇
−1 is a compositionioperator on H2 (P+) that is the inverseiof CT. Suppose CT 

is invertible. We knowithat 

 

                          𝑀𝛽Ct  = P 𝑄−1𝑃−1 CT 𝑃̂Q𝑃−1 

 

where t = 𝐿−1 o T o L,  𝛽 (z) =  1- t(z)/1-z, P is the Poissoniintegral in theidisc, and  𝑃̂ 

is the Poissoniintegral in the upperihalf plane . Thus,  𝑀𝛽Ct    isiinvertible.  

Because 𝑀𝛽   isisubnormal andisurjective, we can deduceithat it isiinvertible. Ct is 

invertible, hence t isia conformaliautomorphism. Thus, T is aiconformal 

automorphism. This concludesithe proof of theitheorem. 

 

Example 3.3.1 (i): Let a > 0 and  w0 ∈ P+ . Then, define  

 

                      T(w) = aw + w0       for w ∈ P+ 

 

T induces aicompositionioperator on H2 (P+), as per section (i) of theipreceding 
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theorem.  found that theicompositionioperator's norm is  √1/𝑎 .  

 

(ii) Let n be a positiveiinteger, and 

 

                     T(w) =  
𝜄((𝑤+𝜄)𝑛+1+𝑤(𝑤−1)𝑛)

(𝑤+𝜄)𝑛+1−𝑤(𝑤−𝜄)𝑛  

 

 for w in belong  P+. T maps P+ to P+, resultingiin a compositionioperator on H2 (P+).  

 

  (iii) T is a linearifractionalitransformation defined as 

 

                                   T(w) = 
𝑎𝑤+𝑏

𝑐𝑤+𝑑
 

 

 where a, b, c, and d areireal valuesiwith ad - bc > 0 and c not equal  0. T maps P+ to 

P+, but does notiprovide a compositionioperator on H2 (P+) as the point at  infinite is 

not a pole of T.  

 

Theorem 3.3.2: Let T: P+  → P+  be a holomorphicimapping that induces the 

Compositionioperator CT on H2 (P+). Then  

(i) CT is noticompact if lim y → 0  T(x+iy) exists a prioriiand is a realinumber for any  

real number x.  

 

(ii) CT is not compactiif thereiis a k > 0 such that | (𝜄+nT(w))/( 𝜄 +nw) |  ≤ k T(x+iy) 

exists andibelongs to P+. Denote this limit forievery w belong P+ and n belong N.  

 

(iii) Assume lim  y → 0  T(x+iy). CT is a [3]Hilbert-Schmidticompositionioperator if 

and only if.  

                

                                ∫ (𝐼𝑚 𝑇∗(𝑥))−1∞

−∞
 dx < ∞ 

 

Proof. (i) For n belong  ℤ+ , define the functionifn on P+ as  

 

                               fn(w) = (1/√𝜋)[(w-𝜄)n/ (w+𝜄)n+1] 

 

Then fn is aiweak nullisequence in H2(P+). The algorithmidemonstrates that 
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                                 || CT fn ||
4 = 1/𝜋 ∫

1

1+(𝑇∗(𝑥))2  𝑑𝑥
∞

−∞
 

 

 {CT fn} does noticonverge to zeroiin the norm. Hence, CT is noticompact.  

 

(ii) For n ∈ N, define f on P+ as 

  

                              fn (w) = 
1

√𝑛(
𝜄

𝑛
+𝑤)

 

 

Then fn is a pointwise nullisequence that is normibounded, making it a weakinull. 

Now, for w ∈ P+ we have  

 

                         | (CTfn)(w) |2 = | n-1/2 (
𝜄

𝑛
 + T(w))-1 |2 

 

                                              = n-1 | (
𝜄

𝑛
 + T(w))-1 (

𝜄

𝑛
 + w) (

𝜄

𝑛
 + w)-1 |2 

 

                                   ≥ k-2 | fn (w) |2 

 

Hence || CTf ||2   ≥ k-2  𝜋  , because || fn || =  √𝜋 , for n ∈ N. Thus, CT is noticompact.  

(iii) Assume n is a non-negativeiinteger. Define theifunction fn on P+ as  

 

                     fn (w) = (𝑤 + 𝜄)n /   √𝜋 ( 𝑤 + 𝜄)n+1 

  

The family { f0 , f1, f 2,...) provides aniorthonormalifoundation for H2 (P+). The 

compositionioperatoriis Hilbert-Schmidt if and only if    ∑ ||𝐶𝑇
∞
𝑛=0 𝑓𝑛||2 <  ∞  . 

However,  

 

              ∑ ||𝐶𝑇
∞
𝑛=0 𝑓𝑛||2 =  ∑ ∫ |

∞

−∞
∞
𝑛=0 (fnoT)* (x) |2 dx  = ∑ ∫ |

∞

−∞
∞
𝑛=0  fn(T*(x)) |2 dx 

 

A simpleicomputation showsithat CT is Hilbert-Schmidt ifiand only if   ∫ (
∞

−∞
Im 

T*(x))-1 dx < ∞    . This concludes the proof ofithe theorem.  
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3.4. CompositioniOperators On 𝓵𝑷-Spaces 

 

               Let w = (wn) denote aisequence of non-negative realinumbers. In Chapter I, 

the weightedisequence space LP(w) for 1 ≤ p <  ∞ wasidefined as theiBanach spaceiof 

all complexinumberisequences (𝛼𝑛 ) with   ∑ 𝑤𝑛
∞
𝑛=1 | 𝛼𝑛|P <  ∞ . If the  weight sequence 

(w) has non-zeroiterms, theispace  ℓ𝑃 (w) is a functionaliBanachispace. Thus,  ℓ𝑃 (w) 

is classifiedias both LP-spaces andifunctional Banachispaces. If p equals 2, then  ℓ𝑃 (w) 

is a Hilbertispace. LP(w), often known as  ℓ𝑃, is a typicaliexample of a sequence 

spaceiwhen w = 1 for all n in  N. Hilbertihimself explored a Hilbertispace known as  ℓ2.  

Theorem 3.4.1. Assume T: N  → N is aifunction.  

 

(i)T inducesia compositionioperator on ℓ𝑃 (w) if and onlyiif there is k > 0 suchithat  

         

                        ∑ 𝑤𝑖𝑖 𝜖𝑇−1(𝑛) ≤ k wn 

 

for every n ∈ N. In this scenario, || CT ||P equals the inf of such k's[7].  

(ii) T is an injectioniif it creates aniisometricicomposition operator on ℓ𝑃.  

(iii) T produces an invertible compositionioperator on  ℓ𝑃 if andionly if itiisiinvertible.  

Proof. (i) Let S be a subsetiof N. Then define. 

  

                       m(S) =   ∑ 𝑤𝑖𝑖 𝜖𝑆  

 

Then m becomesiaimeasure on the  𝜎-algebra of allisubsets of N, and  ℓ𝑃 (w) is just 

LP(m). Result ofitheorem states that each singletoniset (n) has a non-zeroimeasure, 

which leadsito the proof.  

 

(ii) T induces a compositionioperator on  ℓ𝑃 if andionly if there is k > 0 [7]such that n 

∈ N. If T is aniinjection, #  𝑇−1((n)) is either 0 or 1; thus, iif k = 1, the above

iinequality is satisfied. It is clearithat 1 is the infimumiof such k'sisatisfyingithe 

aboveiinequality.  

Hence, || CT || = 1. Theiconverseiisiclear.  

 

(iii) Assume T isiinvertible. For every n ∈ N, there is a U such that (ToU) (n) = (UoT) 

(n). As U is aniinjection, CU isian isometricicomposition operator on ℓ𝑃 , and CT CU = 

CU CT = I. Hence, CT isiinvertible. Suppose CT isiinvertible. If T isinot aniinjection, 

T(n) = T(m) foriunique n and m. Hence, ieveryisequence (𝛼𝑖 ) in the range of CT has 

a, = G. Then CT is notiupon, iresulting in aicontradiction.  Hence, T is aniinjection.  

If T is not aisurjection, the kerneliof CT must be non-trivial, resultingiin a 
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contradiction. Therefore, T is onto. Thisishows that T isiinvertible. Thisiconcludes the 

proof. 

 

Theoremi3.4.2 states that T: N  → N is aimap with CT as a compositionioperator on  

ℓ𝑃 (w).  

(i)Theiadjoint 𝐶𝑇
∗  is as follows: 

 

                     (𝐶𝑇
∗x)(n) = {

     1/𝑤𝑛 (  ∑ 𝑤𝑖𝑖 𝜖𝑇−1(𝑛) 𝑥𝑖   ,  𝑖𝑓  𝑇−1(𝑛) 𝑖𝑠 𝑛𝑜𝑛 𝑒𝑚𝑝𝑡𝑦

0,  𝑖𝑓  𝑇−1(𝑛)𝑖𝑠 𝑒𝑚𝑝𝑡𝑦
 

  

 

(ii)  𝐶𝑇
∗ is aicompositionioperator on  ℓ𝑃  if andionly if CT is invertibleioriunitary.  

 

Proof. (i) Let xiand y be in  on ℓ𝑃 (w). Then  

 

                          (CT x , y )  = ∑ 𝑤𝑛 
∞
𝑛=1 (xo T)(n).𝑦(𝑛)̅̅ ̅̅ ̅̅  

 

                                            =  ∑ ∑ 𝑤𝑖𝑖 𝜖𝑇−1(𝑛)
∞
𝑛=1  x(n) 𝑦(𝑖)̅̅ ̅̅ ̅  

 

                                            = ∑ 𝑥𝑛 
∞
𝑛=1   ∑ 𝑤𝑖𝑖 𝜖𝑇−1(𝑛)   𝑦(𝑖)̅̅ ̅̅ ̅ 

 

                                            =∑ 𝑤𝑛 
∞
𝑛=1 x(n) 𝐶𝑇

∗𝑦)(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

                                             = ( x, 𝐶𝑇
∗𝑦) 

 

Therefore  adjoint of CT is  𝐶𝑇
∗. 

 

(ii) Let CT =CU for some U, then for every n  belong N 

 

                        𝜒(𝑇(𝑛)) = 𝐶𝑇
∗  𝜒(𝑛) = CU 𝜒(𝑛) = 𝜒𝑈−1(𝑛) 

                 

where 𝜒(𝑠)  representsithe sequenceiwith a value of 1 on S and 0 elsewhere. Thus,  

𝑈−1(𝑛)  equals (T(n)). As airesult, U is invertible, iand CU followsisuit. This 

demonstrates that CT isiinvertible. If CT is invertible, thenihe ranges of x ∈ ℓ𝑃 and x 

oT are the same. Hence  

 

                          || x ||2 = ∑ |𝑥𝑛 
∞
𝑛=1 |2  
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                          =∑ |𝑥𝑇(𝑛) 
∞
𝑛=1 |2  

 

                           = || CT x ||2 

 

Thus, CT is unitary, and   𝐶𝑇
∗  = 𝐶𝑇−1 . This concludesithe proof ofithe theorem.  

 

Theorem 3.4.3:  Let T: N  → N be a function[7] with CT as a composition Operatorion 

ℓ2 (w).  

(i) CT is compactiif and only if   

                        
1

𝑤𝑛
  ∑ 𝑤𝑖𝑖 𝜖𝑇−1(𝑛)  → 0    as n →∞ 

(ii) CT is Hilbert-Schmidtiif and only if theisequence  
1

√𝑤𝑇(𝑛)
  belongs in ℓ2 (w). 

 

Proof. Corollaryiprovides an obviousiproof for (i). (i) re-states the corollary based on 

weights.  

(ii) The Hilbert-Schmidt operator can be used to the orthonormal basis for  ℓ2 (w) 

represented by the functions  fn  = en /  √𝑤𝑛  for n  belong  ℤ+.  

 

 

Theorem 3.4.4: Let CT be aicompositionioperator on ℓ2. Then  

(i)  CT hasianiinvariantisubspace.  

(ii)  CT has aidecreasing subspace if N has two separateielements that are notiin the 

sameiorbit as T. Two elementsiof N areiconsidered in the sameiorbit of T whenithey 

can beireached byicomposing T and T-1 severalitimes.  

 

Proof. Theorem statesithat if  CT is invertible, it is also unitaryiand so normal. Thus, 

iit possesses aniinvariantisubspace. If  CT is not invertible, it cannot beiboth surjective 

and injective. If  CT is not surjective, itsirange, which is aiclosed subspace of  ℓ2 , is 

an invariantisubspace of  CT. If  CT is notiinjective, ithe kernel represents aniinvariant 

subspace of  CT. Thisicompletes theiproof for part (i).  

 

(ii) Assume mo and no areidifferent components of N that areinot in the sameiorbit as 

T. Let F = (n: n belong N, where n andino do notishare the same circle of T). Let M be 

the span[3] of  𝑒𝑛
′  s, where n belong F: en represents the sequenceiwith nth entry 1 and 

rest 0. M is aiproper, closedisubspace of ℓ2  thatiis invariantiunder  CT and C. Thus, 

M is a reducingisubspace of  CT. Thisiconcludesithe proofiof theitheorem.  
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CHAPTER 4 
 

 

SOME APPLICATIONS OF COMPOSITION OPERATORS 
 

               In chapter II, we examined composition operators oniseveral function

ispaces. Natural operators, whether explicit or implicit, can be found in ivarious 

fields of mathematics, includingiclassical. Topics covered include mechanicsi, 

ergodic theory, dynamicalisystems, Markov processes, semigroup theory, isometries, 

and homomorphisms. This chapter i will cover some of these interactions and their 

applications. Isometries are icrucial for understanding certain mathematical 

structures. Isometrics onvsuitable function spaces are typically associated with 

compositionvoperators. 

 

 

4.1 Isometries And Composition Operators 

 

               We startiwith theistandardiBanach-Stone theorem. If X and Y areicompact 

Hausdorffispaces with aicontinuous map T: X→Y, the compositionioperator CT: 

C(Y) →C(X) [9]is an isometryiif and only if T isisurjective, andia surjectiveiisometry 

if T is aihomeomorphism. If[1] T: X→Y is aihomeomorphism and  π: X→C is a 

continuousifunction with |x| = 1 for every x∈X, the weightedicomposition operator       

Wπ,T = C(Y) → C(X) becomes aisurjective isometry. The Banach-Stoneitheorem 

states thatiany surjectiveiisometry [9]from C(Y) to C(X) is aiweightedicomposition 

operator, whichicontradicts the previous itatement. The Banach-Stoneitheorem 

requires someidefinitions. 

 

Definition 4.1.1:In a vectorispace E, the set (t x1 + (1 - t)x2: 0 < t < 1) is theiopen 

line[11] segmentibetween x1 and x2. The lineisegment x1 ≠ x2 is considered

iappropriate. If K isia convexisubset of E, theniPoint Y∈K is considered aniextreme 

point if no open lineisegment contains y and is whollyiwithin K. The symbol ext  K 

represents the setiof alliextremeipoints of K. If E is a normedilinearispace, (E)1 

representsiits closed unitiball. 

 

If X is a topologicalispace, M(X) refers to theinormed linearispace ofiall complex-

valuediregulariBorel measuresiwith the totalivariationinorm. If X is aicompact 

Hausdorff space, we mayishow that theiset[11] of alliextreme points of (M(X))1 is ( 

αδx : |α| = 1 and x ∈ X), while the set of alliextreme points of P(X), the set 

ofiprobability measuresion X, is (δx: x ∈ X). 

 

Theorem 4.1.1. [The Banach-StoneiTheorem]. Let X and Y beicompact  Hausdorff 
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spaces withia surjectiveiisometry. There is a ihomeomorphism T: X → Y and a 

functionix in C(X) where | X | = 1 for all X∈X or  

 

                                                 (Af) (x) = z(x)f (T(x)), for all f ∈ C(Y)  

 

and every x ∈ X (A = Wπ,T ). 

  

Proof. Assume A: C(Y) → C(X)[1] is a surjectiveiisometry. The adjoint ioperator                      

A*: M(X) →M(Y) is a surjectiveiisometry. A* is a weak*-homeomorphismifrom 

(M(X))1 to (M(Y))1 that distributes Overiconvex combinations. Additionally, it 

suggestsithat 

 

                                        [9]A* (ext (M( X))1) = ext( M( Y))1. 

 

This theoremiimplies thatifor each x ∈ X, there is aiunique T(x) in Y and a unique 

scalar π(x) with |π(x)|  = 1 and A*(δx) = π(x)δT(x). Thus, x: X → C and T: X → Y are 

unique well-definedifunctions. First ofiall, weidemonstrate that theifunction IC is 

continuous. Let (𝑥𝛼) be a netiin X that equals 𝑥𝛼 →x. Then clearly, δ𝑥𝛼
 → δx  

(weak*) in M(X). Furthermore, iwe have A*(δ𝑥𝛼
) → A*( δx) (weak*) in M (Y). 

Specifically, π(𝑥𝛼)δT(𝑥𝛼 )  → π(x)δT(x). Foriexample, π(𝑥𝛼) = A*(δ𝑥𝛼
)(1) → A*(δ𝛼)(1) 

= π(x). 

 

This showsithat π is a continuousimap. We will demonstrateithat the map T: X → Y 

is aihomeomorphism. Sinceithe map x → δx is aihomeomorphismifrom X into (∇(X), 

wk*), we caniargue that T(𝑥𝛼) → T(x)  This showsithat T isicontinuous. To 

demonstrate that T is aniinjection, let x1 and x2 ∈ X be So that x1 ≠ x2. Then 

π(𝑥1)̅̅ ̅̅ ̅̅ ̅ δ𝑥1
≠  π(𝑥2)̅̅ ̅̅ ̅̅ ̅ δ𝑥2

, implyingithat T(x1) ≠ T(x2). We caninow solve y∈Y. The 

surjectivity of A* allows for the existence of 𝜇 ∈ M(X) with A*( 𝜇) = δy. In view of 

(1). This implies that 𝜇 ∈ ext(M(X))1. For  some x ∈ X and 𝛽 ∈ C,  𝛽 = 𝛽δx, where | 

𝛽 | = l. This means that δy  =  A*(𝛽δx) = 𝛽π(x)δT(x). Furthermore, it  follows that 𝛽 = 

π(x)̅̅ ̅̅ ̅̅  and T(x) = y. Thus, T: X → Y is a continuousibijection and must beia 

homeomorphism. Let𝑓 ∈ C(Y) and x ∈ X. Then  

 

                                      δx(A 𝑓) = A*(δx)( 𝑓) = π(x)δT(x)( 𝑓) = π(x)𝑓(T(x)).                           

 

Thus, (A 𝑓)(x) = π(x)𝑓(T(x)). Hance we proveitheitheorem. 

Assume S is a subspace of theiBanach space C(X) that separatesipoints of X. Define 

Ls as a linearimap from S to E. Assumeithe norm on S isidefined by one of the 

followingiformulas: 
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(F1)  ∥ 𝑓 ∥ = max {∥ 𝑓 ∥∞, ∥ 𝐿𝑠𝑓 ∥}   . for 𝑓 ∈ S, where ∥ . ∥∞, is the usualisupremum 

normon C(X), 

 (F2) ∥ 𝑓 ∥ = ∥ 𝑓 ∥∞ +∥ 𝐿𝑠𝑓 ∥,    for 𝑓 ∈ S,  

 (F3) ∥ 𝑓 ∥  = sup{|𝑓| + |𝐿𝑠𝑓(𝑥)|: 𝑥 ∈ 𝑿} 𝑓 ∈ S, assume that E = C(X) 

 

For example[9]. Ls: C1[O,l] → C[O,l] may be defined as Ls(𝑓) = 𝑓'.  Similarly, Ls: 

AC[O, I] →L1[O, 1] can beidefined as Ls(𝑓) = 𝑓'. AC[O, 1] refers toithe spaceiof all 

absolutely continuousifunctions on [0, 1].  

  

Theorem 4.1.2: Assume X is aicompactiHausdorff space, and S is aisubspace of 

C(X). 

(i) S isidense in C(X) 

(ii) the normion S is suppliediby a map L: S → E via theiformula (F3).  

(iii) S has theiconstant  function 1 and LS(1) = 0.   

(iv) dim(LS(S)) ≥ 2  

(v) E is strictlyiconvex  

(vi) For any unimodularifunction 𝜃 ∈ S such that Ls(𝜃) = 0, theimap 𝑓 → 𝑓 / 𝜃 is a 

well-definediisometry of S onto itself.  

 

Assume M is aisubspace ofiC(Y), where Y is a compactiHausdorff space that imeets 

conditions (i)–(vi). Anyiisometry A from S to M has the followingiform:  

                                      

                                             A(𝑓) = 𝜃. f oT, 𝑓 ∈  S  

 

where T is a homeomorphismifrom Y onto X and 0 ∈ M is a unimodularifunction 

with LM(𝜃)= 0. 

 

Proof.  assumption (vi), it is sufficient  toidemonstrate that A(l) is a unimodular 

functionion Y with LM(A(l))=0. The P-propertyiiof an element g ∈ S is defined as 

∥g∥  = 1 and  𝛽 ∈ 𝜕D such that 

 

                                           ∥g+𝛽𝑓 ∥  = ∥ g ∥ + ∥ 𝑓 ∥ . 

 

Thisiproperty is retained byithe isometry A. Assume f ∈ S and 𝛽 ∈ 𝜕D , with ∥ 𝑓 ∥∞ 

= 𝑠𝑢𝑝x∈𝑿 Re(𝛽𝑓(𝑥)). Using the normidefinitionifor S, we get: 

 

             ∥ 1+𝛽𝑓 ∥ = ∥ 1+𝛽𝑓 ∥∞+ ∥ 𝐿𝑠𝑓 ∥ = 1+ ∥ 𝑓 ∥∞ + ∥ 𝐿𝑠𝑓 ∥ = 1 + ∥ 𝑓 ∥ .                                            

       

To finish the proof, weineed to show that if g ∈ S satisfies the P-property, it is a 

unimodular functionion X with LS(g) = 0. First, weiprove that | g | = c on X given a 

constant c. Then, iusing the normidefinition on S, we get c = ∥ g ∥∞= ∥ g ∥ = 1  
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Assumeithat there exists a x0∈ X in which | g(x0) | < ∥ g ∥∞. Then assume f ∈ S ,     

∥ 𝑓 ∥∞= ∥ g ∥∞− | g(x0) |    and                            | 𝑓(x) | ≤ ∥ g ∥∞− | g(x) | + 

1/2(∥ g1 ∥∞− |g(x0)| ),   x ∈ 𝑿  for 𝛽 ∈ 𝜕D  it shows that   

∥ 1+𝛽𝑓 ∥∞ ≤ ∥ g ∥∞+ 1/2∥ 𝑓 ∥∞. Then 

 

                                    ∥g+𝛽𝑓 ∥ =  ∥ g+𝛽𝑓 ∥∞ + ∥ 𝐿𝑠(g+𝛽𝑓) ∥     

                                                     

                                                      ≤ ∥ g ∥∞ +1/2∥ 𝑓 ∥∞ + ∥ 𝐿𝑠(g) ∥+ ∥ 𝐿𝑠(𝑓) ∥ 

        

                                                      = ∥ g ∥  +  ∥ 𝑓 ∥ − 1/2∥ 𝑓 ∥∞  < 1 +  ∥ 𝑓 ∥.  

            

Hence | g | equals constant. Assumption (iv) states that if L(g) is greater thanizero, 

Ls(f) and LS(g) are notiproportionate. If  h and h' areistrictly convex, the equation ∥ h 

+ h’ ∥ = ∥ h ∥ +∥ h’ ∥   holds proportionate, therefore for any 𝛽 ∈ 𝜕D all, we have 

 

                                       ∥g+𝛽𝑓 ∥ =  ∥ g+𝛽𝑓 ∥∞ + ∥ 𝐿𝑠(g+𝛽𝑓) ∥   

   

                                                          ≤ ∥ g ∥∞ +∥ 𝑓 ∥∞ + ∥ 𝐿𝑠(g) ∥+ ∥ 𝐿𝑠(𝑓) ∥ 

                                                   

                                         =  1 +  ∥ 𝑓 ∥. 

 

This demonstratesithat Ls(g) equals 0. Hence, ithe proof of the theorem is 

accomplished. 

 

Proposition 4.1.1  A boundedilinearioperator on LP(X,E) with 1 ≤ p < ∞ can 

translateifunctions of (almost) disjointisupports toifunctionsiof (almost) disjoint 

supports. Thenithere is an n-setihomomorphism 𝜙 of Y and aistrongly [1]measurable 

map Ψ from X into B(E) such that  

 

                           (𝐴𝑓)(. ) =  Ψ(. )(𝜙(𝑓))(. )    for every  𝑓 ∈ 𝐿𝑃(𝑋, 𝐸).  

 

Proof. Assume (en) is aicountable, linearlyiindependent subset of E with aidense 

linearispan (K) within E. Let K0 be the setiof all linearicombinations of (en) with 

complex rationalicoefficients. Assume A fulfill the Hypothesis for theiproposition. 

Now weiwill fix 𝑆 ∈ 𝑌. Next, defineithe setifunction 𝜙 ∶ 𝑌 → 𝑌 as 

 

                                         𝜙(𝑆) =  ⋃ 𝑠𝑢𝑝𝑡(𝐴(𝜒𝑆𝑒𝑛))𝑛 . 

 

𝐴(𝒳𝑆1
𝑒𝑛) and 𝐴(𝒳𝑆2

𝑒𝑚)  are virtually disjointifor all n and m when S1 and S2 are 

disjoint sets. So 𝜙(𝑆1) and 𝜙(𝑆2)  are disjointitheiequation 

𝐴(𝒳𝑆1
𝑒𝑛) + 𝐴(𝒳𝑆2

𝑒𝑛) =  𝐴(𝒳𝑆1∪ 𝑆2
𝑒𝑛)   suggests that 𝜙(𝑆1 ∪ 𝑆2) =  𝜙(𝑆1)  ∪
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 𝜙(𝑆2)    within a null set. This can beiextended toicountable unions ofidisjoint sets 

as A is continuous. The extension to countableiunions of any set is  straightforward. 

This demonstratesithat 𝜙 is a setihomomorphism. Let X0 representithe kernel of 𝜙 is 

a set-isomorphism ifiand only if A is one-to-one, as its null space is the space of 

functions that vanishes (a.e.) on X. Assume u and 8 correspond to (6) and (7). We 

can select 𝜃(𝑥) > 0 for every 𝑥 ∈ 𝜙(𝑋) or 𝜃(𝑥) = 0 for every 𝑥 ∉ 𝜖𝜙(𝑋). Set 𝑓𝑛 =

𝐴(1𝑒𝑛
), where 1𝑒𝑛

 is theiconstantifunction on X, take values 𝑒𝑛. We cani suppose 

that 𝑓𝑛 (x) = 0 for all n and  𝑥 ∉ 𝜙(𝑋).. Define 

 

                                Ψ(𝑥)𝑒𝑛 =  𝑓𝑛 (x)   ∀  𝑥 ∈ 𝑋,    𝑛 ∈ 𝑁.   

After extending Ψ(𝑥)𝑒𝑛 linearly to K, we obtain  

 

Ψ(𝑥) (∑ 𝜆𝑖𝑒𝑖

𝑘

𝑖=1

) = ∑ 𝜆𝑖𝑓𝑖(𝑥).

𝑘

𝑖=1

 

 

Thus, for any 𝑦 ∈ 𝐾, Ψ(. )(𝑦) = 𝐴(1𝑦)  a.e. We will show that Ψ(x) is aibounded 

operatorion E. Assume 𝑆 ∈ 𝑌, 𝑆1 = 𝑆\𝑋0, and 𝑦 ∈ 𝐾0. Then 

 

                             ∫
𝜙(𝑆) ∥ Ψ(𝑥)𝑦 ∥𝑃 𝑑𝑢(𝑥) = ∫

𝜙(𝑋) ∥ 𝐴(1𝑦)(𝑥) ∥𝑃 𝑑𝑢(𝑥)[11] 

                                                                       = ∫ ∥ 𝐴(𝜒𝜙(𝑋)𝑦)(𝑥) ∥𝑃 𝑑𝑢(𝑥) 

                                                                       =  ∥  𝒳𝑆1
𝑦 ∥𝑃 

                                                                       ≤  ∥  𝐴 ∥𝑃 𝑢(𝑆1) ∥  𝑦 ∥𝑃 

                                                                       =  ∥  𝐴 ∥𝑃 ∥  𝑦 ∥𝑃 ∫
𝜙(𝑆)(𝜃(𝑥))

𝑃
𝑑𝑢(𝑥) 

 
Thus  ∥ Ψ(𝑥)𝑦 ∥ ≤ ∥ 𝐴 ∥ ∥ 𝑦 ∥ |𝜃(𝑥)|,   𝑥 ∈ 𝜙(𝑋). Now for 𝑥 ∉ 𝜙(𝑋) the 

inequality is trivial. Soitheinull set S0, 

 

∥ Ψ(𝑥)𝑦 ∥ ≤ ∥ 𝐴 ∥ ∥ 𝑦 ∥ |𝜃(𝑥)|,     𝑦 ∈ 𝐾0,   𝑥 ∉  𝑆0    
 

If 𝑦 = ∑ 𝜆𝑖𝑒𝑖
𝑛
𝑖=1   and 𝐸𝑛 is theilinearispan of e1,..., en, then theirestriction of 𝜑(𝑥) to 

𝐸𝑛 is a linear mapibetween two finite dimensionalispacesiand henceibounded. 

Additionally, because 𝐾0⋂𝐸𝑛 is dense in 𝐸𝑚, the norm ∥ Ψ(𝑥) ∥  ≤  ∥ 𝐴 ∥ 𝜃(𝑥)  

applies. Thisidemonstratesithat (8) holds for every 𝑦 ∈ 𝐾, extending Ψ(𝑥) to a 

bounded linearifunction. Operator on E: ∥ Ψ(𝑥) ∥  ≤  ∥ 𝐴 ∥ 𝜃(𝑥) computed Ψ(x) for 

x c. Finally, iwe demonstrateithat w: X → B(E)  is stronglyimeasurable. To achieve 

this, let y ∈ E and 𝑦𝑛 ⊂ 𝐾 be such that  𝑦𝑛 → 𝑦. The continuityiof practically all Ψ 

(x) and A leads to the conclusionithat Ψ(. )𝑦 = 𝐴(1𝑦), indicatingithat w is 
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measurable. Setting (𝐴1𝑓)(. ) = Ψ(. )(𝜙(𝑓))(. ) yields 

 

∫ ∥ (𝐴1𝑓)(𝑥) ∥𝑃 𝑑𝑢(𝑥) ≤ ∫ ∥ Ψ(𝑥) ∥𝑃∥ (𝜙(𝑓))(𝑥) ∥𝑃 𝑑𝑢(𝑥) 

                                                                 ≤  ∥  𝐴 ∥𝑃 ∫ (𝜃(𝑥))
𝑃

∥ 𝜙(𝑓)(𝑥) ∥𝑃 𝑑𝑢(𝑥) 

 

                                                                 ≤  ∥  𝐴 ∥𝑃∥  𝑓 ∥𝑃 

                                                                  

This demonstratesithat A1 is aibounded linearioperator on LP (X, E). It is  established 

that A1 agrees with A on constantifunctions. Additionally, since  

 

                            𝐴(𝜒𝑆𝑦) = 𝜒𝜙(𝑆)𝐴(1𝑦) = Ψ(. )𝜒𝜙(𝑆)𝑦 = 𝐴1(𝜒𝜙(𝑆)𝑦), 

We infer that A agreesiwith A1 on simpleifunctions, which implies that A = A1.  

This concludes theidemonstration of theiproposition. 

 

Theorem 4.1.3. Let p ≠ 0 and let A be aniisometry of HP into HP. [9]Then there is a 

non-constantiinnerifunction T and a function Ψ in HP such that 

 

                                      𝐴𝑓 = Ψ𝐶𝑇 ,     𝑓 ∈ 𝐻𝑃 .                                                                   
(1) 

 

T and Ψ are related by 

 

                                     ∫
𝑆

|Ψ|𝑃𝑑𝑢 = ∫
𝑆

1\𝑃(𝑇)𝑑𝑢      𝑆 ∈ 𝑌𝑇                                              

(2) 

 

where P is theiPoissonikernel inducediby T. Conversely, iwhen ainon-constant inner 

functioniT and aifunction Ψ in HP are related by (2). (1) defines aniisometry of HP 

into HP 

 

Proof. Assume that A is aniisometry from HP into HP, andset Ψ = A(1).  

Then Ψ ∈ HP such that Ψ ≠ 0 and w cannotidisappearioniany positive p-measure set. 

Let u be theimeasureifor which 𝑑𝜈 = |Ψ|𝑃𝑑𝑢. So 𝜈 and u are Mutually completely 

continuous. If a linearitransformation L: HP → LP(u𝜈) is definediby L 𝑓 = A 𝑓 1 w, it 

is an isometryiof HP into LP (u), and L(1) = 1.   

Let fo be the inner functionidefined as 𝑓0(z) = z. Then 

 

∫|𝐿(𝑓0
𝑛)|𝑃𝑑𝜈 = 1. 
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We get 

 

∫|𝐿(𝑓0
𝑛)|2𝑑𝜈 = 1. 

 
This implies that |𝐿(𝑓0

𝑛)| = 1 as p ≠ 0. Thus L takesithe algebraigeneratediby fo into 

𝐿∞(𝜈). FromiProposition 4.1.1. (ii) we know that L is multiplicativeion thisialgebra, 

thereforeifor aipolynomial g we have 𝐿(g(𝑓0)) =  g(L𝑓0) 

 

                                                 𝐴(g(𝑓0)) = Ψ𝐶𝑇g,                                                     (3) 

 

Where T = L𝑓0. Since Ψ ∈ 𝐻𝑃, we have Ψ = F.G, where F is aniinnerifunction and G 

is aniouter functioniiniHP. Furthermore, (3) suggests  that F. 𝑇𝑛 is an innerifunction 

for 𝑛 ≥ 0. Now we'll show that T is an innerifunction. Let A  be theiclosedisubspace 

of L2 defined by 𝑓0
𝑗
𝑇𝑘(𝑗, 𝑘 ≥ 0). Jcc remainsiinvariant when multiplied by 𝑓0, but 

not by jo, as F(𝜇) is containediwithin H2. Thus, 𝜇 = 𝜃(𝐻2), where | 𝜃 | = 

1.Polynomials in 𝑓0  and T may approximate f/TkB, whichiis in Jcc for j, k = 2, and 

8. Since 𝑓0 generates aidense algebra in HP and A isibounded, This implies that 

 

𝐴𝑓 = Ψ𝑓𝑜𝑇,      ∀   𝑓 ∈ 𝐻𝑃, 

 
where Ψ ∈ 𝐻𝑃 and T areinon-constantiinnerifunctions. Additionally, for 𝑓 ∈ 𝐻𝑃, we 

have 

 

                                                ∫|Ψ|𝑃|𝑓𝑜𝑇|𝑃𝑑𝑢 = ∫ | 𝑓 |𝑃 𝑑𝑢.                                       

(4) 

 

 Let 𝑆 = 𝑇−1(𝑆1) , where 𝑆1 ∈ 𝑌.  followsithat  

 

                                               ∫
𝑆

|Ψ|𝑃𝑑𝑢 =  ∫
𝑆1

𝑑𝑢                                                         

(5) 

 

Because theicharacteristicifunction of 𝑆1 can be approximatediby the moduli of 

functions in HP, and weiget from (9), 

 

                                             ∫
𝑆1

𝑑𝑢 = ∫
𝑆1

1\𝑃 𝑑𝜈 = ∫
𝑆

1\𝑃(𝑇)𝑑𝑢.                                 

(6) 

 

Thus, (5) and (6) denote theiintended form (2). Inicontrast, if T is a non-constant 
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inner function and Ψ ∈ 𝐻𝑃 is connected by (2), then (5) is  a result of (1) and (6). 

Furthermore, if A isirestricted to basicifunctions, (5) demonstratesithat A, defined by 

(1). is anisometry between LP and itself. Thus, A isianiisometry of LP.  

A takesthe algebraiformed by 𝑓0 into HP, henceiit is obvious that A takes HP into HP. 

This concludes the proof. 

 

Remark.   The previousiresult does not apply toivector-valued functions, although 

theiisometries of H1(D) and 𝐻∞(D) do. If E is bothiconsistently convex and 

uniformly smooth 

L in  demonstratedithatieveryiisiometry [9]A of 𝐻∞ (D, E) onto 𝐻∞ (D, E) takes the 

form 

 

                                         𝐴𝑓 = Ψ(𝐶𝑇𝑓 ),         𝑓 ∈ 𝐻∞ (D, E)  

 

where Ψ is an isometryifrom E onto E and T is aiconformalimap of D onto itself.  

 

 

4.2 Ergodic Theory AndiComposition Operators 

 

               Let G beia group with theiidentity e, and let X be anyinon-empty set. 

Assume u: G × X → X is a mappingisuch thatiu(e, x) = x and u(st, x) = u(s, u(t, x)) 

for any x ∈ X and s, t ∈ G. Then u is knownias aniaction of G on X oria motion on X 

causediby G. If x ∈ X, theifunction  ux: G  → X definedias ux(t) = u(t, x) is called a 

motion throughi the point x. The range of thisifunction isicalled the orbit of x, 

denotediby the symbol orb(x). If t ∈ G, thenithe function u,: X → X definedi as ut = 

u(t, x) is ai bijection, with (𝑢𝑡)−1 =  𝑢𝑡−1. If G is a topologicaligroup, X is a 

topologicalispace, and theimapping u: G × X → X  is continuous, [9]the triple (G, X, 

u) is  considered aitransformation group. Theitransformation group (ℤ,X,u) is 

knownias discrete. A dynamicalisystemiis definedi as (ℝ, X, u) where ℤ represents 

theidiscrete topology of integeriaddition and ℝ representsithe typical topologyiof 

real number addition. Substituting ℤ+ and  for ℤ and ℝ results isisemidynamical 

systems.  

 

Definition 4.2.1: Let (X, Y, u) be a probabilityimeasure space. Theioperator A on 

L1(u) is considered doublyistochastic if: 

(i)  𝐴𝑓 ≥ 0,   𝑤ℎ𝑒𝑛   𝑓 ≥ 0, 
 

(ii) ∫
𝑋

𝐴𝑓 𝑑𝑢 = ∫
𝑋

𝑓 𝑑𝑢, 

 

(iii) 𝐴𝑓 = 𝑓,    when 𝑓 isiconstant. 
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If T: X → X is aimeasure-preservingitransformation, then ∫
𝑋

𝐶𝑇𝑓 𝑑𝑢 =

∫
𝑋

𝑓𝑑𝑢𝑇−1 = ∫
𝑋

𝑓𝑑𝑢, indicatingithat 𝐶𝑇 is doubly stochastic. In standardiBorel 

spaces, only theicompositionioperators are doublyiSome cases use vistochastic 

isometricioperators. We will give the followingitheorem.  

 

Theorem 4.2.1: Let (X, Y, u) be a standardiBorel probabilityimeasure space. Let A 

be aidoubly stochasticioperator on L1(u) that isian isometry on L2(u). Then there 

exists aimeasure-preservingitransformation T: X → X with A = 𝐶𝑇. 

Proof. Let S ∈ Y. Then A𝜒𝑆 ≥ 0  and ∫
𝑋

A𝜒𝑆𝑑𝑢 = ∫
𝑋

𝜒𝑆𝑑𝑢 = 𝑢(𝑆) ≤ 1 𝑇ℎ𝑒𝑛 0 ≤

A𝜒𝑆 ≤ 1. As A is an isometry on L2(u), weihave 

 

    ∫
𝑋

(A𝜒𝑆)2𝑑𝑢 = 〈A𝜒𝑆, A𝜒𝑆〉 = 〈𝜒𝑆, 𝜒𝑆〉 

 

                                                                     = ∫
𝑋

𝜒𝑆𝑑𝑢 = ∫
𝑋

𝐴𝜒𝑆𝑑𝑢.         {(A𝜒𝑆)2 = 𝐴𝜒𝑆} 

finally, 

                                            𝑢(𝑆) = ∫
𝑋

𝜒𝑆𝑑𝑢 = ∫
𝑋

𝐶𝑇𝜒𝑆𝑑𝑢 = 𝑢𝑇−1(𝑆) 

 

For each S ∈ Y, we concludeithat T is measure-preserving. Thisiconcludesithe proof 

of the theorem. 

 

Note. If 𝐶𝑇 is unitaryion LP(u), the doublyistochasticioperator Aigenerates discrete 

measurable dynamicalisystemsion X and on LP(u), p ≥ 1.  

 

If T: X → X is aimeasure-preservingitransformation, the family (𝑇𝑛: n ∈ ℤ+) creates 

a discrete, measurableisemidynamicalisystem. It turnsiout. The orbit ofipractically 

everyipoint in aimeasurableisubset S of X has a non-emptyiintersection with S. 

Poincare's classicalitheorem demonstratesi this.  

 

Theorem 4.2.2. [The PoincareiRecurrenceiTheorem]. Let T be aimeasure-preserving 

transformation on aifinite measureispace (X, Y, u) and S = Y. For practically any s ∈ 

S, there is n ∈ ℤ+   such that 𝑇𝑛(s) ∈ S. 

 

Proof. Suppose the theorem'siconclusion isiincorrect. 

 

𝐹 = {𝑠 ∈ 𝑆 ∶    𝑇𝑛 ∉ 𝑆, ∀ 𝑛 ∈ ℤ+} 

 
has non-zeroimeasure 

 

                                       F = 𝑆 ∩ 𝑇−1(𝑋\𝑆) ∩ 𝑇−2(𝑋\𝑆) … … … 
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If x ∈ F, then 𝑇𝑛 (x) ∉ F forievery n ∈ ℕ. Hence, F ∩ 𝑇−1(F) = 0 for all n ∈ ℕ. 

Because T is measureipreserving and u(X) <∞ , we have aicontradiction Withithis 

contradiction, theiproof of the theoremiis complete.  

 

Examples of MeasureiPreservingiTransformations : 

(i) Assume X = ℝ and u is the Lebesgue measure. Define 𝑇𝑡 ∶  ℝ →  ℝ as 𝑇𝑡 (x) 

= x + t, where x ∈ ℝ. Theifamily (𝑇𝑡 ∶  t ∈  ℝ is a collectioniof measure 

preservingitransformationsithat leads toiquantifiable dynamical systems  ℝ 

and LP(u) for p ≥ 1 

 

(ii) Let X = [0, 1] and Y be the a-algebra of alliBorelisets. Assume 0 < a < 1 and 

𝑇𝑎 (x) represents theifractional part of x + a.  𝑇𝑎 : X → X is a measure-

preserving transformation. 

 

Corollary 4.2.1: Let T be a measure-preservingitransformationion aiprobability 

measure space (X, Y, u), and let 𝑓 ∈ 𝐿𝑃(𝑢). If the sequence (g𝑛) convergesito g in the 

𝐿𝑃-norm, then g is a fixedipoint in 𝐶𝑇.Where 

 

g𝑛 = 1\𝑛 ∑ 𝐶𝑇
𝑘𝑓

𝑛−1

𝑘=0

 ,       ∀  𝑛 ∈ ℕ 

 
Outline for the evidence. Let 𝜀 > 0.  Then thereiexists a  𝑓′ ∈ 𝐿∞(𝑢)  such that  ∥

𝑓 − 𝑓′ ∥< 𝜀\4. Let  g𝑛
′ = 1\𝑛 ∑ 𝐶𝑇

𝑘𝑓′𝑛−1
𝑘=0 . According to  theiconvergence theorem the

 sequence { g𝑛
′  } convergesito 𝑓̅′ in the 𝐿𝑃-norm, with 𝑓̅′(𝑥) = lim

𝑛
sup g𝑛

′ (𝑥). Now 

 

∥ g𝑛 − g𝑛+𝑚 ∥𝑃 ≤ ∥ g𝑛 − g𝑛
′ ∥𝑃 + ∥ g𝑛

′ − g𝑛+𝑚
′ ∥𝑃 + ∥ g𝑛+𝑚

′ − g𝑛+𝑚 ∥𝑃 

 

                                          ≤ 𝜀\4 + 𝜀\2 + 𝜀\4 = 𝜀, 

 
for an appropriateioption of n. Since {g𝑛} is a Cauchyisequence, thereiexists a g e 

𝐿𝑃(µ) such  that g𝑛 → g inithe 𝐿𝑃 norm. 𝐶𝑇g can beiproven to equal g. 

 

Definition 4.2.1: Let T be aimeasure-preservingitransformationion a measure space 

(X, Y, µ). T is considerediergodic if 𝑇−1(S) = S, which meansithat either µ(S) = 0 or 

µ(X \ S) = 0. A doublyistochasticioperator A on 𝐿1(µ) isiconsiderediergodic if its sole 

fixedipoints areiconstantifunctions (i.e. 𝐴𝑓 = 𝑓, 𝑓 ∈ 𝐿1(µ), implying that 𝑓 is a 

constant function a.e.). 
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Theorem 4.2.3: Let T be aimeasure-preservingitransformation on a probability 

measure space (X,Y.µ).If the compositionioperator 𝐶𝑇 is ergodic, then T is  also 

ergodic.  

  

Proof.    Assume theicomposition operator 𝐶𝑇 is ergodiciand that 𝑇−1(S) = S, where 

S e.  The equation 𝜒𝑇−1(S) = 𝜒𝑆• leads to 𝐶𝑇𝜒𝑆 = 𝜒𝑆·, indicating that 𝜒𝑆 = 𝑐 a.e. 

given a constant c. This impliesithat µ(S) = 0 or µ(X \ S) = 0. This demonstrates that 

T is ergodic. SupposeT isiergodic. Assume 𝐶𝑇𝑓 = 𝑓  for 𝑓 ∈ 𝐿1(µ). Let 𝑘 ∈ ℤ and n 

∈ ℤ+. Let 

𝑋𝑛
𝑘 = {𝑥 ∈ 𝑋 ∶ 𝑘\2𝑛 ≤ 𝑓(𝑥) < 𝑘 + 1/2𝑛}. 

 

Then  𝑇−1(𝑋𝑛
𝑘) = 𝑋𝑛

𝑘. Hence 𝑢(𝑋𝑛
𝑘) = 0 or 𝑢(𝑋\𝑋𝑛

𝑘) = 0. Since 𝑋 = ⋃ 𝑋𝑛
𝑘

𝑘∈ℤ    ∀ 𝑛.  
 

Definition 4.2.1: An ergodicitransformation thatipreserves theimeasure T has a 

discrete spectrumiif the orthonormal basis for 𝐿2(µ) isimadeiup of 𝐶𝑇 eigenfunctions. 

𝑇1 and 𝑇2  are said to beiconjugate if thereiexists  an a-algebra automorphism Φ on 

Y/y such that Φℎ𝑇1
= Φℎ𝑇2

, where Φℎ𝑇 is an a-homomorphismiinduced by T. 

 

 

4.3. Homomorphisms AndiComposition Operators 

 

               For compact Hausdorffispaces X and Y, C(X) and C(Y) are Banach 

algebrasiof continuousicomplex-valuedifunctions withisupremum normitopology. 

C(X) and C(Y) are c•-algebras withimaximal idealispacesihomeomorphic to X and 

Y, respectively.  If T: Y→ X is a continuousimap, theniwe know that it inducesithe 

compositionioperator Cr: C(X) → C(Y), which is an •-homomorphism. It is 

discovered thatievery non-zero •-homomorphismifrom C(X) to C(Y) is a 

composition operator.   

 

Theorem 4.4.1. Let X be a compactiHausdorff space and T:X → X be aicontinuous 

map. If µ is a probabilityimeasure on Borel subsets of X, then T is aimeasure-

preservingitransformation withirespect to u. 

 

Proof (outline). Set P = {µ ∈ M(X): µ ≥ 0 and ∥ 𝑢 ∥= 1}. TheiBanach-Alaoglu 

theorem statesithat P is w*-compact. It is possibleitoishow that P is  𝐶𝑇
* -invariant, 

non-empty convexisubset of M(X). Accordingito the KakutaniiMarkov fixed point 

theory, there exists a µ ∈ P such that  

 

                                   ∫
𝑋

𝐶𝑇𝑓 𝑑𝑢 = 𝐹𝑢(𝐶𝑇𝑓) = (𝐶𝑇
∗𝑢)(𝑓)                                       
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                                                                        = 𝐹𝑢(𝑓) 

 

                                                                        = ∫
𝑋

𝑓 𝑑𝑢. 

It shows that 

                                        u(𝑇−1(S)) = u(S) 

for each Borel set S. This demonstratesithat T is a transformationithat preserves the 

measure µ. Withithis, the proof outline is icomplete. 
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CHAPTER 5 
 

                                                Conclusion 

 

Finally, this thesis looked into the compositionioperator on functional spaces. These 

conclusions rely on sophisticated mathematical notions from functional analysis, 

specifically measure-preserving transformations, composition operators, and Hardy 

spaces. The document finishes with a theoremidemonstration and proofs concerning 

measure-preserving transformations and other mathematical features. The 

document's conclusions areisummarised below. This study has provided us with a 

thorough comprehension of the mathematical ideas underlying thecomposition 

operator on function spaces. The compositionioperator has numerous and diverse 

uses. The capacity to composeioperators in thefrequency domain has resulted in 

function spaces in communicationisystems, allowing for measure-preserving 

transmission and better function spaces. 
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