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Abstract

This thesis investigates the complex relationship between composition operators and
function spaces, attempting to understand their behaviour, properties, and practical
applications. Composition operators are useful tools in a variety of mathematical
disciplines, including functional analysis and operator theory. The paper looks at the
theoretical foundations of composition operators, examining their impact on various
function space structures such as Banach and Hilbert spaces. The emphasis is on
understanding how composition operators alter the properties and characteristics of
these function spaces. Furthermore, this study investigates the practical implications
of composition operators in signal processing, control theory, and approximation
theory. This thesis gives useful insights into the uses of composition operators in
several scientific and technical disciplines by investigating their effectiveness in
tackling real-world situations. This thesis advances our understanding of composition
operators in function spaces through rigorous analysis and investigation, setting the
path for future research and applications in a variety of mathematical and scientific
disciplines.
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CHAPTER 1

INTRODUCTION

1.1Definitions and Historical Background

Let Fy be a vector space over the [Mfield K (where K =R or C) forany x €
X, and let X be a non-empty setlt. Under linear operations defined pointwise, the
Cartesian product of [[,ex Fx the family (Fx: x € X) is a vector space. Thefamily
(Fx: x € X) is known as a vector-fibration over X, and each element of [[,ex Fx IS
known as a cross-section over X. A topological vector space of the cross-sections(!!
over X is indicated by L(X). Let T : X — X be a mapping such that, whenever f €
L(X), fo T € [l,ex Fx. The composition transformation caused by T refers!*l to the
linear transformation f — f oT from L(X) to Tx. Ct Mdenotes this metamorphosis.
Suppose m is a mapping defined on X such that™ If f € L(X), then f » n. fo Tisa
linear transformation from L(X) to @ [[,ex Fx. The transformation caused by = and T
is known as the weighted composition v transformation™ (W, T).

Three key circumstances arise while studying these operators:

(i) The underlying space X is a measure space; the inducing mappings are
measurable transformations.

(ii) The underlying Mspace X is a region in C or C™ and the inducing maps are
holomorphic functions.

(iif) The underlying space X is a topological space with v continuous functions.

L(X) is assumed to be a topological vector space of imeasurable functions
in the first scenario, such as LP —spacesl; in the second scenario, L(X) is assumed
to be a topological vector space of analytic functions, such as a Dirichlet!™, Hardy, or
Bergman space.
space: in the third instance, a topological vector v space of continuous functions is
assumed to be L(X)M.

These areas can be defined into three v broad categories:

(i) LP — spaces.
(i1) Functional Banach spaces of functions.
(iii) Locally convex function spaces.



1.2 LP -Spaces

Assume (X, Y, m) is a measure space and p is a real number such that 1 <p
<oo. Let £F(m) be the set of all complex-valued measurable functions on X such that
If |FIP is m-integrable. £¥(m) is a complex linear space that supports pointwise
addition and scalar multiplication™. If N?(m) represents the set of all null functions
on X, it is a subspacet™ of £F(m). Let L°(m) be the quotient space £¥ (m)/ N?(m).The
element in is L” a coset of the type f + N¥(m), which belongs to I°(m). The coset f +
NP(m) is represented as [ f]. 1 Thus, two ¢°(m) functions, g and h, belong to the same
coset if and only if g and h are virtually always the same. YlOn L”(m) we define a
norm as:

I fllp=Cl|£[P dm)¥P

The Minkowski inequality indicates that LP(m) is a normed linear spacel*! with the
specified normft. Under this norm, L”(m) is completel*. Thus, L (m) is a Banach
space . L(m) and LF(m) is conjugate space*! | with conjugate indices p and q. For
p =2, LP(m) is a YHilbert space with the inner product defined as:

([fl[g])=Ifgdm

If X contains a non-empty subset of measure zero, [lthe members of LP(m) are not
functions on X, but rather equivalence classes of functions. Two components of £F
(m) are considered equal if they agree practically everywhere. Under this MWe view
LP(m) as a Banach space of functions. A complex valued measurable function f on X
is considere essentially bounded if the set (x: x € X and { | f( X) | > M} has a measure™]
greater than M. The value is zerol!. The essential supremum of f is the lowest such
M, shown as |l f ll. Let £*°( (m) be the set of basically bounded functions on X.
£7°(m) is a linear space. L*(m) represents the quotient space £°(m)/ N, where N*
is the subspace!™ of null functions. Using the basic supremum norm, L*(m) becomes
a Banach space. The sign £ represents the Banach space of all bounded sequences of
complex numberst?l,

1.3 Functional Banach Space for Functions

Assume X is a non-empty set, and H(X) is a Banach space of complex-
valued functions with pointwise addition and scalar multiplication. Let x € X. Let 6x
be the mapping from H(X) to f(x). MThen it's clear that 8y is a linear functional on
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H(X); it is known as the evaluation functional induced by x. H(X) is a functional
Banach space if each evaluation function dx is continuous, i.e., Blif &, € H* (X) for
every X € X, where H*(X) is the dual space of H(X). If H(X) is a functional Hilbert
space, the Riesz-representation theorem allows us to discover™ a unique Fy € H(X),
such that

Mg(x) = 8x(a) = (9, fx).

For each g € H(X). The function fx is known as the kernel function® of X induced by
X. Consider K(X) ={ Fy: x € X}. BThen K(X) is a subset of H(X). The complex
function K defined on X x X is as follows:

KX, y) = {fu. fy)
is represent as the replicating kernel of H(X).

Examples :
The following are some common instances of functional Banach spaces**l.

(1.3.1) £® — Spaces.

Let X be any countable set, and m be the counting measure specified on its
power set. LP(m)i*H, often known as £F(X), is a functional Banach space for 1 <p >
. The continuity of the evaluation functionals arises from the fact that

Bl =) [<Ifl

Both the unitary space C™ and the classical sequence spacel®! £ are
functional Banach spaces. For p = 2, £7(X) is a functional Hilbert space.
The reproducing kernel of £2(X) is given by

_(0, x=y
Kx,y) = {1, X#Yy
L2 replicating kernel corresponds to the diagonall®! of NxN.

(1.3.2) Space of bounded functions

Let H, (X) showing the vector space of all complex-valued bounded
functions on X. HFor f € H,(X), define || f || as

Il fll=sup{|f(X)]|:x€X



Using this norm, H,(x) is a functional Banach spacel** since

[x) <Nl

1.4 Locally Convex Function Spaces

Assume X is a topological space, E is a topological vector space, and A(X,
E) is the vector space containing all linear functions from X to E defined pointwise.
Then by a locally convex space of functions on X, we mean a Plseminormed linear
space is formed by combining the subspace F(X, E) of A(X, E) Mwith a family of
seminorms. If E = K, we write F(X) as F(X, K). Not all Bllocally convex spaces of
functions are Banach spaces™ or normed linear spaces. For instance, Hthe space J(X,
E) of continuous E-valued! functions with compect-open topology, where X is non-
compact and E is a locally convex space, is locally convex but not normable.

We define the weighted spaces of continuous E-valued functions as follows:

VoJ(X,E) ={f € J(X,E) : v fvanishes® at infinity on X for each v € V}.
JVe(X,E) ={f € J(X,E): vf(X) is precompact!*l in E for all v €V}, and

VyJ(X,E) ={f € J(X,E): vf(X) is bounded in E for all v eV}. Obviously, JV,(X, E)
and JV,(X,E) and JV, (X, E)are vector spaces and

JV, (X, E) JV, (X, E) while the upper semicontinuity of the weights yields that
JVo(X,E)4]Vp(X,E). HLet v e V, q € cs(E) and f € J(X,E). If we define

I llyq = sup {q(v(x) q(f(x)) : x € X}

The seminorm |I. 1I,, , can be applied to JVi(X, E), JVp(X, E), or IVo(X,E). The
seminorm family { II. ll,,4: vV € V, g € cs(E) 131 defines a Hausdorff locally convex
topology on these spaces. This topology will be designated.

The vector spaces JV, (X, E) and JV, (X, E) with wv are referred™ to as
weighted locally convex spaces for vector-valued continuous functions.

Example 1.4.1. Let X be a locally compact PFlHausdorff space, and let E be a locally
convex space.

Then,

() JV¢ X,E) = JVA(X,E) = JV3(X,E) = (J(X,E),k), where k denotes the
compact -openvtopology :

(i) JV§ (X.E) = JVE(X.E) = JVA(XE) = (J(XE)k);
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(iii) JVy (X, E) = Jo(X, E), w),

JVé (X,E) = Jp(X, E),u),and"

JV¢ (X,E) =], (X, E),u),where u denotes the topology of uniform convergence on
X, and.

(iv) JV¢t (X,E) = JVF(X,E) = JV;}(X,E) = J, (X, E), B), Blwhere p denotes the strict
topology.

To introduce weighted spaces of cross-sections, we need the following definitions.
Let {F,:x € X} denote avector fibration over X. Then adda weight to X.

We define a function w on X that is a seminorm on F forveach x in X. Blwe'll use the
notation w to represent the seminorm w(x) for each x in X. We define w < w' as wx <
wy', for any x € X. Let W represent[!! a set of weights on X. W is considered directed
upward if for any pair w, w' € W and A> 0, there exists w" < W such thath w < w".
If fis a Flcross-section across X and w is a weight on X, we shall refer to w. If, the
positive-valued function on X that transforms x into wx[f(x)]*. The weighted spaces
of cross-sections over X with respect to the system of weights W are defined as:
LWo(X) = {f € L(X): w[f]} is upper!*] semicontinuous and disappears at infinity on
X for each w € Wand LW,(X)={f € L(X): w[f] is®® a bounded function on X for each
w € W} It is obvious that LWo(X) and LW,(X) are vector spaces, and LWo(X)
subset LWy(x). Now, consider w € Wl and f € L(X). If we define

| 1| = sup{wx[f(x)] : x € X}

The seminorm || . |lw can be applied to either LWy(X) or LWo(X)?!, and the family {
Il .1 : w e W} defines a Hausdorff locally convex topology on both spaces. We will
refer to this topology as TW, and the vector spacest*t as LWo(X). and LWp(X) with
iw is referred to as the weighted locally convex spaces of cross sections. The form has
closed, completely convex neighborhwds at its origin.

Bw={feLWp(X):| flw<l}E



CHAPTER 2

COMPOSITION OPERATORS ON LP -SPACES

2.1 Definitions, Characterizations And Example.

Let (X, Y, m) represent a measure space. A mapping T from X to X is
considered measurable if T~1(s) € Y for every Sin Y. A measurable transformation
T is non-singular if m(T (s ))= 0 for any m(S) = 0. If T is non-singular,
the measure mT 1, defined as mT~1(s) = mT~1(s) forall S € Y, is absolutely
continuous on Y in relation to m. If m is an ¢ -finite measure, the Radon-Nikodym
theorem states that there is a non-negative function fr in L' (m) that

mT~1(S) =fs frdm

Every S € Y. The function fr is known as the Radon-Nikodym derivative of m with
respect to mT~1. A non-singular transformation T from X to itself results in a linear
transformation Ct on LP(m) into the linear space of all measurable functions on X,
defined as

Cif=foT

For every f € LP(m). If Ct is continuous from LP(m) to itself, it is considered a
composition operator on L°(m) induced by T.

Theorem 2.1.1. Assume (X, Y, m) is an o-finite measure spaceand T : X — Xisa
measurable transformation. If b > 0, T generates a composition operator Ct on
L"(m).

mT~1(S) = bm(S) forallSe Y.

Proof. Assume Cr is the composition operator generated by T. If S € Y and m (S) <
o, then ys € LP(m).

mT=1(S) = | Crysll” <l Cr [P [Ixs I° =1 Cr [P m(S)

Letb = Cr|I°. Then
mT=1(S) < bm(S)
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If m(S) = oo, then inequality will be trivial.
Assume the condition is true. If mT~1 << m, the Radon-Nikodym derivative (fr) of
mT 1 with regard to m exists.

fr<b ae
Let f € L°(m). Then

ICfIP=S|foT Pdm= f|fPdmT 1= f|fPfrdm< b|f]|P

This demonstrates that Cr is a bounded operator in LP(m). This concludes the proof
of the theorem.

Example 2.1.1: let X be a locally compact abelian group and m represent the Haar
measure on the o-algebra of Borel sets. Let you y € X. Then specify Ty: X —X as

Ty(X) = yx

For each x € X. Cry is a composition operator on LP(m) for 1 <p < oo. Assume X is
the real line with standard topology and addition as the group operation. Then Ty(x)
= x +y. Koopman's work on classical mechanics introduced the composition
operators C, sometimes known as translation operators.

Theorem 2.1.2. Let (X, Y, m) be a standard Borel space, and A be an operator on
L"(m).

Then A is a (generalized) composition operator if and only if K° is A-invariant, that
is, AR c kP .

Proof. Assume A is a (generalized) composition operator for LP(m). A measurable
set YE Y and a measurable transformation T from Y to X result in A= Cr. If ys€ K7,
then A s € L°(m). But

Axs = Crys = x17(s)

Thus A xs € K° .

Assuming AR” c " . let S € Y be of finite measure. Then ys € K”. Hence A ys € K",
There exists W € Y such that A xs = yw. Let us define ¢po(S)= W. Thus, ¢ is defined
on the collection of sets of finite measures. If S; and S; are disjoint measurable sets
of finite measures, then

A (X S]-U 52) = A ( X51 + XSZ ) X52 SZ
= A X51 + XSZ A
= XW1 + XWZ
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This represent that m (W1 n W) =0 and
$o(S1U S2) = ¢o(S1) U ¢o(S2)

It can be demonstrated that ¢o maintains intersection and difference. Given that m is
an o -finite measure, there exists a sequence {Si} of pairwise disjoint measurable sets
of finite measures.

x=Ui2, Si.

Let Xi = ¢o (Si), i.e., Aysi=yxi fori €N, and let X = U2, Xi . If S is an arbitrary
member of Y, ¢o(S) can be written as:

¢o(S) = UiZ1 po (SNSi)

do: Y — Y isan g-homomorphism, whereas Y is an o -algebra of measurable
subsets of X'. This o -homomorphism generates Cp: Y/ £ — Y/ £', which is defined
as

O (SAE)=do(S)AE.

According to Theorem, there exists a measurable transformation T: X' — X such
that ¢ =h'r. If m (S) equals oo, then

Axs=yrle=Crys

Thus, A and Ct agree on kP and, by extension, on LP(m). This indicates that A
equals C+. This concludes the proof of the theorem.

2.2 Invertible Composition Operators

If  is a bounded complex-valued measurable function on X, the mapping
M m on L? (m) defined by Mz f=m. f is a continuous operator with a range in L2
(m). This operator M , is called the multiplication operator induced by .
If Ct is a composition operator on L? (m), then Ct. C; is a multiplication operator,
and Ct C7 is similar to a multiplication operator. The following theorem explains
these findings.

Theorem 2.2.1 Let Ct be the composition operator on L2 (m). Then
(1) C; C1 = Msr.



(i) Ct C; = Msro 17, where P is L? (m) projection onto the Ct range closure.
(iii) C1 has dense range if and only if C1 C7; = MfroT.

Proof. (i) Let f,g € L2 (m). Then

(C; Crf,g )= (Crf,Crg )= [fgdmT™!

fr fgdm

<Mfo'g >
Thus C; Ct = M.

(ii) Assume f € L? (m). Then Pf belongs to the closure of Cr range. Hence, there
exists a sequence {C+ fn} in the range of C, which converges to P f in norm. Thus

CTC';: Pf = llm CT C';: CT fn
n

= lirrln Cr(fr fa)

= Msrot Pf

We can deduce that f - P f is in the orthogonal complement of Ct range, which is
equivalent to the kernel of C+tC;f = CrC;Pf. Thus CtCrf = CrC;Pf for all f € L2
(m). Hence CtC7 = Mtrot P

(iii) If Ct has a dense range, then (ii) P equals I, the identity operator.

Hence CtC; = Msror P. Since fr o T not equal 0 at., C+Cy is an injection. Since Cr
and CtCr share the same ,We now got the desired outcome. This concludes the proof
of the theorem.

Theorem 2.2.2: Let Ct be a composition operator on L?(m)!]. Then the
following are equivalent.

(i) Cris an injection.

(ii) fand fo T have the same essential range for any f € L? (m)

(iii) m<<moT™?

(iv) fr varies from zero practicalle everywhere.

Proof: (i) = (ii) Assume Ct represents an injection. The essential range of fo T is
always the same as the essential range of f in L? (m). To demonstrate reverse
inclusion, let a be in the essential range of f. Let G be the neighborhood of a. Then,
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using the notion of essential range, m (T~ (f 1(G))) # 0. As Cr is an injection, we
can conclude that m (T~ (f ~1(G))) = 0. Thus, a falls within the fundamental range
of f oT.
(ii) = (iii): Let S €Y be such that m T~1(S) = 0. The essential range of Ctys is
equivalent to the singleton set (0). According to (ii), the basic range of ys is equal to
zero. This means that m (S) equals 0. Thus, m<<mo T~
(iii) = (iv): This implication stems from the following equation:

mT-1(S) = Js frdm
(iv) = (i): Assume fr differs from zero practically everywhere. It is well-known that
the multiplication operator Msr is an injection. As per portion (i) of Theorem 2.2.1,
Cr Ctis an injection. Therefore, Cr is an injection. This concludes the proof of the
theorem.

Corollary 2.2.1: Let Ct be a composition operator on L2(m). Let T be right
invertible and its right inverse be non-singular. The Ct scan is then administered as
an injection.

Let Y1 and Y2 be two a-subalgebras in Y. Y1 and Y are considered equal (written as
Y1 =Y>) if for any S1 € Y4, there exists Sz € Yz, such that S; = Sz, and vice versa. If
T is a measurable transformation, then T~1(Y) is an o-subalgebra of Y, where

T-1(Y) = {T}(S): S € Y}

The L2-space with respect to the o-subalgebra T-1(Y) , denoted as L2 (X, T~1(S),
m), is a subspace of L2 (m). The range of any composition operator is a subspace
(not necessarily closed) of this space.

Each composition operator is dense in L2 (X, T~1(S), m). We will demonstrate
this in the following theorem.

2.3 Compact Composition Operators

In a separable Hilbert space, an operator's compactness means it converts
weakly convergent sequences into norm convergent sequences. For example, if Xn
— X are weakly convergent, then Axp— AX in the Hilbert space's norm. This
section covers compact composition operators on L? (m). There aren't many compact
composition operators. No composition operator exists on the second level of a non-
atomic measure space is compact. No composition operator is compatible with £2,
the L2-space of an atomic measurement space. However, some weighted sequence
spaces have compact composition operators.
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Let (X, Y, m) be a measure space, with € > 0 and  a complex-valued measurable
function on X. The set (x: x € X and | = (X) | > £ ) is denoted by XZ. Let ZZbe
defined by.

§={fxxz: f€L*(m)

Then ZT is a subspace of L2(m). If an element from L? (m) vanishes outside of X, it
belongs to Z. The theorem describes compact multiplication operators on L2 (m)
based on Z dimension.

Theorem 2.3.1: Let M,, be a multiplication operator on L2(m). Then M,, is compact
if and only if ZT has finite dimension for all £ > 0.

Proof. Let M, be compact. Since ZZ is invariant under M, it follows that the
restriction of M,; to ZZ is also compact. As x is constrained away from zero on X7,
we can conclude that M, , ZF . Thus Z7 is finite-dimensional.

In contrast, if X7 is finite-dimensional for every & , it is also finite-dimensional for
everyn € N . Let x be defined as.

Tn =T Xxr,,

Then M,,_, is a finite rank operator, and M, + M is a norm. Hence, M, is a
compact operator. This concludes the proof.

Theorem 2.3.2 : (i) states that a multiplication operator M,; on L?(m) is compact if 7
=o0a.e.on

(i) If M, is an injective multiplication operator on L? (m), then it is compact.
indicates that (X, Y, and m) is an atomic measure space.

(iii) If Ct is a composition operator on L2 (m), T~ (Xz) = X equals X when Cr is
compact.

(iv) If m(X) = oo, the compactness of a composition operator C implies that m(Xz) =
00,

Proof. (i) Define m; as the limitation of the measure m on Xz, and m; = m —ma.
L2(m1) is an invariant subspace of M,, , resulting in =0 a.e. on Xi.

(i) If M, is compact, the kernel of M,, contains L%(m1). Because M,, is one-to-one,
L2 (M,) equals zero. Hence, my = 0. Thus, m equals m..

(iii) If Cr is compact, then Mgy is also compact. Hence, by section (i), fr is zero
practically everywhere on Xi.

11



X= T71(X2)
(iv) If Ct is compact and m(X2) < oo, part (iii) and Theorem 2.1.1 provide a
contradiction.

From the previous theorems, it is clear that the hope for the existence of the compact
.Composition operators occur when the underlying measure space is atomic. Sequence
spaces are examples of L2-spaces within atomic measure spaces. This section covers
compact composition  operations on Hilbert spaces of sequences.
Let T: N — N be amapping, with ¢ > 0. Then definethe set N, as:

N, = {n: neNandmT ' ({n}) >em({n})} Ne

Theorem 2.3.3. Let Ct be a composition operator for £2(w). Cr is compact if and
only if N contains a finite subset for all £ > 0.

Proof. Assume (fi) is a weakly convergent sequence in £2 (w), with £ > 0. Assume
N¢ is finite with k components. Theorem 2.1.1 states that if b > 0, then
m T~ ({n}) > e m({n}) forall n £ N. Thus

ICefil? =. N [fiPdmT™! = [ye [fPdMT™1 + [yne [Fil?
dmT 1

< bk|fi(ni) P m{ns}) + [ fi |l

where | fi (nr) | = max { | fi (ni) |: nt € N and m ({ns}) = max{m({n}):n: € N.} goes
to zero pointwise, we can identify j € N such that for i > j. we have N

I Crfi | < er bk . m({ns}) + e || fi |
Since weakly convergent sequences are norm constrained, we may conclude that the

sequence { || C+fi ||} converges to zero. This demonstrates that Ct is compact.

In contrast, suppose Ne has an unlimited number of elements for any € > 0. Ct is
bounded away from zero at the end of the span {e;j: j € Ne }. According to Problem,
Cr is not compact since the range of its limitation is a closed, infinite-dimensional
subspace within Cr. This concludes the proof of the theorem.
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2.4 Normality Of Composition Operators

In Hilbert space, an operator A is considered normal if it commutes with its
adjoint A*, and quasinormal if it commutes with A*A. If A*A -AA” is positive, then
A is considered a hyponormal operator. If either If A or A* is a hyponormal, then A
is considered seminormal. Unitary means A*A = AA* = 1.

Theorem 2.4.1: Let (X, Y, m)l] be a typical Borel space, and let Ct be a
composition operator onL2(m). Then the following are equivalent.
(i) Cris unitary.
(if) T is an injection with fr = 1 a.e., (iii) Cr is invertible with fr = 1 a.e., and (iv) C
is a composition operator.
Proof: (i) = (ii) If Ct is unitary, then
C;Cr =C+ Cy =1
Hence Msr = I. Thus, fr equals 1 a.c. Theorem 2.2.14 states that C+ is invertible,
which implies that T is an injection.
(i) = (i) fr =1 a.e., Cr is an isometry with closed range. If T is an injection, then
Ct has a discrete range, according to Corollary 2.2.1. Hence, C+ is invertible.
(ilf) = (iv) Given that Cr is invertible and fr = 1 a.e., we obtain
Cr =M Crl=Crt=Cr
(iv) = (i) Assume C7 = Cy for a measurable transformation U. Then
M = C;Cr = CuCr=Crou
Thus, using the argument presented before the theorem, we obtain

fr=1ae

This demonstrates how Cr is an isometry. If Ct has a dense range, it will be unitary.
To prove that Ct has a dense range, simply show that T=1 (Y) =Y. LetSe Y be
finitell in measure. If x e ran Cr, then there is a h e L?(m). Such that

CTh =Xs

Because Cr is an injection, Corollary!’l states that h = Xs, forsome Sz e Y. Hence,
S=T"1(s,)eT™1(Y).If x; isnotinthe range of Ct, we can write

13



Xxs =Crg+ f
where f € (ran C;) + . Now we have
Cuxs= CiCrg+Crf
=9
Thus, g equals x7-1(s) . Itis proven that x; = x..—s (u—1 (S)) .Hence SeT~1(Y) . Itis
proven that Se T-1 (Y) foranySe Y. Hence Y € T 1 (Y) c Y. Thus

Y=T"1(Y)
This proves the statement.

Theorem 2.4.2. Let (X, Y, m) be an a-finite measure space with Ct as a composition
operator on L? (m).

(i) Cr is hyponormal if || \/fy f|| = || /fr o T pf | for everyone f e L%(m).
(if) Cr is hyponormal if and only if fro T > fr a.e. and the completion of the o-

algebra given by the set of type S interception ) XfT for S e Y is contained in T~1
(Y), where

XM ={x:fr(x)>0}

Proof: (i) Ct is hyponormal if and only if C;Ct- C+C; =0 . Hyponormal if and
only if.

(C7Cr = CrCRf.f) 20
According to Theorem 2.2.1, Cr is considered hyponormal if and only if
(Mer f,f ) = Mg Df , f) forall f e L2(m)

Based on this, we can conclude that C+ is hyponormal if and only

I Fr fll=1I/froT pfl forall f e L2(m)
This demonstrates (i) (because P is the projection of L%(m) on the Ct, P> =P, and
PfroTfH)=fOT pf

(if) Assume Cy is hyponormal. The kernel of Cy is found in the kernel of Cr.
Assume S is a finite measure set that does not belong to T-1 (Y) and has a

14



correlatio with X. Then x, is not within the Ct range's closure. There is a function f
in the orthogonal complement of the C+ range closure that has avalue of zero (f, x)
# 0. Since f € ker C7 subset ker Ct equal ker Msr, we have

frf=0
Thus, we arrive at a contradiction. Hence, Se T~ (Y) . Let
Si={(x:(froT) (x) <fr (x)}

Then S1 e T~ (Y) . Using the hyponormality of C7 , it can be proved that m(S1) = 0.
Hence fro T > fra. e. For the converse, suppose conditions are true.
Let f e L2(m)[]. Then f can be written as

f=fi+1

where f is the closure of ranCr and f; its orthogonal complement. It is possible to
prove that

| CrflP-l|CrflP=S(froT—fr)|fi?dm

Since fro T > fr, we have the hyponormality of Cy.

2.5 Weighted Composition Operators

The weighted composition operator W,  on a function space H(X) over a
set X is a continuous linear transformation from H(X) to itself, defined as W, r(f) =
m. fo T, where m is a function in X and T is a [Iself map of X. If & induces the
multiplication operator M,; on H( x), and T induces the composition operator Ct on
H(X), then W, = M, Cr. However, the weighted composition operator W, r
may be induced by the pair (7, T), but not by T. For example, if  (x) = 0 for every x
e Xand T: X —»Xisamap, then W, r isaweighted composition operator whether
T causes an operator or not. The composite function f o T is multiplied by R to
obtain the function W, 1 (f). Multiplying by m and composing the function m.f
with T yields the operator f — (. f)o T, denoted as Wy, .

We suppose : X — C is a bounded measurable functionand T: X — X'is a non-

singular measurable transformation. For more generalized weighted composition

operators, we can use the support of m as the domain of T.

Now, define the measure m7 on Y as Since m(S) =0, mT~1 (S) =0, and m7 (S) =0,
15



we can conclude that m7 << m. Define f as the Radon-Nikodym derivative of m
with respect to m, with 0 equaling ¢ = ()P . If fr is essentially bounded, W,  is
also bounded on L"(m). However, the opposite is not true. The following theorem
defines W, r boundedness as the boundedness of ¢.

Theorem 2.5.1 states that a weighted composition operator W, ;- on L? (m), is
compact if and only if mT~1(X1) =0.

mF({x;})
a;

- 0as - o

This limit is assumedvto be 0 if Xz is finite.

Proof. Let Xo ={x € X1: ¢ (x) > 0}.
Now,

S Ialf dm= mi(x) = ¢° dm

As aresult, mT~1 (X1) =0 if and only if m(Xo) = 0. That is, ¢ (x) = 0 a.e. on X1 if and
only if r(x) =0a.e.on T~ (X1) . Now,

a; ¢ (Xi) = ¢ dm = mF ({Xi})

and hence

b (xi) = {<m¥ ({Xi}))}llp

a;i

W, r is compact only when m(Xo) =0 and lim ¢ (x;) =0. If m(Xo) =0 and
[—oo

¢ (xi) = 0, then for each € > 0, the set X‘l’ is a union of finitely many atoms with
measure zero. As a result of theorem, Z‘l’ has finite dimensions. W, r is compact.
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CHAPTER 3

COMPOSITION OPERATORS ON FUNCTIONAL BANACH
SPACES

3.1 General Characterizations

If X is a non-empty set and H(X) is a functional Banach space of complex-
valued functions, then the evaluation functionals 0x, defined as ox(f) = f(x), are
continuous and belong to H*( (X), the conjugate space of H(X). If T : X —»X is a
mapping with f oT belonging to H(X) whenever f belongs to H(X), then the [!!!mapping
f into f oT is a linear transformation from H(X) into itself. According to the closed
graph theorem, this linear transformation is continuous and bounded. Cr represents the
composition operator on H (X) caused by T.

If A is an operator on H(X), then its adjoint, A*, is an operator on H*(X).
defined as:

(A"F)()=F(Af)

for everyl™ F € H*( (X) and f € H(X). It is clear that A* is the composition operatorl™.
on H*( (X) caused by the operator A. If Ct is a composition operator on H(X),
Then clearly, A is invariant under Cy really

Cr 0x =01 (x)

Theorem 3.1.1: Let A be an operator on H(X) and let H(X) be a functionalvBanach
space over a non-empty set X. If A is invariant under A*, that is, A*(A) subset A, then
A is a composition operator if and only if.

Proof: Assume that for some A =Cr. Let dx € Aand f e H(X). (C; 8x) (f)=dx (Cr
f) =0x (fo T) = d7x (f) is the result then. Consequently, C; 6x = o1 € A
Alternatively, consider that A is invariant under A*. Assume X€ X. Next, ox € A,

and hence, A" dx,€ A. As aresult, T(x) € X exists such that A*8x = 1. It is clear
what mapping T takes x to T(X) is.

(foT)(x) = f(T(x)) = Svey(f) = (478x )(F) = (AD)(x)

This now demonstrates that C+ = A. This concludes the theorem's proof.
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3.2 Operators Of Composition On Spaces HP(D), HP(DN) AND HP(Dn)

Theorem 3.2.1.
(i) A composition operator Ct on Hp(D) for 1 <p < o is induced by each
holomorphic map T from D into itself. And

14T©)]
ICrIP < o

= T5r o) p #o0

(ii) The following are identical if A is a non-zero bounded operator on H?(D) and f,
(2)=2"forn € Z:

(@) A is a composition operator;

(b) for everyn € Z, A f, = (Afy)"

(c) for every bounded analytic function f and g in H?(D), A(f.g) = Af.

(ii1) T is a conformal automorphism of D if and only if the composition operator Ct

on HP(D) is invertible.

Proof. (i) Rudin's results ( state that an analytic function f on D is only included in H”
(D) if and only if If |f|” is the least harmonic majorant of f and possesses a harmonic
majorant, then |[f|[” = y(0). Hence, fo T is analytic on D and

|(foN)@F =1f(T@) "< ¥p(T(2)) forallzeD

Yro T is a harmonic majorant for f o T and consequently foT € H” (D) if T: D - D

is analytic and f € HP (D). This demonstrates how the composition operator Cr is
induced by T. In this instance,

I Crf [P = |1 foT |I° = ¢r0 T(0) <3pro (T(0))

we therefore get

18



p < 1+|T(0)| p
[CrIP < 2O g

(i) Suppose Af, =(Afy )" for n € Z, according to Harnack's inequality. Assuming T
= Afy, T is a member of H” (D). We currently have every n € Z,

[T = || Afa 1< | A
It is possible to demonstrate this by taking the limits of both sidesasn — o

| Tlle<1

where T represents the radial limit of T, which is almost always present on the unit
circle.

T cannot be a constant function of unit modulus since it translates D into D according
to the maximum modulus principle. Consequently, T generates the composition
operator Cr, which concurs with A on f,s meaning that A=Cr. On the other hand, Af,
= (Afy)" follows naturally if A is a composition operator. This demonstrates how (a)
and (b) are equivalent.

This makes the equivalency of (a) and (c) obvious.

(iii) Assume f and g are bounded analytic functions in H” (D) and that A is the inverse
of Cr.

Ct A(fg) = A(fg)oT =f.g = ( Ct Af) (CTAQ)
= (Af.Ag)0 T

hence (A(fg)-Af.Ag)oT = 0. T range is considered to be an open set since T is non-
constant as Cr. is therefore invertible, therefore we get

A(fg) = Af. Ag

As a result, by (ii), an analytic function U from D onto itself exists, making A=Cy .
Given that,

(CuCtf)(2) =(ToU)(z) =z=(UoT)(z) forallzeD

we can argue that T has an analytic inverse. T is a conformal automorphism as a
result. It is simple to prove the opposite.
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Theorem 3.2.2: Let T: D" — D" be a holomorphic function with 1 <p < oo.
(i) Cr is a composition operator on H” (D") if and only if ur (S(G)) < ¢ mn (G) for
every open set G in D" and a [*Ylconstant ¢ > 0. |zi| |z;|?

_|>.12
(i) If sup 1'[?=1LZ‘I)2 is infinite, T does not provide the composition operator
sepn 1-|T4(2)|

on HP (D"), where
T(2) = (Tu(2), Ta(2),....... Tn(z)
Proof. (i) We infer that ur is a well-defined measure since [ fdu; = [ (fo T Ydmn

generates a continuous linear Dn functional on C ( D™). . If f € HP (D") intersection
C( D™). then

[|foTI|5 = 5pn [fF0 T dmn
= IfP dur

If urisa Carleson measure, the foregoing assertion implies that Ct is continuous on
H and so on HP(D") intersection C( D™)as it is dense in H” (D"). If Cr is bounded, the
following argument implies that u is a Carleson measure. This describes the proof of
component (i).

(ii) It is sufficient to assume p = 2. Let z €eD" . Defineg,: D" — Cas

gz (W) = [T, —

=li-w 7

Then
gz € H? (DM, and thus

I :1P = 9:2) =TT 1
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we also have

1
1-ITy(2)|?

| g7z IF = grz(T(@) = [Ty
Also

Il 97| = (Grz0T)@) = (CT gr(2)) (2)

Therefore

1
Il 9r)lP < 1| C1 greplle [Ty 1_|Zi|2)1/2

Therefore, it follows that

_ (1-z;1»)
” CT||2 = ” gT(Z)”Z 7i’l=1(1 - IZilz) - ?=1 1-|T;(2)|?

This is true for every z € D" thus,

n (1=1zil*)
i)

| Crlf? = sup I
zeD™m
This concludes the proof of Part I1.

Theorem 3.2.3: Let Ct be a composition operator on H” (D).

(i) Ct is compact if and only if the norm-bounded sequence {f, } in H” (D) that
converges uniformly on compact subsets of the unit disc also converges to zero in the
norm.

(ii) Cr is compact, implying that | T (e*9)| <1 a.e.

(iii) Ctis not compact if T has an angular derivative at some point .
(iv) Ct is Hilbert-Schmidt if and only if 1/ (1-| T [?) is integrable in the Lebesgue
measure on dD atp = 2.
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Proof. (i) This conclusion is valid over multiple Banach spaces of analytic functions,
and the proof is straightforward. It can be located at .

(ii) Because T maps D to D, it is clear that | T (e? ) | < 1 a.e. Define f, on D as fn
(H)=z" where nis in € N. {f, } is a norm-bounded sequence that converges to zero
uniformly on compact subsets of D. If | T (e‘? )| = 1=1 for a set of non-zero
measures,

ICrfalP=lIfao TIF=[[T(e'? )" d& » 0

asn — oo, According to (i), Ct is not compact.
(iif) Assume T's angular derivative at eie equals 1 without loss of generality. The
angular derivative requires a constant k > 0 to exist, as defined.

[1-T(®)]

<k for -1<t<1
[1-¢]|

Let

1

’n(l—z)(n—l)/n

In H? (D), {fn } is a weak null sequence, while {f, 0T} is bounded from zero. Hence,
Cr is not compact .

(iv) Cr is Hilbert-Schmidt if and only if ~ Y2, || Cr f, ||> < o, where fn is the
same as specified in (2). Since

fn(z) = for zeD

S|l Cr fo 112 = 270 (IT ()[2%)d6 = 1=y 06
We finish the results.

3.3 Composition Operators On H” (P*)

P* denotes the upper half plane, defined as {w: w € C and Im w > 0},
where Im w represents the imaginary part of w. Then the hardy space The definition
of HP (P*)forl <p<o is:

HP (P*) = { f: fis analytic on P* and sup ffooo |f (x + wy|Pdx < o0
y>0
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The pointwise vector space operations and the norm are defined as

1P =sup [° |f(x + w|? dx
y>0

HP (P*) becomes a functional Banach space.

(1+2)

Let L(z) = —

maps D to P* and dD to the real line, with L™ given as
L™t = (w-0)/(W +1)
Let Q be defined as

@N(X) = AWVm)(Fo L) (x)/(x +1)

Then Q is a well-known isometric isomorphism from L? (m) to L? ( —o0 ,00). Let t:
D — D be an analytic map, and T=Loto L™! . Let S(z) = M@ forzeD.

In, it was demonstrated using Poisson integrals in the disk and upper half plane that
Cr is a composition operator on  H” (P*) if and only if My A(P*) refers to any
analytic mappings T that take P* into itself and only have a pole at - as their

singularity. The following theorem presents findings on composition operators on
H2(PY).

Theorem 3.3.1.

(i) Assume T € A(P*). T thus induces a composition operator on If (P) if and only if
it has a pole at zero.
(ii) Cr is a composition operator on H? (P*), then

sup {(Im w)/(Im T(w))} < || Cr |I?

WEp

(iii) Cris invertible if induced by T € A(P*) and T is a conformal automorphism of P.

Proof. (i) Assume that T has a pole at oo . If T is analytiC in a neighborhood of oo, the
function t = L~'oTo L is analytic in a neighborhood of 1 with 7 (I)=I. T induces a
composition operator Ct on H? (P*) via an earlier statement. If f oT € H? (P*) for every
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f € H? (P"), (foT)(w) tends to zero asw — oo within each half-plane Imw > § > 0.
Since the function from wto 1/(t + w) belongs to H? (P*), we can conclude that it
tends to zero at w — oo . Thus, T has a pole at co.

(ii) The replicating kernel K for H? (P*) is given as

L

K(w,u) =

2m(w—u)

Also, ||y |2 = (fu, fu) = K(u,u) = —

4timu

We know that C7 fw = frw) forall w e P*.
I *
Therefore % = [Ifre 1P 71l fu [P = 1| C7 full? /1] fu I

Imw

Hence, sup(lm ")

: We p*) <|ICr|P

(iii) If T is a conformal automorphism, T~1 is analytic and has a pole at oo, just as T
does. C;1isacomposition operator on H? (P*) that is the inverse of Ct. Suppose Ct
is invertible. We know that

MpCi =P Q~'P~1 Cr PQP!
wheret=L"10TolL, B (z2)= 1-t(z)/1-z, P is the Poisson integral in the disc, and P
is the Poisson integral in the upper half plane . Thus, MzC: is invertible.

Because M is subnormal and surjective, we can deduce that it is invertible. C; is

invertible, hence t is a conformal automorphism. Thus, T is a conformal
automorphism. This concludes the proof of the theorem.

Example 3.3.1 (i): Leta>0and wp € P*. Then, define
Tw)=aw+wy forweP’
T induces a composition operator on H? (P*), as per section (i) of the preceding
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theorem. found that the composition operator's normis /1/a .

(ii) Let n be a positive integer, and

((w+)" 1 rww—-1)")
w+)tl—w(w-y)n

T(w) =

for win belong P*. T maps P* to P+, resulting in a composition operator on H? (P).

(ii1) T is a linear fractional transformation defined as

aw+b
cw+d

T(w) =

where a, b, ¢, and d are real values with ad - bc > 0 and ¢ not equal 0. T maps P* to
P+, but does not provide a composition operator on H? (P*) as the point at infinite is
not a pole of T.

Theorem 3.3.2: Let T: P* — P* be a holomorphic mapping that induces the
Composition operator Ct on H? (P*). Then

(i) Ctis not compact if limy — 0 T(x+iy) exists a priori and is a real number for any
real number Xx.

(if) Ct is not compact if there is a k > 0 such that | (t+nT(W))/( ¢ +nw) | <k T(x+iy)
exists and belongs to P*. Denote this limit for every w belong P* and n belong N.

(iii) Assume lim y — 0 T(x+iy). Cr is a ®Hilbert-Schmidt composition operator if
and only if.

[2 (mT.(x) " dx <o

Proof. (i) For n belong Z, , define the function fn on P* as

f(w) = (INVm)[(w-0)" (w+)™]

Then f, is a weak null sequence in H?(P*). The algorithm demonstrates that
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o) 1

| Crfallt =1/ |

=0 1+ (Tu(x))? dx

{C+ fn} does not converge to zero in the norm. Hence, C+ is not compact.

(ii) For n € N, define f on P* as

fr (W) = —

H

n(%+w

Then f, is a pointwise null sequence that is norm bounded, making it a weak null.
Now, for w € P* we have

| (Crfa)(w) =]+ Tw))*
=0t G+ T G+ w) G+ w) P
2 K| fo (W)

Hence || C+f|> >=k? = , because || f, || = v/m, for n € N. Thus, Cr is not compact.
(iii) Assume n is a non-negative integer. Define the function f, on P* as

fo(W)=(w+0)"/ Vo (w+0)"

The family { fo, f1, f 2,...) provides an orthonormal foundation for H? (P*). The
composition operator is Hilbert-Schmidt if and only if Y, ||Cr folP < o0 .
However,

Srzo l1Cr fulP = izo S, 1(Fa0T) () P dx = Bog [, | Fa(T+(x)) [P dx

A simple computation shows that Cr is Hilbert-Schmidt if and only if ffooo(lm
T«(x))1 dx < oo . This concludes the proof of the theorem.

26



3.4. Composition Operators On £P-Spaces

Let w = (wyn) denote a sequence of non-negative real numbers. In Chapter I,
the weighted sequence space L°(w) for 1 <p < oo was defined as the Banach space of
all complex number sequences (a,, ) with Y%, w,| a,|° < oo . If the weight sequence
(w) has non-zero terms, the space £ (w) is a functional Banach space. Thus, #F (w)
is classified as both LP-spaces and functional Banach spaces. If p equals 2, then £7 (w)
is a Hilbert space. LP(w), often known as #%, is a typical example of a sequence
space whenw =1 for all nin N. Hilbert himself explored a Hilbert space known as #2.

Theorem 3.4.1. Assume T: N — N is a function.
()T induces a composition operator on £F (w) if and only if there is k > 0 such that

i eT-1(n) Wis k wn

for every n € N. In this scenario, || Ct ||” equals the inf of such k's!".
(ii) T is an injection if it creates an isometric composition operator on £F.
(iii) T produces an invertible composition operator on #% if and only if it is invertible.

Proof. (i) Let S be a subset of N. Then define.
mM(S) = Xieswi

Then m becomes a measure on the o-algebra of all subsets of N, and £ (w) is just
L"(m). Result of theorem states that each singleton set (n) has a non-zero measure,
which leads to the proof.

(ii) T induces a composition operator on £ if and only if there is k > 0 [such that n
€ N. If T is an injection, # T~1((n)) is either 0 or 1; thus, if k = 1, the above
inequality is satisfied. It is clear that 1 is the infimum of such k's satisfying the

above inequality.

Hence, || Ct || = 1. The converse is clear.

(iii) Assume T is invertible. For every n € N, there is a U such that (ToU) (n) = (UoT)
(n). As U is an injection, Cy is an isometric composition operator on #© , and Ct Cy =
Cu Cr = 1. Hence, Ct is invertible. Suppose C+ is invertible. If T is not an injection,
T(n) = T(m) for unique n and m. Hence, every sequence («; ) in the range of C+ has
a, = G. Then Ct is not upon, resulting in a contradiction. Hence, T is an injection.

If T is not a surjection, the kernel of Ct must be non-trivial, resulting in a
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contradiction. Therefore, T is onto. This shows that T is invertible. This concludes the
proof.

Theorem 3.4.2 states that T: N — N is a map with Ct as a composition operator on
2P (w).
(i)The adjoint C7 is as follows:

1wy ( Zier-1myWi X; , if T~*(n) is non empty

(Crx)(n) = { 0, if T Y(n)is empty

(ii) C; is a composition operator on ¢F if and only if Ct is invertible or unitary.
Proof. (i) Let x and y be in on 7 (w). Then
(Crx,y) =Znzgwn (X0 T)(n).y(n)
= Ym=1 Zier-10y Wi X(n) y(1)
=Yn=1%n Xier-t(nm) Wi y@®
=Yz wa X(n) Cry)(n)
= (%, Cry)
Therefore adjoint of Cris Cr.
(ii) Let Ct =Cy for some U, then for every n belong N
Xam) =Cr Xm =CuXm) = Xu-1(n)
where y ) represents the sequence with a value of 1 on S and 0 elsewhere. Thus,
U~1(n) equals (T(n)). As a result, U is invertible, and Cy follows suit. This

demonstrates that Cr is invertible. If Ct is invertible, then he ranges of x € £¥ and x
oT are the same. Hence

X1 = Xaeq |
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=Yr=1 X1 [
=[| Crx|P

Thus, Cris unitary, and Cy = Cy-1 . This concludes the proof of the theorem.

Theorem 3.4.3: Let T: N — N be a function with Cr as a composition Operator on
22 (w).

(i) Cris compact if and only if

1

— Y. - - -

W Dier 1myw; > 0 asn-—oo

1

(i1) Cr is Hilbert-Schmidt if and only if the sequence N

belongs in £2 (w).

Proof. Corollary provides an obvious proof for (i). (i) re-states the corollary based on
weights.
(ii) The Hilbert-Schmidt operator can be used to the orthonormal basis for £2 (w)

represented by the functions f, =en/ \/w, forn belong Z,.

Theorem 3.4.4: Let Ct be a composition operator on £2. Then

(i) Ct has an invariant subspace.

(if) Crt has a decreasing subspace if N has two separate elements that are not in the
same orbit as T. Two elements of N are considered in the same orbit of T when they
can be reached by composing T and T several times.

Proof. Theorem states that if Cr is invertible, it is also unitary and so normal. Thus,
it possesses an invariant subspace. If Cr is not invertible, it cannot be both surjective
and injective. If Cr is not surjective, its range, which is a closed subspace of #2 , is
an invariant subspace of Cr. If Cris not injective, the kernel represents an invariant
subspace of Cr. This completes the proof for part (i).

(if) Assume mo and no are different components of N that are not in the same orbit as
T. Let F = (n: n belong N, where n and no do not share the same circle of T). Let M be
the spanl®! of e}, s, where n belong F: e, represents the sequence with n'™ entry 1 and
rest 0. M is a proper, closed subspace of #2 that is invariant under Ctand C. Thus,
M is a reducing subspace of Ct. This concludes the proof of the theorem.
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CHAPTER 4

SOME APPLICATIONS OF COMPOSITION OPERATORS

In chapter 11, we examined composition operators on several function
spaces. Natural operators, whether explicit or implicit, can be found in various
fields of mathematics, including classical. Topics covered include mechanics ,
ergodic theory, dynamical systems, Markov processes, semigroup theory, isometries,
and homomorphisms. This chapter will cover some of these interactions and their
applications. Isometries are crucial for understanding certain mathematical
structures. Isometrics onvsuitable function spaces are typically associated with
compositionvoperators.

4.1 Isometries And Composition Operators

We start with the standard Banach-Stone theorem. If X and Y are compact
Hausdorff spaces with a continuous map T: X-=Y, the composition operator Cr:
C(Y) »C(X) Plis an isometry if and only if T is surjective, and a surjective isometry
if T is a homeomorphism. Ifih T: X—Y is a homeomorphism and n: X—C is a
continuous function with x| = 1 for every xeX, the weighted composition operator
W= C(Y) = C(X) becomes a surjective isometry. The Banach-Stone theorem
states that any surjective isometry Plfrom C(Y) to C(X) is a weighted composition
operator, which contradicts the previous tatement. The Banach-Stone theorem
requires some definitions.

Definition 4.1.1:In a vector space E, the set (t X1 + (1 - t)x2: 0 <t <1) is the open
linel*Yl segment between x; and x2. The line segment x1 # x2 is considered
appropriate. If K is a convex subset of E, then Point YEK is considered an extreme
point if no open line segment contains y and is wholly within K. The symbol ext K
represents the set of all extreme points of K. If E is a normed linear space, (E):
represents its closed unit ball.

If X is a topological space, M(X) refers to the normed linear space of all complex-
valued regular Borel measures with the total variation norm. If X is a compact
Hausdorff space, we may show that the set™] of all extreme points of (M(X))1 is (
adx: |a] = 1 and x € X), while the set of all extreme points of P(X), the set

of probability measures on X, is (6x: X € X).

Theorem 4.1.1. [The Banach-Stone Theorem]. Let X and Y be compact Hausdorff
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spaces with a surjective isometry. There is a homeomorphism T: X — Y and a
function x in C(X) where | X | = 1 for all XeX or

(Ar) (X) = z(X)f (T(x)), for all f € C(Y)
and every Xx € X (A =Wxr).

Proof. Assume A: C(Y) - C(X)™ is a surjective isometry. The adjoint operator
A" M(X) =>M(Y) is a surjective isometry. A" is a weak*-homeomorphism from
(M(X))1 to (M(Y))1 that distributes Over convex combinations. Additionally, it
suggests that

BIA™ (ext (M( X))1) = ext( M( Y))1.

This theorem implies that for each x € X, there is a unique T(X) in Y and a unique
scalar m(x) with |m(x)| = 1 and A"(8x) = m(x)d1(y. Thus, x: X - Cand T: X - Y are
unique well-defined functions. First of all, we demonstrate that the function IC is
continuous. Let (x,) be a net in X that equals x,, —X. Then clearly, 8, — x
(weak*) in M(X). Furthermore, we have A*(Sxa) - A"( 8x) (weak*) in M (Y).
Specifically, m(x,)01(Xs) — T(X)dT(). FOr example, n(x,) = A*(Sxa)(l) - A"(5,)(1)
= m(x).

This shows that &t is a continuous map. We will demonstrate thatthe map T: X - Y
Is @ homeomorphism. Since the map x — dx is @ homeomorphism from X into (V(X),
wk*), we can argue that T(x,) — T(x) This shows that T is continuous. To
demonstrate that T is an injection, let x; and x2 € X be So that X1 # x2. Then

m(x;) 8,,# T(xy) 8y, implying that T(x1) # T(x2). We can now solve yeY. The
surjectivity of A* allows for the existence of u € M(X) with A*( u) = dy. In view of
(1). This implies that u € ext(M(X))1. For some x € X and g € C, B = 88x, where |
B | = 1. This means that 8y = A"(B8x) = Bn(x)d1(q. Furthermore, it follows that g =
n(x) and T(x) = y. Thus, T: X — Y is a continuous bijection and must be a
homeomorphism. Letf € C(Y) and x € X. Then

Sx(A f) = A*B)( f) = m(x)d1e0( £) = 7(x)f (T(X)).

Thus, (A f)(x) =n(x)f (T(x)). Hance we prove the theorem.

Assume S is a subspace of the Banach space C(X) that separates points of X. Define
Ls as a linear map from S to E. Assume the norm on S is defined by one of the
following formulas:
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(F) 1 f=max{ll f lle, I Lgf I} . for f €S, where|l.ll, isthe usual supremum
normon C(X),

F)INFN=1Ffll+NLsfIl, forf €S,

(F) Il £ I =supf{|f] + |Lsf(x)|:x € X} f €S, assume that E = C(X)

For examplel. Ls: CY[O,I] —» C[O,I] may be defined as Ls(f) = f'. Similarly, Ls:
AC[O, 1] -»L[0, 1] can be defined as Ls(f) = f'. AC[O, 1] refers to the space of all
absolutely continuous functions on [0, 1].

Theorem 4.1.2: Assume X is a compact Hausdorff space, and S is a subspace of
C(X).

(i) Sis dense in C(X)

(i) the norm on S is supplied by a map L: S = E via the formula (Fs).

(ii1) S has the constant function 1 and Ls(1) = 0.

(iv) dim(Ls(S)) = 2

(v) E is strictly convex

(vi) For any unimodular function 8 € S such that Ls(6) =0,the map f = f /0 isa
well-defined isometry of S onto itself.

Assume M is a subspace of C(Y), where Y is a compact Hausdorff space that meets
conditions (i)—(vi). Any isometry A from S to M has the following form:

A(f)=6.foT,f€ S

where T is a homeomorphism from Y onto X and 0 € M is a unimodular function
with Lm(8)= 0.

Proof. assumption (vi), it is sufficient to demonstrate that A(l) is a unimodular
function on Y with Lm(A(l))=0. The P-property of an element g € S is defined as
llgll =1and B € dD such that

Ng+Bf I =lgl+1f 1.

This property is retained by the isometry A. Assumefe Sand g € D , with || f Il
= supyex Re(Bf (x)). Using the norm definition for S, we get:

N1+BF N =1 1+Bf Nt N Lsf I=2+Nl fllo + N LgfII=1+11F Il

To finish the proof, we need to show that if g € S satisfies the P-property, it is a
unimodular function on X with Ls(g) = 0. First, we prove that|g|=c on X given a
constant c. Then, using the norm definition on S,wegetc=1gll.=1gll=1
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Assume that there exists a xo€ X in which | g(Xo) | < Il g ll. Thenassume f € S,

I f lleo=118 llo—[9g(x0) | and [ fFO) <N gllo—18(x) |+
172(Il g1 lo— 18(x0)| ), X € X for B € aD it shows that

Il 14+8f llw < Il g o+ L2l f ll- Then

Ig+Bf 1= 1g+Bf lleo + I Ls(@+Bf) |l
S gl +1/211 f llo + 11 Lg(@) I+ 11 Ls(f) I

=lgll+1f I=2201flle <1I+1fI.

Hence | g | equals constant. Assumption (iv) states that if L(g) is greater than zero,
Ls(f) and Ls(g) are not proportionate. If h and h' are strictly convex, the equation || h
+h [I=1hll+lIh Il holds proportionate, therefore for any g € aD all, we have

Ig+Bf 1= 1 g+Bf llw + Il Ls(g+Bf) |l
SHgllo Il f llw + 11 Lg(@) I+ 11 Ls(f) I
=1+10f 1.

This demonstrates that Ls(g) equals 0. Hence, the proof of the theorem is
accomplished.

Proposition 4.1.1 A bounded linear operator on L"(X,E) with 1 < p < oo can
translate functions of (almost) disjoint supports to functions of (almost) disjoint
supports. Then there is an n-set homomorphism ¢ of Y and a strongly Mmeasurable
map ¥ from X into B(E) such that

(AP)() = PO(d(N)() forevery f e LP(X,E).

Proof. Assume (en) is a countable, linearly independent subset of E with a dense
linear span (K) within E. Let Ko be the set of all linear combinations of (en) with
complex rational coefficients. Assume A fulfill the Hypothesis for the proposition.
Now we will fix S € Y. Next, define the set function¢ : Y — Y as

d(S) = Uy Supt(A(XSen))-

A(Xs, e,) and A(Xs, ey,) are virtually disjoint for all n and m when S; and S; are

disjoint sets. So ¢(S;) and ¢(S,) are disjoint the equation

A(Xs,en) + A(Xs,en) = A(Xs,us,en) suggests that ¢(S; U S;) = ¢(S1) U
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¢(S,) within a null set. This can be extended to countable unions of disjoint sets
as A is continuous. The extension to countable unions of any set is straightforward.
This demonstrates that ¢ is a set homomorphism. Let Xo represent the kernel of ¢ is
a set-isomorphism if and only if A is one-to-one, as its null space is the space of
functions that vanishes (a.e.) on X. Assume u and 8 correspond to (6) and (7). We
can select 8(x) > 0 for every x € ¢p(X) or 8(x) = 0 for every x & ep(X). Set f,, =
A(1,), where 1, is the constant function on X, take values e,,. We can suppose

that f,, (x) =0 forall nand x & ¢(X).. Define

Y(x)e,= fph(X) Vx€EX, neN.

After extending W(x)e,, linearly to K, we obtain

Y(x) (Zk: liei> = zk: Aifi (x).
i=1 i=1

Thus, forany y € K, W(.)(y) = A(1,) a.e. We will show that ¥(x) is a bounded
operator on E. Assume S € Y,S; = S\X,, and y € K,,. Then

[ g5 MOV 1P dux) = [ 00 11 A1) () 17 dua)tY

= J WAGtpy) () I du(x)
= Il X5,y IP

=1 AN Y17 [ 5 (000)) du(x)

< ANPuS) I yIf

Thus Y)Yy I<TA Nlly I|0(x)], x € ¢(X). Now for x & ¢p(X) the
inequality is trivial. So the null set So,

TPy I<NA NNy II6(x)], Y€Ky x€& S

If y =7, A;e; and E,, is the linear span of ey,..., en, then the restriction of ¢(x) to
E, is a linear map between two finite dimensional spaces and hence bounded.
Additionally, because K,NE,, is dense in E,,, the norm [ ¥(x) | < 1 A Il 6(x)
applies. This demonstrates that (8) holds for every y € K, extending W(x) to a
bounded linear function. Operatoron E: | W(x) Il < Il A |l 8(x) computed W¥(x) for
x ¢. Finally, we demonstrate that w: X — B(E) is strongly measurable. To achieve
this, lety € E and y,, © K be such that y,, — y. The continuity of practically all ¥
(x) and A leads to the conclusion that W(.)y = A(1,), indicating that w is
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measurable. Setting (4, )(.) = Y(.)(d())(.) yields

f I (A0 IP du(x) < f W) 1P (M) IP du(x)
<1 AIPS(80)) 1)) IP du(x)

< AP fFIP

This demonstrates that A; is a bounded linear operator on L” (X, E). It is established
that Az agrees with A on constant functions. Additionally, since

AlxsY) = XpA(1y) = YOxey = A1(Xp)¥),

We infer that A agrees with Az on simple functions, which implies that A = A1.
This concludes the demonstration of the proposition.

Theorem 4.1.3. Let p # 0 and let A be an isometry of H” into H”. ®IThen there is a
non-constant inner function T and a function W in HP such that

Af =¥C;, f€HP.
(1)

T and W are related by

J®Pdu= [ JI\P(T)du SE€Yr
(2)

where P is the Poisson kernel induced by T. Conversely, when a non-constant inner
function T and a function W in H” are related by (2). (1) defines an isometry of H”
into HP

Proof. Assume that A is an isometry from H” into HP, andset ¥ = A(1).

Then W € H” such that ¥ = 0 and w cannot disappear on any positive p-measure set.
Let u be the measure for which dv = |¥|Pdu. So v and u are Mutually completely
continuous. If a linear transformation L: H? - L°(uv) is defined by L f = A f 1w, it
is an isometry of H” into L” (u), and L(1) = 1.

Let fo be the inner function defined as fo(z) = z. Then

f LGIPdy = 1.
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We get

ﬁuﬂmmv=1

This implies that |L(fy*)| = 1 as p # 0. Thus L takes the algebra generated by fo into
L™ (v). From Proposition 4.1.1. (ii) we know that L is multiplicative on this algebra,
therefore for a polynomial g we have L(g(fy)) = g(Lfy)

A(g(fo)) =W¥(rg (3)

Where T = Lf,. Since ¥ € H?, we have ¥ = F.G, where F is an inner function and G
is an outer function in HP. Furthermore, (3) suggests that F. T™ is an inner function
for n = 0. Now we'll show that T is an inner function. Let A be the closed subspace

of L2 defined by fojT"(i, k = 0). Jcc remains invariant when multiplied by f;, but
not by jo, as F(u) is contained within H2. Thus, u = 8(H?), where | 8 | =
1.Polynomials in f, and T may approximate f/TkB, which is in Jcc for j, k = 2, and
8. Since f, generates a dense algebra in H” and A is bounded, This implies that

Af =WfoT, Vv fe€HP,

where W € H and T are non-constant inner functions. Additionally, for f € H?, we
have

[I®[PIfoT|Pdu = [ | f P du.
(4)

Let S = T~1(S;), where S; € Y. follows that

J ®Pdu = fsldu
(5)

Because the characteristic function of S; can be approximated by the moduli of
functions in H”, and we get from (9),

fsldu = fsll\P dv = fsl\P(T)du.
(6)

Thus, (5) and (6) denote the intended form (2). In contrast, if T is a non-constant
36



inner function and W € H? is connected by (2), then (5) is a result of (1) and (6).
Furthermore, if A is restricted to basic functions, (5) demonstrates that A, defined by
(1). is anisometry between L" and itself. Thus, A is an isometry of L.

A takesthe algebra formed by £, into H, hence it is obvious that A takes H” into HP.
This concludes the proof.

Remark. The previous result does not apply to vector-valued functions, although
the isometries of H(D) and H*(D) do. If E is both consistently convex and
uniformly smooth

L in demonstrated that every is ometry PIA of H* (D, E) onto H* (D, E) takes the
form

Af =¥(Crs), f€H”(D,E)

where W is an isometry from E onto E and T is a conformal map of D onto itself.

4.2 Ergodic Theory And Composition Operators

Let G be a group with the identity e, and let X be any non-empty set.
Assume u: G X X — X is a mapping such that u(e, X) = x and u(st, x) = u(s, u(t, x))
forany x € X and s, t € G. Then u is known as an action of G on X or a motion on X
caused by G. If x € X, the function u*: G — X defined as u*(t) = u(t, x) is called a
motion through the point x. The range of this function is called the orbit of X,
denoted by the symbol orb(x). If t € G, then the function u,: X — X defined as ut =
u(t, x) is a bijection, with (u;)™! = u,-1. If G is a topological group, X is a
topological space, and the mapping u: G x X — X is continuous, Plthe triple (G, X,
u) is considered a transformation group. The transformation group (Z,X,u) is
known as discrete. A dynamical system is defined as (R, X, u) where Z represents
the discrete topology of integer addition and R represents the typical topology of
real number addition. Substituting Z* and for Z and R results is semidynamical
systems.

Definition 4.2.1: Let (X, Y, u) be a probability measure space. The operator A on
L1(u) is considered doubly stochastic if:

(i) Af =0, when f >0,
(i) fXAf du = fo du,

(i) Af =f, when f is constant.
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If T: X - X is a measure-preserving transformation, then fXCTf du =

J fauT=* = [, fdu, indicating that C; is doubly stochastic. In standard Borel

spaces, only the composition operators are doubly Some cases use v stochastic
isometric operators. We will give the following theorem.

Theorem 4.2.1: Let (X, Y, u) be a standard Borel probability measure space. Let A
be a doubly stochastic operator on L(u) that is an isometry on L?(u). Then there
exists a measure-preserving transformation T: X — X with A = Cj.

Proof. Let S € Y. Then Ays = 0 and [, Axsdu = [, xsdu = u(S) < 1Then 0 <
Ayxs < 1. As Ais an isometry on L?(u), we have

fX(AXs)Zdu = (Axs, Axs) = (Xs) Xs)

= fXXsdu = fXAXsdu- {(Axs)? = Axs}
finally,
u(®) = [ xsdu = [, Crxsdu = uT~(S)

For each S € Y, we conclude that T is measure-preserving. This concludes the proof
of the theorem.

Note. If C; is unitary on L"(u), the doubly stochastic operator A generates discrete
measurable dynamical systems on X and on L"(u), p > 1.

If T: X > X is a measure-preserving transformation, the family (T™: n € Z*) creates
a discrete, measurable semidynamical system. It turns out. The orbit of practically
every point in a measurable subset S of X has a non-empty intersection with S.
Poincare's classical theorem demonstrates this.

Theorem 4.2.2. [The Poincare Recurrence Theorem]. Let T be a measure-preserving
transformation on a finite measure space (X, Y, u) and S =Y. For practically any s €
S, thereisn € Z* such that T™(s) € S.
Proof. Suppose the theorem's conclusion is incorrect.

F={seS: T"¢s, vneZ}

has non-zero measure

F=SNT2(X\S) NT2(X\S) .. cov ...
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If x € F, then T™ (x) ¢ F for every n € N. Hence, F n T~1(F) =0 for all n € N.
Because T is measure preserving and u(X) <co , we have a contradiction With this
contradiction, the proof of the theorem is complete.

Examples of Measure Preserving Transformations :

(i) Assume X = R and u is the Lebesgue measure. Define T; : R - R as T; (X)
=X +t, where x € R. The family (T; : t € Ris a collection of measure
preserving transformations that leads to quantifiable dynamical systems R
and LP(u) forp>1

(ii) Let X = [0, 1] and Y be the a-algebra of all Borel sets. Assume 0 <a <1 and
T, (X) represents the fractional part of x +a. T, : X - X is a measure-
preserving transformation.

Corollary 4.2.1: Let T be a measure-preserving transformation on a probability
measure space (X, Y, u), and let f € LF (u). If the sequence (g, ) converges to g in the
LP-norm, then g IS a fixed point in Cr.Where

n-1
gn=1\nZC¥f, VneN
k=0

Outline for the evidence. Let € > 0. Then there exists a f' € L*(u) such that ||

f—f"lI<e\4. Let g, = 1\nYr=3 Ckf’. According to the convergence theorem the

sequence { g}, } converges to f' in the LP-norm, with f'(x) = lim sup g/, (x). Now
n

I 8n — 8n+m ||P < 8n — g1,1 IIP + |l g;l - g;1+m ”P + |l g;1+m — 8n+m IIP
<e\d+e\2+e\4d =g,

for an appropriate option of n. Since {g,} is a Cauchy sequence, there exists a g e
LP(u) such that g, » g inthe LF norm. Crg can be proven to equal g.

Definition 4.2.1: Let T be a measure-preserving transformation on a measure space
(X, Y, W). T is considered ergodic if T~1(S) = S, which means that either pu(S) = 0 or
(X \' S) = 0. A doubly stochastic operator A on L!() is considered ergodic if its sole
fixed points are constant functions (i.e. Af = f,f € L(u), implying that f is a
constant function a.e.).
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Theorem 4.2.3: Let T be a measure-preserving transformation on a probability
measure space (X,Y.u).If the composition operator Cr is ergodic, then T is also
ergodic.

Proof. Assume the composition operator Cy is ergodic and that T~%(S) = S, where
Se. The equation yr-1(s) = xs* leads to Crxs = x5, indicating that ys = c a.e.
given a constant c. This implies that pu(S) = 0 or u(X \' S) = 0. This demonstrates that
T is ergodic. SupposeT is ergodic. Assume Crf = f for f € L*(n). Let k € Zand n
€ Z*. Let

Xk={xeX :k\2"< f(x) <k +1/2"}.

Then T~1(XX) = X%, Hence u(X*) = 0 or u(X\X¥) = 0. Since X = Upez X¥ vn.

Definition 4.2.1: An ergodic transformation that preserves the measure T has a
discrete spectrum if the orthonormal basis for L () is made up of C; eigenfunctions.
T, and T, are said to be conjugate if there exists an a-algebra automorphism @ on
Yly such that ®hy, = ®hy,, where ®hy is an a-homomorphism induced by T.

4.3. Homomorphisms And Composition Operators

For compact Hausdorff spaces X and Y, C(X) and C(Y) are Banach
algebras of continuous complex-valued functions with supremum norm topology.
C(X) and C(Y) are ce-algebras with maximal ideal spaces homeomorphic to X and
Y, respectively. If T: Y— X is a continuous map, then we know that it induces the
composition operator Cr: C(X) — C(Y), which is an -homomorphism. It is
discovered that every non-zero *-homomorphism from C(X) to C(Y) is a
composition operator.

Theorem 4.4.1. Let X be a compact Hausdorff space and T:X — X be a continuous
map. If W is a probability measure on Borel subsets of X, then T is a measure-
preserving transformation with respect to u.

Proof (outline). Set P = {4 € M(X): u = 0and || u lI= 1}. The Banach-Alaoglu
theorem states that P is w*-compact. It is possible to show that P is C;" -invariant,
non-empty convex subset of M(X). According to the Kakutani Markov fixed point
theory, there exists a 4 € P such that

JxCrf du = E,(Crf) = (Ciw)(f)
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= F.(f)
= [, f du.

It shows that

u(T=*(s)) = u(s)
for each Borel set S. This demonstrates that T is a transformation that preserves the
measure . With this, the proof outline is complete.
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CHAPTER 5

Conclusion

Finally, this thesis looked into the composition operator on functional spaces. These
conclusions rely on sophisticated mathematical notions from functional analysis,
specifically measure-preserving transformations, composition operators, and Hardy
spaces. The document finishes with a theorem demonstration and proofs concerning
measure-preserving transformations and other mathematical features. The
document's conclusions are summarised below. This study has provided us with a
thorough comprehension of the mathematical ideas underlying thecomposition
operator on function spaces. The composition operator has numerous and diverse
uses. The capacity to compose operators in thefrequency domain has resulted in
function spaces in communication systems, allowing for measure-preserving
transmission and better function spaces.
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