EFFICIENCY-BASED HOUSING ALLOCATION: LEVERAGING DEA WITH CCR MODEL FOR ENHANCED DECISION – MAKING IN REAL ESTATES

Dissertation Submitted in Partial Fulfilment of the Requirement for the Degree of

MASTERS OF SCIENCE

in Mathematics by

Ishika Gupta (2K22/MSCMAT/58)

Himanshi (2K22/MSCMAT/59)

Under the Supervision of **Prof. Anjana Gupta Delhi Technological University**

Department of Applied Mathematics

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road, Delhi- 110042, India

May, 2024

ACKNOWLEDGEMENTS

The successful completion of any endeavor is always attributed to the individuals who have contributed, either implicitly or explicitly, to its progress. In the case of our project, the planning and research phases have reached fruition thanks to the dedicated efforts of numerous individuals. It is imperative to acknowledge their invaluable contributions in this report, as their involvement has been instrumental to our success. This expression of gratitude serves as a token of appreciation for their support in our undertaking. We extend our sincerest thanks to our project guide, whose guidance and solutions have consistently guided us through the complexities we encountered. Working under their leadership has been an honor and a pleasure. It is not only their knowledge that we have benefited from, but also their calm and composed demeanor, which has left an indelible impression on us. We remain indebted to them for these lessons, which will stay with us throughout our lives.

Furthermore, we would like to express our gratitude to Dr. ANJANA GUPTA (Professor) and RAMESH SRIVASTAVA (Professor), Head of the Department of Applied Mathematics, along with all the other faculty members who have imparted valuable knowledge and wisdom to us. We would like to acknowledge the focus of our work, which centers around the "Efficiency-Based Housing Allocation:

Leveraging DEA with CCR Model for Enhanced Decision-Making in Real Estate."

The insights gained from this study have provided us with valuable insights into the effectiveness of these algorithms, contributing to the field of Data Envelopment Analysis.

Last but not least, we extend our heartfelt thanks to colleagues, friends, and parents, who have encouraged and inspired us throughout the project. Their unwavering support has been crucial in overcoming challenges and keeping us motivated. We are immensely grateful for their support and guidance, and we acknowledge their profound impact on our journey.

Thanking you

ISHIKA GUPTA AND HIMANSHI

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE'S DECLARATION

We, (Ishika Gupta, Himanshi), 2K22/MSCMAT/58, 2K22/MSCMAT/59, hereby certify that the work which is presented in the dissertation entitled Efficiency-Based Housing Allocation: Leveraging DEA with CCR Model for Enhanced Decision-Making in Real Estate in partial fulfillment of the requirements for the award of the Degree of M.Sc. Mathematics, submitted in the Department of Applied Mathematics, Delhi Technological University is an authentic record of my work carried out during the period from August 2023 to April 2024 under the supervision of Dr. Anjana Gupta.

The matter presented in the dissertation has not been submitted by us for the award of any other degree of this or any other institute.

Candidate's Signature

This is to certify that the students has incorporated all the corrections suggested by the examiners in the dissertation and the statement made by candidates is correct to the best of our knowledge.

Signature of Supervisor

Signature of External Examiner

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE BY THE SUPERVISOR

Certified that Ishika Gupta, Himanshi, (2K22/MSCMAT/58, 2K22/MSCMAT/59), has carried out this research work presented in this dissertation entitled Efficiency-Based Housing Allocation: Leveraging DEA with CCR Model for Enhanced Decision-Making in Real Estate for the award of the Degree of M.Sc. Mathematics, from the Department of Applied Mathematics, Delhi Technological University under my supervision. The dissertation embodied results of original work, and studies are carried out by the students themselves and the content of the dissertation do not form the basis for the award of any other degree to the candidates or to anybody else from this or any other University/ Institution.

Signature
Dr. Anjana Gupta
Professor

Date:

Efficiency-Based Housing Allocation: Leveraging DEA with CCR Model for Enhanced Decision-Making in Real Estate

Ishika Gupta, Himanshi

ABSTRACT

This study introduces an innovative approach to optimizing house searches using Data Envelopment Analysis (DEA) with the Charnes, Kooper, and Rhodes (CCR) model. Utilizing live housing data from a diverse selection of properties, the research clusters houses based on price ranges and constructs efficiency frontier graphs to identify optimal housing allocations within each cluster. By quantifying the efficiency of houses, the DEA methodology provides a robust framework for nuanced comparisons and enhances decision-making in the real estate market.

The project investigates operational efficiency through the implementation of DEA, a powerful tool for comparing the efficiency of multiple units under varying conditions. DEA uses an efficiency frontier to signify peak performance achievable with specific inputs and outputs, offering insights into inefficiencies and opportunities for process optimization. Our methodology requires a comprehensive matrix of inputs, outputs, and relevant components for sampled decision-making units (DMUs), configured with specific metrics and orientation to provide relative efficiency scores and operational benchmarks.

Central to our analysis is the CCR model, which evaluates the efficiency of DMUs under the assumption of constant returns to scale, facilitating uniform comparisons and highlighting avenues for improvement. This approach aims to empower organizations by minimizing costs and maximizing benefits in various scenarios, such as goods transportation, service management, and process optimization. By considering a wide range of variables and potential conflicting goals, our study strives to enhance overall efficiency and inform decision-making, optimizing resource use and achieving high relative efficiency across diverse real-world contexts.

Keywords: Data Envelopment Analysis (DEA), Charnes Cooper and Rhodes (CCR), Efficiency Frontier Graph

TABLE OF CONTENTS

T	itle	Page No.
A	cknowledgement	ii
C	andidate's Declaration	iii
Certificate by the Supervisor(s)		iv
A	bstract	V
1	INTRODUCTION	1 - 3
	1.1 Origin of Data Envelopment Analysis	1
	1.2 Motivation	2
	1.3 Dissertation Structure	2
2	LITERATURE REVIEW	4 - 6
3	PRELIMINARIES	7 - 9
	3.1 Data Envelopment Analysis (DEA)	7
	3.2 CCR MODEL	7
4	PROPOSED PAPER	10 - 33
	4.1 Exploratory Data Analysis (EDA) with Python4.2 Clustering Housing Data by Market Price for	11
	Budget-Based Segmentation 4.3 DEA-Based Efficiency Analysis for Housing	18
	Clusters in R 4.3.1 CLUSTER -1: (1,00,000 – 1,50,000)	22 22
	4.3.2 CLUSTER -2: (1,50,000 – 2,00,000)	24
	4.3.3 CLUSTER -3: (2,00,000 – 3,00,000)	26
	4.3.4 CLUSTER -4: (3,00,000 – 6,00,000)	27
	4.3.5 CLUSTER -5: (6,00,000 and 10,00,000)	29
	4.3.6 CLUSTER -6: (10,00,000 and above)	31
5 R	CONCLUSION EFERENCES	34 35 - 36
A	PPENDIX	37 - 38

LIST OF FIGURES

- Figure 3.1 Heat Map Depicting Null Values
- Figure 3.2 Scatter Plot Number of rooms *versus* Market values
- Figure 3.3 Scatter Plot Garage spaces *versus* Market value
- Figure 3.4- Line Plot Sales price *versus* Market values
- Figure 3.5 Scatter Plot Market price *versus* Number of Houses
- Figure 3.6 Scatter Plot Market price Range *versus* Number of houses
- Figure I.1 Overview of Dataset

LIST OF SYMBOLS AND ABBREVIATIONS

DEA = Data Envelopment Analysis

CCR = Charnes Cooper Rhodes

DMU = Decision Making Units

EDA = Exploratory Data Analysis

 $x_{ij} = DMU$ Outputs

 $y_{ij} = DMU$ Inputs

 u_r , v_i = variable weights

m = number of inputs

n = number of outputs

(i,j) = DMU arc

Chapter 1: INTRODUCTION

Our project embarks on the investigation of operational efficiency and focuses on the implementation of Data Envelopment Analysis (DEA), a powerful methodology tailored for comparing the efficiency of multiple DMUs operating under various conditions. At its core, DEA presents conceptual units operating on the basis of an efficiency frontier, a dynamic scale that signifies the peak performance achievable with specific inputs and outputs. By examining units in relation to this boundary, DEA becomes a challenging tool that can identify inefficiencies and provide invaluable insights for improving processes and optimizing resource allocation.

1.1 Origin of Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a mathematical technique used to evaluate the relative efficiency of Decision-Making Units (DMUs) in various contexts, such as universities, banks, automobile manufacturers, educational institutions, hospitals, municipal corporations, and many more. It was initially introduced by Charnes, Cooper, and Rhodes in 1978, DEA has its roots in earlier work by Farrell and Fieldhouse in 1962. However, the linear programming model developed by Charnes, Cooper, and Rhodes (CCR) proved to be more flexible and effective compared to Farrell's method. The CCR model could be computed using standard linear programming software, offering computational efficiency[18]. This model created a vital link between a productivity index and efficiency measure, marking a significant advancement[18]. Notably, earlier contributions by agricultural economists in programming approaches for piecewise linear frontier production functions have largely been developed to model the efficient frontier in production. These methods focus on defining segments of linear functions that together form the frontier, representing the maximum possible output for a given set of inputs. overlooked until the CCR paper brought renewed attention and development to this area. Following this publication, more economists began utilizing this programming method, particularly for empirical studies, culminating in a comprehensive survey by Simar and Wilson in 2000.

The accuracy of DEA is influenced by the number of inputs, number of outputs and dimensions of the production set. To maintain a consistent level of estimation error, the sample size must increase exponentially with dimensionality. Due to this complexity, the only feasible approach to making inferences with DEA estimators involves using computationally intensive bootstrap methods, which require modifications with smoothing procedures to yield accurate results[18].

Conducting a DEA analysis requires a matrix containing inputs, outputs, and other pertinent data from the sample DMUs, after constructing the DEA model with specific metrics and orientation, this matrix is employed to solve the model[18]. The analysis results include relative efficiency scores and operational benchmarks for each DMU. Each DMU is assigned an efficiency score, denoted as 'e', and benchmarks or target values are computed to transform inefficient DMUs (e < 1) into efficient ones[18]. DEA aids in identifying potential enhancements for improving operational performance and differentiates between efficient and inefficient entities, the method involves establishing the efficiency frontier for the set of DMUs based on the observed data matrix and the DEA model[18]. This efficiency frontier defines the production possibility set, with DMUs on this frontier forming the reference set, DEA projects each DMU onto the efficiency frontier and identifies the maximum potential improvements for their inputs and/or outputs[18].

1.2 Motivation

The impetus for this project arises from the growing complexity and competitiveness across various sectors, which necessitates enhanced efficiency in resource allocation and performance optimization. Traditional efficiency assessment methods often fail to adequately capture the multifaceted nature of operations in diverse entities. Data Envelopment Analysis (DEA) provides a sophisticated and comprehensive method for estimating the efficiency of decision-making units (DMUs), considering multiple inputs and outputs without presuming a predefined functional relationship.

The primary objective of this project is to equip organizations and individuals with data-driven insights that enable informed decision-making and promote a culture of continuous improvement. The aim is to achieve optimal efficiency, balance costs and benefits, and maximize the utilization of available resources, thereby contributing to more effective and sustainable operations across various industries.

1.3 Dissertation Structure

To delve into the DEA analysis, our methodology requires a matrix including inputs, outputs and other components relevant to the sampled decision making units (DMUs), a DEA model, complexly configured with specific metrics and orientation, using relative efficiency scores and operational benchmarks. tailored to each DMU and offering a nuanced understanding of their performance.

Central to our endeavor is the Constant Returns to Scale (CCR) model within DEA, which primarily aims to evaluate the efficiency of DMUs, including entities such as firms, organizations, or any entity involved in the transformation of inputs into outputs. The CCR model, which operates under the assumption of a constant scale of operations, assumes that a doubling of inputs would lead to an equivalent doubling of outputs while maintaining a standardized scale. This basic assumption provides a uniform basis for evaluating effectiveness across entities, facilitating meaningful

comparisons and illuminating avenues for operational improvement. Rooted in these methodologies, our project seeks to empower organizations in their quest to increase operational efficiency and make informed decisions regarding the use of resources.

The primary goal is to minimize costs and maximize benefits in a variety of real-world scenarios where resources must be allocated efficiently. Whether it is transporting goods, managing services or optimizing processes, the goal remains consistent – to strike a balance between minimizing costs and meeting specific requirements while ensuring maximum use of available capacities.

When solving a complex problem, traditional approaches can only consider the direct costs or benefits associated with specific tasks or operations. However, in a wider range of real-world scenarios, a multitude of variables can come into play for any decision-making process. In addition, decision makers may face conflicting goals where optimizing one aspect may compromise another. The ultimate goal is to increase overall efficiency, make informed decisions that take into account multiple objectives and variables, thereby optimizing the use of resources and achieving the highest possible relative efficiency in a variety of real-world contexts.

Chapter 2 : LITERATURE REVIEW

Year	Literature Review
An Analysis of Production as an Efficient Combination of Activities" Tjalling C. Koopmans.	According to Koopmans, an input-output vector is deemed efficiency is achieved when it is impossible to increase any output or decrease any input without simultaneously increasing other inputs or reducing other outputs. Koopmans described a feasible input-output vector as efficient based on this criterion. He demonstrated that a vector is considered efficient if only if it has a positive normal relative to the set of production possibilities[1].
(Debreu, 1951)	Koopmans provided a definition and description of efficiency, while Debreu's "coefficient of resource utilization" offered a way to measure it. Debreu quantified inefficiency by calculating a coefficient, that is derived by subtraction from one the maximum proportional reduction in all inputs needed to sustain the current level of output[2].
Farrell, 1957	Farrell acknowledged the influence of Koopmans and Debreu in his work. He laid the groundwork for new approaches to micro-level productivity and efficiency studies, offering fresh insights into the significance of productivity, efficiency, the calculation of standard technology and efficiency measurements[18]. Michael James Farrell's study, "The Measurement of Productive Efficiency," was a major inspiration for the CCR model and the preceding working papers.
C. Dennis Aigner	C.Dennis Aigner and Clairice D. Chu's 1968 paper, "On Estimating the Industry Production Function," introduced a
Clairice D. Chu, 1968	novel method for determining the production of industries. They proposed a deterministic and parametric framework using econometric techniques to estimate a production function, diverging from the previously sole average function method[18]. While recognizing Farrell's non-parametric approach, they chose the more traditional parametric method preferred by economists. They contended that Farrell's method was inadequate as it failed to accommodate various forms of production, including those adhering to the Law of Variable Proportions[18].

Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985)	This book presents a thorough examination of the measurement of production efficiency. It discusses various efficiency measurement models, including parametric and non-parametric approaches, with a focus on DEA. The authors provide theoretical insights, mathematical formulations, and practical applications, making it an essential reference for understanding and implementing efficiency analysis in production.
Hsu, S. H., & Hwang, H. (2013)	This paper explores the application of DEA in environments with fuzzy production data, addressing non-efficiency scenarios. It introduces models that incorporate fuzzy logic to handle imprecise inputs and outputs, enhancing the robustness of efficiency measurements. The study includes case studies demonstrating the practical utility of these models in real-world production settings.
Kao, C., & Liu, S. T. (2000)	This study applies DEA to assess the efficiency of university libraries in Taiwan, dealing with missing data challenges. The authors propose methods to handle incomplete data without compromising the integrity of efficiency scores. Their approach ensures accurate and reliable performance evaluations, providing valuable insights into resource utilization and operational efficiency in educational institutions.
Cooper, W. William, Seiford, L. M., & Tone, K. (2007)	This detailed text provides an extensive overview of DEA, including models, applications, and software tools. It covers the evolution of DEA methodologies, theoretical underpinnings, and practical applications in multiple sectors. The book includes case studies, illustrative examples, and a DEA-solver software, serving as a valuable resource for advanced research and practical implementation.
Zhu, J. (2003)	This book offers a detailed introduction to performance evaluation and benchmarking using DEA, accompanied by spreadsheet-based tools. It covers theoretical foundations, model formulations, and practical examples across various industries. The integration of DEA with spreadsheets facilitates accessible and efficient performance analysis, making it a practical guide for both researchers and practitioners.

Cook, W. D., & Seiford, L. M. (2009)	This article reviews the advancements in DEA over thirty years, highlighting significant theoretical and methodological developments. It discusses the evolution of DEA models, their applications, and emerging trends in efficiency analysis. The paper provides a comprehensive summary of DEA's impact on operations research and management science, offering insights into future research directions.
Hollingsworth, B. (1999)	This paper discusses the application of DEA in evaluating public sector performance. It reviews methodologies, challenges, and case studies, illustrating how DEA can improve resource allocation and service delivery in public organizations. The study emphasizes the importance of efficiency measurement in public sector reform and policymaking, providing practical insights and recommendations.
Seiford, L. M., & Thrall, R. M. (1990)	This paper examines recent advancements in Data Envelopment Analysis (DEA), particularly in mathematical programming approaches to frontier analysis. It covers the latest developments in DEA models, methods for measuring efficiency, and their applications across different fields. The review emphasizes methodological innovations and the practical significance of DEA, offering a thorough overview of the current state-of-the-art in efficiency analysis.

Chapter 3 : PRELIMINARIES

3.1 Data Envelopment Analysis (DEA)

Data envelopment analysis (DEA) is a quantitative analysis technique which evaluates the efficiency of decision making units (DMUs) in transforming inputs into outputs [16]. Unlike traditional parametric methods, DEA do not require a predetermined functional relationships between the inputs and outputs, which makes it easy to analyze complex systems and evaluate performance without making specific assumptions about the production process[16].

The DEA was born in the late 1970s based on the research of Abraham Charnes, William W. Cooper, and Edward Rhodes. Their goal was to develop a method to measure the relative performance of organizations in situations where traditional approaches may not be applicable.

This method allows you to compare multiple units operating under different conditions by establishing a performance boundary that represents the efficient performance for the given inputs and outputs. By evaluating units in relation to this boundary, DEA identifies inefficient units and provides a framework for improving processes and resource allocation.

It is used in fields such as economics, operations research and management science. DEA is valuable precisely because it doesn't demand preconceived notions about the functional form of the production process. This attribute renders it particularly useful in scenarios where traditional econometric methods face limitations.

The primary aim of DEA is to gauge the relative efficiency of various Decision-Making Units (DMUs) in transforming multiple inputs into multiple outputs. These can be companies, organizations, departments or any entity that converts inputs into outputs. By comparing these units, DEA helps determine which units have the highest level of output relative to their input and serves as a benchmark for improving the performance of inefficient units.

To conduct a DEA analysis, one needs a matrix containing input, output, and complementary components of the DMU sample. Once the DEA model is constructed using specific criteria and orientation, matrices are utilized to solve the model, yielding relative efficiency scores and operational metrics for each DMU. Each DMU receives an efficiency score 'e', and target values, or benchmarks, are computed to transform inefficient DMUs (e<1) into efficient ones[18].

3.2 CCR Model

The CCR model in DEA stands for Charness, Cooper and Rhodes model, named after the three researchers who introduced it. DEA is a non-parametric mathematical method employed to assess the relative efficiencies of decision-making units across diverse domains like economics, operations research, and management.

The CCR model is one of the foundational models in DEA and was initially given by Charnes, Koper and Rhodes in 1978. The abbreviation CCR represents the initials of the researcher's last name.

The primary goal of the CCR model is to assess the efficiency of DMUs, which can be firms, organizations or any entity that transforms inputs into outputs. A DEA model requires inputs and output data for each DMU under consideration. Inputs represent the resources or the material used for production whereas outputs denote the products generated by the DMU[17].

The CCR model assumes that the volume of operations remains constant. This means that if a DMU doubles its inputs, it will also double its outputs while maintaining a

$$\mathsf{Max}\,h_0 \quad \frac{\sum_{r=1}^s u_r}{\sum_{i=}^m}$$

$$\mathsf{Subject}$$

$$\frac{\sum_{i=}^s v_i x_i}{\sum_{i=} v_i x_i} \ \leq \ 1 \qquad \qquad j=1,\dots\dots,$$

$$v_r, u_i \ \geq 0 \qquad \qquad r=1,\dots\dots \qquad i=1,\dots\dots,$$

constant scale ratio. The CCR model provides an efficiency score for each DMU. An efficiency score of 1 indicates that the DMU is operating at maximum efficiency, making the best use of its inputs to produce output. A score below 1 indicates inefficiency and a score closer to 0, the DMU is considered less efficient.

When assessing the efficiency of a Decision-Making Unit (DMU), the outputs x_{ij} and inputs y_{rj} of the DMU are utilized, and optimization process is used to determine the variable weights u_r and $v_i[18]$. The reference set encompasses data on all production units, and their efficiency is evaluated relative to others. Efficiency ratings are incorporated in the optimization function and constraint, with the chosen production unit identified by the subscript '0' in the function while retaining its original subscripts in the constraint[18]. The optimization process aims to maximize the performance of the selected DMU by alloting it the most favorable weights permitted

Max
$$h_0=\sum_{ec{r}=1}^s u_r y_{r0}$$
Subject to:
$$m \\ \sum v_i x_{i0}=1$$

$$_{i=1}$$

$$\sum_{r=1}^s u_r y_{ij} - \sum_{i=1}^m v_i x_{ij} \leq 0 \qquad \qquad \text{j= 1,2,.....n}$$

by the constraints[18].

In summary, the CCR Model in DEA provides a systematic approach to assess and compare the efficiency of decision making units, offering valuable insights for managerial decision making and resource allocation.

Chapter 4: PROPOSED PAPER

We have a real time data of houses with various attributes. The dataset comprises 96,267 entries with various property-related attributes. The first column, "House_code", contains the code allotted to each house and the last column, "category_code_description," contains categorical information about the properties, presumably describing their types or classifications. The dataset includes numerical features such as "exterior_condition," "frontage," "garage_spaces," "house_extension," "interior_condition," "market_value," "number_of_bathrooms," "number_of_bedrooms," "number_of_rooms," "number_stories," "sale_price," "taxable_building," "taxable_land," "total area," "total liveable area," and "year built."

These features provide comprehensive details about each property, encompassing physical characteristics like exterior and interior conditions, frontage, garage spaces, ho use extension, and the number of rooms and stories. Additionally, the dataset include s financial aspects such as market value, sale price, taxable building and land values. The "total_area" and "total_liveable_area" features offer insights into the overall and liveable spaces of the properties. Notably, the "year_built" column indicates the construction year of each property.

The objective is to assist buyers in maximizing features within a fixed budget. By pri oritizing criteria such as total liveable area, the number of rooms, bathrooms, frontag e, and other relevant factors, we aim to provide tailored recommendations. Our appro ach involves aligning the buyer's budget with the properties that offer the most exten sive set of desired features, ensuring a strategic match between financial constraints a nd aspirational housing attributes. Through this data-driven strategy, we seek to strea mline the decision-making process for buyers and enhance their overall satisfaction with their housing investment.

We start by initiating the data cleansing process, meticulously eliminating null values, removing outliers and filtering out extraneous information. Subsequently, we proce ed to partition the dataset into discrete clusters, driven by the market values of houses

.

4.1 Exploratory Data Analysis (EDA) with Python

Step 1: Understanding the data

```
In [14]: print(df.head())
           category_code_description exterior_condition frontage garage_spaces \
                        Vacant Land
                                                  0.0
                        Vacant Land
        1
                                                  NaN
                                                            0.0
                                                                          0.0
         2
                        Vacant Land
                                                   NaN
                                                            0.0
                                                                           0.0
         3
                                                  NaN
                                                                           0.0
                        Vacant Land
                                                            0.0
         4
                      Single Family
                                                   1.0
                                                            0.0
            house_extension interior_condition market_value number_of_bathrooms
         0
                                          0.0
                                                       0
                        30
                                                     88800
         1
                         0
                                          NaN
                                                                            0.0
         2
                         0
                                          NaN
                                                     88600
                                                                           0.0
         3
                                                     91000
                         0
                                          NaN
                                                                            0.0
         4
                         0
                                          1.0
                                                     537500
            number_of_bedrooms number_of_rooms number_stories sale_price \
         0
                          0.0
                                          0.0
                                                  0.0
         1
                                          0.0
                                                         0.0
         2
                          0.0
                                          0.0
                                                         0.0
                                                                      1
         3
                          0.0
                                          0.0
                                                         0.0
         4
                                          9.0
                          3.0
                                                         3.0
            taxable_building taxable_land total_area total_livable_area year_built
         0
                          0
                                     0
                                                 0.0
                                                                    0.0
         1
                          0
                                   88800
                                                 0.0
                                                                    0.0
                                                                              0.0
         2
                         0
                                   88600
                                                 0.0
                                                                    0.0
                                                                              0.0
                                   91000
         3
                                                 0.0
                                                                    0.0
                                                                              0.0
         1
                          0
                                  134400
                                                 0.0
                                                                 2134.0
                                                                           2019.0
```

Step 2: Checking for null values in the data set

```
In [7]: df.isnull().sum()
Out[7]: category_code_description
                                             0
         exterior_condition
                                         25265
         frontage
                                              2
         garage_spaces
                                            21
         house_extension
                                              0
         interior_condition
                                         26181
         market_value
                                             0
         number_of_bathrooms
                                             10
         number of bedrooms
                                            10
         number_of_rooms
                                             10
         number_stories
                                             10
         sale_price
                                             0
         taxable_building
taxable_land
                                              0
                                             0
         total_area
                                              2
         total_livable_area
                                             10
         year built
                                             12
         dtype: int64
```

Graphical visualization of null values for every attribute.

```
In [12]: sns.heatmap(df.isnull(),yticklabels=False,cbar=False)
Out[12]: <Axes: >
```

exterior_condition frontage . interior_condition total_livable_area gory_code_description sale_price year_built garage_spaces house_extension number_of_bathrooms number_of_bedrooms number_of_rooms number_stories taxable_building market_value taxable_land total_area

Figure 3.1 - Heat Map Depicting Null Values

Step 3: Treating all the null values

```
In [16]: df = df.dropna()
In [17]: df.isnull().sum()
Out[17]: category_code_description
                                        0
         exterior_condition
                                        0
                                        0
         frontage
                                        0
         garage_spaces
         house extension
                                        0
         interior condition
                                        0
         market value
                                        0
         number of bathrooms
                                        0
         number of bedrooms
                                        0
         number of rooms
                                        0
         number stories
                                        0
         sale price
                                        0
         taxable building
                                        0
         taxable land
                                        0
         total area
                                        0
         total livable area
                                        0
         year_built
         dtype: int64
```

<u>Step 4</u>: Code for removing outliers:

```
In [19]: df = df[df['total_area'] != 0]
In [20]: df = df[df['sale_price']!=0]
In [21]: df = df[df['market_value']!=0]
In [25]: df = df[df['frontage']!=0]
In [27]: df = df[df['number_of_rooms']!=0]
In [31]: df = df[df['number_of_bathrooms']!=0]
In [35]: df = df[df['total_livable_area'] != 0]
In [37]: df = df[df['year_built'] != 0]
In [39]: df = df[df['taxable_land'] != 0]
```

<u>Step 5</u>: Summarizing the data:

```
In [49]: max sale = df['sale price'].max()
        min_sale = df['sale_price'].min()
        print(max sale)
        print(min sale)
        30000000
        10000
In [64]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 96267 entries, 34942 to 581323
        Data columns (total 17 columns):
            Column
                                       Non-Null Count Dtype
                                       -----
             category code description 96267 non-null object
                                       96267 non-null float64
            exterior condition
         1
          2
            frontage
                                       96267 non-null float64
                                       96267 non-null float64
            garage_spaces
         4 house extension
                                       96267 non-null int64
         5
            interior condition
                                       96267 non-null float64
                                       96267 non-null int64
         6 market value
                                       96267 non-null float64
             number_of_bathrooms
                                     96267 non-null float64
            number of bedrooms
             number of rooms
                                       96267 non-null float64
                                     96267 non-null float64
         10 number stories
         11 sale price
                                       96267 non-null int64
                                       96267 non-null int64
          12 taxable building
                                       96267 non-null int64
         13 taxable land
         14 total area
                                       96267 non-null float64
          15 total livable area
                                       96267 non-null float64
         16 year built
                                       96267 non-null object
        dtypes: float64(10), int64(5), object(2)
        memory usage: 13 2+ MR
```

The graphs visually depict the dataset and illustrate the relationships between various attributes.

The first scatter plot demonstrates how market value correlates with the number of rooms available within different categories identified by the 'Category_Code_Description'.

We observe that single-family households tended to prefer houses with lower market values and fewer rooms, whereas multi-family households showed a preference for houses with slightly higher market values and a greater number of rooms.

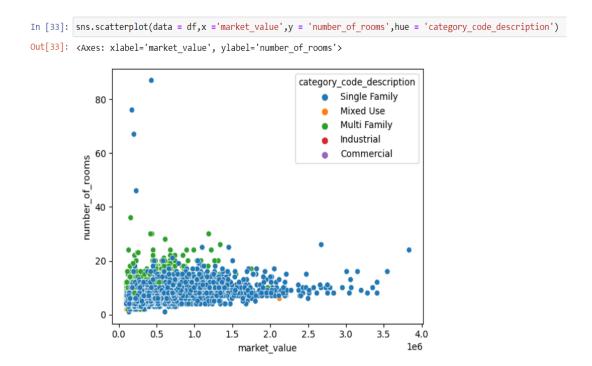
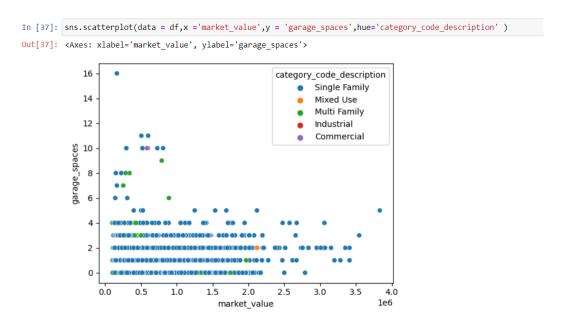



Figure 3.2 – Scatter Plot - Number of rooms versus Market values

Similarly, this scatter plot depicts the relation between market value and garage space. As garage space is one of the most important factor to be considered while buying the house.

 $Figure \ 3.3-Scatter \ Plot-Garage \ spaces \ versus \ Market \ values$

This line plot depicts the interplay between market value and sales price. It highlights that as market value increases, sales prices become more variable, whereas lower market values correspond to lower sales prices, indicating a fluctuating trend.

```
In [36]: sns.lineplot(data = df,x ='market_value',y = 'sale_price')
Out[36]: <Axes: xlabel='market_value', ylabel='sale_price'>
              5
              4
           sale_price
              3
              2
              1
              0
                          0.5
                                  1.0
                                                            2.5
                                                                             3.5
                 0.0
                                           1.5
                                                   2.0
                                                                    3.0
                                                                                      4.0
                                                                                   1e6
                                             market_value
```

Figure 3.4- Line Plot - Sales price versus Market values

The following table describes the data through mean standard deviations, minimum values, maximum values and many more.

[];									
	exterior_condition	frontage	garage_spaces	house_extension	interior_condition	market_value	number_of_bathrooms	number_of_bedroom	
count	96267.000000	96267.000000	96267.000000	96267.000000	96267.000000	9.626700e+04	96267.000000	96267.00000	
mean	3.541255	22.906792	0.517031	0.226235	3.523679	2.383480e+05	1.332024	3.1774	
std	0.853845	67.481269	0.593936	3.097478	0.860763	1.741180e+05	0.679122	0.8073	
min	0.000000	1.000000	0.000000	0.000000	0.000000	1.000000e+05	1.000000	0.0000	
25%	3.000000	15.500000	0.000000	0.000000	3.000000	1.387000e+05	1.000000	3.0000	
50%	4.000000	16.330000	0.000000	0.000000	4.000000	1.895000e+05	1.000000	3.0000	
75%	4.000000	21.845000	1.000000	0.000000	4.000000	2.636000e+05	2.000000	3.0000	
max	7.000000	15917.000000	16.000000	99.000000	7.000000	3.832800e+06	21.000000	44.0000	

number	r_of_bathrooms 96267.000000 1.332024	number_of_bedrooms 96267.000000 3.177486	number_of_rooms 96267.000000	number_stories 96267.000000	sale_price	taxable_building	taxable_land	total_area	total_livable_area
;			96267.000000	96267 000000					
;	1.332024	3 177486		00201.000000	9.626700e+04	9.626700e+04	9.626700e+04	9.626700e+04	9.626700e+04
		3.177400	6.352582	1.871171	2.222050e+05	1.404044e+05	5.296696e+04	2.279874e+03	1.486896e+03
,	0.679122	0.807324	1.319405	0.853525	2.631117e+05	1.105101e+05	5.166949e+04	6.969233e+03	7.900591e+03
,	1.000000	0.000000	1.000000	0.000000	8.000000e+04	0.000000e+00	6.900000e+01	1.000000e+00	2.590000e+02
,	1.000000	3.000000	6.000000	2.000000	1.200000e+05	8.654450e+04	2.399700e+04	9.920000e+02	1.136000e+03
;	1.000000	3.000000	6.000000	2.000000	1.650000e+05	1.150380e+05	3.651000e+04	1.504000e+03	1.320000e+03
;	2.000000	3.000000	7.000000	2.000000	2.470000e+05	1.654080e+05	6.213000e+04	2.207620e+03	1.600000e+03
;	21.000000	44.000000	87.000000	40.000000	3.000000e+07	2.682960e+06	1.149840e+06	1.591700e+06	2.445358e+06

4.2 Clustering Housing Data by Market Price for Budget-Based Segmentation

When searching for a new house, each person decides on a specific budget range for the house price. To accommodate this, we are dividing the data into different clusters based on market price ranges. This allows buyers to focus on houses within their budget. Within each price range, we can then suggest the best options for houses based on the efficiency calculated using Data Envelopment Analysis (DEA).

To determine the optimal number of clusters for our dataset based on market price and the number of houses within each price range, we are plotting a scatter graph between market price and the number of houses that fall within that price range. This graph provides valuable insights, such as highlighting that most houses fall under the price of \$1,000,000, as well as other useful visual information.

```
In [21]:
    sorted_df = df.sort_values(by='market_value', ascending=True)
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.cluster import KMeans
    X = sorted_df[['market_value']]
    market_price_counts = sorted_df['market_value'].value_counts().sort_index()

# Plot the scatter graph
    plt.figure(figsize=(10, 6))
    plt.scatter(market_price_counts.index, market_price_counts.values, c='blue', marker='o')
    plt.xlabel('Market Price')
    plt.ylabel('Number of Houses')
    plt.title('Scatter Plot: Market Price vs. Number of Houses')
    plt.grid(True)
    plt.show()
```

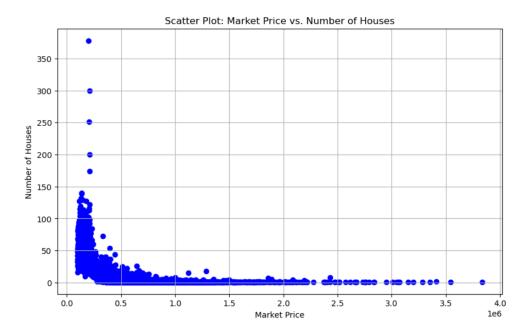


Figure 3.5 – Scatter Plot - Market price versus Number of Houses

Based on the scatter graph, we have determined that the optimal number of clusters for our dataset is six. Therefore, we are using K-Means clustering to create six clusters based on market price. The following code demonstrates this process by first fitting the K-Means algorithm to the data and then plotting a scatter graph to visualize the relationship between market price range and the number of houses in each cluster:

```
In [24]: optimal_clusters = 6
    kmeans = KMeans(n_clusters=optimal_clusters, random_state=42)
    sorted_df['cluster'] = kmeans.fit_predict(X)

# Now we can plot the scatter graph of market value and the number of houses
    plt.figure(figsize=(10, 6))

# For the scatter plot, we will count the number of houses in each market price range (cluster)
    cluster_counts = sorted_df['cluster'].value_counts().sort_index()
    market_ranges = sorted_df.groupby('cluster')['market_value'].mean()

plt.scatter(market_ranges, cluster_counts, c='blue', marker='o')

plt.xlabel('Market Price Range (Average per Cluster)')
    plt.ylabel('Number of Houses')
    plt.title('Scatter Plot: Market Price Range vs. Number of Houses')
    plt.grid(True)
    plt.show()
```

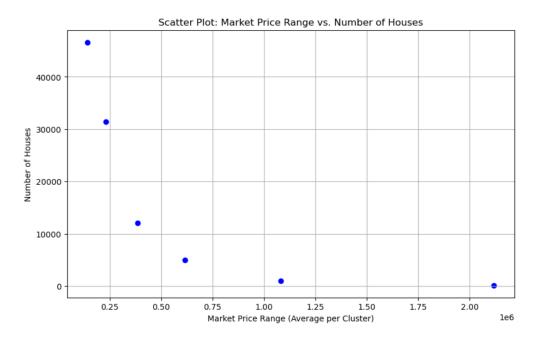


Figure 3.6 – Scatter Plot - Market price Range versus Number of houses

In this code, we first define the number of optimal clusters as six. We then apply the K-Means clustering algorithm to the dataset, creating six clusters based on market price. Each house is assigned a cluster label, which is added to the dataset as a new column. Following this, we prepare the data for the scatter plot by computing the count of houses in each cluster and the average market value for each cluster. Finally, we plot a scatter graph showing the average market price range against the number of houses in each cluster, providing a visual representation of the distribution of houses across different market price ranges.

The subsequent step involves segmenting the data into six distinct clusters based on the market value of houses. This segmentation facilitates the identification of budgetfriendly market value clusters, simplifying the process for potential buyers without requiring extensive analysis of the entire dataset.

```
In [105]: group0 = (100000,150000 )
    group1 = (150000,200000 )
    group2 = (200000,300000 )
    group3 = (300000, 600000)
    group4 = (600000,1000000)
    group5 = (1000000, 3832800)

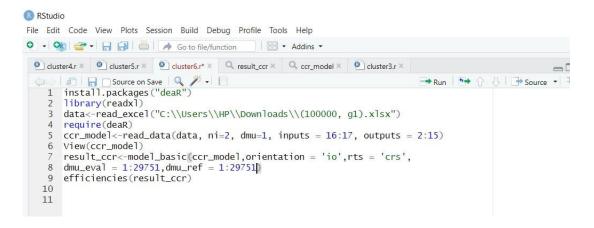
# Separate data based on groups
    group0_data = df[(df['market_value'] >= group0[0]) & (df['market_value'] <= group0[1])]
    group1_data = df[(df['market_value'] >= group1[0]) & (df['market_value'] <= group1[1])]
    group2_data = df[(df['market_value'] >= group2[0]) & (df['market_value'] <= group2[1])]
    group3_data = df[(df['market_value'] >= group3[0]) & (df['market_value'] <= group3[1])]
    group4_data = df[(df['market_value'] >= group4[0]) & (df['market_value'] <= group4[1])]
    group5_data = df[(df['market_value'] >= group5[0]) & (df['market_value'] <= group5[1])]</pre>
```

```
In [145]: output_file_path = 'Desktop\dtu msc sem1\(150000, 200000).xlsx'
    # Export the DataFrame to an Excel file
    group1_data.to_excel(output_file_path, index=False)

In [146]: output_file_path = 'Desktop\dtu msc sem1\(20000, 300000).xlsx'
    # Export the DataFrame to an Excel file
    group2_data.to_excel(output_file_path, index=False)

In [147]: output_file_path = 'Desktop\dtu msc sem1\(30000, g3).xlsx'
    # Export the DataFrame to an Excel file
    group3_data.to_excel(output_file_path, index=False)

In [148]: output_file_path = 'Desktop\dtu msc sem1\(150000, g40).xlsx'
    # Export the DataFrame to an Excel file
    group4_data.to_excel(output_file_path, index=False)

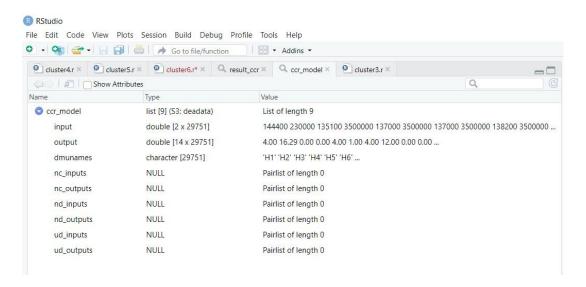

In [149]: output_file_path = 'Desktop\dtu msc sem1\(150000, g5).xlsx'
    # Export the DataFrame to an Excel file
    group5_data.to_excel(output_file_path, index=False)
```

4.3 DEA-Based Efficiency Analysis for Housing Clusters in R

Each cluster is addressed using the CCR model in R by employing the built-in library deaR. In this analysis, the decision-making units (DMUs) are denoted by their respective **`House_code`**. The attributes **`market_value`** and **`sales_price`** are designated as inputs, while the remaining attributes serve as outputs.

4.3.1 CLUSTER -1: (1,00,000 – 1,50,000)

Code -


Output-

```
Console Terminal × Background Jobs ×
R 4.3.2 · ~/ →
> install.packages("deaR")
WARNING: Rtools is required to build R packages but is not currently installed. Please download and
install the appropriate version of Rtools before proceeding:
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into 'C:/Users/HP/AppData/Local/R/win-library/4.3'
     'lib'
           is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.3/deaR_1.4.1.zip'
Content type 'application/zip' length 704537 bytes (688 KB)
downloaded 688 KB
package 'deaR' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
         C:\Users\HP\AppData\Local\Temp\RtmpmOMgVs\downloaded_packages
> library(readx1)
> data<-read_excel("C:\\Users\\HP\\Downloads\\(100000, g1).xlsx")</pre>
> require(deaR)
Loading required package: deaR
> ccr_model<-read_data(data, ni=2, dmu=1, inputs = 16:17, outputs = 2:15)
Warning messages:
1: 'read_data' is deprecated.
Use 'make_deadata' instead.
See help("Deprecated")
2: In make_deadata(datadea = datadea, ni = ni, no = no, dmus = dmus,
There are negative or zero data. Try to translate the base point of the inputs/outputs with negative data in order to get only positive values.
  (This is a warning, not an error.)
> View(ccr_model)
```

```
Console Terminal × Background Jobs ×
ve data in order to get only positive values.
  (This is a warning, not an error.)
> View(ccr model)
> result_ccr<-model_basic(ccr_model,orientation = 'io',rts = 'crs',
+ dmu_eval = 1:740,dmu_ref = 1:740)
> efficiencies(result_ccr)
                          НЗ
                                                                 H7
                                                                                     H9
      H1
                H2
                                    H4
                                             H5
                                                       H6
                                                                           Н8
1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000
     H10
               H11
                         H12
                                   H13
                                             H14
                                                      H15
                                                                H16
                                                                          H17
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6990169 1.0000000
     H19
               H20
                         H21
                                   H22
                                             H23
                                                      H24
                                                                H25
                                                                          H26
1.0000000 1.0000000 0.8661664 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                         H30
                                   H31
     H28
               H29
                                             H32
                                                      H33
                                                                H34
                                                                          H35
                                                                                    H36
1.0000000 1.0000000 0.9147651 0.8929352 0.9625297
                                                1.0000000 1.0000000
                                                                    1.0000000 1.0000000
                                                      H42
               H38
                         H39
                                   H40
                                             H41
                                                                H43
     H37
                                                                          H44
0.8321980 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                                    1.0000000 1.0000000
                                   H49
                                                      H51
     H46
               H47
                         H48
                                             H50
                                                                H52
                                                                          H53
                                                                                    H54
1.0000000 1.0000000 1.0000000
                             0.9467740 1.0000000 1.0000000 1.0000000
                                                                    0.9625669 1.0000000
     H55
               H56
                         H57
                                   H58
                                             H59
                                                      H60
                                                                H61
                                                                          H62
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9529049
                                                                    1.0000000 0.7349775
     H64
               H65
                         H66
                                   H67
                                             H68
                                                      H69
                                                                H70
                                                                          H71
                                                                                    H72
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                                    0.8223487
                                                                              1.0000000
                                                      H78
               H74
                         H75
                                   H76
                                             H77
     H73
                                                                H79
                                                                          H80
1.0000000 1.0000000 0.9810691
                             1.0000000 1.0000000
                                                 0.8930392 1.0000000
                                                                    1.0000000 1.0000000
     H82
               H83
                         H84
                                   H85
                                            H86
                                                      H87
                                                                H88
                                                                          няа
1.0000000
         0.9190228
                       65444
                               8790421 0.8649456
                                                   7488862 1,0000000
                                                                    1.0000000 1.0000000
                         Н93
                                                                H97
     H91
               H92
                                   H94
                                             H95
                                                      H96
                                                                          H98
                                                                                    H99
1.0000000
         1.0000000 1.0000000
                             1.0000000 1.0000000
                                                 1.0000000 0.8158889
                                                                      .0000000 1.0000000
    H100
              H101
                        H102
                                  H103
                                            H104
                                                     H105
                                                               H106
                                                                         H107
1 0000000
                               0016222
           0000000
                     0000052
                                         0000000
                                                   0000000
                                                                      0000000
            H29628
                      H29629
                                H29630
                                          H29631
                                                    H29632
                                                             H29633
                                                                       H29634
0.7155387\ 1.0000000\ 1.0000000\ 0.9124665\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000
  H29636
            H29637
                      H29638
                                H29639
                                          H29640
                                                   H29641
                                                             H29642
                                                                       H29643
                                                                                 H29644
```

```
1.0000000
           0.9080141 0.7835541
                                  0000000 1.0000000
                                                       9494994
                                                               1.0000000
                                                                            .0000000
                                                                                     1.0000000
   H29645
                                   H29648
                                             H29649
                                                        H29650
              H29646
                        H29647
                                                                  H29651
                                                                             H29652
                                                                                        H29653
0.7797121
                                                                                     0.8074473
             0000000 1.0000000
                                  0000000 1.0000000
                                                       0000000
                                                               1.0000000
                                                                            0000000
   H29654
              H29655
                        H29656
                                   H29657
                                             H29658
                                                        H29659
                                                                  H29660
                                                                             H29661
                                                                                        H29662
0.8753508
          0.8194343 1.0000000 1.0000000 0.8187682
                                                    1.0000000 1.0000000 1.0000000 1.0000000
   H29663
              H29664
                        H29665
                                   H29666
                                             H29667
                                                        H29668
                                                                  H29669
                                                                             H29670
                                                                                        H29671
1.0000000
           1.0000000 1.0000000
                                  9973871 0.8558382
                                                       .0000000
                                                               1.0000000
                                                                            9668439
                                                                                     0.8351069
                        H29674
                                   H29675
   H29672
              H29673
                                              H29676
                                                        H29677
                                                                   H29678
                                                                             H29679
                                                                                        H29680
                                                                                     0.7703737
1.0000000 1.0000000 1.0000000 1
                                  0000000 0.9114207
                                                       .0000000 1.0000000
                                                                            .0000000
   H29681
              H29682
                        H29683
                                   H29684
                                             H29685
                                                        H29686
                                                                  H29687
                                                                             H29688
                                                                                        H29689
1.0000000
            .0000000 0.9070533
                                  8100299 1.0000000
                                                       0000000
                                                                 .0000000
                                                                            .0000000
                                                                                     0.8385116
                                             H29694
                                                                  H29696
   H29690
              H29691
                        H29692
                                   H29693
                                                        H29695
                                                                             H29697
                                                                                        H29698
                                  0000000 1.0000000
                                                       9174681
                                                                 .0000000
                                                                            0000000
1.0000000 1
             0000000 1
                       .0000000
                                                                                       0000000
   H29699
              H29700
                        H29701
                                   H29702
                                             H29703
                                                        H29704
                                                                  H29705
                                                                             H29706
                                                                                        H29707
1 0000000 1 0000000 1 0000000 1 0000000 0 8912213
                                                       7758289
                                                               0 7437193
                                                                            0000000
                                                                                     1 0000000
                                   H29711
   H29708
              H29709
                        H29710
                                             H29712
                                                        H29713
                                                                  H29714
                                                                             H29715
                                                                                        H29716
1.0000000
           1.0000000 1.0000000
                                1.0000000
                                          0.9220733
                                                     1.0000000
                                                               1.0000000
                                                                          1.0000000
                                                                                     1.0000000
   H29717
              H29718
                        H29719
                                   H29720
                                              H29721
                                                        H29722
                                                                  H29723
                                                                             H29724
                                                                                        H29725
0.8006071
            .0000000 1.0000000 1.
                                  0000000 1.0000000 1.0000000 0.8116811
                                                                            .0000000
                                                                                     0.8866227
                        H29728
                                   H29729
                                                        H29731
   H29726
              H29727
                                             H29730
                                                                  H29732
                                                                             H29733
                                                                                        H29734
                                                                                       .0000000
            .0000000 1
                       .0000000
                                  8999465 1.0000000
                                                       8434134
                                                                 9297246
                                                                            7600307
1.0000000
              H29736
                        H29737
                                   H29738
                                              H29739
                                                        H29740
                                                                   H29741
                                                                                        H29743
                                                                            .0000000 1.0000000
0.8163053 1.0000000 0.8668065 0.8979791 1.0000000 1.0000000 1.0000000 1
   H29744
              H29745
                        H29746
                                   H29747
                                             H29748
                                                        H29749
                                                                  H29750
                                                                             H29751
1.0000000 1.0000000 0.9292144 0.8865323 1.0000000 1.0000000 1.0000000 1.0000000
>
```

View Model-

4.3.2 CLUSTER -2: (1,50,000 - 2,00,000)

Code -

```
RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help

O I Go to file/function

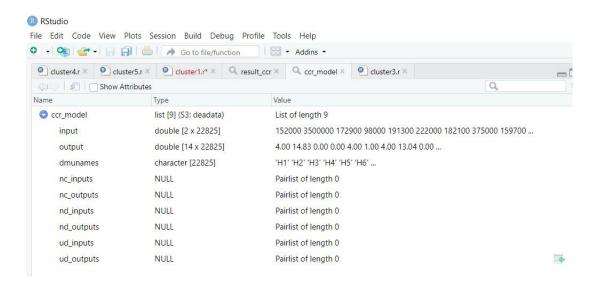
O cluster4.r V O cluster5.r V O cluster1.r V O result_ccr V O ccr_model V O cluster3.r V

1 data<-read_excel("C:\\Users\\HP\\Downloads\\(150000, g2).xlsx")

2 require(deaR)

3 ccr_model<-read_data(data, ni=2, dmu=1, inputs = 16:17, outputs = 2:15)

4 View(ccr_model)


5 result_ccr<-model_basic(ccr_model,orientation = 'io',rts = 'crs', dmu_eval = 1:22825,dmu_ref = 1:22825)

7 efficiencies(result_ccr)
```

Output-

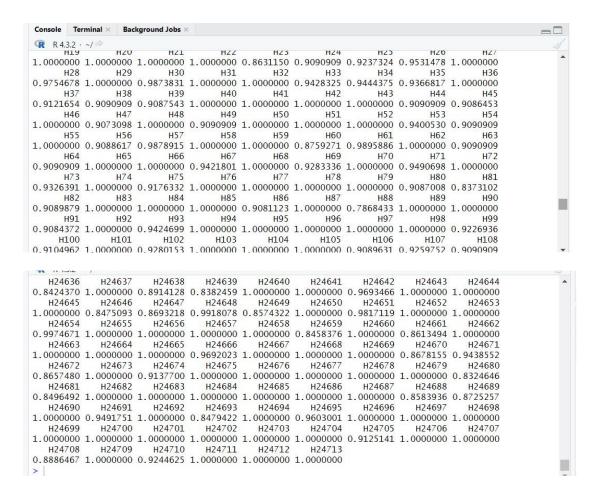
```
Console Terminal × Background Jobs ×
                                                                                                        _0
R 4.3.2 · ~/
> data<-read_excel("C:\\Users\\HP\\Downloads\\(150000, g2).xlsx")</pre>
> require(deaR)
> ccr_model<-read_data(data, ni=2, dmu=1, inputs = 16:17, outputs = 2:15)</pre>
Warning messages:
1: 'read_data' is deprecated.
Use 'make_deadata' instead.
See help("Deprecated")
2: In make_deadata(datadea = datadea, ni = ni, no = no, dmus = dmus,
There are negative or zero data. Try to translate the base point of the inputs/outputs with negative data in order to get only positive values.
  (This is a warning, not an error.)
> View(ccr_model)
> result_ccr<-model_basic(ccr_model,orientation = 'io',rts = 'crs',</pre>
+ dmu_eval = 1:600,dmu_ref = 1:600)
> efficiencies(result_ccr)
1.0000000\ 1.0000000\ 0.8712388\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000
      H10
                 H11
                           H12
                                      H13
                                                 H14
                                                           H15
                                                                      H16
                                                                                 H17
                                                                                            H18
1.0000000 0.9205307 1.0000000
                                1.0000000 1.0000000
                                                     1.0000000 1.0000000 1.0000000 1.0000000
      H19
                 H20
                            H21
                                      H22
                                                 H23
                                                            H24
                                                                      H25
                                                                                 H26
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                     1.0000000 1.0000000
                                                                             0000000 1.0000000
      H28
                 H29
                            H30
                                      H31
                                                 H32
                                                            H33
                                                                      H34
                                                                                 H35
                                                                                            H36
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9112306 1.0000000
                 H38
      H37
                            H39
                                      H40
                                                 H41
                                                            H42
                                                                                 H44
1.0000000 1.0000000 1.0000000
                                1.0000000
                                          1.0000000
                                                        0000000
                                                                1.0000000
                                                                             0000000 1
                                                                                        .0000000
      H46
                 H47
                            H48
                                      H49
                                                 H50
                                                           H51
                                                                      H52
                                                                                 H53
                                                                                            H54
0.9216712 1.0000000 1.0000000
                                  0000000 1.0000000
                                                        0000000 1.0000000 1.
                                                                             .0000000 1.0000000
      H55
                 H56
                            H57
                                      H58
                                                 H59
                                                            H60
                                                                      H61
                                                                                 H62
                                                       .0000000 0.9110998 1.0000000 1.0000000
1.0000000 1.0000000 0.9283546
                                  8681756
                                          0.8359475
                                0.
              H22701
                        H22702
                                   H22703
                                              H22704
                                                         H22705
                                                                    H22706
                                                                               H22707
1.0000000 \ 1.0000000 \ 1.0000000 \ 0.8884959 \ 0.9781761
                                                     1.
                                                        0000000 1
                                                                   0000000 1.
                                                                             .0000000 0.9738515
   H22709
              H22710
                        H22711
                                   H22712
                                              H22713
                                                         H22714
                                                                    H22715
                                                                              H22716
                                                                                         H22717
1,0000000 1,0000000 1,0000000
                                                        0000000
                                                                 0.9915170 1.0000000
                                1,0000000
                                           1.0000000
                                                                                      0.7834608
   H22718
              H22719
                        H22720
                                   H22721
                                              H22722
                                                         H22723
                                                                    H22724
                                                                              H22725
0.8670859
           0.7894682 0.9094585
                                  .0000000
                                           1.0000000
                                                        8218638
                                                                  9347650 0.9743453
                                                                                        0000000
   H22727
              H22728
                        H22729
                                   H22730
                                              H22731
                                                         H22732
                                                                    H22733
                                                                              H22734
                                                                                         H22735
           0.9238971 1.0000000
                                             0000000
1.0000000
                                1.0000000
                                                      0.9372171
                                                                   0000000
                                                                             8471395
                                                                                        0000000
   H22736
              H22737
                        H22738
                                   H22739
                                              H22740
                                                         H22741
                                                                    H22742
                                                                              H22743
                                                                                         H22744
1.0000000 1
             0000000 1.0000000
                                0.
                                  9526645
                                           0.9521159
                                                        0000000
                                                                   0000000 1
                                                                             0000000 1.
                                                                                        0000000
   H22745
              H22746
                        H22747
                                   H22748
                                              H22749
                                                         H22750
                                                                    H22751
                                                                              H22752
                                                                                         H22753
1.0000000 1.0000000 1.0000000 1.0000000
                                           1.0000000
                                                     0.9762793
                                                                1.0000000 1.0000000 1.0000000
                                                         H22759
              H22755
                        H22756
                                   H22757
                                              H22758
                                                                    H22760
                                                                               H22761
                                                                                         H22762
0.8446825
             8458319 0.8676953
                                  0000000
                                             8202051
                                                        0000000
                                                                   0000000
                                                                             .0000000
                                                                                      0.9097295
   H22763
              H22764
                        H22765
                                   H22766
                                              H22767
                                                         H22768
                                                                    H22769
                                                                              H22770
                                                                                         H22771
                                0.9948754
1.0000000 1.0000000 0.9397899
                                           1.0000000
                                                     1.0000000
                                                                 0.9255926 1.0000000 0.9055166
   H22772
              H22773
                        H22774
                                   H22775
                                              H22776
                                                         H2277
                                                                    H22778
                                                                              H22779
                                                                                         H22780
0.8209417
             0000000 0.8082995
                                  0000000
                                             0000000
                                                        0000000
                                                                   0000000
                                                                              0000000
                                                                                        9581779
   H22781
              H22782
                        H22783
                                   H22784
                                              H22785
                                                         H22786
                                                                    H22787
                                                                              H22788
                                                                                         H22789
0.9909234 0.7780756 0.8580980
                                1.0000000
                                                     0.9628365
                                                                 1.0000000 1.0000000
                                           0.7903621
                                                                                      1.0000000
              H22791
                                   H22793
                                                                                         H22798
   H22790
                        H22792
                                                         H22795
                                                                    H22796
                                                                              H22797
                                              H22794
1.0000000 1.0000000 1.0000000
                                0.9664412
                                           0.9098084
                                                      1.0000000
                                                                 1.0000000 0.9196503 1.0000000
   H22799
              H22800
                        H22801
                                   H22802
                                              H22803
                                                         H22804
                                                                    H22805
                                                                              H22806
                                                                                         H22807
0.9469679
          1.0000000 1.0000000
                                1.0000000
                                           1.0000000
                                                        0000000
                                                                   0000000
                                                                           1.0000000
                                                                                      1.0000000
              H22809
                        H22810
   H22808
                                   H22811
                                              H22812
                                                         H22813
                                                                    H22814
                                                                              H22815
                                                                                         H22816
0.9849465
           0.9182783 1.0000000
                                  9275563
                                                        9969737
                                                                           0.8433550
                                             7985113
                                                                   0000000
                                                                                        0000000
   H22817
              H22818
                        H22819
                                   H22820
                                              H22821
                                                         H22822
                                                                    H22823
                                                                              H22824
                                                                                         H22825
1.0000000 0.8453933 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.8477372 1.0000000
>
```

View Model-

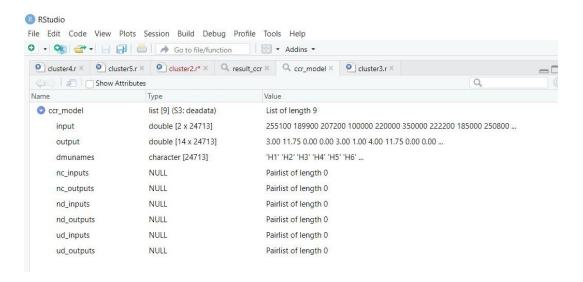
4.3.3 CLUSTER -3: (2,00,000 – 3,00,000)

Code -

```
RStudio


File Edit Code View Plots Session Build Debug Profile Tools Help

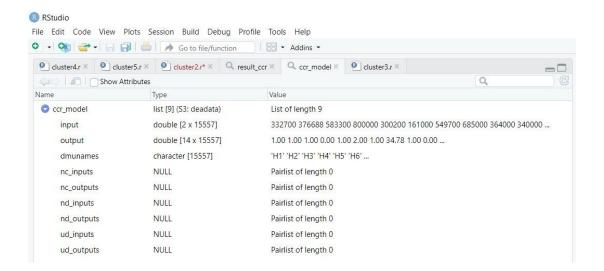
O - O Cluster4.r O Cluster5.r O Cluster2.r O CCC_model O Cluster3.r O Cluster3.r O CCC_model O Cluster3.r O Cluster3.r O CCC_model O CCCC_model O CCC_model O CCCC_model O CCC_model O CCC_model O CCC_model O CCCC_model O CCCC_model O CCC_model O CCC_model O CCC_model O CCC_mod
```


Output-

```
Console Terminal × Background Jobs ×
> data<-read_excel("C:\\Users\\HP\\Downloads\\(200000, g3).xlsx")
> ccr_model<-read_data(data, ni=2, dmu=1, inputs = 16:17, outputs = 2:15)</pre>
Warning messages:
1: 'read_data' is deprecated.
Use 'make_deadata' instead.
See help("Deprecated")
2: In make_deadata(datadea = datadea, ni = ni, no = no, dmus = dmus, :

There are negative or zero data. Try to translate the base point of the inputs/outputs with negative data in order to get only positive values.
   (This is a warning, not an error.)
> View(ccr_model)
> result_ccr<-model_basic(ccr_model,orientation = 'io',rts = 'crs',
+ dmu_eval = 1:600,dmu_ref = 1:600)</pre>
> efficiencies(result_ccr)
H1 H2 H3 H4 H5 H6 H/ H8 ПЭ
0.9090909 1.0000000 1.0000000 0.9520202 0.9089701 0.9797903 1.0000000 1.0000000 1.0000000
                               H12
                                            H13
                                                        H14
                                                                    H15
                  H11
0.9090909 \ 0.9212863 \ 1.0000000 \ 1.0000000 \ 0.9090909 \ 1.0000000 \ 1.0000000 \ 1.0000000 \ 0.9090909
```


View Model-


4.3.4 CLUSTER -4: (3,00,000 – 6,00,000)

Code -

Output-

```
> data<-read_excel("C:\\Users\\HP\\Downloads\\(300000, g4).xlsx")</pre>
> require(deaR)
> ccr_model<-read_data(data, ni=2, dmu=1, inputs = 16:17, outputs = 2:15)</pre>
Warning messages:
1: 'read_data' is deprecated.
Use 'make_deadata' instead.
See help("Deprecated")
2: In make_deadata(datadea = datadea, ni = ni, no = no, dmus = dmus,
  There are negative or zero data. Try to translate the base point of the inputs/outputs with negati
ve data in order to get only positive values.
  (This is a warning, not an error.)
> View(ccr_model)
> result_ccr<-model_basic(ccr_model,orientation = 'io',rts = 'crs',</pre>
+ dmu_eval = 1:600,dmu_ref = 1:600)
> efficiencies(result_ccr)
       H1
                  H2
                            Н3
                                       H4
                                                  H5
                                                            Н6
1.0000000\ 1.0000000\ 1.0000000\ 0.9256840\ 1.0000000\ 1.0000000\ 0.9951674\ 1.0000000\ 1.0000000
                 H11
                                      H13
                                                 H14
                                                           H15
                                                                      H16
      H10
                            H12
                                                                                 H17
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9107118 1.0000000 0.9683072 1.0000000
      H19
                 H20
                            H21
                                      H22
                                                 H23
                                                           H24
                                                                      H25
                                                                                 H26
                                                                          0.8510604 0.8510604
1.0000000 0.9115155 0.9529113 0.9147472 0.8510604 0.8510604 0.8396037
                 H29
                                      H31
                                                 H32
                                                           H33
      H28
                            H30
                                                                      H34
                                                                                 H35
                                                                                           H36
0.8510604 0.8510604 0.8510604 0.8510604 0.8510604 0.8595833 0.8595833 0.8595833 0.8595833
                 H38
                            H39
                                      H40
                                                 H41
                                                           H42
                                                                      H43
0.8595833 \ 0.8595833 \ 0.8595833 \ 0.8595833 \ 0.8595833 \ 0.8595833 \ 1.0000000
                                                                          0.9904117 0.9548502
      H46
                 H47
                            H48
                                      H49
                                                 H50
                                                           H51
                                                                      H52
                                                                                 H53
                                                                                           H54
0.8684668 1.0000000 1.0000000 0.8918218 0.9353663 1.0000000 0.9617778 1.0000000 0.8760952
H55 H56 H57 H58 H59 H60 H61 H62 H63 1.0000000 1.0000000 0.9219177 0.9835577 0.9800234 0.9053477 1.0000000 0.9661194 0.9194801
H64 H65 H66 H67 H68 H69 H70 H71 H72
H15472 H15473 H15474
1.0000000 0.9080319 0.9175371
                                   H15475
                                              H15476
                                                        H15477
                                                                   H15478
                                                                             H15479
                                1.0000000 1.0000000 0.8902707 1.0000000 1.0000000 1.0000000
   H15481
                                   H15484
                                                                   H15487
                                                                             H15488
              H15482
                        H15483
                                              H15485
                                                        H15486
                                                                                        H15489
          0.9977578 0.9700726 1.0000000 0.9174616 1.0000000 0.9638213
0.9249875
                                                                          0.9102838
                                                                                     1.0000000
   H15490
              H15491
                        H15492
                                   H15493
                                              H15494
                                                        H15495
                                                                   H15496
                                                                             H15497
                                                                                     1.0000000
1.0000000 0.9683181 1.0000000 0.8828125 1.0000000 0.9462343 1.0000000
                                                                          0.9202976
   H15499
              H15500
                        H15501
                                   H15502
                                              H15503
                                                        H15504
                                                                   H15505
                                                                             H15506
                                                                                        H15507
                                0.9716294 0.9066390 0.9167592
1.0000000 1.0000000 1.0000000
                                                               1.0000000
                                                                          1.0000000
                                                                                     1.0000000
   H15508
              H15509
                        H15510
                                   H15511
                                              H15512
                                                         H15513
                                                                   H15514
                                                                              H15515
1.0000000 1.0000000 0.9011206 1
                                  0000000 0.9136773 0.9433320 1.0000000 1.0000000 0.9146110
   H15517
              H15518
                        H15519
                                   H15520
                                              H15521
                                                        H15522
                                                                   H15523
                                                                             H15524
0.9244966 1.0000000 1.0000000 1.0000000 1.0000000 0.9470944 1.0000000 1.0000000 0.9773487
   H15526
              H15527
                        H15528
                                   H15529
                                              H15530
                                                        H15531
                                                                   H15532
                                                                             H15533
                                                                                        H15534
1.0000000 0.9296145 0.9099425 1.0000000 1.0000000 1.0000000 0.9548379
                                                                          0.8812352
   H15535
              H15536
                        H15537
                                   H15538
                                              H15539
                                                        H15540
                                                                   H15541
                                                                             H15542
                                                                                        H15543
0.9481809\ 0.8932638\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000
   H15544
              H15545
                        H15546
                                   H15547
                                              H15548
                                                        H15549
                                                                   H15550
                                                                             H15551
                                                                                        H15552
1.0000000 \ 1.0000000 \ 0.9777504 \ 1.0000000 \ 1.0000000 \ 1.0000000 \ 1.0000000 \ 1.0000000
                        H15555
                                   H15556
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
>
```

View Model-

4.3.5 CLUSTER -5: (6,00,000 – 10,00,000)

Code -

```
RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help
② cluster4.r × ② cluster5.r* × Q result_ccr × Q ccr_model × ② cluster3.r × ② cluster6.r ×
   1 install.packages ("deaR")
                                                                 Run | 🕩 🔐 🖟 | 🕞 Source 🕶 🗏
      library(readx1)
      require(deaR)
      ccr_model<-read_data(data, ni=2, dmu=1, inputs = 16:17, outputs = 2:15)
      View(ccr_model)
      result_ccr<-model_basic(ccr_model,orientation = 'io',rts = 'crs', dmu_eval = 1:2835,dmu_ref = 1:2835)
   9
      efficiencies(result_ccr)
   10
   11
```

Output-

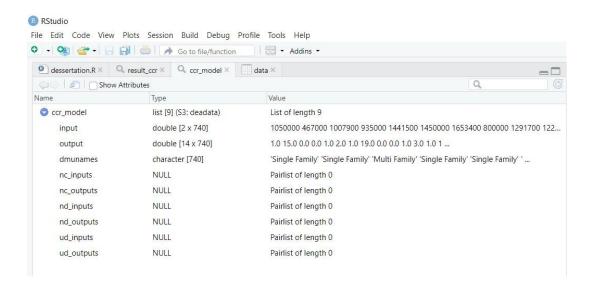
```
Console Terminal × Background Jobs ×
                                                                                                     R 4.3.2 · ~/Ishika/
> data<-read_excel("C:\\Users\\HP\\Downloads\\(600000, g5).xlsx")</pre>
> require(deaR)
Loading required package: deaR
> ccr_model<-read_data(data, ni=2, dmu=1, inputs = 16:17, outputs = 2:15)</pre>
Warning messages:
1: 'read_data' is deprecated.
Use 'make_deadata' instead.
See help("Deprecated")
2: In make_deadata(datadea = datadea, ni = ni, no = no, dmus = dmus,
There are negative or zero data. Try to translate the base point of the inputs/outputs with negative data in order to get only positive values.
  (This is a warning, not an error.)
> View(ccr_model)
> result_ccr<-model_basic(ccr_model,orientation = 'io',rts = 'crs',
  dmu_eval = 1:600,dmu_ref = 1:600)
> efficiencies(result_ccr)
                            H3
                                                H5
                                                           Н6
                                                                     H7
      H1
                H2
                                      H4
                                                                                H8
0.9918379\ 1.0000000\ 0.8071518\ 0.9708514\ 0.9708514\ 0.9708514\ 0.9708514\ 1.0000000\ 0.9912489
                                               H14
      H10
                H11
                           H12
                                     H13
                                                          H15
                                                                    H16
0.9303082 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                                                   1.0000000
      H19
                H20
                           H21
                                     H22
                                               H23
                                                          H24
                                                                    H25
                                                                               H26
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9991897 0.9875260 1.0000000
                H29
                           H30
                                                          H33
      H28
                                     H31
                                               H32
                                                                    H34
                                                                               H35
                                                                                          H36
1.0000000 0.9875260 1.0000000
                               0.9346552 0.9285260 0.9614560 0.9341660 0.9527388
                                                                               H44
      H37
                H38
                           H39
                                     H40
                                               H41
                                                          H42
                                                                    H43
1.0000000 0.7170154 0.9340079 1.0000000 1.0000000 0.9448192 0.9378492 0.9257426
      H46
                H47
                           H48
                                     H49
                                               H50
                                                          H51
                                                                    H52
                                                                               H53
0.9356223\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 0.9848323\ 1.0000000
H2753 H2754 H2755
                                   H2756 H2
                                              H2757
                                                        H2758 H2759
                                                                             H2760
                                                                                        H2761
1.0000000 1.0000000 0.9578022
                               1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
              H2763
                         H2764
                                   H2765
                                              H2766
                                                        H2767
                                                                   H2768
                                                                             H2769
1.0000000 1.0000000 0.9891393
                                 9455513 1
                                            0000000 1
                                                      0000000 0.9736964 1
                                                                           .0000000 1.0000000
                                   H2774
    H2771
              H2772
                         H2773
                                              H2775
                                                        H2776
                                                                   H2777
                                                                             H2778
                                                                                        H2779
0.9423742 1.0000000 1.0000000 1.0000000 1.0000000 0.9609042 1.0000000 1.0000000 1.0000000
    H2780
              H2781
                         H2782
                                   H2783
                                              H2784
                                                        H2785
                                                                   H2786
                                                                             H2787
0.9493756 0.9925884 1.0000000
                                 .0000000 0.9501606
                                                    1.0000000 1.0000000
                                                                         0.9517219 1.0000000
    H2789
              H2790
                         H2791
                                   H2792
                                              H2793
                                                        H2794
                                                                   H2795
                                                                             H2796
                                                                                        H2797
1.0000000\ 0.9716636\ 0.9514668\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 1.0000000\ 0.9514668
              H2799
    H2798
                         H2800
                                              H2802
                                                        H2803
                                                                   H2804
                                                                             H2805
                                   H2801
                                                                                        H2806
0.9725253
          0.9791440 1.0000000
                               0.9663618
                                          0.9548283
                                                      0000000 1.0000000
                                                                           .0000000
                                                                                     .0000000
                         H2809
    H2807
              H2808
                                   H2810
                                              H2811
                                                        H2812
                                                                   H2813
                                                                             H2814
1.0000000 1.0000000 1.0000000 0.9496982 0.9770269 1
                                                      0000000 1.0000000 0.9464030 1
                                                                                     .0000000
    H2816
              H2817
                         H2818
                                   H2819
                                              H2820
                                                        H2821
                                                                   H2822
                                                                             H2823
                                                                                        H2824
1.0000000 1.0000000 0.9751363 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
    H2825
              H2826
                         H2827
                                   H2828
                                              H2829
                                                        H2830
                                                                   H2831
                                                                             H2832
1.0000000 1.0000000 1.0000000 0.8209134 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
              H2835
    H2834
1.0000000 1.0000000
```

View Model-

4.3.6 CLUSTER -6: (10,00,000 and above)

Code -

```
RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help


| Source on Save | Save | Source on Save | Sa
```

OUTPUT-

```
R Script ±
   9:1 (Top Level) :
 Console Terminal × Background Jobs ×
                                                                                                                                                                                                                                                                          R 4.3.2 · ~/
> library(readxl)
> data<-read_excel("C:\Users\HP\Desktop\RStudio.xlsx")
> require(deaR)
> ccr_model<-read_data(data, ni=2, dmu=1, inputs = 16:17, outputs = 2:15)</pre>
Warning messages:
1: 'read_data' is deprecated.
Use 'make_deadata' instead.
See help("Deprecated")
2: In make_deadata(datadea = datadea, ni = ni, no = no, dmus = dmus,
There are negative or zero data. Try to translate the base point of the inputs/outputs with negative data in order to get only positive values.
       (This is a warning, not an error.)
 > View(ccr_model)
 > result_ccr<-model_basic(ccr_model,orientation = 'io',rts = 'crs', dmu_eval = 1:740, dmu_ref = 1:7
40)
  > efficiencies(result_ccr)
Single Family Single Family
                                                                                Multi Family Single Family Single Family
          1.0000000
                                                 0.9993162
                                                                                        0.9291426
                                                                                                                               0.7674195
                                                                                                                                                                      0.9687021
                                                                                                                                                                                                              0.9993694
Single Family Single Family Single Family Single Family Single Family
           0.9517688
                                                 0.9362806
                                                                                        0.9362806
                                                                                                                               0.9636158
                                                                                                                                                                      1.0000000
                                                                                                                                                                                                              0.9863832
 Single Family Single Family Single Family Single Family Single Family
           1.0000000
                                                 0.9613269
                                                                                        1.0000000
                                                                                                                               0.9792676
                                                                                                                                                                      1.0000000
                                                                                                                                                                                                             0.988047
Single Family Si
           0 9792676
```

```
9:1 (Top Level) $
                                                                                       R Script $
 Console Terminal ×
                Background Jobs ×
                                                                                          R 4.3.2 · ~/ 6
Single Family Single Family Single Family Single Family Single Family
    0.8138021
                 1.0000000
                              1.0000000
                                           1.0000000
                                                        0.9766173
                                                                     0.9695658
Single Family Single Family Single Family Single Family Single Family
    0.9749874
                 1.0000000
                              1.0000000
                                           1.0000000
                                                        0.9076736
                                                                     0.8670912
Single Family Single Family Single Family Single Family Single Family
                              0.6354399
    1.0000000
                 0.6865076
                                           0.8506154
                                                        0.8155016
                                                                     0.6856963
Single Family Single Family Single Family Single Family Single Family
                              0.9798820
    0.8632066
                 0.5630221
                                           1.0000000
                                                        1.0000000
                                                                     1.0000000
Single Family Single Family Single Family Single Family Single Family
    0.9785110
                 0.9751902
                              1.0000000
                                           1.0000000
                                                        0.9818321
                                                                     0.9799797
Single Family Single Family Single Family Single Family Single Family
                              0.9802309
                                                        0.9957575
    1.0000000
                 1.0000000
                                           1.0000000
                                                                     1.0000000
Single Family Single Family Single Family Single Family Single Family
    1.0000000
                 1.0000000
                              0.9796601
                                           0.9700538
                                                        1.0000000
                                                                     0.9431100
Single Family Single Family Single Family Single Family Single Family
    0.9722102
                 1.0000000
                              1.0000000
                                           0.9497262
                                                        1.0000000
                                                                     1.0000000
Single Family Single Family Single Family Single Family Single Family
                                                                     0.9776364
    1.0000000
                 1.0000000
                              0.9830763
                                           0.8650733
                                                        1.0000000
 Single Family Single Family Single Family Single Family Single Family
    1.0000000
                 0.9860836
                              0.9820000
                                           1.0000000
                                                        0.9747701
                                                                     1.0000000
 Single Family Single Family Single Family Single Family Single Family
    1.0000000
                 0.9787545
                                           1.0000000
                                                                     1.0000000
                              1.0000000
                                                        1.0000000
Single Family Single Family
                 1.0000000
    1.0000000
```

View Model-

Chapter 5 : CONCLUSION

Utilizing the outcomes of the Data Envelopment Analysis (DEA) and the efficiency calculations mentioned earlier, we can streamline the process of selecting an ideal house for the buyer. Tailoring the recommendations to the desired location, we can present a curated list of houses, each ranked for maximum efficiency based on predefined criteria. This approach empowers buyers to choose a home that aligns with their preferences from a selection optimized for efficiency.

Efficiency metrics span from 0 to 1, where 1 signifies the highest level of efficiency. By offering customers a list of houses prioritized by efficiency metrics, we enable them to make well-informed decisions. A house with an efficiency of 1 is considered the most efficient compared to others. The list consists of houses with maximum efficiency, ensuring that buyers can select a residence that not only meets their specific requirements but also provides maximum features and value within their budget constraints. Buying a house with an efficiency of 1 signifies the most efficient deal compared to houses with efficiencies less than one, providing buyers with a clear benchmark for optimal decision-making in their home purchase.

By offering customers a list of houses prioritized by efficiency metrics, we enable them to make well-informed decisions. This personalized strategy simplifies the home selection process, allowing customers to secure a residence that not only meets their specific requirements but also provides maximum features and value within their budget constraints. Ultimately, this data-driven approach enhances customer satisfaction, facilitating the acquisition of a home that perfectly matches their preferences while ensuring an efficient and valuable investment.

REFERENCES

- 1. An analysis of production as an efficient combination of activities _ CiNii Research. (n.d.).
- 2. Debreu, G. (1951). The Coefficient of Resource Utilization THE COEFFICIENT OF RESOURCE UTILIZATION'. In Source: Econometrica (Vol. 19, Issue 3).
- 3. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. In Management Science (Vol. 30, Issue 9).
- 4. Coelli, T. J. (1996). A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer) Program. In CEPA Working Paper No. 8/96.
- 5. Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985). The Measurement of Efficiency of Production. In Springer Science & Business Media.
- 6. Hsu, S. H., & Hwang, H. (2013). A fuzzy DEA/AR approach to the non-efficiency evaluation problem. In Expert Systems with Applications (Vol. 40, Issue 3).
- 7. Kao, C., & Liu, S. T. (2000). Data envelopment analysis with missing data: An application to university libraries in Taiwan. In Journal of the Operational Research Society (Vol. 51, Issue 8).
- 8. Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. In European Journal of Operational Research (Vol. 130, Issue 3).
- 9. Zhu, J. (2003). Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and DEA Excel Solver. In Springer Science & Business Media.
- 10. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. In Springer Science & Business Media.

- 11. Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA) Thirty years on. In European Journal of Operational Research (Vol. 192, Issue 1).
- 12. Sherman, H. D., & Gold, F. (1985). Bank branch operating efficiency: Evaluation with Data Envelopment Analysis. In Journal of Banking & Finance (Vol. 9, Issue 2).
- 13. Hollingsworth, B. (1999). Using data envelopment analysis in the public sector. In International Journal of Public Sector Management (Vol. 12, Issue 4).
- 14. Harker, P. T., & Friesz, T. L. (1984). Bounding the resource utilization function of an activity network. In Operations Research (Vol. 32, Issue 6).
- 15. Seiford, L. M., & Thrall, R. M. (1990). Recent developments in DEA: The mathematical programming approach to frontier analysis. In Journal of Econometrics (Vol. 46, Issues 1-2).
- 16. Taylor & Francis Online: Peer-reviewed Journals (tandfonline.com)
- 17. Youssef Er-Rays, Meriem M'dioud, Analyzing the Efficiency of Moroccan Hospital Network Regions via DEA and Tobit Regression: Assessing DEAP 2.1 Software versus Generative AI ChatGPT 3.5
- 18. dspace.dtu.ac.in:8080

Appendix

Data features:

- House Code | Objective Feature | house_code | string |
- Category Code Description | Objective Feature | category_code_description | string |
- Exterior Condition | Objective Feature | exterior_condition | int |
- Frontage | Objective Feature | frontage | float (m) |
- Garage Spaces | Objective Feature | garage_spaces | int |
- House Extension | Objective Feature | house extension | float (m²) |
- Interior Condition | Objective Feature | interior condition | int |
- Market Value | Objective Feature | market value | float (\$) |
- Number of Bathrooms | Objective Feature | number of bathrooms | int |
- Number of Bedrooms | Objective Feature | number of bedrooms | int |
- Number of Rooms | Objective Feature | number of rooms | int |
- Number of Stories | Objective Feature | number_stories | int |
- Sale Price | Objective Feature | sale price | float (\$) |
- Taxable Building Value | Objective Feature | taxable building | float (\$) |
- Taxable Land Value | Objective Feature | taxable land | float (\$) |
- Total Area | Objective Feature | total_area | float (m²) |
- Total Liveable Area | Objective Feature | total liveable area | float (m²) |
- Year Built | Objective Feature | year built | int (year) |

	House_id	exterior_condition	frontage ga	rage_spaces	house_exter	nsion interior	_condition	number_of	_bathrooms	number_of_bedrooms
0	H1	4	16.29	0		0	4		1	2
1	H2	4	12.00	0		0	4		1	0
2	Н3	4	12.33	0		0	4		1	0
3	H4	4	12.33	0		0	4		1	0
4	H5	4	12.50	0		0	4		1	0
5	H6	4	12.50	0		0	4		1	0
6	H7	4	12.58	0		0	4		1	0
7	H8	4	14.08	0		0	4		1	0
8	H9	4	14.77	0		0	4		1	0
9	H10	7	14.00	0		0	7		1	2
nu	mber_of_roo	ns number_stories	taxable_building	taxable_land	total_area tot	tal_livable_area	year_built	market_value	sale_price o	category_code_description
		5 2	108300	36100	86.49	810	1920	144400	230000	Single Family
		5 3	114835	20265	192.00	576	1920	135100	3500000	Single Family
		5 3	116450	20550	197.28	591	1920	137000	3500000	Single Family
		5 3	116450	20550	197.28	591	1920	137000	3500000	Single Family
		5 3	117470	20730	200.00	600	1920	138200	3500000	Single Family
		5 3	117470	20730	200.00	600	1920	138200	3500000	Single Family
		5 3	117810	20790	201.28	603	1920	138600	3500000	Single Family
		5 3	125545	22155	225.28	675	1920	147700	3500000	Single Family
		5 3	127245	22455	236.32	690	1920	149700	3500000	Single Family
		4 3	43480	65220	322.00	672	1920	108700	125000	Single Family

Table I.1: Overview of the Dataset

LIST OF PUBLICATIONS

ICRTEBM, Amity University Conference Brochure

PRESENTS

3rd INTERNATIONAL CONFERENCE ON

RECENT TRENDS IN ENGINEERING, TECHNOLOGY AND BUSINESS MANAGEMENT (ICRTETBM-2024)

Theme: Digitization Transformation And Business Operations

21-23 February 2024 | Mode: Offline

Conference Link: https://amity.edu/inbushera2024/icrtetbm2024/

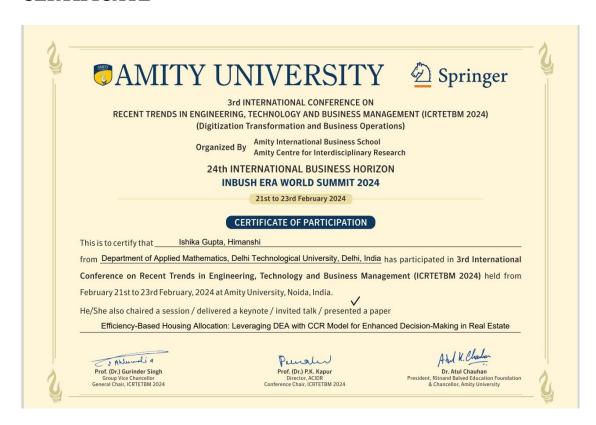
CALL FOR PAPERS

Authors interested in presenting research papers of theoretical/applied nature or case studies are invited to submit an Abstract not exceeding 250 words latest by Jan 25, 2024 at icrtetbm@amity.edu. The abstract should include all authors (Name, Affiliation, email), keywords/phrases, full address along with the broad conference topic.

PUBLICATIONS

JOURNAL SPECIAL ISSUE:

After the conference, the best papers of ICRTETBM-2024 after peer review process will be selected for publishing in the following indexed journal (as per that journal policies): International Journal of System Assurance Engineering and Management (IJSAEM), Springer (Indexed in ESCI SCOPUS, Cite Score 3, I.F 2.0)


Contact Details:

Prof. P. K. Kapur, Conference Chair (ICRTETBM 2024) Vivek Kumar, Conference Secretary (ICRTETBM 2024) Phone: 9810229837, 9711909704

Organised by:

Amity International Business School (AIBS) and Amity Centre for Interdisciplinary Research (ACIDR) Amity University, Sec-125, Noida, U.P, India

CERTIFICATE

Publication Under Special Issue

ICRTETBM-2024 Conference Full Paper Submission for Special Issue "IJSAEM" Indoxx × ⊕ Ø @ Wed, 27 Mar, 11:08 🜟 0 to icrtetbm • Dear Author(s) I am pleased to notify you that your paper has been chosen for possible publication in the Special Issue of the International Journal of System Assurance Engineering and Management, Springer "IJSAEM" (https://www.springer.com/journal/13198). If you are interested, you may submit your paper to the Special Issue: 'S.I.: Leveraging Computational Paradigms for System Performance' (https://link.springer.com/journal/13198/updates/25916926) via the 'IJSAEM Editorial Manager- EM' Please ensure that you follow the Journal's guidelines while preparing your manuscript. You can refer to the author's guide in the International Journal of System Assurance For all future correspondences, please mention your Paper ID received from springer after paper submission. The Special Issue is not included in the article type, but you can select it in the additional information tab. **Please submit your manuscript through the Journal's homepage till April 20, 2024. ##Please note that this email does not guarantee publication in the IJSA, as it is subject to the Journal's peer-review process. Technical Committee ICRTETBM-2024 Amity University, Noida 12 of 140 〈 > Your submission to International Journal of System Assurance Engineering and Management: X A M Preprint Confirmation Inbox × In Review at International Journal of System Assurance Engineering and Management <noreply@springernature.com> Sat, 20 Apr, 14:25 🌟 😉 👆 Dear Ms. ISHIKA GUPTA. Thank you for opting in to In Review from Springer Nature when you submitted your manuscript "Efficiency-Based Housing Allocation: Leveraging DEA with CCR Model for Enhanced Decision-Making in Real Estate" to International Journal of System Assurance Engineering and Management. In Review is a free service that posts your manuscript publicly and permanently to the preprint server Research Square and lets you track the status of your manuscript during the peer review process with a peer review timeline. All preprints posted as part of the In Review service are screened for preprint suitability, formatted, assigned a DOI, and publicly posted under a CC-BY 4.0 license as a preprint on Research Square. Your preprint may be posted within the next few days, prior to the beginning of the peer review process, or have a later posting date due to editorial processes at the journal. However, if you would like to preprint right away, please log in to Research Square and select "Post my preprint" If you did not intend to opt in to In Review and would like to cancel your preprint, please <u>log in</u> to Research Square to opt out as soon as possible. Once your preprint is posted, you will no longer be able to have it removed

PLAGIARISM REPORT

11% Overall Similarity Top sources found in the following databases: • 9% Internet database · 3% Publications database · Crossref database · Crossref Posted Content database • 5% Submitted Works database TOP SOURCES The sources with the highest number of matches within the submission. Overlapping sources will not be displayed. dspace.dtu.ac.in:8080 6% Internet deazone.com 1% Internet Harvard Medical School Masters Program on 2024-05-01 <1% Submitted works Universiti Teknologi Malaysia on 2016-07-02 <1% Submitted works O.B Olesen. "Some unsolved problems in data envelopment analysis: A... <1% Crossref Ataturk Universitesi on 2024-02-27 <1% Submitted works mme2020.mendelu.cz <1% Internet esd-conference.com <1% Internet

9	University of Edinburgh on 2024-04-02 Submitted works	<19
10	journalofbusiness.org Internet	<19
1	Fatih University on 2014-12-30 Submitted works	<19
12	Benchmarking: An International Journal, Volume 20, Issue 1 (2013-05 Publication	<19
13	Cardiff University on 2012-10-12 Submitted works	<19
14	H. David Sherman, Joe Zhu. "Benchmarking with quality-adjusted DEA Crossref	<19
15	tidley.nfh.uit.no	<19

Candidate's Signature

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Dissertation Efficiency-Based Housing Allocation: Leveraging DEA					
with CCR Model for Enhanced Decision-Making in Real Estate					
Гotal Pages					
Name of the Scholar					
(1) <u>Ishika Gupta</u>					
(2) <u>Himanshi</u>					
Department Department of Applied Mathematics					
This is to report that the above dissertation was scanned for similarity detection.					
Process and outcome is given below:					
Software used:	_ Similarity Index:				
Гotal Word Count:					
Date:					

Signature of Supervisor

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India

CERTIFICATE OF DISSERTATION SUBMISSION FOR EVALUATION

TOREVALUATION			
1. Name: Ishika Gupta and Himanshi			
2. Roll No. : 2K22/MSCMAT/58 and 2K22/MSCMAT/59			
3. Dissertation title: <u>Efficiency-Based Housing Allocation: Leveraging CCR Model for Enhanced Decision-Making in Real Estate</u>	ng DEA with		
4. Degree for which the dissertation is submitted: MSc Mathematics	_		
5. Faculty of the University to which the dissertation is submitted: Anjana Gupta			
6. Dissertation Preparation Guide was referred to for preparing the dissertation.			
	YES □ NO □		
7. Specifications regarding dissertation format have been closely fol	lowed.		
	YES □ NO □		
8. The contents of the dissertation have been organized based on the	guidelines		
	YES □ NO □		
9. The dissertation has been prepared without resorting to plagiarism	1.		
	YES □ NO □		
10. All sources used have been cited appropriately.	YES □ NO □		
11. The dissertation has not been submitted elsewhere for a degree	YES □ NO □		
12. Submitted 2 spiral bound copies plus one CD.	YES □ NO □		
(Signature of Candidate)			

Name(s): Ishika Gupta and Himanshi

Roll No: 2K22/MSCMAT/58 and 2K22/MSCMAT/59

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE OF FINAL DISSERTATION SUBMISSION

1.	Names: Ishika Gupta and Himanshi					
2.	Roll No.: 2K22/MSCMAT/58 and 2K22/MSCM	AT/59				
3.	Dissertation title: Efficiency-Based Housing Allocation: Leveraging DEA with					
	CCR Model for Enhanced Decision-Making in R	eal Estate				
4.	Degree for which the dissertation is submitted: M.Sc. Mathematics					
5.	Faculty of the University to which the dissertation is submitted: Prof. Anjana					
	Gupta					
6.	Dissertation Preparation Guide was referred to fo	r preparing the	dissertation.			
			YES □ NO □			
7.	Specifications regarding dissertation format have	been closely for	ollowed.			
			YES \square NO \square			
8.	The contents of the dissertation have been organic	zed based on th	e guidelines			
			YES □ NO □			
9.	The dissertation has been prepared without resort	ing to plagiaris	m.			
			YES □ NO □			
10	All sources used have been cited appropriately.		YES □ NO □			
11	The dissertation has not been submitted elsewher	e for a degree.	YES \square NO \square			
12	All the corrections has been incorporated.		YES □ NO □			
13	Submitted 2 spiral bound copies plus one CD.		YES □ NO □			
(Signature of the Supervisor)	(Signature of	Candidates)			
Names : Dr. Anjana Gupta Names : Ish			a Gupta			
		Hima	nshi			

Roll No.: 2K22/MSCMAT/58

2K22/MSCMAT/59