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Abstract

The classification of hyperspectral images (HSI) into categories that correlate to various

land cover sorts such as water bodies, agriculture and urban areas, has gained significant

attention in research due to its wide range of applications in fields such as remote sensing,

computer vision, and more. This has led to the development of various deep learning models

that include supervised and semi-supervised, for HSI classification. Among the aforemen-

tioned classes of models, the supervised networks have evolved to achieve almost perfect

classification accuracy. Nevertheless, the process of obtaining labelled samples continues to

pose a challenge in HSI classification, as the labelling remains a manual, time-consuming,

and labour-intensive task, which necessitates the expertise of individuals to identify and

label each pixel in the image. Furthermore, most of the existing supervised models are

computationally slower due to the massive computations involved. To address these prob-

lems of the existing works, in this thesis, we propose five new deep learning-based models

for HSI classification.

In our first work, we propose a novel lightweight network, Xcep-Dense, a hybrid clas-

sification model that combines the core benefits of the extreme version of inception and

dense networks. The Xception network employs depth-wise separable convolutions, and

the 3D slicing phenomenon, which requires fewer parameters, is computationally efficient

and provides excellent classification accuracy. The proposed network is configured with

dense network and optimized to alleviate overfitting. Xcep-Dense’s performance is vali-

dated using two benchmark hyperspectral datasets, Indian Pines and Salinas.

In our second work, we propose a Siamese network based deep learning model which

implements one shot classification model and can work with limited samples and/or im-

balanced samples. The proposed Siamese network has a handcrafted feature generation

network that extracts discriminative features from the image. Experimental findings demon-
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strate that the proposed network is capable of improving the classification performance with

an overall accuracy, with a small scale training data.

To tackle the labelled limited samples problem, the third work introduces a novel semi-

supervised network constructed with an autoencoder, siamese action, and attention layers

that achieves excellent classification accuracy. The proposed convolutional autoencoder

is trained using the mass amount of unlabelled data to learn the refinement representa-

tion referred to as 3D-CAE. The added siamese network improves the feature separability

between different categories and attention layers improve classification by focusing on dis-

criminative information and neglecting the unimportant bands. The efficacy of the proposed

model’s performance was assessed by training and testing on both same-domain as well as

cross-domain data and found to achieve 91.3 and 93.6 for Indian Pines and Salinas, respec-

tively.

In our fourth work, we integrate autoencoders and Generative Adversarial Networks

for enhancing feature representations and mitigating the constraints imposed by limited la-

beled data. Leveraging the power of semi-supervised learning paradigms, this innovative

approach offers substantial progress in feature extraction, data augmentation, and classifi-

cation accuracy. It extends beyond traditional hyperspectral image classification boundaries

by addressing zero-shot learning and integration of text embeddings to enrich feature rep-

resentations. The outcome is a precise classification framework that accommodates the

intricacies of both same-domain and cross-domain datasets, ultimately pushing the bound-

aries of hyperspectral image classification.

In our final work, we present an innovative semi-supervised framework that harmo-

niously combines unsupervised feature learning with the employment of graph-based con-

volutional neural networks (GCNs). Our approach harnesses the latent knowledge hidden

within vast pools of unlabelled HSI data using autoencoders, which extract meaningful

features. These features are then incorporated into a GCN-based architecture, leveraging

spatial relationships among neighboring pixels. The fusion of autoencoder-based learning

and graph-based techniques enables our model to achieve excellent classification accuracy,

even in scenarios with minimal labelled samples.
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CHAPTER 1

INTRODUCTION

With the technological advancement in spectroscopy, the Earth observation fields have seen
tremendous growth. This growth can be attributed mainly to the amalgamation of sensory
capabilities of various beings, including bumble bees that perceive only a limited range of
the electromagnetic spectrum—visible light from (10-380 nm), human eyes extend into the
ultraviolet range 380 to 700 nm, goldfish delve into the infrared (700 nm-1 mm), and many
others. The various ways these beings perceive the electromagnetic spectrum are combined
into one unified imaging system. [2, 3]. This integration becomes especially significant
in remote sensing applications, where spectroscopy plays a fundamental role in capturing
the electromagnetic radiation emanating from the Earth’s surface with the help of a variety
of imaging sensors, mounted on aircraft or spacecraft platforms. The sensor may include
multispectral and hyperspectral sensors, where the former ones gather data in a limited
number of non-contiguous wavebands, while the later captures images across contiguous
narrow bands spanning the visible to near-infrared regions. Therefore, multispectral imag-
ing systems excel in identifying prevalent ground-cover types and have diverse applications.
However, their limitations arise from acquiring data in a limited number of non-contiguous
spectral bands, potentially leading to the loss of intricate details in images captured with
significant spectral gaps and low resolutions [4]. To enhance the capacity for discerning
subtle spectral variations, hyperspectral imaging systems were developed and are being
used. An overview of a sensor capturing a target area for subsequent processing is depicted
in 1.1.

Hyperspectral imaging systems enable a more comprehensive analysis of spectral data
by offering valuable insights into the composition of objects in the scene. This significantly
helps in the classification of these objects by stratifying the pixels in the hyperspectral image
(HSI) and makes it highly valuable for various practical applications such as environmental
monitoring, military target detection, and precision agriculture.
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Figure 1.1: A sensor capturing a target for processing

1.1 Unravelling Hyperspectral Imaging (HSI)

The term “Hyperspectral” is a combination of “Hyper,” meaning excessive, and “Spectral,”
referring to the number of spectral bands. In a metaphorical sense, hyperspectral sensors
gather data in the form of a series of ‘images.’ Each of these images corresponds to a spe-
cific narrow wavelength range in the electromagnetic spectrum, commonly referred to as
a spectral band. In an expanded spectrum, each channel generates an image encoded with
grayscale levels, collectively forming a multidimensional entity known as an HSI cube. Fig-
ure 1.2a illustrates a typical hyperspectral dataset, where imaging and spectroscopy unite to
yield an extensive reserve of spectral and spatial information about the scene [5]. Concep-
tually, a hyperspectral image can be visualized as a cube, with its length (x) and width (y)
representing the spatial coverage (number of pixels) of the Two-Dimensional (2D) image at
each wavelength, and its depth (z) symbolizing the number of spectral bands within the hy-
perspectral image, as depicted in 1.2b. In simpler terms, HSI seamlessly integrates digital
imaging with spectroscopy, providing abundant spatial and spectral information for every
pixel within an image. This technology helps us understand the Earth, other planets, and
space better than regular colour cameras and also empowers the identification, measure-
ment, and precise characterization of materials based on their unique chemical and physical
properties [6, 7, 8], leading to the widespread adoption of HSI across various domain.

(a)

x

z

y

Hyperspectral
Cube

Continuous
Spectrum

Pixel (xi, yi)

Wavelength

In
te

ns
ity

(b)

Figure 1.2: (a) Hyperspectral Cube (Image Reference [1]) (b) HSI Cube showing a contin-
uous spectrum of bands followed by spectrum for each pixel (xi, yi)
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1.1.1 Transformative power of HSI across disciplines

Since the HSI holds abundant spatial and spectral information, it has been proven to be
remarkably transformative in various fields. Some of the prominent fields where HSI has
already demonstrated its transformative power are as follows:

•

• In environmental monitoring, HSI’s unique spectral signatures have been instrumen-
tal in identifying substances for pollution monitoring and biodiversity assessment.
For instance, a case study in [9] demonstrates how HSI is used to monitor harmful
algal blooms and assess the impact of human activities on aquatic ecosystems, aiding
in sustainable environmental management.

• Precision agriculture benefits from HSI’s potential in mapping crop fields and mon-
itoring crop health in real-world farming scenarios. Case studies like those in [10,
11, 12] showcase how HSI technology is utilized to optimize agricultural practices,
minimize food waste, and detect pollutants during harvests, thereby enhancing agri-
cultural sustainability and productivity.

• In mineral exploration and mapping, HSI is used in efficient resource exploration
and mineral identification and facilitates the identification of subsurface minerals and
ores indicative of a valuable mineral deposit suitable for mining. [6].

• Military benefits from enhanced situational awareness proving invaluable for target
detection in defence and security in reconnaissance and surveillance missions through
compact and high-resolution sensors. HSI proves effective in the early detection of
metal corrosion on aircraft and naval vessels, leading to cost reduction and improved
operational uptime for these valuable assets. [13, 14].

• In biomedical imaging, HSI is used to identify tissues and biomarkers for identifying
tumour margins in real-time brain surgeries. HSI enables detailed examination of
biological structures relevant to medical specialities such as pathology, oncology, and
neurology for the detection of various cancers and diseases[15].

• In remote sensing, HSI integrates actionable insights for forestry, urban planning, and
disaster management [16]. In forestry, HSI can be used to assess vegetation health
and identify specific plant species. In urban planning, it aids in land-use classification
and monitoring changes over time. For disaster management, HSI can contribute to
assessing the impact of natural disasters, such as wildfires or floods, by analyzing
changes in the landscape.
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• In ensuring food quality and safety, HSI plays a pivotal role in controlling the quality
of the food, ensuring that products meet regulatory standards and are safe for con-
sumption enabling the identification of contaminants, spoilage, and adulteration in
food items [17, 18, 19, 20].

However, one has to process and analyze the HSI dataset to extract valuable insights by
mainly doing classification. Classification in hyperspectral imaging is of paramount impor-
tance as it allows for the categorization and identification of materials, objects, and/or land
cover types present in the captured scenes. Accurate classification of hyperspectral images
is crucial for enabling informed decision-making. Despite its significance, HSIC presents
challenges due to the numerous spectral bands in the HSI dataset. To address these chal-
lenges and enhance accuracy, early HSIC stages relied on conventional image processing
techniques. Although effective, these methods encountered difficulties in managing the in-
tricate and high-dimensional characteristics of hyperspectral data. In the next sub-section,
we will explore the evolution of HSIC methods, discussing the transition from conventional
techniques to the integration of powerful Machine Learning models, ultimately leading to
the rise of deep learning.

1.1.2 Evolution of HSIC methods

In its early stages, HSIC relied on conventional image processing techniques such as sub-
space projection approach [21], knowledge-based approaches [22], etc. While effective,
these methods encountered difficulties in managing the intricate and high-dimensional char-
acteristics of hyperspectral data, leading to the adoption of Machine Learning (ML) models
like SVM [23, 24], Random Forest (RF) [25, 26, 27], and DT [28] for HSIC. While ear-
lier ML models laid the groundwork for remote sensing applications, demonstrating good
classification accuracy and versatility in handling various data types, they also exhibited dis-
advantages such as slow convergence, overfitting, manual feature extraction, and prolonged
training and testing times. The complex nature of HSI data further challenges traditional
ML models, dealing with inherently nonlinear relationships between the extracted spectral
bands and corresponding materials [7].

To address the aforementioned limitations of traditional methods, deep learning-based
HSIC models came into prominence because of their powerful feature extraction ability
from images [7] and enhanced discrimination capacity [6, 29]. In no time, deep-learning
models, including CNNs [30, 31, 32], Recurrent Neural Network (RNN)s [33, 34], AE
[35, 36], Transfer Learning (TL) [37, 38], GAN [39, 40], etc. became integral to the HSIC
landscape, excelling at automatically learning hierarchical features from hyperspectral data
[41, 42, 33, 43, 44]. CNNs, specifically, brought spatial hierarchy learning to HSIC, ex-
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tracting spatial features from hyperspectral images for better classification of objects, re-
sulting in improved HSI accuracy and performance. However, challenges in interpretabil-
ity led to exploration into specialized architectures such as Siamese CNN, attention net-
works, inception networks, and others to address constraints posed by conventional CNNs
[27, 30, 45, 46, 47, 48, 49, 50, 51, 52]. Despite advancements, there is still a room for
improving lightweight deep learning models for enhanced accuracy and faster convergence
in HSIC. While existing models show good accuracy, further exploration is needed to
address challenges related to limited labelled samples, the Hughes phenomenon, working
effectively with unlabeled data or dealing with cross-domain data. Hughes phenomenon,
also called as the curse of dimensionality exacerbates the challenges associated with high-
dimensional data, such as HSI. In this context, increased dimensionality leads to compu-
tational complexities and sparse data distribution, making analysis and interpretation ardu-
ous. For instance, visualizing or comprehending data in high-dimensional space becomes
challenging due to the diminishing relevance of distances between data points and the ex-
ponential increase in data required to adequately represent the space. In HSIC, the curse
of dimensionality poses obstacles like overfitting and heightened computational demands,
impairing classification accuracy and efficiency.

1.1.3 Problem Statement

Effectively classifying hyperspectral images encounters challenges due to the complex in-
teraction between spectral and spatial data. The complexities lie in the varying significance
of features and the accurate classification of diverse categories [53, 54]. The integration
of supervised models becomes crucial for unlocking the potential of deep learning algo-
rithms in hyperspectral image analysis. Leveraging carefully labelled datasets, these mod-
els discern complex relationships between spectral responses and various land cover types,
ensuring precise classification and facilitating the extraction of critical features for compre-
hensive analysis in practical scenarios [55, 56, 57].

Also, to deal with the scarcity of labelled samples, the inclusion of semi-supervised
learning models is essential. These models, relying on both labelled and unlabeled data,
enhance classification accuracy significantly, even with limited labelled data [36, 58]. HSIC
presents challenges due to inter-class and intra-class similarities. Utilizing 1DCNN, 2DCNN,
or 3DCNN proves viable for classification, given HSIC’s reliance on both spectral and spa-
tial information. However, the computational demands in processing the voluminous and
spectral dimensions of HSI can be burdensome, potentially hindering feature extraction
and leading to underperformance [59]. One primary obstacle in HSI lies like the data it-
self—numerous narrow spectral bands coupled with limited labelled training data, giving
rise to the Hughes Phenomenon or the curse of dimensionality [58, 60]. This phenomenon
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occurs when the number of labelled training samples is significantly lower than the spec-
tral bands present, resulting in a diminished predictive performance for supervised [59] and
semi-supervised learning [61] methods in HSIC.

Therefore, this research first scrutinizes prior studies for cutting-edge deep learning
models, benchmark datasets, and associated classification accuracies in HSIC, establishing
a baseline understanding of the current state-of-the-art. Second, it involves developing an
innovative supervised model tailored for HSIC to surpass existing benchmarks, integrating
novel features and methodologies focused on enhancing classification accuracy. Third, it
explores the potential of unlabeled HSI datasets using semi-supervised learning to extract
valuable insights and improve classification accuracy, aiming to overcome limitations posed
by limited labeled samples in HSIC.

1.2 Research Objectives

The adoption of deep learning technology for HSIC has been a breakthrough as the deep
learning models have shown the excellent ability of automatic feature extraction with im-
proved discrimination capacity. This has led to numerous works in the domain with the
objective of improving classification accuracy and few to tackle the limitation of limited
samples of labelled data and high complexity. However, the HSIC still faces the challenges
as far as accuracy, cross-domain adaptation, convergence speed, limited labelled data, and
working with unseen data are concerned. These challenges have motivated to develop effi-
cient deep learning models for stratification of hyperspectral images using both supervised
and semi-supervised approaches. Accordingly, the following objectives are proposed for
this thesis work.

• Objective 1: To study and analyze various available deep learning models for the
classification of Hyperspectral Images.

• Objective 2: To develop a novel lightweight deep learning algorithm using super-
vised learning that can extract discriminative features and enhance classification per-
formance.

• Objective 3: To develop a novel semi-supervised deep learning algorithm that works
on the problem of limited labelled samples.

• Objective 4: To experimentally evaluate and compare the proposed models with
state-of-the-art models.

These research objectives might face the challenge of limited labelled data or computa-
tional efficiency. This will be solved by generating new data or optimizing the algorithms
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to get better performance on HSI data. Particularly, the second objective seeks to develop a
lightweight DL algorithm, addressing resource-intensive models to enhance computational
efficiency in HSIC. However, the third objective focuses on developing a semi-supervised
DL algorithm to tackle limited labelled data in HSIC. By leveraging both labelled and
unlabeled data, this objective aims to boost classification accuracy and generalization, ex-
panding the usability of deep learning in scenarios with sparse labelled samples. Following
the analysis of the existing challenges and objectives outlined, this thesis endeavours to
address the gaps in current deep learning approaches for HSIC classification.

1.3 Contributions of Thesis

This thesis contributes significantly to the field of Hyperspectral Image Classification (HSIC)
by addressing the challenges posed by relationships in spectral and spatial data.

The key contributions of this thesis are as follows:

• The thesis undertakes a rigorous investigation and analysis of existing deep learning
models employed for the classification of HSI. Through a detailed review of these
models, the thesis aims to provide a holistic understanding of their capabilities, limi-
tations, and applicability in the context of HSIC.

• The thesis endeavours to develop a pioneering deep-learning algorithm with a focus
on lightweight architecture. This algorithm will leverage supervised learning tech-
niques to extract highly discriminative features, thereby significantly enhancing the
overall classification performance of HSI. By prioritizing improved classification ac-
curacy, the proposed lightweight algorithm aims to contribute to the development of
more streamlined and resource-efficient deep learning methodologies for HSI.

• Addressing the challenge of limited labeled samples, the thesis seeks to devise an
innovative semi-supervised deep learning algorithm. This algorithm will be specifi-
cally tailored to tackle the complexities associated with the scarcity of labeled data in
HSIC. By integrating semi-supervised learning techniques, the proposed algorithm
aims to unlock the potential of unlabeled data, thereby expanding the scope and ac-
curacy of HSIC models in real-world applications.

• The thesis aims to conduct comprehensive experimental evaluations and comparative
analyses of the newly developed deep learning models with state-of-the-art method-
ologies in the field. This comparative analysis will contribute to the advancement and
refinement of HSIC methodologies, paving the way for improved and more reliable
classification techniques for hyperspectral data.
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1.4 Alignmnent of Research Objectives with Publications

The table 1.1 below aligns research objectives with their corresponding publications.

1.5 Dissertation Organization

• Chapter 1: Introduction to the HSI Field

This chapter serves as an introductory section encompassing the first chapter, provid-
ing an extensive introduction to the HSI field and the broader context within which the
dissertation is developed. This chapter lays the groundwork for the subsequent dis-
cussions, establishing the fundamental background and significance of the research
conducted.

• Chapter 2: Literature Review and Theoretical Background

This chapter provides a detailed literature review, offering an in-depth overview of the
frameworks proposed for HSIC. Additionally, this chapter furnishes the theoretical
background underpinning the proposed methodologies, providing a comprehensive
understanding of the theoretical foundations that guide the subsequent analysis and
experiments.

• Chapter 3: Supervised Deep Learning Model I

This chapter is dedicated to the exploration of the lightweight methods using super-
vised learning strategy. The proposed lightweight Xcep-Dense network addresses the
challenge of extensive parameters in existing deep learning models, offering compa-
rable classification accuracy with significantly fewer parameters.

• Chapter 4: Supervised Deep Learning Model II

The proposed few shot classification model, based on a Siamese network with en-
hanced feature extraction, outperforms current models in the literature, achieving
higher accuracy than most of the state-of-the-art models.

• Chapters 5 Semi-Supervised Deep Learning Model I

This chapter presents a novel semi-supervised deep learning network for HSI clas-
sification, which incorporates an autoencoder, siamese and attention layers, working
on both same domain and cross domain datasets.

• Chapter 6 Semi-Supervised Deep Learning Model II

This chapter presents a comprehensive framework that leverages the synergistic po-
tential of hybrid CNN-GAN-autoencoder models, text embeddings, and zero-shot
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Table 1.1: Research Objectives and Corresponding Publications
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lyze various available deep-
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learning for advanced hyperspectral image classification. The proposed model not
only addresses the challenges of limited labelled data but also enhances feature rep-
resentations through unsupervised and semi-supervised learning paradigms.

• Chapter 7: Semi-Supervised Deep Learning Model III

This chapter introduces an approach for effectively classifying hyperspectral images.
By merging AE and GCN, we achieved highly promising outcomes when tested
against various standard datasets. This strategic fusion of spectral and spatial in-
sights enabled our model to thrive, especially in scenarios where spatial associations
played a pivotal role, ultimately leading to highly accurate classifications.

• Chapter 8: Conclusion and Future Research Directions

This chapter serves as the concluding segment of the dissertation, offering a com-
prehensive summary of the most significant findings and insights derived from the
research. Further, most prominent future research directions, highlighting potential
areas for further exploration and development in the field of hyperspectral image
classification, are also discussed.
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CHAPTER 2

LITERATURE REVIEW

This chapter is dedicated to studying and analysing the recent works in the domain of hy-
perspectral image classification, which has undergone a paradigm shift with the emergence
of advanced deep learning techniques. For this, a systematic and comprehensive literature
review has been done to provide an exhaustive overview of the existing body of knowledge,
elucidating crucial developments and trends in the realm of deep learning models specif-
ically designed for hyperspectral image classification. The review has been done in two
phases. In the first phase, a meta-analysis has been conducted to furnish a comprehensive
understanding of the current landscape. Next, the subsequent sections meticulously delve
into pertinent studies, unravelling key findings that not only inform but also inspire the
proposed novel models within this dynamic and evolving field.

2.1 Meta-Analysis

The objective of the meta-analysis was twofold: first, to synthesize and systematically re-
view the existing literature on HSIC utilizing deep learning approaches, and second, to
extract overarching trends, patterns, and insights from the collective body of research. This
meta-analysis aims to provide a comprehensive overview of the methodologies, findings,
challenges, commonalities, variations and gaps reported across diverse studies, enhancing
the understanding of the current state-of-the-art in HSIC. This section is divided as follows:
The initial subsection (2.1.1) centres on elucidating the intricacies of the data collection pro-
cess. Subsequently, the second subsection introduces the research questions (as outlined in
2.1.2). Following this, subsection 2.1.3 encompasses a discussion on benchmark datasets,
while subsection 2.1.4 delineates the various performance metrics employed in the analysis.
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2.1.1 Data-Collection

To initiate data collection, the Scopus database was searched to create a collection of similar
articles focussed on the targeted area i.e., ‘Hyperspectral Image Classification using Deep
Learning’. The process is depicted in Figure 2.1.

Articles identified through Scopus database
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Figure 2.1: Preferred Reporting items for systematic reviews and meta-analyses for this
study

• In step 1, a title/abstract/keyword search was conducted in the Scopus database using
the terms ‘Deep Learning’ AND ‘Hyperspectral Image Classification’. Searching was
restricted to the quality journals in this field, namely Remote Sensing, IEEE Trans-
actions On Geoscience And Remote Sensing, IEEE Journal Of Selected Topics In
Applied Earth Observations And Remote Sensing, IEEE Access, International Jour-
nal Of Remote Sensing, ISPRS Journal Of Photogrammetry And Remote Sensing,
Neurocomputing, IEEE Geoscience And Remote Sensing Letters, and International
Geoscience And Remote Sensing Symposium. Table 2.1 shows the inclusion criteria
for the articles included in the survey.

• In step 2a, a total of 2690 records were retrieved. Each title in the initial sheet was
screened, and the articles focussed on multispectral data, lidar data, image unmixing,
segmentation, object detection, and others were removed from this database. This
number went down to 646, which contained all the articles restricted to DL and HSIC.

• In another filtration step 2b, abstracts of each article were reviewed, resulting in the
removal of 409 articles related to band selection, scene classification, image fusion,
core neural networks, literature surveys, and duplicate content. The survey exclu-
sively included empirical studies containing experimentation.
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S. No Criterion Inclusions Exclusions

1 Perform
Search

Keywords: Deep Learning AND Hyperspectral Image
Classification

Focused Journals:

• Remote Sensing

• IEEE Transactions On Geoscience And Remote
Sensing

• IEEE Journal Of Selected Topics In Applied Earth
Observations And Remote Sensing

• IEEE Access

• IEEE Geoscience, And Remote Sensing Letters

• International Geoscience And Remote Sensing
Symposium

• Neurocomputing

• International Journal Of Remote Sensing

• ISPRS Journal Of Photogrammetry And Remote
Sensing

Restricted to the keywords and journals
published before 2019

2a Screening of
Titles

Articles restricted to Deep Learning and Hyperspectral Image
Classification

Articles related to multispectral data,
LIDAR data, image unmixing,
segmentation, object detection, and others

2b Screening
Abstracts

Only empirical studies containing experimentation work
based on deep learning models for hyperspectral image
classification

409 articles related to band selection, scene
classification, image fusion, core neural
networks, literature surveys, and duplicate
articles were removed

3 Final list of
Articles

Empirical studies/articles with full text available

• YEAR 2019 onwards = [195 Articles] = 88%

• YEAR 2016-2018 = [28 Articles] = 12%

Articles with limited access/survey

Table 2.1: Inclusion and Exclusion Criteria

• In step 3, the remaining 237 articles were assessed, with 13 being excluded due to
limited access. The final number of articles that were thoroughly screened was 224.
Subsequently, each study was compared on performance parameters including the
problem statement, the solution proposed, the dataset used, contributions, shortcom-
ings, future work, DL models used to improve the accuracy, performance assessment
of proposed models in the literature using overall accuracy, average accuracy, and
kappa coefficient.

Based on the inclusion-exclusion criteria outlined in Table 2.1 and using preferred re-
porting items for systematic reviews and meta-analysis, 224 articles were listed. The ar-
ticles retrieved using the keywords deep learning and hyperspectral image classification
included empirical research and experimentation. The investigation and comparison of
each article were made using the proposed deep learning model, datasets utilized, training
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Figure 2.2: Number of articles included from respective journals

ratio, accuracy attained, contributions, shortcomings, and future work. For a quick analy-
sis, Figure 2.2 shows the names of journals and available relevant papers in the respective
journals.

2.1.2 Proposed Research Questions

The objective behind mainly focusing on HSI is that they contain hundreds or thousands
of bands, making them difficult to interpret. Deep Learning gained popularity in remote
sensing because it can hierarchically learn representative and discriminative features. As a
result, the ultimate goal of this work is to look at existing deep learning models and their
newly proposed variants for hyperspectral image classification, and problems existing in
current literature, and analyze the accuracy associated with DL models. The objective is to
find out the answer to the below research questions :

• RQ1. What are the most widely used HSI datasets and what performance metrics are
used to assess the performance?

• RQ2. What is the performance of existing supervised, semi-supervised, and unsuper-
vised DL models in classifying hyperspectral images?

• RQ3. Which DL model gives the highest classification accuracy for HSI classifica-
tion?

• RQ4. What are the significant challenges encountered by existing researchers?

To look into these research questions closely, in forthcoming sections, we begin by
looking at benchmark HSI datasets in section 2.1.3 and performance metrics in section
2.1.4. The next section 2.2 provides an elaborated literature on the use of various deep
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learning models in HSIC. We will examine various models employed for HSIC includ-
ing additions for model improvement, insights into training ratios, datasets used, and the
results obtained. Each section is dedicated to a specific type of model, providing an in-
depth look into their characteristics. Section 2.2.2 focuses on models built using CNN,
Section 2.2.3 delves into models utilizing AE as feature extractors, Section 2.2.4 covers
graph-based learning, Section 2.2.5 explores ensemble networks, Section 2.2.6 delves into
generative adversarial networks, Section 2.2.7 focuses on long short-term memory networks
and the final section, Section 2.2.8, encapsulates miscellaneous models, including attention
networks, transformer networks, and few-shot learning, among others.

2.1.3 Benchmark HSI Datasets

This section provides an in-depth examination of commonly utilized hyperspectral datasets,
highlighting their unique characteristics. Within the literature, prominent datasets include
Indian Pines, Pavia University, Salinas, Pavia Center, and Kennedy Space Center. The
distribution of these frequently employed hyperspectral datasets in the literature is depicted
in Figure ??.

Table 2.2: Brief of Hyperspectral Datasets

Dataset Device Year Device
Type

Place Pixel Size Classes Samples

Indian Pines AVIRIS 1992 Airborne Indiana 145× 145 16 10,249
Salinas AVIRIS 1992 Airborne California 512× 217 16 54,129
KSC AVIRIS 1996 Airborne Florida 512 X 614 13 5,211

Pavia University ROSIS 2001 Airborne Northern Italy 610× 340 9 42,776
Pavia Centre ROSIS 2001 Airborne Northern Italy 1096× 492 9 7,456

Botswana Hyperion 2001 Satellite Okavango delta 1476× 256 14 3,248

Houston Univer-
sity

CASI 2017 Airborne Houston 601× 2384 20 504,712

AVIRIS Mode – Airborne; Bands – 224; Range - 0.36-2.45; Width – 10; Ground Sample Distance: 20;
ROSIS - Mode – Airborne; Bands 115; Range - 0.43-0.86; Width – 4; Ground Sample Distance: 1.3;
Hyperion Mode - Satellite; Bands - 220; Range - 0.40-2.50; Width – 10; Ground Sample Distance: 30;
CASI Mode - Airborne ; Bands - 144; Range - 0.36-1.05; Width - 2.4; Ground Sample Distance: 2.5

• Indian Pines (IP): This dataset was acquired using the AVIRIS sensor above the
Indian Pines test site located in Northwestern Indiana. It comprises a grid of 145x145
pixels and encompasses 224 spectral reflectance bands within the wavelength range
of 0.4–2.5 × 10−6 meters. The provided ground truth is categorized into sixteen
classes and the bands were later reduced to 200.

• Pavia University (PU) and Pavia Centre (PC): These two datasets were captured by
the ROSIS sensor during an aerial survey conducted over Pavia in northern Italy. The
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Table 2.3: Sample Distribution for IP

No Class Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-Trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20

10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Pavia Centre dataset comprises 102 spectral bands, while the Pavia University dataset
has 103. The Pavia Centre image is 1096 × 1096 pixels, and the Pavia University
image is 610× 610 pixels. The geometric resolution is 1.3 meters, and both images’
ground truths are classified into nine distinct classes each.

Table 2.4: Sample Distribution for PU

No Class Samples
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064

5 Painted Metal
Sheets 1345

6 Bare Soil 5029
7 Bitumen 1330

8 Self-Blocking
Bricks 3682

9 Shadows 947

Table 2.5: Sample Distribution for PC

No Class Samples
1 Water 824
2 Trees 820
3 Asphalt 816

4 Self-Blocking
Bricks 808

5 Bitumen 808
6 Tiles 1260
7 Shadows 476
8 Meadows 824
9 Bare-Soil 820

• Salinas (SA) and Salinas-A (SA-A): The imagery was acquired using the 224-band
AVIRIS sensor over Salinas Valley, California, having a high spatial resolution of
3.7-meter pixels. The covered area spans 512 × 217 samples. The ground truth
for the Salinas dataset comprises 16 distinct classes. A subsection of the Salinas
image, referred to as Salinas-A, is commonly utilized. This subscene encompasses
dimensions of 86 × 83 pixels and is annotated with information from six distinct
classes.

• Kennedy Space Centre (KSC) : The Kennedy Space Center dataset involves the
classification of wetland vegetation at the Kennedy Space Center in Florida through
the utilization of hyperspectral imagery, containing 13 classes.
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Table 2.6: Sample Distribution for SA

No Class Samples
1 Brocoli green weeds 1 2009
2 Brocoli green weeds 2 3726
3 Fallow 1976
4 Fallow rough plow 1394
5 Fallow smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes untrained 11271
9 Soil vinyard develop 6203
10 Corn senesced green weeds 3278
11 Lettuce romaine 4wk 1068
12 Lettuce romaine 5wk 1927
13 Lettuce romaine 6wk 916
14 Lettuce romaine 7wk 1070
15 Vinyard untrained 7268
16 Vinyard vertical trellis 1807

Table 2.7: Sample Distribution for SA-A

No Class Samples
1 Brocoli green weeds 1 391
2 Corn senesced green weeds 1343
3 Lettuce romaine 4wk 616
4 Lettuce romaine 5wk 1525
5 Lettuce romaine 6wk 674
6 Lettuce romaine 7wk 799

Table 2.8: Distribution for KSC

No Class Samples
1 Scrub 347
2 Willow Swamp 243
3 CP Hammock 256
4 Slash Pine 252
5 Fallow smooth 2678
6 Oak 161
7 Hardwood 229
8 Swamp 105
9 Graminoid Marsh 390

10 Spartina Marsh 520
11 Cattail Marsh 404
12 Salt Marsh 419
13 Mud Flash 503
14 Water 927
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2.1.4 Performance Metrics

It has been found in our analysis of the existing works that Overall Accuracy (OA), Aver-
age Accuracy (Average Accuracy (AA)), and Kappa Coefficient (Kappa Coefficient (KC))
are the three commonly used evaluation metrics to evaluate and comparatively analyze the
performance of the proposed model with the state-of-the-art models. These metrics are
described in details as below :

• Overall Accuracy: The OA metric quantifies the percentage of accurately classified
pixels within the complete HSI dataset, such that OA = C′

C
, where C ′ is the total

number of samples classified correctly. Therefore, the OA offers a comprehensive
evaluation of the model’s classification performance across all the classes and can be
computed using the equation 2.1 where True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) represent the abbreviations for true positives,
true negatives, false positives, and false negatives, respectively.

OA =
(TP + TN)

(TP + FP + TN + FN)
(2.1)

• Average Accuracy: The AA, also known as mean class accuracy, determines the
average classification accuracy for each specific class within the HSI dataset. By
calculating the average accuracy per class, this metric offers valuable insights into
the model’s performance at a class-specific level, enabling a more detailed evaluation
of its classification capabilities. AA can be computed using equation 2.2, detailed as
follows:

AA =
A1 +A2 +A3 + . . .+An

n
(2.2)

• Kappa Coffecient: The KC, also known as Cohen’s kappa, is a statistical metric
used to evaluate the agreement between predicted and true class labels while con-
sidering the possibility of the agreement by chance alone. This measure takes into
account both the classification accuracy and the potential agreement that could occur
randomly and can be computed using equation Equation 2.3, given below.

KC =
OA− Pc

1− Pc
(2.3)

where Pc denotes the speculative probability of possibility and can be calculated using
Equation 2.4:

Pc =
(TP + FP )(TP + FN) + (FN + TN)(FP + TN))

(TP + FP + TN + FN)2
(2.4)
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These metrics were used to evaluate the performance of various deep learning models
on benchmark HSI datasets. The performance evaluation of various studies is presented in
the next section 2.2.

2.2 Overview of Deep Learning Approaches for HSIC

Deep learning algorithms have been at the forefront of the evolution of HSIC, addressing
the need for more accurate and efficient methods [62]. Therefore, this section delves into
a detailed examination of the diverse deep-learning approaches that have emerged in the
pursuit of more robust and precise HSIC outcomes. Figure 2.3 depicts the data showing the
number of articles published corresponding to different types of DL models and the year
when the study was published.

0

5

10

15

20

25

30

2018 2019 2020 2021 2022

CNN AE GBL EN GAN LSTM

AT ML AL TN FSL Linear (CNN)

Linear (AE) Linear (GBL) Linear (EN) Linear (GAN) Linear (LSTM)

Figure 2.3: Trend Analysis for publications respective to DL models and corresponding
year

2.2.1 Criteria for Selection

The research studies were selected based on various criteria:

• Performance on benchmark datasets: This chapter highights the widespread use of
benchmark HSI datasets such as IP, PU, SA, KSC for evaluating model performance.
Works that demonstrate competitive or leading performance on one or more of these
datasets were selected for comparison, as they represent relevant benchmarks for the
proposed models.

• Methodological relevance: Works that employ similar DL architectures or tech-
niques as the proposed models, such as CNN, AE, GCN, or GAN could be chosen
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for comparison. This methodological alignment facilitates a meaningful analysis of
the strengths, weaknesses, and unique contributions of the proposed models relative
to existing approaches.

• Recency and impact: More recent works, particularly those published in high-
impact journals or conferences in the field of remote sensing or HSI analysis, are
prioritized for comparison. These works represent the cutting-edge developments and
state-of-the-art approaches in the field, providing a relevant benchmark for assessing
the contributions of the proposed models.

• Diversity of approaches: To provide a comprehensive comparison, works repre-
senting diverse methodological approaches (e.g., supervised, semi-supervised, unsu-
pervised) or focusing on different aspects of HSIC (e.g., data augmentation, transfer
learning, attention mechanisms) are selected. This diversity ensures a well-rounded
analysis and highlights the unique strengths and contributions of the proposed models
in relation to various existing approaches.

By considering a combination of these criteria, the selection of state-of-the-art works
for comparison are tailored to effectively position the proposed models within the current
research landscape, highlight their novelty, and demonstrate their potential contributions to
advancing the field of HSIC.

2.2.2 Review of studies based on CNN

The investigation into Convolutional Neural Networks (CNN) within the domain of Hyper-
spectral Image (HSI) stratification has spawned a multitude of innovative methodologies.
This section presents a meticulous literature review that scrutinizes the diverse spectrum
of deep learning models having CNN as the base model. The analysis touches upon the
additional components integrated to augment model performance, the datasets employed,
achieved accuracies in terms of OA, AA, KC, and the distinctive contributions and limita-
tions of each study.

Tables 2.9, 2.10, 2.11, and 2.12 serve as compendiums of case studies leveraging CNN
as the foundational model for classification, elucidating proposed enhancements, and doc-
umenting efforts to improve classification accuracy. Each table provides insights into the
strengths and limitations of the respective studies. Evaluation metrics, including OA, AA,
KC form the basis for assessing the efficacy of each proposed model on specific datasets.
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Table 2.9: Articles employing CNN as the base model for classification (Year: 2022)

S.
No Ref Model

Addition
Training
Ratio

Datasets and Results Contributions Shortcomings

1
[63] CNN

3-D Gabor Filters
PU: 0.20
HU: 0.20

Pavia U: OA = 94.78;
AA = 96.42; KC =
93; Houston U: OA =
74.37; AA = 87.15; KA
= 69

1. 3-D Gabor wavelet is
better than 2D for fea-
ture extraction. 2. 3-
D Gabor Filters reduce
parameters, making the
network lightweight.

Parameters and time
can be further re-
duced for optimiza-
tion.

2
[64] CNN

3-D-ANAS: 3-D
Asymmetric Neu-
ral Architecture
Search

PU:0.006
PC: 0.04

Pavia U: OA = 97.92;
AA = 98.62; KC =
97.25; Pavia C: OA =
99.5; AA = 98.74; KC =
99.3

1. Resolved patch pixel
classification dupli-
cation. 2. Improved
interference speed.

1. Augmentation
strategy used for
increased accuracy.
2. More effective
for datasets with
additional spectral
bands and categories.

3
[65] CNN

Incremental PCA
PU: 0.6
IP: 0.6
SA: 0.6

Pavia U: OA = 98.4;
AA = 97.89; KC =
97.89; Indian Pines:
OA = 97.75; AA =
94.54; KC = 97.54; Sali-
nas: OA = 98.06, AA =
98.8; KC = 97.85

1. Better accuracy.
2. Lesser computational
and convergence time.
3. Use of incremental
PCA to reduce band du-
plicity.

Too high number
of training samples
taken.

4
[66] CNN

Depthwise Convo-
lutions

PU: 0.01
HU: 0.2

Pavia U: OA = 97.78;
AA = 95.81; KC =
96.79; Houston U: OA
= 87.17; AA = 88.94;
KC = 86.09

1. Alternative to spa-
tial convolutions. 2.
Lightweight network
with fewer parameters.

Longer processing
time for convergence.
Better classification
with dimensionality
reduction methods.

5
[67] CNN

Superpixel Seg-
mentation or
Undirected Graph
Clustering

PU: 0.01
IP: 0.07
SA:0.001
HU: 0.05

Pavia U: OA = 99.86;
AA = 99.77; KC =
99.64; Indian Pines:
OA = 98.13; AA =
99.01; KC = 97.85;
Salinas: OA: 99.31,
AA = 99.27; KC =
99.23; Houston U: OA
= 97.52; AA = 97.89;
KC = 97.32

1. Accurate classifi-
cation of misclassified
classes. 2. Small train-
ing time due to small
patch size.

1. Relies on gener-
ated features for clas-
sification. 2. Time
cost increases with
dataset size.

6
[68] CNN

Step Activation
Quantization
Acceleration

PC: 0.24
SA: 0.06

Pavia C: OA = 99.12;
AA = 97.84; Salinas:
OA = 93.32; AA = 96.02

1. Computationally less
exhaustive. 2. Use
of quantization bits for
balanced accuracy and
speed.

Classification ac-
curacy could be
improved.

7
[69] CNN

Adaptive Hash
Attention Mech-
anism and a
Lower Triangular
Network

IP: 0.05
PU: 0.05
BOT:0.05

Indian Pines: OA =
97.86; AA = 97.89, KC
= 97.56; Pavia U: OA =
99.64; AA = 99.51; KC
= 99.52; Salinas: OA =
99.97; AA = 99.95; KC
= 99.96; Botswana: OA
= 98.9; AA = 98.86; KC
= 98.8

1. Works with imbal-
anced datasets. 2. Skip
connections aid feature
reuse and discrimina-
tion. 3. Reduces overfit-
ting with band padding
and dropout.

Use of joint attention
mechanism for spec-
tral and spatial atten-
tion.
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8
[70] CNN

Spatial Pyramid
Pooling

PU: 0.004
SA: 0.005
HU:0.002

Pavia U: OA = 95.6;
AA = 94.5; KC =
94.2; Salinas: OA =
99.7; AA = 99.7; KC =
99.7; Houston Univer-
sity: OA = 89.2; AA =
89.6; KC = 88.3;

1. Works well with lim-
ited samples. 2. Less
time in training and ef-
ficient inference.

Spatial constraint
method used for HIS
image classification.

9
[71] CNN

Feature Extractor

PU:0.001
IP:0.007
SA:0.001
KSC:0.01

Pavia U: OA = 82.9;
AA = 92.7; KC =
78.7; Indian Pines: OA
=75.8; AA = 85.9; KC
= 72.7; Salinas: OA =
94.8; AA = 97; KC =
94.2; KSC: OA = 97.3;
AA = 96.3; KC = 97

1. Effective for im-
balanced class distribu-
tions. 2. Alleviates
overfitting. 3. Uses
ResSE for feature ex-
traction. 4. Reduces
bias and misclassifica-
tion.

PLM alone cannot
handle imbalanced
class distribution.

10
[72] CNN

Attention Mech-
anism + Graph
Convolutional
Network

SA:0.01
PU:0.01

Salinas: OA = 97.34;
AA = 97.22; KC =
97.04; Pavia U: OA =
92.23; AA = 83.21; KC
= 89.65

1. Addresses accu-
racy with less training
data. 2. Better Feature
Extraction for improved
performance.

1. Attention mod-
ule could be more
targeted. 2. Syn-
thetic data addition
for small dataset.
3. Cross-domain
training/testing could
be explored.

11
[73] CNN

Feature Extractor,
Feature Fusion

PU:0.002
IP:0.015
KSC:0.024

Pavia U: OA = 98.93;
AA = 99.24; KC =
98.59; Indian Pines:
OA = 96.3; AA = 97.93;
KC = 95.68; KSC: OA
= 97.26; AA = 95.6; KC
= 96.71

1. Improves classifi-
cation performance by
adding unsupervised
samples to a few su-
pervised samples. 2.
Shared Feature Ex-
tractor. 3. Good for
a limited and noisy
sample problem.

1. Moderate Run
Time. 2. Unlabeled
data played an impor-
tant role in improving
the classification per-
formance. 3. Ac-
curacy decreases with
a high increase in
cluster numbers or a
high increase in spa-
tial size.

12
[74] CNN

PCA + Augmenta-
tion

IP: 0.01
PU: 0.001

Indian Pines: OA =
83.68; AA = 81.08; KC
= 81.25; Pavia U: OA =
98.25; AA = 96.98; KC
= 97.68

1. Reduces computa-
tional complexity with
lesser processing time.
2. PCA and Aug-
mentation to deal with
a small dataset. 3.
Use of L2 regularization
and dropout to alleviate
overfitting.

1. Accuracy for
Indian Pines could
be increased. 2.
Processing time im-
proved after incor-
porating 2xNVIDIA
GeForce RTX 2080
Ti, NVLink.

13
[75] CNN

Attention Mecha-
nism

PU:0.02
IP:0.10
SA:0.02

Pavia U: OA = 97.58;
AA = 98.53; KC =
96.79; Indian Pines:
OA = 96.55; AA =
96.62; KC = 96.07; Sali-
nas: OA = 96.91; AA =
98.73; KC = 96.55

1. Alleviates the
HSI rotation problem,
Good classification
performance. 2. Spec-
tral attention module
suppresses redundant
bands. 3. Cross Spatial
Attention generates
feature rotation inde-
pendent.

Shows poor perfor-
mance near the edges
of the Indian Pines
dataset.
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14
[76] CNN

Attention Mecha-
nism + Residual
Network

SA:0.04
PU:0.06
IP:0.11

Salinas: OA = 91.26;
AA = 94.22; KC = 88.5;
Pavia U: OA = 93.33;
AA = 89.61; KC = 92.3;
Indian Pines: OA =
82.38; AA = 80.35; KC
= 79.1

1. Performs pixel-to-
pixel classification with
attention modules. 2.
Ability to discriminate
features better. 3. Sta-
ble Classification per-
formance.

Still has the scope of
improving classifica-
tion accuracy.

15
[77] CNN

EMP + EPF ex-
tended morpholog-
ical profiles, Edge
preserving filtering

HU:0.10
PU: 0.10

Houston U: OA =
95.58; AA = 95.48; KC
= 95.2; Pavia U: OA =
96.15; AA = 97.14; KC
= 94.9

Use of mutual teach-
ing and controlled ran-
dom sampling to im-
prove the classification
performance.

Takes a long time be-
cause of multiple iter-
ations.

16
[78] CNN

Feature Fusion +
Attention

IP: 0.1
PU: 0.1
KSC: 0.1

Indian Pines: OA =
85.76; AA = 81.08; KC
= 83.76; Pavia U: OA
= 94.88; AA = 93.02;
KC = 93.21; KSC: OA
= 91.76; AA = 87.56;
KC = 90.82

1. Attention module
to extract informative
features. 2. Ultra-
lightweight attention
module to further
enhance the feature
extraction.

1. CNN misclassify-
ing some classes. 2.
Overall time costlier.

17
[79] CNN

Spectral and Spa-
tial Feature Extrac-
tion

KSC: 0.05
PU: 0.004
SA: 0.06

KSC: OA = 91.6; AA =
89.92; KC = 91; Pavia
U: OA = 90.77; AA =
94.05; KC = 88; Sali-
nas: OA = 88.8; AA =
93.52; KC = 88

1. Addresses the prob-
lems of noisy labels. 2.
Reduces confusing fea-
tures and increases clas-
sification of misclassi-
fied labels; works well
with corrupted datasets
too. 3. Robust Loss
function for better con-
vergence.

Needs a few per-
fect samples for the
proposed network to
work.

18
[80] CNN

Feature Trans-
former, Attentive
Transformer

IP: 0.10
PU: 0.04
SA: 0.06

Indian Pines: OA =
96.36; AA = 97.77; KC
= 96; Pavia U: OA =
97.86; AA =96.28; KC
= 96; Salinas: OA =
98.36; AA = 98.93; KC
= 98

Applies unsupervised
pre-training and super-
vised classification.

Higher Computa-
tional complexity.

19
[81] CNN

Attention Mecha-
nism + Features
Grouped Network
(FGN)

IP: 0.10
PU: 0.05
KSC: 0.10

Indian Pines: OA =
99.79; AA = 99.77; KC
= 99.76; Pavia U: OA
= 99.96; AA = 99.97;
KC = 99.94; KSC: OA
= 99.96; AA = 99.94;
KC = 99.96

1. Attention mechanism
to generate the discrimi-
native features. 2. Fea-
ture Group Network to
group the features se-
quentially according to
spectral dimension. 3.
Good classification per-
formance.

Does not deal with
the sample scarcity
problem.

20
[82] CNN

Attention Mecha-
nism

PU: 0.01
IP: 0.05
PC: 0.02

Pavia U: OA = 97.4; KC
= 96.5; Indian Pines:
OA = 97.2; KC = 96.9;
Pavia C: OA = 99.7; KC
= 99.4

1. Identifies the fea-
ture associations with
the homogeneous mask
to reduce heavy com-
putations. 2. Homo-
geneous Attention Net-
work to extract discrim-
inative features in mixed
pixels.

Causes heavy com-
putational load with-
out the homogeneous
mask.
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21
[83] CNN

Attention Mecha-
nism + Multiclass
Focal Loss +
Depth-wise Con-
volutions

IP: 0.05
PU: 0.01
SA: 0.01

Indian Pines: OA =
96.51; AA = 93.3; KC =
96.02;
Pavia U: OA = 96.48;
AA = 94.25; KC =
95.34;
Salinas: OA = 97.18;
AA = 98.44; KC = 96.87

1. Use of spatial-
spectral attention mech-
anism with depth-wise
separable convolutions
to make the network
lightweight
2. Decreased complex-
ity and high classifica-
tion accuracy

1. More focused on
spatial feature extrac-
tion, the Use of spec-
tral information could
enhance the perfor-
mance
2. Attention block
works better when
the number of sam-
ples is severely lim-
ited.

22
[84] CNN

3-D Squeeze and-
Excitation residual
(3DSERes) blocks

IP: 0.07
PU: 0.10

Indian Pines: OA =
93.99; AA = 94.55; KC
= 93.09;
Pavia U: OA = 91.48;
AA = 93.97; KSC =
88.81

1. Constructs multi-
dimensional samples in
nine directions to allevi-
ate the misclassification
problem
2. Use of 3D Squeeze
and Excitation blocks
to explore spectral and
spatial information for
extracting discrimina-
tive features

1. Due to multi-
direction patches
involved, it takes a
long computational
time with satisfac-
tory classification
performance

23
[85] CNN

Capsule Networks
+ Attention Mech-
anism

KSC: 0.05
IP: 0.10
PU: 0.05

KSC: OA = 97.73; AA
= 95.71; KC = 97.47;
Indian Pines: OA =
92.27; AA = 82.4; KC =
91.21;
Pavia U: OA = 95.69;
AA = 94.32; KC =
94.19;
Houston University:
OA = 89.05; AA =
90.78; KC = 88.11

1. Better feature dis-
crimination
2. Reduced computa-
tional load with primary
capsule network
3. Reliable network
with a lesser number of
parameters with a capac-
ity to work with limited
data

1. Does not work
well for imbalanced
class distribution

24
[86] CNN

Dilated Con-
volutions +
Self-Supervised
Contextual Feature
Learning

IP: 0.008
SA: 0.001
PU:
0.001HU:
0.005

Indian Pines: OA =
82.69; AA = 88.75; KC
= 80.37;
Salinas: OA = 94.73;
AA = 97.08; KC =
94.14;
Pavia U: OA = 85.06;
AA = 83.48; KC = 79.8;
Houston U: OA =
80.89; AA = 83.56; KC
= 79.39

1. Fewer floating-point
operations per second
2. Faster computational
speed
3. The proposed feature
extraction network is
made up of multiple
plug-and-play dilated
convolutional blocks

1. Increasing the
number of multiscale
patches increases the
overall accuracy with
an increase in float-
ing point operations,
making the network
heavier

25
[87] CNN

Spatial Spec-
tral Similarity
Measurement
+ Knowledge
Distillation

IP: 0.02
PU: 0.002

Indian Pines: OA =
84.3; AA = 87.8; KC =
79.9;
Pavia U: OA = 86.8;
AA = 88.8; KC = 83.4

1. Similarity measure-
ment using spectral and
spatial distance with
3D transformation and
adaptive soft label that
labels the unlabeled
samples
2. Takes similar time
to run as the state-of-
the-art models under the
same environment

1. Works well with
limited samples but
still has much scope
for improvement in
improving the classi-
fication accuracy

24



26
[88] CNN

Residual Network
+ Stochastic Depth
Training

IP: 0.20
PU: 0.10
SA: 0.10

Indian Pines: OA =
75.11; AA = 80.94; KC
= 71.56;
Pavia U: OA = 91.56;
AA = 93.13; KC =
89.02;
Salinas: OA = 92.53;
AA = 95.96; KC = 91.67

1. Effective feature ex-
traction using spectral
and spatial modules
2. Stochastic depth
training to improve the
efficiency of training

1. Time Costlier
2. Low classification
accuracy for the In-
dian Pines dataset

Table 2.10: Articles employing CNN as the base model for classification (Year: 2021)

S.
No Ref Model

Addition
Training
Ratio

Datasets and Results Contributions Shortcomings

27
[89] CNN

Residual Learning
+ Involution block

PU: 0.10
HU: 0.18
SA: 0.01

Pavia U: OA = 96.4;
AA = 95.8; KC =
95.2; Houston U: OA
= 86.5; AA = 88.6; KC
= 85.4; Salinas: OA =
96.7; AA = 98.6; KC =
96.3

1. Able to capture
long-range spatial inter-
actions
2. Good classification
accuracy (3.5% higher)
with lesser parameters
(3.23×) with the use of
involution block in com-
parison to nonuse of in-
volution block

1. Much room for im-
provement in classi-
fication accuracy, es-
pecially for Hyrank
and Houston Univer-
sity dataset

28
[90] CNN

Attention Mecha-
nism

IP: 0.03
KSC: 0.03
SA: 0.05

Indian Pines: OA =
97.37; AA = 97.13; KC
= 97; KSC: OA = 98.64;
AA = 97.74; KC =
98.48; Salinas: OA =
98.35; AA = 98.87; KC
= 98.17

1. Feature extraction
module to extract dis-
criminative features
2. Suitable for small
sample training
3. Spectral and spatial
attention module help in
increasing the classifica-
tion performance.

1. High computa-
tional efficiency
2. Ensuring Time ef-
ficiency

29
[91] CNN

Spatial–Spectral
Schroedinger
eigenmaps +
Dual Channel
Convolution

IP: 0.007
PU: 0.001
SA: 0.001

Indian Pines: OA =
74.78; AA = 84.85; KC
= 72; Pavia U: OA =
82.3; AA = 87.27; KC
= 78; Salinas: OA =
88.61; AA = 93.77; KC
= 87

1. Spatial–Spectral
Schroedinger eigen-
maps to reduce the
parameters
2. Dual Channel Convo-
lution and Bi channel fu-
sion to extract discrimi-
native features
3. Works well with
smaller datasets

1. Scope of improv-
ing classification per-
formance

30
[92] CNN

Wide sliding win-
dow and subsam-
pling network

PU: 0.20
KSC: 0.20
SA: 0.20

Pavia U: OA = 99.19;
AA = 98.51; KC =
98.93; KSC: OA =
99.87; AA = 99.71; KC
= 99.86; Salinas: OA =
99.67; AA = 99.63; KC
= 99.63

1. Wide sliding win-
dows help to learn the
higher level discrimina-
tive features
2. Alleviates overfitting
and reduces the compu-
tational load
3. Great classification
accuracy

1. Identifying the
ideal patch size is a
challenge

25



31
[93] CNN

Convolutional En-
coder (CAE)

IP: 0.10
PU: 0.10

Indian Pines: OA =
96.17; AA = 95.29; KC
= 95.63;
Pavia U: OA = 98.65;
AA = 98.01; KC = 98.21

1. The proposed 3D
CAE is piled up with
convolutional and de-
convolutional layers that
help in feature extrac-
tion
2. Training can be done
in an unsupervised man-
ner

1. Causes misclassifi-
cation in a few classes
2. Encoded lay-
ers slightly affect the
value of OA and K

32
[94] CNN

Adaptive Rout-
ing + Capsule
Network with
powered activation
regularization

PU: 0.27
SA: 0.30

Pavia U : OA = 99.51;
KC = 99; Salinas: OS
=94.52; KC = 93

1. Powered activation
regularization to extract
discriminative features
2. Alleviates overfitting
and gradient vanishing
3. Significantly reduced
time in comparison to
Capsule network

1. Slight decrease in
OA with deeper ar-
chitecture
2. Higher compu-
tational efficiency in
comparison to cap-
sule network

33
[95] CNN

Attention Mecha-
nism

IP: 0.10
PU: 0.02
SA: 0.02

Indian Pines: OA =
98.1; AA = 96.16; KC
=97.84;
Pavia U: OA = 98.97;
AA = 98.32; KC =
97.64;
Salinas: OA = 98.18;
AA = 98.76; KC = 97.97

1. Center attention mod-
ule to extract discrimi-
native features
2. Reduced parameters
in the network
3. Increased computa-
tional efficiency

1. Misclassified sam-
ples, especially at the
boundary

34
[96] CNN

Particle Swarm
Optimization +
SuperNet

PU: 0.004
SA: 0.004
IP: 0.01
KSC: 0.04

Pavia U : OA =93.36;
AA = 88.39; KC =
92.32; Salinas: OA =
96.64; AA = 97.32; KC
= 96.23; Indian Pines
: OA = 89.32; AA =
74.42; KC =87.58;
KSC : OA = 97.56; AA
= 96.41; KC = 97.28

1. Use of particle swarm
optimization to obtain
the optimal architecture
and iterations
2. Reduced search time
with Super Net
3. Better convergence
with reduced complex-
ity in comparison to
state-of-the-art hand-
crafted methods

1. Classification ac-
curacy can be im-
proved for the Indian
Pines dataset

35
[52] CNN

Capsule Net-
work + Octave
convolution

DFC13:
0.01
DFC14:
0.01

GRSS DFC 2013 : OA
= 99.59; AA = 99.62;
KC = 99.56; GRSS
DFC 2014 : OA =
99.37; AA = 95; KC =
96.7

1. Octave convolu-
tion to reduce the larger
number of parameters in
the capsule network and
high memory resource
consumption involved
2. Enhanced feature dis-
crimination capability
3. Alleviates overfitting

1. PCA did not af-
fect the performance
of the method
2. It could have been
applied to bench-
mark hyperspectral
datasets too

36
[49] CNN

Siamese Network
+ Extended Mor-
phological Profiles
+ Spectral Spatial
Fusion

PU: 0.001
KSC: 0.01

Pavia U : OA =
85.81; AA = 85.44; KC
= 81.36; KSC : OA =
90.8; AA = 89.63; KC =
89.75

1. Dual path-based pro-
cessing with similarity
learning
2. Adversarial train-
ing and augmentation
for improving the classi-
fication performance

1. Average Accuracy
of the Pavia U dataset
is slightly lower

26



37
[37] CNN

Transfer Learning
+ Super pixel
Pooling

IP: 0.03
PU: 0.004
SA: 0.006

Indian Pines : OA =
94.45; AA = 96.43; KC
= 93.44;
Pavia U : OA = 93.18;
AA = 93.78; KC =
92.36; Salinas : OA =
95.99; AA = 95.97; KC
= 95.46

1. Superpixel pooling to
deal with the problem of
limited samples
2. Upsampling and
Down sampling to help
preserve the spatial and
spectral features
3. Transfer Learn-
ing introduced in the
model shortens the train-
ing time.

1. Misclassification
of some classes like
Trees and Shadows

38
[97] CNN

Attention Mecha-
nism + Residual
Network

PU: 0.10
KSC: 0.20
IP: 0.20

Pavia U : OA = 99.82;
AA = 99.59; KC =
99.71;
KSC : OA = 99.81; AA
= 99.74; KC = 99.52;
Indian Pines : OA =
99.37; AA = 99.45; KC
=99.61

1. Smooth and fit classi-
fication, no salt and pep-
per noise
2. Fast convergence
3. Good classification
performance

1. Tuning the learn-
ing rate parameter has
a low impact on the
Pavia U dataset and
more impact on the
Indian Pines dataset
2. Misclassifica-
tion in Indian Pines
dataset for a few
classes

39
[98] CNN

Two streams
Residual Network

IP: 0.10
PU: 0.10
KSC: 0.10

Indian Pines : OA =
98.7; AA = 98.71; KC =
98.52;
Pavia U : OA = 99.86;
AA = 99.77; KC =
99.82; KSC : OA =
99.48; AA = 99.04; KC
= 99.42

1. Reduced parame-
ters with skip connec-
tions added to the net-
work
2. Works well even for
imbalanced class distri-
bution

1. Second best over-
all accuracy in com-
parison to the state-
of-the-art models
2. Deeper network
leads to overfitting

40
[99] CNN

Dilated convolu-
tions

IP: 0.10
PU: 0.01
SA: 0.01

Indian Pines : OA =
98.95; AA = 98.49; KC
= 98.81;
Pavia U : OA = 99.16,
AA = 98.72, KC =
98.89; Salinas : OA =
99.41; AA = 99.45; KC
= 99.34

1. Dilated Convolution
kernels to make the net-
work lightweight
2. Efficient feature
extraction and allevia-
tion of overfitting using
a multiscale residual
network to generate in-
formative features with
lower computational
cost

1. Determining the
perfect spatial size to
increase the classifi-
cation performance

41
[100] CNN

Attention Mecha-
nism + Residual
Network

PC: 0.008
HU: 0.17

Pavia C : OA = 99.8;
AA = 99.29; KC =
99.72; Houston U : OA
= 83.61; AA = 79.1; KC
= 79.27

1. Extracting multiscale
features at a granular
level, Attention network
to further improve dis-
criminability
2. Double branch struc-
ture with different con-
volutional kernels

1. Low Accuracy
achieved for the
Houston U dataset

42
[101] CNN

Mixed Link
Blocks + Dual-
Path Architecture

IP: 0.07
PU: 0.09
HU: 0.2

Indian Pines : OA =
97.2; AA = 98.32; KC =
96.79;
Pavia U : OA = 96.12;
AA = 95.9; KC = 94.78;
Houston U : OA =
86.43; AA = 88.54; KC
= 85.32

1. Feature usage and
feature identification
that helps in reduc-
ing the time taken
in duplicate features
learning
2. Improved flow of
information with shifted
additions

1. Low accuracy
achieved for the
Houston U dataset
2. More parameters
involved in the net-
work compared to the
state-of-the-art mod-
els

27



43
[102] CNN

Ghost Module +
Ghost Bottleneck

IP: 0.03
PU: 0.05
HU: 0.10

Indian Pines : OA =
88.31; AA = 78.77; KC
= 86.7;
Pavia U : OA = 92.83;
AA = 91.37; KC =
90.2; Houston U : OA =
87.87; AA = 89.35; KC
= 86.84

1. A less computer-
intensive and memory
demanding network in
comparison to tradi-
tional CNN
2. Computationally
efficient classification
method

1. Classification ac-
curacy could be bet-
ter for Indian Pines
and Houston Univer-
sity dataset
2. Takes more epochs

44
[103] CNN

Similarity Learn-
ing + Maximum
Margin Ranking
Loss

IP: 0.07
SA: 0.001
PU: 0.001

Indian Pines : OA =
96.02; AA = 94.49; KC
=95.46;
Salinas : OA = 98.27;
AA = 98.67; KC =
98.08; Pavia U : OA =
99.13; AA = 98.75, KC
= 98.85

1. Deep similarity
network handles the
scarcely available
samples
2. To gain hold of
discriminative fea-
tures, maximum margin
ranking loss and
cross-entropy loss are
introduced
3. Two branch networks
to enhance the classifi-
cation

1. Misclassification
of a few classes in the
Indian Pines dataset
2. Takes more train-
ing time than tradi-
tional CNN

45
[104] CNN

Receptive Field +
Selective Kernel
Networks

IP: 0.03
PU: 0.03
HU: 0.03

Indian Pines : OA =
81.73; AA = 71.4; KC =
79.2;
Pavia U : OA = 90.66;
AA =88.09; KC =
87.34; Houston U : OA
= 88.28; AA = 88.87;
KC = 87.28

1. A non-linear at-
tention mechanism in-
cluded that combines in-
formation
2. Better connected
regions in output with
clear boundaries

1. Classification ac-
curacy can be im-
proved

46
[105] CNN

Residual Network
+ Dilated Convo-
lutions + Multi-
ple Spectral Reso-
lution

BOT: 0.10
IP: 0.10
PU: 0.10

Botswana : OA = 98.8;
AA= 98.89; KC =98.7;
Indian Pines : OA =
98.1; AA = 96.4; KC =
97.84;
Pavia U : OA = 99.96;
AA = 99.13; KC =99.96

1. More dimension paid
to the spectral module
2. Better spectral in-
formation extraction and
analysis
3. Better performance
under small patch size

1. Lack of spectral in-
formation
2. Incorporating
CNN gives second-
best results for a few
datasets
3. Insensitive to the
change in patch size

Table 2.11: Articles employing CNN as the base model for classification (Year: 2020)

S.
No Ref Model

Addition
Training
Ratio

Datasets and Results Contributions Shortcomings

47
[30] CNN

Siamese Network
+ Spatial-Spectral
Pyramid Pooling +
Transfer learning

IP: 0.19
PU: 0.04
SA: 0.05

Indian Pines : OA =
99.17; KC = 99; Pavia
U : OA = 99.52; KC
= 99.3; Salinas : OA =
98.15; KC = 97.9

1. Extraction of fixed-
length multi-level 3D
features using pyramid
pooling
2. Siamese network
with the capability of
exploring both spectral
and spatial features with
varying 3D samples or
scales
3. Use of transfer learn-
ing across datasets

1. The use of transfer
learning is challeng-
ing when the dataset
trained is high resolu-
tion and the test is a
low resolution
2. Time costlier
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48
[106] CNN

Cubic Convolution
IP: 0.16
PU: 0.04
SA: 0.06

Indian Pines : OA =
99.4; AA = 99.34; KC =
99.27;
Pavia U : OA = 99.88;
AA = 99.7; KC =
99.53; Salinas: OA =
98.93; AA = 99.4; KC =
98.8; Botswana : OA =
99.67; AA = 99.71; KC
= 99.63

1. PCA to reduce di-
mensions and 1DCNN
to remove redundant
bands
2. Convolutions are gen-
erated on three different
sides for more flexibility
in updating parameters
3. Smaller kernel size
than 3DCNN for good
classification accuracy
and less training time

1. Noise remains at
the edges
2. Convergence
speed can be acceler-
ated

49
[107] CNN

Attention mecha-
nism + Squeeze-
and-Excitation
Network (SEN) +
Residual Network

PU: 0.1
IP: 0.20
KSC: 0.20

Pavia U : OA
= 99.89; AA = 99.84;
KC = 99.86; Indian
Pines : OA = 99.72;
AA = 99.56; KC =
99.69; KSC: OA =
99.72; AA = 99.56; KC
= 99.69

1. Residual Network to
deal with the decreas-
ing accuracy and SEN to
expose the dependencies
within spectral informa-
tion
2. Feature fusion to join
the feature cubes

1. Computationally
expensive

50
[108] CNN

Dense Network +
Early Exit Strat-
egy + Adaptive
Spectral unmixing

IP: 0.05
SA: 0.02
KSC: 0.01
PU: 0.01

Indian Pines : OA =
96.34; AA =96.56; KC
=95.83; Salinas : OA =
98.92; AA = 99.27; KC
= 98.8; KSC : OA =
92.82; AA = 89.08; KC
= 93.09; Pavia U : OA =
98.64; AA = 97.97; KC
= 98.2

1. An end-to-end net-
work based on CNN and
an early exit strategy for
reduction in resources
2. Enhanced feature
learning capability with
fewer 3D convolutions
and 2D convolutions,
obtaining the feature
maps

1. Did not per-
form well on Houston
Dataset due to imbal-
anced class distribu-
tion
2. Augmentation or
adversarial networks
can be used to deal
with the problem of
limited data.

51
[109] CNN

Attention mech-
anism + Octave
Convolution

IP: 0.3
PU: 0.4

Indian Pines : OA =
99.68; AA = 99.45; KC
= 99.62; Pavia U : OA =
99.76; AA = 99.66; KC
= 99.67

1. Octave Convolution
to capture diverse fea-
tures and reduce redun-
dant bands
2. Attention network
to explore discrimina-
tive features

1. Use of semi-
supervised training to
work on the problem
of limited datasets

52
[110] CNN

Multilayer Fusion
+ Spatial attention
mechanism

IP: 0.08
PU: 0.08
SA: 0.08
HU: 0.08

Indian Pines : OA =
97.38; AA = 98.42; KC
= 96.86; Pavia U : OA =
99.17; AA = 99.33; KC
= 98.89; Salinas : OA
= 98.55; AA = 99.41;
KC = 98.38; Houston
U : OA = 87.89; AA =
92.23; KC = 86.04

1. Spectral and Spatial
feature maps explored
with 3D and 2D CNN
2. Multilayer fusion to
use complementary fea-
tures
3. No misclassifica-
tion of classes identified
wrong by other state-of-
the-art networks

1. Consumes mod-
erate training time on
Pavia U dataset but
more on Salinas and
Houston University
2. More network pa-
rameters and floating
point operations in-
volved
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53
[111] CNN

Squeeze-and Exci-
tation (SE)

IP: 0.06
PU: 0.01
SA: 0.01

Indian Pines : OA =
98.09; AA = 96.75; KC
= 96.26; Pavia U : OA =
99.05; AA = 98.82; KC
= 98.43; Salinas : OA =
99.63; AA = 99.09; KC
= 98.99

1. An end-to-end net-
work that better extracts
small patches in spec-
tral, local, and global
spatial information par-
allelly based on inter-
channel connections and
SE.
2. Combination of shal-
low and deep networks
to find the optimum con-
tent
3. Computationally effi-
cient

1. Overall accu-
racy decreases as the
network gets deeper,
causing overfitting

54
[112] CNN

Dilated Convolu-
tion

IP: 0.10
PU: 0.05

Indian Pines : OA =
97.61; AA = 96.31; KC
= 97.27; Pavia U : OA =
98.43; AA = 98.17; KC
= 97.9

1. Dilated convolution
to overcome the chal-
lenge of resolution loss
2. An end-to-end net-
work

1. Removing convo-
lutional layers may
lack representative
ability, and increas-
ing the number of
neurons may cause
overfitting

55
[113] CNN

Residual network
+ Dense connec-
tions

IP: 0.15
PU: 0.15
SA: 0.15
PC: 0.15

Indian Pines : OA =
98.74; AA = 98.73; KC
= 98.25; Pavia U : OA =
99.62; AA = 99.53; KC
= 99.5; Salinas : OA =
99.69; AA = 99.61; KC
= 99.66; Pavia C : OA =
99.94; AA = 99.83; KC
= 99.89

1. Dual branch resid-
ual network to learn the
spectral and spatial fea-
tures
2. Dense connections
between neurons for bet-
ter correlations
3. Residual structure to
alleviate the problem of
overfitting

1. Labelled samples
for training could be
replaced by unlabeled
samples to further
work on the problem
of shortage of data.

56
[114] CNN

Feature Extraction
+ SVM

IP: 0.10
PU: 0.05

Indian Pines : OA =
95.58; AA = 95; KC =
94.97; Pavia U : OA =
98.48; AA = 97.56; KC
= 97.98

1. Hierarchically built
network that works with
smaller samples.
2. Adopts raw images
and applies feature ex-
traction and classifica-
tion

1. Proposed net-
work could be further
improved by adding
dimensionality reduc-
tion and optimization
techniques

57
[115] CNN

GAN + Collab-
orative Learning
+ Hard Attention
Module + Conv
LSTM

IP: 0.05
PU: 0.05

Indian Pines : OA =
97.4; AA = 95.2; KC =
97; Pavia U : OA = 99.2;
AA = 98.6; KC = 99.2

1. Optimized GAN
to alleviate the issue of
overfitting
2. Joint attention mod-
ule to better generate
the discriminative spec-
tral, spatial features
3. A convolutional
LSTM layer in discrim-
inator to extract joint
spatial-spectral informa-
tion

1. More principal-
components lead to
increased computa-
tional complexity and
longer time to train.
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58
[116] CNN

Transfer Learning

SA: 0.06
PU: 0.04
KSC: 0.5
IP: 0.31

Salinas : OA = 94.7;
AA = 92.37; KC =
93.62; Pavia U : OA =
94.25; AA = 87.86; KC
= 92.36; KSC : OA =
98.31; AA = 97.47; KC
= 98.12; Indian Pines
: OA = 90.86; AA
=74.78; KC = 89.05

1. Training and Testing
between two heteroge-
neous datasets to solve
the limited sample avail-
ability problem
2. Attention mechanism
for the feature maps re-
weighting and increas-
ing classification accu-
racy
3. Central Kernel Align-
ment for similarity mea-
surements
4. Consumes less train-
ing time and good accu-
racy

1. Taking ResNet as
a pre-trained model
gives bad results on
the Pavia U dataset

59
[38] CNN

Transfer learning
BOT: 0.15
HU: 0.10

Botswana : OA =
99.65; AA =99.67; KC
= 99.62;
Houston U: OA =
99.45; AA= 99.4; KC =
99.35

1. Reduced compu-
tational time and pa-
rameters while having
good classification per-
formance
2. Transfer learning
with band selection
method performed on
different datasets having
the same number of
bands

1. Finding hyper-
spectral datasets with
the same bands is a
constraint as there is
already a shortage of
datasets

60
[117] CNN

Feature Relation
Map Learning

IP: 0.10
SA: 0.10
PU: 0.10

Indian Pines : OA =
97.3; KC = 96.9; Sali-
nas : OA = 98.19; KC
= 98; Pavia U : OA =
98.98; KC =97.3;

1. Identifies the relation-
ships between features
under a specific map-
ping function
2. The identified re-
lationships can be por-
trayed as a picture
3. New features
are learned from the
emerged relationships
using feature relation
map learning
4. No use of dimen-
sionality reduction, ex-
hibit full use of bands

1. For accurate clas-
sification, it is essen-
tial to find a suit-
able classifier, espe-
cially when the train-
ing samples are lim-
ited

61
[118] CNN

Capsule Network
+ Markov Random
Field (MRF)

IP: 0.10
SA: 0.10
PU: 0.10

Indian Pines : OA =
98.52; AA = 98.41; KC
=98.32; Salinas : OA =
99.74; AA = 98.68; KC
= 95.82; Pavia U : OA =
99.84; AA = 94.65; KC
= 95.02

1. Enhanced connec-
tion of capsule network
overcoming the over-
fitting problem called
conv-caps with Markov
random field
2. Caps MRF can bet-
ter use the features, and
MRF helps to achieve
better convergence
3. Works well with
limited or noisy samples
under boisterous condi-
tions

1. Using spatially
disjoint samples may
affect the spectral-
based method
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62
[119] CNN

Active Learning +
Markov Random
Field (MRF)

IP: 0.05
PU: 0.01
PC: 0.005

Indian Pines : OA
= 94.28; AA =
89.79; Pavia U :
OA = 98.17; AA
= 96.4; Pavia C :
OA = 99.15; AA =
97.45

1. Proposed ensemble
the network has CNN
that extracts spectral-
spatial discriminative
features, active learning
to reduce the label-
ing cost, and MRF to
understand the spatial
correlations
2. Good accuracy and
smooth classification
maps

1. Labeling of
samples could be
replaced by unsuper-
vised learning as a
future work

63
[120] CNN

Transfer Learning
+ Markov Random
Fields (MRF)

IP: 0.04
PU: 0.04

Indian Pines : OA =
93.89; AA = 89.77; KC
= 92.93; Pavia U : OA =
91.79; AA = 88.67; KC
= 91.64

1. Transfer learning
is adopted to reduce
the training time, the
Bayesian framework to
reduce the time, MRF to
make use of spatial in-
formation

1. Average accuracies
of both datasets were
slightly lower

64
[121] CNN

Knowledge Distil-
lation

IP: 0.2
HU: 0.4
PU: 0.2

Indian Pines : OA =
96.4; AA = 96.1; KC =
96;
Houston U : OA =
94.7; AA = 94.4; KC =
94.2; Pavia U : OA =
99.3; AA = 99.1; KC =
99.1

1. Knowledge Dis-
tillation using a
teacher/student sys-
tem for a compact CNN
with satisfactory classi-
fication performance.
2. The trained network
has high accuracy with
fewer parameters

1. Results for In-
dian Pines are satis-
factory; however, for
Pavia U, accuracy de-
creases by 2% while
compared with the
state-of-the-art mod-
els

65
[122] CNN

Attention Mecha-
nism: Spatial At-
tention and Chan-
nel wise attention

IP: 0.3
PU: 0.2
KSC: 0.2

Indian Pines : OA =
99.52; AA = 99.22; KC
= 99.53; Pavia U : OA =
100; AA = 99.99; KC =
99.99; KSC : OA =100;
AA = 100; KC = 100

1. The structure of
channel-wise attention
followed by spatial at-
tention helps to sort the
unimportant informa-
tion from a significant
part
2. Residual connection
helps in better conver-
gence, and the group-
wise attention module
helps in reducing the
possibility of losing im-
portant information

1. Number of param-
eters is high
2. Computationally
expensive

66
[123] CNN

Attention Mecha-
nism + Dense Con-
nectivity

PU: 0.2
IP: 0.2

Pavia U : OA =
99.97; AA = 99.96; KC
= 99.97; Indian Pines
: OA = 99.29; AA =
99.07; KC = 99.19

1. A broader and deeper
network based on CNN
that helps to extract dis-
criminative spectral and
spatial features
2. Attention mechanism
to take hold of discrim-
inative information op-
timized with augmenta-
tion, regularization, and
batch normalization.

1. The size of the spa-
tial cube gives differ-
ent results on differ-
ent datasets. It has to
be optimized.
2. Secondly, the
number of training
samples needs to be
higher for the In-
dian Pines dataset to
achieve high accu-
racy
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67
[124] CNN

Attention mecha-
nism + Fully con-
nected network

IP: 0.7
BOT: 0.7
SA: 0.7

Indian Pines : OA
= 97.31; KC = 99.85;
Botswana : OA = 100;
KC = 100; Salinas : OA
= 100; KC = 99.99

1. The proposed net-
work is applied in three
parts. Firstly, 2D and 3D
CNN are combined for
feature extraction. Sec-
ondly, deeper features
are generated for cross-
domain data. Thirdly,
the attention module is
integrated

1. Optimization ap-
proaches could result
in better convergence

Table 2.11: Articles employing CNN as the base model for classification (Year: 2020)

S.
No Ref Model

Addition for
Model Improve-
ment

Training
Ratio

Datasets and Results Contributions Shortcomings

68
[125] CNN

Centre Loss +
Cross Entropy +
Feature Extraction

IP: 0.02,
SA: 0.003

Indian Pines: OA =
94.55, AA = 94.44, KC
= 93.77; KSC: OA =
98.26, AA = 97.48, KC
= 98; Salinas: OA =
96.13, AA = 97.37, KC
= 95.7

1. The proposed net-
work can learn deep as
well as refined spectral-
spatial features 2. The
3D kernel is broken
down into three 1D ker-
nels to reduce parame-
ters and thereby allevi-
ate overfitting 3. Cen-
tre loss function to im-
prove the classification
accuracy

1. Much high compu-
tational requirement
2. Use of the cen-
tre loss function in-
creases the cost

69
[46] CNN

Capsule Network
IP: 0.15,
PU: 0.15

Indian Pines: OA =
98.72, AA = 99.41, KC
= 98.54; Pavia U: OA =
99.97, AA = 99.97, KC
= 99.96

1. Based on spectral-
spatial capsule units
helping to discover
discriminative features
to reduce overfitting and
faster convergence. 2.
Works well with lim-
ited data and provides
relevant and complete
information about
spectral bands.

1. In future work, this
could be topped up
by the use of semi-
supervised learning
strategies

70
[126] CNN

Transfer Learning
PU: 0.03,
IP: 0.14,
KSC: 0.07

Pavia U: OA = 99.4,
AA = 99.68, KC = 99.2;
Indian Pines: OA =
98.87, AA = 99.45, KC
= 98.68; KSC: OA =
98.22, AA = 97.87, KC
= 98.02

1. Reduced the com-
putational cost of
networks based on CNN
and Logistic regres-
sion by making them
lightweight with fewer
parameters 2. Use of
Transfer Learning to
alleviate the problem of
overfitting by transfer-
ring knowledge across
different domains and
different sensors

1. The choice of
one pre-trained net-
work for all three
datasets is a chal-
lenge 2. Homologous
datasets may not al-
ways show better re-
sults than heterolo-
gous datasets.
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71
[127] CNN

Dense Network +
Multi-scale Filter
bank + Feature Ex-
traction

IP: 0.15,
PU: 0.05,
SA: 0.05

Indian Pines: OA
=99.81, AA = 99.78,
KC = 99.78; Pavia
U: OA = 99.97, AA
= 99.98, KC = 99.6;
Salinas: OA = 99.99,
AA = 99.99, KC = 99.99

1. To alleviate the
problem of overfitting
and extract informative
features, Dense connec-
tions are both in the
fusion part and dual-
channel part 2. 2D re-
places 3D filters

1. Training and Test-
ing time could be fur-
ther reduced

72
[128] CNN

Capsule Net-
work + Dynamic
Routing

IP: 0.3,
PU: 0.3,
SA: 0.3

Indian Pines: OA
=99.86, AA = 99.92,
KC=99.04; Pavia U:
OA = 99.99, AA =
99.98, KC = 99.98;
Salinas: OA = 99.98,
AA = 99.98, KC = 99.98

1. Hybrid Capsule
network to deal with
low training samples
2. Dimensionality
reduction to remove
redundant bands 3.
Nested cross-validation
to find the best value of
parameters

1. Higher number of
principal components
increases the compu-
tational cost. More-
over, dynamic routing
increases the cost as
well.

73
[129] CNN

Robust PCA +
Low-Rank Sub-
space Estimation
(LRSE)

PU: 0.10,
IP: 0.10

Pavia U: OA = 99.42,
AA = 99.08, KC =
99.23; Indian Pines:
OA =99.47, AA = 99.83,
KC = 99.4

1. Robust PCA to fetch
the low-rank representa-
tion of data and sparse
data for image denois-
ing 2. Pointwise convo-
lution for concatenating
the two branches

1. RPCA needs
appropriate LRSE to
achieve good classifi-
cation performance

74
[130] CNN

Multiscale features
+ CNN

PU: 0.42,
SA: 0.06

Pavia U: OA = 99.13,
KC = 98.86; Salinas:
OA = 99.46, KC = 99.4

1. The proposed net-
work takes multiscale
features in each scale
as the input 2. The
deep features are ex-
tracted with 1D CNN

1. Challenge to cus-
tomize the parame-
ters according to the
dataset.

75
[123] CNN

Spatial Residual
Block + Spectral
Feature Learning

IP: 0.20,
PU: 0.10,
SA: 0.10

Indian Pines: OA
=99.68, AA = 99.74,
KC = 99.64; Pavia
U: OA = 99.62, AA
= 99.87, KC = 99.89;
Salinas: OA = 99.86,
AA = 99.91, KC = 99.84

1. Spatial block to
extract spatial features
connected with residual
block to avoid the ac-
curacy from falling 2.
Spectral feature learn-
ing has few trainable pa-
rameters to deal with
small sample availabil-
ity 3. Feature fusion to
integrate features better

1. The acquisition
of labeled samples is
time-consuming and
labor-intensive

76
[83] CNN

Attention mecha-
nism

IP: 0.1,
PU: 0.02,
SA: 0.02

Indian Pines: OA
=95.49, AA = 94.17,
KC = 94.85; Pavia U:
OA = 98.02, AA = 96.9,
KC = 97.37; Salinas:
OA = 96.81, AA =
98.33, KC = 96.54

1. An end-to-end
network containing a
spectral-spatial unit
made of convolutions
that helps to find in-
formative features with
an attention module to
focus on the essential
areas

1. The attention mod-
ule makes the net-
work end up with a
longer training time
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77
[131] CNN

Residual Network
IP: 0.15,
SA: 0.15,
PU: 0.15

Indian Pines: OA =
99.4, AA = 98.98, KC
= 99.31; Salinas: OA =
99.97, AA = 99.98, KC
= 99.96; Pavia U: OA =
99.94, AA = 99.89, KC
= 99.92

1. A spectral-based
unit using 1D CNN and
a spatial-based unit us-
ing 2D CNN after be-
ing passed through prin-
cipal component analy-
sis as dimensionality re-
duction. Finally, spa-
tial and spectral infor-
mation is fused to create
an input data block fo-
cused on excellent clas-
sification

1. Computationally
expensive 2. Parallel
implementation could
have reduced the time
3. Approaches like
GAN or augmenta-
tion to produce more
data

78
[132] CNN

Attention mech-
anism + Pre-
activation mecha-
nism

IP: 0.20,
PU: 0.10,
SA: 0.10

Indian Pines: OA
=99.67, AA = 99.37,
KC = 99.62; Pavia
U: OA = 99.92, AA
= 99.87, KC = 99.9;
Salinas: OA = 99.9, AA
= 99.93, KC = 99.89

1. Optimization strate-
gies, including residual
connections, and batch
normalization, are pro-
posed to alleviate over-
fitting. 2. Atten-
tion block with pre-
activation 3. Performs
great even with imbal-
anced class distribution

1. Longer Compu-
tational time to train
and test

79
[133] CNN

Conditional Ran-
dom Field (CRF)
+ Feature Learning
+ Self-Supervision

IP: 0.02,
SA: 0.01,
PU: 0.004

Indian Pines: OA =
83.01, AA = 87.88, KC
= 81.9; Salinas: OA =
96.82, AA = 96.79, KC
= 96.6; Pavia U: OA =
85.76, AA = 82.52, KC
= 80.8

1. The proposed novel
network integrates sub-
pixel, pixel and super-
pixel information using
self-supervised learning
2. CRF gets feed-
back from the network
and feeds it back to the
network to enhance the
learning process

1. A lot of room left
for improving the
classification accu-
racy and optimizing
it to perform better.

80
[134] CNN

Residual Network
+ Visual Attention

IP: 0.15,
PU: 0.10,
SA: 0.10,
HU: 0.23

Indian Pines: OA =
98.75, AA = 97.05, KC
= 98.58; Pavia U: OA =
99.86, AA = 99.76, KC
= 99.82; Salinas: OA
= 99.85, AA = 99.83,
KC = 99.83; Houston
U: OA = 88.71, AA =
90.09, KC = 87.73

1. Visual Attention net-
work to improve the fea-
ture extraction process
to extract representative
and informative features
2. Works well with lim-
ited data 3. Satisfactory
classification results 4.
Great feature extraction
capabilities

1. Parameter opti-
mization is required
2. Classification ac-
curacy for the Hous-
ton U dataset could be
improved

This section embarks on a journey through the evolution of HSIC leveraging CNNs
from 2019 to 2024. Researchers have continuously expanded the horizons of HSIC with
a diverse array of techniques. In 2019, dense networks were introduced, enhancing fea-
ture extraction and mitigating overfitting by establishing direct connections between all
layers. The year 2020 witnessed the integration of 3D-ANAS, Incremental Principal Com-
ponent Analysis (PCA), and Superpixel Segmentation, enriching feature extraction capa-
bilities and potentially improving the capture of spatial and spectral information. Notably,
the adoption of 3D Gabor Filters facilitated the extraction of directional features, augment-
ing the representation of spatial and spectral characteristics. Additionally, a notable shift
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towards depth-wise convolutions and specialized feature extractors emerged, aiming to en-
hance feature learning efficiency and effectiveness. In 2021, attention mechanisms took
centre stage, allowing selective focus on informative features and potentially improving
classification performance. By 2022, depth-wise convolutions became prominent, reducing
computational cost and enhancing efficiency. Spatial pyramid pooling techniques were also
employed to aggregate features at various spatial scales, capturing multi-scale information
effectively. Moreover, the utilization of specialized feature extractors tailored to specific
tasks or datasets gained traction, further optimizing feature learning. As the journey pro-
gressed into 2023, exploration into vision transformers and novel attention mechanisms
intensified. Vision transformers offered promise in capturing long-range dependencies in
spectral information, especially beneficial with limited labels. Novel attention mechanisms
honed in on specific regions or features within hyperspectral data, potentially enhancing
classification accuracy. The early stages of 2024 witnessed the emergence of GANs, offer-
ing the ability to generate synthetic HSI data and address the challenge of limited training
data. Throughout these years, training and optimization strategies have evolved in tandem
with model advancements. Semi-supervised learning techniques, augmentation strategies,
and the integration of residual networks have been instrumental in leveraging unlabeled
data, mitigating overfitting, and addressing the vanishing gradient problem, respectively.
CNNs have become one of the leading techniques for HSI due to their remarkable ability to
exploit both spatial and spectral information. This dominance is reflected in the prevalence
of keywords like CNN, deep learning, hyperspectral images, classification, and feature ex-
traction when exploring relevant research through keyword cloud charts as shown in Figure
2.4.

Figure 2.4: Keywords encountered in studies on CNN and HSIC
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Figure 2.5 shows the co-authorship diagram with the extent of interdisciplinary research
by illustrating connections between researchers in HSI. It visualizes the collaborative re-
lationships among researchers in HSI which helps in identifying how researchers are con-
nected and who collaborates with whom.

Figure 2.5: Most popular studies using CNN in HSIC

Furthermore, this analysis unfolds in a nuanced exploration of publications within a
two-tier framework: initial classification by OA, followed by categorization based on the
addressed problem. Consequently, this presentation encapsulates not only the findings of
the authors but also dissects their contributions and shortcomings, providing a comprehen-
sive panorama of the evolving landscape in the forthcoming sections.

Models based on CNN achieving more than 90% Overall Accuracy

In this section, we outline several key challenges encountered in HSIC and highlight re-
cent research efforts aimed at overcoming these obstacles. Each challenge represents a
crucial aspect of HSIC while using CNN models, ranging from imbalanced class distribu-
tions to limited labeled samples, noise and more. Researchers have developed innovative
approaches and techniques to tackle these challenges, aiming to enhance the accuracy, con-
vergence, feature extraction of HSIC. Through this section, we look into the diverse array
of challenges faced by practitioners who have used CNN for HSIC and explore the cutting-
edge solutions proposed to address them.

Challenge : Addressing Imbalanced Classes and Spatial Resolution Loss

• Wu et al. [122] introduced a channel and spatial attention network. This approach
effectively combats information loss and enhances context extraction in datasets with
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imbalanced classes. However, the computational complexity of separate attention
mechanisms for both channels and spatial dimensions needs further investigation.

• Yang et al. [124] proposed a fusion architecture combining 2D and 3D CNNs with
data fusion for spectral-spatial information integration. While this method improves
classification accuracy, it raises concerns regarding the high computational cost and
convergence time associated with such complex networks.

• Bai et al. [127] achieved remarkable results by leveraging spectral-spatial capsules
to streamline complexity. This method offers a promising alternative to traditional
spectral-spatial networks, but further research is needed to address potential limita-
tions in handling highly diverse or noisy data.

Challenge : Gradient Vanishing and Overfitting

• Khodadadzadeh et al. [128] introduced dynamic routing and hyperparameter opti-
mization to address gradient vanishing in capsule networks. This approach improves
performance, particularly with limited training data. However, the effectiveness of
this method compared to alternative gradient handling techniques in capsule networks
requires further evaluation.

• Addressing overfitting and gradient updating inefficiencies in CNN models, Jia et
al. [63] proposed a multilayer, multi-branch architecture incorporating 3D Gabor
filters for enhanced feature extraction. Tackling the same challenges, Gao et al. [88]
introduced a stochastic depth residual network, shortening training time by randomly
skipping some residual blocks.

Challenge : Small Sample Datasets

• Khotimah et al. [98] proposed a two-stream residual network for efficient training
with small datasets. While offering a solution, this approach might not be optimal for
all types of HSI data, and exploring its generalizability is crucial.

• Yue et al. [70] and Liu et al. [38] introduced techniques using spatial pyramid pooling
and shuffled group CNNs, respectively, for handling small sample datasets. These
methods offer efficient training strategies but require further investigation regarding
their effectiveness with highly complex or imbalanced datasets.

• Given the prevalence of small sample datasets, He et al. [116] introduced heteroge-
neous transfer learning, ensuring consistency across datasets by aligning the number
of channels supplied into pre-trained CNNs with an attention module. In a comple-
mentary effort to address small sample datasets, Liu et al. [72] developed a mul-
tidimensional CNN with an attention module, incorporating both 3D and 2D con-
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volutional layers to extract spectral-spatial features and analyze spectral and spatial
properties at an abstract level.

• To tackle small sample sets, Jia et al. [91] proposed a lightweight CNN with Schrodinger
eigenmaps for dimensionality reduction and dual-channel convolution for improved
classification. Addressing limited labelled samples, Yue et al. [87] introduced adap-
tive knowledge distillation using semi-supervised learning. Yu et al. (2024) proposed
an end-to-end network based on CNN, pooling, and dropout layers, addressing minor
training set problems.

Challenge : Processing Multiscale Features

• Gao et al. [99] proposed a hierarchical shrinkage network to address the resource
intensity of processing multiscale features. While offering a more efficient solution,
this method might lead to a trade-off in terms of feature extraction accuracy compared
to more complex architectures.

• Siamese CNNs with adaptive pooling introduced by Rao et al. [30], offer solutions for
limited sample availability and generalization when dealing with multiscale features.
However, the effectiveness of this approach compared to alternative architectures for
multiscale feature processing needs further evaluation.

Challenge : Limited Labeled Samples and Noise

• Ge et al. [69] introduced spectral and spatial attention modules to enhance classifica-
tion with limited labelled data and noise. This approach offers promising results, but
a comparative analysis with other noise reduction techniques is necessary to assess
its overall effectiveness.

• Zhang et al. [135], Qing et al. [97], Zhong et al. [136], and Xu et al. [109]
all proposed various network architectures (dense connections, multi-stage models,
spectral-spatial residual networks, and multiple spectral 3D CNNs) to address limited
labelled samples. While these methods offer solutions, a comprehensive evaluation
comparing their performance and generalizability across different datasets is crucial.

• Addressing limited labelled samples, Huang and Chen (2024) introduced a dual-path
similarity-based network using adversarial networks for spatial and spectral informa-
tion. Pan et al. [137] proposed a semi-supervised multi-grained network correlating
spectral and spatial information with minimal hyperparameters. Xu et al. [79] uti-
lized noise during data collection, employing a dual-channel residual network and a
noise-resilient loss function that even incorporates mislabeled samples

Challenge : Convergence Rate and Sensor-Specific Models
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• Wang et al. [113], Haut et al. [134], and Xu et al. [109] all proposed methods
to improve the convergence rate for spectral-spatial information processing. While
these approaches offer faster training, a trade-off between convergence speed and
classification accuracy might exist, requiring further investigation.

• Zhang et al. [64] proposed a pixel-to-pixel processing structure to address the limi-
tations of sensor-specific, patch-based models. This method offers a more generaliz-
able solution, but its effectiveness compared to patch-based approaches with sensor-
specific optimizations needs to be evaluated across various sensor types.

• While two-dimensional CNN models serve as viable classification tools, the utiliza-
tion of three-dimensional CNNs, although capable of leveraging spectral information
in HSI cubes, often struggles with perfect feature map classification. To address
this challenge, Ahmad et al. [65] proposed a methodology involving the breakdown
of the HSI cube into 3D patches, constructing 3D feature maps with fewer param-
eters for improved computational efficiency. Similarly, Cui et al. [83] introduced
MobileNetV3, incorporating depth-wise convolutions to reduce computational time
without compromising classification performance.

• To further optimize computing resources while maintaining accuracy, Paoletti et al.
[138] suggested a spectral-spatial information-based 3D network capable of effec-
tively handling border areas in images, particularly constructed utilizing graphics
processing units. Additionally, Meng et al. [66] proposed a lightweight CNN ar-
chitecture that significantly reduced network parameters and computing time using
multiply-accumulate operations while enhancing classification performance. Chang
et al. [74] consolidated CNN architectures, harnessing the advantages of both 2D and
3D CNNs to learn spatial characteristics and spectral bands, thereby addressing data
redundancy and insufficient spatial resolution while retaining processing speed and
classification accuracy.

• Efficient HSI classification often requires minimizing computing costs. Leveraging
the lightweight nature of the Ghost network, Paoletti et al. [102] incorporated a ghost
module into CNN, significantly reducing network parameters and runtime.

Challenge : Efficient Feature Extraction

• Researchers have conducted diverse feature extraction tests to enhance classification
performance. Using a semi-supervised approach, Wei et al. [73] extracted features,
while Wang et al. [139] employed dimension reduction with PCA and 1DCNN to
eliminate redundant information from HSI. In a similar vein, Fang et al. [108] fo-
cused on discriminative samples and implemented an early exiting strategy, effec-
tively reducing computing costs for easy samples. Jiao et al. [139] further refined
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feature extraction by retrieving discriminative features through the excavation of mul-
tiscale spatial information, integrating a pre-trained network for spectral feature fu-
sion through a weighted approach.

• To enhance spatial-spectral information utilization, Xi et al. [84] introduced a net-
work with 3D Squeeze and Excitation residual blocks, exploring both low-level and
high-level spatial-spectral information. Complementarily, Zou et al. [76] devised a
spectral-spatial information network addressing information leakage through bidirec-
tional attention maps for improved and interactive feature maps.

2.2.3 Review of Studies based on Autoencoders

Autoencoders, an integral component of deep learning architectures, have emerged as pow-
erful tools for feature extraction tasks. Comprising encoder and decoder networks, autoen-
coders aim to efficiently compress high-dimensional input data into a lower-dimensional
representation, while maintaining the essential features necessary for accurate reconstruc-
tion. This process is fundamental in various domains, including computer vision, natural
language processing, and signal processing.

x→ ge(b,W ;x)→ c→ gd(b̂, Ŵ ; c)→ x̂ (2.5)

Conventionally, autoencoders consist of an encoder network responsible for compress-
ing the input data and a decoder network tasked with reconstructing the original input from
the compressed representation. This architecture is typically represented as a left-to-right
flow, with the encoder preceding the decoder. Mathematically, the encoding process can be
represented as x → ge(b,W ;x) → c, where x denotes the input vector, ge represents the
encoding function parameterized by weights W , and c represents the encoded representa-
tion. The decoder network, denoted by gd, then operates on the encoded representation to
produce the reconstructed output x̂. In the collected data, a smaller subset of studies were
identified that integrated autoencoders into classification pipelines, thereby showcasing the
potential of autoencoders for enhancing classification performance.

Table 2.13: Articles with autoencoders (AE, SAE, SCAE, and CAE) as feature extractors fed to classification.

S.
No

Ref Feature
Ex-
trac-
tion
Mod-
ule

Addition to im-
provise the pro-
posed model

Training
Ratio

Datasets Used and
Results

Contributions Shortcomings

Continued on next page
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Table 2.13: Articles with autoencoders (AE, SAE, SCAE, and CAE) as feature extractors fed to classification. (Continued)

1 [140]AE
+
SSCL

Encoders + Con-
trastive Loss +
PCA + EMP +
Data Augmenta-
tion

SA:
0.10
PU:
0.10
BOT:
0.10

Salinas: OA = 99.70;
AA = 99.67; KC
= 99.67; Pavia U:
OA = 97.21; AA =
96.00; KC = 96.30;
Botswana: OA =
97.96; AA = 98.02;
KC = 97.70

1. This study proposed
a classification algorithm
based on contrastive learning
using self-supervised learn-
ing
2. The first stage of training
involves learning from unla-
beled samples to construct
positive and negative sample
pairs
3. The pre-trained model
uses a small number of
labeled features to fine-tune
the network

1. The effect of
neighborhood size
is sensitive to
datasets
2. The Botswana
dataset is larger in
area and sparse
3. Choosing an
optimal batch size
is a challenge

2 [141]SAE
+
SVM

PCA + Distance
Transform Image
+ EMAP + SAE

SA:
0.10
PU:
0.10
SU: 0.10

Salinas: OA = 97.93;
AA = 98.88; KC =
98; Pavia U: OA =
99.34 ; AA = 99.11
KC = 99; Surrey: OA
= 94.31; AA = 93.98;
KC = 92

1. A spatial-spectral feature
extraction model for pixel-
wise classification
2. Distance transform values
to add weights to target pix-
els
3. EMAP to further integrate
geometric information

1. SAE’s weight
and the model’s
hyperparameter are
restricted to every
dataset
2. Applying this
model to a new
dataset means fine-
tuning the model
again

3 [142]SAE
+
MLR

CNN SA:
0.10
PU:
0.10
KSC:
0.10
IP: 0.10

Salinas: OA = 99.91;
AA = 99.87; KC =
99.68; Pavia U: OA
= 99.88; AA = 99.54;
KC = 99.71; KSC:
OA = 98.47; AA =
97.51; KC = 97.65;
Indian Pines: OA =
98.18 ; AA = 97.80;
KC = 97.89

1. The proposed model com-
bines CNN and SAE and
extracts spectral-spatial fea-
tures jointly
2. To improve classification
accuracy, adaptive weight
generation using CNN, de-
pending on spatial contex-
tures
3. MLR used for the classifi-
cation process

1. Choosing the size
of features is sensi-
tive to the dataset
2. A deeper SAE
network may lead to
overfitting

4 [143]Softmax
+
CD-
SAE

LFDR+ Diversity
Regularization

PU:
0.04
IP: 0.24
SA: 0.06

Pavia U: OA = 97.59;
AA = 97.66; KC
= 96.86; Indian
Pines: OA = 95.81;
AA = 97.38; KC =
95.30; Salinas: OA=
96.07; AA=97.56;
KC=96.78;

1. Proposed compact and dis-
criminative stacked auto en-
coder having two stages
2. Incorporated Local Fisher
discriminant regularization to
effectively learn the pixels
3. Diversity regularization
to balance feature dimension-
ality and feature representa-
tion.

1. Run time in-
creases as the net-
work size or number
of samples increase

Continued on next page
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Table 2.13: Articles with autoencoders (AE, SAE, SCAE, and CAE) as feature extractors fed to classification. (Continued)

5 [36] Softmax
+
SAE

Linear Prediction
Based Band Gen-
eration + MRF

IP: 0.10
PU:
0.05
SA: 0.05

Indian Pines: OA =
98.39; AA = 98.14;
KC = 98.2; Pavia U:
OA = 99.20; AA =
98.26; KC = 98.9;
Salinas: OA = 98.53;
AA = 99.00; KC
=98.0

1. Fine Tuned samples as
training samples
2. More confidential genera-
tion of training samples that
improves the generalization
performance
3. Better than traditional
spectral-spatial models as it
fuses information at the deci-
sion level

1. Can be optimized
for limited sample
data
2. The use of ac-
tive learning can be
done to guide the se-
lection of unlabeled
samples better
3. Improving the
computing time

AE Models achieving more than 96% Overall Accuracy

This observation highlights the relatively underexplored area of utilizing autoencoders for
feature extraction in classification tasks. Despite the limited number of studies, the findings
from these investigations provide valuable insights into the effectiveness of autoencoder-
based approaches and their impact on classification accuracy. The studies related to autoen-
coders are presented in Table 2.13 depicting a summary of the contributions and shortcom-
ings of each study, including autoencoders [140], [144], stacked autoencoders [141], [142],
[36], discriminant autoencoders [143], and convolutional stacked autoencoders [145], em-
ployed with classification models such as SVM [141], [144], and Multinomial Logistic
Regression (MLR) [142]. Most studies in the survey employing autoencoders achieved a
classification accuracy of more than 96%, depicted in Figure 2.6.

Figure 2.6: Density Visualization of studies having OA more than 96% with AE for HSIC

• Hou et al. [140]: Addressing the challenge of limited labelled sets, Hou et al. rev-
olutionized the approach by blending enhanced unlabeled examples with contrastive
learning in the SSCL (Self-supervised Contrastive Learning) network. Their innova-
tive method includes a deep residual network encoder that accepts enhanced data to
significantly minimize computational requirements.

• Madani and McIsaac [141]: The work of Madani and McIsaac focuses on feature ex-
traction, proposing a spatial and spectral information-based method. Their approach
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involves utilizing a stacked encoder with a sparse AE and introducing an innovative
Stacked Autoencoder (SAE) pretraining stage, showcasing advancements in feature
extraction techniques.

• Li et al. [142]: Crafting an effective fusion of spectral and spatial information, Li et
al. introduced an adaptive feature learning approach integrating CNN and AE within
a single framework. Their method flexibly incorporates spatial information, resulting
in improved feature discriminability without the need for labelled data.

• Zhou et al. [36]: Zhou et al. introduced a semi-supervised AE with a dual-training
strategy on spectral and spatial data. Their approach, involving two independent
Stacked AEs processing spectral-spatial data, demonstrates exceptional generaliza-
tion performance by leveraging the diversity of samples for increased classification
accuracy.

• Kemkar and Kanan [145]: Kemkar and Kanan proposed self-taught learning for clas-
sification, leveraging a vast amount of unlabeled data to extract distinctive features,
showcasing the potential of unsupervised learning in enhancing classification accu-
racy.

• Zhou et al. [143]: Zhou et al. unveiled a low-dimensional feature space through
a compact and discriminative SAE empowered by LFDR (local fisher discriminant
regularization), achieving substantial between-class separation and enhancing clas-
sification accuracy.

• Paul and Kumar [144]: Navigating complexity with spectral segmentation, AE, and
morphological profiles, Paul and Kumar introduced a mutual information-based seg-
mented AE to minimize algorithm time. Their approach synergizes SAEs and mor-
phological profiles for enhanced feature extraction across diverse datasets.

2.2.4 Review of Studies based on Graph-Based Learning

CNNs have been pivotal in computer vision, excelling in tasks like image classification and
object recognition. However, extending their capabilities to non-grid data structures, like
graphs, has become increasingly important. GCN achieve this, offering a powerful frame-
work for learning from graph-structured data. In hyperspectral image classification, where
data is represented as hypercubes with multiple spectral bands, GCNs have emerged as a
promising solution. By treating pixels or regions as nodes and leveraging spectral-spatial re-
lationships, GCNs effectively capture discriminative representations for classification. This
section provides a focused review of GCNs for hyperspectral image classification, bridging
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the gap between traditional CNNs and graph-based approaches. By exploring their archi-
tecture, strengths, and applications, we aim to inspire further research in leveraging GCNs
for analyzing HSI data.

Table 2.14: Articles with Graph Convolutional Networks as the base network

1 [146]GCN SGC
+
DNAGSI

SA: 0.01
IP: 0.10
PU: 0.01

Salinas: OA =
99.70; AA = 99.44;
KC = 99.66; Indian
Pines: OA = 98.36;
AA = 97.79; KC
= 98.12; Pavia U:
OA = 99.30; AA =
98.73; KC = 99.07

1. A novel graph-based method
that dynamically generates a
graph structure and adaptively
merges the newly generated
graphs with an existing graph
2. To generate high-level fea-
ture representations, use of ini-
tial residual and identity map-
ping
3. To increase interclass dis-
tance and reduce intraclass dis-
tance, use of joint loss with cen-
tre loss
4. Performs better than CNN-
based methods

1. Spends more time in the
training stage
2. Parameters increase
with the depth of the net-
work
3. Exploring an adap-
tive hyperparameter selec-
tion is challenging

2 [147]GCN Siamese
Net-
work

IP: 0.05
PU: 0.006
SA: 0.008
HU: 0.03

Indian Pines: OA =
96.98; AA = 95.24;
KC = 96.51; Pavia
U: OA = 95.55;
AA = 94.78; KC
= 94.28; Salinas:
OA = 99.43; AA =
99.54; KC = 99.37;
Houston U: OA =
96.05; AA = 96.04;
KC = 95.73

1. An automatic graph convo-
lutional network (GCN) models
the synergy of high-order ten-
sors.
2. Incorporated with Siamese
network with a novel labeling
approach to computing the sim-
ilarity between the features
3. GCN and Siamese are col-
laborated and jointly trained
4. Good classification accuracy
and does not suffer from a wide
range of misclassification

1. Classification perfor-
mance of Houston Uni-
versity dataset can be in-
creased

3 [148]GCN MUDA
+ Tan-
gen-
tial
graph
+
Neigh-
bor-
hood
Struc-
ture
Graph

PU: 0.01
HU: 0.06

Pavia U: OA = 83.0;
AA = 87.3; KC =
78.1; Houston U:
OA = 92.6; AA =
92.4; KC =92.0; Ur-
ban: OA = 95.1; AA
= 94.9; KC = 93.9

1. Constructs an interclass
and intraclass structure graph
by making use of radial neigh-
borhood information
2. Using the tangential infor-
mation, constructs a tangential
graph for interclass and intra-
class samples.
3. Gaussian distribution to im-
prove the scatter of distributed
features

1. It takes more time to
run the model because of
the time taken to build
neighborhood structure
graphs, tangential graphs,
and Gaussian weighted
model to extract discrimi-
native features
2. Accuracy can be
improved for all datasets

S.
No

Ref Model Addition Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.14: Articles with Graph Convolutional Networks as the base network (Continued)

4 [149]GCN Sa-
GCN
+ Se-
GCN
+
Atten-
tion
mech-
anism

IP: 0.05
PU: 0.006

Indian Pines: OA =
94.84; AA = 96.43;
KC = 94.10; Pavia
U : OA = 96.45; AA
= 96.40; KC = 95.30

1. The proposed network
contains two subnetworks with
spectral GCN and spatial GCN
to extract the spectral and spa-
tial features and suppress noise
2. Graph cross-attention fusion
by merging attention mecha-
nism

1. Due to spectral-spatial
features involved, it con-
sumes more time than
other methods

5 [150]GCN Point
Graph
+
Distri-
bution
Graph
+
Drop
edge +
Cutout

SA: 0.001
IP: 0.008
PU: 0.001
HU: 0.005

Salinas: OA =
87.33; AA = 88.23;
KC = 86.49; Indian
Pines : OA = 77.46;
AA = 77.79; KC
= 77.63; Pavia U:
OA = 79.86; AA =
79.74; KC = 77.09;
Houston U : OA =
63.52; AA = 63.60;
KC = 61.51

1. Dual GCN, Point graph and
Distribution graph
2. Reduces the need for labeled
samples
3. Alleviates overfitting using
drop edge
4. Regularization using
improved cutout with the mul-
tiscale operation

1. Higher training time
2. Accuracy can be highly
improved for all datasets

6 [151]GCN Dual
GCN

IP: 0.05
PU: 0.006
SA: 0.009
HU: 0.03

Indian Pines: OA =
94.16; AA = 96.41;
KC = 93.34; Pavia
U: OA = 93.24;
AA = 93.76; KC
= 91.14; Salinas:
OA = 97.61; AA =
96.94; KC = 97.34;
Houston U: OA =
91.72; AA = 92.52;
KC = 91.03

1. Proposed a network
with dual GCN across GCN
branches that considers mul-
tiscale spatial information to
refine the graph information
2. Enhanced feature repre-
sentation capability by fusing
information from two branches
3. Accelerated convolution
operation

1. Misclassification in
case of noisy pixels in a
few classes
2. Convergence is slower
for the Salinas dataset
3. Higher computational
complexity
4. Sensitive neighborhood
size
5. Accuracy can be further
increased

7 [152]GCN SR
Graph
+ Co-
Propagation

KSC: 0.10
BOT: 0.12
SV: 0.10

KSC: OA = 99.38;
AA = 99.20; KC =
99.30; Botswana:
OA = 99.65; AA =
99.66; KC = 99.61;
Salinas-V :OA =
97.16; AA = 98.60;
KC = 96.83

1. Use of label propagation
to generate labels for unlabeled
classes
2. SR spectral model is regular-
ized using spectral statistical in-
formation to enhance discrimi-
nation further
3. SR spatial model is regu-
larized using superpixel block
constraint
4. The models have collabo-
rated

1. Time costlier
2. High computation cost
3. Co-propagation de-
creases class-specific ac-
curacy
4. Fine-tuning is required

8 [153]GCN Poisson
Learn-
ing

IP: 0.007
PU: 0.001
SA: 0.001

Indian Pines: OA
=86.91; AA = 87.02;
KC = 83.32; Sali-
nas : OA = 96.75;
AA = 96.47; KC
= 96.38; Pavia U :
OA = 86.74; AA =
89.37; KC = 84.05

1. Use of Poisson learning for
label propagation
2. Construction of spectral and
spatial graphs and fusion using
iterative label propagation
3. Feedback strategy to update
the fused graph in run time

1. Accuracy can be in-
creased, especially for In-
dian Pines and Pavia U
2. Computational time is
comparable but can be de-
creased further

S.
No

Ref Model Addition Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.14: Articles with Graph Convolutional Networks as the base network (Continued)

9 [154]GCN Enhanced
super-
pixel
seg-
men-
tation

IP: 0.04
PU: 0.006
HU: 0.18

Indian Pines: OA
=95.87; AA = 97.45;
KC = 95.27; Pavia
U : OA = 98.4; AA =
99.11; KC = 97.98;
Houston U: OA =
88.57; AA = 89.92;
KC = 87.62

1. An end-to-end network with
an enhanced process of super-
pixel segmentation
2. Use of multiscale spectral-
spatial feature extractor
3. Mix hop super pixel-based
GCN model to integrate infor-
mation
4. Pixel-wise classification pro-
cess causes lesser misclassifica-
tion than CNN

1. Fewer parameters but
a hundred times higher
floating point operations
required
2. Accuracy for the Hous-
ton dataset is low

10 [155]GNN Edge
Con-
volu-
tion

IP: 0.04
PU: 0.005
KSC: 0.06

Indian Pines: OA =
93.12; AA = 95.78;
KC = 92.14; Pavia
U: OA = 95.31;
AA = 96.28; KC =
93.84; KSC: OA =
98.61; AA = 97.81;
KC = 98.56

1. Graph Neural Network
(GNN) added with Edge con-
volution for message passing to
extract the informative features
fully
2. Fusion of superpixel and
pixel level feature fusion to
avoid loss of resolution
3. Smaller computational cost

1. Accuracy can be further
increased for Indian Pines
and Pavia U

11 [156]GCN Similarity
Mea-
sure-
ment
+
Atten-
tion
Mech-
anism

IP: 0.10
PU: 0.06
SA: 0.05

Indian Pines: OA =
98.61; AA = 99.01;
KC = 98.41; Pavia
U: OA = 99.44;
AA = 99.28; KC
= 99.26; Salinas:
OA = 99.04; AA =
99.39; KC = 98.93

1. Design of a novel similarity
measurement method for asso-
ciating features
2. Aggregation of bands with
similar spectra using an atten-
tion mechanism
3. Deep GCN for feature ex-
traction using dense connec-
tions and dilated convolutions

1. High computational
complexity
2. An end-to-end network
could be proposed

12 [157]GCN Hypergraph
Learn-
ing

IP: 0.07
KSC: 0.07
BOT: 0.05
PU: 0.006

Indian Pines: OA =
96.25; AA = 97.02;
KC = 95.87; KSC:
OA = 97.53; AA =
97.24; KC = 97.29;
Botswana: OA =
98.78; AA = 98.89;
KC = 98.72

1. Integration of hypergraph
learning into graph convolu-
tional networks
2. Hypergraph modeling of
the relationship between sam-
ples and labels
3. Higher-order proximity pre-
served by hypergraph structure
4. Adaptive selection of neigh-
bors with hypergraph informa-
tion

1. Accuracy improvement
is needed for Indian Pines
2. Sensitive to hyperpa-
rameter settings
3. Requires further testing
on large datasets

13 [158]GCN Multi-
Graph
Atten-
tion

IP: 0.06
PU: 0.01
BOT: 0.10

Indian Pines: OA
= 95.79; AA =
96.73; KC = 94.96;
Botswana: OA =
97.22; AA = 97.15;
KC = 96.68; Hous-
ton U: OA = 94.41;
AA = 95.11; KC =
93.38

1. Construction of multi-graphs
to capture the global and local
structural information of hyper-
spectral data
2. Graph attention mechanism
to adaptively assign different
weights to different graphs
3. Integration of multi-graphs
and attention mechanism for
feature learning

1. Time-consuming during
the training stage
2. Complexity increases
with the number of graphs

S.
No

Ref Model Addition Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.14: Articles with Graph Convolutional Networks as the base network (Continued)

14 [159]GAT Superpixel-
Based
Graph

IP: 0.05
BOT: 0.08
HU: 0.05

Indian Pines: OA
= 97.15; AA =
97.69; KC = 96.48;
Botswana: OA =
99.44; AA = 99.42;
KC = 99.35; Hous-
ton U: OA = 96.18;
AA = 96.46; KC =
95.84

1. Integration of superpixel-
based graph to capture local
contextual information
2. Graph attention mechanism
for better feature learning
3. Reduction of computational
complexity by using superpix-
els

1. Improvement needed in
classification accuracy for
the Houston dataset

15 [160]GAT Structure
Simi-
larity

IP: 0.06
PU: 0.01
HU: 0.05

Indian Pines: OA =
94.82; AA = 96.34;
KC = 93.80; Hous-
ton U: OA = 93.78;
AA = 94.02; KC =
93.47; Urban: OA =
97.63; AA = 97.76;
KC = 97.57

1. Introduction of a structure
similarity measurement method
for graph attention networks
2. Consideration of the spatial
structure information of hyper-
spectral images
3. Enhanced feature extraction
using the attention mechanism

1. Accuracy improve-
ment is required for Indian
Pines and Houston U
2. Higher computational
cost

16 [161]GAT Graph
Cap-
sule

IP: 0.05
BOT: 0.08
HU: 0.05

Indian Pines: OA
= 97.23; AA =
97.68; KC = 96.68;
Botswana: OA =
99.22; AA = 99.26;
KC = 99.19; Hous-
ton U: OA = 96.02;
AA = 96.31; KC =
95.71

1. Incorporation of graph cap-
sules into graph attention net-
works
2. Enhanced feature extraction
using capsule networks
3. Improvement of graph cap-
sules for capturing hierarchical
features

1. Accuracy improvement
needed for the Houston
dataset

17 [162]GAT Adaptive
Edge
Learn-
ing

IP: 0.04
PU: 0.008
SA: 0.005

Indian Pines: OA =
95.64; AA = 96.71;
KC = 94.57; Sali-
nas: OA = 97.91;
AA = 97.66; KC =
97.29; Urban: OA =
95.23; AA = 95.42;
KC = 94.85

1. Adaptive edge learning for
refining the graph structure
2. Attention mechanism to cap-
ture informative features
3. Improved feature extraction
using graph attention networks

1. Computational com-
plexity is relatively high
2. Fine-tuning is required
for optimal performance

18 [163]GAT Spatial-
Spectral
Atten-
tion

IP: 0.05
HU: 0.08

Indian Pines: OA =
96.84; AA = 97.33;
KC = 95.81; Hous-
ton U: OA = 92.85;
AA = 93.23; KC =
92.23; Urban: OA =
94.15; AA = 94.32;
KC = 93.79

1. Spatial-spectral attention
mechanism for capturing both
spatial and spectral information
2. Hierarchical feature learning
using graph attention networks
3. Improved representation of
hyperspectral data

1. Accuracy improvement
is needed for the Houston
dataset
2. Time-consuming during
the training stage

S.
No

Ref Model Addition Training
Ratio

Results Contributions Shortcomings

Studies with GCN Models achieving more than 96% Overall Accuracy

This part presented herein addresses several key challenges encountered in HSI classifi-
cation and explores innovative solutions leveraging GCNs. From enhancing classification
accuracy to dealing with unlabelled data and addressing computational complexities, re-
searchers have devised a myriad of approaches to overcome these obstacles mentioned be-
low. The network connection of these studies is visualized in Figure 2.7.
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Figure 2.7: Density Visualization of studies having OA more than 96% with GCN for HSIC

Challenge: Enhancing Classification Accuracy

• In addressing the challenge of enhancing classification accuracy in hyperspectral im-
age classification, researchers have explored various strategies to overcome the in-
herent limitations of graph-based methods. Yang et al. [146] introduced the Super
Pixel-Graph Construction (SGC) method, leveraging adaptive graph construction to
enhance discriminative ability. However, while SGC addresses the issue of discrim-
inative ability, it may still encounter challenges related to scalability and computa-
tional complexity due to its reliance on graph construction.

• To address similar challenges differently, Chen et al. [147] proposed Auto-GCN,
aiming to streamline the process of updating graphs. By integrating semi-supervised
Siamese networks through novel labelling approaches, Auto-GCN reduces manual
efforts and enables joint training for more meaningful feature extraction. Nonethe-
less, the reliance on semi-supervised learning may introduce challenges related to
the availability and quality of labelled data, potentially limiting its applicability in
scenarios with limited annotated samples.

• To further capitalize on the inherent association between spectral bands in hyper-
spectral images, Yang et al. [149] pioneered a dual-branch network architecture. By
integrating spatial and spectral Graph Convolutional Networks (GCNs) with a cross-
attention fusion module, they achieved enhanced differentiation of information and
improved classification accuracy. Despite its effectiveness, this approach may face
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challenges related to computational complexity and model interpretability, particu-
larly in scenarios with large-scale hyperspectral datasets.

• Building upon this understanding, Wan et al. [151] addressed the limitations of tra-
ditional GCNs in adequately considering the spatial context. Their proposed dual
interactive GCN incorporates contextual spatial details to enrich graph information,
leading to improved overall performance in hyperspectral image classification tasks.
However, the dual interactive GCN approach may introduce challenges related to
model training and optimization, particularly in scenarios with complex spatial rela-
tionships and heterogeneous spectral characteristics.

Challenge: Dealing with Unlabelled Data

• Dealing with unlabeled data presents a significant challenge in hyperspectral image
classification. Zhang et al. [64] tackled this by incorporating sparse representation
for graphs in both spectral and spatial dimensions, enhancing classification through
label propagation. Additionally, to address performance degradation due to limited
labelled samples, Zhang et al. [154] introduced differentiable superpixel segmenta-
tion and refined pixel boundaries before classification. Similarly, Liu et al. [157]
proposed a novel approach surpassing traditional GCN-based methods by integrating
feature fusion and hypergraph structures, showcasing the effectiveness of various fu-
sion strategies. These studies collectively highlight innovative approaches to mitigate
challenges posed by limited labelled data, fostering advancements in hyperspectral
image classification.

Challenge: Massive Computations

• Massive computations pose a significant challenge in GCN-based hyperspectral im-
age classification. Liu et al. [72] proposed multilayer graphs based on progressive
superpixel merging and un-pooling features to adapt quickly to pixel-wise classifica-
tion.

• Zhang et al. [163] introduced a feature spectra-spatial extraction method, utilizing
graph convolution to fuse both types of information. By incorporating graph pooling
to reduce duplicate features, these approaches preserve important information while
minimizing unimportant patches, thereby improving computational efficiency.

• Hong et al. [160] introduced minibatch GCNs to reduce computational costs, en-
abling the training of large-scale GCNs in smaller batches. Additionally, Mou et
al. [161] proposed an end-to-end semi-supervised network based on non-local GCN,
streamlining the annotation process while maintaining high classification accuracy.
These advancements underscore ongoing efforts to overcome computational barriers
and improve the efficiency of hyperspectral image analysis techniques.
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Challenge: Feature Discrimination

• Lastly, addressing the challenge of identifying discriminative aspects within hyper-
spectral data, Luo et al. [148] introduced the multi-structural unified discriminative
embedding (MUDA) method. By analyzing neighbourhood, tangential, and statis-
tical features associated with each pixel, MUDA effectively shapes interclass and
intraclass samples using neighbourhood and tangential structure graphs, leading to
more accurate classification outcomes.

2.2.5 Review of Studies based on Ensemble Networks

Ensemble Networks leverage the diversity of multiple base classifiers to improve classifi-
cation accuracy and reliability in hyperspectral image analysis. By combining predictions
from individual models, Ensemble Networks mitigate the limitations of individual clas-
sifiers and exploit the complementary strengths of diverse classifiers to achieve superior
classification performance. This ensemble approach enables more robust classification de-
cisions by capturing a broader range of spectral and spatial patterns present in hyperspec-
tral data. The application of Ensemble Networks in hyperspectral image classification has
gained increasing attention due to their effectiveness in handling the unique characteris-
tics of hyperspectral data. Ensemble Networks have been shown to outperform traditional
single-model approaches by harnessing the collective intelligence of diverse classifiers, in-
cluding support vector machines, decision trees, neural networks, and spectral-spatial clas-
sifiers. In this section, we provide a review of Ensemble Networks used for hyperspectral
image classification, focusing on their training ratio, results, contributions and shortcom-
ings. Ensemble learning combines several models, such as classifiers or experts, to tackle
a specific computational intelligence issue. Several ensemble models are combined in the
literature to improve the classification accuracy and maintain the HSI computational time.
Table 2.15 includes the models with improvisations made to each.

Table 2.15: Articles with Ensemble Network

1 [164] EMAP + Ga-
bor + GLCM +
NPE+ LFDA

IP: 0.10
PU: 0.01
KSC: 0.05

Indian Pines: OA =
98.46; AA = 98.39;
KC = 98.24; Pavia
U: OA = 99.48; AA
= 99.62;KC = 99.32;
KSC: OA = 96.81;
AA =96.26; KC =
96.45

1. Multiview fusion using EMAP
(extended multi-attribute profiles),
Gabor filters and gray level cooc-
currence matrix (GLCM)
2. LFDA to remove the redundant
features and NPE to preserve the lo-
cal manifold structure
3. Better than existing methods due
to feature stacking

Computational time
can be calculated and
reduced.

S.
No

Ref Model Used Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.15: Articles with Ensemble Network (Continued)

2 [71] Capsule Net-
work + GAN
+ Multiscale
Convolution

PU: 0.008
SA: 0.006
KSC: 0.06

Pavia U: OA =
97.98; AA = 98.01;
KC = 97.32; Salinas
: OA = 93.87; AA =
97.54; KC = 93.20;
KSC : OA = 98.20;
AA = 97.23; KC =
97.99

1. Capsule Network integrated with
GAN to alleviate the gradient van-
ishing problem caused by conven-
tional GANs
2. Octave convolution and Multi-
scale convolution to reduce the pa-
rameters
3. Multiscale fusion of spectral and
spatial information

1. Higher training time
than other state-of-the-
art networks
2. Capsule Networks
increase the computa-
tional cost

3 [165] Bi-LSTM
+ Attention
mechanism +
Global-Local
Pooling

IP: 0.10
PU: 0.34
SA: 0.02

Indian Pines: OA=
99.15; AA = 99.36;
KC = 99.03; Pavia
U: OA = 99.26; AA
= 99.03; KC =99.01;
Salinas: OA = 99.37;
AA= 99.57; KC =
99.3

1. Integrated Bidirectional LSTM
for spectral features and global-
local CNN for spatial features
2. To counteract the effect of inter-
fering information in the patch, the
GL-PF module evaluates the corre-
lation between alternative pooling
algorithms.

1. The number of
principal components
and neighbourhood
size is sensitive to each
dataset

4 [166] ARMA +
GCN + Con-
text Aware
Learning +
Cross Entropy

PU: 0.006
SA: 0.008
HU: 0.03

Pavia U: OA =97.71;
AA = 97.56; KC =
98.24; Salinas: OA
= 97.96; AA = 98;
KC = 97.43; Hous-
ton U: OA = 93.04;
AA = 92.68; KC =
92.36

1. To handle the computational cost
involved in GCN, integrated autore-
gressive moving average filter to re-
duce the calculations
2. Solves over smoothing problem
involved in GCN
3. An end-to-end model trained
with context-aware learning to ex-
tract local information

1. Difficult feature ex-
traction with ARMA if
CAL is omitted
2. Computational com-
plexity increases as the
number of segmenta-
tions increase

5 [167] CNN + Label
Smoothing
+ Transfer
Learning

IP: 0.02
KSC: 0.04
HU: 0.01

Indian Pines: OA =
91.88; AA = 77.37;
KC = 90.28; KSC:
OA = 99.27; AA =
98.87; KC = 99.19;
Houston U: OA =
88.33; AA = 88.1;
KC = 87.39

1. A network that joins CNN,
Transfer learning, and ensemble
networks by taking advantage of all
three of them
2. An improved label smoothing
technique to improve the general-
ization of the current approach

1. Classification
Accuracy can be sig-
nificantly increased
2. Improved Label
Smoothing showed
minimal improvement
in accuracy

6 [168] CNN + En-
semble
Learning
+ Enhanced
Random Fea-
ture Subspace

IP: 0.05
PU: 0.05
SA: 0.05

Indian Pines: OA =
97.57; AA = 96.23
KC = 97.23; Pavia
U: OA = 98.48; AA
= 98.37; KC = 97.98;
Salinas: OA = 99.34;
AA = 99.3; KC =
99.27

1. This study proposed a net-
work using enhanced feature ran-
dom subspace that works on imbal-
anced class distribution problem
2. Data enhancement using random
subsampling technique
3. Use of ensemble techniques like
bagging, boosting, and stacking

1. Computational time
increases with the size
of the ensemble, and
features get bigger

7 [169] Capsule
Network +
GAN+CNN
+Augmenta-
tion +Conv
LSTM

IP: 0.01
HU: 0.009

Indian Pines: OA=
72.31; AA = 81.67;
KC = 68.74; Hous-
ton U : OA = 70.69;
AA = 72.26; KC =
68.25

1. GAN to generate synthetic data
for data augmentation
2. Discriminator embedded with
capsule network and convolutional
extended short tern memory model
3. Stable training using sparse
constraint

1. Poor accuracy
can be significantly in-
creased

S.
No

Ref Model Used Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.15: Articles with Ensemble Network (Continued)

8 [170] Few-shot
learning +
Quadruplet
loss + dense
and dilated
convolution

Trained
on HU,
KSC,
BOT

Salinas: OA =
95.58; AA = 95.85;
KC =95.46; Indian
Pines: OA = 82.77;
AA = 82.65; KC =
82.59; Pavia U: OA
= 94.57; AA = 94.71;
KC = 94.42

1. This study proposed a quadru-
plet network that works on increas-
ing the inter-class distance and re-
ducing the intra-class distance
2. Use of dense and dilated convo-
lution to extract the discriminative
features
3. Proposal of the quadruplet loss
function

1. Computing time to
train the network could
be further reduced
2. Accuracy could be
better for the Indian
Pines dataset

9 [171] CNN + Trans-
fer Learning

IP: 0.08
PU: 0.003

Indian Pines: OA =
94.65; AA = 96.62;
KC = 94; Pavia U:
OA = 97.86; AA =
98.13; KC = 97

1. Proposed an artificial labelling
method of unsupervised training
that works based on spatial location
2. Analyses clustering phe-
nomenon and effect of noise addi-
tion in classes

1. Computing Time
could be reduced

10 [172] FCN + Patch
Free Global
Learning +
Feature Fusion

PU: 0.04
SA: 0.06
HU: 0.18

Pavia U: OA =
99.81; AA= 99.83;
KC = 99.74; Salinas:
OA =99.92; AA =
99.91; KC = 99.91;
Houston U: OA =
86.41; AA = 88.44;
KC = 85.55

1. The proposed network includes a
sampling technique, FCN based on
encoder and decoder
2. Integrated FreeNet to increase
the accuracy
3. A lateral connection between en-
coder and decoder for the fusion of
spatial data

1. Lower accuracy for
the Houston U dataset

S.
No

Ref Model Used Training
Ratio

Results Contributions Shortcomings

EN achieving more than 95% Overall Accuracy

Figure 2.8: Network Diagram of studies having OA more than 96% with Ensemble for
HSIC

Challenge: Limited Labelled Data

• Addressing the challenge of limited data availability, He et al. [167] employed trans-
fer learning and an improved label smoothing technique to enhance the performance
of CNNs. While their approach achieved impressive results exceeding 99% accu-
racy for the KSC dataset, it struggled to achieve comparable performance for IP and
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Houston University (HU) datasets, highlighting the limitations of transfer learning in
datasets with varying characteristics.

• Masarczyk et al. [171] also tackled the limited sample problem by introducing dense
and dilated convolutions to extract discriminative features and employing quadruplet
loss to enhance accuracy. While their approach shows promise in capturing complex
spatial patterns, the effectiveness of the proposed method may vary depending on the
dataset’s characteristics and the selection of hyperparameters.

• Wang et al. [173] addressed the limited sample problem by leveraging GANs for data
augmentation, generating synthetic samples to augment the dataset. Their proposed
network, which incorporated convolutional LSTM and capsule networks within the
GAN discriminator, showcases the potential of synthetic data generation for enhanc-
ing model performance. However, the reliance on generated data introduces chal-
lenges related to dataset distribution and the generalization of the model to real-world
scenarios.

Challenge: Class Imbalance

• To mitigate the class imbalance problem, Lv et al. [168] introduced augmentation
techniques and an enhanced feature subspace, constructing an ensemble learning
model with CNNs serving as subnetworks for classification. Despite their efforts,
the model’s performance may still be hindered by the inherent challenges posed by
imbalanced datasets, necessitating further exploration of robust techniques to address
class imbalances effectively.

Challenge: Overfitting

• Building upon these efforts, Wang et al. [71] focused on alleviating overfitting and
exploiting spectral-spatial information by integrating capsule networks and GANs.
Their approach, which fused spectral and spatial information using contexture rela-
tions, demonstrated improved efficiency and stability by incorporating capsule net-
works within the GAN discriminator. Despite these advancements, the model’s per-
formance may be influenced by the choice of hyperparameters and the complexity of
the spectral-spatial relationship representation.

2.2.6 Review of Studies based on Generative Adversarial Networks

Generative Adversarial Networks (GANs) have emerged as a promising approach for ad-
dressing challenges in hyperspectral image classification. By harnessing the power of
adversarial training, GANs enable the generation of synthetic hyperspectral images that
closely resemble real-world data, thereby facilitating data augmentation and improving
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classification performance. In this section, we explore literature involving GANs for syn-
thetic data generation in HSIC domain.

Table 2.16: Articles with GAN as the base network

1 [174] GAN 3D Patch
Extractor
+ 3D
Discrimi-
nator +3D
Classifier

IP:
0.05
PU:
0.05
KSC:
0.05

Indian Pines: OA =
86.96; AA = 78.72;
KC = 85.17; KSC:
OA = 95.31; AA =
92.26; KC = 94.78;
Pavia U: OA = 93.9;
AA = 93.29; KC =
91.86

1. Proposed a network based on
GAN for class imbalance prob-
lems. This network generates sam-
ples using over sampling strategy
with the use of a generator and fea-
ture mapping unit
2. A discriminator that differenti-
ates real and fake samples Uses a
low amount of training samples

1. Accuracy can be in-
creased
2. Poor generalization
of the KSC dataset
3. Performance of the
proposed dataset im-
proves with a higher
degree of imbalance

2 [175] GAN Adaptive
weighting
feature
fusion

IP:
0.10
PU:
0.01

Indian Pines: OA =
97.83; AA = 98.30;
KC = 97.53; Pavia U:
OA = 98.68; AA =
98.81; KC = 98.12

1. Proposed network with dis-
criminator containing adaptive
spectral-spatial combination pat-
tern
2. Four sets of filter banks for
performance improvement
3. Center loss and Mean mini-
mization loss encapsulated

1. Bigger Kernel size
causes overfitting
2. Yields best accuracy
with no unlabeled sam-
ples

3 [176] GAN Domain
Adap-
tation
+ Cross
Dataset

Trained
on PU

Botswana: OA:
89.65;AA = 87.14;
KC = 82.35;
Pavia C: OA = 88.25;
AA = 87.93; KC =
84.92; Salinas: OA
= 86.55; AA = 87.3;
KC = 81.96

1. Proposed a network based on
GAN that encapsulates variational
encoder that helps to learn data
across domains
2. Two alignment strategies to
align different domains
3. A GAN with generator and
discriminator that trains on source
dataset and tests on target data

1. Accuracy can be
increased for all three
datasets, including
Botswana, Pavia C,
and Salinas
2. Takes longer
training time

4 [115] GAN Attention
mecha-
nism +
Convo-
lutional
LSTM

IP:
0.05
PU:
0.03

Indian Pines: OA =
97.4; AA = 95.2; KC
= 97;
Pavia U: OA = 99.2;
AA = 98.6; KC = 99.2

1. Proposed a convolutional GAN
to alleviate the overfitting issue
2. Generator generates samples
using competitive and collabora-
tive learning
3. Attention module to generate
discriminative features

1. Sampling strategies
to reduce the overlap
between training and
testing sets
2. Determining the best
values of the number
and position of mod-
ules is a challenge

5 [177] GAN Active
Learning

IP:
0.02
PU:
0.006

Indian Pines: OA =
91.41; AA = 93.2; KC
= 90.2; Pavia U: OA
= 93.47; AA = 88.97;
KC = 91.34

1. Proposed a network based on
GAN and active learning able to
work with limited samples
2. Integrates Acquisition heuris-
tic for better feature discrimination
that is adversarially learned with
high-level features

1. Overall Accuracy
could be improved

S.
No

Ref Model
for
Data
Gen

Model
Used

Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.16: Articles with GAN as the base network (Continued)

6 [178] GAN Adversarial
Learning
+ CNN +
Multiclass
Spectral
Spatial

IP:
0.05
PU:
0.03
KSC:
0.01

Indian Pines: OA =
95.6; AA = 91.4; KC
= 95;Pavia U: OA =
99.2; AA = 98.4; KC
= 98.9;Salinas: OA =
99.1; AA = 99.3; KC
= 99

1. An end-to-end network for mul-
ticlass classification with unified
sample generation, feature extrac-
tion, and classification
2. Uses adversarial learning to en-
hance the discrimination further,
works on a small sample problem

1. Training Time could
be reduced 2. Unable to
deal with a class imbal-
ance distribution prob-
lem

S.
No

Ref Model
for
Data
Gen

Model
Used

Training
Ratio

Results Contributions Shortcomings

GAN with overall accuracy between 99-100%

Figure 2.9: Network Diagram depicting studies achieving OA over 95% using GAN for
HSIC - (Current works highlighted in green, future works in blue)

Challenge: Enhance Classification

• Feng et al. [115] integrated a complex attention module into the generator, aiming
to eliminate noisy aspects in samples. They extended the network by incorporating a
convolutional LSTM into the discriminator to extract spectral-spatial features.

• Yin et al. [34] introduced a novel network architecture with a discriminator to gen-
erate improved samples, enhancing information discrimination and classification by
considering both spectral and spatial information.

• Wang and Ren [177] introduced adversarial active learning, establishing an acquisi-
tion heuristic to guide the selection of informative samples for training. This approach
optimizes the learning process by focusing on the most informative data points, con-
tributing to overall classification performance.

Challenge: Class Imbalance
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• To tackle the issue of class imbalance, Quan et al. [174] proposed a comprehensive
network architecture comprising a generator, discriminator, and classifier. This ar-
chitecture effectively addressed class imbalance distribution by generating samples,
classifying them as real or fake, and further categorizing them into several classes.
Additionally, Feng et al. [115] addressed redundant spectral bands and limited sam-
ples by generating synthetic data and employing semi-supervised training with vari-
ous fusion strategies.

2.2.7 Review of studies based on LSTM

LSTM, a specialized form of RNN, plays a crucial role in addressing short-term mem-
ory challenges and is widely utilized in diverse fields, including natural language process-
ing, speech recognition, and HSI classification. Singh and Singh [179] introduced a novel
framework focusing on the spectral properties of HSI, utilizing LSTM as a classifier. This
approach excels in handling sequential problems, showcasing the effectiveness of LSTM in
capturing temporal dependencies within hyperspectral data. Further advancements in utiliz-
ing LSTM for HSI classification were made by integrating traditional low-level features to
extract sequential features from central samples [180]. This integration enhances LSTM’s
ability to learn high-level semantic features, thereby significantly improving classification
accuracy. However, concerns regarding Convolutional LSTM’s excessive number of pa-
rameters and high storage requirements were addressed by Hu et al. [181] within a unified
framework, emphasizing the importance of optimization techniques in model design and
implementation. Yin et al. [34] presented an innovative approach by optimizing parame-
ters for two feature extractors: Bi-LSTM and 3D CNN. The Bi-LSTM extractor focuses
on capturing spectral features to understand relationships between spectral bands, while
the 3D CNN extractor emphasizes spatial-spectral features. Both extractors undergo opti-
mization using a carefully designed loss function, highlighting the significance of feature
extraction methods in enhancing HSI classification performance. Building on this, Ma et al.
[182] proposed a method that goes beyond spectral data alone by employing pixel-wise and
block-wise similarity measurements to select sequence candidates. This approach provides
a distinctive perspective on leveraging LSTM for enhanced HSI classification, emphasizing
the importance of considering spatial relationships between pixels. Table 2.17 summarizes
models with LSTM.
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Table 2.17: Articles with LSTM as base network

1 [183] LSTM Attention
Mechanism
+ Auto-
correlation
mechanism

PU:
0.05
IP: 0.10
SA: 0.
05
HU:
0.10

Pavia U: OA = 99.35;
AA= 99.14; KC =
98.87; Indian Pines:
OA =97.62; AA =
96.93; KC = 97.2;
Salinas: OA = 99.42;
AA = 99.23;KC =98.9;
Houston U: OA =
95.26; AA = 96.69; KC
= 93.79

1. LSTM takes spectral bands
as input values along with spa-
tial information employed by
non-local diverse regions.
2. Attention mechanism is in-
tegrated to enhance discrimi-
nation and reduce the number
of parameters
3. An autocorrelation mech-
anism enhances the bands’
discriminative information and
suppresses the bands’ weak in-
formation.

1. Dimensionality
reduction technique
could have reduced
the bands

2 [184] LSTM Attention
Network

SA:
0.10
PC:
0.10
PU:
0.10

Salinas: OA = 98.12;
AA =98.88; KC
=97.91; Pavia C: OA=
99.73; AA= 99.2; KC
=99.62; Pavia U: OA
= 98.71;AA= 97.63;
KC= 98.29

1. Explored the bi-directional
correlation of hyperspectral
pixels using bidirectional
LSTM
2. An attention mechanism to
explore the spatial features
3. Reduces redundancy and
highlights discriminative
features

1. LSTM uses more
parameters and float-
ing point operations
than CNN

3 [185] LSTM Pixel level
scanning
+ Multi
scanning
strategy

IP: 0.10
PU:
0.10
SA:
0.20

Indian Pines:
OA= 95.38; AA
=95.45;KC=95; Pavia
U: OA= 99.18;AA=
98.81; KC =98; Sali-
nas: OA =97.92; AA
=97.67; KC = 97

1. The multi-scanning strategy
used by RNN takes fewer pa-
rameters than the most ground-
breaking model, CNN
2. Converts and image into
sequential data with different
scanning directions
3. Good classification accu-
racy, lesser parameters

1. Multi directions for
the multi-scanning
need to be finalized
2. Spectral-spatial
models lead to higher
accuracy

4 [186] LSTM PCA +
Attention
mechanism
+ Multiscale
convolution
+ Softmax

IP: 0.15
PU:
0.10
KSC:
0.10

Indian Pines: OA=
88.25; AA =89.48;
KC=86.5; Pavia U: OA
= 95.43; AA =94.83;
KC = 93.92; Salinas:
OA =95.93; AA =97.8;
KC =96.66

1. PCA to reduce the dimen-
sions and attention mechanism
to enhance the feature selec-
tion
2. Multiscale convolution to
enhance feature mining
3. Bi LSTM for feature inte-
gration
4. Softmax for multiclass clas-
sification

1. Indian pines
has the most imbal-
ance class distribution
problem; the accuracy
can be increased

5 [182] LSTM Pixel Match-
ing +Block
Matching
+ Spatial
Similarity
Measure-
ments

SA:
0.06
PU:
0.04

Salinas: OA=
90.63; AA
=93.95;KC=89.55;
Pavia U: OA= 96.2;
AA =94.65; KC
=94.91

1. Proposed model uses LSTM
for constructing sequential fea-
tures from a single image
2. Pixel matching and block
matching to select sequence
candidates
3. Investigates Euclidean dis-
tance and spectral angle map-
ping

1. Pixel matching
method is sensitive
2. Over-smoothing
problem
3. Cross-domain re-
search could be a
topic for future

S.
No

Ref Model Additions to
model

Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.17: Articles with LSTM as base network (Continued)

6 [187] LSTM Gated Recur-
rent Unit

IP: 0.07
PU:
0.09

Indian Pines: OA =
91.79; AA = 95.94; KC
=90.62; Pavia U: OA
=90.3; AA = 87.97; KC
= 86.26

1. Gated Recurrent Unit to
eliminate the redundant infor-
mation and to learn comple-
mentary information from the
non-adjacent bands
2. Takes advantage of both
spectral and spatial informa-
tion by integrating them

1. Due to the spa-
tial feature not being
fully accessible, accu-
racy for both datasets
is not very high

7 [33] LSTM PCA + Spa-
tial LSTM
+ Softmax
+ Deci-
sion Fusion
strategy

IP: 0.10
PU:
0.09
KSC:
0.09

Indian Pines: OA
=95; AA =91.69;
KC=94.29; Pavia
U: OA =98.48; AA
= 98.51;KC =97.56;
KSC: OA =97.89; AA
= 97.28; KC =97.65

1. LSTM to address the prob-
lem of spectral feature extrac-
tion and spatial feature extrac-
tion
2. Patch centered at the pixel
was used for the spatial feature
extraction

1. Works well when
fed both spectral and
spatial information

S.
No

Ref Model Additions to
model

Training
Ratio

Results Contributions Shortcomings

2.2.8 Other Prominent Studies Encountered

In the survey, other encountered models with fewer published articles include attention
networks, machine learning models (such as random forest, support vector machines, K-
nearest neighbour), active learning, transformer networks, and few-shot classification mod-
els like Siamese, deep metric learning, deep belief network, extreme learning machine,
and domain adaptation. Notably, attention networks demonstrated the highest overall accu-
racy (97%), followed by the transformer network (96%) and machine learning and active
learning models (95%). Few studies addressed deep metric learning, deep brief learning,
extreme learning machines, and domain adaptation, reflecting the accuracy of each study
rather than an average overall accuracy. Additionally, models such as Deep-Q network,
Low-Rank learning, Shared Subspace learning, CliqueNet, Sparse representation classifier,
and Kernel space representation with Brownian descriptor were encountered with mini-
mal data. Figure 2.10 illustrates the learning modes utilized by each deep learning model,
revealing a predominant preference for supervised learning, followed by semi-supervised
learning. Unsupervised learning, although less popular, has gained traction with advance-
ments like Generative Adversarial Networks (GAN), facilitating the generation of synthetic
data to mitigate challenges posed by small labelled datasets. Tables 2.18, 2.19, 2.20, 2.21,
and 2.22 encompass the literature on attention networks, machine learning models, active
learning, transformer networks, few-shot learning, and deep metric learning, respectively.
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Table 2.18: Articles with Attention Networks

1 [188] Band Atten-
tion + Spatial
Attention
+Feature
Fusion

HU: 0.05
KSC: 0.05

Houston U: OA=
89.13; AA= 90.31;
KC = 88.36; KSC:
OA = 98.6; AA =
98.02; KC = 98.42

1. The proposed network reduces
interfering pixels to extract more
discriminative features
2. Band attention and spatial atten-
tion to reducing the duplicate fea-
tures

1. Spectral and spatial
extraction individually
does not result in good
performance

2 [189] 3D Spatial
and Spectral
convolution
+ Dense
Connection

IP: 0.19
PU: 0.19
HU: 0.06

Indian Pines: OA
= 99.67; AA =
99.55; KC = 99.62;
Pavia U: OA =
99.81; AA = 99.75;
KC = 99.75; Hous-
ton U: OA = 96.64;
AA = 95.43; KC =
96.03

1. Dense network to extract the fea-
tures comprehensively and avoid
overfitting
2. 3D Spectral and 3D Spatial con-
volution replaced by the 3D convo-
lution
3. Attention mechanism to further
improve discrimination

1. Needs more compu-
tational power
2. Higher classifi-
cation accuracy with
lesser training samples
can be achieved in the
future

S.
No

Ref Additions to
model

Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.18: Articles with Attention Networks (Continued)

3 [190] Multiway Spa-
tial attention
and spectral
attention

PU: 0.03
KSC: 0.05
PC: 0.08

Pavia U: OA =98.03;
AA =97.51; KC=
97.39; KSC:OA
=98.4; AA = 97.22;
KC =98.21; Pavia C:
OA = 98.08; AA=
93.93;KC =97.29

1. The proposed network contains a
spectral, spatial, and semantic mod-
ule that filters out unimportant in-
formation
2. Focuses on features with infor-
mative areas
3. Multiscale semantic module to
help classify features

1. Great accuracy
for other datasets, but
classification accuracy
for the newly explored
HUOSHAOYUN min-
eral dataset can be in-
creased

4 [191] Spectral Fea-
ture Fusion +
CNN

IP: 0.05
PU: 0.01
SA: 0.01

Indian Pines: OA =
92.51; AA = 94.22;
KC =91.02; Pavia
U: OA = 97.09;
AA =96.51;KC=
96.15; Salinas: OA
=96.16; AA=98.48;
KC=95.72

1. Novel spectral feature fusion
combined with Groupwise spectral
classifier
2. Dual Channel attention to en-
hance discrimination
3. Joint loss function to enhance
classification
4. Works well for limited data

1. Accuracy can be in-
creased for the Indian
Pines dataset
2. Involves much more
parameters due to the
dual attention module

5 [192] Grouped con-
volutions +
Spatial atten-
tion + Spectral
Partition

IP: 0.05
PU: 0.005
SA: 0.005

Indian Pines: OA =
98.29; AA= 97.85;
KC = 98.05; Pavia
U: OA= 97.92;
AA= 96.95; KC =
97.23; Salinas: OA
= 97.46; AA = 98.45;
KC = 97.17

1. The proposed network consists
of spectral partition, feature extrac-
tion, fusion and classification stage
2. A novel spatial attention mod-
ule to maintain performance while
choosing a bigger patch size

1. The choice of patch
size is sensitive to the
dataset
2. Larger path size in-
cludes interfering pix-
els as well

6 [193] Spectral bidi-
rectional RNN
+ Spatial at-
tention CNN

PC: 0.12
PU: 0.02
IP: 0.10

Pavia C: 99.69;
98.31; 99.18; Pavia
U: 99.24; 98.07;
98.17; Indian Pines:
99.67; 99.08; 98.37

1. Spectral bidirectional attention
and spatial attention convolution to
extract spatial-spectral features
2. Extracts homogeneous discrimi-
native features

1. Misclassification
in few classes where
classes have similar
features in the spectral
or spatial domain

7 [45] Channel wise
attention
+ Spatial
Attention

IP: 0.03
PU: 0.04
SA: 0. 005
BOT:
0.012

Indian Pines: 95.38;
96.47; 94.74; Pavia
U: 96; 96.45; 94.67;
Salinas: 97.51; 98;
97.23; Botswana:
96.24; 96.74; 95.93

1. An end-to-end network with no
need for feature engineering
2. Double Branch Dual-Attention
mechanism that extracts discrimi-
native features
3. Works well with limited data
4. Lesser time complexity

1. Accuracy can be fur-
ther increased
2. Training Time can
be reduced

S.
No

Ref Additions to
model

Training
Ratio

Results Contributions Shortcomings

Table 2.19: Articles with Machine Learning Models

1 [194] Random
For-
est +
Markov
Ran-
dom
Field

Super-
pixel
segmen-
tation +
Regular-
ization +
Fusion

IP:0.12
SA:0.012
HU:0.012

Indian Pines: OA =
94.97; AA = 86.85;
KC = 94.25; Salinas:
OA = 97.6; AA = 97;
KC = 97.33; Houston
U: OA = 84.94; AA =
86.53; KC = 83.68

1. The proposed network
combines super pixel seg-
mentation and correlation
partitioning
2. Random Forest with
Markov Random field fused
as a classifier

1. Accuracy for the
Houston U dataset can be
increased
2. High computational
complexity

S.
No

Ref Model Additions
to model

Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.19: Articles with Machine Learning Models (Continued)

2 [195] SVM PCA+
Spectral-
Spatial
feature
extraction
Multiscale
Fusion

IP:0.02
KSC:0.016

Indian Pines: OA =
96.11; AA= 96.13; KC
= 95.6; KSC: OA =
94.74; AA = 94.74;
KC = 94.2

1. Combines PCA, seg-
mented PCA, and two-
dimensional spectrum
analysis fusion method
for feature extraction and
classification jointly.
2. SVM is used as a
classifier to evaluate the
performance

1. High Computational
complexity due to a large
number of embedded
windows

3 [196] MLR/SVMData Aug-
mentation

IP:0.015
PU:0.004

Indian Pines: OA
= 87.76; AA= 86.12;
KC = 86.2; Pavia U:
OA = 85.85; AA =
86.69; KC = 83.99

1. A data augmentation
method that studies the ef-
fectiveness of both labelled
and unlabeled samples
2. Feature extraction
method that works with
small datasets

1. Feature extraction
method can combine
spatial information to en-
hance the classification
accuracy
2. Classification accu-
racy is low

4 [197] SVM
with
com-
posite
kernel
(SVM-
CK)

Spectral-
Spatial
Graph
+ Novel
Distance
Metric

IP:0.12
PU:0.016
SA:0.013

Indian Pines: OA =
98.18; AA=98.67; KC
= 97.9; Pavia U: OA =
97.66; AA =97.92; KC
= 96.9;Salinas: OA
=98.9; AA= 99.27; KC
= 98.9

1. Clustering hyperspectral
data into clusters using su-
perpixel segmentation
2. A novel distance metric
was introduced to calculate
the pixel similarity
3. A graph that preserves
local information fed into
SVM-CK for classification

1. Few misclassifica-
tions occur due to spa-
tial information involved
in graph construction
2. Computation cost is
nearly lower and can be
lowest by optimizing the
existing algorithm

5 [198] Watershed
Clas-
sifier/
RF/SVM

Triplet
Loss

IP:0.10
PU:0.10
KSC:0.10

Indian Pines: OA =
82.00; AA= 77.36; KC
= 79.41; Pavia U: OA
=94.19; AA =92.38;
KC =92.29;KSC: OA
=81.27 ; AA = 72.90 ;
KC = 79.09

1. The proposed novel algo-
rithm uses fewer parameters
2. The proposed network
can be used for both super-
vised and semi-supervised
learning without any modi-
fications
3. Can be extended to
classifiers like random for-
est and SVM as well

1. Deep learning mod-
els in the same paper pro-
vided better results than
classifiers like SVM or
RF

6 [199] KNN
and
Guided
Filer

Spectral-
Spatial
Informa-
tion

IP:0.05
PU:0.05
KSC:0.
05
SA:0.05

Indian Pines: OA =
98.76; AA =97.73; KC
= 97.41; Pavia U: OA
= 99.26; AA = 99.03;
KC = 98.95;KSC: OA
=99.76; AA = 99.63;
KC = 99.73; Sali-
nas: OA = 99.9; AA=
99.85; KC = 99.89

1. KNN with a guided filter
that can extract spatial in-
formation and enhance dis-
criminative ability by using
an edge-preserving filter
2. Dimensionality reduc-
tion to reduce the dimen-
sions and consider relevant
bands

1. Selection of filters is
sensitive to datasets
2. Other classification
models can be tried

S.
No

Ref Model Additions
to model

Training
Ratio

Results Contributions Shortcomings
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Table 2.20: Articles with Active Learning

1 [200] Active
Learn-
ing

Candidate Set
+ Pseudo La-
bels + Cluster-
ing

IP:0.019
SA:0.003

Indian Pines: OA
= 67.8; AA = 65.7;
KC = 64.2; Salinas:
OA = 85.6; AA=
89.5; KC = 84

1. Cluster-inspired active
learning for limited labeled
samples
2. Formation of the can-
didate set using modified
clustering with fast search
3. K-means clustering-
based pseudo-labeling
scheme for unlabeled data

1. Extremely low clas-
sification accuracy. A
large room for improve-
ment left in improving
the classification accu-
racy.

2 [201] Active
Learn-
ing

Multiview
Learning
+ Repre-
sentation
Learning+
LOCO Active
Learning

SA:0.005
BOT:0.09
KSC:0.05

Salinas: OA =
88.47; AA =92.28;
KC = 87.13;
Botswana: OA =
92.14; AA =92.25;
KC = 91.49; KSC:
OA = 90.61; AA =
86.22; KC = 89.52

1. Proposed “leave one
class out” (LOCO) strategy
for limited samples
2. A sample selection strat-
egy for ranking the train-
ing contribution of candi-
date set and training set
3. Reduces the time cost by
decreasing the target set

1. Run time is lower
but still higher than
state-of-the-art models.
This run time could be
reduced.
2. Use of semi-
supervised learning to
reduce sample costs.

3 [202] Active
Learn-
ing

Densely Con-
nected Block

PU:0.01
IP:0.05
SA:0.009

Pavia U: OA =
99.28; AA =98.07;
KC = 99.05; Indian
Pines: OA = 99.75;
AA =99.74; KC
= 99.71; Salinas:
OA = 99.67; AA
=99.38; KC = 99.63

1. The proposed deep,
densely connected net-
work is derived from
DenseNet121
2. Integrated active learn-
ing to add selected samples
to reduce labelling costs
and improve classification
accuracy.
3. Works for a small sample
set

1. To enhance the ac-
curacy, the classes with
fewer samples in the In-
dian Pines dataset were
removed
2. Training samples
could be further re-
duced

4 [62] Active
Learn-
ing

Multiple
Feature Rep-
resentation
+ Stacked
Sparse
Autoen-
coder(SSAE)
+ Transfer
Learning

PU:0.20
PC:0.20
SA:0.20

Pavia U: OA
=99.61; AA =
99.61; KC =
99.48; Pavia C:
OA = 99.86; AA =
99.62; KC = 99.8;
Salinas: OA =
98.61; AA = 99.27;
KC = 99.45

1. Hierarchical stacked
sparse encoder to extract
the spectral-spatial features
2. Fine-tuning of SSAE us-
ing limited labeled samples
using active learning
3. Works on cross datasets
and intra-image

1. Works even better
when land covers are
the same (for instance,
Pavia C and Pavia U)
and not for datasets
with different land cov-
ers (Indian Pines and
Salinas)
2. Parameters of hierar-
chical SSAE and active
learning could be opti-
mized
3. Can be applied to
data across sensors in
the future

S.
No

Ref Model Additions to
model

Training
Ratio

Results Contributions Shortcomings

Continued on next page
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Table 2.20: Articles with Active Learning (Continued)

5 [59] Active
Learn-
ing

Gabor Fil-
tering +
Morphologi-
cal Profiles +
Overall Error
Probability

IP:0.04
PU:0.01
KSC:0.07

Indian Pines: OA
= 99.5; AA =99.63;
KC = 99.03; Pavia
U: OA = 99.84;
AA =99.93; KC
= 99.79; KSC:
OA =99.53; AA =
99.69; KC = 99.47

1. Feature-driven active
learning to deal with small
labelled datasets
2. Overall error probabil-
ity and Fisher ratio to assess
the discriminative ability of
feature space

1. Active learning
method integrated with
the Gabor filter gives a
few misclassifications.
2.

S.
No

Ref Model Additions to
model

Training
Ratio

Results Contributions Shortcomings

Table 2.21: Articles with Transformer Network (TN)

1 [203] TN Local Con-
textual In-
formation +
Sequence Data
+ Skip Fusion
+ Transformer

IP: 0.07
PU: 0.09

Indian Pines: OA
= 81.76; AA =
87.81; KC = 79.19;
Pavia U: OA =
91.07; AA = 90.2;
KC = 88.05

1. The proposed network
is based on transformers that
can learn local spectral data
in a sequential form from
the neighbouring pixels. 2.
Cross-layer skip connections
to add soft residuals across
layers.

1. High network com-
plexity could be reduced
while maintaining classi-
fication performance. 2.
Accuracy can be im-
proved. 3. Paying more
attention to the connected
and skipped encoders.

2 [204] TN CNN + Seman-
tic Features
+ Spectral-
Spatial Tok-
enization +
Transformer

IP: 0.09
PU: 0.05

Indian Pines: OA
= 97.47; AA =
96.57; KC = 97.11;
Pavia U: OA =
99.21; AA = 98.69;
KC = 99.15

1. The proposed transformer-
based network can extract
spectral-spatial features and
high-level semantic features.
2. Gaussian tokenizer for fea-
ture transformation into se-
mantic tokens.

1. Classification accu-
racy is highly dependent
on setting the right patch
size and taking the cor-
rect number of tokens,
sensitive to each dataset.
2. Poor semantic model-
ing for Houston U dataset
due to sample points be-
ing discrete.

3 [205] TN Factorized
architecture
search + Spa-
tial Attention
+ Spectral-
Spatial Trans-
former

IP:
0.019
PU:
0.005

Indian Pines: OA
= 94.39; AA =
92.77; KC = 93.58;
KSC: OA = 97.3;
AA = 94.97; KC
= 96.99; Pavia U:
OA = 98.02; AA =
96.67; KC = 97.37

1. Incorporated transformer
blocks with spatial attention
and spectral association mod-
ules. 2. Focuses on the opera-
tions involved layer-wise and
sequential orders block-wise
to increase the classification
performance further.

1. Training time can be
further reduced. 2. Could
be combined to be an
end-to-end network.

4 [206] TN Attention
mechanism +
Long distance
dependence

SA: 0.20
IP: 0.20
PU: 0.20

Salinas: OA =
99.91; AA = 99.63;
KC = 99.81; Indian
Pines: OA = 99.22;
AA = 99.08; KC
= 98.85; Pavia U:
OA = 99.64; AA =
99.67; KC = 99.47

1. The proposed network in-
corporates a spectral attention
module and a self-attention
module. 2. Multiple en-
coders connected to the multi-
residual structure to avoid in-
formation loss. 3. Solves the
problem of long-distance de-
pendence.

1. The proposed net-
work can be customized
to perform on the im-
balance class distribution
problem.

S.
No

Ref ModelAdditions to
model

Training
Ratio

Results Contributions Shortcomings
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Table 2.22: Articles with Few-Shot Learning

1 [207] FSL Active Learn-
ing + Prototyp-
ical Learning +
Adversarial au-
toencoder

IP:0.004
PU:0.0001

Indian Pines:
OA = 62.18; AA =
70.72; KC = 57.04;
Pavia U: OA =
69.84; AA = 68.01;
KC =59.85

1. Improved prototypical
learning proposed
2. Active learning incorpo-
rated with the proposed net-
work for few-shot classifica-
tion

1. Classification accu-
racy can be highly im-
proved
2. Network takes an ex-
tremely high time to train
the network

2 [208] FSL Attention
mechanism
+ Residual
Network +
Feature-wise
transforma-
tion + Meta
learning

PU:0.005
IP:0.03
SA:0.007

Pavia U: OA =
91.77; AA = 87.95;
KC = 89.21; In-
dian Pines: OA =
85.21; AA = 77.44;
KC = 83.31; Sali-
nas: OA = 96.57;
AA =97.08; KC =
96.18

1. The proposed network can
handle cross-domain datasets
2. Residual learning to ef-
fectively discriminate the fea-
tures
3. Efficient Channel Atten-
tion module reduces parame-
ters and decreases the compu-
tational complexity

1. Classification accu-
racy can be further im-
proved
2. Especially for datasets
like Indian pines with im-
balanced class distribu-
tion, classification accu-
racy could have been bet-
ter

3 [209] FSL 3DCNN +
Residual
Learning

PU:0.009
PU:0.030
IP:0.04
SA:0.007

Pavia U: OA=
98.62; AA = 98.54;
KC =98.17; Pavia
C: OA =99.61;
AA =99.19; KC
= 99.45; Indian
Pines: OA = 98.35;
AA =99.03; KC
= 98.07; Salinas:
OA = 97.81; AA
=99.25; KC =97.56

1. Proposed a network based
on FSL that can increase the
intra-class distance and de-
crease the inter-class distance
2. Residual learning to better
extract discriminative features

1. Classes with fewer
samples in the Indian
Pines dataset could have
been included
2. Can be generalized
to other datasets as future
work
3. The network is sen-
sitive to parameters like
episodes, learning rate,
classes, and query num-
ber.

S.
No

Ref ModelAdditions to
model

Training
Ratio

Results Contributions Shortcomings

2.3 Discussion and Overall Analysis

This section introduces three graphs to assess the performance of deep learning models in
HSI classification. Figures 2.12 and 2.13 are interconnected as they illustrate the same deep-
learning models. Figure 2.12 highlights CNN as the predominant deep learning model,
representing more than half of the publications in the survey list. Most models utilizing
CNN as the foundation achieved an accuracy of over 90%. The proportion of models with
less than 90% accuracy was notably lower. CNN, with its multiple convolutional filters and
efficacy in classifying HSI, is considered an ideal choice for hyperspectral image classifica-
tion. However, its application to hyperspectral images presents challenges due to strongly
correlated bands and limited training samples. Recent CNN-based models address these
challenges by mitigating overfitting and reducing network parameters to enhance computa-
tional efficiency.

Figure 2.13 provides a closer examination of the same set of models. The horizon-
tal axis illustrates the frequency distribution of OA, while the vertical axis indicates the
number of articles falling within each OA range. The linear trendline indicates that graph
convolutional networks consistently achieved the highest OA, followed by autoencoders,
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Figure 2.12: Frequency Distribution Chart showing the spread of Deep Learning Models

extended short-term memory models, and generative adversarial networks. While the num-
ber of articles based on GAN and LSTM was lower than those on GCN and Ensemble
networks, autoencoders as a feature extraction technique outperformed GAN in synthetic
data production.

0

10

20

30

40

Less than 70% 70-75 % 76-80% 81-85% 86-90% 91-95% 96-98% 99-100%

AE GCN Ensemble GAN LSTM

Figure 2.13: Frequency Distribution Chart showing the spread of Deep Learning Models
(Exclusion: CNN)

Based on the studies discovered, the models are classified as supervised, semi-supervised
or unsupervised learning methods. The next section delves into these learning styles and
discusses relevant literature specific to these learning styles.

2.4 Summary of challenges and solutions proposed in lit-
erature

In our study, we found that the classification of HSI involves many challenges such as the
presence of interfering pixels or tradeoff between high dimensionality and limited labelled
samples in the case of supervised classification. Moreover, the role of unsupervised clas-
sification is also limited because of the uncertainty around the number of spectral classes
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in datasets. The major issues that researchers working in HSI encounter, as well as the
solutions provided for them, are detailed as follows:

1. Limited Labelled Samples: One of the biggest challenges in this field is the scarcity
of labelled samples [175, 177, 210, 93, 211, 37, 30, 92, 212, 196] that leads to inad-
equate performance of the deep network. Because data labelling is time-consuming
and labour-intensive, classification performance suffers due to the restricted number
of labelled datasets. There are methods with which the problem of limited samples
has been reduced, listed below:

• Data Augmentation: Augmentation is a process by which new virtual samples
are created to overcome the problem of limited samples [196]. There are two
viable options for creating new samples include transformation [213, 214] and
mixture-based strategies [215, 216].

• Transfer Learning: The information gained in the source domain is transferred
to the target domain through transfer learning. Transfer learning is used to tackle
the problem when labelled data is insufficient. There are studies [217, 116, 167,
218, 219, 120, 220, 221, 222] that apply transfer learning across domains and
operate on unsupervised or supervised samples. It uses pre-trained networks
with initial values of network parameters already defined.

• Feature Learning: Feature learning aims to extract useful features from an
amount of unlabeled data. A lot of studies [177, 223, 224, 93, 225, 226, 158]
incorporated an unsupervised or semi-supervised type of feature learning. In
the unsupervised type, unlabeled data is trained and fed into a deep network.
On the other hand, semi-supervised learning allows the features to be extracted,
transferring this knowledge and merging with trained labelled data. Thereby,
intermediate features are reconstructed using labelled data.

• Network Optimization: This strategy improves the network’s performance by
changing the parameters. There are different ways proposed in the literature to
optimize network performance. The use of the residual layer to make the most
use of discriminative features has been proposed in several studies [136, 227,
228, 229, 230, 35, 231].

2. Hughes Phenomenon or Curse of Dimensionality: HSI presents a unique chal-
lenge due to its high dimensionality, with numerous spectral bands, coupled with
the limited availability of labelled training data. This combination often leads to the
Hughes Phenomenon or curse of dimensionality, where traditional classification al-
gorithms struggle to effectively utilize the available data for accurate classification
[229, 143, 232]. The high dimensionality of HSI data exacerbates the problem by
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increasing computational complexity and making it difficult for algorithms to dis-
cern meaningful patterns without a sufficiently large amount of labelled training data.
Consequently, the inadequate number of labelled samples further compounds the is-
sue, resulting in suboptimal training and a subsequent drop in classification accuracy.
These challenges are particularly pronounced in HSI applications, where the acquisi-
tion and annotation of labelled data can be costly and time-consuming. As a result,
there is a need for novel methodologies and techniques to address the inherent lim-
itations posed by the high dimensionality of HSI data and the scarcity of labelled
training samples.

3. Imbalanced Class Distribution: In HSI, imbalanced class distribution poses a sig-
nificant challenge [174, 122]. Due to the nature of HSI data, where certain classes
may be rare or underrepresented, traditional classification algorithms struggle to ac-
curately classify minority classes. This imbalance can lead to biased models that pri-
oritize majority classes at the expense of minority ones, resulting in poor performance
on crucial but less frequently occurring classes. Addressing this imbalance is essen-
tial for developing robust and reliable HSI classification systems. While techniques
such as Synthetic Minority Over-sampling Technique (SMOTE) [174] and weighted
ensemble methods have been proposed to mitigate this issue, further advancements
are needed to ensure accurate classification across all classes, especially in scenarios
where data scarcity exacerbates the imbalance problem.

4. Generalization to other datasets or Inter-Domain Adaptability: Achieving ro-
bust classification performance across different hyperspectral datasets presents a sig-
nificant challenge in HSI classification. Annotating samples for training data is
inherently labor-intensive and time-consuming, limiting the availability of labeled
datasets. Moreover, pre-trained models may struggle to generalize to new datasets or
encounter difficulties when faced with previously unseen classes [233, 30].

5. Supervised training is time-consuming and labour intensive: Regarding HSI, an-
notating labelled samples costs too much time and effort, which is considered one
of the most challenging aspects of hyperspectral image analysis [93]. Considering
single-level characteristics in a single layer leads to information loss. However, em-
ploying many networks to acquire multi-level features is computationally costly.

6. Extracting more discriminant features or refined spatial-spectral features: Max-
imizing the discriminative power of hyperspectral data poses a significant challenge
in HSI classification tasks. The abundance of spectral and spatial information avail-
able in HSI datasets necessitates sophisticated techniques to extract and leverage rel-
evant features effectively [234, 235, 34, 236].
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7. Challenges related to CNN in HSIC: Below are some challenges related to the most
prominent model in HSIC:

• CNN’s limitation in modelling sample relations: The most extensively uti-
lized network for HSIC is CNN, which has limitations in modelling sample cor-
relations. The inherent nature of hyperspectral imagery, characterized by high-
dimensional data with intricate spectral-spatial relationships, often exceeds the
capacity of traditional CNN architectures to effectively encode these correla-
tions [237, 206, 211, 117].

• CNNs need longer training time: One of the challenges associated with CNN
in HSIC is the extended duration required for training. The depth and complex-
ity of CNN architectures, coupled with the high-dimensional nature of hyper-
spectral data, often result in prolonged training times. This extended duration
can hinder the scalability and efficiency of CNN-based classification systems,
especially when dealing with large-scale or real-time applications where timely
processing is crucial [202, 92].

• Most CNNs are supervised, and labelled HSIs are time-consuming and
costly: Most CNNs utilize supervised data and labelled HSI data is challenging
to come by. Although unsupervised CNN-based approaches exist, most focus
on data reconstruction rather than discriminability.

8. Overfitting and Gradient Vanishing: Addressing overfitting and gradient vanishing
poses a significant challenge in the context of HSIC. With the deep architectures
commonly used in deep learning models, there is a risk of overfitting, especially when
dealing with limited training data [238, 239]. Additionally, the vanishing gradient
problem can impede the training process, particularly in deep networks with many
layers. These issues can hinder the ability of the model to generalize well to unseen
data and affect the overall performance and reliability of the classification system
[94, 240].

2.5 Summary

This chapter provides a thorough analysis of over 250 existing deep learning (DL) models
tailored for hyperspectral image classification, by focusing on the aforementioned four main
research objectives. It examines each DL model in detail, finding that the CNN stands out
for its overall accuracy compared to other models such as LSTM, AE, GAN, and GCN. The
study also highlights other effective models like attention networks, active learning, trans-
former networks, few-shot learning, and deep metric learning. The study highlights the
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utilization of three major benchmark datasets—Indian Pines, Pavia University, and Sali-
nas—in existing literature for performance evaluation. Notably, the evaluation indicates
varied model performance across these datasets. Moreover, the existing models are also
analyzed based on the their learning approach that is supervised, semi-supervised, and/or
unsupervised DL. The analysis reveals a prevalent reliance on supervised learning in most
models, underscoring the study’s recommendation for exploring semi-supervised, unsu-
pervised, or alternative learning strategies to effectively address the challenge of limited
labeled samples. Overall, the findings shed light on the landscape of DL breakthroughs
in HSI classification, highlighting key challenges and suggesting practical solutions. The
study emphasizes the importance of addressing limitations posed by the scarcity of labelled
non-traditional hyperspectral datasets and exploring various training modes to improve DL
algorithm performance in HSI classification tasks.
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CHAPTER 3

XCEP-DENSE: A NOVEL LIGHTWEIGHT EXTREME

INCEPTION MODEL FOR HYPERSPECTRAL IMAGE

CLASSIFICATION

Convolutional Neural Networks have demonstrated their effectiveness in extracting dis-
criminative features in the HSI domain. Despite their success, challenges persist due to
the limited availability of labelled samples and the intrinsic high dimensionality of hyper-
spectral data. Overcoming these challenges is crucial for effective HSI data analysis and
achieving high classification accuracy. While some existing models have achieved near-
perfect classification accuracy, the depth of the model often leads to an excessive number of
parameters, which leads to high training time. To tackle this, the Inception model, renowned
for winning the ImageNet competition, has been exemplary. The Inception model employs
inception modules with parallel convolutional filters, effectively capturing multi-scale fea-
tures. Taking inspiration, a new model, namely, Xception, was introduced which leverages
its success in handling diverse visual recognition tasks, aligning well with the spectral-
spatial nature of hyperspectral data. The transition from Inception to Xception signifies a
strategic evolution in the pursuit of efficient deep learning models. Xception, an extreme
version of Inception, replaces inception modules with depthwise separable convolutions,
enhancing parameter efficiency while maintaining classification accuracy. This transition
aims to leverage extreme inception architectures’ benefits, optimizing feature extraction for
HSI’s challenges of limited labelled samples and high dimensionality. To further improve
the performance, this chapter introduces a new Xception network, namely Xcep-Dense,
which is configured with dense network and optimization parameters to alleviate overfit-
ting and gradient vanishing. The proposed network’s performance is validated using two
benchmark hyperspectral datasets, Indian Pines and Salinas.
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3.1 Introduction

HSI stands at the intersection of spatial and spectral data, usually collected continuously
from satellites or sensors across the electromagnetic spectrum ([241], [242]). This type of
data finds applications across diverse fields, including resource management [243], agricul-
ture [244], security and surveillance [14], astronomy, space surveillance [13], and coastal
marine environment monitoring [245]. Despite its widespread use, a significant challenge
in hyperspectral data applications is the accurate classification of ground features. For this,
DL based models have been found promising because of their powerful feature extraction
capability for nonlinear problems [7]. The deep networks such as Convolutional Neural
Networks (CNNs) have shown promising results for image classification as these excel in
filtering contextual spatial features of images through local connections [7].

The evolution of Convolutional Neural Networks (CNNs) began with Le-Net-style mod-
els, initiated by Yann LeCun in the early 1990s for handwritten digit recognition [246].
Recognizing the potential of CNNs, refinement of Le-Net paved the way for sophisticated
architectures, with AlexNet emerging as a milestone in 2012, winning the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [247]. AlexNet’s success spurred a trend
towards constructing deeper networks, driven by the ILSVRC Challenge’s goal to enhance
image classification algorithms. However, the training of huge number of parameters and
the limited availability of labelled samples pose a significant hurdle for HSI classifica-
tion, leading to the problem of overfitting [248]; [249] and high training time. Addition-
ally, CNN-based algorithms, while effective, demand substantial computational power and
storage space ([42]; [250]), becoming computationally exhaustive with increased network
operations. To address this, Google researchers introduced a new model, namely, Incep-
tion model, that a kind of revolutionized the field of classification by winning the ILSVRC
Challenge [251, 252]. The main innovation of the Inception model lay in its inception mod-
ules and its parallel convolutional filters for efficient multi-scale feature extraction while
minimizing model parameters and computational costs. The inception model marked a
pivotal moment in CNN’s evolution, emphasizing the importance of diverse architectural
elements for tackling image classification challenges. Its ability to map cross-channel and
spatial correlations with a single convolution kernel set a new standard. In summary, the
journey from Le-Net to inception models signifies the continuous exploration and refine-
ment of CNN architectures. Le-Net pioneered convolutional networks, AlexNet pushed
performance boundaries, and the trend towards deeper networks culminated in the ground-
breaking success of the inception model in 2014. Thus, given the challenge of maintain-
ing classification accuracy with a decrease in computations, this chapter proposes a novel
deep-learning-based lightweight classification model for HSI. The proposed model has the
following contributions:
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• The proposed model is based on an extreme version of inception, replacing stan-
dard two-dimensional convolutions with three-dimensional depthwise and pointwise-
separable convolutions. With three-dimensional convolutions involved, the network
can efficiently extract spectral-spatial information in hyperspectral cubes, causing a
better capture of and a lesser number of parameters involved, making the network
lightweight.

• The proposed methodology includes dimensionality reduction and 3D-SSCS (three-
dimensional spectral-spatial cubing and slicing) technique that slices in the spatial
and spectral dimensions simultaneously by efficiently reducing the number of calcu-
lations required and accessing the spectral-spatial information to improve classifica-
tion accuracy.

• A dense network is customized and applied to the proposed Xception Network that
further helps to discover discriminative features, encourages a strong gradient flow,
enhances parameter efficiency and simplifies network training.

• In comparison to conventional convolutions, the proposed network based on depth-
wise convolutions is lightweight. The proposed optimized model is computationally
efficient as it takes fewer model parameters resulting in faster convergence. The pro-
posed network’s performance is validated using two benchmarks HSI datasets, IP and
SA.

3.2 Related Models

The design of CNN started with Le-Net [253] models that were simple piles of convolutions
used for extracting features. This concept was refined into AlexNet [254] architecture with
multiple convolutions repetitions between max pooling operations. The yearly ILSVRC
Competition (ImageNet Large Scale Visual Recognition) and the arrival of VGG architec-
ture [255] fuelled a trend towards making networks deeper. The Inception architecture was
the first in the series to have the benefits of factoring convolutions, which won the ILSVRC
2014 challenge. Alotaibi and Alotaibi [47] combined Inception and ResNet’s core ideas
into a deep hybrid ResNet-Inception model for excellent classification performance. This
architecture had a small number of layers but still achieved good results by converging to a
minimum of 50 epochs. The first layer of Inception V1 and Inception V2 was later depth-
wise separable convolution [251]. Chollet [253] introduced the Xception network, which
uses separable convolutions to reduce the size and computational cost of CNNs. Xiong,
Yuan, and Wang [256] presented a model AI-NET attained excellent classification perfor-
mance by proposing an attention inception module.
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Other lightweight models provided excellent classification performance by maintaining
a trade-off between accuracy and computation time that include SSRN [257], ResNet Incep-
tion [47], HDDA [258], FDSSC [259], DSSIR Net [260] and AUSSC [125]. Other models
that took fewer parameters and yielded high classification accuracy included Cui et al. [83],
FDSSC [259], p-ResNet [131], SSRN [136], SSUN [261], DBMA [262], DBDA [45] and
SSUN [261]. The proposed model and its classification accuracy, shortcomings and limi-
tations are summarized in Table 4.1. The accuracy of each model is provided concerning
the dataset included in that specific study. Table 3.1 shows related models and achieved
performance.

Table 3.1: Studies on Supervised Models

[263] SAE-LR KSC
PU

98.76
98.52

97.90
97.82

98.62
98.07

SAE-LR using 4,00,000 epochs are
used to generate discriminative fea-
tures and generates high accuracy

Massive potential for accu-
rate hyperspectral data clas-
sification.
Long Training Time

[136] SSRN IP
PU
KSC

99.19
99.79
99.61

98.93
99.66
99.33

99.07
99.72
99.56

Learns spatial and spectral features
separately, Mitigates the declining
accuracy phenomenon, Needs 200
epochs only to train network, per-
forms well with limited training
samples

Overly long training time
(6-10 Times more than
CNN); Computationally
expensive; Network training
on limited data could be
done to achieve the same
results

[259] FDSSC IP
PU
KSC

99.75
99.97
99.96

99.67
99.97
99.96

99.72
99.96
99.95

Gives excellent accuracy in shorter
training time that needs only 80
epochs, Narrower Model, Fast con-
vergence

Epochs can be further
reduced to design a
lightweight model; net-
works could be supplied
with lesser training data

[125] AUSSC IP
KSC
SA

94.55
98.26
96.13

94.44
97.48
97.37

93.77
98.0
95.7

Employs relatively small convolu-
tional kernels to cut down on the pa-
rameters and alleviate overfitting in
400 epochs; Centre Loss function to
improve accuracy

Uses more convolutional
kernels, Centre loss func-
tions increases the compu-
tational loss, Deep network
resulting in longer training
time, Needs more epochs

[262] DBMA IP
PU
SA

98.19
98.88
98.04

96.31
98.71
98.85

97.94
98.50
97.82

Uses spatial and channel attention,
fused to obtain more discriminative
features. Works with limited la-
belled samples

Attention blocks help in
faster convergence but end
up increasing the parameters
and, eventually, the compu-
tational cost

[45] DBDA PU
SA
IP

96.00
97.51
95.38

96.45
98.00
96.47

94.67
97.23
94.74

No pre-processing is required to re-
duce the dimensions, Less consump-
tion time in comparison to models
like FDSSC or DBMA

Training time can be re-
duced; Parameters can be re-
duced even more

Ref Proposed
Model

Datasets OA AA KC Work Done with Advantages Limitations

Continued on next page
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Table 3.1: Studies on Supervised Models (Continued)

[264] AD-
Hybrid
SN

IP
PU
SA

97.02
98.32
99.59

92.34
97.23
99.24

96.6
97.8
99.5

Better explores spatial-spectral fea-
tures; Works with limited training
data; Accesses spectral and spatial
data both

Unsatisfactory classification
of specific ground objects;
Network optimization could
lead to better classification
performance of proposed
work

[220] ResNet
Inception

IP
PU
PC
SA

90.57
95.31
99.02
95.53

A few layers still provide good re-
sults by converging to a minimum
using 50 epochs.

Accuracy can be further
improved; Specifically, in
datasets like India Pines,
classes with fewer samples
are not considered in the
overall data

[258] HDDA IP
PU
SA

96.80
98.28
98.85

95.83
97.07
99.25

96.34
97.72
98.72

Improved Feature extraction capa-
bility with two dense modules and
200 epochs

Limited Data available; Net-
work can be tested with a
lesser number of epochs; Pa-
rameters can be reduced

[260] DSSIR
Net

IP
SA
PU

97.18
99.35
99.31

96.82
99.60
99.20

96.78
99.27
99.05

Joint spatial-spectral extraction with
an added attention module per-
formed with 200 epochs

Moderate computational
complexity; Parameters
can be reduced while
maintaining classification
performance

[256] AI-NET IP
SA

93.07
94.64

91.75
92.73

Attention inception and multi-
resolution convolution filters to
extract discriminative features

Classification accuracy
could be increased; Net-
work convergence could
have been faster

[83] Cui et. al IP
PU
SA

96.51
96.48
97.18

93.30
94.25
98.44

96.02
95.34
96.87

Extracts features with a lightweight
network, Uses depthwise convolu-
tions to reduce the parameters and
computational complexity

Classification accuracy
could be increased with
lesser training samples.
Determining spatial window
size is challenging

[261] SSUN IP
PU
KSC

98.40
99.46
97.71

98.14
99.26
97.45

Accustomed spectral and spatial fea-
ture extractors using LSTM and
multiscale convolutions

High computational burden
involved in training time.
Learning the weight vector
is a challenging part

Ref Proposed
Model

Datasets OA AA KC Work Done with Advantages Limitations

3.3 Proposed Methodology

We introduce Xcep-Dense, a novel hybrid model network that blends the strengths of Xcep-
tion and Dense networks to tackle the complexities of hyperspectral data analysis. As illus-
trated in Figure 3.1, the model’s architecture unfolds in a multi-stage process. Firstly, PCA
(Section 3.3.1 takes center stage, gracefully scaling down the hyperspectral cube to a more
manageable dimension, ensuring computational efficiency without compromising valuable
information. Secondly, the model divides the reduced data into smaller cubes (Section
3.3.2, ready for efficient processing within the network’s intricate layers. These prepared
cubes pass through the crafted hybrid network (Section 3.3.3, where Xception and Dense
layers collaborate for feature extraction and learning. The forthcoming sections discuss the
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preprocessing and classification of data.
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Figure 3.1: Block Diagram of Xcep-Dense

(a) Pixel 1578 (b) Pixel 66464

Figure 3.2: Spectral Signatures for IP Dataset

3.3.1 K-Means with PCA

Hyperspectral cubes contain a wealth of spatial and spectral information. Figure 3.2a shows
the value of pixel 1578 in the IP dataset, and Figure 3.2b shows the value of pixel 66464 in
the SA dataset. PCA was used to obtain the essential discriminative features and cut down
on the dimensions. It generates orthogonal projections using eigenvalue decomposition,
eventually minimizing the squared errors between the original and projected data. It is
evident from the figure that neighbouring pixels have a slight variance, which requires a
dimensionality reduction. Figure 3.3a shows different clusters in IP dataset for the two
most variant components. PCA reduces the N available original components to M principal
components having the highest eigenvalues [265].

Since hyperspectral data is highly skewed, manually selecting the number of features
is ineffective. As a result, k-means clustering was attempted to measure the compact-
ness of clusters in a data set while identifying discriminative features distinct from back-
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(a) Clustered labels in the IP dataset (b) (Top) K-Means before PCA (Bottom) K-
Means after PCA

Figure 3.3: Spectral Signatures for IP Dataset

ground noise. This technique involves dividing the data into different clusters based on
the compactness of the data points or inertia, which is referred to as the Euclidean dis-
tance. Every cluster has a defined centroid to which all other data points are measured
about. Each data point is assigned to a cluster based on the shortest Euclidean distance.
Figure 3.3b (top) shows the k-means clustering performed initially and Figure 3.3b (bot-
tom) shows k-means clustering after applying PCA that lowered the inertia score depicted
on the y-axis. Due to the highly skewed nature of hyperspectral data, the high inertia score
(176356304985.60797, 153231226798.99573, ..., 50065360614.01206) is plotted on the y-
axis as an exponential value 1e10+11. The optimal value considering not to lose the discrim-
inant bands was taken 25 for Indian Pines and 10 for Salinas. The initial set of data points
can be denoted by A = [a0, a1, a2.....an] with o observations and f features where each
data point belongs to a cluster with the nearest centroid. The final set of centroids can be
shown by B = [b0, b1, b2.....bn] with k clusters and f features, having minimum intra-cluster
distance and maximum inter-cluster distance.

3.3.2 3-D SSCS

The 3-D Cube algorithm serves to break down multidimensional data into smaller, more
manageable 3-D cubes. This serves as a pre-processing technique specifically tailored for
HSI datasets, aims to segment the input data into smaller, uniform 3D blocks. This transfor-
mation, achieved through its algorithmic steps as depicted in Algorithm 1 and 3.4 visually,
facilitates further analysis by reducing complexity and enabling fine-grained examination.

The algorithm operates in four steps. The first step is zero-padding that safeguards
against boundary issues by padding the input data with zeros, ensuring context retention
for each extracted cube. In the second step, The hyperspectral images under consideration
include an IP image, measuring 145 X 145 pixels with 224 spectral bands, and an SA
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image, sized at 512 X 217 pixels with an identical band count as the IP image. The process
of obtaining 3D cubes involves taking the input images, 145 X 145 X 224 and 512 X 217
X 224, and splitting them into a set of smaller cubes with dimensions of 25 X 25 X 3. It
extracts cubes of a predefined size, specified by the SplitSize parameter, at every possible
location. In the third step, each extracted cube and its corresponding label, sourced from
the input label array y, are stored in dedicated arrays sD and sL, creating a well-organized
representation. The algorithm offers the flexibility to filter out cubes with specific label
criteria using the removeZero parameter, resulting in a more concise and relevant dataset.
By meticulously segmenting the data, the algorithm generates a structured output consisting
of the split data array (sD) and the split label array (sL), ready for subsequent analysis.

Algorithm 1 Create3DCubes
Require: X: Input data, y: Labels, SplitSize: Size of cubes, removeZero: Boolean for removing

zero-labeled cubes

Ensure: sD: Split data, sL: Split labels

1: m← (SplitSize− 1)/2 {Margin}
2: zeroPaddedX ← zeroPadding(X,m) {Zero-pad input data}
3: sD ← 0X[0]×X[1]×SplitSize×SplitSize×X[2] {Initialize SplitData}
4: sL← 0X[0]×X[1] {Initialize SplitLabels}
5: sI ← 0 {Initialize splitIndex}
6: for r ← m to zeroPaddedX.shape[0]−m− 1 do
7: for c← m to zeroPaddedX.shape[1]−m− 1 do
8: patch← zeroPaddedX[r −m : r +m+ 1, c−m : c+m+ 1]

9: sD[sI, :, :, :]← patch

10: sL[sI]← y[r −m, c−m]

11: sI ← sI + 1

12: end for
13: end for
14: if removeZero then
15: sD ← sD[sL > 0, :, :, :]

16: sL← sL[sL > 0]

17: sL← sL− 1

18: end if
19: return sD, sL

3.3.3 The Xception Network

The proposed model includes an extreme inception model based on depth-wise separa-
ble convolutions. ”It is based on the idea that mapping spatial correlations and spectral
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Figure 3.4: 3-D cubing sliced into smaller cubes and Padding with Zeroes
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Figure 3.5: Xception Network with Separable or Depthwise Convolutions

associations can be completely decoupled” [252]. The goal of the extreme inception net-
work modification is to remove the vast amounts of trainable parameters. Furthermore,
the original Xception network uses two-dimensional convolutions, which are replaced by
three-dimensional convolutions in the proposed network to fit the nature of hyperspectral
data better. The Xception network is a queue of depthwise separable convolutions. Our
proposed Xception network outperforms the original Xception network and achieves com-
parable performance with fewer parameters. Figure 3.5 depicts spatial convolutions exe-
cuted independently on each input channel, preceded by pointwise convolution. Depthwise
convolutions employ 1×1 convolution to map the relationships between spectral channels
and spatial data. These convolutions can deal with spatial and depth dimensions with fewer
computations, lowering computational overhead. Figure 3.6 depicts the flow of the Xcep-
tion network, which is divided into three parts: entry, middle, and exit.

The proposed model includes 2D and 3D convolutional layers that convert input data
into feature maps, including three Conv3D layers, four Conv2D layers, two separable
Conv2D layers, and two Conv2D transposes. The feature maps are routed through the ac-
tivation layers to create and extract features [266]. For classification, Xcep-Dense employs
the most popular activation functions for hyperspectral imaging analysis, ReLU (Rectified
Linear Unit), and Softmax [266]. The pooling layer provides invariance to slight data dis-
tortions and helps to prevent overfitting in networks by reducing the quantity of data and
model parameters. Figure 3.6 shows the placement of the upsampling layer, which doubles
input dimensions by drawing on multiple surrounding points. It shows the elaborated con-
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Figure 3.6: Overall Flow of Xcep-Dense

figuration of the proposed Xception3D model with layers, types, and parameters in each
layer.

3.3.4 Dense Network

The final component includes three dense layers, two activated by ReLU and the third by
Softmax. ReLU activation yields an element-wise maximum of 0, and the input tensor and
Softmax is employed for the classification network, interpreting the result as a probability
distribution. Figure 3.7 depicts four dense layers and their interconnections. This network
is optimized by adding two dropout layers strongly coupled with the preceding. To perform
matrix multiplication, neurons in the dense layer are entirely linked with neurons in the
preceding layer, implying that row vectors in the preceding layer are equivalent to column
vectors in the dense layer. The dense layer reduces vector dimensions from 256 to 128. In
this case, Ai denotes the output of the i-th layer shown in Equation 3.1, and Xi denotes the
nonlinear transformation operation shown in Equation 3.2.
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Figure 3.7: Dense Layers

Ai = Xi(Ai−1) (2) (3.1)

Ai = Xi(A0, A1, A2, . . . . . . . . . . . . . . . Ai−1) (3) (3.2)

To improve generalization error and alleviate overfitting, the proposed network uses two
dropout layers with a parameter of 0.4, which offers an effective way of randomly dropping
out nodes during the network training. Further, to alleviate overfitting and speed up network
convergence, Batch normalisation standardises the inputs to a layer for each micro-batch,
which stabilises the learning process and reduces the number of epochs required to train
the network. Input layer A is defined by A = [a1, a2, a3, . . . . . . ..an] where an are the input
samples, and n is the batch size. Equations 3.3, 3.4, and 3.5 represent mean, variance, and
normalized input. In Equation 3.5, â is a single component’s new value, E[x] is its mean,
Var(x) is its variance, and ϵ is a constant.

µB =
1

n

n∑
i=1

ai (3.3)

V ar(x) = σ2
B =

1

n

n∑
i=1

(ai − µB)
2 (3.4)

â =
ai − E (x)√
V ar (x) + ϵ

(3.5)

3.3.5 Optimizing Xcep-Dense

While Stochastic Gradient Descent (SGD) effectively minimizes the objective function and
error rate, its computational demands can be overwhelming when dealing with extensive
datasets. In a quest for further optimization, Kingma and Ba [267] introduced the Adam
optimizer, a powerful enhancement that leverages historical gradient information to accel-
erate convergence and improve accuracy. Adam achieves this by ingeniously storing expo-
nentially decaying averages of past gradients, incorporating both the first moment (mean)
xt and the second moment (variance) yt of the gradients. Equations 3.6 and 3.7 offer a
mathematical glimpse into this process, revealing the crucial roles of decay rates β1 and β2
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in regulating gradient updates.

xt = β1xt−1 + (1− β1)dt (3.6)

yt = β2yt−1 + (1− β2)d
2
t (3.7)

To counter potential bias toward zero when β1 and β2 are small, Adam introduces bias-
corrected first and second moments, as captured in Equations 3.8 and 3.9.

x̂t =
xt

1− βt
1

(3.8)

ŷt =
yt

1− βt
2

(3.9)

These refined moments, in turn, guide the weight update rule depicted in Equation 3.10,
ensuring a more informed and adaptive optimization process.

θt+1 = θt −
η√

ŷt + ϵ
x̂t (3.10)

Learning Rate

Learning rate acts like the network’s cruise control, dictating how fast it learns and finds
the best answer. We start fast with a high learning rate, then slow down as we get closer
to the goal to avoid ”wobbling” back and forth. But if we go too slow, it takes forever
to get there. The idea behind the learning rate with exponential decay was to keep the
learning rate high at first and then gradually decrease it as iterations progressed so that the
gradient converges to an optimal value quickly to get a suboptimal solution. Keeping the
learning rate parameter too high caused the gradient to swing back and forth from the global
optimum. Keeping the training parameter too small slowed convergence and increased
network training time, increasing computational complexity. The proposed model initially
employed a fine-tuned weight decay (L2 regularisation) rate from 1e-5, which did not make
the network perform well. This experiment was finally fine-tuned and set to 1e – 6 for the
proposed model. Equation 3.11 represents the learning rate parameter where D is the decay
rate, gs is a global step and ds is decay step, αd is the exponential decay learning rate, and
α represents the learning rate at the initial stage.

∝d= α ∗D
gs
ds (10) (3.11)

To avoid another common problem called ”overfitting,” where the network focuses too
much on specific details and forgets the bigger picture, we add a ”penalty” term to the
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learning process [123]. This gently nudges the network towards broader solutions that
work for everyone, not just the specific examples it saw during training. The loss function
is represented in Equation 3.12 where L0 is the original loss function with n as the training
sample size and w model weights given by λ

2n

∑
w w2 as L2 norm penalty and λ is the

hyperparameter regularising ratio.

L = L0 +
λ

2n

∑
w

w2 (11) (3.12)

By carefully setting the learning rate and adding this penalty, we help the network find
the sweet spot - learning quickly and accurately without getting stuck on unimportant de-
tails. This lets it uncover the hidden patterns in the data like a skilled detective!

3.4 Results and Discussion

In this section, we start by discussing the experimental setup, Section 3.4.2 compares the
classification accuracy of the proposed model using the statistics OA, AA, and the KC.
In section 3.4.3 we compare the model’s performance by comparing the parameters of the
proposed model. This is followed by section 3.4.4, where we look at how increasing the
number of training samples affects classification accuracy and performance evaluation of
the xcep-dense network without involving the fully connected layers. Section 3.4.5 dis-
cusses the performance of the proposed network when dense layers were removed. Finally,
section 3.4.6 includes the performance of Xcep-Dense on other benchmark datasets.

3.4.1 Experimental Setup

The experiments were performed in Python using Google Collaboratory. The number of
extracted principal components was 25. Batch size was 256, the number of epochs was
20, the activation function was ReLU, and Softmax for dense network, the learning rate
parameter was 0.001, and the exponential decay was 1e-06. Adam behaves like a resilient
ball rolling down the loss function’s convex curve. The training samples were 10% for IP
and 5% for SA.

3.4.2 Experiment 1 : Performance of Xcep-Dense on IP and SA

To validate the effectiveness of our proposed model, we conducted a comprehensive com-
parison with state-of-the-art hyperspectral data classification algorithms found in the lit-
erature. Results for two benchmark datasets, IP and SA, are presented in Tables 3.2 and
3.3 respectively, showcasing outstanding overall classification accuracies of 98.52% and
99.69%. These accuracies outperform existing models, including the attention inception
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network AI-NET [256], the hybrid deep ResNet and Inception network [47], a lightweight
hyperspectral classification model based on MobileNetV3 [83], spectral-spatial residual
network SSRN [136], end-to-end spatial and spectral network SSUN [261], and others.
Notably, our proposed Xcep-Dense model achieves a classification accuracy of 98.52% for
IP with only half the training samples used by the highest performing models, SSRN [257]
and FDSSC [259], both achieving accuracies above 99%. Similarly, for the SA dataset,
Xcep-Dense achieves the highest accuracy of 99.69% with only 5% of the samples used
for training. These results underscore the improved performance of the Xcep-Dense model,
even under limited training data conditions.

Figures 3.8(a) and 3.8(c) depict the training accuracy per epoch for IP and SA, high-
lighting the model’s exceptional performance within just 20 epochs. The proposed 3D
slicing algorithm, which slices hypercubes into smaller 3D cubes, reduces the number of
parameters, making the network lightweight and facilitating faster convergence. Batch nor-
malization (BN) further aids in gradient convergence, speeding up the training process and
conserving time and resources. Compared to previous works requiring hundreds of epochs,
our model achieves superior performance in just 20 epochs for SA and 100 epochs for IP.
This is attributed to the concept of separable convolutions integrated into the network, re-
sulting in optimal accuracy with reduced computational overhead. Figures 3.8(a-d) provide
a detailed breakdown of the experimental results, demonstrating the effectiveness of the
proposed model in mitigating overfitting.
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Table 3.2: Classification results for IP dataset with 10% training data.

Classes SVM AI-
NET

Hybrid
Deep
Res
Net

LSSANSSRN SSUN Chen
et. al

AUSSC FDSSC 3D-
SACNN

AD-
Hybrid
SN

HDDA DSSIR-
Net

Proposed

Ref [256] [47] [83] [257] [261] [268] [125] [259] [269] [264] [258] [260]

0.10 0.30 0.10 0.05 0.20 0.17 0.20 0.10 0.20 0.15 0.05 0.05 0.10 0.10
1 84.55 - - 90.48 97.82 100.0 99.47 98.33 70.00 89.66 49.02 81.48 98.88 100.0
2 87.5 - 91.88 95.82 99.17 97.26 98.06 94.60 90.38 96.30 94.79 94.73 96.65 97.82
3 77.51 - 85.30 93.26 99.53 99.36 96.68 90.06 86.48 98.45 98.21 97.59 96.64 98.39
4 76.8 - - 95.44 97.79 99.85 97.83 93.73 92.34 95.10 96.46 94.76 94.81 87.79
5 56.41 - 97.11 91.17 99.24 99.56 99.35 98.59 96.65 98.52 96.94 99.55 98.62 93.56
6 82.45 - - 99.32 99.51 99.75 92.96 97.84 95.11 96.19 98.20 100.00 99.13 99.84
7 92.23 - - 93.08 98.70 99.58 99.65 86.57 40.00 99.07 100.00 100.00 94.18 96.0
8 80.0 - 100 99.49 99.85 100 97.19 97.22 92.51 100.0 99.90 100.00 99.92 100.0
9 96.67 - - 57.78 98.50 100 96.74 91.61 100.00 100.0 65.28 100.00 83.71 88.88
10 50.0 - 84.98 96.07 98.74 98.15 98.14 92.40 84.87 96.49 95.57 94.53 97.07 99.65
11 84.21 - 86.27 97.67 99.30 97.15 96.97 93.97 95.32 98.15 99.03 97.60 97.65 99.95
12 86.68 - 89.56 94.88 98.43 99.52 96.24 94.52 92.45 94.15 90.57 95.17 98.69 98.68
13 86.51 - - 99.24 100.0 99.81 100.0 97.67 99.70 96.58 98.32 98.99 100.0 98.91
14 97.36 - 99.68 98.82 99.31 99.39 99.39 96.65 96.39 99.71 98.85 99.17 98.78 98.33
15 37.12 - - 95.52 99.20 99.05 100.0 94.63 90.36 97.51 98.24 93.31 95.76 99.42
16 13.63 - - 95.06 97.82 100.0 99.62 92.70 98.01 94.54 98.04 86.36 98.70 95.23
OA 80.34 93.07 90.57 96.51 99.19 98.40 98.02 94.55 99.75 97.47 97.02 96.80 97.18 98.52
AA 74.35 - 91.84 93.3 98.93 99.22 98.01 94.44 99.67 96.90 92.34 95.83 96.82 97.03
KC 72.04 91.75 - 96.02 99.07 98.14 - 93.77 99.72 97.12 96.60 96.34 96.78 98.31

Table 3.3: Classification results for SA dataset with 5% training data.

Classes AI-
NET

Hybrid
Deep
Res
Net

LSSAN AUSSC 3D-
SACNN

2D-
SACNN

AD-
Hybrid
SN

R-
Hybrid
SN

HDDA DSSIR
Net

Proposed

Ref [256] [47] [83] [125] [269] [269] [264] [270] [258] [258] [260]

0.05 0.05 0.01 0.02 0.15 0.15 0.01 0.01 0.01 0.05 0.05
1 - 99.60 100.00 100.00 99.88 100.00 99.81 100.00 100.00 100.00 99.84
2 - 99.95 99.66 99.82 99.90 99.79 100.00 99.97 100.00 100.00 100.0
3 - 99.90 100.00 95.04 99.23 99.84 99.98 99.49 100.00 99.86 100.0
4 - 99.43 99.43 97.99 99.89 98.98 99.17 98.72 98.04 99.66 99.62
5 - 99.55 98.52 98.69 99.76 99.52 99.50 98.43 98.83 99.91 99.44
6 - 99.79 99.96 99.98 100.00 100.00 100.00 99.90 99.80 100.00 100.0
7 - 99.89 99.83 99.56 99.57 99.22 99.97 99.96 100.00 100.00 100.0
8 - 92.41 93.45 92.83 98.30 96.67 99.70 98.23 97.80 99.07 99.36
9 - 100.00 99.99 99.41 99.89 99.96 100.00 99.99 99.64 100.00 100.0
10 - 97.31 95.16 98.25 99.56 99.71 98.96 97.90 99.44 99.79 99.48
11 - 98.50 99.16 93.90 98.26 99.77 99.22 96.46 99.72 97.78 99.21
12 - 99.79 99.92 98.40 99.76 100.00 99.92 99.09 99.84 100.00 100.0
13 - 99.13 99.45 98.59 99.74 100.00 95.59 82.82 100.00 99.80 100.0
14 - 99.06 99.33 96.13 98.25 99.46 97.49 97.25 99.43 98.93 100.0
15 - 79.53 93.01 89.32 98.16 95.24 99.57 95.12 96.88 98.83 99.42
16 - 99.22 97.90 99.94 100.00 99.72 99.00 99.71 98.51 100.00 99.94
OA 94.64 95.33 97.18 96.13 99.19 98.50 99.59 98.25 98.85 99.35 99.69
AA - - 98.44 97.37 99.38 99.24 99.24 97.69 99.25 99.60 99.77
KC 92.73 - 96.87 95.70 99.10 98.33 99.50 98.0 98.72 99.27 99.66
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: (a) Training Accuracy for IP Dataset and (b) Training Loss for IP Dataset;
(c) Training Accuracy for SA Dataset and (d) Training loss for SA Dataset; (e) Confusion
Matrix for IP (f) Confusion Matrix for SA

3.4.3 Experiment 2 : Comparison of Parameters

The Xcep-Dense network is designed with a significantly lower parameter count compared
to models utilizing depthwise convolution. This reduction is achieved through the incorpo-
ration of two-dimensional, three-dimensional, transpose, spatial separable, and depthwise
separable convolutions, effectively minimizing calculations and parameters. Depthwise
separable convolutions combine depthwise and pointwise convolutions, processing each
channel individually and employing pointwise convolutions with a sliding window of 1 × 1.
As suggested by Chollet [252], Assuming Ai is the size of the input convolution kernel, Ao

is the size of the output feature map, and Y and X are the numbers of spectral channels in the
input and output feature map, respectively. The number of parameters in conventional con-
volutions can be written as Ai×Ai×X×Y , and the number of calculations can be written
as Ai×Ai×X×Y ×A0×A0. However, the number of parameters in the case of depthwise
convolutions is Ai×Ai×X and the number of calculations is Ai×Ai×X×A0×A0. The
number of parameters in the case of pointwise convolutions is X × Y , and the calculation
amount can be written as X × Y × A0 × A0. Hence the number of parameters in the case
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Table 3.4: Comparison of Parameters

Model Reference Model Parameters (in millions)
Cui et al [83] 0.2 M
SSRN [257] 0.36 M
FDSSC [259] 1.23 M
pResNet [131] 1.13 M
SSUN [261] 1.22 M
DBMA [271] 0.61 M
DBDA [45] 0.38 M
SSUN [261] 1.22 M
Xcep-Dense Proposed Work 0.1 M

of depthwise versus conventional convolutions can be expressed by Equation 15, and the
calculation ratio of depthwise versus conventional convolutions is expressed by Equation
16

PDC
CC

=
(Ai × Ai ×X) + (X × Y )

Ai × Ai ×X × Y
=

1

Y
+

1

Ai × Ai

(15)

CADC
CC

=
(Ai × Ai ×X × A0 × A0) + (X × Y × A0 × A0)

Ai × Ai ×X × Y × A0 × A0

=
1

Y
+

1

Ai × Ai

(16)

The depthwise convolutions in the proposed xception network quilted with dense layers
drastically reduce the model parameters and the number of calculations going in the back-
ground, making the model lightweight. Table 3.4 shows that proposed Xcep-Dense involv-
ing depthwise convolutions outperforms existing lightweight models including inception or
residual blocks. The proposed model uses lesser model parameters (109840 = 0.1 million)
in comparison to existing deep convolutional networks Cui et al [83], SSRN [257], FDSSC
[259], pResNet [131], SSUN [261], DBMA [271], DBDA [45], SSUN [261] making the
proposed network lightweight. The replacement of 3 × 3 or 5 × 5 convolutions by 1 × 1
convolutions reduces the overall number of calculations making the training process faster.

3.4.4 Experiment 3 : Effect of Training Data

The proposed model’s performance was assessed with varying training data percentages
(5%, 10%, and 30%). Figures 3.9a and 3.9b illustrate the results for IP and SA datasets,
respectively. Optimal results were observed with 10% of the IP dataset for training. Beyond
10% samples, a marginal improvement in overall accuracy and computing time was noted.
Similarly, the peak performance for the SA dataset occurred with 5% training samples.
Consequently, we selected 10% and 5% as the optimal training samples for IP and SA
datasets, respectively.
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5% 10% 30%

OA 86.6 98.52 99.44

AA 76.25 97.03 97.83

KC 84.56 98.31 99.36
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(a) Data: IP

5% 10% 30%

OA 99.69 99.92 100

AA 99.77 99.91 100

KC 99.66 99.91 100
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(b) Data: SA

Figure 3.9: Effect of Training Samples

3.4.5 Experiment 4 : Effect of Dense Layers

The performance of the proposed network witnessed a significant boost with the incorpo-
ration of dense layers. When the model was applied to the IP dataset with only 5% train-
ing samples, the OA reached 89.91%, AA was 82.20%, and KC achieved 88.45% for the
Xception network. The introduction of dense layers played a crucial role in reducing the
parameters of the high-dimensional hyperspectral imagery to 2048, resulting in a remark-
able improvement of 5%, 8%, and 5% in OA, AA, and KC, respectively. The utilization
of Rectified Linear Unit (ReLU) activation facilitated faster convergence for the Xception
network, mitigating the risk of vanishing gradients. The incorporation of dropout regu-
larization, coupled with dense layers, further strengthened dependencies between adjacent
layers, contributing to an overall increase in accuracy. Figure 3.10 displays the training
loss and accuracy for the Xception network without the involvement of dense layers, il-
lustrating the clear impact of dense layers in mitigating overfitting and enhancing network
performance.

3.4.6 Experiment 5: Performance of Xcep-Dense on other benchmark
datasets

While the table showcases promising performance for Xcep-Dense on three datasets PU,
KSC and SA-A, a closer look reveals some nuances. OA is impressive, reaching 99.97%
on SA-A. However, this exceptional result might be dataset-specific. KSC lands at a sig-
nificantly lower OA (86.39%) despite having a larger training data size (0.10) compared to
PU and SA-A (both 0.05). This inconsistency highlights the potential for the model to be
sensitive to the characteristics of the data it’s analyzing. Furthermore, AA paints a simi-
lar picture. While SA-A boasts a stellar 99.95% AA, PU and KSC fall behind at 98.43%
and 81.18% respectively. This variation suggests that Xcep-Dense might struggle with cer-
tain classes within the datasets, even if overall accuracy appears high. Overall, the table
indicates that Xcep-Dense has the potential for excellent performance. However, drawing
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Figure 3.10: Training Accuracy and Training Loss of Xception network for IP and SA with and with-
out Dense layers involved Top layer showing IP Dataset (Left to Right): Training Accuracy With Dense,
Training Accuracy No Dense, Training Loss with Dense, Training Loss No Dense; Bottom layer showing SA
Dataset (Left to Right): Training Accuracy With Dense, Training Accuracy No Dense, Training Loss with
Dense, Training Loss No Dense

Figure 3.11: Training Accuracy Xcep-Dense for other three benchmark datasets (Left to
Right) : Pavia U, KSC, Salinas

definitive conclusions requires further context. Understanding the specific characteristics
of each dataset and the purpose of the classification task would allow for a more critical
evaluation of the model’s strengths and weaknesses.

3.5 Summary

The proposed lightweight Xcep-Dense network addresses the challenge of extensive param-
eters in existing deep learning models, offering comparable classification accuracy with
significantly fewer parameters. Leveraging depth-wise and pointwise separable convolu-

Dataset Training Data OA AA KC

Pavia University (PU) 0.05 99.27 98.43 99.04

Kennedy Space Centre (KSC) 0.10 86.39 81.18 84.77

Salinas-A 0.05 99.96 99.97 99.95

Table 3.5: Performance of Xcep-Dense on Pavia U, KSC, and Salinas-A
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tions, the network achieves efficiency in parameter reduction. The integration of dense
modules enhances network depth and enables a more robust extraction of spatial-spectral
properties. Key optimization techniques, including batch normalization (BN) and dropout
layers, contribute to faster convergence. Additionally, the ReLU activation function plays a
crucial role in preventing overfitting and reducing the number of training parameters. This
method stands out for its superior classification accuracy, outperforming state-of-the-art
models even with limited training data. The proposed network’s efficiency lies in achieving
excellent classification performance with fewer parameters, leading to faster convergence
and mitigated overfitting. While this model achieves great classification accuracy, it doesn’t
work for cross-domain data. This model is tuned to work for data with similar properties
and bands. For future work, expanding the network’s capabilities to handle cross-domain
data and enhancing its adaptability to different domains would be beneficial. Despite this
limitation, the proposed method stands out for its superior classification accuracy, outper-
forming state-of-the-art models even with limited training data.
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CHAPTER 4

DEEP SIAMESE NETWORK WITH HANDCRAFTED

FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE

CLASSIFICATION

The prominence of deep learning models for the classification of hyperspectral images is
directly proportional to their ability to exploit spatial context and spectral bands jointly.
However, the success of these models is reliant upon having a substantial number of labelled
training samples. This poses a significant challenge in the context of hyperspectral images,
where obtaining annotated samples is a time-consuming and labour-intensive process, re-
sulting in the limited availability of labelled data. While traditional machine learning algo-
rithms exist, they come with prolonged training times, and employing very deep pre-trained
networks such as GoogleNet and VGGNet proves ineffective for hyperspectral image clas-
sification. The idea of one-shot classification has been quite motivating in recent years to
deal with the problems of limited labelled samples, and imbalanced distribution of samples
leading to poor classification results and overfitting issues. To overcome these challenges
and leverage on few-shot classification, this chapter proposes a new deep Siamese network
for HSIC method that can work with limited samples or imbalanced samples. The proposed
Siamese network has a handcrafted feature generation network that extracts discriminative
features from the image.

4.1 Introduction

Hyperspectral images, rich in spatial and spectral information [235], [238], find applica-
tion in diverse fields such as defence, military, medical diagnosis, geological mapping, ob-
ject recognition, environmental monitoring, anomaly detection, and forensic analysis [272]
[273] [274] [275]. A pivotal challenge in hyperspectral imaging is accurate ground object
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classification [276] and various learning approaches, including supervised, unsupervised,
and semi-supervised learning, can be employed for the classification process. However,
achieving robust performance in supervised classification encounters significant obstacles,
primarily stemming from the limited availability of labelled samples [277] [278]. Addi-
tionally, the capability of deep learning models to effectively handle imbalanced datasets in
hyperspectral image (HSI) classification poses another challenge, given the uneven distribu-
tion of samples across categories [279]. The annotation of samples adds to the complexity,
being a time-consuming process, thereby contributing to suboptimal classification perfor-
mance [175], [177], given the heavy reliance of deep learning models on sufficient training
data.

Supervised deep learning methods have demonstrated superior performance compared
to unsupervised approaches, which categorize data based on similarities and patterns [138].
Many supervised methods, such as Linear Discriminant Analysis (LDA), aim to maximize
separability between classes but may not suit the classification of nonlinear HSI data [280].
Feature extraction methods like PCA [281], Independent Component Analysis (ICA) [282],
Local Linear Embedding (LLE) [280], and spatial-spectral modules like Extended Mor-
phological Profile (EMP) [23] or Morphological Attribute Profile (MAP) [283] have been
employed in the past. Traditional machine learning algorithms, including support vec-
tor machines, are effective for small training samples but require longer training times
for large datasets. In recent years, deep learning, encompassing models like Convolu-
tion Neural Networks [49], [284], Generative Adversarial Networks [285], Autoencoders
[251], [255], Transfer Learning [213], [286], [10], and Recurrent Neural Networks [16],
has gained prominence for achieving state-of-the-art results in HSI classification. How-
ever, these models face challenges, such as the need for substantial training data and the
risk of overfitting [49], [284], [285], [213], [286]. Despite the effectiveness of deep learn-
ing models, their performance heavily relies on the availability of a significant amount of
training data, making them susceptible to challenges posed by limited labelled samples and
imbalanced datasets in HSI classification [279]. The inadequacy of training data for deep
learning models can result in the vanishing gradient problem and may lead to overfitting, es-
pecially when dealing with large datasets [49], [284], [285], [213], [286]. To address these
challenges, the concept of one-shot learning has been explored, leveraging the Siamese net-
work to train models with fewer data points and mitigate issues related to overfitting and
limited training data [10], [287]. This chapter proposes a Siamese CNN with a handcrafted
feature extraction module to effectively handle problems like imbalanced class distribution,
limited labelled samples, and overfitting in HSI classification.

In summary, this chapter makes a significant contribution by addressing challenges in
hyperspectral image classification, offering a novel approach to one-shot learning through
Siamese CNN with a specialized feature extraction module.
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• The proposed work doesn’t need too many instances of any class to train the network,
rather uses adequate training data to build a strong network using Siamese as the base
model to determine the similarity of input pairs.

• Both datasets are pre-processed after the removal of the noisy bands to further im-
prove the classification accuracy. A novel feature extraction module is handcrafted,
fine-tuned and merged with the Siamese network helps in increasing the classification
performance by extracting finer discriminative features from the input image.

• The proposed network alleviates the problem of overfitting and mitigates gradient
vanishing by utilizing the Adam optimizer, binary cross-entropy function, and dropout
layers. To prove the worth of the model, the proposed method is applied to two bench-
mark hyperspectral data sets, IP and PU and results prove that the designed model can
outperform other models even with small-scale training data.

4.2 Related Models

Because of the prominence of deep learning models over conventional machine learning
models for image classification tasks, CNNs were first used by [288] and recently they
seem to outperform all other models specifically in the area of image classification [254],
[289]. The IP and PU dataset was classified using CNN providing a greater accuracy with
small training samples in comparison to traditional models like SVM. To make the per-
formance even better, this study suggests the use of a Siamese network as it can deal with
data having a small number of samples per category. This study also suggests the use of
a dropout layer to optimize the network. [290] worked on the problem of dimensionality
of HSI by proposing spatial-spectral regularized sparse hypergraph embedding (SSRSHE)
and possesses better classification performance by reducing the influence of noisy data.
However the proposed model uses information in both spectral and spatial domains, there-
fore more time-consuming than the existing spectral models. [50] proposed a framework
based on Siamese network and autoencoders making full use of the limited labelled sam-
ple information to provide a classifier for HSI. This model was proven great in generating
discriminative features even on the edges of cubes however accuracy of the model declines
with training samples as low as one percent. In 2020, [49] came up with the idea of dual
path Siamese network that provides better results in case of limited samples than models
like SVM or CNN but still has a scope of improving accuracy. Recently, [291] proposed a
method based on few shot classification and attention mechanisms that solve the problem
of annotating samples being a time-consuming and costly task. It explores the relationships
between labelled and unlabeled samples using the Siamese network to further analyze the
intra-class and inter-class distances. However, the model did not produce great classifica-
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tion results. [279] and [31] use Siamese networks with the augmented data and calculate a
similarity score. The former study works well with small and imbalanced samples with a
limitation that when the samples in each category reach a satisfactory mark, the model may
not work well. Later study [31] makes use of dynamic augmentation that changes the value
of loss as per the augmentation with a risk of misclassification. [228] developed a model for
limited samples, SaSiResNet based on superpixel segmentation using the Siamese network
that even works for unlabeled samples with a disadvantage to deriving an optimal number
of superpixels and making the model computationally efficient.

Table 4.1: Studies on Supervised Models

[292] Pathak et.
al

IP
PU
SA

91.09
96.74
94.81

83.53
96.18
97.13

89.78
95.64
94.21

Addition of newer classes in the ex-
isting dataset does not lead to the re-
training of network

Algorithm needs optimiza-
tion and fine-tuning

[293] Hu et. al IP
PU
SA

90.16
92.56
92.60

Great accuracy with small training
samples, Better than SVM.

Can better perform with the
use of Siamese network op-
timized with dropout layer

[51] CAP1 PU
SA

94.90
99.94

95.42
99.95

93.24
99.92

Combined CNN and Capsule net-
works

Need to enhance CapsNets,
that takes longer time than
CNN

[290] SSRHE IP
PU

89.78
92.59

90.88
90.55

88.4
90.2

Worked on the problem of dimen-
sionality by proposing SSRSHE and
possesses better classification per-
formance

Time taking than the exist-
ing spectral models

[50] w-S-
SAN

IP
PU

93.57
97.61

92.06
96.49

92.77
96.83

Proposed a framework based on
Siamese network + autoencoders
making full use of the limited la-
belled sample information.

Accuracy of the model de-
clines with training samples
as low as one percent.

[228] SaSiResNet-
2

IP
PU

76.33
82.32

80.98
85.30

73.33
77.31

Developed a model for limited sam-
ples, SaSiResNet based on super-
pixel segmentation using Siamese
network that even works for unla-
beled samples

Disadvantage to derive op-
timal number of superpixels
and make the model compu-
tationally efficient.

[291] AwGCN IP
PU

70.47
62.94

72.31
63.82

42.70
59.39

Proposed a method based on few
show classification and attention
mechanisms, Solves the problem of
annotating samples, Explores the re-
lationships between labelled and un-
labeled samples

The model did not produce
great classification results.

[294] Zhu et. al IP
PU
HU

99.63
99.97
95.36

99.79
99.95
96.00

99.58
99.96
94.99

Proposed SSDGL with attention
mechanism

[295] TLFN PU
SA

95.63
97.00

94.03
98.61

94.21
96.64

Increased classification performance Limitation of long compu-
tational time and valida-
tion required on other hyper-
spectral datasets

Ref Proposed
Model

Datasets OA AA KC Work Done with Advantages Limitations

Continued on next page
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Table 4.1: Studies on Supervised Models (Continued)

[49] Dual-
SCNN

PU
KSC

85.81
90.80

85.44
89.63

81.36
89.75

Proposed Dual Path Siamese net-
work that provides better results in
case of limited samples than models
like CapsNet, SVM or CNN

Still has a scope of improv-
ing accuracy.

[279] SSDDA PU
IP

93.22
95.16

88.85
92.13

91.02
83.33

Use Siamese networks with the aug-
mented data and calculate a similar-
ity score. Works well with small and
imbalanced samples.

When the samples in each
category reach a satisfactory
mark, the model may not
work well.

[296] AP3D PU
IP
SA

91.37
89.14
93.56

90.50
94.36
96.77

88.45
87.61
92.83

Proposed Attention Aware pseudo-
3D CNN (AP3D) that pays attention
to important features in the image at
all levels of convolutions

Complex model, Reduction
in the model size required,
Also, classification accuracy
needs to be improved

[297] SVM +
SCNN

PC
PU
IP

99.68
99.08
99.04

99.26
99.08
99.14

99.55
98.79
99.87

Proposed a fine-tuned, SVM-based
algorithm that outperformed other
machine learning-based algorithms

Inclusion of a feature ex-
traction module could have
greatly improved the ef-
fectiveness of the proposed
method

[31] SA-
SCNN

KSC
PU

94.64
88.11

94.24
85.58

94.03
84.49

Makes use of dynamic augmentation
that changes the value of loss as per
the augmentation

Risk of misclassification.

[298] CAG IP
PU
SA

77.01
90.30
91.14

78.27
88.81
94.14

91.14
87.01
90.15

Performs HSI classification using at-
tention mechanism and graph net-
works to generate a relationship be-
tween features

Uses NVIDIA GTX1070
GPU for performing the ex-
periments, therefore time
consumption is lower

[150] DGCN-
GC

SA
IP
PU

87.33
77.46
79.87

88.23
77.79
79.84

86.49
77.63
77.09

Works on the problem of limited
samples using a hybrid network
combined point graph and distribu-
tion graph (DGCN), fully extracts
features to study correlations

Still a scope of improving
accuracy

Ref Proposed
Model

Datasets OA AA KC Work Done with Advantages Limitations

4.3 Proposed Methodology

In this section, we delve into the details of the proposed model, which starts with the de-
scription of proposed siamese network in subsection 4.3.1, pre-processing of data in sub-
section 4.3.2 and handcrafted feature extraction network in subsection 4.3.3.

4.3.1 Siamese Network Architecture

The Siamese Network, renowned for its capacity to assess similarity, proves especially
valuable in image classification scenarios involving numerous categories or datasets with
imbalanced class distributions [58, 299]. In such cases, distance-based methods, leveraging
the same neural network to compute a similarity metric between the pattern to be classified
and a database of stored patterns, are commonly employed [300]. The Siamese network is
selected for its capability to mitigate the importance of labels by categorizing them as either
similar or dissimilar, rendering it particularly suitable for HSI due to the scarcity of labelled
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or supervised samples [50].

Merge
Features

HSI Cube

X1

X2

Feature Extraction
Module Gw(X)

Feature Maps
Gw(X1)

Feature Maps
Gw(X2)

Binary Cross
Entropy

Loss

Label

Fully Connected
Network

Sigmoid
Activation

Figure 4.1: Working of the Proposed Model

The proposed model, illustrated in Figure 4.1, integrates a feature generation module
applied to each image. This module produces reduced feature vectors with discriminative
features and subsequently computes the similarity score. The core of the Siamese net-
work comprises CNN layers, including convolution layers, pooling layers, dense layers,
and dropout layers, each serving a specific purpose. Convolutional layers capture low, mid,
and high-level features, treating the input as an HSI cube containing multiple bands. The
feature extraction module processes bands to generate feature maps, with each map utiliz-
ing a distinct convolutional kernel for diverse feature analysis. The pooling layer further
reduces feature dimensions by calculating mean or variance within subtle rotations. The
proposed model uses a max pooling layer, determining the maximum value among neigh-
boring pixels in a feature map. Finally, vectors pass through fully connected layers to
summarize information, followed by sigmoid activation.

This network operates by creating usable batches for training, taking two images (A
and B) as input and outputting a similarity score. The fundamental assumption is that if
the input images belong to the same group, the similarity score is 1, indicating complete
resemblance, and 0 otherwise. The random batches algorithm randomly selects two sample
input images, with the first half from the same category and the second half from a different
category. This approach ensures a mix of similar and dissimilar image pairs during training,
enhancing the network’s ability to learn robust features.

In 2016, [301] proposed a pixel pair labelling scheme that maps a pixel pair set to a mul-
ticlass label set. Let A be an input HSI with n labelled samples, represented as ((xi, yi)

n
i=1)

with labels yi∀1, 2...C, where C is the number of classes. The random pixel pair vector
[xi, xj] is selected from the training set, and the labeling strategy is defined by Equation
4.1. This equation compares two input pixels, returning the category ”1” if they belong to
the same label l; otherwise, if the samples belong to different classes, the label remains 0.

(xi, xj) =

1 if xi = xj = l

0 if xi ̸= xj

(4.1)

[23] defines equation 4.2 to test any pixel vector t, network computes the similarity
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Figure 4.2: Band Images

score si of pixel pair (t, si) for the available pixels xi and computes the label l̂ by taking
the maximum si. Here l̂ is the predicted label, and argmaxi is the argument at which the
maximum value is achieved applied at similarity scores si.

l̂ = argmax
i

si (4.2)

The forthcoming sections dig into the pre-processing of data followed by the custom-
built feature extraction network.

4.3.2 Preprocessing

The validation of our model was conducted using two widely recognized HSI datasets ob-
tained from [302] dataset, including IP and PU. Figures 4.2a and 4.2b present the spectral
bands and ground truth distribution for the IP dataset, offering insights into the dataset’s
spectral characteristics. Similarly, Figures 4.3a and 4.3b provide visualizations of the spec-
tral bands and ground truth distribution for the PU dataset. These visual representations
contribute to a better understanding of the datasets and their characteristics, serving as es-
sential components in the validation process of our proposed model.

Due to the high dimensional resolution of hyperspectral images, processing them entails
increased computational complexity [303]. To address this, preprocessing plays a crucial
role in selecting the appropriate bands and reducing the data’s dimensionality and com-
plexity. As depicted in Figure 4.4, the original spectral-spatial dimensions of the IP dataset
were 145 * 145 * 224. Following the removal of noisy bands by [304], the preprocessed
data was reduced to 145 * 145 * 220, with 145 * 145 representing the spatial dimension
and 220 denoting the number of spectral bands in the IP dataset. Each band contained 145
* 145 = 21,025 pixels, resulting in a total of 220 bands. This data was then split, allocating
10% for training samples and 90% for testing samples. Following this division, the total
number of training samples amounted to 2,102, with testing conducted on 18,923 samples.
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Figure 4.3: Ground Truth Images

For the PU dataset, the original hyperspectral cube possessed spectral-spatial dimen-
sions of 610 * 340 * 103. After extracting 103 bands, the resulting image was scaled to
207,400 * 103. For training purposes, 20,740 samples were utilized, and testing was car-
ried out on 186,660 samples. A similar extraction process was applied to the ground truth
images, which had a spatial dimension of 145 * 145 pixels. As the ground truth serves as
the label or category for each data point, the final data shape was 21,025 * 221, including
bands and the target label for the IP dataset. Meanwhile, for the PU dataset, it was 610 *
340 * 104 = 207,400 * 104 pixels. This preprocessing ensures that the data is appropriately
formatted for effective training and testing of the proposed model.

145 × 145 × 224

145 × 145 × 220

21025 × 220

21025

610 × 340 × 103

610 × 340 × 103

207400 × 103

207400

2102 18923 20740 186660

Figure 4.4: Preprocessing for IP and PU dataset

4.3.3 Components of Similarity Model

The similarity model comprises two input layers simultaneously receiving two separate im-
ages. The feature extraction approach retrieves features from both data points, and concate-
nates them using the concatenate layer, followed by a fully connected network including
dense and dropout layers and a sigmoid activation that aids in image classification with a
probabilistic similarity score.

As illustrated in Figure 4.5, images A and B undergo the feature generation block,
producing encoded feature vectors f(a) and f(b) through CNN. The similarity score between
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feature vectors is then calculated using D(a, b), representing the Euclidean distance on f(a)
and f(b) as depicted in equation 4.3.
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Figure 4.5: Layer-wise breakdown of proposed model

D(a, b) = ∥f(a)− f(b)∥2 (4.3)

Algorithm 2 GenRandomBatch(inGroups, BatchHalfsize)
Initialize empty lists: OutImgA, OutImgB, OutScore
Create a list allGroups containing indices for all input data groups
for each matchGroup in [True, False] do

Randomly choose batchHalfsize indices from allGroups and assign them to groupIdx
for each cIdx in groupIdx do

Randomly choose a sample from the corresponding group in inGroups and add it to Out-
ImgA

end for
if matchGroup then

Set bGroupIdx to be the same as groupIdx
Append 1 to OutScore batchHalfsize times

else
Create an empty list nonGroupIdx
for each cIdx in groupIdx do

Randomly choose a different group index from allGroups and add it to nonGroupIdx
end for
Set bGroupIdx to be nonGroupIdx
Append 0 to OutScore batchHalfsize times

end if
for each cIdx in bGroupIdx do

Randomly choose a sample from the corresponding group in inGroups and add it to OutImgB
end for

end for
Stack OutImgA, OutImgB, and OutScore along first dimension and return result
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The Mathematics behind Generating Random Batches

The process of generating random batches in a Siamese network involves selecting pairs
of images from the dataset, labelling them as positive or negative, and assigning similarity
scores accordingly. Positive pairs consist of two images from the same category, labeled as
similar with a designated similarity score typically set to 1. Conversely, negative pairs are
formed by pairing an image with another from a different category, labelled as dissimilar
with a similarity score of 0. This process is iterated to create batches of training data, where
each batch contains a mix of positive and negative pairs along with their corresponding
similarity labels. The provided algorithm outlines this process succinctly: it initializes
empty lists for output images, paired images, and similarity scores, selects random indices
from the input data groups, and iterates through each group to create positive and negative
pairs accordingly. Finally, the generated pairs are stacked along with their labels to form
the training batch, ensuring the Siamese network learns to discriminate between images
with similar and dissimilar characteristics during training. Algorithm 3 briefs the process
of generating random batches.

Inculcated Feature Extraction Module

The Feature Extraction Module is specifically crafted to draw out discriminative features
from the input image. This tailored module consists of four blocks, each comprising a
convolutional layer followed by a batch normalization layer, as illustrated in Figure 4.6.
The process begins with the input image passing through the convolutional layer, applying
convolutions that effectively reduce the depth of the channels. Following every two such
convolution and batch normalization blocks is a max-pooling layer. Max-pooling serves as
a technique to condense the features within a segment of a feature map generated by a con-
volution layer. Consequently, the max-pooling layer produces a feature map containing the
most discriminative and variant features from the preceding feature map. The subsequent
flattened layer transforms this into a one-dimensional vector.

To counter overfitting, the network undergoes fine-tuning with batch normalization and
dropout layers as inspired by [136]. Batch normalization enhances linearity, and the sub-
sequent max-pooling layer reduces computational complexity. After max-pooling, data
undergoes flattening into a single-dimensional entity before entering the dense layer. A
dropout layer with a 0.5 rate is introduced to counteract overfitting. This combination of
layers and techniques strikes a balance between model complexity and regularization, en-
suring effective feature extraction while preventing overfitting. As depicted in Figure 4.6,
the input to the model starts at dimensions 220 * 1 and gets reduced to 32 * 1 after passing
through the model. The customization of the feature extraction module involves placing the
right parameters for optimal classification accuracy with minimal runtime.
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Figure 4.6: Inculcated Feature Extraction Model

The band extraction process is detailed in Figure 4.7. The IP dataset, presented as a
cube with dimensions 145 * 145 * 220 (Width * Height * Spectral Band), undergoes band
selection, as shown in Figure 4.7 (top middle). The corresponding ground truth image, with
distinct labels for each category represented in different spectra, is displayed in Figure 4.7
(top right). The band extraction process, illustrated in the bottom left of Figure 4.7, assigns
a class to each pixel based on the ground truth, signifying data extraction corresponding to
various data points or pixels through spectra.

Binary Cross Entropy for Similarity Score Calculation

In the context of a Siamese network, which is often used for tasks like image similarity or
dissimilarity, the binary cross-entropy, represented by Equation 4.4 loss plays a crucial role
in quantifying how well the network is performing in distinguishing between similar and
dissimilar pairs of images.

− 1

N

n∑
i

m∑
j

yij log (pij) (4.4)

In this equation 4.4, N is the total number of image pairs in the dataset, n is the index
for each image pair in the sum, m = 2 because we are dealing with a binary classification
problem: determining whether the pair is similar (yij = 1) or dissimilar (yij = 0), yij is the
ground truth label for the i-th image pair. It is binary, indicating whether the pair is similar
or dissimilar, pij is the predicted probability that the i-th image pair is similar.

For each image pair i, the binary cross-entropy loss is calculated based on the predicted
probability (pij) and the ground truth label (yij). The inner sum (

∑m
j ) is over the two

classes (similar or dissimilar), summing up the contribution from each class. The outer sum
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(
∑n

i ) is over all image pairs, summing up the losses for each pair. The negative sign and
the fraction − 1

N
turn the task of minimizing the loss into an optimization problem. The

goal of proposed Siamese is to minimize this binary cross-entropy loss during training. The
network adjusts its parameters to improve the agreement between predicted probabilities
and true labels, making it proficient in distinguishing between similar and dissimilar image
pairs. The binary cross-entropy loss is a crucial component of the training process, guiding
the network to learn effective representations for the given similarity or dissimilarity task.

4.4 Results and Discussion

This section focuses on the application of the proposed Siamese CNN for hyperspectral
dataset classification, employing two benchmark HSI datasets: PU and IP.

4.4.1 Experimental Settings

The Siamese network, configured with a batch size of 32, generates random batches by
halving the equal size. Network tuning utilizes Adam optimizer with a learning rate of
0.0001 and binary cross-entropy as the hyperparameter for mean absolute error calcula-
tion. During training, random batches processed through the Feature Generation model
incorporate convolutions with a kernel size of 3 and ReLU activation, alongside a dropout
parameter of 0.5 for overfitting prevention. TensorFlow handles the model implementation,
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while Scikit Learn is utilized for metrics evaluation.

4.4.2 Train and Test Split

For the IP dataset with spatial and spectral dimensions of 145 * 145 * 220, training encom-
passes 10% of the samples, reserving the remaining 90% for testing. The Similarity Model
undergoes training for 110 epochs, utilizing a batch size of 64 and 500 steps per epoch.

To ensure a comprehensive and fair comparison, three distinct categories were defined:

• This group encompasses widely-used machine learning techniques such as Support
Vector Machine (SVM), Decision Trees (DT), and Logistic Regression (LR). While
these models yield reasonable results, there exists potential for enhancing categoriza-
tion accuracy.

• The second category includes deep learning methods, known for their remarkable per-
formance in hyperspectral image categorization. Existing models like 3DAES [58],
AwGCN [291], 3DAES naive [58], CAP1-PU [51], Hu et al. [293], DGCN [150],
Dual-SCNN-AT-Mix-up [49], Ap3D [296], SSRHE [290] are considered for the PU
dataset, while CNN-PPF [301], SaSiResnet-2 [228], Hu et al. [293], CAG [298], w-
S-SAN [50], DGCN [150], CNN [50], Ap3D [296], SSRHE [290] are evaluated for
the IP dataset.

• The third category comprises the results obtained from the proposed network. This
novel approach aims to contribute to the field of hyperspectral image classification,
and its performance is thoroughly compared with both traditional machine learning
models and existing deep learning methods.

4.4.3 Experiment 1: PU

Initially, the experiment was conducted on the PU dataset. The comparative analysis of
the proposed network with the studies’ suggested literature is visually depicted in Figure
4.8, utilizing OA, AA, KC as the evaluation metrics. The classification accuracy for each
class is detailed in Table 4.2. The results notably illustrate the exceptional classification
performance of the proposed network, showcasing the highest OA and superior accuracies
for most categories. In contrast, when employing machine learning models like SVM, LR,
and DT on the same dataset, the OA dropped to 55%, 83%, and 74%, respectively, even
with a substantial 80% training data. Remarkably, our proposed model attains impressive
accuracy with just 10% of the data. Notably, for classes such as ”Painted Metal Sheets,”
”Bitumen,” and ”Shadows,” the model achieves accuracy levels of 95% or higher.
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Figure 4.8: Comparison Chart for PU Dataset

Table 4.2: Class-wise Accuracy Comparison for PU

Category
SVM[305]

CAPS1-
PU[51]

Hu et.
al[293]

Dual-
SCNN-AT-
Mix-up[49]

SS-
RHE
[290]

DGC-
NDC
[150]

Ap3D[296]
Proposed

1 Asphalt 87.47 89.43 87.34 80.76 91.19 78.99 91.00 92.27
2 Meadows 93.86 96.86 94.63 89.96 98.12 80.91 97.13 99.49
3 Gravel 84.23 92.29 86.47 69.51 78.6 79.43 78.23 98.62
4 Trees 97.80 97.97 96.29 96.24 89.26 79.23 98.11 99.49

5
Painted Metal
Sheets

99.86 100.0 99.65 99.49 99.77 80.97 98.96 97.08

6 Bare Soil 95.19 96.09 93.23 77.60 85.22 81.03 65.58 99.33
7 Bitumen 94.82 98.31 93.19 77.23 90.18 80.60 91.88 94.59

8
Self-Blocking
Bricks

92.58 87.96 86.42 80.60 79.33 79.30 95.22 98.94

9 Shadows 99.93 99.85 100.0 97.59 100 78.33 98.42 95.48
Overall Accuracy 92.97 94.90 92.56 85.81 92.59 79.87 91.37 95.17
Average Accuracy 93.97 95.42 85.44 90.55 79.84 90.50 92.00
Kappa Score 93.24 81.36 90.2 77.09 88.45 80.00

4.4.4 Experiment 2: IP

The second phase of the experiment focused on the IP dataset. The class-wise accuracy
breakdown is presented in Table 4.3, and a comprehensive visual representation of the eval-
uation metrics is showcased in Figure 4.9. Demonstrating remarkable efficiency, the pro-
posed model attains an impressive 93.25% OA with a mere ten percent of the dataset allo-
cated for training. Upon closer inspection of the results, it is evident that certain classes have
limited training data, such as ”Soybean-clean,” ”Oats,” ”Stone-Steel-Towers,” and ”Grass-
pasture-mowed,” yet they still exhibit a commendable level of classification accuracy. Our
model secures the second-best performance among the compared models, with the highest
accuracy model not considering classes with limited samples.

104



Figure 4.9: Comparison Chart for IP Dataset

Table 4.3: Class-wise Accuracy Comparison for IP

Category
EMP-
SVM[305]

CNN-
PPF[51]

SaSiRes-
net[49]

SS-
RHE
[290]

DGC-
NDC
[150]

Ap3D[296]
Pro-
posed

1 Alfalfa 81.82 - 95.88 94.44 81.10 80.20 75.05
2 Corn-notill 78.85 92.99 66.61 88.17 76.20 90.94 99.15
3 Corn-mintill 90.75 96.66 81.92 80.46 73.82 100 99.46
4 Corn 73.96 - 80.51 84.04 75.50 93.29 79.15
5 Grass-pasture 95.10 98.58 89.18 96.55 73.83 97.27 88.01
6 Grass-Trees 96.99 100 89.71 97.02 78.46 99.77 99.10

7 Grass-pasture-mowed 87.50 -
100.00

100 80.80 88.45 81.48

8 Hay-windrowed 99.07 100 95.65 98.60 81.75 83.29 95.81
9 Oats 6.67 - 36.00 80.00 65.56 87.06 1.0
10 Soybean-notill 86.81 96.24 77.68 83.89 77.16 100 98.16
11 Soybean-mintill 96.80 87.80 59.23 89.50 78.44 95.10 97.65
12 Soybean-clean 85.75 98.98 75.96 83.71 81.07 96.97 97.95
13 Wheat 97.96 - 98.59 100 79.34 100 72.39
14 Woods 97.66 99.81 90.08 95.52 76.81 97.44 1.0
15 Buildings-Grass-Trees-Drives 92.03 - 81.14 83.57 79.00 100 95.37
16 Stone-Steel-Towers 68.85 - 77.47 97.59 85.80 100 89.71

Overall Accuracy 91.09 94.34 76.33 89.78 77.46 89.14 93.25
Average Accuracy 83.53 96.78 80.98 90.88 77.79 94.36 90.00
Kappa Score 89.78 94.73 73.33 88.4 77.63 87.61 72.31

Table 4.4: Training and Testing Time taken

PU (610 * 340 * 103) IP (145 * 145 * 220)

Total Parameters Training Time Testing Time Total Parameters Training Time Testing Time
2.576 * 104 300 11 5.648 * 104 280 7
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Figure 4.10: (Left to Right) Confusion Matrix, Dataset: PU for (a) SVM (b) LR (c) DT

Figure 4.11: (Left to Right) Confusion Matrix, Dataset: IP for (a) SVM (b) LR (c) DT

Figure 4.12: Confusion Matrix for PU and IP

4.4.5 Confusion Matrices and Convergence

The comparison between correctly and incorrectly predicted classes is visually represented
in Figures 4.10 and 4.11 for PU and IP for the category of machine learning models, while
Figures 4.12 and 4.13 illustrate the outcomes for our proposed Siamese network model. The
confusion matrices of traditional machine learning models align with the accuracy chart, in-
dicating a considerable number of misclassifications. Figure 4.12 specifically exhibits the
confusion matrix tailored for a multilabel problem in our proposed Siamese network model.
This 2*2 matrix captures pairwise multilabel confusion, emphasizing the model’s behaviour
under binary cross-entropy, where any dissimilarity score less than 1 is considered a mis-
classification.

Table 4.4 and Figure 4.13 provide insights into the training and testing times using
Scikit Learn and TensorFlow. The training duration for PU and IP amounted to 300 and
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280 seconds, respectively, with testing requiring 11 and 7 seconds. The proposed Siamese
model demonstrates efficient convergence, indicating the potential for further optimization
in training and testing times through the adoption of frameworks like Caffe.
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Figure 4.13: (Left to Right) Model Accuracy for PU and IP

4.4.6 Discussion

The proposed deep Siamese network with handcrafted feature extraction demonstrates strong
performance on the benchmark hyperspectral image datasets, achieving state-of-the-art
classification accuracies even with limited training data. Several key strengths of the model
contribute to its success:

• Few-Shot Learning Capability: The Siamese architecture enables effective few-
shot learning by comparing input image pairs and determining their similarity, reduc-
ing reliance on large labelled datasets that are challenging to obtain for hyperspectral
images.

• Handcrafted Feature Extraction: The custom-designed feature extraction module
extracts discriminative features tailored to hyperspectral data, enhancing the model’s
ability to capture relevant spectral and spatial information.

• Robustness to Imbalanced Data: The results show the model’s resilience to im-
balanced class distributions, a common issue in hyperspectral datasets, indicating its
potential for real-world applications.

• Computational Efficiency: Despite its strong performance, the model architecture
is relatively lightweight, with faster convergence times compared to some existing
models, making it more computationally efficient.

However, the proposed model also has some limitations and potential failure cases that
should be addressed:

• Sensitivity to Hyperparameters: The performance of the model may depend heav-
ily on the choice of hyperparameters, such as the architecture of the feature extraction
module and the optimization settings, requiring careful tuning for each dataset.
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• Dependence on Spectral Preprocessing: The model’s performance may be sensitive
to the spectral preprocessing steps, such as band selection and noise removal, which
can vary across different datasets and applications.

To further improve the proposed model and address these limitations, several future
research directions can be explored:

• Interpretability Enhancement: Techniques such as attention mechanisms, saliency
maps, or explainable AI methods could be incorporated to improve the interpretabil-
ity of the model’s decisions, especially for critical applications like environmental
monitoring or target detection.

• Automated Hyperparameter Tuning: Implementing automated hyperparameter op-
timization strategies, such as Bayesian optimization or evolutionary algorithms, could
alleviate the burden of manual tuning and potentially improve model performance.

• Domain Adaptation and Transfer Learning: Investigating domain adaptation and
transfer learning techniques could enable the model to leverage knowledge from re-
lated datasets or domains, potentially reducing the need for large amounts of labeled
data in the target domain.

• Ensemble and Multi-Modal Approaches: Combining the proposed model with
other deep learning architectures or incorporating multi-modal data (e.g., LiDAR,
radar) could lead to more robust and accurate hyperspectral image analysis systems.

• Distributed and Parallel Training: Exploring distributed and parallel training strate-
gies could further improve the computational efficiency of the model, enabling scal-
ability to larger datasets and higher spatial or spectral resolutions.

Overall, the proposed deep Siamese network with handcrafted feature extraction repre-
sents a promising approach for HSIC, particularly in scenarios with limited labelled data.
By addressing its limitations and leveraging future research directions, the model’s per-
formance and applicability could be further enhanced, contributing to the advancement of
hyperspectral remote sensing and related fields.

4.5 Summary

The proposed few shot classification model, based on a Siamese network with enhanced
feature extraction, outperforms current models in the literature, achieving state-of-the-art
classification accuracy. The fine-tuned feature extraction block utilizes hyperparameters
to extract discriminative features, contributing to improved classification accuracy even in
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scenarios where the network is trained with minimal data. This fine-tuning, specifically
tailored for HSI features, results in superior performance compared to predefined feature
extraction models. The experimental results on two benchmark hyperspectral datasets high-
light the effectiveness of the proposed network, showcasing an overall accuracy of 95.17%
for the PU dataset and 93.25% for the IP dataset, even when trained with a limited amount
of data. Notably, the network exhibits robustness to imbalanced data. Furthermore, com-
pared to existing models in the literature, the feature extraction module, despite being less
dense, delivers superior results and demonstrates faster convergence.
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CHAPTER 5

A 3D CONVOLUTIONAL AUTOENCODER EMBEDDED

SIAMESE ATTENTION NETWORK FOR

CLASSIFICATION OF HYPERSPECTRAL IMAGES

Supervised deep learning networks have demonstrated exceptional performance in HSIC,
capitalizing on their capacity for end-to-end optimization and leveraging their strong po-
tential for nonlinear modelling. However, labelling HSIs, on the other hand, necessitates
extensive domain knowledge and is a time-consuming and labour-intensive exercise. To ad-
dress this issue, this chapter introduces a novel semi-supervised network constructed with
an autoencoder, siamese action, and attention layers that achieves excellent classification
accuracy with labelled limited samples. The proposed convolutional autoencoder is trained
using the mass amount of unlabelled data to learn the refinement representation referred
to as 3D-CAE. The added siamese network improves the feature separability between dif-
ferent categories and attention layers improve classification by focusing on discriminative
information and neglecting the unimportant bands.

5.1 Introduction

While supervised models excel in classifying HSI, acquiring labelled samples continues to
pose a challenge in this domain [306], as the labelling remains a manual, time-consuming,
and labour-intensive task, which necessitates the expertise of individuals to identify and la-
bel each pixel in the image. The semi-supervised models require less manual data labelling,
which saves time and money [39, 57], However, their performance has not been at par with
the supervised models. To address this, various deep learning methods such as few-shot
learning (FSL), zero-shot learning have been explored for HSIC [307]. This exploration
makes the model semi-supervised and also makes notable advancements in dealing with
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the limited data challenge and also to improve the classification accuracy. Models like
these enable the utilization of a few labelled samples to learn generalized representations
and improve classification accuracy on unseen data points [308, 309]. Building upon these
advancements, this chapter aims to further improve the performance of semi-supervised
models by integrating the strengths of few-shot learning and Siamese networks not only on
same-domain but also on cross-domain datasets. More specifically, the objective is to tackle
the challenges posed by limited data and enhance the classification accuracy, while also tak-
ing into account concerns such as overfitting and gradient vanishing. The contribution of
the proposed work can be summarized in the following points

• The proposed network distinctively amalgamates Three-Dimensional (3D) convolu-
tional autoencoder, Siamese network, and attention layers—setting it apart for supe-
rior performance in cross-domain and same-domain HSI classification, substantiat-
ing its novelty through experimental contributions. The crux of our innovation is the
seamless integration and synergy of key components—3D convolutional autoencoder,
Siamese network, and attention layers—setting our approach apart for enhanced per-
formance in both cross-domain and same-domain HSI classification.

• Our model’s semi-supervised nature is a pivotal strength, effectively overcoming the
challenge of limited labelled data in HSI. This aspect is particularly valuable for real-
world applications where obtaining labelled data is often resource-intensive. The 3D-
CAE significantly contributes to unsupervised feature learning, generating features
that may lack class separability but play a crucial role in the overall effectiveness of
the model.

• The Siamese network backed up with binary cross entropy adds value by enhancing
feature separability, and leveraging three-dimensional convolutions to reduce intra-
class distances and increase interclass distances.

• To efficiently learn with the available HSI three-dimensional hyperspectral data, the
embedded attention layers in the network, which include both spectral and spatial,
reduce the duplicate information by emphasizing only significant channels and pixels
and suppressing the less informative ones.

• The effectiveness of the proposed semi-supervised spectral-spatial network is verified
through experiments conducted on benchmark HSI datasets. The results demonstrate
that the network achieves exceptional overall accuracy, not only on same-domain
datasets but also on cross-domain datasets.
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5.2 Related Models

As discussed above, there exist various supervised deep learning models for HSI classifi-
cation with very high classification accuracy. However, these models require substantial
labelled data, which is difficult to acquire and training such models with limited samples
risks overfitting. The network memorizes training data instead of learning patterns, hin-
dering gradient propagation. In other words, the network’s parameters might not update
properly, leading to slow convergence or even stagnation in the learning process. This can
hinder the model’s ability to capture complex patterns in hyperspectral images [52]. Conse-
quently, it may struggle to accurately classify new, unseen hyperspectral images [266, 51].
To address this, numerous supervised and semi-supervised deep learning models for HSI
classification with limited or no samples have been proposed and their performance has
been compared in the following table :

In 2016, one of the most noteworthy works was introduced by [11], who introduced a
supervised three-dimensional convolutional neural network (3D-CNN) model specifically
designed to tackle the challenges associated with limited data availability and class imbal-
ance in HSI classification. The work also employs dropout and L2 regularization to mit-
igate the overfitting and vanishing gradients problem usually encountered in the erstwhile
deep-learning models for HSI classification. In a similar vein, [5] discusses a spectral-
spatial unified network (SSUN) having a unified objective function with the incorporation
of multiscale long-short-term memory (LSTM). The experimental findings presented in the
paper underscored its effectiveness in achieving accurate HSI classification, albeit with a
high computational cost due to the model complexity. To mitigate the issue of vanishing
gradients, researchers proposed a spectral-spatial residual network (SSRN) [310], which
leverages residual blocks to enable more effective gradient backpropagation. This approach
exhibits excellent performance when tested on datasets within the same domain. However,
the SSRN fails to maintain its performance when extended to cross-domain datasets. [61]
address this issue by presenting a deep cross-domain few-shot learning model (DCFSL).
They demonstrate that leveraging few-shot learning (FSL) techniques greatly aids in trans-
ferring knowledge from one domain to another. More specifically, DCFSL learns on one
domain of datasets and extends this learning to unseen domains by following the meta-
learning approach. Thus, DCFSL significantly enhances classification capabilities in sce-
narios where labelled samples are scarce. Afterwards, many FSL-based deep learning mod-
els [51, 6, 61, 61, 47] for HSI classification have been introduced to further enhance the
performance with limited labelled samples.

Among the aforementioned FSL-based HSI classifiers, the Siamese network introduced
by [6] has gained more attention because of its ability to reduce the involved network pa-
rameters and reduce the overfitting problem. Therefore, various variations of the Siamese
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Table 5.1: Studies on Semi-Supervised Models

Ref. Model Learning Dataset Training
Ratio

OA AA KC

[11] 3D-CNN
Supervised
(Su)

IP 0.17 97.56 99.23 97.02

PU 0.1 99.54 99.66 99.41
KSC 0.1 96.31 94.68 95.9

[5] SSUN Su PU 0.1 99.46 99.62 99.26
IP 0.17 98.4 99.27 98.14
KSC 0.1 97.71 97.17 97.45

[310] SSRN Su IP 0.3 99.19 98.93 99.07
PU 0.2 99.79 99.66 99.72
KSC 0.3 99.61 99.33 99.56

[61] DCFSL
Semi-
Supervised
(S-Su)

PU 205 83.65 83.77 78.7

IP 205 66.81 77.89 62.64
SA 205 89.34 94.04 88.17

[61] S3-Net S-Su SA 320 95.95 98.23 95.49
IP 320 91.54 95.58 90.38
PU 180 96.27 96.91 95.11

[47] DSR-GCN S-Su HU 75 81.11 82.40 79.57
SA 180 97.35 96.64 97.04
IP 180 82.29 88.64 79.94
PU 45 89.49 91.01 86.39

[311] S3BoF Su SA 0.05 99.81 99.82 99.79
IP 0.05 96.82 95.28 96.38
PU 0.05 99.73 99.49 99.64

[266] Dual-SCNN Su KSC 0.003 89.95 89.03 88.7
PU 0.001 84.9 85.28 80.54

[54] 3DAES S-Su SA 160 90.39 94.41 89.00
PU 90 79.63 82.97 74.00

[48] 3DVSCNN S-Su PU 90 76.43 75.47 69.00
SA 160 89.17 94.07 88.00

[312] CapsNet Su PU 0.01 94.9 95.42 93.24
SA 0.06 99.94 99.95 99.92

[51] MDL4OW S-Su PU 90 76.55 81.42 70.00
SA 160 82.44 90.57 81.00

[313] 3DCAE Su IP 0.1 92.35 92.04 -
PU 0.05 95.39 95.36 -
SA 0.05 95.81 97.45 -
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network such as [61, 47, 311, 266, 54], each with its handcrafted characteristics, have
been introduced, for HSI classification. One of them is proposed by [311] to introduce
the Siamese-Based Bag-of-Features (S3BoF) network for improving feature extraction and
reducing computational overhead by optimizing negative sample pairs. While the network
achieves high overall accuracy, it exhibits slightly poorer performance on categories with
a lower number of samples. To address this issue, [61] replace three-dimensional lay-
ers with one-dimensional and two-dimensional layers resulting in a reduction in network
complexity. However, Xue et al.’s spectral-spatial-siamese-based network (S3Net) suffers
from overfitting due to a high number of parameters and limited labelled samples involved.
Another notable study conducted by [47] improves the discriminative ability of Siamese
using a differentiated scale restricted graph convolutional network (DSR-GCN), which in
turn helps in increasing the classification accuracy. In 2020, [266] made a big leap in the
direction of achieving high classification accuracy by introducing a dual path Siamese-
based CNN (Dual-SCNN) combined with adversarial-based training. By employing this
approach, the authors intend to augment the diversity and quantity of training samples,
thereby improving the network’s capability to generalize and perform well on new and
unseen examples. In a similar vein as of [266], [54] propose a three-dimensional semi-
supervised Siamese network integrated with an autoencoder (3DAES). By merging the au-
toencoder with the Siamese network and training it primarily on unlabeled samples, the
model effectively addresses the problem of limited labelled samples, as the autoencoder,
which was initially proposed by [314] for unsupervised learning, consists of an encoder
and a decoder that aim to reconstruct input data accurately, helps in augmenting the data.
More specifically, the encoder transforms the input data α into a compressed hidden repre-
sentation ω, while the decoder decodes the hidden representation into output α′ . Both the
encoder and decoder have symmetric connections with similar patterns. In another work,
[313] combines an autoencoder trained on unsupervised samples, with CNN. Thus, the
authors aim to leverage the unsupervised learning capability of autoencoders along with
the powerful feature extraction capabilities of CNNs, to get a boost in classification accu-
racy. Further, Mei et al.’s model aligns well with the nature of HSI data and demonstrates
promising results. To further enhance the performance, [312] discusses a spectral-spatial
capsule network (CapsNet) by employing CNN, having the ability to extract features using
weight-sharing convolutional kernels. Afterwards, various extensions to autoencoders such
as layer-wise training [315], parameter reduction using PCA [316] and combinations of au-
toencoders with other models to enhance their capabilities in HSI applications, have been
introduced. To briefly summarize the outcomes of the aforementioned models with their
classification accuracy on different datasets, along with the current trends in the literature
of HSI classification, is presented in Table 6.1.

The structure of this chapter is as follows. Section 5.3 presents the proposed methodol-
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ogy detailing description of the 3D-CAE-SiamAtt. The experimental results and discussion
are presented in Section 6.4. Finally, Section 6.5 summarizes the work.

5.3 Proposed Methodology

In this section, a novel convolutional autoencoder-based siamese attention network is de-
signed specifically for HSI classification. While antecedent works have individually delved
into components like the Autoencoder (3D-CAE), Siamese network, and attention layers,
our innovation lies in their unprecedented integration, specifically tailored for the unpar-
alleled enhancement of cross-domain and same-domain HSI classification. The strategic
integration of architectural elements, coupled with a customized tuned model incorporating
advanced regularization and optimization techniques, leads to unparalleled classification
performance.

Our proposed hybrid model, featuring a distinctive combination of encoder and decoder
layers with customized parameters, is crafted to optimize HSI classification performance,
presenting an experimental and novel contribution. The 3D-CAE, a pivotal component,
plays a crucial role in learning data representations using unsupervised data, contributing
significantly to the overall effectiveness of the model. The semi-supervised nature of our
model is a key strength, addressing the challenge of limited labelled data in hyperspec-
tral image classification. This aspect is vital for real-world applications where obtaining
labelled data can be resource-intensive. The Siamese network employs three-dimensional
convolutions and enhances feature separability by reducing the intraclass distance and in-
creasing interclass distance, leveraging the high-dimensional and information-rich nature
of hyperspectral data. Embedded attention layers, incorporating both spectral and spatial
aspects, efficiently learn from three-dimensional hyperspectral data. These layers reduce
duplicate information and emphasize only significant channels and pixels using a binary
cross-entropy loss function, enhancing the network’s performance. Our proposed semi-
supervised spectral-spatial network’s effectiveness is validated through comprehensive ex-
perimentation, demonstrating exceptional performance in HSI classification tasks.

Figure 5.1: Brief Diagram of The Proposed 3DCAE-SIAM-ATT
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Figure 5.1 illustrates the overall structure of the proposed model that consists of a con-
volutional autoencoder embedded with Siamese action and spectral-spatial attention layers.
The handcrafted autoencoder is trained with unlabelled samples to learn the best possi-
ble representation as discussed in 5.3.1. Next, two branches of the trained autoencoder
are created and incorporated to form a siamese network as detailed in 5.3.2. Each of the
branches takes a different HSI cube and gives its own reconstructed output which are con-
catenated together. The concatenated representation is then passed through attention layers
to highlight relevant features. Next, the output of the attention layers is used for multi-class
classification as discussed in detail in sub-section 5.3.3. At last to summarize the working
of the proposed network, Algorithm 4 is provided in subsection 5.3.4.

5.3.1 Three Dimensional Convolutional Autoencoder (3D-CAE)

The proposed architecture for HSI classification consists of a three-dimensional convolu-
tional autoencoder (3D-CAE) along with a Siamese network for similarity learning. Figure
5.2 illustrates the structure of the proposed autoencoder, and Table 5.2 provides an overview
of its associated parameters. The overall structure of the model has an encoder and decoder,
comprising a convolutional autoencoder. The attention layers are added after the decoder to
capture relevant information and enhance the representation learned by the encoder. The at-
tention layers help the autoencoder focus on important features or regions in the input data,
improving its ability to reconstruct the input accurately. The encoder takes a hyperspectral
cube, say HC ∈ R(x×y×z) where x and y represent the height and width of the cube, respec-
tively, and z represents the number of spectral bands contained in the cube. The encoder
component ge of the autoencoder extracts discriminative features and produces an encoded
feature representation eHC

ϕ ∈ Rd. The decoder component of the autoencoder then takes
eHC
ϕ and reconstructs the hyperspectral image H

′
C ∈ R(x×y×z). During training with unla-

beled samples, the autoencoder aims to reduce the loss between the inputted cube and the
reconstructed cube using binary cross entropy and improves convergence using the Adam
optimizer.

Figure 5.2: 3D-CAE
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Table 5.2: Parameters of 3D-CAE

Layers Type Kernel
Number Kernel Size Stride Padding

CONV1 Conv3D + BN + L2 (0.1) + Activation(ReLU) N 11×11×11 4×4×4 same
CONV2 Conv3D + BN + L2 (0.1) + Activation(ReLU) N 9×9×9 4×4×4 same
CONV3 Conv3D + BN + L2 (0.1) + Activation(ReLU) N 5×5×5 4×4×4 same
DECONV1 Conv3DTranspose + L2 (0.1) + BN + Activation(ReLU) N 5×5×5 4×4×4 same
DECONV2 Conv3DTranspose + L2 (0.1) + BN + Activation(ReLU) N 9×9×9 4×4×4 same
DECONV3 Conv3DTranspose N 11×11×11 4×4×4 same
FC Fully Connected + Sigmoid 2 - - -

The proposed architecture for HSI classification consists of a three-dimensional con-
volutional autoencoder (3D-CAE) along with a Siamese network for similarity learning.
Figure 5.2 illustrates the structure of the proposed autoencoder, and Table 5.2 provides an
overview of its associated parameters. The overall structure of the model has an encoder
and decoder, comprising a convolutional autoencoder. Attention layers are added after the
decoder to capture relevant information and enhance the representation learned by the en-
coder. These attention layers help the autoencoder focus on important features or regions in
the input data, improving its ability to reconstruct the input accurately. The encoder takes
a hyperspectral cube, denoted as HC ∈ R(x×y×z), where x and y represent the height and
width of the cube, respectively, and z represents the number of spectral bands contained
in the cube. The encoder component ge of the autoencoder extracts discriminative features
and produces an encoded feature representation eHC

ϕ ∈ Rd. The decoder component of
the autoencoder then takes eHC

ϕ and reconstructs the hyperspectral image H
′
C ∈ R(x×y×z).

During training with unlabeled samples, the autoencoder aims to reduce the loss between
the inputted cube and the reconstructed cube using binary cross entropy and improves con-
vergence using the Adam optimizer.

The reconstructed outputs of the autoencoder are represented by Equation 5.1, given as
follows:

H
′
C = gd(ge(HC)) (5.1)

where ge refers to the encoding function, which takes an input and maps it to a latent
representation or feature vector. It is tasked with extracting distinctive features from the in-
put data. gd refers to the decoding function, which takes the latent representation produced
by the encoding function and reconstructs the input data. It performs the mapping of the
latent representation back to the original input space, with the objective of generating a re-
constructed version of the input data. The convolutional layer having kernel Ke in equation
5.2

Ke ∈ αxke×yke×zke×kein×keout (5.2)

where xke, yke and zke represent the height, width, and depth of the kernel, respec-
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tively, having kein as the input and keout as the output bands. The value of Ke impacts
the network performance greatly. If the value of Ke is too high, the fine-grained subordi-
nate features remain ignored. However, keeping the value of Ke too small increases the
computational time due to the slow processing of the HSI cube. After the initial step of
dimensionality reduction using principal component analysis and a window size of 9, the
pre-processed data is divided into smaller cubes, and padding is applied as needed. The
resulting input tensor is then passed through a handcrafted autoencoder. This autoencoder
is composed of three-dimensional convolutional layers with filter sizes 128, 64, and 32 re-
spectively, each followed by batch normalization and ReLU activation. The inclusion of the
batch normalization layer helps normalize the activations, facilitate gradient propagation,
and stabilize the training process, while ReLU introduces non-linearity to the model. The
Conv3DTranspose layers in the decoder aid in learning the inverse mapping, allowing the
network to generate meaningful and high-fidelity representations of the input hyperspec-
tral data. The choice of kernel sizes, strides, and padding in the Conv3DTranspose layers
is optimized to mitigate potential reconstruction issues. To enhance robustness and avoid
overfitting, there are regularization techniques, including L2 regularization with a coeffi-
cient of 0.1, and batch normalization after each Conv3DTranspose layer. These measures
are aimed at promoting stable training and reducing the risk of reconstruction-related arte-
facts.

The results of the reconstructed cubes are measured using Equation 5.3, where L signi-
fies loss. The similarity between the reconstructed and input cubes becomes higher as the
value of L decreases. The autoencoder was trained using the Adaptive Moment Estimation
optimizer, with binary cross entropy serving as the loss function.

L = ||H ′
C −HC ||2 (5.3)

5.3.2 Siamese-Action (SIAM)

The Siamese network is created by combining two instances of the autoencoder, which
share identical weights. The Siamese network takes pairs of inputs and learns to predict
their similarity. The proposed inculcated Siamese network, depicted in Figure 5.3 takes
two parallel inputs in sample pairs. The encoders take a separate HSI cube x1 and x2 sliced
from input HSI and generates its own embedding ex1

ϕ and ex2
ϕ by mapping it into a lower

dimensional metric space. Next, the Euclidean distance D(x1, x2) in the spectral space and
spatial dimension is calculated using Equation 5.4.

D(x1, x2) = ||(ex1
ϕ − ex2

ϕ )||2 (5.4)

Thereafter, the embedding are modified as ex1
ϕ − D(x1, x2) and ex2

ϕ − D(x1, x2) and
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Figure 5.3: Siamese-Action

Figure 5.4: Siamese increasing the inter-class and decreasing intra-class distance

passed to embedded decoders for reconstruction. The more identical the two samples are,
the more presumably they correspond to the same class. The loss function for the proposed
Siamese is binary cross entropy summarized in the following Equation 5.5. Figure 5.4
shows the Siamese network increasing the inter-class distance and decreasing the intra-
class distance between various categories.

Lbce = −gtn log(σ(γn))− (1− gtn) log(σ(1− γn)) (5.5)

In this context, γn denotes the predicted probability of pixel n belonging to the other
class, while 1− γn represents the probability of the pixel belonging to the same class. The
activation function σ is utilized as the sigmoid function, which compresses the predicted
values between 0 and 1, interpreting them as probabilities. The logarithmic terms penalize
deviations from the true labels. If the predicted probability aligns with the true label, the
corresponding term approaches zero, contributing minimally to the overall loss. However,
significant deviations lead to higher losses. The term −gtn · log(σ(γn)) penalizes entries
where the predicted probability σ(γn) for samples belonging to the same class is close to
zero. The network enhances separability between different classes by assigning low proba-
bilities to dissimilar samples. The term −(1− gtn) log(σ(1− γn)) penalizes entries where
the predicted probability for pixels belonging to the other class is close to zero. This en-
courages the network to assign higher probabilities to similar samples, bringing samples
from the same class together. By optimizing the binary cross-entropy loss function, the
Siamese network effectively guides the model to achieve enhanced separability, ensuring
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that the learned representations in the feature space align with the spatial and spectral char-
acteristics of the HSI data. Notably, it influences the convergence speed, emphasizing faster
convergence due to its ability to guide the network with clearer gradients. Additionally, the
quality of learned representations is significantly improved, enabling the network to discern
and highlight relevant features in hyperspectral data.

Algorithm 3 GenRandomBatch(inGroups, BatchHalfsize)
Initialize empty lists: OutImgA, OutImgB, OutScore
Create a list allGroups containing indices for all input data groups
for each matchGroup in [True, False] do

Randomly choose batchHalfsize indices from allGroups and assign them to groupIdx
for each cIdx in groupIdx do

Randomly choose a sample from the corresponding group in inGroups and add it to Out-
ImgA

end for
if matchGroup then

Set bGroupIdx to be the same as groupIdx
Append 1 to OutScore batchHalfsize times

else
Create an empty list nonGroupIdx
for each cIdx in groupIdx do

Randomly choose a different group index from allGroups and add it to nonGroupIdx
end for
Set bGroupIdx to be nonGroupIdx
Append 0 to OutScore batchHalfsize times

end if
for each cIdx in bGroupIdx do

Randomly choose a sample from the corresponding group in inGroups and add it to OutImgB
end for

end for
Stack OutImgA, OutImgB, and OutScore along first dimension and return result

5.3.3 Attention Layers (ATT)

The attention layers were added to suppress the effect of noisy pixels [317]. The involved
self-attention mechanism in the attention module extracts the significant pixels by exploit-
ing the association between the hyperspectral pixels contained in the HSI cubes. This can
be likened to the human eye’s capability to focus on the essential elements in an input im-
age. For the HSI cube HC ∈ αx×y×z having x× y as the spatial size and z as the spectral
channels, the operation of the attention module is symbolized in Equation 5.6 and Equation
5.7 where MSpe ∈ α1×1×C denoting one-dimensional spectral map and MSpa ∈ αx×y×1

denotes two-dimensional spatial attention map [318].

H
′
C = Mspe(HC)⊗HC (5.6)
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H
′′
C = Mspa(H

′
C)⊗H

′
C (5.7)

After passing through the attention layers, labelled samples are added to the fully con-
nected layer to rectify the unsupervised samples and train the network to perform the classi-
fication process. Figure 5.5 shows the spectral and spatial attention layers involved. Lastly,
the addition of a flattening layer is essential for converting the output of the preceding layer,
which is multidimensional, into a one-dimensional vector. This conversion is necessary
when transitioning from convolutional layers to fully connected layers. The final layer of
the model consists of a single output neuron which activates with the sigmoid function. For
optimization during training, the popular Adam optimizer is utilized, which dynamically
adjusts the learning rate to facilitate convergence.

Figure 5.5: Attention Network

The proposed methodology introduces a novel convolutional autoencoder-based siamese
attention network tailored for HSIC. It combines encoder and decoder layers to optimize
classification performance, addressing limited labelled data challenges. The 3D-CAE com-
ponent learns representations from unsupervised data, while the Siamese network enhances
feature separability. Embedded attention layers efficiently learn from hyperspectral data,
reducing duplicate information. Comprehensive experimentation validates the model’s ef-
fectiveness in HSIC tasks. Algorithm 4 summarizes the model’s working, involving autoen-
coder training, similarity model construction, and attention mechanism implementation.

5.3.4 3DCAE-SIAM-ATT Algorithm

To summarize the working of proposed 3DCAE-SIAM-ATT model, an algorithm 4 which
follows a multi-step process is provided below.

The algorithm establishes an autoencoder that comprises an encoder and a decoder. The
encoder utilizes CNN architectures to extract significant features from the input images.
These extracted features are subsequently employed by the decoder to reconstruct the orig-
inal images. The autoencoder is trained using the available training data, enhancing its
performance through the Adam optimizer and minimizing the binary cross-entropy loss.
The training process involves specifying parameters such as the number of epochs, batch
size, and learning rate. Once the autoencoder is trained, a similarity model is constructed
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Algorithm 4 3DCAE-SIAM-ATT
Training Set T = {T1, T2, . . . , Tn}; learning rate α, epochs e
Initialize weights and bias W i, bi ∀i = 1 to n
Build 3D-CAE() inculcated with SIAM()
Build ATT()
for each iteration do

for each i ∈ [1, n] do
Forward propagation

end for
for each i ∈ [1, n] do

Fine-tune W i, bi

end for
end for

3D-CAE()
Generate encoded tensor et and reconstructed tensor dt using layers given in 5.2
Minimize reconstruction error given in Equation ??

SIAM()
Increase InterClaD and Reduce IntraClaD
Extract Patches from Training Set xi1, xi2 using Algo 3
Feed xi1, xi2 to extract features yi1, yi2
Calculate Distance D using Equation 6.3
Train the network using LBCE mentioned in 6.4 with Adam optimizer

ATT(i,n,a)
For input tensor i, spectral channels n, attention units a
aw = dense(i,a)
rw = reshape(aw,[1,1,1,n])
ai = ElementWiseMultiply(i, rw)
ot = sum(ai)
Return ot

return W i, bi ∀i = 1 to n

on top of it. This model includes a dense layer with sigmoid activation, which predicts the
similarity between pairs of images based on their encoded features. The similarity model is
then trained using a generator that produces batches of image pairs and their corresponding
similarity labels. It is to be noted that an attention mechanism is implemented, which high-
lights salient regions in the reconstructed images, to enhance the reconstruction process.

5.4 Experimental Results and Discussion

The experimental results and discussion section of this chapter is divided into two sub-
sections. Section 6.4.2 presents the experimental results, including a comparative analysis
with the SOTA models showcasing the performance of the proposed model while delv-
ing into ablation studies in section 5.4.1 which are conducted during the experimentation
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process.

(a) Training Data (b) Kernel Size

(c) Batch Size

Figure 5.6: Impact of Different Parameters

5.4.1 Ablation Studies

To study the impact of change in different parameters and hyper-parameters and other com-
ponents of the proposed model, ablation studies have been conducted, by considering the
IP dataset. This chapter helps in finding the best setting of the model along with the archi-
tecture for optimal performance and is organized into six sub-sections detailed as follows.
Section 5.4.2 examines the influence of the training ratio on classification performance,
Section 5.4.3 explores the impact of different kernel sizes, Section 5.4.4 investigates the
consequences of removing attention layers, Lastly Section 5.4.5 delves into the implica-
tions of utilizing different optimizers.

5.4.2 Experiment 1: Percentage of Training Samples

The findings in Figure 5.6a demonstrate the influence of varying amounts of training sample
sizes on the performance of the proposed model, as measured by OA, AA, and KC. It
can be observed that when the network is trained with 40% unsupervised samples, the
OA is relatively low. However, as the sample size increases to 60%, there is a noticeable
performance improvement. A significant gain in performance is observed when the training
samples reach 80%. However, the overall accuracy is only marginal when the training
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samples are increased to 90%. These findings suggest that the proposed model achieves the
best performance when trained with 80% unsupervised samples.
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Figure 5.7: Classification Accuracy and Classification Maps for varying values of n

The training performance and classification maps provided in Figure 5.7 serve to rein-
force these findings by demonstrating a decrease in misclassifications with an increase in
training samples. The model exhibits excellent convergence, signifying its ability to learn
and enhance performance. Furthermore, there is minimal or no overfitting, and the model
demonstrates strong generalization capabilities, accurately performing on both the training
and validation datasets.

5.4.3 Experiment 2: Impact of Kernel Size

The performance of the network has also been assessed by varying the kernel sizes used in
the autoencoder, as presented in Figure 5.6b. The results show that the best overall accu-
racy was obtained with kernel sizes 11, 9, and 5. Furthermore, Figure 5.8 highlights that
the proposed model achieves the most favorable convergence, as depicted in Figure 5.8b,
and exhibits the lowest misclassifications, as shown in Figure 5.8e, when the autoencoder
employs kernel sizes 11, 9, and 5.

5.4.4 Experiment 3: Removal of Attention Layers

To assess the impact of the integrated attention layers on the model’s performance, a com-
prehensive analysis was conducted. The classification performance was systematically eval-
uated by removing these attention layers, and the outcomes are illustrated in Figure 5.9. The
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Figure 5.8: Classification Accuracy and Classification Maps for varying sizes of Kernel

results demonstrate a notable decrease in OA, AA and KC for the model without attention.
Specifically, the OA, AA and KC metrics dropped from 91%, 75.83% and 82.6% dropped
to 82.6%, 51.85%, and 65.21%, respectively. Interestingly, despite the decrease in accuracy,
the training process exhibited a significant speed improvement, with the network achieving
a training time of only 51 ms/step after the attention module’s removal, compared to 111
ms/step with the attention layers. The classification accuracy while training and classifica-
tion map is included in Figure 5.9.

(a) Classification Accuracy
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Figure 5.9: Performance Evaluation after Removal of Attention Layers

This observed reduction in training time without attention layers can be attributed to the
streamlined computational process. Attention layers introduce additional computational
overhead due to their sequential processing and recalibration operations. When removed,
the model’s training process becomes more efficient and faster, allowing for quicker con-
vergence during the training phase. However, this efficiency comes at the expense of a
reduction in classification accuracy, as the attention layers play a crucial role in capturing
and emphasizing relevant features for improved classification performance.
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5.4.5 Experiment 4: Effect of using different Optimizers

To explore the performance of the proposed model with different optimizers, the three most
commonly used optimizers were chosen for experimentation. The results of this experi-
mentation are presented in Figure 5.10, which indicates that the accuracy of the proposed
model is the lowest when optimized with RMSprop, better when optimized with AdaGrad,
and the best when optimized with the Adam optimizer.

(a) Adam (b) Adagrad (c) RMSprop

Figure 5.10: Effect of different optimizers on accuracy

5.4.6 Experiment 5: Comparison with other models

To comparatively analyze the performance of the 3D-CAE-SiamAtt model, several SOTA
models such as Dual- SCNN- AT-Mixup [49], Dual-SCNN-Mixup [49], CapsNet [51], 3D-
CNN [319], SSUN [261], SSRN [136], DCFSL [320] and MDL4OW [58], have been con-
sidered and performance has been evaluated on all the aforementioned datasets. These
models were chosen for comparative analysis due to their status as state-of-the-art (SOTA)
approaches in HSIC. Dual-SCNN-AT-Mixup, Dual-SCNN-Mixup, CapsNet, 3D-CNN,
SSUN, SSRN, DCFSL, and MDL4OW represent a diverse range of methodologies and
architectures, each known for its competitive performance across various datasets. Their se-
lection allows for a comprehensive comparison, considering the strengths and weaknesses
of different approaches. Furthermore, these models have been extensively evaluated and
benchmarked in prior related research, providing well-documented performance metrics for
comparison. Their relevance to the research context lies in their ability to address specific
challenges in HSIC, such as spatial-spectral fusion or attention mechanisms. By comparing
them against the proposed 3D-CAE-SiamAtt model, insights can be gained into its effec-
tiveness and novelty relative to established approaches.

Firstly the comparison is done in terms of OA, AA, and KC by detailing the exper-
imental findings in Table 5.3, Table 5.4 and Table 5.5, for the IP, PU and SA datasets,
respectively, where the best performances are highlighted in bold. The tables demonstrate
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that the proposed 3D-CAE-SiamAtt model achieves an overall accuracy of 91.30% on the
IP dataset, 87.24% on the PU dataset, and 93.60% on the SA dataset.

Table 5.3: Results from IP to IP dataset

2D-CNN 3D-CNN Hybrid SN 3D-CNN SSUN SSRN DCFSL 3DAES 3D-CAE-
SiamAtt

[321] [321] [321] [319]in[322] [261]in[322] [136]in[322] [320]in[322] [58]in[322]

C1 77.67 71.42 91.78 98.55 100 89.36 100 97.83 100
C2 86.51 78.32 84.36 65.49 65.86 87.66 74.09 62.76 32.77
C3 84 70.23 82.41 79.63 81.12 84.47 81.23 69.83 49.51
C4 68.98 72.9 94.39 93.86 96.73 79.39 96.31 87.2 51.89
C5 95.09 87.18 94.14 89.33 90.43 95.05 91.84 87.7 68.73
C6 97.95 92.94 93.3 93.87 90.15 96.94 97 92.94 90
C7 71.15 86.78 88.58 99.55 98.57 63.68 100 100 100
C8 98.46 95.53 98.11 99.42 98.62 99.6 98.34 98.77 96.44
C9 90 61.11 71.69 98.75 100 43.56 100 100 100
C10 87.13 75.17 89.2 78.1 73.16 76.59 80.15 72.23 59.05
C11 87.77 77.9 94.1 63.34 71.43 89.97 72.31 62.15 41.09
C12 75.67 71.34 86.16 71.76 80.8 73.46 78.05 72.06 46.88
C13 97.42 96.43 96.49 98.2 99.08 90.6 99.68 100 99.51
C14 98.32 92.6 90.19 83.07 88.29 96.97 93.8 91.64 87.27
C15 85.79 80.63 85.44 90.62 96.31 83.59 94.29 82.44 90.15
C16 97.84 97.22 81.98 98.82 99.86 82.68 99.59 100 100
OA 89.09 81.3 89.57 77.13 80.05 87.09 83.1 75.52 91.3
AA 87.48 81.73 88.9 87.65 89.4 83.35 91.04 86.1 75.83
KC 87.58 78.62 88.12 74.25 77.44 85.35 80.87 72.32 82.6

Table 5.4: Results from PU to PU dataset

Dual- SCNN-
AT-Mixup

Dual-SCNN-
Mixup

CapsNet 3D-CNN SSUN SSRN DCFSL MDLOW 3DAES 3D-CAE-
SiamAtt

[49] [49] [51]in[49] [319]in[322] [261]in[322] [136]in[322] [320] [309]in[58] [58]

C1 80.76 81.33 80.18 83.28 84.7 91.79 82.20 72.77 78.49 43.73
C2 89.96 89.9 82.26 85.96 81.68 84.51 87.74 76.24 76.8 73.01
C3 69.51 63.56 64.11 81.89 73.12 85.23 67.46 70.39 64.96 35.58
C4 96.24 96.93 89.8 90.57 97.72 94.1 93.16 93.21 92.91 89.84
C5 99.49 98.96 97.73 99.92 99.18 99.99 99.49 99.41 95.27 95.98
C6 77.6 79.27 81.85 84.93 83.37 97.67 77.32 71.44 82.19 85.06
C7 77.23 79.35 78.83 94.9 89.76 97.72 81.18 88.03 84.19 75.93
C8 80.6 74.57 81.27 64.4 92.56 91.77 66.73 63.8 79.13 47.82
C9 97.59 99.58 93.64 60.06 99.61 99.76 98.66 97.47 92.76 92.5
OA 85.81 85.41 81.9 83.84 85.2 89.75 83.65 81.42 82.97 87.24
AA 85.44 84.56 83.28 82.88 89.08 93.62 83.77 76.55 79.63 71.05
KC 81.36 81.01 76.65 79.02 80.92 86.84 78.70 70 74 74.49

In other words, the 3D-CAE-SiamAtt achieves the highest overall accuracy for IP, sec-
ond highest for PU and third highest for SA dataset. Other models that achieved higher
accuracy included SSRN for PU, and SSRN, 3DAES and 3DLSN for SA. The performance
of SSRN is better due to the supervised nature of this chapter which trains the network
using labeled data. Although semi-supervised models have the advantage of leveraging a
larger dataset for training, the absence of explicit labels for the majority of the data in-
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troduces additional uncertainty and can make the learning process more challenging. As
a result, the classification accuracy of semi-supervised models may not match the perfor-
mance of supervised models. On the other hand, 3DAES the semi-supervised model built
using Siamese achieved better accuracy for SA, however, it was marginally lower for the
other two datasets. It is to be noted that the proposed model achieves better or comparable
results because of the involved three-dimensional convolution layers and attention layers
which fit the nature of HSI considering both spatial and spectral information. Further. the
involved attention layers discriminate the significant bands and ignore the noisy bands. Fur-
thermore, it is to be noted that the proposed network took 111 ms/step for IP, PU and SA
while 103 ms/step for PC with a total of 100 epochs having 50 steps each.

Table 5.5: Results from SA to SA dataset

SSFTT ASPCNet 3DCNN SSUN SSRN 3DLSN 3DCAE MDL4OW 3DAES 3D-CAE-
SiamAtt

[323] [323] [319]in[322] [261]in[322] [136]in[322] [324] [308]in[58] [309]in[58] [58]

C1 99.49 95.84 99.41 97.05 100 99.87 99.28 86.12 99.97 98.8
C2 99.84 99.93 99.46 95.95 99.64 99.46 59.04 91.97 99.18 97.74
C3 99.83 98.68 99.61 98.61 99.89 97.93 66.54 80.34 95.15 64.67
C4 95.84 91.88 99.17 99.88 97.81 99.75 98.65 99.28 96.47 98.56
C5 96.38 97.46 98 98.54 98.17 95.23 81.94 95.06 91.18 96.26
C6 98.28 98.64 99.83 99.72 99.94 99.75 98.52 99 99.17 93.81
C7 99.46 99.59 99.2 97.13 99.81 99.27 97.31 98.16 99.9 97.76
C8 75.6 86.07 78.79 80.54 88.15 75.05 68.11 47.38 75.66 95.9
C9 99.97 97.15 99.4 99.56 99.56 99.25 95.06 97.43 98.96 98.58
C10 89.01 93.62 92.89 95.6 96.34 92.92 92.43 87.36 89.74 84.28
C11 99.91 96.23 98.85 98.38 97.3 98.68 72.26 96.16 99.54 92.97
C12 99.26 96.28 99.75 99.77 99.04 99.86 72.16 99.76 99.03 100
C13 97.98 89.31 99.64 99.38 98.72 99.98 99.78 99.75 99.76 100
C14 96.13 94.17 99.36 98.6 95.09 98.89 89.93 98.1 97.24 96.35
C15 82.85 77.33 87.82 84.39 79.1 80.87 56.98 77.66 81.7 96.21
C16 98.27 100 96.85 97.08 98.93 94.65 44.35 95.64 87.94 96.01
OA 91.26 91.5 93.01 92.61 93.83 95.71 75.58 90.57 94.41 93.6
AA 95.51 94.51 96.75 96.26 96.72 91.05 72.64 82.44 90.39 94.24
KC 90.3 90.55 92.24 91.79 93.13 90 70 81 89 87.2

Secondly, the performance of 3D-CAE-SiamAtt has been comparatively analyzed by
considering the cross-domain datasets, as the proposed model runs for not just same-domain
but cross-domain datasets as well, provided that the number of bands is similar. Table 5.6
lists the results achieved for cross-domain datasets, where four scenarios (a) training on
IP, testing on SA; (b) training on SA, testing on IP; (c) training on PU, testing on PC;
(d) training on PC, and testing on PU, have been considered. The provided experimental
results validate the proposed model’s potential to train and test on cross-domains. More
specifically, the proposed model achieves its best OA when training is performed on IP
and testing on SA. However, it can also be observed that the cross-domain results are
on a slightly lower side than those achieved on the same-domain datasets. This could be
because cross-domain datasets present unique challenges due to variations in distribution,
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Table 5.6: Cross-Domain Datasets

Tr > IP;Te > SA Tr > SA;Te > IP Tr > PU;Te > PC Tr > PC;Te > PU
3D-CAE-SiamAtt 3D-CAE-SiamAtt 3D-CAE-SiamAtt 3D-CAE-SiamAtt

C1 100 65.21 97.9 51.54
C2 99.19 26.75 98.6 67.48
C3 99.79 29.51 88.99 69.31
C4 100 24.89 97.5 77.67
C5 89.39 33.54 79.14 56.87
C6 96.33 47.8 97.9 75.4
C7 97.59 75 79.67 57.81
C8 94.21 85.56 97.8 88.94
C9 100 90 98.81 50.47
C10 50 30.76 - -
C11 100 34.54 - -
C12 100 21.92 - -
C13 92.13 47.8 - -
C14 65.7 51.69 - -
C15 96.34 42.48 - -
C16 34.25 73.11 - -
OA 87.2 73.91 78.91 75.32
AA 88.43 48.78 92.92 66.17
KC 74.41 47.82 57.82 50.64

domain-specific features, and limited labelled data availability compared to same-domain
datasets. However, these challenges provide valuable opportunities for advancements in the
field of cross-domain classification. By addressing domain shift through techniques such
as domain adaptation and leveraging feature augmentation, future models can improve the
performance of models on cross-domain datasets. Moreover, developing specialized archi-
tectures and exploring innovative approaches can further enhance the classification results.
These endeavours will contribute to a deeper understanding of cross-domain classification
and drive progress in solving complex real-world problems spanning different domains.
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(a) Tr-IP;Te-IP (b) Tr-PU;Te-PU (c) Tr-SA;Te-SA (d) Tr-PC;Te-PC

(e) Tr-SA;Te-IP (f) Tr-PU;Te-PC (g) Tr-PC;Te-PU (h) Tr-IP;Te-SA

Figure 5.11: Model Accuracy Graphs achieved

To further qualitatively validate the performance of the model, the training accuracy
graphs for the same domain and cross-domain datasets are demonstrated in Figure 5.11
which showcases the classification maps when experimented on the same or cross-domain
datasets. The presented classification maps show the similarity of obtained maps to the
ground truth images which also means that the ability of the model to work cross-domain
and produce results is excellent. Further, the 3D-CAE-SiamAtt produces excellent clas-
sification maps with minimum noise when Tr > IP;Te > IP, Tr > PU;Te > PU and
Tr > SA;Te > SA. Moreover, the accuracy graphs to depict the performance of the pro-
posed network on cross-domain data are presented in Figure 5.11 (Bottom Row). On one
hand, graphs trained for the same domain data produced smooth learning curves with no
overfitting, there was slight overfitting observed while training PC and testing PU. All other
datasets have smooth graphs validating the performance of the proposed model.
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(a) Tr-IP;Te-IP (b) Tr-PU;Te-PU (c) Tr-SA;Te-SA (d) Tr-PC;Te-PC

(e) Tr-SA;Te-IP (f) Tr-PU;Te-PC (g) Tr-PC;Te-PU (h) Tr-IP;Te-SA

Figure 5.12: Classification Maps for Same-Domain and Cross-Domain Datasets

5.5 Summary

This chapter presented a novel semi-supervised deep learning network for HSI classifica-
tion, which incorporates an autoencoder along with Siamese and attention layers. The con-
volutional autoencoder is trained in an unsupervised manner to refine the representation,
solving the problem of limited samples. The handcrafted Siamese network enhances the
feature separability between samples, by increasing the distance in samples belonging to
different classes and minimizing the distance in samples belonging to the same class. The
attention layers aided in extracting the informative spectral-spatial features by suppressing
the noisy or less important ones. Four benchmark HSI datasets were used to validate the
tenacity of the proposed 3D-CAE-SIAM-ATT. The proposed model garnered a classifica-
tion accuracy of 91.3% and 93.6% for IP and SA, respectively, with a highest of 87.27%
when tested on cross-domain data. The experiments also validate the domain adaptation
capability of 3D-CAE-SiamAtt. Thus, the potential applications of the proposed HSI clas-
sification model can extend beyond its current domains of remote sensing, environmental
monitoring, agriculture, and mineral exploration.
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CHAPTER 6

UNIFYING AUTOENCODER-ENHANCED GANS WITH

CNNS AND ZERO-SHOT LEARNING FOR HSIC

HSIC grapples with the twin challenges of high dimensionality and limited labelled data.
These limitations hinder the development of generalizable classification models that can
perform well across diverse datasets. To overcome these limitations, this chapter proposes
a novel framework that synergizes autoencoders, generative adversarial networks and zero-
shot learning. Leveraging the strengths of semi-supervised learning, this approach offers
significant improvements in feature extraction, data augmentation, and classification ac-
curacy by harnessing the power of generative adversarial networks built upon the crux of
autoencoders. It further pushes the boundaries beyond traditional methods by enabling
zero-shot learning, allowing the model to classify unseen data from classes not present in
the training set. Additionally, the framework incorporates text embeddings to enrich feature
representation for improved performance. This multimodal classification approach empow-
ers the way for robust training and testing on cross-sensor datasets, even handling data with
diverse spectra. It demonstrates remarkable accuracy across various domains, achieving
a peak performance of 92.35% for cross-domain data and 91.83% for same-domain data,
marking a significant leap forward in the generalizability of semi-supervised classification
models.

6.1 Introduction

Deep CNNs have demonstrated their prowess in diverse computer vision domains, but their
direct application to hyperspectral data is impeded by the unique attributes of spectral in-
formation [325]. The incorporation of numerous spectral bands and the paucity of labelled
samples necessitate a specialized approach [326]. As a response to these challenges, re-
searchers have explored innovative strategies that merge the capabilities of unsupervised
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and supervised learning paradigms [327, 56]. This symbiotic fusion has yielded novel in-
sights into feature extraction, data augmentation, and classification, ushering in a new era
of enhanced hyperspectral image analysis. Moreover, in the realm of HSI classification,
handcrafted feature-based methods have traditionally taken precedence over deep learning
approaches [56]. These methods involve partitioning into distinct feature extraction and
classifier modules, facilitating tailored customization to specific needs [328, 329]. This
customized approach significantly contributes to enhancing classification accuracy.

In the context of HSIC, this chapter seeks to harness the synergistic potential of GANs
and autoencoders, combined with the robust capabilities of CNNs. This integrated ap-
proach is designed to address the challenges posed by limited labelled samples. By uniting
these frameworks, the model aims not only to enhance feature extraction and amplify the
impact of data augmentation but also to incorporate the context provided by text embed-
dings. This comprehensive strategy strives to significantly enhance classification perfor-
mance. Through the incorporation of cutting-edge deep learning techniques, the utiliza-
tion of CNNs for improved feature extraction, and the exploitation of the synergy between
unsupervised and supervised learning paradigms, this research endeavours to advance hy-
perspectral image analysis, ultimately achieving heightened accuracy and efficacy. The
novelty of the proposed model lies in its synergistic integration and fine-tuning of vari-
ous components, working towards the challenge of limited labelled samples. It facilitates
cross-domain and cross-sensor classification without relying on specific spectral character-
istics of training or testing data, thereby allowing testing on unseen samples. By combining
GAN constructed using autoencoders and applying zero-shot learning, the model achieves
enhanced feature extraction and classification accuracy, addressing critical challenges in
hyperspectral data analysis.

The contributions of the proposed model are:

• Enhanced Feature Extraction and Improved Latent Space and Distribution Mod-
elling: Our approach combines GAN and autoencoders to revolutionize hyperspec-
tral image analysis. By coupling autoencoder-based feature extraction with GAN-
generated synthetic data, we enrich the feature space and enhance data generaliza-
tion, especially in scenarios with limited labelled samples. Additionally, leveraging
GANs fine-tunes the autoencoder’s latent space, aligning it with the true data distri-
bution and boosting the significance of extracted features. This synergy elevates our
model’s capability for feature extraction and classification accuracy.

• Cross-Domain Learning with Text Embeddings and Zero-Shot Learning: Ex-
tending beyond conventional methods, the model incorporates text embeddings de-
rived from Term Frequency - Inverse Document Frequency (TF-IDF) representations
of associated text data. By fusing these embeddings with fine tunes features, the
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model gains a deeper understanding of data, facilitating cross-domain learning and
enhancing classification accuracy. Moreover, the inclusion of text embeddings en-
ables zero-shot learning, allowing the model to classify samples from classes not
seen during training, making it adaptable to evolving class definitions.

• Addressing Data Scarcity through Unsupervised Learning: Our model not only
excels in supervised learning but also addresses data scarcity through unsupervised
learning. The GANs ability to generate synthetic data enhances the performance of
the classifier by providing diverse samples for training. This makes our model robust
in scenarios where collecting labelled data is challenging.

6.2 Related Models

In this section, we briefly review some of the related works that address the problem of
limited samples with the help of synthetic data. One such work in this category was dis-
cussed by Yu et al. [330]. In the discussed work, Yu et al. tackle the scarcity of labelled
data by proposing an unsupervised model combining GANs and AE. In their architecture,
the autoencoder captures latent representations of input data, which are then refined by the
GAN to produce synthetic data, enhancing the encoder’s precision. This symbiotic rela-
tionship between GANs and autoencoders enrich latent data representations and improves
the discriminator’s ability to represent the underlying data distribution [330]. While Yu et
al.’s approach primarily focuses on feature extraction, it lays the groundwork for potential
expansion into classification tasks. In contrast, Cao et al. [331] presented an unsuper-
vised architecture based on contrastive learning, outperforming existing supervised feature
extraction methods. This recognition of the effectiveness of unsupervised strategies in fea-
ture extraction contributes to the ongoing evolution of hyperspectral image classification,
indicating a promising direction for future research.

Transitioning from this innovative advancement in HSIC, a parallel trajectory emerges
from the domain of natural language processing—text embeddings, like Term Frequency-
Inverse Document Frequency (TF-IDF) vectors, have garnered widespread attention in
cross-scene HSI. Gao et al. [56] suggest this crossover infusion not only to enrich the repre-
sentation of hyperspectral data but also to hold the promise of bolstering generalization and
classification accuracy [56]. In the same vein, an intriguing approach by Pan et al. [233]
is an incursion of text embeddings into hyperspectral image analysis, where they introduce
semantic dimensions to the feature space. This noteworthy work seamlessly intersects this
narrative with their innovative three-phase scheme. In this endeavour, the architecture em-
braces a multi-faceted approach, encompassing feature embedding, feature mapping, and
label reasoning. The bedrock of their methodology revolves around harnessing the potential
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Table 6.1: Summary of Related Works

Ref Model DA OA Learn SA Key Findings Limitations
[56] CNN IP-PU 90.42 S-Su 50 Proposes cross-domain

model using word em-
beddings and CNN.

Complexity in distin-
guishing similar cate-
gories semantically.

+ IP-KSC 92.40
LSTM PU-KSC 83.76

[332] 3D-
CAE-
Siam-
ATT

IP-SA 87.02 S-Su N/A
Few-shot and Cross-
Domain Learning

Cross domain having
constraint of same
spectra

SA-IP 73.91
PU-PC 78.91
PC-PU 75.32

[53] CNN IP 64.19 Su 3-15 Handcrafted CNN ar-
chitecture, Deals with
limited samples, Re-
duces overfitting.

Requires large-labelled
training data, Compu-
tational complexity.

SA 85.24
PU 67.85

[333] Residual
Deep
PCA

IP 81.22 Un N/A Residual structure
retains information
between layers, Adds
nonlinearity.

Requires tuning param-
eters, Linear feature
extraction limits
representation.

PU 86.20
SA 90.71

[39] GAN IP 64.19 S-Su 200 GAN enables semi-
supervised learning,
The discriminator is
effective as a classifier.

GAN training can be
unstable, Choosing
architecture requires
tuning.

SA
PU

[334] GCN RPC-RPU 84.06 S-Su N/A
Feature alignment for
cross-domain data

Accuracy could be
increased

RPU-RPC 89.96

[330] GAN YaleB N/A Un N/A GANs improve sub-
space clustering, Dual
GAN architecture is
effective.

Requires tuning of
GAN architectures and
parameters.

ORL
COIL
MNIST
Umist

[233] ZSL IP-SA N/A S-Su 3-5 Introduces zero-shot
learning for HSI classi-
fication across datasets.

Performance limited by
dataset differences and
lack of attributes.

SA-IP
PU-PC
PC-PU

[331] AE IP 97.08 Un N/A Combines autoencoder
features and contrastive
learning.

Requires sufficient un-
labeled training data.

SA 99.60
PU 99.46

DA – Dataset; OA – Overall Accuracy; SA- Samples; CNN - Convolutional Neural network, GAN - Gen-
erative Adversarial Network; PCA - Principal Component Analysis; ZSL - Zero-Shot Learning; LSTM -
Long Short Term Memory, 3D-CAE-Siam-ATT : Three Dimensional Convolutional Autoencoder Siamese
Attention Network; GCN - Graph Convolutional Network, Su - Supervised, S-Su - Semi-Supervised; Un-
Unsupervised; IP-Indian Pines; PU- Pavia University; PC-Pavia Center; SA-Salinas
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of hyperspectral datasets acquired from the same sensor but employed in distinct contexts.
The classifier’s learning journey commences with one dataset and culminates with the eval-
uation of another. Inspired by the latest strides in zero-shot learning, Pan et al. [233] and
Gao et al. [56] intricately weave label semantic representation into their framework. This
pivotal addition establishes critical associations between seen categories in the training set
and unseen categories in the testing set, effectively expanding the model’s horizons to ad-
dress evolving and expanding class definitions [53]. Table 6.1 shows the current trends in
literature.

Amid these advancements, the proposed model’s novelty lies an intriguing intersec-
tion: the convergence of GAN, AE, Deep CNNs, text embeddings, and zero-shot learning
within a unified model. This innovative framework is based on associating the power of
GANs and AE for elevated feature representation through unsupervised learning, while
concurrently leveraging text embeddings for semantic augmentation and zero-shot learn-
ing, resulting in an adaptable tapestry suitable for diverse hyperspectral datasets. With
the promise of heightened classification performance, our approach stands as a pioneering
endeavour poised to redefine the frontiers of hyperspectral image analysis. With the com-
bination of these aspects, our proposed model significantly advances hyperspectral image
analysis. It empowers the field with enhanced feature representations, improved data aug-
mentation, cross-domain learning, zero-shot classification, and the ability to thrive under
data scarcity.

As this narrative unfolds, subsequent sections delve deeper into the intricacies of our
proposed model. The architecture’s blueprint, the nuances of its training process, and the
illumination cast by experimental results all undergo scrutiny in Section 6.3. Furthermore,
the impact of our proposed approach on traditional domain boundaries will be evident, as
presented in Section 6.4. Finally, the chapter is summarized in Section 6.5.

6.3 Proposed Methodology

In this chapter, we introduce an innovative approach for HSI classification, specifically
tailored to address the challenges arising from limited labelled samples in HSI datasets.
Our approach involves the synergistic integration of adversarial networks, empowered by
autoencoders and convolutional neural networks. The proposed network is based on two
fundamental aspects: firstly, harnessing the capabilities of GANs and AEs to revolutionize
feature representations derived from hyperspectral data through unsupervised learning, and
secondly, incorporating CNNs to capitalize on labelled samples available. In the following
subsections, we provide an overview of the proposed model in Subsection 6.3.1, delve
into the design of the autoencoder-embedded discriminator in Subsection 6.3.2, and discuss
the design of the generator in Subsection 6.3.3. The subsequent subsection 6.3.5 explores
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supervised training using CNNs.

6.3.1 GAN-AE Embedded Convolutional ZSL based HSI Classifier
(CONVZ-AEG-TF-HIC)

In this cutting-edge research endeavour, we propose an approach for HSI classification that
addresses the limitation of limited labelled samples in HSI datasets. The proposed method
involves the seamless fusion of an autoencoder-like model as the discriminator and a pro-
ficient generator that harnesses the decoder for data upsampling. We aim to revolutionize
feature representations derived from hyperspectral data by harnessing the power of GANs
and autoencoders for unsupervised learning. Figure 6.1 visually depicts the working of the
proposed model.
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Figure 6.1: Overall working of CONVZ-AEG-TF-HIC

In this section, we propose a novel approach for HSI classification that tackles the
challenge of limited labelled samples. Our method seamlessly merges an autoencoder-
like model as a discriminator with a powerful generator that leverages its decoder for data
augmentation. By harnessing the synergy of GANs and autoencoders, we aim to revolu-
tionize the feature representations derived from HSI data through unsupervised learning.
The generator plays a central role, meticulously upsampling the unlabeled testing data
to create synthetic samples resembling real-world data. This augmented data effectively
enriches feature representations during the unsupervised learning process. The proposed
autoencoder-embedded GAN demonstrates remarkable potential in generating realistic data
and enhancing feature representations.

Furthermore, we leverage any available labelled samples to combine the extracted fea-
tures with text embeddings, forming a powerful hybrid model. This enables effective uti-
lization of both labelled and unlabeled data, mitigating the limitations imposed by limited
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labelled information. This amalgamation of unsupervised and supervised learning results
in a semi-supervised network with superior performance in HSI classification tasks.

Our comprehensive approach, enhanced by a meticulously designed convolutional neu-
ral network, effectively generates realistic data, improves feature representations, and ad-
dresses the challenges posed by limited labelled data in HSI classification. Overall, the
proposed model holds promise for advancing the field of HSI classification by showcas-
ing the benefits of integrating unsupervised and supervised learning for enhanced feature
representation and robust classification performance.

6.3.2 Autoencoder Embedded Discriminator

The composition of the handcrafted discriminator is visually depicted in Figure 6.2.

Figure 6.2: Composition of the Discriminator

To initiate the GAN training process, the data X undergoes reshaping into a 4D array
with dimensions X(N,H,W,C), where N denotes the number of samples, height, and
width represent the dimensions of each sample and C denotes the number of spectral bands
involved, depicted in Equation 6.1.

ReshapedXtrainunsup
= Xtrainunsup .reshape(N,H,W,C) (6.1)

The crux of the discriminator model is handcrafted by building an autoencoder. By
design, an autoencoder comprises two integral components: an encoder and a decoder.
Operating in tandem, the encoder, endeavours to compress the input data X into a compact,
lower-dimensional representation, shown in Equation 6.2.

Z = E(X, θE, λ1, λ2) + γ − δ (6.2)

The equation conveys below meaning :

• Z: This represents the latent representation of the hyperspectral input X . In the con-
text of an autoencoder, Z is the lower-dimensional encoding produced by the encoder
part of the autoencoder.
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• E: This denotes the encoder function. The encoder is a neural network that com-
presses the input data X into a lower-dimensional latent space.

• X: This is the hyperspectral input data. It’s the original high-dimensional data that
we want to encode into a lower-dimensional space.

• θE: These are the learnable parameters of the encoder network E. They include
weights and biases that are adjusted during the training process.

• λ1 and λ2: These are hyperparameters that influence the encoder function E. They
might be regularization parameters or other factors that control the behavior of the
encoder.

• γ: This is a hyperparameter that adds an intricate regularization to the encoding pro-
cess. It helps in introducing non-linearity into the latent space.

• δ: Another hyperparameter that introduces subtle shifts in the latent space, further
contributing to the non-linearity.

So, the equation can be interpreted as follows:

• The encoder function E takes the input data X and encodes it into a latent repre-
sentation Z using the parameters θE and influenced by the hyperparameters λ1 and
λ2. After encoding, the latent representation is further adjusted by adding γ and
subtracting δ, which introduces additional non-linearity and shifts to the latent space
representation.

Conversely, the decoder’s objective is to reconstruct the original input, presented as
Xhat = D(Z), from the compressed latent representation Z, ensuring a seamless recon-
struction process. To capture the essence of the original data distribution, the discriminator
endeavours to proficiently reconstruct the input data through the intricate interplay of its
encoder and decoder components having reconstruction loss presented in Equation 6.3.

MSEloss =
1

N

N∑
i=1

(X −Xhat)
2 (6.3)

The discriminator model is trained using the training data Xtrainunsup , If the padded
data for the test dataset does not exist, the code generates padded data. For each row in the
test dataset, the data is padded to match the dimension of the training dataset. Finally, a
new sequential model named discriminator is created. The previously trained discriminator
model is added to this new sequential model. A flattened layer and a dense layer with
sigmoid activation are added to complete the discriminator architecture.
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6.3.3 Generator for Synthetic Data

A latent noise vector is generated from a uniform distribution tailored to the training data’s
dimensions, forming the basis for our specialized generator model. Guided by a specific
objective, the generator undergoes epoch-based training to create synthetic data that mir-
rors the genuine data distribution. During each epoch, random noise acts as input for the
generator, producing synthetic images assessed by a discriminator—a pivotal component
of our GAN framework.

Figure 6.3: Composition of the Generator

Generator and discriminator losses, computed using binary cross-entropy functions as
detailed in section 6.3.4, drive gradients that update the generator’s weights through an
optimizer. This iterative process enhances the generator’s ability to create synthetic data
with heightened realism and a coherent distribution. We meticulously track and archive
generator and discriminator losses to document training progress. Furthermore, these loss
profiles are stored for future analysis, complementing our comprehensive approach. The
generator G(.) is defined by employing the decoder of the autoencoder illustrated in Figure
6.3, enabling data upsampling. This mechanism enriches the testing data Xtest by generat-
ing samples with increased dimensions, thus enhancing the testing dataset for subsequent
learning stages. The generation of synthetic data Y is Y = G(Z).

Y = G(Z) (6.4)

Create Padded DataFrame

Data preparation is crucial for effective hyperspectral image classification. It involves cre-
ating a padded data frame to ensure uniform sample dimensions. A specialized function
pads the features to match the training dataset dimensions. The padded rows, along with
their target labels, are appended to the list, creating a complete padded dataset stored in a
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Algorithm 5 Padded DataFrame Generation
Inputs:
dftest : Dataframe containing the test dataset
dftrain : Dataframe containing the train dataset
Outputs: paddeddf : Dataframe with padding applied
Procedure:

Create an empty list named paddedrows

if CSV file does not exist in Datafiles directory then
for i from 0 to dftest.shape[0] - 1 do

row ← dftest.iloc[i, : −1].values
paddedrow ← getdata.paddata(row, dftrain.shape[1])
paddedrow ← paddedrow + [df test.iloc[i,−1]]
paddedrows.append(paddedrow)

end for
padded df← Create DataFrame from padded rows
Save padded df in ”DataFiles” directory

else
padded df ← Read padded DataFrame from ”padded df

end if
Return padded df as the final output.

Return: paddeddf as the output

data frame and saved for future use. This approach, formulated in Algorithm 5 addresses
challenges related to varied sample dimensions, enhancing the robustness and reliability of
the classification model.

6.3.4 GAN Training and Fine-Tuning

This step involves iterative fine-tuning of the generator and discriminator models. The
real samples are denoted by D(X) and synthetic samples are denoted by D(Y ), where X

denotes the real data or ground truth that the discriminator evaluates. The generator loss
function denoted as Lgen, operates on the synthetic output. It calculates the binary cross-
entropy loss between ones indicating real data and the generated output. This loss depicted
in equation 6.5 guides the generator to produce data that closely emulates real samples,
enhancing the realism of the generated data.

Lgen = BCE(Ones,D(Y )) (6.5)

The discriminator loss function depicted in equation 6.6, defined as Ldisc leverages two
components. The first component is Real loss. It measures the dissimilarity between the
predicted probabilities and the true labels. This component calculates the binary cross-
entropy loss between the vector of ones representing real data and the output produced
for real data. This component guides the discriminator to accurately classify real samples,
promoting precise discrimination. DXtrainunsup

represents the output of discriminator D(.)

when Xtrainunsup is given as the input. The discriminator’s task is to classify whether the
input data is real or fake. This is depicted in Equation 6.6.
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RealLoss = BCE(Ones,DXtrainunsup
) (6.6)

Fake loss, denoted in equation 6.7 is this component that calculates the binary cross-
entropy loss between zeroes indicating generated data and the output produced for gen-
erated data. It aids the discriminator in effectively distinguishing between real and fake
samples.

FakeLoss = BCE(Zeros,D(Y )) (6.7)

The total loss, depicted in equation 6.8 is the sum of real loss and fake loss, encompass-
ing the overall loss for the discriminator during training.

Ldisc = BCE(Ones,DXtrainunsup
) +BCE(Zeros,D(Y )) (6.8)

Engaging in unsupervised learning, the discriminator gains valuable insights into the
underlying distribution of the input data, acquiring informative and robust feature represen-
tations. By reconstructing the data, it effectively captures salient patterns and structures in
hyperspectral data, iteratively refining its encoder and decoder during training. The combi-
nation of unsupervised learning with an autoencoder-like architecture remarkably enhances
feature representations, particularly in scenarios with limited labelled samples. Our ap-
proach showcases the potential of autoencoder-embedded GANs for unsupervised feature
learning, paving the way for more powerful feature extraction methods in hyperspectral
image analysis. The binary cross-entropy loss function serves as the foundational loss for
both the generator and discriminator, guiding the models throughout the adversarial training
process. Coupled with Adam optimizers, these loss functions enable the GAN to generate
high-quality data and refine feature representations, demonstrating great potential for data
synthesis and representation enhancement in various applications.

6.3.5 Supervised Training using CONV

The fine-tuned hyperspectral data Xtrain obtained from the handcrafted GAN and the TF-
IDF text embeddings are inputted into a custom-built CNN, as shown in Figure 6.4. These
text embeddings, derived from class labels and descriptions, enable zero-shot learning, al-
lowing the model to classify unseen classes. These TF-IDF vectors not only encode the
textual descriptions but also serve as semantic embeddings for the class labels. During train-
ing, the CNN is augmented to incorporate both spectral and semantic information simulta-
neously, leading to richer features and improved classification performance, especially for
unseen classes.
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Figure 6.4: Convolutional Layers

CONV Model

The proposed model incorporates two inputs: fine-tuned hyperspectral data Xtrain(N,H,W,C)

and TF-IDF vectors (NDes, V ), capturing their interactions. Here NDes represents several
samples in the corpus with descriptions, and V represents the size of the vocabulary or the
number of unique terms. The hyperspectral data undergoes convolutional and dense lay-
ers to extract relevant features, while TF-IDF vectors are dimensionality-reduced through
dense layers. The reduced TF-IDF vectors and hyperspectral features are combined using
matrix multiplication, as shown by CombinedFeatures = TF-IDF@Xtrain, where Com-
bined Features are depicted as (NDes, c), having c extracted features enabling the model
to learn their relationship. Additional dense layers process the combined features, and a
Softmax activation function, in equation 6.9, yields class probabilities Pij for each sam-
ple. Here, Pij represents the probability of the i-th sample belonging to the j-th class,
and CombinedFeaturesij represents the combined feature value for the i-th sample and j-th
feature. C is the number of classes.

Pij =
eCombinedFeaturesij∑c
k=1 e

CombinedFeaturesik
(6.9)

L = − 1

Ndes

Ndes∑
i=1

C∑
j=1

des[’label’]i · log(Pij) (6.10)

After applying the Softmax function, the Pij matrix has shape (Ndes, C) and represents
the predicted class probabilities for each sample. The Sparse Categorical Cross-Entropy
loss is used to measure the discrepancy between the true labels L presented by (des[’label’])
and the predicted class probabilities Pij . The equation for Sparse Categorical Cross-Entropy
loss is depicted in equation 6.10. Here, des[’label’]i is the true label for the i-th sample,
represented as a one-hot encoded vector (1 for the true class, 0 for others). Equation 6.10
computes the loss over all samples and classes, providing a measure of how well the model
predicts the correct class for each sample.
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6.3.6 Algorithm for CONVZ-AEG-TF-HIC

The proposed model is depicted in Algorithm 6, delineated into four core steps: unsuper-
vised learning, test data preparation, generator model training utilizing GAN, and super-
vised training. The objective behind GAN for synthetic data generation stands out, enhanc-
ing classification accuracy by furnishing diverse samples, particularly in scenarios with
limited labelled data. This strategy capitalizes on GANs’ unique ability to effectively cap-
ture complex data distributions. Moreover, the algorithm integrates Term Frequency Inverse
Document Frequency for text embeddings, enriching hyperspectral features with contextual
information to enhance classification accuracy. Finally, it incorporates a fine-tuned CNN
for supervised learning, processing combined features from autoencoders and TF-IDF em-
beddings through dense layers and softmax activation, ultimately predicting class labels and
achieving the final classification outcomes.
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Algorithm 6 CONVZ-AEG-TF-HIC
Step 1: Unsupervised Learning
1. Prepare the training data: Xtrainunsup(N,H,W,C)

2. Create and Train the Discriminator Model in two steps: The discriminator denoted

as D(X; θd), which takes Xtrainunsup as input and outputs the reconstructed data Xhat

(D ( Xtrainunsup , θd)).

Minimize the reconstruction loss between input and reconstructed images using Equation 6.3.

Step 2: Prepare the Test Data and Padded Data (padded df)
1. Prepare the test data in a format similar to Xtrainunsup .

2. Create a padded version of Xtestunsup to match the dimensions of Xtrainunsup and store it as

padded df.

Step 3: Train the Generator Model
1. Generate random noise z with shape (N,H,W,C) for the Generator.

2. Define the generator model G(z; θg) using parameters θg to produce synthetic data

Y=G(z,θg) resembling Xtrainunsup .

3. Reconstruct data Xhat using the Discriminator: Xhat = D(Xtrainunsup ,θd).

4. Calculate the fake output from the Discriminator: D(Y) = D(Y,θd).

5. Compute the generator loss Lgen and Discriminator loss Ldisc using Equation 6.8. Update

parameters and save the model weights.

Step 4: Supervised Training
1. Generate samples for training data c using saved Generator weights, denoted as traindatasup .

2. Generate fine-tuned samples for test data Xtestunsup using saved Generator weights, denoted as

testdatasup .

3. Load ground truth labels for training data traingt and test data testgt.

4. Prepare TF-IDF text embeddings for each sample.

5. Create a Supervised Learning classifier using synthetic samples traindatasup , testdatasup ,

and text embeddings.

6. Combine features obtained by matrix multiplication of text embeddings and synthetic samples.

Pass through additional dense layers and softmax using Equation 6.10.

7. Train the Classifier using Sparse Categorical Cross-Entropy loss and Adam optimizer to predict

class labels. Evaluate the model on test data for final classification results. Evaluate the trained

Classifier on the test data to get the final classification results.

6.4 Experimental Results and Discussion

This section encompasses the datasets selected for the model, outlining their characteristics.
Additionally, it entails the outcomes derived from the proposed model, coupled with an
analysis and discussion of these findings.
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6.4.1 Experimental Settings

The GAN was trained using the Binary Cross Entropy loss function with KL-Divergence for
optimization. The GAN employs the Adam optimizer with a learning rate set to 0.0002 and
an exponential decay of 0.5 to enhance convergence. During training, the GAN operates
with a batch size of 32 and undergoes 10 epochs, with each epoch consisting of 20 steps.
In parallel, the discriminator model employs real and fake loss and employs the Sigmoid
activation function to discern between real and generated data samples effectively. The
CONV model employs flattened and fully connected layers with Softmax activation.

6.4.2 Comparison with other models

In this section, we compare the results achieved by the proposed model with state-of-the-
art and customized models. The models presented in the comparative table encompass a
diverse range of techniques that address the complexities of hyperspectral image classifi-
cation. Each model offers unique attributes and innovations tailored to specific challenges
within the domain. The GAN-based Deep Subspace clustering model, also called as DSC

DAG introduced by Yu et al. [330] is a novel deep semi-supervised learning approach
using GAN embedded with autoencoders, while the One-dimensional GAN 1DGAN, Two-
dimensional GAN (2DGAN), and Three-dimensional GAN (3DGAN) models leverage vari-
ations of Generative Adversarial Networks (GANs) to enhance data representation. The
Zero-Shot learning based Zeg-CLIP model [335] utilizes zero-shot learning principles, and
an adaptive-based learning technique ALE were considered. The adapted Z-AEG-TF-HIC

model represents a variant that omits the use of CONV layers. In a similar vein, the Z-

AEG-CV-HIC model replaces term-frequency and substitutes the count vectorizer. Further-
more, the S-CONV-Z-AEG-TF-HIC and S-CONV-Z-AEG-CV-HIC models integrate simpli-
fied convolutional architectures, maintaining the Term Frequency-Inverse Document Fre-
quency (TF-IDF) and count vectorizer approaches respectively. In contrast, our proposed
approach, the CONVZ-AEG-TF-HIC model, harmonizes a variety of techniques to deliver
a comprehensive solution. This fusion adeptly combines GANs, autoencoders, and con-
volutional networks, resulting in enhanced feature representations, refined classification
capabilities, and adaptable performance across varying domains.

SA to PU:

The outcomes showcased in Table 6.2 emphasize the superiority of our proposed model,
CONVZ-AEG-TF-HIC, in transferring knowledge from the source domain (SA) to the
target domain (PU). Notably, our model achieves an outstanding OA of 78.20, AA of 89.39
and KC of 69.75 surpassing other models included in the comparison. The potentially
higher complexity and capacity of the CONVZ-AEG-TF-HIC model compared to other
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models enable it to capture intricate patterns and relationships in the data, contributing to its
superior performance in domain adaptation from IP to PU. This exceptional performance
can be attributed to the model’s adeptness at effectively aligning features across domains,
as evidenced by its highest OA and KC values among state-of-the-art models. Conversely,
models like ‘1D GAN’ or Zeg-CLIP struggle to adapt, exhibiting the lower OA - a key pa-
rameter to assess accuracy, indicative of challenges in domain adaptation. The remarkable
results of our proposed model underscore its robustness and efficacy in handling the inher-
ent differences between source and target domains, positioning it as a promising solution
for semi-supervised and cross-domain hyperspectral image classification tasks.

Table 6.2: Results from SA to PU

DSC DAG 1DGAN 2DGAN 3DGAN Zeg-CLIP ALE Z-AEG-
TF-HIC

CONV-Z-
AEG-CV-
HIC

Z-AEG-
CV-HIC

S-CONV-
Z-AEG-
TF-HIC

S-CONV-
Z-AEG-
CV-HIC

CONVZ-
AEG-TF-
HIC

1 55.31 37.42 70.60 68.15 53.21 73.05 57.31 47.98 39.79 53.99 38.44 53.37
2 79.75 52.06 62.37 66.90 71.60 43.62 41.87 34.24 49.11 50.80 46.57 91.37
3 54.68 78.74 80.00 48.14 51.36 57.37 47.69 56.17 86.02 74.98 76.24 74.69
4 79.09 43.92 55.80 34.34 39.08 48.98 65.72 76.56 48.49 75.67 42.43 95.62
5 44.94 64.80 48.98 45.83 65.71 41.09 50.66 78.79 42.45 67.54 45.36 100
6 85.83 55.64 85.21 63.73 80.91 53.01 52.03 85.79 58.95 75.04 62.56 96.59
7 79.38 51.50 64.38 38.10 68.59 88.51 60.33 42.16 51.68 84.85 81.13 99.47
8 53.12 68.40 68.57 35.31 45.84 59.03 36.11 49.83 60.44 87.56 61.94 93.5
9 70.80 68.46 78.53 66.27 69.33 51.89 36.21 82.47 55.83 84.47 79.11 100

OA 72.35 77.85 75.05 70.79 70.77 73.38 66.81 75.82 59.33 75.27 76.32 78.2
AA 66.99 57.88 68.27 51.86 60.63 57.39 49.77 61.56 54.75 72.77 59.31 89.39
KC 77.71 66.82 67.11 60.05 68.11 67.46 60.35 65.08 69.30 65.86 68.46 69.75

Table 6.3: Results from IP to PU

DSC DAG 1DGAN 2DGAN 3DGAN Zeg-CLIP ALE Z-AEG-
TF-HIC

CONV-Z-
AEG-CV-
HIC

Z-AEG-
CV-HIC

S-CONV-
Z-AEG-
TF-HIC

S-CONV-
Z-AEG-
CV-HIC

CONVZ-
AEG-TF-
HIC

1 69.66 77.33 82.18 60.81 60.24 54.72 35.85 72.63 69.08 64.94 82.37 95.64
2 84.73 74.01 68.40 77.37 42.67 40.74 43.80 43.13 36.67 59.94 72.28 99.28
3 82.33 77.36 78.25 69.82 43.66 72.01 38.77 30.12 50.79 61.01 57.19 63.74
4 78.75 84.53 86.62 81.27 68.33 45.67 67.88 66.62 72.13 74.77 82.43 95.23
5 31.38 63.88 56.51 60.33 32.55 45.15 47.12 72.75 44.93 38.16 32.35 100
6 78.51 54.96 39.85 36.03 31.55 37.81 50.63 65.62 66.95 40.12 85.42 84.01
7 72.01 71.64 46.21 41.87 73.06 63.40 78.84 50.24 55.59 57.29 42.14 96.01
8 72.26 35.31 31.09 42.29 32.80 44.97 63.33 86.68 64.41 60.04 32.01 96.33
9 49.23 78.92 66.28 47.12 80.44 39.30 85.65 45.16 35.65 40.04 31.97 100

OA 70.67 74.13 71.61 73.32 70.83 75.72 78.78 75.27 73.71 78.22 79.13 79.74
AA 68.76 68.66 61.71 57.44 51.70 49.31 56.87 59.22 55.13 55.15 57.57 92.25
KC 61.80 67.61 63.18 63.04 67.99 60.82 64.98 63.28 68.55 68.48 71.95 71.22
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IP to PU:

Table 6.3 presents the outcomes of knowledge transfer from the source domain (IP) to the
target domain (PU) across various models. Notably, the proposed CONVZ-AEG-TF-HIC
model demonstrates remarkable performance, exhibiting an OA of 79.74, AA of 92.25, and
KC of 71.22, surpassing all other models evaluated. This would have happened because of
several reasons including feature alignment, ensuring that representations learned from the
IP domain are well-adapted to the characteristics of the PU domain. Secondly, the model
exhibits adaptability to domain shifts, enabling it to handle variations between IP and PU
datasets and utilize domain-specific information for classification effectively. Moreover, the
model’s mechanism for representation learning is robust, allowing it to extract meaningful
features from IP data and generalize effectively to PU data, thereby enhancing classification
accuracy. Leveraging semi-supervised learning, the model benefits from both labelled and
unlabeled data during training, exploiting the abundance of information in the IP dataset
to improve performance on PU data. These reasons collectively position the CONVZ-
AEG-TF-HIC model as a highly effective solution for knowledge transfer and domain
adaptation tasks in hyperspectral image classification, showcasing its potential for real-
world applications.

Table 6.4: Results from SA to IP

DSC DAG 1DGAN 2DGAN 3DGAN Zeg-CLIP ALE Z-AEG-
TF-HIC

CONV-Z-
AEG-CV-
HIC

Z-AEG-
CV-HIC

S-CONV-
Z-AEG-
TF-HIC

S-CONV-
Z-AEG-
CV-HIC

CONVZ-
AEG-TF-
HIC

1 74.16 34.67 55.22 69.79 43.42 40.03 75.97 82.99 61.92 52.48 83.04 67.39
2 30.28 57.46 88.75 43.25 88.89 79.34 56.77 30.30 44.37 78.60 64.35 93.9
3 37.71 87.41 48.99 83.77 38.93 35.77 86.50 82.30 46.62 49.58 71.94 63.49
4 41.59 48.43 33.85 51.42 35.91 31.87 60.68 83.70 79.69 53.27 51.83 90.29
5 50.58 55.73 74.05 48.87 75.77 36.64 65.86 43.35 84.78 41.90 67.37 98.55
6 60.35 55.72 35.07 59.29 61.21 36.15 43.02 61.12 42.01 73.82 46.16 98.35
7 42.51 66.98 63.79 30.97 39.82 83.44 37.78 67.36 70.44 63.33 63.00 89.28
8 31.35 35.62 65.23 71.71 39.93 60.43 54.30 75.40 42.33 31.53 68.54 100
9 74.66 42.62 36.41 48.16 85.83 42.30 64.49 42.58 70.63 35.50 50.74 100
10 35.63 46.05 62.72 79.79 82.75 52.66 73.86 32.73 72.58 59.71 44.96 83.74
11 85.91 87.68 66.76 74.39 37.30 39.46 86.13 39.05 45.99 49.27 34.29 98.53
12 61.21 44.61 43.28 76.53 86.66 40.69 85.76 52.90 46.01 57.70 39.07 97.8
13 45.24 53.85 68.49 74.17 75.38 67.84 41.51 50.08 38.46 52.31 73.39 100
14 69.62 83.23 75.10 41.96 50.77 80.68 62.64 38.80 86.07 48.54 74.63 98.89
15 35.54 36.01 64.08 65.91 35.69 62.89 46.75 87.10 63.28 48.64 41.33 79.79
16 47.96 57.05 82.72 35.37 51.58 44.25 41.62 39.22 41.32 73.52 79.91 95.69

OA 86.72 85.61 80.66 87.98 86.45 90.41 74.38 79.11 83.95 86.01 92.26 92.35
AA 51.52 55.82 60.28 59.71 58.11 52.15 61.48 56.81 58.53 54.36 59.66 90.98
KC 82.74 83.78 73.76 84.16 84.08 76.78 85.33 85.52 70.25 80.50 89.28 91.21
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SA to IP:

In Table 6.4, we present results from the source domain (SA) to the target domain (IP).
The proposed CONVZ-AEG-TF-HIC model demonstrates remarkable performance, con-
sistently achieving the highest values in the final column. With an OA of 92.35, an AA of
90.98, and a KC of 91.21. This performance may be attributed to the model’s architecture
having effective feature alignment between the domains SA and IP, facilitating superior
adaptation to the target domain characteristics. Additionally, the similarities between the
IP and SA datasets likely contribute to the model’s strong performance, as it can leverage
common patterns and structures between the two domains. Overall, the CONVZ-AEG-
TF-HIC model emerges as a standout performer for SA to IP.

Table 6.5: Results from PU to PC

DSC DAG 1DGAN 2DGAN 3DGAN Zeg-CLIP ALE Z-AEG-
TF-HIC

CONV-Z-
AEG-CV-
HIC

Z-AEG-
CV-HIC

S-CONV-
Z-AEG-
TF-HIC

S-CONV-
Z-AEG-
CV-HIC

CONVZ-
AEG-TF-
HIC

1 61.59 70.19 66.98 85.90 73.25 48.62 45.46 84.08 37.91 86.02 50.02 99.27
2 76.67 85.03 64.20 87.68 44.28 68.50 65.61 83.46 80.44 79.03 74.61 85.48
3 37.68 56.01 46.57 40.64 46.14 30.92 78.22 56.67 51.04 68.96 77.05 96.99
4 41.82 59.47 64.10 80.92 71.88 63.76 45.12 82.74 48.09 64.02 40.08 77.61
5 34.33 39.00 65.47 41.33 69.73 57.78 74.81 65.76 31.05 53.85 78.86 96.36
6 79.13 41.79 74.23 32.45 82.42 63.35 82.88 78.54 61.55 88.24 51.69 96.74
7 64.76 42.21 86.09 58.39 77.75 75.25 32.13 79.46 34.36 67.64 75.33 00.00
8 30.28 71.04 41.18 40.52 84.12 41.48 73.83 70.19 59.80 52.70 44.13 99.71
9 53.02 59.49 71.31 78.11 73.84 78.86 46.31 66.04 49.22 59.77 52.21 100

OA 46.84 61.07 63.02 66.88 68.40 48.48 60.05 74.81 52.07 75.92 76.81 48.89
AA 53.25 58.25 64.46 60.66 69.27 58.72 60.49 74.10 50.38 68.92 60.44 83.57
KC 39.84 54.85 61.25 59.91 57.80 42.14 58.80 65.87 48.39 65.93 70.81 42.07

PU to PC

The outcomes presented in Table 6.5 showcase the results from the source domain (PU) to
the target domain (PC) through various models. The proposed model achieves compara-
tively lower results in this scenario, possibly suggesting some difficulty in aligning features
between these two domains. Specifically, class 7 (Shadows) achieved the lowest accuracy
due to the class imbalance problem. This class had the lowest number of samples amongst
other classes and therefore failed to generalize. The inherent differences in spatial structures
between PU and PC datasets may contribute to the observed performance gap. Furthermore,
variations in environmental conditions such as disparities in land cover types, surface mate-
rials, and geographical characteristics between the PU and PC regions introduce additional
complexities for knowledge transfer between the two domains.
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6.4.3 Same-Domain Datasets

The subsections below depict the results when trained and tested on same domain datasets.

• In the IP to IP dataset (Table 6.6), the model achieves exceptional results with an OA
of 91.83, AA of 93.51, and KC of 90.62. Trained and tested on identical datasets, it
effectively captures domain-specific patterns, resulting in superior accuracy without
the need for domain adaptation.

• In the SA to SA dataset, the model demonstrates remarkable performance as depicted
in (Table 6.7), boasting an OA of 85.9, an AA of 88.01, and a KC of 84.2. However,
a notable discrepancy arises in the classification of the vineyard vertical trellis class,
exhibiting considerably lower accuracy compared to other categories. This discrep-
ancy can be attributed to the intricate spectral signature of the vineyard vertical trellis,
which poses a unique challenge for accurate classification. Unlike other classes, the
spectral patterns of the vineyard vertical trellis may exhibit complexities that overlap
with those of neighbouring categories. Consequently, the model’s ability to discern
subtle spectral variations among classes is hindered, resulting in misclassifications
and diminished accuracy.

• On the PC to PC dataset (Table 6.8), the model exhibits slightly lower performance,
with an OA of 53.57, AA of 89.07, and KC of 47.28. Despite this, its ability to trans-
fer knowledge within the same domain remains evident, albeit with some variability
in results. Despite being within the same domain, variations in spectral signatures,
environmental conditions, or sensor characteristics can influence classification accu-
racy. Spatial variability, such as differences in soil moisture, vegetation density, or
surface roughness, can influence spectral responses even within the confines of Pavia
Centre’s landscape. Temporal fluctuations, stemming from changes in weather pat-
terns, seasonal transitions, or human interventions like agricultural practices, further
contribute to spectral variability. Moreover, The model’s architecture and complexity
might affect its ability to generalize across different datasets effectively. If the model
is overly complex or prone to overfitting, it may fail to capture the underlying patterns
resulting in reduced performance.

• For the PU to PU dataset (Table 6.9), the model maintains high accuracy levels with
an OA of 80.23, AA of 89.05, and KC of 72.18. Its proficiency in transferring domain
knowledge underscores its reliability and robustness across diverse scenarios.
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Table 6.6: Results from IP to IP

DSC DAG 1DGAN 2DGAN 3DGAN Zeg-CLIP ALE Z-AEG-
TF-HIC

CONV-Z-
AEG-CV-
HIC

Z-AEG-
CV-HIC

S-CONV-
Z-AEG-
TF-HIC

S-CONV-
Z-AEG-
CV-HIC

CONVZ-
AEG-TF-
HIC

1 78.74 32.12 54.87 9.51 34.70 43.75 35.88 33.59 41.75 20.23 40.00 93.47
2 51.72 49.06 37.80 29.27 51.44 35.80 41.34 14.96 38.01 17.95 81.16 88.65
3 26.85 54.83 88.76 43.34 68.25 31.27 31.78 90.42 44.79 97.92 91.61 64.45
4 55.68 31.42 95.51 74.40 44.87 76.55 68.34 10.03 22.97 75.68 70.53 85.23
5 66.73 40.64 17.77 43.42 78.34 47.97 36.93 3.60 29.31 22.76 41.51 99.17
6 63.35 72.60 60.55 27.94 38.77 55.18 76.41 95.89 99.49 76.42 59.34 98.76
7 39.70 82.84 54.71 49.00 39.70 34.19 46.71 26.22 24.16 51.21 52.94 100
8 24.48 96.06 70.77 73.30 58.28 73.92 75.53 23.67 89.50 87.21 90.59 100
9 85.16 36.49 33.33 39.93 39.94 39.58 43.17 66.12 89.73 68.61 82.24 100
10 43.45 81.20 81.83 85.96 51.19 67.44 62.45 5.28 72.28 21.80 43.92 89.5
11 34.85 96.28 73.76 58.39 43.66 39.58 74.06 90.01 28.01 48.24 21.10 99.18
12 26.16 32.91 87.53 42.31 57.06 43.29 56.71 87.94 29.36 5.79 98.78 98.14
13 50.22 52.16 94.65 90.82 65.04 59.94 40.05 85.58 55.46 57.59 16.19 99.51
14 6.13 53.53 4.68 47.34 52.62 49.48 47.67 73.51 83.95 84.16 68.66 90.35
15 34.52 13.04 41.57 1.40 62.89 59.22 70.83 33.12 67.85 13.74 95.20 93
16 60.54 33.39 37.88 611.66 70.96 35.83 75.79 84.48 21.12 35.30 70.12 96.77

OA 83.10 82.84 83.02 82.97 83.08 82.90 82.98 82.95 82.92 83.18 83.06 91.83
AA 46.77 53.66 58.50 83.00 53.61 49.56 55.23 51.53 52.36 49.04 63.99 93.51
KC 80.89 80.96 80.94 81.11 81.01 80.99 81.10 80.92 81.10 81.00 80.97 90.62

6.4.4 Overall Analysis

Our proposed semi-supervised model exhibits competitive performance, showcasing its po-
tential in hyperspectral data analysis. This approach effectively tackles the challenge of
limited labelled samples, a significant bottleneck stemming from the time-consuming and
labour-intensive nature of hyperspectral data annotation. While supervised models typ-
ically achieve higher accuracy with abundant labelled data, our model demonstrates the
advantages of semi-supervised learning.

In comparison to our last published semi-supervised work [332], which is a few-shot
learning model demonstrating excellent classification accuracy but constrained to work only
on cross-domain datasets generated by the same sensors with identical spectra or bands,
our current model can handle cross-domain data with different spectra. Leveraging semi-
supervised learning, it provides a strong foundation for generalization and adaptability to
unseen samples using zero-shot learning techniques with text embeddings. The model’s
ability to perform well on unseen data, despite lacking explicit training on them, under-
scores a significant strength of our approach. It reflects the growing trend towards semi-
supervised and few-shot learning models in hyperspectral data analysis as researchers aim
to overcome the challenges of data scarcity and annotation costs.

In summary, our findings affirm the potential of the proposed model in navigating the
complexities of hyperspectral data analysis. Its semi-supervised architecture and ability to
generalize to unseen samples signify promising advancements in overcoming data limita-
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Table 6.7: Results from SA to SA

DSC DAG 1DGAN 2DGAN 3DGAN Zeg-CLIP ALE Z-AEG-
TF-HIC

CONV-Z-
AEG-CV-
HIC

Z-AEG-
CV-HIC

S-CONV-
Z-AEG-
TF-HIC

S-CONV-
Z-AEG-
CV-HIC

CONVZ-
AEG-TF-
HIC

1 44.85 40.00 46.79 77.28 80.61 50.25 37.17 56.35 53.42 65.55 69.51 76.4
2 63.43 64.91 82.84 42.70 73.38 77.73 68.58 42.33 58.51 82.73 82.67 99.97
3 81.45 84.99 66.63 31.95 40.53 36.54 49.79 48.78 39.41 59.68 55.71 91.34
4 43.76 77.64 58.11 38.85 74.63 87.27 77.36 76.40 72.92 64.11 58.36 99.28
5 78.14 52.28 86.64 54.63 78.76 85.65 30.71 75.51 79.49 40.67 81.69 99.43
6 61.45 84.57 46.04 40.50 85.06 46.50 44.95 43.85 62.09 58.75 32.43 99.97
7 30.08 86.11 88.71 65.90 79.70 43.58 52.02 48.68 66.45 78.40 39.40 99.97
8 35.47 78.10 59.46 41.02 85.85 51.63 81.56 39.96 65.14 42.15 62.19 96.57
9 53.69 84.22 32.95 73.17 67.87 88.86 37.25 70.06 57.19 39.41 86.58 99.17
10 65.10 73.21 56.48 63.98 86.16 60.42 79.51 32.70 54.17 81.66 60.45 94.38
11 65.61 74.50 35.56 67.58 67.79 43.88 40.40 61.84 38.51 64.80 88.65 94.38
12 50.53 61.03 73.89 73.54 43.56 49.62 87.24 35.37 76.51 81.24 61.13 99.94
13 49.19 44.68 73.26 36.43 30.57 83.64 36.75 39.24 80.20 66.73 53.05 98.58
14 65.29 46.79 67.73 42.91 67.14 71.14 71.14 49.76 59.77 60.78 57.80 98.69
15 55.63 70.72 74.60 49.40 72.68 56.02 83.34 38.05 77.11 70.46 69.42 60.04
16 54.34 32.65 45.28 59.65 45.49 83.31 82.89 44.68 69.32 51.39 85.36 00.00

OA 67.91 79.70 72.39 85.17 81.61 84.16 81.22 77.18 81.72 84.73 83.95 85.9
AA 56.13 66.02 62.18 53.72 67.49 63.50 60.04 50.22 63.14 63.03 65.27 88.01
KC 64.56 70.44 68.04 81.77 75.08 79.69 78.32 70.13 80.78 82.59 83.49 84.2

tions. The CONVZ-AEG-TF-HIC model represents a breakthrough solution addressing the
challenge of limited labelled data in cross-domain knowledge transfer. By integrating semi-
supervised and zero-shot learning techniques, it transcends data limitations and achieves
exceptional results across diverse datasets, encompassing both same and cross-domain sce-
narios. This state-of-the-art performance underscores its effectiveness in navigating data
scarcity and excelling in cross-domain knowledge transfer tasks.

Classification Maps

Classification maps are visual representations that illustrate the results of classification tasks
between different domains. In each of the mentioned cases, classification maps provide
insights into how well a model can classify instances from the source domain (IP, PC, SA,
PU) to the target domain (PU). It was observed that PC to PU had major misclassifications
in comparison to any other domain.
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(a) IP to PU (b) PC to PU (c) SA to PU (d) PU to PU

(e) IP to PC (f) PU to PC (g) PC to PC

(h) SA to IP (i) IP to IP

Figure 6.5: Classification Maps
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Table 6.8: Results from PC to PC

DSC DAG 1DGAN 2DGAN 3DGAN Zeg-CLIP ALE Z-AEG-
TF-HIC

CONV-Z-
AEG-CV-
HIC

Z-AEG-
CV-HIC

S-CONV-
Z-AEG-
TF-HIC

S-CONV-
Z-AEG-
CV-HIC

CONVZ-
AEG-TF-
HIC

1 55.26 54.81 75.51 30.23 45.97 85.84 87.72 49.39 59.34 62.26 67.76 65.26
2 85.95 66.11 50.72 70.46 50.18 49.11 48.86 39.75 80.62 83.00 44.62 98.09
3 87.04 51.72 36.75 51.42 55.16 65.57 54.06 87.01 65.94 83.33 82.71 84.17
4 47.96 41.84 35.31 75.80 67.96 32.62 59.29 51.39 44.31 74.63 42.09 69.6
5 58.46 54.14 63.32 31.78 38.78 54.65 65.84 72.37 35.37 31.31 75.42 97.96
6 70.11 85.21 61.33 56.58 40.54 50.23 62.04 68.56 80.39 66.82 31.67 93.41
7 66.08 52.23 76.14 43.57 46.61 64.10 65.13 79.97 56.68 39.90 57.41 93.55
8 63.84 76.27 60.04 40.80 47.64 87.34 52.80 41.14 88.46 79.13 64.55 99.67
9 75.84 62.81 59.31 87.56 65.00 54.45 40.97 70.63 77.57 62.05 75.05 99.96

OA 59.04 27.92 33.93 41.41 55.35 34.02 54.44 46.65 43.86 64.07 40.81 53.57
AA 67.84 60.57 57.60 54.24 50.87 60.44 59.64 62.24 65.41 64.72 60.14 89.07
KC 52.73 12.73 26.99 38.07 43.64 33.72 50.93 38.86 41.16 59.00 36.15 47.28

Table 6.9: Results from PU to PU

DSC DAG 1DGAN 2DGAN 3DGAN Zeg-CLIP ALE Z-AEG-
TF-HIC

CONV-Z-
AEG-CV-
HIC

Z-AEG-
CV-HIC

S-CONV-
Z-AEG-
TF-HIC

S-CONV-
Z-AEG-
CV-HIC

CONVZ-
AEG-TF-
HIC

1 55.01 51.73 71.02 81.17 45.23 61.47 87.27 64.73 49.34 61.06 74.01 51.35
2 40.26 31.45 43.81 34.13 43.97 43.91 39.33 35.77 36.83 42.08 58.81 97.49
3 35.12 51.81 67.81 58.87 77.14 35.10 30.21 65.38 60.99 54.68 33.99 77.65
4 32.78 33.48 72.27 34.43 39.88 82.49 46.98 55.61 49.23 70.74 79.73 90.73
5 36.53 82.10 86.46 44.96 51.30 69.42 53.56 62.68 80.78 38.72 78.86 99.92
6 54.20 84.42 44.59 80.48 34.91 88.02 52.14 35.39 53.99 60.04 48.37 96.34
7 45.62 60.52 74.69 58.42 76.89 80.60 77.69 53.40 81.43 82.62 75.21 99.09
8 37.83 69.74 75.42 70.54 72.96 33.26 68.52 45.53 74.52 40.56 50.60 88.94
9 55.03 79.02 58.46 37.64 54.92 79.78 33.44 64.47 35.20 32.82 67.21 100

OA 69.94 67.59 79.78 76.67 76.70 72.59 73.16 78.27 71.52 76.60 72.19 80.23
AA 43.60 60.47 66.06 55.63 55.25 63.78 54.35 53.66 58.03 53.70 62.98 89.05
KC 66.08 65.96 71.95 65.12 71.66 68.90 71.49 71.95 74.10 68.71 70.80 72.18

Confusion Matrix

A confusion matrix is a vital tool for assessing the performance of a machine learning model
in classification tasks. It offers a clear breakdown of the model’s predictions, highlighting
where it correctly and incorrectly classifies instances. The confusion matrices are included
in Figure 6.6.
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(a) IP to PU (b) PC to PU

(c) SA to PU (d) PU to PU

(e) IP to PC (f) PU to PC (g) PC to PC

(h) SA to IP (i) IP to IP

Figure 6.6: Confusion Matrices
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6.5 Summary

This chapter presented a comprehensive framework that leverages the synergistic poten-
tial of hybrid CNN-GAN-autoencoder models, text embeddings, and zero-shot learning for
advanced hyperspectral image classification. The proposed model not only addresses the
challenges of limited labelled data but also enhances feature representations through unsu-
pervised and semi-supervised learning paradigms. By seamlessly combining autoencoder-
based latent representations with GAN-generated synthetic data, the model demonstrates
remarkable performance improvements. In the ever-evolving landscape of knowledge trans-
fer, the CONVZ-AEG-TF-HIC model emerges as a beacon of effectiveness and versatility,
offering a pioneering solution to the challenges posed by limited data availability. With a
meticulous focus on preserving domain expertise, the model seamlessly transfers nuanced
insights, ensuring that the transferred knowledge remains both accurate and relevant. Its
consistently impressive OA and AA metrics underscore its unwavering ability to facilitate
decision-making with precision, particularly when data is scarce. Notably, the model’s
adeptness at robust feature extraction captures the intricacies of the source domain, trans-
lating them into actionable insights in the target domain. This prowess is further fortified
by its exceptional KC, signifying resilience in the face of real-world data complexity. The
model’s end-to-end approach and adaptability across diverse domains enhance its appeal,
while its consistent outperformance against existing models solidifies its status as a cutting-
edge solution. Ultimately, the CONVZ-AEG-TF-HIC model not only revolutionizes and
democratizes knowledge transfer but also empowers industries by equipping them with a
powerful tool for accurate, adaptable, and impactful knowledge integration, even in data-
scarce scenarios.
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CHAPTER 7

UNLOCKING THE POTENTIAL OF UNLABELED DATA

WITH CONVOLUTIONAL AUTOENCODERS AND

GRAPH CONVOLUTIONAL LAYERS

To further address the limitation of labelled data, this chapter also presents a new semi-
supervised framework that harmoniously combines unsupervised feature learning with the
employment of graph convolutional networks. This approach harnesses the latent knowl-
edge hidden within vast pools of unlabeled hyperspectral data using autoencoders, which
extract meaningful features. These features are then incorporated into a GCN based ar-
chitecture, leveraging spatial relationships among neighbouring pixels. The fusion of un-
supervised autoencoder-based learning and graph-based techniques enables our model to
achieve remarkable classification accuracy, even in scenarios with minimal labelled sam-
ples. Through extensive experimentation, we demonstrate the superior performance and
robustness of our methodology across a spectrum of hyperspectral imaging datasets. This
work is a significant step in the realm of semi-supervised hyperspectral image analysis,
unlocking the potential of unlabeled data and empowering accurate classification in data-
scarce environments.

7.1 Introduction

In line with advancements mentioned in preceding chapters, this chapter introduces a novel
semi-supervised technique that amalgamates autoencoders and graph-based deep learning.
The proposed methodology transcends the boundaries of unsupervised learning by seam-
lessly fusing supervised classification into the pipeline. Here, graph-based convolutional
layers are introduced, and engineered to exploit intricate spatial dependencies within the
hyperspectral data. By capitalizing on the learned representations stemming from the un-
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supervised phase, the approach bridges the chasm between labelled and unlabelled data,
effectively giving birth to a powerful semi-supervised model. Below are the contributions
of the proposed model:

• By incorporating AE, our model autonomously uncovers critical patterns and repre-
sentations within hyperspectral data, reducing its dependency on labelled examples.

• Leveraging GCN, our approach harnesses spatial dependencies within hyperspectral
data, enhancing classification accuracy and bridging the gap between limited annota-
tions and model performance.

• Our methodology seamlessly integrates unsupervised and supervised learning, cre-
ating a powerful semi-supervised model that maximizes the utility of both labelled
and unlabelled data. The presented model attains cutting-edge outcomes on standard
hyperspectral image classification datasets, affirming the model’s credibility.

Throughout the subsequent sections, we embark on a detailed examination of this method-
ology, offering an in-depth exploration of the distinct intricacies underlying each compo-
nent’s functionality and the cohesive synergy that unites them. Section 7.2 meticulously
elucidates the proposed methodology, elucidating the step-by-step process employed and
the rationale behind each strategic decision. Moving forward, Section 7.3 serves as a com-
prehensive platform for the presentation of the results obtained, along with a meticulous
evaluation of the model’s performance based on an array of carefully selected metrics. This
segment provides a comprehensive and insightful analysis, offering a nuanced understand-
ing of the methodology’s effectiveness in practical applications. Lastly, in Section 7.4, we
offer a succinct yet comprehensive conclusion that encapsulates the key findings and im-
plications derived from this study. This section serves as a comprehensive synthesis of the
research journey, summarizing the key insights garnered and providing potential avenues
for future exploration and development in this dynamic field.

7.2 Proposed Methodology

In this research, we emphasize the importance of careful data preprocessing to prepare raw
hyperspectral data for analysis and modelling. This is done by introducing a custom func-
tion called extract pixels that reshapes the data into a 2D format, merges it with class labels,
and stores it as a structured dataset which facilitates further analysis. This enriched data
frame containing extracted pixel values and associated class labels serves as the foundation
for subsequent data analysis and model development.
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7.2.1 Unsupervised Learning

The pre-processed data in equation 7.1 is input by removing noisy data. Figure 7.1 shows
the handcrafted autoencoder trained using unsupervised ninety percent data.

Xpreprocessed = RemoveNoise(X, y) (7.1)
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Figure 7.1: Learning using unlabelled data

Initially, all the class labels are eliminated, and the data is left with only the raw pixel
values. Then, the data is reshaped to ensure it is ready for the subsequent steps in the
process. The first step involves encoding the input hyperspectral data to transform it into a
condensed latent space representation. This transformation is aimed at simplifying the data
while retaining its essential information. The decoder assumes a vital role in reconstructing
the initial data from this condensed representation. The main goal during the training of
the autoencoder is to reduce the differences between the input data and the reconstructed
data. This is typically achieved using a widely used measure, the mean squared error, which
helps in quantifying the overall dissimilarity between the two sets of data.

To capture relevant features, a sequence of 3D convolutional layers is utilized. These
specific layers employ the rectified linear unit (ReLU) activation functions shown in equa-
tion 7.2 to effectively grasp crucial patterns and connections within the data. Following the
convolutional layers, max-pooling layers are used to effectively decrease the dimensions of
the data. This reduction in dimensionality aids in simplifying the subsequent processing
steps and enhances the overall efficiency of the model.

σ(x) = max(0, x) (7.2)

The output layer is configured with the necessary dimensions and utilizes a tanh activa-
tion function. For training stability, batch normalization is applied, and an inception block
is incorporated to capture intricate patterns. The customized autoencoder model is opti-
mized using Adam optimizer and the Mean Squared Error (MSE) loss function with MSE
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serving as the evaluation metric, as illustrated in equation 7.3:

MSE(Ytrue,Ypredicted) =
1

n

(
n∑

i=1

(yiTrue − yiPredicted)
2

)
(7.3)

It’s important to note that the autoencoder model undergoes training using unsupervised
data, meaning the input lacks any labels. To prepare the training data, the raw pixel values
are organized to fit the required shape of the model. After this initial setup, the model’s
encoder component is employed to rebuild the hyperspectral data into a reconstructed form
denoted as Xreconstructed. The resulting reconstructed data is then stored in a data frame,
ready for subsequent stages of processing. This type of architecture is commonly employed
for tasks involving dimensionality reduction and feature extraction. Its underlying principle
lies in the ability of the latent space representation to effectively capture crucial information
from the initial data, allowing for a more concise and meaningful understanding of the
dataset.

7.2.2 Supervised Learning using Graph-Based Convolutional Layers

Labelled Data

Categorization

Adjacency Matrix

Reconstructed
Data 

Fully Connected
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Figure 7.2: Handcrafted GCN for Supervised Learning

Figure 7.2 shows the handcrafted network trained with supervised data. The fine-tuned
bands Xunsup are inputted with labelled data Xsup , with class labels 0 filtered out repre-
sented in the equation 7.4:

Xsup, y = Filter(Xsup, y, class ̸= 0) (7.4)

The feature input, denoted as X, is dependent on numpoints and numfeatures where
numpoints represents the number of data points, and numfeatures is the number of features.
The data array is normalized using the min-max scaling technique, ensuring that the values
are within the range of 0 to 1. This step is often performed to standardize the input data and
improve the training process as shown in equation 7.5:
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X∗
sup =

Xsup −min(Xsup)

max(Xsup)−min(Xsup)
(7.5)

The graph-based convolution operation in 7.6 is defined as H where X is input data, A
is the adjacency matrix computed from pairwise Euclidean distances expressed in equation
7.7 and W represents learnable weight matrix in the graph convolution layer and σ is the
activation function.

H = σ(A · X ·W) (7.6)

ED =
√
(x2 − x1)2 + (y2 − y1)2 (7.7)

H1 = GCN1(X,A) (7.8)

The proposed architecture is centred around the idea of utilizing GCN as part of a CNN.
This integration is designed to leverage the inherent structural information within a graph.
The graph convolution layers take as input both the feature vectors for each pixel as well
as an adjacency matrix that encodes the connections between neighbouring pixels. By per-
forming a multiplication between the adjacency matrix and the feature vectors, the output
at each node (pixel) gets influenced by its neighbours, effectively capturing spatial patterns
and dependencies.

The key component in this architecture is the GraphConvolution3D layer. This layer
operates on the input features X alongside an adjacency matrix A, as shown in equation
7.8 which is a way of representing connections between different elements in a graph. The
use of a 3D layer with an output dimension of 128 suggests that it processes data in a
three-dimensional format, likely to capture spatial relationships within the data. In prac-
tical terms, the GraphConvolution3D layer performs graph convolution, which involves a
mathematical operation where the input features and the adjacency matrix are multiplied
together. This process enables the model to take into account the interconnections among
various elements in the data, thereby allowing it to comprehend intricate relationships that
might exist between different components of the input. Following the graph convolution
step, a learnable kernel is applied to the results to obtain the final output hidden represen-
tation. This indicates that the network learns to weigh the importance of different elements
based on their relationships in the graph.

Incorporating non-linear characteristics into the model is achieved by employing the
Rectified Linear Unit (ReLU) activation function. This particular function is implemented
on each element of the output from the preceding step, enabling the model to detect intri-
cate, non-linear patterns within the data. This addition helps the network to model more
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intricate relationships and patterns that might not be linear.
Another GraphConvolution3D layer with an output dimension of 64 is applied to the

hidden output along with the adjacency matrix to perform another graph convolution as
shown in 7.9. The ReLU activation function is employed element-wise on the output to
introduce non-linear characteristics.

H2 = GCN2(H1,A) (7.9)

We predict class labels, as illustrated in equation 7.11, by applying a fully connected
layer to the flattened output obtained from the graph-based CNN, as shown in equation
7.10.

H3 = Flatten(H2) (7.10)

ypred = Numclasses(H3) (7.11)

The model is combined using Adam as the optimizer with a learning rate parameter
0.0001 and mean square loss error. We train the model using Xsup and labels y. We predict
class labels for the input data Xsup using the trained model.

7.3 Results

The autoencoder component serves a pivotal role in the proposed methodology by learning
condensed representations of hyperspectral data, capturing essential features and underly-
ing variations. Convolutional layers within the autoencoder encode local spectral patterns
and spatial motifs, with higher layers capturing more abstract concepts. Additionally, unsu-
pervised pretraining initializes the model effectively, facilitating knowledge transfer to the
supervised graph convolution component. These features encode discriminative spectral-
spatial patterns and aid in boosting overall classification performance when combined with
spatial dependencies modelled by the graph convolution component.

To evaluate the efficiency of our suggested method, we conducted experiments using
three authentic HSI: IP, PU, and SA. These three datasets offer a diverse range of HSI, each
with its distinct characteristics. This diversity enables a comprehensive evaluation of our
methodology’s performance across various scenarios. Three widely recognized parameters
were employed to evaluate the precision of the classification, which included OA, AA and
KC.
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7.3.1 Parameters Setting

In the noise suppression phase, a series of 14 convolutional layers are employed, each with
a 3x3x3 kernel size, ReLU activation function, ’same’ padding, and a stride of 1. Four
max-pooling layers with a pool size of 2x2x2 are used to down-sample the data. Following
noise suppression, the main auto-encoding phase consists of three convolutional layers with
kernel sizes of 9x9x9, 1x1x1, and 9x9x9, respectively. Leaky ReLU activation is applied,
and batch normalization is used to improve training stability. A max-pooling layer further
reduces the feature dimensionality.

The autoencoder is specifically designed with a loss function-centered MSE and is fine-
tuned using the Adam optimizer with a learning rate of 0.0001. Additionally, the model
incorporates the GraphConvolution3D module to integrate graph-based information, con-
sisting of two graph convolutional layers with output dimensions of 128 and 64, respec-
tively, followed by ReLU activation functions. Similar to the auto-encoder, this part of the
model is compiled using the Adam optimizer and MSE loss. Training is performed over
100 epochs with a batch size of 16.

7.3.2 Comparison with Other Models

Our proposed model exhibits several noteworthy advantages compared to existing meth-
ods, as demonstrated by the outcomes of our experiments conducted on the IP, PU and
SA datasets. When compared to state-of-the-art techniques, such as GCN [336], DBGCN
[336], DAE [263] and 3DCAE [337], our model consistently demonstrates superior classi-
fication capabilities.

As indicated in Table 7.1, our model achieves a remarkable OA of 94.96% on the IP
dataset, surpassing the performance of all other methods. This high OA value emphasizes
the model’s exceptional capacity to precisely categorize pixels across all classes. Further-
more, the AA of 89.37%, while marginally lower than that of DBGCN[336], still outper-
forms GCN[336], DAE[263] and 3DCAE[337]. Additionally, the KC of 90.34% demon-
strates a substantial level of agreement between the classifications made by the model and
the ground truth.

Moving on to the PU dataset shown in Table 7.2, our model once again outperforms all
other methods with an impressive OA of 97.57%. This result showcases our model’s supe-
rior capability in accurately classifying pixels across all categories. The AA of 92.53%
further emphasizes the model’s remarkable performance, exceeding that of GCN[336],
DBGCN[336], DAE[263] and 3DCAE[337]. Moreover, the proposed model’s KC out-
performs all compared methods, including DBGCN[336], indicating its high reliability and
robustness.

On the SA dataset, our proposed model attains remarkable classification results shown
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Table 7.1: Classification Accuracy for IP

Classes GCN[336] DBGCN[336] DAE[263] 3DCAE[337] Proposed
1 57.89 100.00 35.52 90.48 100.00
2 56.62 73.73 61.13 92.49 84.10
3 30.90 90.27 53.28 90.37 62.04
4 86.46 100.00 63.53 86.90 88.60
5 37.36 65.26 63.26 94.25 96.68
6 77.98 97.65 88.31 97.07 98.08
7 60.00 100.00 30.98 91.26 96.42
8 92.34 100.00 95.65 97.79 100.00
9 83.33 100.00 48.89 75.91 75.00
10 64.11 87.24 75.15 87.34 86.31
11 21.99 68.41 78.78 90.24 95.31
12 27.86 55.73 49.03 95.76 95.78
13 94.92 100.00 89.97 97.49 99.51
14 95.86 100.00 91.65 96.03 95.81
15 44.71 99.74 54.61 90.48 61.65
16 92.94 100.00 85.92 98.82 94.62
OA 53.51 82.30 73.16 92.35 94.96
AA 64.03 89.88 66.60 92.04 89.37
KC 48.44 80.11 90.34

Table 7.2: Classification Accuracy for PU

GCN[336] DBGCN[336] DAE[263] 3DCAE[337] Proposed
1 43.30 78.49 93.69 95.21 100
2 54.41 90.46 96.41 96.06 98.55
3 87.31 90.28 71.88 91.32 57.21
4 83.63 89.65 96.70 98.28 96.57
5 99.33 99.93 99.37 95.55 100.00
6 61.79 100.00 78.83 95.30 86.75
7 95.68 96.29 76.83 95.14 97.21
8 35.43 59.75 88.76 91.38 96.52
9 100.00 92.21 96.72 99.96 100.00
OA 59.23 87.53 91.57 95.39 97.57
AA 73.33 88.56 88.80 95.36 92.53
KC 49.99 83.62 94.09

in Table 7.3, boasting an impressive OA of 92.06%. The AA of 90.09% further under-
scores the model’s remarkable performance, outperforming S2GCN[338], SSCNN[339],
and DAE[263]. Although 3DCAE[337] achieves a slightly higher AA, the proposed model
remains highly competitive and surpasses S2GCN [338] and SSCNN [339]. The KC of
87.38% signifies a substantial level of agreement between the model’s classifications and
the ground truth, underscoring the robustness and reliability of our proposed model. Al-
though certain other methods achieve similar KC values, our model consistently delivers
competitive performance.

In summary, our proposed model consistently surpasses existing methods in both OA
and AA across multiple hyperspectral datasets. These results underscore the model’s ef-
fectiveness in achieving precise pixel classification. The presented hyperspectral image
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Table 7.3: Classification Accuracy for SA

GCN[336] DBGCN[336] DAE[263] 3DCAE[337] Proposed
1 99.01 98.39 96.51 100.00 100.00
2 99.18 94.98 98.35 99.29 100.00
3 97.15 92.74 95.08 97.13 99.79
4 99.11 82.68 98.57 97.91 99.64
5 97.55 97.62 97.19 98.26 97.19
6 99.32 99.49 99.50 99.98 99.97
7 90.06 97.69 98.73 99.64 100.00
8 70.68 83.26 83.83 91.58 90.29
9 98.32 98.86 97.67 99.28 96.22
10 90.97 92.57 92.55 96.65 94.44
11 98.00 95.74 90.89 97.74 94.66
12 99.56 93.97 99.16 98.84 99.89
13 97.83 91.28 96.87 99.26 99.23
14 95.75 92.63 95.54 97.49 98.31
15 70.36 66.81 74.78 87.85 71.84
16 96.90 97.26 87.50 98.34 00.00
OA 88.39 89.37 91.04 95.81 92.06
AA 94.30 92.25 93.92 97.95 90.09
KC 87.00 88.20 87.38

classification model offers several key advantages that distinguish it from existing methods.
Firstly, the incorporation of noise suppression at the initial phase significantly enhances
the model’s ability to handle noisy hyperspectral data, resulting in more accurate classifi-
cations. Secondly, the auto-encoding component of the model aids in capturing essential
spectral features and reducing data dimensionality, ultimately improving classification per-
formance. The model’s adaptive encoding dimensions further optimize its flexibility across
various datasets. Moreover, the implementation of the Inception block introduces multi-
scale features, enhancing the model’s ability to capture complex patterns. Additionally,
the proposed model showcases remarkable robustness and stability, as demonstrated by the
results obtained through ten repeated experiments with random training pixels. Overall,
these advantages collectively position the model as a superior choice for hyperspectral im-
age analysis, offering enhanced accuracy and adaptability compared to existing methods.
the incorporation of a GCN in the model’s architecture is a pivotal strength. The GCN
component makes use of the underlying graph structure found in hyperspectral data, en-
abling the model to effectively grasp spatial dependencies and connections among adjacent
pixels. This feature significantly improves the model’s capacity to identify delicate spec-
tral variations and patterns within the data, which is especially crucial in comprehending
complex and intricate hyperspectral images. By effectively integrating GCN, the suggested
model effectively utilizes both spectral and spatial information, leading to enhanced clas-
sification accuracy and resilience, thereby establishing itself as a cutting-edge solution for
hyperspectral image analysis.

Figure 7.3 demonstrates the obtained classification maps for the IP, PU, and SA datasets.
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(a) IP (b) PU (c) SA

Figure 7.3: Classification Maps

These maps depict the different land cover types, surface materials, or other categories
present in the data, with the colours or shades representing the various classes identified
during the classification process.

7.4 Summary

This chapter introduced a groundbreaking approach for effectively classifying hyperspectral
images. By merging AE and GCN, we achieved highly promising outcomes when tested
against various standard datasets. The integration of AE within our model proved to be
a critical factor in enhancing the precision of the classification process. This integration
allowed us to refine the initial data by minimizing noise and emphasizing clear and valuable
features, consequently fortifying the overall reliability of the model and its capacity to
extract vital spectral information.

Moreover, the incorporation of a GCN contributed to an enhanced understanding of spa-
tial relationships within hyperspectral data, adding a valuable layer to the model’s ability
to discern intricate spatial connections. This strategic fusion of spectral and spatial insights
enabled our model to thrive, especially in scenarios where spatial associations played a
pivotal role, ultimately leading to highly accurate classifications. To conclude, our pro-
posed model marks a significant stride in the realm of hyperspectral image classification,
showcasing exceptional performance in various classification tasks.
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CHAPTER 8

CONCLUSION AND FUTURE SCOPE

Over the last few years, researchers have continued to innovate in pursuit of enhanced HSIC
in remote sensing and geospatial analysis, spanning vital fields like agriculture, environ-
mental monitoring, and urban planning. However, conventional methods, reliant on man-
ually crafted features, face formidable challenges in handling the intricate non-linearities
intrinsic to hyperspectral data. This limitation has sparked interest in the infusion of deep
learning techniques for HSIC. Yet, the complexities of hyperspectral data give rise to chal-
lenges like the Hughes phenomenon, characterized by high dimensionality, high conver-
gence time, and a scarcity of labelled samples. To address these challenges, this the-
sis has introduced multiple novel deep learning architectures, namely Xcep-Dense, Deep
Siamese, 3D-CAE-SIAM-ATT, CONVZ-AEG-TF-HIC, and AE-GCN, both supervised or
semi-supervised, for HSIC.

8.1 Research Contributions

In this thesis, we have conducted a detailed analysis of existing deep learning models and
proposed techniques for the classification of HSI. The contributions of this thesis are out-
lined in the following subsections :

8.1.1 Research Contribution I

The thesis commenced with an introductory overview of the significance of HSIC and the
burgeoning interest in leveraging DL techniques for enhanced classification accuracy. It
examines each DL model in detail, finding that the CNN stands out for its overall accuracy
compared to other models such as LSTM, AE, GAN, and GCN. The study highlights the
utilization of three major benchmark datasets—Indian Pines, Pavia University, and Sali-

167



nas—in existing literature for performance evaluation. The analysis reveals a prevalent
reliance on supervised learning in most models, underscoring the study’s recommendation
for exploring semi-supervised, unsupervised, or alternative learning strategies to effectively
address the challenge of limited labelled samples. Overall, the findings shed light on the
landscape of DL breakthroughs in HSI classification, highlighting key challenges and sug-
gesting practical solutions.

8.1.2 Research Contribution II

Xcep-Dense: A Novel Lightweight Extreme Inception Model for Hyperspectral Image
Classification: This study proposed a lightweight Xcep-Dense network aimed at address-
ing the issue of extensive parameters present in current deep learning models. By utilizing
depth-wise and pointwise separable convolutions, the network effectively reduces param-
eters while maintaining comparable classification accuracy. Integration of dense modules
enhances network depth, facilitating robust extraction of spatial-spectral properties. No-
tably, this approach demonstrated superior classification accuracy, surpassing state-of-the-
art models even with limited training data. The proposed network’s efficiency lies in its
ability to achieve excellent classification performance with fewer parameters, leading to
faster convergence and reduced overfitting.

8.1.3 Research Contribution III

Deep Siamese Network with Handcrafted Feature Extraction for Hyperspectral Im-
age Classification: Deep Siamese, a few-shot learning model contributes significantly by
addressing challenges associated with limited training data. Through the utilization of
Siamese networks and novel feature generation techniques, the model achieves state-of-
the-art classification accuracy while mitigating overfitting and gradient vanishing. Its ro-
bustness to imbalanced data and superior feature extraction capabilities make it a valuable
asset in hyperspectral image classification.

8.1.4 Research Contribution IV

A 3D Convolutional Autoencoder embedded Siamese Attention Network for Clas-
sification of Hyperspectral Images: The 3D-CAE-SIAM-ATT model presents a novel
semi-supervised deep learning approach for hyperspectral image classification. The con-
volutional autoencoder is trained in an unsupervised manner to refine the representation,
solving the problem of limited samples. The handcrafted Siamese network enhances the
feature separability between samples, by increasing the distance in samples belonging to
different classes and minimizing the distance in samples belonging to the same class. The
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attention layers aided in extracting the informative spectral-spatial features by suppressing
the noisy or less important ones. By integrating autoencoders, Siamese networks, and at-
tention layers, the model demonstrates exceptional performance across both same-domain
and cross-domain datasets.

8.1.5 Research Contribution V

Unifying Autoencoder-Enhanced GANs with CNNs and Zero-Shot Learning for HSIC:
This work presents a comprehensive framework that leverages hybrid CNN-GAN-autoencoder
models, text embeddings, and zero-shot learning for advanced hyperspectral image classi-
fication. By seamlessly combining autoencoder-based latent representations with GAN-
generated synthetic data, the model enhances feature representations across domains and
sensors. Its exceptional performance metrics underscore its effectiveness and versatility
across diverse domains, making it a pioneering solution in the hyperspectral image analysis
domain.

8.1.6 Research Contribution VI

Unlocking the Potential of Unlabeled Data with Convolutional Autoencoders and Graph
Convolutional Layers: This work introduces a groundbreaking approach to hyperspectral
image classification by merging Autoencoders with Graph Convolutional Networks. This
integration enhances feature extraction and spatial understanding within hyperspectral data,
leading to highly accurate classifications. The model’s ability to seamlessly integrate unsu-
pervised and supervised learning makes it a valuable asset in scenarios with limited labelled
data.

In conclusion, this thesis serves as a testament to the transformative potential of DL
in advancing the field of HSIC. Through empirical experimentation and critical analysis,
we have elucidated the strengths, limitations, and future avenues of exploration for eachDL
model, offering valuable insights for researchers and practitioners alike. As we embark on
the next frontier of HSIC research, it is imperative to embrace interdisciplinary collabo-
ration, leverage emerging technologies, and continually push the boundaries of innovation
to unlock new possibilities in remote sensing, environmental monitoring, agriculture, de-
fence, security and beyond. As we navigate the complexities of the digital age, let us remain
steadfast in our commitment to harnessing the power of DL for the betterment of humanity.

8.2 Future Scope

The future scope of HSIC research extends across multiple dimensions, offering avenues
for innovation and exploration. One promising direction lies in transfer learning, where
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models like Deep Siamese and Xcep-Dense can benefit from leveraging knowledge gained
across different domains and sensor modalities. By embracing transfer learning techniques,
researchers can enhance model generalization and adaptability, enabling seamless knowl-
edge transfer and improving classification accuracy across diverse datasets and applica-
tions. Additionally, there is significant potential for optimizing model convergence speed
and scalability, particularly in frameworks like 3D-CAE-Siam-ATT. fine-tuning model ar-
chitectures and exploring optimization strategies can help accelerate convergence and ex-
tend the applicability of these models to a broader range of domains and disciplines be-
yond remote sensing and environmental monitoring. Furthermore, the integration of graph
convolutional networks with other DL architectures, as demonstrated in AE-GCN, holds
promise for unlocking new insights and enhancing classification accuracy across diverse
multimodal hyperspectral datasets. By embracing these future directions and fostering a
culture of collaboration and innovation, the HSIC research community can chart a course
towards transformative discoveries and impactful applications, ultimately empowering hu-
manity to address pressing challenges and realize the full potential of hyperspectral imaging
technologies.
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