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Abstract 

 

Polycaprolactone – polydimethylsiloxane – polycaprolactone (PCL-PDMS-PCL) triblock 

copolymer is a type of polymer that consists of three distinct polymer segments arranged in a 

linear structure. Polycaprolactone is biodegradable polyester that has gained attention due to 

its unique properties such as low melting point, good mechanical strength, and 

biocompatibility. It has found various applications in fields such as biomedical engineering, 

drug delivery, tissue engineering and 3D printing. PDMS is a type of silicone polymer with 

unique characteristics, including low surface energy, excellent thermal stability, and high 

hydrophobicity. PDMS exhibits good biocompatibility, chemical resistance, and low toxicity, 

making it suitable for various applications such as biomedical devices, microfluidic systems, 

and coatings. The PCL segments act as "end blocks" as well as "hard blocks" due to their 

relatively higher glass transition temperature (Tg) and more rigid nature. On the other hand, 

the PDMS segment acts as a "soft block" due to its lower Tg and more flexible nature. The 

arrangement of PCL-PDMS-PCL triblock copolymer results in a unique material with tunable 

properties. By adjusting the length of each polymer block, the mechanical, thermal, and 

surface properties of the copolymer can be tailored.  

The shape memory triblock photocrosslinked copolymeric films of varying poly(ɛ-

caprolactone) (PCL) chain length and constant polydimethylsiloxane (PDMS) content are 

synthesized. The effect of PCL chain length on structural, rheological, mechanical, thermal 

and shape memory properties of triblock copolymeric films is studied. The structural 

properties are analysed by X-ray diffraction (XRD) and optical microscope. Discrete crystal 

morphology is observed with increase in PCL chain length. Viscoelastic and mechanical 

properties are evaluated for the films of PCL and copolymers. Thermal properties are 

evaluated by differential scanning calorimetry (DSC) using non-isothermal and isothermal 
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modes. The crystallinity and crystal melting point of triblock polymer increases with increase 

in PCL chain length.  The crystallization kinetics of triblock PCL-PDMS-PCL copolymeric 

films is studied with the help of Avrami model and Lauritzen-Hoffman (LH) model. The 

three-dimensional growth of PCL crystals is observed in triblock copolymers. Inclusion of 

PDMS block resulted in longer crystallization time, higher energy barrier and affects the 

crystal growth rate of PCL block, which further affect the shape fixity and shape recovery 

ratio accordingly. 

The soil burial degradation behavior of PCL-PDMS-PCL triblock copolymer films is studied 

to understand its landfill effect and degradation mechanism. The microlevel, macrolevel and 

structural changes in the samples of homopolymer and triblock copolymer are analyzed 

before and after soil burial test. Microlevel changes are determined by evaluation of 

morphological properties with digital camera, optical microscope (OM) and scanning 

electron microscope (SEM) images and found that degradation of copolymer films enhanced 

with increase in PCL chain length. A Macrolevel structural changes are examined by Fourier 

transform infra-red spectroscopy (FTIR) and DSC crystallinity. The soil burial degradation 

mechanism is proposed for PCL-PDMS-PCL tri-block copolymer films on the basis of results 

obtained. 
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Overview of the Thesis 

 

The entire research work has been divided into ten chapters. Chapter one provides past and 

current information related to this work. Its insights the significance of the work along with 

the motivation to conduct this research study. This chapter gives a brief overview of the 

research gap, main objectives, and sub-objectives of the thesis work. In chapter two the 

extensive scientific literature is discussed on the synthesis routes of PCL copolymers, blends 

and composites, their properties such as structural, thermal, mechanical, rheological, shape 

memory and degradation behaviour and their application in biomedical and non-biomedical 

fields. Chapter three provides information related to experimental techniques, synthesis of 

PCL and PCL-PDMS-PCL triblock photocrosslinked films, methodology and tools which 

had been utilised to achieve the objectives are mentioned in this chapter. This chapter 

includes a description of the source of materials used during the study along with a brief 

outline of the adopted methodology, scheme of experiment done and details of the parameters 

of several characterization techniques employed to fulfil the research objectives. The chapter 

four discusses about structural evaluation which includes determination of molecular weight 

by Gel permeation chromatography and Nuclear Magnetic resonance, while chemical 

structure analysis carried out with the help of FTIR and NMR along with percentage 

crystallinity calculated by X-ray diffraction. Chapter five is designed to give a detailed 

analysis of rheological characteristics of PCL-PDMS-PCL triblock copolymer films. 

Oscillatory shear rheology tests are performed to measure the dynamics of the viscoelastic 

behaviour of photocrosslinked films above their crystal melting temperature (Tcm). Time 

dependent effect on the copolymer films has been analysed by creep recovery behaviour. 

Their structure recovery is also evaluated. Dynamic Mechanical Analysis (DMA) is carried at 

varying temperature. The mechanical properties are evaluated at ambient conditions only. 



xx 
 

Chapter six gives an insight about thermal properties of PCL-PDMS-PCL triblock copolymer 

films. To evaluate thermal properties Thermal Gravimetry Analysis (TGA) and Differential 

Scanning Calorimetry (DSC) in non-isothermal and isothermal mode has been carried out. 

The non-isothermal mode is used to study about crystal melting temperature (Tcm) range and 

crystallization temperature (Tc) range. The percentage crystallinity is also evaluated with 

DSC results. The Tcm and Tc range is used to study the thermal properties in isothermal mode. 

In isothermal mode, crystallization kinetics has been studied with the help of Avrami model 

and Lauritzen-Hoffman (LH) model to quantify energy barrier associated with nucleation and 

crystal growth.  The crystal formation after melting point is observed by optical microscope 

as well. The shape memory properties are evaluated in chapter seven via qualitative and 

quantitate modes.  Chapter eight give a brief about soil burial degradation behaviour of PCL-

PDMS-PCL triblock films with different PCL chain length. The structural, thermal 

morphological changes, weight loss are evaluated and mechanism of soil burial degradation 

has been proposed. The chapter nine summarises the entire research work accomplished 

based on the study. Chapter ten contains the literature that was reviewed and referred to 

conduct the entire research study as well as to evaluate the findings of the experiments and 

characterizations.  
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Chapter 1 

Introduction and Objectives 

 

1.1 Introduction 

Copolymer materials are of great interest because they combine the intrinsic properties of 

different homopolymers at the nanometre scale[1]. Block copolymers offer unique 

opportunities for tailoring the microstructures in polymeric materials under various 

thermodynamic and mechanical environments. The covalent bonding of chemically 

incompatible polymer chains in block copolymers produces the microphase separations on 

the length scale of a few nanometres to a few hundred nanometres that may self-organize into 

long-range-ordered mesoscale crystalline orders[2]. Furthermore, judicious design of the 

chain architecture of block copolymers enhances desired mechanical properties.  

Thermoresponsive shape memory (TSM) polymers exhibit changes in shape from a deformed 

position to their original shape induced by temperature. TSM polymers changes into another 

shape or temporary shape when heated above transition temperature, deformed under load 

and cooling conditions. The polymer maintains this temporary shape until it is heated again 

without any load and regains its original shape. Strain fixity describes the ability to switch 

segments to fix/hold the temporary mechanical deformation and can be calculated with 

equation (1.1).  

𝑅𝑓 =  
𝜀 𝑢− 𝜀 𝑜 

𝜀 𝑚− 𝜀 𝑜

 𝑋 100                                               (1.1) 

The strain recovery describes the ability of the shape memory material to recover its 

permanent shape and can be calculated with equation (1.2).  

𝑅𝑟 =  
𝜀 𝑢− 𝜀 𝑝 

𝜀 𝑢− 𝜀 𝑜

 𝑋 100                                               (1.2) 
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Where εo  is initial length, εm  length after stretching, εu length after removal of load and εp 

recovered  length. 

Polycaprolactone (PCL) is aliphatic polyester, composed of hexanoate repeat units. It is 

hydrophobic, semi-crystalline, soluble at room temperature in organic solvents, easily 

processible due to its low melting temperature (54-71℃). PCL was first synthesized by ring-

opening polymerization technique by Natta et al. in 1934. PCL is widely explored for 

thermoresponsive shape memory (TSM) behaviour. The first TSM polyurethane based on 

PCL was synthesized by Kim et al. in 1996 using the ring opening polymerisation (ROP) 

method. TSM behaviour of PCL near-normal human body temperature makes it an 

interesting material for biomedical applications. The TSM behaviour increases its application 

exponentially, including robotics, textiles, self-healing coatings, corrosion-resistant coatings, 

and anti-counterfeit materials. Polydimethylsiloxane (PDMS) is commonly referred as 

silicones. PDMS is inert, non-toxic, completely amorphous, hydrophobic and stable under 

high temperature. Low–molecular weight PDMS is a liquid used in lubricants, antifoaming 

agents, and hydraulic fluids. At higher molecular weights, PDMS is a soft, compliant rubber 

or resin. It is used in caulks, sealants, contact lenses and medical devices. In this study PDMS 

is taken as comonomer with PCL which serves as soft segment and PCL as switching 

segment. The glass transition temperature of PDMS (Tg= -125℃) is much lower than PCL 

(Tg= -60℃) which help to modulate its mechanical properties and thermo-responsive shape 

memory behaviour. 

In the past two decades, PCL-PDMS-PCL triblock copolymers have been synthesized and are 

found its applications in biomedical, self-replenishing,[3] antifouling[4] and water 

erodible[5] coatings and oxygen sensors.[6] The properties such as thermal, mechanical, 

structural, morphological, shape memory and degradation of PCL-PDMS-PCL triblock 

copolymers are studied by various research groups.[7–10] Ekin and Webster first synthesized 
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a series of PCL-PDMS-PCL triblock copolymer in 2006 by using terminal hydroxyl modified 

PDMS to form block copolymer and studied its molecular structural and thermal 

properties.[9] Poojari and Clarson have synthesized PCL-PDMS-PCL block copolymer using 

lipase as a catalyst and studied the structure and thermal properties by varying the ratio of 

monomers.[11] Schoener et al. synthesized triblock copolymer with constant PDMS block 

and studied structural and shape memory properties.[12] Zhang et al. reported structural and 

shape memory properties by varying PDMS in triblock copolymer.[13] Addition of PDMS  

changed the hydration property of PCL however, it has not affected degradation mechanism 

of PCL in triblock copolymer.[14] Yilgor et al. have synthesized PCL-PDMS-PCL block 

copolymer and studied morphology, microphase separation, crystallization of PCL and 

surface properties.[10] The inclusion of PDMS in PCL improved the hydrophobicity of 

copolymer surface.  

Although structural, thermal, morphological properties of PCL-PDMS-PCL triblock 

copolymer are well documented; isothermal crystallization and its correlation with shape 

memory properties are less explored. Understanding the structure, morphology and 

crystallization of block copolymers is important since it has a direct relationship with the 

shape memory properties and performance in desired applications. Crystallization of 

PDMS/PCL block copolymer with amorphous and crystallizable block is not only of 

theoretical interest to understand polymer morphology but also provide process parameters 

for shape memory behaviour. Composition, molecular design and molecular weight of 

individual block affect the crystallization behaviour of block copolymers.  

The rheological properties of PCL homopolymer[15–19], blends[20–25] and composites[26–

33] are reported by researchers in the temperature range of 70 - 230°C. The solution and melt 

rheology of PCL based material have been done to analyse processing parameter while 

rheological study on polymer films have been carried out to determine viscoelastic behaviour 
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of sample. The copolymer comprised of polystyrene/polyisoprene[34], polystyrene/poly(n-

butylacrylate)[1],Poly(ethylenepropylene-b-dimethylsiloxane)[35], multiblock olefins[36–38] 

are studied to investigate self-assembling capacity and mesophase/microphase separation. 

The rheology of various block copolymers of PCL-PDMS-PCL is never studied. 

On the basis of medical application, degradation studies on PCL and its copolymer are 

majorly focused on simulated body fluids. These simulated environments are enzymes, buffer 

solution and water. Degradation of polycaprolactone is bulk process proceeded in two steps: 

1) erosion of surface 2) cleavage of C-O bond or degradation of macromolecules. The 

copolymers of PCL with lactic acids[39], glycolide[40] and δ-valerolactone[41] increased the 

in-vitro degradation rate of copolymer due to change in chemical structure, crystallinity and 

hydrophilicity. The copolymer of PCL exhibit two separate polymer degradation fractions 

formed throughout the study[40]. PDMS are exceptionally resistant to hydrolytic or oxidative 

breakdown under ordinary ambient conditions. Thermoresponsive shape memory behavior of 

polycaprolactone widens its application area such as self-knotting sutures, active packaging, 

self-healing coating, robotics and anticounterfeit material. These extended application 

products ended in landfill which make it essential to study soil burial degradation. In soil, 

PDMS hydrolyses to yield the monomeric dimethylsilanediol. The hydrolysis reaction is 

much faster as the soil dries and PDMS undergoes extensive degradation when exposed to 

dry soils. The clay constituents of the soils are found to promote this rearrangement process. 

PCL [42, 43], graft copolymer with poly (ethylene -co -vinyl alcohol)[44], blend with corn 

starch[45] and composites with organoclays[46–48] are studied for soil burial degradation. 

PCL-PDMS-PCL triblock copolymer degradation studies are limited to simulated 

environment as of now.  
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1.2 Research gap 

PCL-PDMS-PCL triblock films have been studied by researchers and reported broad range of 

crystal melting temperature by changing the PCL chain length alongwith optimum 

mechanical properties and excellent shape memory properties. The correlation between 

thermal properties and shape memory properties has not been studied yet. The rheological 

properties are also not reported till now. PCL-PDMS-PCL triblock films are examined for 

simulated environment but not studied for soil burial degradation.  

1.3 Motivation of research 

The shape memory polymers become interesting material due to their non-conventional 

application. Medical as well as non-medical field are getting well explored for shape memory 

polymers for the ease of work and betterment of living beings. The widening horizons of 

application area are meant to have in-depth study about its structural, thermal, rheological 

and degradation behaviour and to examine their co-relation with each other. White pollution 

is also a major concern to focus upon as this ends up in the form of landfill for years.  This 

motivated to carry out the thesis work on unexplored area of PCL-PDMS-PCL triblock 

copolymer.  

1.4 Objectives of the research work 

The broad objective of this research work was to study the multifunctional properties like 

structural, thermal, rheological, mechanical, soil burial and shape memory properties of PCL-

PDMS-PCL triblock copolymer films by synthesizing it via ring opening polymerisation.  

1.4.1 Specific objectives 

To achieve this objective, the specific objectives of the thesis were as follows: 

1. Synthesis of PCL-PDMS-PCL triblock copolymers with varying PCL chain length 

and their structural characterization. 

2. Rheological properties of PCL-PDMS-PCL triblock copolymers. 
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3. Isothermal crystallization kinetics study and its correlation with shape memory 

properties. 

4. Soil Burial biodegradation behaviour of PCL-PDMS-PCL triblock copolymers.  
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Chapter 2 

Literature Review 

Overview 

This chapter summarises the extensive scientific literature on the synthesis routes of PCL 

copolymers, blends and composites, their properties such as structural, thermal, mechanical, 

rheological, shape memory and degradation behaviour and application in various fields.  The 

chapter included the discussion about studies carried out on PCL-PDMS-PCL triblock 

copolymers and their application. The commercial products based on polycaprolactone are 

also listed.  

2.1 Introduction to PCL copolymers, blends, and composite 

Polycaprolactone (PCL) is a semi-crystalline, hydrophobic, synthetic aliphatic polyester 

consisting of hexanoate repeat units. It shows high solubility at the ambient conditions in 

organic solvents and is easily processible due to its low melting temperature (54-71℃). 

PCL’s biodegradable and biocompatible properties make it highly researched material for 

tissue engineering, controlled drug delivery systems, wound dressing, contraceptive, 

dentistry, and bone engineering.[49–51] PCL has a low degradation rate in combination with 

high ductility and plasticity. It is certified by Food and Drug Administration, USA and CE 

registered mark by European Community for application in numerous biomedical 

devices.[52] Molecular weight and degree of crystallinity affect its physical, thermal, 

mechanical, and rheological properties. The superior viscoelastic and mechanical properties 

make it suitable for food packaging, coating, adhesive, and textiles. 

 Natta et al. in 1934, first synthesized PCL by ring-opening polymerization technique.[52] 

Three well-known synthesis routes of polycaprolactone are : (i) ionic and metal-catalysed 
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ring-opening polymerization (ROP) of ɛ-caprolactone, (ii) radical ring-opening 

polymerization (RROP) of 2-methylene -1,3 dioxepane (MDO), and (iii) condensation of 6-

hydroxycaproic acid.[53] A good comprehensive study about the synthesis of 

polycaprolactone is given by Thielemans et al.[54]  

A decent number of review articles are published on PCL and its applications, limited to 

biomedical and tissue engineering.[49, 50, 61–65, 51, 52, 55–60] A review on PCL is 

published by Woodruff et al. in 2010, which gives a detailed analysis of biodegradability, 

biocompatibility, and application in the biomedical field.[52] In 2019, Janmohanmmadi et al. 

published a review paper on biomedical applications of polycaprolactone scaffolds prepared 

using electrospinning technique.[51] Bartnikowski et al. have published a comprehensive 

review on degradation mechanism of polycaprolactone, its copolymer and composite.[66] 

Recently, reviews have been published on polycaprolactone-triol,[59] in-vivo studies of 3D 

model of polycaprolactone,[49]  bone scaffolds [50] and biodegradable conducting 

polymers[67].  

More recently, PCL has been widely explored for thermo-responsive shape memory (TSM) 

behaviour. Using the ROP method, the first TSM polyurethane based on PCL synthesized by 

Kim et al. in 1996.[68] The polymer exhibits temperature responsive shape memory 

behaviour due to its semi-crystalline nature and low melting range. PCL shows exceptional 

blend compatibility.[59]  TSM behaviour of PCL copolymers and blends near-normal human 

body temperature makes it an interesting material for biomedical applications. The TSM 

behaviour increases its application exponentially, including robotics, textiles, self-healing 

coatings, corrosion-resistant coatings, and anti-counterfeit materials.  

Major published review papers focus on synthesis, biomedical application, and degradability 

of PCL. Since 2010, a plethora of research has been reported on PCL copolymers, blends, 

and composites in different fields. Copolymers of PCL are synthesized to tune the properties 
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on molecular level. PCL blends and composites have been synthesized in single & multi-

phase with easier fabrication methods than copolymerization to modify their properties and 

broaden their applicability.  Here, fabrication of PCL’s copolymers, blends and composites 

with their correlation on thermal, mechanical, structural, rheological, electrical, degradation 

and shape memory properties and applications are discussed in below sections.  

2.2 Synthesis of polycaprolactone copolymers, blends, and composites  

Copolymers are composed of more than one monomer repeat unit provides an additional 

degree of freedom over homopolymers. Polymer properties can easily be tuned by adjusting 

the ratio of the monomers. PCL copolymers are synthesized by ROP and RROP methods, as 

shown in Figure 2.1. ROP is the most preferred route for the synthesis of PCL block 

copolymers, graft copolymers or random copolymers due to high yield (above 90%). For di-

block, tri-block, or multi-block copolymers, in the presence of catalyst stannous octoate ROP 

method is used where other monomers are L-lactide,[69, 70] dimethyl siloxane,[12, 71] 

polyethylene glycol[72] and N‑2-hydroxypropyl methacrylamide.[73] ROP is used to 

functionalize monomers and further condensation[74] or crosslinking[75–77] is carried out to 

get block copolymer. Bulk polymerization of 𝜀-CL with other monomers with different 

weight percent gives random copolymer [78–80] by ROP mechanism. The graft copolymers 

with cellulose[81], hydroxyethyl methyl acrylate[82], ethyl vinyl acetate[83] is synthesized 

by ROP followed by grafting from[82] grating through[82] and transesterification 

method[83]. Vinyl monomers are copolymerized with MDO(2-methylene-1,3dioxepane) for 

the cognizance of functional biodegradable polyesters, include vinyl bromobutanoate[84], 

methyl methacrylate[85], hydroxyethylacrylate[86], vinylcyclopropane[87], vinyl ethers[67] 

and glycidyl methacrylate[88, 89] by radical ring-opening polymerization(RROP). Another 

outstanding feature is that PCL’s structure obtained with RROP method changes when 

compared to ionic or metal-catalysed ROP of 𝜀-caprolactone. These copolymers have been 
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suggested to comprehend materials integrating the elasticity of PCL, shape memory 

behaviour, and alter degradation times. Table 2.1 represents the copolymers of 

polycaprolactone with different monomers and their synthesis conditions. 

 

Figure 2.1. Synthesis routes of copolymerization of polycaprolactone 

Table 2.1. Copolymers of polycaprolactone  

S. No. Co-monomer Method Copolymer type Catalyst/ Initiator Reaction Condition Ref 

1.  L-lactide ROP Block  Stannous Octoate 140℃, 3 hrs [69, 70] 

2.  Dimethyl Siloxane ROP Block Stannous 2-

ethylhexanoate 

145℃, 24 hrs and 

120℃, 48 hrs  

[12, 71] 

3.  Polyethylene glycol ROP Block Stannous 2-

ethylhexanoate 

140℃, 24 hrs [72] 

4.  N‑2-hydroxypropyl 

methacrylamide 

ROP Block Stannous 2-

ethylhexanoate 

65℃, 24 hrs [73] 

5.  ω- 

pentadecalactone 

ROP  Block Ethylene glycol Condensation of diols 

and reaction with 4-

methylhexamethylene 

[90] 
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diisocynate at 83℃ 

6.  4-hydroxycinnamic 

acid 

ROP Block Stannous 2-

ethylhexanoate 

Thermal 

polycondensation of 

diols at 200℃ 

[74] 

7.  p-dioxanone ROP Random Stannous 2-

ethylhexanoate 

130℃, 48 hrs [31] 

8.  D.L-lactide ROP Random Stannous 2-

ethylhexanoate 

110℃, 24 hrs [32] 

9.  Butyl acrylate ROP Random Stannous 2-

ethylhexanoate 

Melt mixing of oligo 

caprolcatone diol with 

butyl acrylate at 80℃ 

[78–80] 

10.  Cellulose ROP Graft   Stannous 2-

ethylhexanoate 

120℃, 24 hours, 

grafting from 

[81] 

11.  Hydroxyethyl 

methyl acrylate 

ROP Graft   Grafting though and 

grafting from 

[82] 

12.  Ethyl vinyl acetate ROP Graft Titanium propoxide Transesterfication [83] 

13.  Vinyl 

bromobutanoate 

RROP Random azobis(isobutyronit

rile) (AIBN) 

60℃, 9 hrs [84] 

14.  Methyl 

methacrylate 

RROP Partial random AIBN 75℃, 24 hrs [85] 

15.  Hydroxyethyl 

acrylate 

RROP Graft 2,20-azobis (4-

methoxy-2,4- 

dimethylvaleronitril

e) (V-70) 

30℃, 24hrs [86] 

16.  2-

vinylcyclopropane 

1,1-dicarboxylate 

RROP Random di-tert-butyl 

peroxide 

120℃, 48 hrs [87] 

17.  Functional vinyl 

ethers 

RROP Graft Diethylazobisisobut

yrate 

70℃, 8hrs [67] 

18.  Glycidyl 

methacrylate 

RROP Random AIBN 60℃, 3 hrs [88, 89] 
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Polymer blends and composite are easier method than copolymerization to improve 

properties of polymeric system by incorporating other polymer, copolymer, or filler. There 

are number of method available for blending of polymers such as melt mixing, solution 

mixing, latex mixing, and preparation of interpenetrating polymer networks (IPN). Synthesis 

of PCL blends is mostly carried out by melt blending, solution blending method due to low 

melting temperature and solubility in organic solvents as shown in Figure 2.2. Several 

polymers such as poly(L-lactide)/poly(lactic acid),[91–95] pine resin,[96] poly(glycolic 

acid),[97] lignosulfate,[98] chitosan[99] and hydroxybutyrate[100, 101] are melt blended by 

mixing at different temperature. Table 2.2 represents different polymer used to prepare blend 

with PCL along with their blending conditions. The melting temperature is chosen on the 

basis of polymer of higher melting point and crystallinity. To improve the compatibility of 

blends, free radicals like benzoyl peroxide are used for PCL/poly(3-hydroxybutyrate) in melt 

blending method by Przybysz et al.[101] and Woodard et al. have chosen different method 

i.e. semi-IPN network for PCL/PLLA blend.[102] Solution blend of PCL and 

PLA/PLLA,[23, 103, 104] poly(glycolic acid),[105] poly(3-hydroxybutyrate-co-3-

hydroxyhexanoate),[106] poly(hexylene adipate)[107] and poly(methylmethacrylate)[108] 

are prepared either by chloroform or mixture of chloroform with dimethylformamide, 1-4, 

dioxane, acetone or ethanol because of ease of solubility at ambient conditions.  
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Figure 2.2. Synthesis methods of blends of Polycaprolactone 

Table 2.2. Blends of Polycaprolactone 

S. No. 

 

Polymers  Method Blending conditions Ref 

1.  Poly (L-lactide) Melt blended Twin screw extruder, 150 rpm, 180℃ 

or Haake polylab rheometer, 50 rpm, 

170℃, 6 mins. or 

Brabender Plasticorder, 60 rpm, 10 

min at 180℃ 

[91–95] 

2.  Pine resin Melt blended Mini max 

molder, 50 rpm, 15 min at 80℃. 

[96] 

3.  Poly (glycolic acid) Melt blended  [97] 

4.  Lignosulphate Melt blended Rheomix 600 OS, 60 rpm, 10 min at 

120℃ 

[98] 

5.  Chitosan Melt blended HAPRO RM-200A, 20 rpm, 20 min at 

110℃ 

[99] 
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6.  poly(3-hydroxybutyrate) Melt blended Brabender mixer, 100 rpm, 8 min at 

170℃ 

[100, 

101] 

7.  Poly(L-lactide) IPN Photo-crosslinking of acrylate 

terminated PCL and PLLA mixture 

[102] 

8.  Poly(L-lactide) Solution blended Chloroform or Chloroform/ N, N-

dimethylformamide mixture or 

Chloroform/1,4-dioxane mixture 

[23, 

103, 

104] 

9.  Poly(glycolic acid) Solution blended 1,1,1,3,3,3,-hexafluoroisopropanol  [105] 

10.  Poly(3- hydroxybutyrate-co-3-

hydroxyhexanoate) 

Solution blended Chloroform  [106] 

11.  Poly(hexylene adipate) Solution blended Chloroform [107] 

12.  Poly(methylmethacrylate) Solution blended Chloroform [108] 

 

Composites are synthesized by various methods such as intercalation, in-situ polymerization, 

and direct mixing of polymer and fillers. The preparation of PCL composite is reported by all 

the above techniques as shown in Figure 2.3. Different fillers used to prepare composite of 

PCL are shown in Table 2.3. PCL easily melts above 60℃ and becomes soluble in 

chloroform or its mixture; that is why melt mixing is the preferred route to synthesize 

composite followed by the solvent method. Composite of PCL with alumina,[27] niobium 

pentoxide,[27] multi wall carbon nano tube (MWCNT),[109] leaf sheath date palm 

fibre,[110] hydroxyapatite,[111] silica carbide,[112] soy protein isolate,[113] halloysite,[114] 

babassu,[115] rice straw fibre,[116] clam shell powder[117] and calcium phosphate[118] are 

processed by melt compounding/mixing method. A significant hurdle in the production of 

PCL composites with natural waste by products’ fillers is that PCL is relatively hydrophobic, 

in contrast most natural fillers are hydrophilic, which leads to poor compatibility between the 

two phases of the composites. To overcome this problem, compatibilizers in the form of 

reactive functional groups are incorporated to PCL polymer backbone for miscibility. Melt 

intercalation method is used for clay composites.[46, 119] The solvent method is used for 
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films, nano-fibrous and 3D printed composites of PCL with fillers such as magnetite,[120] 

casein,[120] cellulose nano-whiskers,[121] hexagonal molybdenum oxide,[122] CNT,[123] 

MWCNT,[124] carbonyl iron powder[125] chitosan [126] and gold nanoparticles 

(AuNPs)[90].  In -situ method is used for carbon nano tubes (CNT)[127] and graphene 

oxide[128] where nanofillers are added in ɛ-caprolactone before polymerization. On a 

different approach, nanocomposites of PCL/ gold nanoparticles are prepared by solution 

casting of  AuNPs over PCL nanofibers.[129] The sandwich-type of composite is fabricated 

by compression moulding method, where reinforcement layers of electrospun cellulose 

nanofibers [130] and gelatine [131] are placed between PCL matrix layers. 

 

 

Figure 2.3. Synthesis methods of composites of polycaprolactone 
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Table 2.3. Composites of Polycaprolactone 

S. No. Fillers Method Conditions Ref 

1.  Alumina Melt mixing Haake Rheomix 3000 

laboratory internal mixer, 

150℃ 

[27] 

2.  Niobium pentoxide Melt mixing Haake Rheomix 3000 

laboratory internal mixer, 

150℃ 

[27] 

3.  MWCNT Melt mixing Twin-screw 

Extruder, 400 rpm, 90 ℃, 2 

min 

[109] 

4.  Leaf sheath date palm fibre Melt mixing Twin-screw co-rotating 

extruder, feed rate 

3.5 kg/h, screw speed 100 and 

400 rpm, 120 °C, 

[110] 

5.  Hydroxyapatite Melt mixing Twin screw 

Compounder, 100℃, 

100 rpm, 6 mins. 

[111] 

6.  Silicon carbide Melt mixing Twin screw Thermo 

Scientific Haake Rheomixer, 

100℃,  

50 rpm, 10 min. 

[112] 

7.  Soy protein isolate Melt mixing Intensive mixer, 100℃, 30 

rpm, 10 min  

[113] 

8.  Halloysite Melt mixing Haake Rheocorder,  100℃, 60 

rpm, 10 min 

[114] 

9.  Babassu Melt mixing Haake 

Rheomix laboratory internal 

mixer, 150℃, 60 rpm, 15 min 

[115] 

10.  Rice straw fiber Melt mixing Plastograph 200-Nm mixer 

W50EHT  

70-80 °C, 20 min, 50 rpm 

[116] 

11.  Clam shell powder Melt mixing Intensive mixer, 100℃ 30 rpm, 

10 min 

[117] 

12.  Calcium Phosphate Melt mixing Extruder, room tempera- ture [118] 
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to 160℃  

13.  Clay (Na+ MMT, Cloisite 

30B, Cloisite 20A, 

bentonite) 

Melt Intercalation Double-screw mini-extruder 

DSM Xplore 5&15 

microcompounder 

60–90–120 ℃,  

150 rpm, 1 min. 

[46, 

119] 

14.  Magnetite Solution method THF, dispersed for 8 

minutes,15000 rpm 

[120] 

15.  Casein Solution method THF, dispersed for 8 

minutes,15000 rpm 

[120] 

16.  Cellulose nanowhiskers Solution method DMF, 70℃ [121] 

17.  Hexagonal molybdenum 

oxide 

Solution method Chloroform, 27℃ [122] 

18.  CNT Solution method Chloroform, sonication for 5 

min. 

[123] 

19.  MWCNT Solution method MWCNT in DMF & PCL in 

THF 

[124] 

20.  Carbonyl iron powder Solution method  [125] 

21.  Chitosan Solution method DMF, Chloroform, 

Ultrasonication 

[126] 

22.  CNT In-situ polymerization Addition before polymerization [90] 

23.  Graphene oxide In-situ polymerization, 

solvent mixing. Covalent 

attachment 

Addition before 

polymerization, DMF 

dispersed GO mixed with PCL, 

Addition of filler in the 

presence of N,N′-

dicyclohexylcarbodiimide 

as coupling agent and 4-

dimethylaminopyridine  

as catalyst 

[128, 

132] 

24.  Gold Nanoparticles Solution casting Electrospun PCL nanofiber 

dipped in AuNPs methanol 

mixture 

[129] 

25.  Cellulose nanofiber Compression moulding Hydraulic press at 80℃ [130] 

26.  Gelatine Compression moulding Hydraulic press at 80℃ [131] 
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All copolymers are reported by ROP and RROP methods with a good number of synthetic 

polymers and cellulose as natural polymer. Here natural polymers like polysaccharides (e.g. 

natural gums) and proteins (e.g. silk) still need to work upon.  Copolymers of 

polycaprolactone can also be synthesized by condensation of 6-hexanoic acid. PCL blends 

are prepared by melt, solution and IPN methods, but latex mixing method is untouched. Latex 

mixing is used for blending two latexes. This method can lead to preparing an emulsion of 

polycaprolactone and blend it with water-based polymers. Such emulsions can be used for 

low volatile organic content (VOC) systems. A large number of PCL composites are reported 

with natural and synthetic fillers. Composites based on nanoparticles of copper and silver are 

not reported, yet their antibacterial properties make a mark in biomedical field.  

2.3 Properties of polycaprolactone copolymers, blends, and composites 

PCL has melting temperature between 54-71℃ and  a glass transition temperature (Tg) of -

60℃.[133] It is a well-known semi-crystalline polymer having a maximum degree of 

crystallinity of 69%.[134] The physical, thermal and mechanical properties of PCL are 

influenced by its molecular weight and degree of crystallinity. Extensive research has been 

carried out to improve or modify the chemical, mechanical, and thermal properties of PCL by 

copolymerization, blending, and formation of composites. They also modify degradation time 

and rheological properties, which changes its processing parameters. Different factors which 

influence the properties of polycaprolactone copolymers, blends and composites are 

summarized in Figure 2.4. The Following sections summarize the thermal, mechanical, 

electrical, structural, rheological, shape memory and degradation properties of PCL 

copolymers, blends and composites.  
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Figure 2.4. Different factors which influence the properties of copolymers, blends, and 

composites of polycaprolactone 

2.3.1 Thermal properties 

The thermal properties of PCL are highly reliant on molecular weight and degree of 

crystallinity[135]. The thermal degradation of PCL is reported as a single step in the range of 

358-400℃, as shown in Figure 2.5. Copolymerization, blending and formation of composites 

influence the Tg, degradation temperature, crystallization behaviour and percentage 

crystallinity of PCL.  

 

Figure 2.5. Thermal gravimetric analysis of PCL 
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The thermal properties of PCL copolymers with other monomer like ω-

pentadecalactone,[136] L-lactide,[69, 76, 79] dimethyl siloxane,[12] butyl acrylate,[80] p-

dioxanone,[78] ethyl vinyl acetate,[83] hydroxymethyl acrylate,[82, 137] glycidyl 

methacrylate,[138] hydroxycinnamic acid[74] and ethylene glycol[77] are studied by 

researchers. Block copolymer of PCL with ω-pentadecalactone (PDL) shows two distinct 

peaks of melting and crystallization owing to PCL and PDL since both have their own 

melting and crystallization temperature range. There is an increase in melting temperature 

(Tm) and crystalline temperature (Tc) of PCL with a rise in PCL content due to bigger block 

formation of PCL, as shown in Figure 2.6.1[136]. Similar observations are found in the case 

of PCL/L-Lactide block copolymer[69]. With increasing content of hydroxycinnamic acid 

(HCA) in copolymer[74] thermal stability, Tm and crystallinity are decreased because the 

HCA chain disturbed the crystal growth of PCL content. Copolymers based on completely 

amorphous dimethylsiloxane (Tg= -125℃) and n-butyl acrylate(Tg= -60℃) are showing a 

decrease in Tm, Tc and crystallinity with decreasing PCL content due to shorter chain length 

of crystalline polymer[12, 80]. PCL and p-dioxane copolymer showed no significant change 

in thermal stability. Still, there is a huge decrement in melting & crystallization peak and 

percentage crystallinity with an increase in dioxane content due to increased disorder along 

the polymer chains and imperfect packing of the polymeric segment in the crystalline 

lattice[78].  The graft copolymer of EVA/PCL showed improved thermal stability, melting 

temperature, and crystallinity dependent on the molar mass of both and structural differences 

between the two[83].  

Thermal properties of PCL blends with Poly(L-lactide) acid[91, 92], polyglycolic acid 

(PGA)[97], thermoplastic starch (TPS)[97], chitosan[97, 139], PMMA[108], polyhydroxy 

butyrate (PHB)[100, 101, 106], lignosulphonate[98] are reported. Blends of PCL with PLLA, 

PHB, lignosulphonate and PGA are immiscible and miscible blends are with pine resin, TPS, 
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chitosan, PHA and PMMA. The miscibility is reported by single Tm and Tg peaks mostly. 

PLLA has a higher melting point than PCL and blends showed a gradual increase in melting 

point with a higher content of PLLA[91, 92]. The ternary blend of TPS/PGA with PCL 

showed a decrease in melting peak and multi-melting peak because these blends are not able 

to co-crystallize. A blend of PCL with pine resin becomes thermally unstable because pine 

resin itself is thermally unstable(onset temperature ⁓130℃)[96]. PCL/pine resin blends are 

showed a single Tm and Tc peaks indicating their miscibility and reduction in both with 

increased content of pine resin, as shown in Figure 2.6.2. Though, an improvement in thermal 

properties is reported with chitosan. An immiscible blend of PLA with PCL increases its 

crystallization temperature by 10℃ due to discrete PLA solid phase having a strong 

nucleating effect[23, 93]. The immiscible blends of PCL/PHB showed two distinct peaks in 

DSC thermogram; however, the addition of compatibilizer i.e. di-(2-tert-butyl-

peroxyisopropyl)-benzene (BIB) has shown improvement in blend miscibility due to partial 

crosslinking [100, 101]. 

The thermal properties of PCL composites with a variety of filler are studied extensively. 

Some of them include montmorillonite nanoclays,[46] bentonite,[119] carbon 

nanotubes,[109, 123, 124, 127, 140] alumina,[27] niobium pentoxide,[27] natural filler,[110, 

115, 121, 130] halloysite,[114] hydroxyapatite(HA),[111] silicon carbide,[112] zinc oxide 

nanoparticles[141] and graphene[128, 132]. CNT/MWCNT based nanocomposite showed 

improvement in thermal stability, melting & crystallization peaks, and crystallinity, as shown 

in Figure 2.6.3.[124] Functionalization of CNT showed an improvement in interfacial 

interaction between polymer and CNT[109, 123, 124, 127] which resulted in improved 

thermal properties significantly. Chemically modified graphene, i.e. reduced graphene oxide 

showed better improvement in thermal properties of PCL as compared to graphene oxide 

[128, 132]. Natural fillers like babassu fibre[115], leaf sheath date palm fibre waste 
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biomass[110], cellulose nanofiber[130] & whiskers[121] and gelatine films[131] are 

incorporated in PCL to tailor thermal properties. There is a common observation that thermal 

stability, melting peak, crystallization peak, and crystallinity improved with natural fibre 

nanocomposite due to their good compatibility and they behave as a nucleating agent. 

Nanocomposite prepared with silicon carbide doesn’t affect thermal stability and melting 

point in a significant way, but there is an improvement in crystallization temperature and 

crystallinity due to heterogeneous nucleation and an increase in the lamellar thickness of the 

crystallite formed[112]. When citric acid modified ZnO (ZnO-CA) nanoparticles are added to 

the PCL matrix, with increase in ZnO-CA content, the crystallization temperature (Tc) 

increases because, here, ZnO-CA acts as a nucleating point[141]. Thermal stability of 

PCL/clay nanocomposites is decreased with addition of clay due to its hydrophilicity and 

organically modified ions.[46, 119, 142] Addition of halloysite nanotubes increases the Tg 

because of the restricted segmental motion of polymeric chains.[114] A very good study by 

Sousa et al. demonstrated that thermal properties are not only affected by filler percentage 

and type but also depend on the rate of heat flow[27]. The thermal properties of PCL 

copolymers, blends and composites are reported in Table 2.4. 
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Figure 2.6. Melting 1(a) and cooling 1(b) DSC curves of PCL-co-ω-pentadecalactone 

reproduced with permission [91] 2019, Wiley; TGA curves 2(a); DSC curves melting 2(b) 

and cooling 2(c) of PCL/pine resin blends reproduced with permission [48] 2014, Wiley; 

TGA curves 3(a), DSC curves melting 3(b) and cooling 3(c) of PCL/MWCNT 

nanocomposite reproduced with permission [79] 2019, TnF. 

 

Two different approaches are used to describe PCL copolymers’ thermal properties. In the 

first approach, comonomer content is kept constant and varied the PCL chain length. The 

other approach is constant PCL chain length and varied comonomer content. The Tm, Tc and 

percentage crystallinity increase when PCL chain length increases in copolymers. Whereas, 

for copolymers of fixed PCL length and varying comonomer content, thermal properties are 
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shifting to lower degrees with increasing comonomer ratio. The blends exhibit their 

properties based on their miscibility. In general, miscibility or immiscibility is reported by 

single peak of Tg and Tm, while in case of PCL blends, only Tm and Tc are discussed. In some 

studies, compatibility of blends is not even examined. Some immiscible blends, which are 

studied by researchers, are not explored for the methods to improve the miscibility.  Almost 

negligible data is available on effect on Tg for PCL copolymers, blends, and composites.  

Formation of crystals in PCL is reported via optical microscope or polarized optical 

microscope (POM).[69, 143, 152–155, 144–151] Copolymers of PCL with L-lactide acid[69] 

poly(2-hydroxyethylmethacrylate)[151] are used to study the effect of chain length in 

crystallization. In double crystalline PCL-co-PLLA copolymers, PCL segments are trapped in 

PLLA spherulites. As PCL chain length increases, a non-banded structure is formed, as 

shown in Figure 2.7.1.[69] Grafting of poly(2-hydroxyethyl methyl acrylate) branches on 

PCL decreases the overall crystallization growth of crystals.[151] Blends of PCL/PLLA[150, 

152] and PCL/polyvinyl butyrate (PVB)[149] and PCL/polyvinyl acetaldehyde (PVAC)[149] 

are studied for crystallization behaviour.  The immiscible blends of PCL/PLLA showed an 

exceptional morphology when heated above Tm of PLLA and quenched to Tc of PCL. PCL is 

inserted into concentric ring band of PLLA during melting and a wrinkle pattern, along with a 

small concentric ring band, is induced in blends as shown in Figure 2.7.2.[150] PVB and 

PVAC are functioned as nucleating agents in blends with PCL. Their addition increases the 

spherulite size and reduces the crystallization temperature of PCL.[149] PCL composites with 

ZnO,[145] Oleic acid,[145] glycerol monooleate(GMO),[145] hydroxy apatite,[144] 

clays,[144, 153] and babassu[143] are reported for crystallization kinetics. In small amounts, 

organic additives, oleic acid, and GMO are acted as nucleating agents and increase the 

crystallinity, while higher amounts work as plasticizer. Inorganic additives such as ZnO, 

hydroxyapatite and clay increases the crystallinity and crystal growth rate due to nucleating 
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effect.[144] In PCL/babassu composite system, significant effect on crystallization 

parameters is not observed with addition of filler.[143] 

 

Figure 2.7. Polarized Optical Microscope of crystals growth in PCL/PLLA copolymers (1) 

reproduced with permission [21] 2017, RSC; PCL/PLLA blends (2) reproduced with 

permission [106] 2014, RSC. 

Table 2.4. Thermal and mechanical properties of copolymers, blends, and composite of PCL 

S. 

no. 

Polymers Synthesis mode Composition Tm 

 [℃] 

%Xc Young's 

Modulus 

[Mpa]  

Tensile 

strength 

[Mpa] 

Elonga

tion 

 [%] 

Ref 

1 PCL-PDMS-

PCL 

Triblock copolymer PCL50-PDMS37-

PCL50 

51.0 30.0 60.5 15.9 1197.0 [23] 

2 n BA-PCL Block Copolymer PCL-BA 

(75:25) 

28.0 _ _ 38.0 55.0 [33] 
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3 PCL-PLLA Block Copolymer PCL-PLLA 

(50:50) 

49.9

& 

159.9 

27.5 

& 

55.1 

_ _ _ [28] 

4 CL- p 

dioxanone 

Random copolymer CL-DA (87:13) 43.5 29.5 325.0 _ 450.0 [31] 

5 PCL-EVA Graft copolymer PCL-EVA 

(59.5/38.6) 

50.6 _ _ 2.9 409.0 [83] 

6 PCL-HCA Block copolymer PCL-HCA 

(87:33) 

56.6 28.0 _ _ _ [74] 

7 PCL-PEG Random copolymer PCL-PEG 

(50:50) 

40.0 45.2 0.023 _ _ [72] 

8 PCL-PLLA Block Copolymer PCL-PLLA 

(80:20) 

35.0 8.1 3.6 2.9 3200.0 [32] 

9 PCL/PHB Melt blending 75/25 61.2 

& 

154.0 

39.1 _ 11.4 125.0 [53] 

10 PCL/PLLA Semi IPN 75/25 49.1 

& 

157.9 

25.4 

& 

15.4  

93.3 18.8 593.0 [102] 

11 PCL/ Pine 

resin 

Melt blending 70/30 53 
 

_ 15.2 2600.0 [96] 

12 PCL/PLA Melt blending 70/30 56.7 38.3 732.5 25.3 _ [47] 

13 PCL/lignosu

lpahte 

Melt blending 70/30 56.0 36.1 410.8 14.7 110.9 [98] 

14 PCL/Chitosa

n 

Melt blending 80/20 _ _ _ 15.6 151.8 [97] 

15 PCL/poly(3-

hydroxybuty

rate-co-3-

hydroxyhexa

noate) 

Solution blending 20/80 P(3HB-

co-7mol% 3HH) 

59.9 38.9 477.0 11.3 _ [106] 

16 PCL/PHA Solution blending 60/40 56.9 55.2 
 

_ _ [107] 

17 PCL/PLA Solution blending 

(Electrospun) 

20/80 54.0 

& 

153.0 

18.9 

& 2.9 

 
1.7 94.4 [57] 

18 PCL/cellulos

e nanofiber 

Compression 

composite 

100/17 59.4 56 744.7 32.8 9.0 [130] 

19 PCL/gelatin Compression 

composite 

90/10 58.2 50.3 535.7 13.2 175.3 [131] 
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20 PCL/CNT In-situ composite 100/1 58.0 54.0 126.7 _ 3.5 [90] 

21 PCL/Graphe

ne oxide 

In-situ composite 100/0.5 _ _ 199.0 13 788.0 [84] 

22 PCL/Alumin

a 

Melt composite 100/3 _ _ 239.8 21.9 413.0 [27] 

23 PCL/ 

Nibonium 

pentaoxide 

Melt composite 100/5 _ _ 243.9 23.5 485.0 [27] 

24 PCL/ Leaf 

sheath date 

palm fibre 

waste 

Melt composite 100/20 _ _ 284.0 24 21.0 [110] 

25 PCL/SiC Melt composite 96/4 56.5 35.2 102.8 26.8 3063.0 [112] 

26 PCL/HNT Melt composite 90/10 53.1 42.1 919.0 84.7 743.0 [27] 

27 PCL/Rice 

straw fibre 

Melt composite 90/10 59.9 41.7 _ 36.1 655.0 [116] 

28 PCL/Na+ 

MMT 

Melt intercalation 100/5 _ 68.0 240.0 15.8 1345.0 [73] 

29 PCL/C30B Melt intercalation 100/5 _ 72.0 303.0 14 1212.0 [73] 

30 PCL/C20A Melt intercalation 100/5 _ 71.0 331.0 14.1 1430.0 [73] 

31 PCL/celluos

e 

nanowhisker

s 

Solutiom composite 

(electrospun) 

100/1 64.1 25.4 5.0 1.1 115.0 [121] 

32 PCL/MWC

NT 

Solution composite 100/1 60.0 45.3 _ 30.4 1286.0 [124] 

33 PCL/chitosa

n 

Solution composite 

(electrospun) 

100/50 _ _ 26.5 4.4 133.0 [126] 

 

2.3.2 Mechanical properties 

PCL having number average molecular weight (Mn) of 80,000 g/mol, showed extremely 

ductile behaviour with an average elongation of 450%[98]. The ultimate tensile strength, 

Young’s modulus and yield strength of PCL is reported as 20 MPa, 374 MPa and 16 MPa, 

respectively[133]. The copolymers, blends and composites of PCL in the form of films, 
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porous structures, 3D structures and electrospun fibres are widely studied for mechanical 

properties. Table 2.4 represents data of mechanical properties with the addition of co-

monomers, polymers, and fillers in PCL. 

Crosslink density and crystallinity are the major factors that affect mechanical properties of 

copolymers. Crystalline PCL is served as physical cross-linked points, which contribute to 

mechanical strength, thus, higher crystallinity results in higher tensile strength. Covalently 

crosslinked networks of PCL-co-BA[80] and PCL-EVA graft copolymers[83] showed a 

decrement in mechanical properties. Copolymers with LLA[75, 76, 79], dimethyl 

siloxane[12, 13], cellulose fibre[156] and dioxanone[78] are reported with improved 

mechanical properties.  The copolymers with p-dioxanone are showed peculiar behaviour, its 

E and TS are reduced with increased content of dioxanone, but elongation initially decreased 

then suddenly increased drastically from 930% for pure PCL to 450% for 87:13 ratio and 

1690% for 80:20 ratio copolymers[78].  

The mechanical properties of polymer blends are dependent on the miscibility or 

compatibility between components along with crystallinity. Good impact properties of PCL 

make it a favourite polymer to be blended with other polymers to enhance their mechanical 

properties. PCL blends with PLA showed an improvement in mechanical properties despite 

their incompatibility due to the ductility of PCL, whereas PLA is very brittle (impact energy 

< 2.5 kJ m-2)[94]. Crystallinity has a great impact on mechanical properties that is studied by 

Bai et al. in PLA/PCL blend[91]. An improvement in mechanical properties are observed 

when compatibility is improved by functionalization or addition of compatibilizer for 

incompatible blends like Lignosulphate[98], PLA[95], PHB. A compatible blend of PCL/pine 

resin showed improved mechanical properties with increased content of PCL[96]. The 

mechanical properties of porous scaffolds prepared by PLLA/PCL blend are highly 

dependent on pore size. The scaffolds with larger pore sizes showed lower mechanical 
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properties due to reduced polymer content[103]. Gelatine/PCL blend films showed 

compatibility and improved mechanical properties[131]. 

Polymer composite is a renowned method for enhancing the mechanical property of any 

polymeric system. Factors like dispersion, morphology and aspect ratio of fillers play a major 

role in mechanical properties. Composites of PCL with different types of carbon base 

fillers[124, 127, 128, 132], silica base fillers[46, 112, 114], natural waste byproduct[110, 113, 

115, 116, 121, 130], minerals[97, 117], alumina and niobium pentoxide[27] are studied for 

their mechanical behaviour. Carbon filler in the form of MWCNT/CNT and graphene is 

incorporated in PCL matrix. The carbon base fillers have improved the mechanical strength 

of composites due to reinforcing effect of nanofillers. The addition of different types of clays 

such as Cloisite Na+, Cloisite 30B and Cloisite 20B in PCL matrix improved Young´s 

modulus (E) while the tensile strength (TS) remained almost constant and the elongation at 

break decreased in the range of 25–36%. PCL/Silica Carbide composite showed increased E, 

yield stress, TS, and elongation when added up to 4%[112]. Incorporation of alumina and 

niobium pentoxide is not able to enhance any mechanical properties. Tensile strength, 

elongation at break and impact strength decreased with filler addition due to agglomeration, 

while Young's modulus is unaffected due to inefficient chemical interaction at the filler-

matrix interface[27]. Composites based on natural waste by products and minerals showed 

reduced mechanical properties, including TS, % elongation and impact strength due to poor 

interaction with PCL matrix. Whereas palm fibre showed reinforcement effects due to fibre-

matrix interfacial compatibility[110]. The naturally occurring clay mineral halloysite 

nanotube (HNT) is, improved the TS and E of the PCL/HNT composite due to uniform 

dispersion of HNT, its hollow tubular structure, low hydroxyl group density on the surface, 

high aspect ratio and good compatibility of the HNT with PCL. Increased elongation at break 

results is uncommon behaviour for PCL/HNT composite than pure PCL due to strong strain 
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hardening of the PCL matrix endorsed by stiff HNTs[114]. A good study is available for 

micro and nanocomposite of hydroxyapatite indicates that mechanical properties are 

improved and identical for both nano and micro composite till they are dispersed well in the 

matrix.[111] 

The incorporation of PCL grafted cellulose, even in small amounts, has increased the 

mechanical properties of PCL nanofiber mats. The improvements in mechanical behaviour 

are attributed to the higher molecular weight (longer chains) of the grafted PCL chains and 

respective decrease in the diameter of the fibre.[81] Improved mechanical properties are 

observed for electrospun PLA/PCL blends.[104] Enhancement in E and TS of electrospun 

PCL mats after adding natural filler nanofibrilliate chitosan is due to the reinforcing effect of 

embedded chitosan nanofibrils oriented along the fibre axis, uniform dispersion and potential 

inter-molecular interactions. Lower elasticity of the nanocomposite is in correlation with 

stiffening of chitosan[126]. When electrospun regenerated cellulose nanofibers are used in 

composite, E and TS increase with addition of nanofiber up to 17%, due to good 

compatibility[130].  

The copolymers, blends, and composites of PCL in the form of films, porous structures, 3D 

structures and electrospun fibres are widely studied for mechanical properties.  

2.3.3 Electrical properties 

PCL is considered an insulating polymer having an electrical conductivity of 4.96x10-13 

S/cm. A copolymer of PCL with aniline induce the conductivity of 0.62 S/cm and its 

nanofiber showed conductivity of 0.03 S/cm[157]. Electrical conductivity data for blends are 

not available because blends of PCL are not intended to have an application area of electrical 

conductivity. Incorporation of some conductive filler improved the conductivity of PCL 

composites. When MWCNT contents added up to 0.3 wt.%, the electrical conductivity of 

composites dramatically increased to 1.67x10-5 S/m. The fine spherulite and decreased 
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crystallinity of PCL caused by MWCNT-induced effect favoured the conductive properties of 

composites[124]. The conductivity of PCL is elevated by around 12-fold magnitude by 

inclusion of 5 wt. % chemically modified graphene in matrix[132]. Saravanamoorthy et al. 

have studied electrical properties of PCL/ hexagonal molybdenum oxide (h-MoO3) 

nanocomposite and reported that the conductivity of the nanocomposites increased with 

addition of h-MoO3 [122]. No change in the dielectric constant value is observed at low 

frequency as well as on the high frequency for pure PCL, whereas dielectric loss of the 

PCL/h-MoO3 nanocomposites decreases with the increase in frequency (100 Hz to 1 MHz) 

and is showed better dielectric loss than pure PCL.  

2.3.4 Structural properties 

A well-defined semi-crystalline PCL crystal structure is studied by the X-ray diffraction 

method. PCL shows three strong peaks at the 2θ angles of about 21.4º, 22.0º and 23.7º, 

corresponding to the of diffraction planes (110), (111) and (200) of the orthorhombic unit 

cell, whereas lattice constants are a= 7.45 Å, b=4.98Å, and c=17.05Å[133]. Copolymers of 

PCL-co-PEG[158] showed a combined peak of both. Similarly, PCL-co-PLLA showed peaks 

of both PCL and PLLA[159]. With the increased content of PCL, its peak dominated other 

polymers' peaks, as shown in Figure 2.8.1.[158] When analysis is carried out at 60℃, its 

peaks get diminished due to loss of crystallinity above melting point[159].  The 

characteristics peaks are diminished with increasing content of PDMS in PCL-PDMS-PCL 

triblock copolymer[10].  

The XRD scans of the polymer blend are used to determine its homogeneity and overlap. 

Mixing PCL with miscible amorphous polymer doesn’t influence its crystalline structure. If 

two crystalline polymers have low compatibility, then each polymer would have its 

individual crystal region in the blend. In this case, XRD showed distinct peaks of individual 

polymers with different lattice constants. In other cases, if crystalline polymers are 
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compatible or miscible, they will show enhanced degree of crystallinity of blend than pure 

polymers. XRD patterns of PCL/PMMA showed miscibility by merging the amorphous 

hump of PMMA and distinct crystalline peaks of PCL, as shown in Figure 2.8.2. The 

incorporation of PMMA did not influence crystalline structure of PCL.[108] A similar peak 

pattern is observed in PCL/TPU blend, where broad diffraction peaks ranging from 18° to 24° 

are replaced by sharper peaks with addition of PCL[160].  

Degree of crystallinity of PCL is increased by addition of silica carbide as observed in wide-

angle XRD diffractogram as shown in Figure 2.8.3.[112] Incorporation of citric acid 

modified zinc oxide (ZnO-CA) nanoparticle reduces the intensity of PCL diffraction peaks 

due to weak hydrogen bond interaction. This weak interaction restricted the movement of 

PCL chain to some extent, making it difficult for PCL to crystallize.[141] Seyrek et al. have 

claimed that PCL/MMT composites exhibit diminishing peaks with inclusion of clay, 

indicating exfoliation of filler in polymeric system due to absence of characteristic peak of 

MMT around 5.00⁰ with distinct crystal structure of PCL.[142]   

There is a limited study available for structural properties of copolymers, blends, and 

composites of PCL. The change in structural properties of PCL can be easily studied by an 

XRD diffractogram. Although researchers have prepared copolymers of PCL with amorphous 

monomers such as acrylates, acetates, and semicrystalline monomers such as PDL, p-

dioxanone, HCA and cellulose, their structural properties have not been evaluated. XRD is 

method to evaluate compatibility in blends along with thermal properties. XRD will provide 

better insight of PCL blends with pine resin, PGA, lignosulphonate and PHBA for their 

compatibility and structural stability. XRD, along with TEM, is a renowned method to 

analyse dispersion of filler in composites. To attain a better understanding of PCL composites 

with natural waste by-products, minerals, carbon fillers need to analyse for structural 

properties as well.  
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Figure 2.8. Structural analysis by XRD of PEG-PCL copolymer (1) reproduced with 

permission [115] 2015, RSC; PCL/PMMA blend (2) reproduced with permission [61] 2016, 

Elsevier; PCL/SiC nanocomposite (3) reproduced with permission [66], 2015, Wiley. 

2.3.5 Rheological properties 

Rheological studies give an idea about processing parameters, mechanical and thermal 

behaviour, and degradation conditions. Rheological properties of polycaprolactone are 

completely dependent on molecular weight, molecular weight distribution, molecular 

structure (linear/cyclic/star/branched)[15, 17, 18]. Pure PCL shows Newtonian behaviour at 

lower frequency (less than 10Hz) and shear thinning at higher frequency range (above 10 

Hz). A very beautiful analysis of stress relaxation behaviour on different molecular weight 

based films and scaffolds of PCL was carried out by Sethuraman et al.[161]. The higher 

molecular weight samples exhibit higher elasticity than lower ones. Films showed higher 

stress relaxation than scaffolds. The viscoelastic properties of scaffolds depend on pore size, 
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structure and type of processing used.  Copolymers of PCL and HPMA showed Newtonian 

behaviour with complex viscosity of 130-140 Pa.s at 160℃.[83] Copolymer of PCL and 

EVA showed intermediate values of complex viscosity with respect to their neat 

counterparts.[83] Aqueous solution of PCL- co-N‑2-Hydroxypropyl methacrylamide showed 

shear thinning behaviour as studied by Rani et al.[73] Melt rheology of PCL-r-PLLA 

copolymer showed zero shear viscosity and relaxation time in between the neat polymers.[75] 

The blends of PCL with Mn 84000 g/mol with PLA of different molecular weights ranging 

from 55350, 92500, and 106,900 g/mol showed interesting results for rheology. In the high 

molecular weight PLA (106900 g/mol) system, storage modulus (G’) and loss modulus (G”) 

decreased with higher PCL content, as PCL is a less viscous component. In contrast, for the 

low molecular weight PLA (55350) system, it is noticed that G’ and G” of blends increased 

with an increase of PCL phase.[23]  

The sandwich composite of gelatine film with PCL matrix shows higher storage modulus as 

compared with pure PCL throughout investigated temperature range. This is primarily 

attributed to an increase in stiffness of the matrix due to their enforcing effect imparted by 

PCL-gelatine films composite that permitted a higher degree of stress transfer from the 

matrix to the gelatine.[131] The sandwich structure of PCL and cellulose nanofiber showed 

that storage modulus is increased throughout all temperatures between −110 and 55℃ in 

respect of pristine PCL, compensating for decrease in storage moduli at glass transition 

temperature and melting temperature in respect of PCL.[130] 

The PCL/HNT nanocomposites are studied for melt rheological behaviour to get an idea of 

microstructure in the melted state and its behaviour at the processing time.[114] The storage 

modulus and loss modulus values of nanocomposites showed an increment when compared 

with neat PCL due to the homogeneous dispersion of HNT and good interphase attraction 

between PCL matrix and HNT. Viscoelastic properties of hydroxyapatite micro and 
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nanoparticle-based PCL composite are examined at dry and wet conditions at 37℃. The 

stiffness of materials is increased under a dynamic load with HA concentration.[111] Melt 

rheology of nanocomposites with graphene[28, 31], nanoclays[28] is suggested that with 

increase in size and percentage of filler, viscosity increases until size of nanofiller (graphene) 

is less than radius of gyration of PCL molecule. Detailed analysis of PCL/cellulose 

nanocrystal is carried out by Wang et al. for linear rheology, non-linear rheology, creep 

behaviour and transient rheology. Here particle-particle interaction of cellulose nanocrystals 

in PCL matrix affects the viscosity, creep behaviour and network formation.[30]  

The processing parameters are perceived by flow properties like flow curve and complex 

viscosity. Detailed rheological analysis such as linear viscoelastic region, frequency sweep, 

creep recovery, structure recovery, stress relaxation, time-temperature superposition is a tool 

to understand behaviour of materials during application and utilization. There are very few 

and limited studies available for rheological properties. A huge gap needs to fill by study of 

detailed rheological properties of all PCL copolymers, blends and composites which are 

synthesized.  

2.3.6 Shape memory properties 

Shape memory polymers (SMP) have ability to memorize a permanent shape and fixed to 

temporary shape under specific triggers. These triggers include temperature, pH, electric and 

magnetic field, and light. Thermoresponsive shape memory polymers (TSMP) exhibit 

changes in shape from a deformed position to their original shape induced by temperature. 

TSMP changes into another shape or temporary shape when heated above transition 

temperature, deformed under load and cooling conditions. The polymer maintains this 

temporary shape until it is heated again without any load and regains its original shape. Strain 

fixity rate describes the ability to switch segments to fix/hold the temporary mechanical 

deformation.  
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Rf(N) = 
Ꜫ𝑢(𝑁)

Ꜫ𝑚
          … eq.1. 

The strain recovery rate describes the ability of the shape memory material to recover its 

permanent shape.  

Rr(N) = 
Ꜫ𝑚 − Ꜫ𝑝(𝑁)

Ꜫ𝑚 − Ꜫ𝑝(𝑁−1)
         … eq.2. 

Where N is cycle number, Ꜫu(N) is strain in the stress-free state after the withdrawal of tensile 

stress in the Nth cycle, Ꜫm is the maximum strain executed on the polymer and Ꜫp(N) and Ꜫp(N-

1) are the strains of the sample in two successive cycles in the stress -free state before yield 

stress is applied. 

The semi-crystalline nature of PCL makes it a promising candidate for thermoresponsive 

shape memory applications. Along with crystallinity, the crosslinking network in PCL helps 

to store elastic energy and provides driving force to recover shape when heated above 

crystalline melting temperature (Tcm). The shape fixing ability of shape memory 

polycaprolactone is found to be influenced by the PCL-diol molecular weight. At the same 

time, the Rr reaches  99% when heated above melting point irrespective of the length of PCL 

diol[162]. It is due to the stored energy in crystalline region, which is released faster than 

stimulated in their Tcm range and allows the chains to recover their original shape with less 

time. 

Shape fixity and shape recovery properties of copolymers, blends and composites are listed in 

Table 2.5. The shape memory behaviour of PCL is tailored by copolymerizing it with L-

lactides[163] butyl acrylates[80], PDMS[12, 13], cellulose and its derivatives[156, 164, 165]. 

PCL-PDMS-PCL[12] and PCL-BA[80] copolymers showed increased shape fixity with an 

increased chain length of PCL. Copolymers composed of PCL with a molecular weight of 

3000 g/mol or lower are exhibited no transition temperature, no crystallinity and act as 

amorphous phase. In this case, Tg and crosslinking of copolymer help in shape recovery and 

shape fixity[13, 156, 165]. A 4D printed drug-loaded vascular stent prepared by grafting PCL 
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on β-cyclodextrin showed good shape memory properties, which made it self-

expandable[166].  

The blends of PCL for change in thermoresponsive behaviour include thermoplastic 

polyurethanes[160], diglycidyl ether of bisphenol A (DGEBA)[167], polyvinyl chloride[168], 

olefin block copolymers[169], polymethylvinylsiloxane, and natural rubber[170]. The shape 

memory properties of blends depend on PCL content, its crystallinity and compatibility. The 

strain recovery ratios of the natural rubber (NR)/PCL blends are high, nearly 100% regardless 

of PCL content, due to stress release after sample moulding, though shape fixity increased 

with increased PCL content.[170] DGEBA/PCL blend showed a different pattern. Shape 

fixity decreases with increase in PCL content with each consecutive cycle.[167] In 

PCL/Thermoplastic Poly Urethane (TPU) blend high recovery ratio with increase in TPU 

content is observed. TPU domain stored the deformation energy and contributed to the strain 

recovery, while the ductile and crystalline PCL contributed to the strain fixing.[160] A 

physically crosslinked olefin block copolymer (OBC)/PCL blend compatibilized with 

dicumyl oxide showed two distinct peaks of Tm (⁓ 55℃ and ⁓120℃) and Tc (⁓27℃ and 

⁓96℃). The blend showed good shape memory properties at 65℃.[169]   

Shape memory properties of the composite of PCL studied for hydroxyapatite,[171] titanium 

nitride,[172] nanocrystalline cellulose,[173] calcium carbonate,[163] MWCNT[174] and 

Polyhedral Oligomeric Silsesquioxane (POSS) [175]. A common observation is obtained 

from strain fixity and strain recovery values of composites that they are independent of filler 

content and dependent on PCL chain length. Qu et al. coated MWCNT over PCL/TPU wet 

spun fibre. The composite fibres showed a self-healable thermo-electrical double response 

shape memory effect.[176]  

The copolymers or blends with sharp transition temperature (Ttrans) peaks are desirable for 

good shape memory properties. Broad Ttrans peak affects the SMP properties negatively, as 
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seen in case of cellulose-g-PCL, which showed inferior strain fixity and strain recovery.[156] 

The structural and thermal properties are altered while copolymerization, blending or 

composite preparation of PCL. This further affects the transition temperature and crystallinity 

of the material, accordingly shape memory properties and its testing parameters vary. 

Table 2.5. Shape memory properties of copolymers, blends, composites of PCL 

S.no. Polymers Synthesis mode Composition Shape fixity Shape 

recovery 

Ref 

1 PCL-PDMS-

PCL 

Triblock copolymer PCL50-PDMS37-

PCL50 

99.7 98.3 [12, 

13] 

2 PCL-PDMS-

PCL 

Triblock copolymer PCL40-PDMS20-

PCL40 

99.9 98.6 [12, 

13] 

3 EC-PCL Graft copolymer EC M70-PCL1400 

mixed with EC 

M70-PCL 7600 

97.3 94.8 [13, 

156, 

165] 

4 MC-PCL Graft copolymer MC30K - PCL3K 91.8 92.6 [13, 

156, 

165] 

5 n BA-PCL Block Copolymer PCL-BA (75:25) 77.0 - [80] 

6 PCL / OBC Melt blend 40/60/ 1 phr DCP  89.0 99.8 [169] 

7 PCL/NR Melt blend 50/50/ 0.5 phr  98.9 100.0 [170] 

8 PCL/TPU Melt blend 75/25 90.0 100.0 [160] 

9 PCL / DGEBA Solution blend 50/50 88.0 99.2 [167] 

10 PCL/PVC Solution blend 30/70 98.0 92.0 [168] 

11 PCL/MWCNT Solution composite 99.4/0.6 - 98.0 [174] 

12 PCL/HA Solution composite 100/5 90.0 90.0 [171] 

13 PCL / cellulose Solution composite 100/3 90.0 93.3 [173] 

 

2.3.7 Biodegradation 

Biodegradation of aliphatic polyesters is associated to their physical and chemical properties, 

e.g. hydrophilicity, molar mass, Tg, Tm, degree of crystallinity, chemical structure and surface 

area.[83] In biodegradability, degree of crystallinity plays a significant role, as amorphous 

domains of a polymer are mainly attacked by enzymes. The enzymatic degradation takes 
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place on surface of the PCL. Hydrophobic nature of PCL makes it hydrolytic degradation 

very slow.[177] Feng et al. have carried out enzymatic depolymerization of polycaprolactone 

involves two elementary steps: triad assisted nucleophilic attack and C-O bond 

cleavage.[178] The C-O bond cleavage is considered as rate determining step of degradation 

with average energy barrier of 15 kcal/mol. Almeida et al. have studied quantum mechanics 

and molecular mechanics molecular dynamics (QM/MM MD) for enzymatic hydrolysis of 

PCL by thermophilic esterase.[179] The degradation of PCL copolymers, blends and 

composites can be divided into two parts: 1) soil burial and 2) simulated environment. 

Soil burial degradation of PCL composites with silicon carbide,[112] clay,[46] gelatin[131] 

are studied. It is observed that cloisite Na+ and cloisite 20A based nanocomposites showed 

higher weight loss in comparison to pure PCL though incorporation of cloisite 30B slowed 

down the rate of degradation of the polymer attributing the fact that the presence of 

reinforcement hindered the access of the microorganisms attack on ester groups of PCL.[46] 

Presence of SiC nanoparticles in PCL matrix increases the crystallinity hence biodegradation 

process becomes slow.[112] PCL/gelatine sandwich composite degrades faster than pure PCL 

due to high water affinity of gelatine.[131] 

Hydrolytic biodegradation of PCL copolymers with p-dioxanone,[78] 4-

hydroxycinnamic,[74] EVA,[83] aniline,[157] blends with PLLA[102, 180] and composites 

with bioactive glass,[181] cellulose nano-whiskers[121] are studied. As hydrophilicity is 

effective factor in biodegradability, it is observed in CL-co-dioxanone copolymer showed 

higher mass loss and reduced molecular weight with increase in content of p-dioxanone.[78] 

The crosslinked structure induces hydrophobicity, resulting in slower degradation rate as seen 

in poly(ɛ-caprolactone)-co-poly(4-hydroxycinnamic acid).[74] PCL-co-polyaniline 

nanofibers underwent rapid mass loss of almost 45% in 35 days in phosphate buffer solution 

(PBS).[157] Degradation rate is much higher in alkaline conditions than normal PBS of pH 
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7.4, as observed in semi-IPN blends of PCL with PLLA. Increased content of PLLA is 

responsible for more water uptake and showed more hydrolytic degradation.[102] PCL blend 

with EVA, a conventional non-biodegradable polymer showed decreased 

biodegradability.[83] The biodegradation rate of PCL composites with natural filler cellulose 

whiskers is increased because of higher hydrophilicity of the latter than pure PCL.[121] The 

PCL/bioactive glass nanocomposite coating on magnesium substrate showed more 

degradation than pure PCL due to dissolution of bioactive glass in simulated body fluid 

[181].  

In-vivo degradation of P(CL-r-LLA) copolymer is investigated with varying content of LLA. 

These copolymers are hypodermically implanted in the backs of rats. The degradation of 

P(CL-r-LLA) is determined as a function of the implantation time and monitored by weight 

loss, changes in molecular weight and macroscopic observation. The results showed the 

degradation and absorption of copolymers eliminate the necessity for removal of the 

materials implanted in vivo when used as a drug matrix.[79] Enzymatic degradation of PCL 

blends with pine resin,[96] epoxidized soyabean oil (ESO)[182] and poly(β-

hydroxybutyrate)[100] are studied. The pine resin mainly consists of triglycerides that is 

easily degraded by lipase. High enzymatic hydrolysis rate of pine resin is enhanced by the 

overall hydrolysis of blend in the presence of lipase from porcine pancreatic.[96] PCL/ESO 

blends are immersed in the mixture of lipase from Pseudomonas cepasia and buffer solution 

of PBS. Almost 40% weight loss is observed due to degradation of PCL content only and no 

mass change is observed for ESO in 5 days. 

High Ductility and plasticity of PCL with a slow degradation rate help to counterbalance the 

expeditious degradation of natural polymers.[66] Addition of hydrophilic polymers/fillers via 

copolymerization or blending increases the degradation rate. The addition of crystalline filler 
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of semicrystalline polymers increases the overall crystallinity of material and reduces the 

weight loss during degradation.  

2.4 Applications 

2.4.1 Biomedical applications  

PCL is one of the most preferred and well-explored thermoplastics, which received much 

attention because of its adaptability, biodegradability with outstanding biocompatibility in 

vitro and in vivo for biomedical applications. This includes skin tissue engineering, bone 

tissue engineering and drug delivery. Scaffolds are integral to their regenerative process, 

assist adhesion and spreading of cells, support their growth, and successively activate their 

development in specific tissues.[183]  Review articles emphasizing PCL-based scaffolds 

prepared by electrospinning for tissue engineering, drug delivery and wound dressing 

materials have been reported recently.[51, 56, 60] Suwantong has discussed about factors 

affecting electrospinning, such as polymer concentration, molecular weight of polymer, 

solution conductivity, solvent volatility, applied voltage, flow rate and ambient 

parameters.[56] The major scaffold fabrication techniques for PCL are summarized by 

Dwivedi et al. including solvent casting, porogen leaching, phase separation, 3D printing and 

electrospinning for bone scaffolds.[50] Prasad et al. have discussed about fused deposition 

technique used in fabrication of scaffolds for PCL composites using 3D printing.[58] Hajiali 

et al. have focused only on PCL/ calcium phosphate-based ceramic and PCL/ bioactive 

glasses composites for bone tissue engineering.[57] Chan et al. have provided a systematic 

review about tracheal stents and splints patches to be used in tracheal surgeries.[49] Salehi et 

al. have provided an insight in the use of PCL in corneal tissue engineering.[64] In this 

review, they discussed PCL-based scaffolds prepared by different techniques to be used in 

epithelium, stroma and endothelium of cornea. Different techniques used for scaffolds 

fabrication such as salt leaching,[183] rotary jet spinning,[184] electrospinning,[185] aligned 
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electrospinning,[186] supercritical CO2 batch foaming,[187] porogen leaching,[188] sol-gel 

method,[189] 3D printing,[190] controlled humidity,[191] unidirectional freeze drying[192] 

and hot embossing[193] are presented in Table 2.6. 

Apart from tissue engineering, drug delivery and wound healing, other bio-medical 

applications of PCL copolymers, blends and composites are bio-imaging and coatings for 

bio-implants.  Bio-imaging is a useful tool to detect cancer and tumour. Various nanoparticles 

of PCL copolymers are synthesized to act as a carrier for bio-imaging. PCL-co-

polyamidoamine linear dendritic block copolymer nanoparticles as a small molecule carrier 

for Rhodamine B, curcumin and indolizine cyanine dye in NIR imaging and photothermal 

therapy are synthesized by Chandrasiri et al.[194]. Block copolymers of PEG and PCL[195–

197] and four-arm PEG-PCL copolymers[198] are synthesized and fabricated with dyes,[195] 

cyclo(Arg-Gly-Asp),[196]  polythiophene[197] and porphyrin[198] for bio-imaging 

applications. Organic fluorophore synthesized by incorporating di(thiophene-2-yl)-

diketopyrrolopyrrole in the middle of polymer chain of PCL by Huang et al.[199] A 

fluorescence backbone, macroinitiator conjugated polymer poly(fluorene-alt-(4,7-

bis(hexylthien)-2,1,3- benzothiadiazole)) (PFTB)  grafted with PCL, poly oligo(ethylene 

glycol) methyl ether methacrylate] (POEGMA) blocks[200] and carborane (PmCbA) 

containing triblock copolymer POEGMA-PmCbA-PCL conjugated with a NIR fluorescence  

probe[201] are fabricated to be used in bio-imaging for effective treatment of cancer cells.  

Nowadays nanocomposite coatings based on PCL are preferred to overcome inferior abrasion 

and wear resistance of bioimplants made-up of metal alloys and stainless steel. PCL/Laponite 

nanocomposite coating by electrophoretic deposition method showed great improvement in 

corrosion resistance than uncoated stainless steel and makes it applicable for bone 

implant[202]. Jokar et al.[203] and Shafiee et al.[204] have used the dip-coating method to 

coat stainless steel with PCL/gelatine and PCL/forsterite (Mg2SiO4) nanocomposites for 
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improved bioactivity and corrosion resistance. Titanium alloy coated with PCL nanofibers 

using electrospinning. Further, it is treated with TiO2 nanotubes to give cell biocompatibility 

to orthopaedic and dental implants.[205] PCL/ HA,[206]   PCL/bioactive glass[181] 

nanocomposite coating and PCL coating on MgCO3 coated Mg[207] by dip-coating showed a 

decreased rate of degradation and improved bioactivity of Mg and Mg alloys substrate. 

Electrospinning is also used for coating PCL/zinc oxide[208] and PCL/MgO-Ag[209] 

nanocomposite on Mg substrate to improve biocompatibility and corrosion resistance. Huang 

et al. have coated Mg alloy with PCL/amino acid to enhance cytocompatibility using 

electrografting and dip coating method.[210]  

Table 2.6. Scaffold types of PCL copolymer, blends, and composites for bio-medical 

applications. 

S. 

No. 

Polymers Synthesis mode Fabrication 

method 

Scaffold Ref 

1.  PCL / 

chitosan 

Hybrid membrane, 

Chitosan coatings 

over PCL mesh.  

Rotary jet 

spinning 

 

[184] 

2.  PCL / 

Curcumin 

Composite Electrospinnin

g 

 

[185] 

 

3.  

PCL / PLA Blend Supercritical 

CO2 batch 

foaming 

 

[187] 
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4.  PCL-PTHF-

PCL 

Triblock copolymer Aligned 

electro-

spinning 

 

[186] 

5.  PCL / CNT/ 

TiO2 

Composite Porogen 

leaching 

 

[188] 

6.  PCL / 

Bioglass 

Composite Sol-gel 

method 

 

[189] 

7.  PCL / 

Magnetite 

nanoparticles 

Nanocomposite Salt (NaCl) 

leaching 

 

[183] 

8.  PCL / silanted 

silica 

nanoparticles 

Nanocomposite 3D printing 

 

[190] 

9.  PCL / calcium 

silicate 

Composite Controlled 

humidity 

 

[191] 
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10.  PCL / Zein Composite Unidirectional 

freeze drying 

 

[192] 

11.  PCL / 

Furosemide 

Composite Hot embossing 

 

[193] 

 

2.4.2 Non-biomedical applications 

Copolymers, blends, and composites of PCL are entering into non-biomedical applications, 

which includes packaging, self-healing & corrosion resistance coatings, flame retardant 

coatings, oil-water separation, plant grafting and photothermal absorption. Figure 2.9 shows 

different non-medical applications of PCL copolymers, blends, and composites. 

2.4.2.1 Packaging 

Hydrophobicity of PCL is an advantage in packaging because it reduces water vapor 

transmission rate, however, it shows weak oxygen barrier properties.[211] This limitation is 

overcome by inclusion of other polymers or nanoparticles. Blend and copolymers of 

PCL/PLA improved the oxygen barrier and mechanical properties. Further, addition of zinc 

oxide, clove oil, cinnamaldehyde and impregnation of supercritical CO2 enhances 

antimicrobial properties and makes it suitable for the packaging of button mushroom and 

scrambled egg[212–214]. Blends of PCL with Polyhydroxybutyrate (PHB),[215]  PVC[216] 

and starch[217, 218] showed improvement in oxygen barrier properties for food packaging. 

PCL mixed with other material such as pomegranate rind,[219] chitosan/grapefruit seed 

extract[220], sodium metabisulpahte,[221] silver-kaolinite,[222] hydroxytyrosol/cloisite 



46 
 

30b,[215]  titanium dioxide nanoparticles[223] and organically modified 

montmorillonite[142] to form active packaging material. These materials added not only 

antimicrobial properties but also enhanced mechanical, thermal, and biodegradation 

properties. Cai et al. have developed novel PCL composite films by mixing curcumin loaded 

zeolitic imidazolate framework, which showed pH and light responsive antibacterial 

activity.[224] Electrospinning, electrospraying[225] and microfluidic spinning technology 

(MST) are recent methods to fabricate improved active packaging material. It is found that 

CS/ OEO/PCL blended electrospun nanofibers have lower water vapor permeability than cast 

film and exhibit distinctive antibacterial activity toward Gram-positive/Gram-negative 

bacteria.[226] Mathiazhagan et al. have fabricated a food packaging film by soaking PCL 

nanofibrous mat in leaf extract of Acalypha indica[227]. These antibacterial nanofibrous mats 

show good microbial inhibition as compared to commercial polyethylene for carrot piece 

packaging. Films composed of fibres of nano-sized functional particles of silver loaded 

konjac glucomannan (KGM) and PCL blend prepared by MST exhibit excellent antibacterial 

properties for active packaging material.[228] 

2.4.2.2 Self-healing 

PCL is a well-known polymer for its shape memory properties which makes it capable of 

self-healing.[229] Excellent shape memory and self-healing are achieved when linear PCL is 

incorporated in crosslinked PCL network and forms a simultaneous IPN network. Partial 

fractures generated in the film can heal up by this IPN network.[230] Blends of natural rubber 

and PCL are used for the application of shape memory-assisted self-healing properties.[231]  

A high-performance and self-healable PCL/polydopamine nanocomposites are fabricated.  

The photothermal conversion nature of polydopamine provides self-healing functionality to 

the nanocomposite. On exposure to near-infrared (NIR) light, the temperature of 

nanocomposites swiftly goes above the polymer Tcm. This allows rapid NIR light-induced 
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self-healing properties.[128] The nanocomposites comprised of PCL/polydopamine-capped 

reduced graphene oxide nanofiller[128] and  TPU/PCL blend with multi-walled carbon 

nanotubes (MWCNTs) exhibit excellent self-healing properties in the presence of near-

infrared (NIR) irradiation compared with the traditional heat-induced self-healing shape 

memory composites. NIR irradiation not only reduces the healing time (3 min.) but also 

selectively repairs the exposed damaged regions without distinct interference to the 

performance of surrounding parts.[232]  

2.4.2.3 Coatings 

A self-healing UV curable corrosion-resistant coating is prepared by acrylated 

polycaprolactone polyurethane, where soft segment is comprised of PCL and the hard 

segment is comprised of isobornyl acrylate (IBOA). Partial self-healing, corrosion protection 

and barrier properties are achieved at the melting temperature of PCL (at 60℃) and complete 

healing is observed at the Tg of IBOA (115℃).[233] Microsphere of PCL and 8-

hydroxyquinoline corrosion inhibitor are added to the epoxy matrix to improve self-healing 

and corrosion resistance.[234] Ranjitha et al. have studied PCL/functionalized graphene 

oxide (FGO) nanocomposite coating and found superior barrier and anti-corrosion properties 

by improving the dispersion and exfoliation of FGO in the PCL matrix.[235]  

An elastomeric coating of hyperbranched-PCL/siloxane is applied on stainless steel panels 

and showed good antifouling property. The PCL segment inhibits marine biofouling and 

siloxane provides fouling release property due to good surface elasticity and low surface 

energy.[236] Low gloss organic montmorillonite/waterborne polyurethane nanocomposite 

(OWPU) coatings with polycaprolactone (PCL) and hydroxyl-terminated polybutadiene 

(HTPB) are prepared by Ding et al. and applied to polyvinyl chloride leather. Nanosheets of 

MMT have increased thermal stability of hard segments and soft segments derived from PCL 

and promoted cross-linking. Further, cyclization of HTPB at high temperature imparted flame 
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retardant and anti-dripping properties to OWPU coatings [237].  For coating application Arya 

et al. have studied the effects of solvents, methyl chloride and toluene on the basis of 

morphological properties, drying properties and cost of system[238]. They have reported that 

methyl chloride provides a smooth, dense and cheaper coating system in comparison to 

toluene. In case of PCL, methyl chloride and toluene are the most used solvents. So here, a 

detailed analysis made remarkable addition for the recommendation of solvent. 

 

Figure 2.9. Non-biomedical applications include packaging reproduced with permission 

[185] 2020, Elsevier; self-healing coatings corrosion resistance coatings reproduced with 

permission [198] 2018, ACS; flame retardant coatings reproduced with permission [201] 

2019, Elsevier; oil-water separation reproduced with permission [204] 2016, RSC; plant 

grafting reproduced with permission [207] 2017, TnF; photo-thermal absorption reproduced 

with permission [208] 2021, ACS of PCL copolymers, blends and composites.  
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2.4.2.4 Purification 

For purification/filtration of water, PCL becomes a favourite polymer due to environmental 

concerns. A thiol-ended polycaprolactone is synthesized by Korpinar et al. to remove lead 

Pb(II) and cadmium Cd(II) ions.[239] Reshmi et al. fabricated a superhydrophobic, 

superoleophilic electrospun nanofibrous membrane of PCL/beeswax blend to separate oil 

from polluted water with great separation efficiency and good recyclability.[240]  In another 

approach, Zhang, He and coworkers have developed composites based on superhydrophobic 

and superoleophilic membrane with a hierarchical microsphere structure by alternate 

electrospinning and electrospraying technology. This PCL/SiO2 composite membrane showed 

superhydrophobicity, extreme oil-water separation efficiency (>99.8%), oil flux, stability and 

excellent oil adsorption performance.[241, 242]  

2.4.2.5 Plant grafting 

Eksiler et al. have developed films made of PCL/cis-1,4-polyisoprene blend as a 

biodegradable joining tool for plant grafting on fresh tomato plants. Soybean lecithin and 

acrylated-epoxidized soybean oil are used as a non-reactive compatibilizer due to poor 

compatibility of PCL/PI blend. These compatibilizers also accelerated the weight loss of the 

films in soil and increased the microorganism growth on the film. It is observed that all the 

spliced plants are grown without any defect at the end of two weeks.[243]  

2.4.2.6 Photothermal absorption 

Chen et al. have fabricated PCL nanofiber composite thin films with carbon nanotubes and 

carbon nanoparticles to use it as photothermal absorbers. From neat PCL nanofiber thin films 

to composite thin films, the solar absorbance is recorded from 0.04 to 0.94 along with its 

good salt rejection properties while working in high salinity conditions.[244] 
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2.5 Commercial products  

PCL is manufactured mainly by BASF, Perstrop, Daicel, Haihang, Foster and Innovate 

chemicals with brand names Capromer, CAPA, PLACCEL, Polycaprolactone and INV, 

respectively with various molecular weight and functionality. Biogeneral and Durect provide 

PCL-co-PDLL copolymer with different monomer compositions. These products have 

suggested areas of application for dental adhesive, control release drug carrier, cell and tissue 

culture, surgical sutures, orthopaedic splint, radiation board, resin bandage, plastic modifier 

& plasticizer, textiles and leather coating and ink. They are available in the form of powder, 

films, fibres and tubes. Table 2.7 summarizes some of the commercial products based on 

PCL. The commercial PCL-co-PEG copolymers are reported by Dabbaghi et al.[62] 

Table 2.7 Commercial products based on polycaprolactone 

S. No. Manufacturer Polymer Product name Application 

1. BASF, 

Germany 

PCL Capromer PD1-10 

Capromer PD1-20 

Capromer PD1-20A 

Capromer PD4-05 

Capromer PT1-05 

Textile and leather coatings. 

2. Perstorp, 

Sweden 

PCL / PCL 

copolymers 

CAPA 1301 

CAPA 2043-2803 

CAPA 2077A- 

2403D 

CAPA 3022- 3301 

CAPA 4101- 4801 

CAPA 6100-6800 

CAPA 7201A-7203 

Coating, adhesive, foam, 

orthopaedic splints, dental 

impressions, oncology 

immobilization, food packaging, 

laminates, colour master batch 

3. Daicel 

Corporation, 

Tokyo, Japan 

PCL PLACCEL 200 

series 

PLACCEL 300 

series 

PLACCEL 400 

series 

Resins 
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PLACCEL CD 

series 

PLACCEL F series 

PLACCEL H1P 

4. Haihang 

Industry co. 

ltd, Jinan City, 

China 

PCL Polycaprolactone Controlled release drug carrier, 

cell and tissue culture medium, 

fully degradable plastic surgical 

suture line, High strength film 

filamentous moulding, plastics 

modifier and plasticizer, medical 

modelling materials, industrial, art 

modelling materials, toys, organic 

colorants, thermal carbon ink 

adhesives, hot melt adhesive 

5. Biogeneral, 

San Diego, 

USA 

PCL/PCL-co-

PDLL 

PLC 70  

6. Durect, 

Birmingham, 

USA 

PCL-co-PDLL  Fiber, films and tubing 

7. Foster, 

Putnam USA 

PCL Polymedex drug delivery, orthopaedic, dental, 

and maxillofacial applications  

8. Innovate 

Chemicals, 

Guangdong, 

China 

PCL INV PCL 6500 

INV PCL 6800 

Surgical sutures, orthopaedic 

splints radiation board, resin 

bandage, dental model, Hot melt 

adhesive, coating, ink, non-woven 

adhesive, shoes material, structural 

adhesive, blown films, laminated 

material, manual models, organic 

colorants, powder coating 

 

2.6 Conclusion 

PCL polyester is easily available and relatively inexpensive. It can be modified to adjust its 

chemical and biological properties, physiochemical state, degradability, and mechanical 

properties by copolymerization, blending and composite formation. The synthesis methods of 
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PCL copolymers, blends and composites are discussed in this review of literature. PCL 

copolymers with natural polymers except cellulose are not reported yet. Blends prepared by 

latex mixing and composites with filler like copper and silver are not visible in the literature. 

PCL based materials are profoundly characterized for thermal, mechanical, structural, and 

biodegradable properties. Though mechanical and thermal properties are studied in length, 

however, less attention has been paid to crystallization kinetics/behavior and structural 

properties. The detailed analysis of rheological behavior of PCL copolymers, blends and 

composites is also required consideration by researchers. The shape memory properties of 

PCL make it a promising material for robotics and anti-counterfeit application, which can 

further investigate for copolymers, blends and composites. The data analyzed and discussed 

in this review about fabrication and properties allowed us to conclude that PCL copolymers, 

blends, and composites collectively provide an encouraging polymer platform to produce 

different materials.  

Numerous researches available on applications have shown that PCL widens its horizon from 

biomedical to packaging, self-healing, coatings, separation membrane and plant grafting, still 

need to investigate more. Scientists try to develop films for photothermal absorption though 

their sorbent capacity is quite lower than previously reported adsorbents. Quite a good 

number of PCL copolymers and blends and composites are synthesized for various 

applications still, these are not commercialized much. Very few commercial products are 

reported for PCL homopolymers and copolymers, though commercialization of these 

extensively researched copolymers, blends and composites is desirable.   
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Chapter 3 

Materials and Methodology 

Overview 

The information related to experimental techniques, synthesis of PCL-PDMS-PCL triblock 

copolymer films, methodology and tools which had been utilised to achieve the objectives are 

mentioned in this chapter. This chapter includes a description of the source of materials used 

during the study along with a brief outline of the adopted methodology, scheme of 

experiment done and details of the parameters of several characterization techniques 

employed to fulfil the research objectives. 

3.1 Materials 

ɛ-Caprolactone, Poly dimethyl siloxane bis (3-amino) terminated (NH2-PDMS30-NH2; 

Mn=2500 g/mol), Stannous (II) ethyl hexanoate are obtained from Sigma Aldrich. Acryloyl 

chloride is procured from Alfa Aesar. Triethyl amine, 1-Vinyl-2-pyrrolidone (NVP) and 

Dimethoxy-2-phenylacetophenone (DMAP) is supplied by Avra. Reagent grade sodium 

carbonate, anhydrous sodium sulphate from CDH, Chloroform from Thermo Scientific, 

Ethanol from CSC, dry Dichloromethane and Methanol from Merck are purchased. 

3.2 Methods 

3.2.1 Synthesis of PCL-PDMS-PCL triblock photocrosslinked copolymer  

The PCL-PDMS-PCL triblock polymers are synthesized in three steps to obtain 

photocrosslinked polymeric films. Ring opening polymerization of ɛ-caprolactone in the 

presence of bis-(3-aminopropyl) terminated poly dimethyl siloxane (NH2-PDMS30-NH2) and 

tin catalyst yields the diol macromer. The proportion of ɛ-caprolactone to PDMS determines 

the length of PCL segments. AcO-PCLn-PDMS30-PCLn (n=5,10,20,30,40) is obtained by 

reacting the terminal hydroxyl group with acryloyl chloride. Under UV illuminance a flexible 
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film is obtained. As per PCL chain length the samples nomenclature is given as PCL, 40-40, 

30-30, 20-20, 10-10 and 5-5 for PCL homopolymer, PCL40-PDMS30-PCL40, PCL30-PDMS30-

PCL30, PCL20-PDMS30-PCL20, PCL10-PDMS30-PCL10, and PCL5-PDMS30-PCL5 respectively. 

A pictorial representation of these three steps is shown in Figure 3.1, 3.2 and 3.3. The 

reaction scheme involved in synthesis and fabrication of PCL homopolymer and PCL-

PDMS-PCL triblock copolymer film is shown in scheme 3.1 and 3.2, respectively. 

 

Figure 3.1. Preparation of hydroxyl terminated macromer 

 

Figure 3.2. Preparation of acrylic terminated PCL-PDMS macromer 
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Figure 3.3. UV curing of acrylic terminated macromer 

3.2.1.1 Synthesis of Hydroxyl group terminated PCL40-PDMS30-PCL40 macromer 

NH2-PDMS30-NH2(4.00 gm, 1.6 mmol), ɛ-caprolactone (14.61 gm, 128mmol) and stannous 

octoate (0.016 gm, 0.039mmol) are poured into a 250 ml round bottom flask with magnetic 

Teflon bead. The reaction is carried out for 24 hrs. at 145℃ in nitrogen atmosphere and cool 

down to room temperature. The crude product is dissolved in least required amount of 

chloroform and precipitated in an excess of methanol. A rotatory evaporator is used to dry the 

separated product. A solid wax type material is obtained.  

3.2.1.2 Synthesis of Hydroxyl group terminated PCL30-PDMS30-PCL30 macromer 

NH2-PDMS30-NH2(4.00 gm, 1.6 mmol), ɛ-caprolactone (10.96 gm, 96 mmol) and stannous 

octoate (0.016 gm, 0.039mmol) are reacted as above. A solid wax type material is obtained.  

3.2.1.3 Synthesis of Hydroxyl group terminated PCL20-PDMS30-PCL20 macromer 

NH2-PDMS30-NH2(4.00 gm, 1.6 mmol), ɛ-caprolactone (7.30gm, 64mmol) and stannous 

octoate (0.016 gm, 0.039mmol) are reacted as above. A soft-solid type material is obtained.  

3.2.1.4 Synthesis of Hydroxyl group terminated PCL10-PDMS30-PCL10 macromer 

NH2-PDMS30-NH2(4.00 gm, 1.6 mmol), ɛ-caprolactone (3.60 gm, 32 mmol) and stannous 

octoate (0.016 gm, 0.039mmol) are reacted as above. A semi-solid type material is obtained.  
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3.2.1.5 Synthesis of Hydroxyl group terminated PCL5-PDMS30-PCL5 macromer 

NH2-PDMS30-NH2(4.00 gm, 1.6 mmol), ɛ-caprolactone (1.82 gm, 16 mmol) and stannous 

octoate (0.016 gm, 0.039mmol) are reacted as above. A semi-solid type material is obtained.  

3.2.1.5 Synthesis of PCL diol macromer 

ɛ-caprolactone (19.00gm, 166mmol), Ethylene glycol (126mg, 2mmol) and stannous octoate 

(0.042 gm, 0.039mmol) are reacted as above. A solid white material is obtained.  

3.2.1.6 Synthesis of acrylic terminated PCL40-PDMS30-PCL40 macromer 

Hydroxyl terminated PCL40-PDMS30-PCL40 macromer (6.20 gm, 0.54 mmol) and 4–

(dimethyl amino)-pyridine (DMP)(0.0023 gm, 0.019 mmol) are dissolved in 140ml of 

anhydrous dichloromethane under nitrogen purge at room temperature. Acryloyl chloride 

(0.24 gm, 2.60 mmol), and triethyl amine (0.11 gm, 1.09 mmol) and is added dropwise under 

constant magnetic stirring when RB is sealed with rubber septum and nitrogen atmosphere 

was maintained. Mixing is carried out for 30 min. at RT. Then RB is transferred to condenser 

with nitrogen atmosphere setup and reaction is carried out at 50℃ for 20 hrs. The solvent is 

removed by rotatory evaporator. Obtained product is dissolved into ethyl acetate. This 

solution filtered to remove triethylamine hydrochloride salt. Ethyl acetate withdrawn using 

rotary evaporator under low pressure. The isolated product dissolved in DCM and washed 

with 2M Na2CO3. This mixture placed in separating funnel to form layers. The organic layer 

is isolated, dried with anhydrous Na2SO4, filtered and compound is extracted by removing 

solvents in rotatory evaporator. A solid yellowish waxy type material obtained.   

3.2.1.7 Synthesis of acrylic terminated PCL30-PDMS30-PCL30 macromer 

Hydroxyl terminated PCL30-PDMS30-PCL30 macromer (7.0 gm, 0.75 mmol) and 4–(dimethyl 

amino)-pyridine (DMP)(0.0023 gm, 0.019 mmol) are dissolved in 140ml of anhydrous 

dichloromethane under nitrogen purge at room temperature. Acryloyl chloride (0.15 gm, 1.6 
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mmol), and triethyl amine (0.28 gm, 3.00 mmol) are reacted as above. A solid yellowish 

waxy type material obtained.  

3.2.1.8 Synthesis of acrylic terminated PCL20-PDMS30-PCL20 macromer 

Hydroxyl terminated PCL20-PDMS30-PCL20 macromer (5.5 gm, 0.778 mmol) and 4 – 

(dimethyl amino)-pyridine (DMP)(0.0023 gm, 0.019 mmol) are dissolved in 140ml of 

anhydrous dichloromethane under nitrogen purge at room temperature. Acryloyl chloride 

(0.281 gm, 3.11 mmol), and triethyl amine (0.157gm, 1.56 mmol) and reacted as above. A 

soft-solid yellowish waxy type material obtained.  

3.2.1.9 Synthesis of acrylic terminated PCL10-PDMS30-PCL10 macromer 

Hydroxyl terminated PCL10-PDMS30-PCL10 macromer (7.1 gm, 1.48 mmol) and 4 – 

(dimethyl amino)-pyridine (DMP) (0.0023 gm, 0.019 mmol) are dissolved in 140ml of 

anhydrous dichloromethane under nitrogen purge at room temperature. Acryloyl chloride 

(0.81 gm, 8.91 mmol), and triethyl amine (0.30gm, 2.97 mmol) are reacted as above. A semi-

solid yellowish waxy type material obtained.  

3.2.1.10 Synthesis of acrylic terminated PCL5-PDMS30-PCL5 macromer 

Hydroxyl terminated PCL5-PDMS30-PCL5 macromer (5.8 gm, 1.60 mmol) and 4– (dimethyl 

amino)-pyridine (DMP) (0.0023 gm, 0.019 mmol) are dissolved in 140ml of anhydrous 

dichloromethane under nitrogen purge at room temperature. Acryloyl chloride (0.60 gm, 6.4 

mmol), and triethyl amine (0.32 gm, 3.2 mmol) are reacted as above. A semi-solid yellowish 

waxy type material obtained.  

3.2.1.11 Synthesis of acrylic terminated PCL macromer 

Hydroxyl terminated PCL macromer (19.00 gm, 2mmol) and 4 – (dimethyl amino)-pyridine 

(DMP)(0.0023 gm, 0.019 mmol) are dissolved in 140ml of anhydrous dichloromethane under 

nitrogen purge at room temperature. Acryloyl chloride (8.5 gm, 8 mmol), and triethyl amine 

(0.51gm, 5 mmol) are reacted as above. A solid white waxy type material obtained.  
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3.2.1.12 Photo-crosslinking of macromers 

For crosslinked structure, the acrylated macromers are dissolved in dichloromethane at 25 

wt.%. 150µL of photocatalyst solution was added to each 1 ml of the prepared macromer 

solution. The photocatalyst solution prepared by adding 10 wt.% of DMAP in NVP. The 

mixed solution is added in macromer solution, poured in petri dish with cover and exposed to 

UV light of intensity 9mW/cm2 wavelength 365nm for 4 min.  Step-by-step reactions 

involved in preparation of photo-crosslinked films are shown in Schemes 3.1 and 3.2. 

 

Scheme 3.1. Schematic representation of chemical reaction involved in PCL film preparation 
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Scheme 3.2. Schematic representation of chemical reaction involved in PCL-PDMS-PCL 

film preparation 
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3.2.2 Fourier Transform Infrared (FTIR) Spectroscopy 

For the functional group or structural analysis, pure PCL and PCL-PDMS-PCL triblock 

polymeric films are analysed by ATR- FTIR spectrophotometer (Perkin Elemer) using 

transmittance mode in the spectral range of 4000 to 500 cm-1 in ambient condition. The 

instrument is shown as Figure 3.4.  

 

Figure 3.4. Fourier Transform Infrared (FTIR) Spectrophotometer (Perkin Elemer) 

3.2.3 Nuclear Magnetic resonance (NMR) Spectroscopy 

1H NMR spectrum of the diol and acrylated PCL and PCL-PDMS-PCL macromers are 

recorded on a Bruker Advance Core 400 MHz spectrometer as shown in Figure 3.5 with an 

upgraded console using CDCl3 as a solvent and tetramethyl silane as an internal standard.  

 

Figure 3.5. Nuclear Magnetic Resonance (Bruker - Advance Core 400 MHz) 
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3.2.4 Gel permeation chromatography (GPC)  

GPC analysis is carried out with Perkin Elmer series 200 instrument as shown in Figure 3.6. 

Chromatographic grade tetrahydrofuran (THF) is used as eluent at a flow rate of 1.0 ml/min 

at 30℃. Acrylated macromer samples are dissolved at a concentration of 12 mg/mL in THF. 

Calibration curves made from polystyrene standards are used to calculate molecular weights.  

 

Figure 3.6. Gel permeation chromatography (Perkin Elmer series 200)  

3.2.5 Rheology  

Rheological characterizations were performed on MCR 302 rotational rheometer (Anton Paar 

GmbH, Graz, Austria) as shown in Figure 3.7 with the 25 mm parallel plate fixtures. The 

oscillatory strain sweep was performed to determine a common shear strain region from 0.01 

– 100% at 10 rad/sec. The dynamic frequency sweep was then performed at the strain level of 

1.0% in angular frequency range of 0.1 rad/s to 100 rad/sec. The creep recovery tests were 

performed with the stress level of 10 Pa for 300 sec then recovery measured at released stress 

for 600 sec. The structure recovery test was performed by applying 0.01s-1 rotational pre 

shear to release the residual stress that might have produced at the time of sample 

preparation. All the samples were passed through three test intervals 1) reference interval (at 

low shear =0.01 s-1) for 200 sec, 2) high shear interval at 1s-1 for 150 sec and 3) regeneration 

interval at a shear rate of 0.01 s-1 for 360 sec to examine structure regeneration from applied 
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high shear to low shear rates. Stress relaxation test was performed at pre-strain pre strain 

level (low strain 0.01%) for 100 sec and then relaxation strain level (high strain 1%) for next 

2000 sec and shear stress are measured against the time interval. The values of strains to be 

applied for respective solutions were determined by amplitude sweep in LVER. All the tests 

were repeated to confirm the results and minimize the error. 

 

Figure 3.7. MCR 302 Rotational Rheometer (Anton Paar GmbH, Graz, Austria) 

3.2.6 Mechanical Properties 

Mechanical properties (tensile strength and percentage elongation at break) are measured 

with a Universal Testing Machine (Instron 3400, USA) at a crosshead speed of 10mm/min 

with micro tensile specimen having the dimension of length of 80mm, width of 10 mm and 

thickness of 1 mm. 

3.2.7 Thermogravimetry Analysis (TGA) 

The thermal degradation behaviour of PCL-PDMS-PCL and PCL photo-crosslinked films is 

determined from 30 to 700℃ at a heating rate of 10℃/min by taking around 0.3 mg of film 

sample using Perkin Elmer TGA 4000. All tests are carried out under a nitrogen atmosphere. 

The instrument is shown as Figure 3.8.  
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Figure 3.8. Thermal Gravimetry Analyser (TGA 4000 - Perkin Elemer) 

3.2.8 Differential Scanning Calorimetry (DSC) 

DSC analysis is executed by using Perkin- Elmer DSC 8000 equipment as shown in Figure 

3.9. For each test run, five milligrams (5 mg) are measured under nitrogen atmosphere. DSC 

thermogram for non-isothermal mode are obtained between -20℃ and 100℃ at 10℃/min, 

melting peak of second run and cooling peak of first run are reported. For isothermal 

measurements, sample is initially heated from -10 to 100℃ at 10℃/min. After a hold of 5 

min at 100℃, the sample rapidly cools down (60℃/min) to selected crystallization 

temperatures (Tc). Isothermal essays are followed to isothermal crystallization temperatures 

for 15 mins., and samples are heated again up to 100℃ (10 ℃/min) to determine heat of 

fusion(ΔHf) and crystal melting temperature (Tcm). Heat of crystallization(ΔHc) is recorded at 

varied isothermal crystallization temperatures (Tc) as a function of time (t) for each cycle in 

all samples. 
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Figure 3.9. Differential Scanning Calorimetry (DSC 8000- Perkin Elmer) 

3.2.10 Wide Angle X-Ray diffraction (WAXRD) 

Wide Angle X-ray diffractograms are recorded by Panalytical’s X’Pert Pro X-Ray 

diffractometer (Figure 3.10) at 𝜆 = 1.5406 Å using Cu Kα as the radiation source. The pure 

and triblock copolymeric film samples are scanned over the 2θ angle from 10º to 35º at room 

temperature. WAXS are recorded by Anton – Paar SAXSpace with X-ray source of Primux 

3000 sealed tube of Cu. The pure and triblock copolymeric films 40-40, 30-30, 20-20 are 

measured for q values of 0.2 to 2.0 Å-1 with custom-designed multilayer optics. 

 

Figure 3.10. Panalytical’s X’Pert Pro X-Ray diffractometer 
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3.2.11 Dynamic Mechanical Analysis (DMA) 

The quasi-static mechanical evaluation is performed by Dynamic Mechanical Analyser 

(DMA 4000-Perkin Elemer) (Temperature ramp and frequency sweep) using a with 

deformation mode of single cantilever bending. Temperature sweeps are performed from 35 

to 65℃ (ramp rate of 2℃/min), at constant strain of 1% and frequency of 1 Hz. The tests are 

performed on strip specimens with dimensions of 10×8×0.8 mm3 at tension mode. The 

instrument is shown as Figure 3.11. 

 

Figure 3.11. Dynamic Mechanical Analyser (DMA 4000-Perkin Elemer) 

3.2.12 Optical microscopy 

The crystalline morphology is observed with an optical microscope (Motic BA410E) under 

40x magnification. Samples are heated to 100℃ and kept for 5 minutes to remove thermal 

history, then cooled to 10℃ at the rate of 20℃/min and optical microscope micrographs are 

recorded using a Moticam Pro 285A camera. The equipment is shown as Figure 3.12. 



66 
 

 

Figure 3.12. Optical Microscope (Motic BA410E) with Moticam Pro 285A camera 

 3.2.13 Scanning Electron Microscope (SEM) 

Scanning electron microscopy is carried out with CARL ZEISS EVO 50 (Figure 3.13), 

samples were sputter coated with gold to analysis. 

 

Figure 3.13. Scanning Electron Microscope (SEM CARL ZEISS EVO 50) 



67 
 

3.2.14 Soil burial test 

Indoor soil burial experiments are carried out as reported by Luduens et al. [46] Natural 

microflora present in soil (Pinocha type) is used as the degrading medium. Several specimens 

of rectangular shape (20 mm x 10 mm x 0.6–0.9 mm) of PCL-PDMS-PCL films are buried in 

soil after placing them in nylon mesh to permit the access of microorganisms and moisture 

and the easy retrieval of the degraded samples. Total 100 gms of soil used to bury the 

samples where specimens kept above 60 gms of soil then 40 gms of soil placed above in 

order to ensure the aerobic degradation. The buried samples are removed at regular intervals 

(20, 40, 60, 80, 100, 120, 140, 160, 180 days) for different characterisations. The samples are 

washed carefully with water to remove the soil debris from the surface of the samples after 

each interval of soil burial. Samples are air dried at ambient temperature until a constant 

weight. The biodegradability is evaluated by measuring and comparing the weight change 

(loss) before and after burial. The weight losses of buried samples are calculated using 

Equation (3.1). The tests are carried out at room temperature of 30±2℃ and relative humidity 

is kept around 80% by adding distilled water. The specimens are weighed on an analytical 

balance in order to determine the weight loss (%WL): 

%𝑊𝐿 =  
𝑊0−𝑊𝑡

𝑊0
    (3.1) 

Here, W0 is initial weight and Wt is weight at time t of buried samples. The average value of 

three replicates is reported for all samples. 

3.2.15 Shape memory properties 

Specimen size of ~40 mm (length) × ~10 mm (width) × ~1 mm (thickness) and ~40 mm 

(length) × ~10 mm (width) × ~0.5 mm (thickness) is used to determine shape memory 

properties quantitatively. The initial length is recorded as εo, then specimen is placed at 70℃ 

in hot water bath for few seconds to melt the crystals (sample turns from opaque to 

translucent), stretched to two-fold of initial length (this length is denoted as εm), cool down to 
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their respective Tc in a cold-water bath with unloading of external forces (after removal of 

load, length is denoted as εu) to obtain temporary shape. The deformed shape is heated again 

to 70℃ in a hot water bath to recover its original shape (this length is denoted as εp). A 

pictorial representation of quantitative analysis is shown in Figure 3.14. The test is repeated 

three times for all samples and average values with deviation are reported. The shape 

recovery ratio (Rr) and the shape fixity ratio (Rf) are determined on the basis of the equations 

(3.2) and (3.3) below: 

      𝑅𝑟 =  
𝜀 𝑢− 𝜀 𝑝 

𝜀 𝑢− 𝜀 𝑜

 𝑋 100                                               (3.2) 

𝑅𝑓 =  
𝜀 𝑢− 𝜀 𝑜 

𝜀 𝑚− 𝜀 𝑜

 𝑋 100                                               (3.3) 

The qualitative analysis of shape memory property of rectangular shaped and cross shaped 

samples of PCL and its copolymer is performed by fixing to temporary shape of ring and 

cube respectively, after cooling at Tc in cold water bath and further shape is recovered by 

placing them in hot water bath at 70℃. The time required for shape recovery is measured. 

Experiment is repeated three times and average values are reported. 

Figure 3.14. Pictorial representation of shape memory properties analysis in quantitative 

mode 
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Chapter 4 

Synthesis of PCL-PDMS-PCL Triblock Copolymers and its 

Structural Characterization 

Overview 

In this chapter, structural characterization of PCL-PDMS-PCL triblock copolymers is 

discussed. The structural evaluation includes determination of molecular weight by Gel 

permeation chromatography and Nuclear Magnetic resonance, while chemical structure 

analysis carried out with the help of FTIR and NMR. The percentage crystallinity is 

calculated by X-ray diffraction in this chapter.  Molecular weight obtained for PCL and its 

copolymers 40-40, 30-30, 20-20, 10-10 and 5-5 is 9500, 11640, 9348, 4783 and 3641 g/mol 

and percentage crystallization obtained from XRD is nil, 4.7%, 23.8%, 30.6%, 36.1% and 

41.9% respectively. 

4.1 Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR)  

Photocrosslinked PCL-PDMS-PCL films are characterized for attenuated total reflection-

fourier transform infrared spectroscopy (ATR-FTIR) as shown in Figure 4.1. The PCL 

characteristic bands are recorded at 2943 cm-1 for asymmetric –CH2 stretching, 2865 cm-1 for 

symmetric –CH2 stretching, 1725 cm-1   for C=O carbonyl stretching, 1294 cm-1 for C–O and 

C–C stretching, 1239 cm-1 for asymmetric C–O–C stretching and 1169 cm-1 for symmetric 

C–O–C stretching. For PCL-PDMS-PCL copolymer films additional peaks are observed at 

800 cm-1 for Si-C (methyl of PDMS), a weak band around 3300 cm-1 assigned to amino end 

groups, a very sharp peak for -CH3 stretching at 1259 cm-1 and doublet at 1090 and 1018 cm-1 

assigned to Si-O-Si stretching. A non-hydrogen bonded C=O peak at 1723 cm-1 is observed 

due to ester group in PCL and there is slight shift observed in –CH2 stretching at 2961 cm-1 in 

case of triblock copolymer than pure PCL due to additional –CH2 chain of PDMS.  Hydrogen 
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bonded C=O stretching peak at 1649 cm-1 of amide I and H-N-C=O stretching peak at 1531 

cm-1 of amide II are observed. Similarly, Meikail et al. have reported secondary amide and 

protonated amine stretching at 1648 cm-1 and 1555 cm-1.[245] Poojari et al. reported 

absorption band at 1100 cm-1 for Si-O-Si  and at 1260 cm-1 for Si-CH3 bonds of PDMS.[11] 

Azemar et al. have reported peaks at 800 cm-1 for Si-CH3 bonds and 1097 cm-1 for Si-O bond 

of PDMS while peaks at 2943 cm-1 for methylene and at 1725 cm-1 for ester of PCL.[4, 14] 

Chan et al. have synthesized poly(PCL/PDMS) urethane and reported similar peaks.[246]  

 

Figure 4.1. ATR-FTIR of photocrosslinked pure PCL and PCL-PDMS-PCL triblock 

copolymer films 
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4.2 Nuclear Magnetic resonance (NMR) 

Dihydroxy terminated PCL, PCL-PDMS-PCL and acrylated PCL, PCL-PDMS-PCL are 

characterized for 1H NMR. 1H NMR spectrum of PCL diol and PCL-PDMS-PCL diol are 

presented in Figure 4.2 (a), (b), (c), (d), (e), (f), (g), (h), (k). (l). Number average molecular 

weight (Mn) and ratio of PCL/PDMS blocks are obtained by NMR spectroscopy results. 

4.2.1 NMR shifts of Hydroxyl group terminated PCL40-PDMS30-PCL40 macromer 

δ = 0.01–0.06 due to 200H of SiCH3, δ = 0.52 due to 4H of SiCH2CH2CH2-, δ = 1.38 due to 

160H of -CH2CH2CH2CH2CH2OH, δ = 1.60 due to 320H of -CH2CH2CH2CH2CH2OH), δ = 

2.16 due to 4H of -SiCH2CH2CH2NH-, δ = 2.32 due to 160H of -CH2CH2CH2CH2CH2OH, δ 

= 3.20 due to 4H of -SiCH2CH2CH2-, δ = 3.63 due to 2H of NH and δ = 4.05 due to 160H of -

CH2CH2CH2CH2CH2OH. 

4.2.2 NMR shifts of Hydroxyl group terminated PCL30-PDMS30-PCL30 macromer 

δ = 0.01–0.06 due to 200H of SiCH3, δ = 0.52 due to 4H of SiCH2CH2CH2-, δ = 1.39 due to 

120H of -CH2CH2CH2CH2CH2OH, δ = 1.65 due to 240H of -CH2CH2CH2CH2CH2OH, δ = 

2.18 due to 4H of -SiCH2CH2CH2NH-, δ = 2.35 due to 120H of -CH2CH2CH2CH2CH2OH, δ 

= 3.25 due to 4H of -SiCH2CH2CH2-, δ = 3.66 due to 2H of NH and δ = 4.08 due to 120H of -

CH2CH2CH2CH2CH2OH. 

4.2.3 NMR shifts of Hydroxyl group terminated PCL20-PDMS30-PCL20 macromer 

δ = 0.03–0.06 due to 200H of SiCH3, δ = 0.50 due to 4H of SiCH2CH2CH2-, δ = 1.39 due to 

80H of -CH2CH2CH2CH2CH2OH, δ = 1.58 due to 160H of -CH2CH2CH2CH2CH2OH, δ = 

2.11 due to 4H of -SiCH2CH2CH2NH-, δ = 2.29 due to 80H of -CH2CH2CH2CH2CH2OH, δ = 

3.22 due to 4H of -SiCH2CH2CH2-, δ = 3.61 due to 2H of NH and δ = 4.00 due to 80H of -

CH2CH2CH2CH2CH2OH. 
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4.2.4 NMR shifts of Hydroxyl group terminated PCL10-PDMS30-PCL10 macromer 

δ = 0.01–0.06 due to 200H of SiCH3, δ = 0.50 due to 4H of SiCH2CH2CH2-, δ = 1.39 due to 

40H of -CH2CH2CH2CH2CH2OH, δ = 1.61 due to 80H of -CH2CH2CH2CH2CH2OH, δ = 2.11 

due to 4H of -SiCH2CH2CH2NH-, δ = 2.29 due to 40H of -CH2CH2CH2CH2CH2OH, δ = 3.20 

due to 4H of -SiCH2CH2CH2-, δ = 3.57 due to 2H of NH and δ = 4.00 due to 40H of -

CH2CH2CH2CH2CH2OH. 

4.2.5 NMR shifts of Hydroxyl group terminated PCL5-PDMS30-PCL5 macromer 

δ = 0.06–0.12 due to 200H of SiCH3, δ = 0.54 due to 4H of SiCH2CH2CH2-, δ = 1.38 due to 

20H of -CH2CH2CH2CH2CH2OH, δ = 1.67 due to 40H of -CH2CH2CH2CH2CH2OH, δ = 2.11 

due to 4H of -SiCH2CH2CH2NH-, δ = 2.27 due to 20H of -CH2CH2CH2CH2CH2OH, δ = 3.23 

due to 4H of -SiCH2CH2CH2-, δ = 3.66 due to 2H of NH and δ = 4.07 due to 20H of -

CH2CH2CH2CH2CH2OH. 

4.2.6 NMR shifts of PCL diol macromer 

δ = 1.40 due to 150H of -CH2CH2CH2CH2CH2CO-, δ = 1.66 due to 300H of -

CH2CH2CH2CH2CH2CO-, δ = 2.32 due to 150H of -CH2CH2CH2CH2CH2CO-, δ = 3.63 due 

to 4H of -CH2OH, δ = 4.05 due to 150H of -CH2CH2CH2CH2CH2CO-, δ = 4.3 due to 4H of -

CH2CO-. 

4.2.7 NMR shifts of acrylic terminated PCL40-PDMS30-PCL40 macromer 

δ = 0.04–0.12 due to 200H of SiCH3, δ = 0.53 due to 4H of -SiCH2CH2CH2NH-, δ = 1.37 due 

to 160H of -CH2CH2CH2CH2CH2O-, δ = 1.61 due to 320H of -CH2CH2CH2CH2CH2O-, δ = 

2.09 due to 4H of -SiCH2CH2CH2NH-, δ = 2.30 due to160H of -CH2CH2CH2CH2CH2O-, δ = 

3.10 due to 4H of -SiCH2CH2CH2NH-, δ = 3.64 due to 2H of NH, δ = 4.13 due to 160H of -

CH2CH2CH2CH2CH2O-, δ = 5.82 due to 2H of -CH=CH2, δ = 6.10 due to 2H of -CH=CH2, δ 

= 6.40 due to 2H of -CH=CH2. 
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4.2.8 NMR shifts of acrylic terminated PCL30-PDMS30-PCL30 macromer 

δ = 0.04–0.12 due to 200H of SiCH3, δ = 0.51 due to 4H of -SiCH2CH2CH2NH-, δ = 1.39 due 

to 120H of -CH2CH2CH2CH2CH2O-, δ = 1.62 due to 240H of -CH2CH2CH2CH2CH2O-, δ = 

2.11 due to 4H of -SiCH2CH2CH2NH-, δ = 2.29 due to120H of -CH2CH2CH2CH2CH2O-, δ = 

3.15 due to 4H of -SiCH2CH2CH2NH-, δ = 3.62 due to 2H of NH, δ = 4.13 due to 120H of -

CH2CH2CH2CH2CH2O-, δ = 5.82 due to 2H of -CH=CH2, δ = 6.11 due to 2H of -CH=CH2, δ 

= 6.40 due to 2H of -CH=CH2. 

 4.2.9 NMR shifts of acrylic terminated PCL20-PDMS30-PCL20 macromer 

δ = 0.04–0.12 due to 200H of SiCH3, δ = 0.51 due to 4H of -SiCH2CH2CH2NH-, δ = 1.39 due 

to 80H of -CH2CH2CH2CH2CH2O-, δ = 1.62 due to 160H of -CH2CH2CH2CH2CH2O-, δ = 

2.11 due to 4H of -SiCH2CH2CH2NH-, δ = 2.30 due to 80H of -CH2CH2CH2-CH2CH2O-, δ = 

3.22 due to 4H of -SiCH2CH2CH2NH-, δ = 3.70 due to 2H of NH, δ = 4.13 due to 80H of -

CH2CH2CH2CH2CH2O-, δ = 5.82 due to 2H of -CH=CH2, δ = 6.11 due to 2H of -CH=CH2, δ 

= 6.40 due to 2H of -CH=CH2. 

4.2.10 NMR shifts of acrylic terminated PCL10-PDMS30-PCL10 macromer 

δ = 0.04–0.12 due to 200H of SiCH3, δ = 0.51 due to 4H of -SiCH2CH2CH2NH-, δ = 1.39 due 

to 40H of -CH2CH2CH2CH2CH2O-, δ = 1.62 due to 80H of -CH2CH2CH2CH2CH2O-, δ = 2.11 

due to 4H of -SiCH2CH2CH2NH-, δ = 2.30 due to 40H of -CH2CH2CH2-CH2CH2O-, δ = 3.22 

due to 4H of -SiCH2CH2CH2NH-, δ = 3.70 due to 2H of NH, δ = 4.13 due to 40H of -

CH2CH2CH2CH2CH2O-, δ = 5.82 due to 2H of -CH=CH2, δ = 6.11 due to 2H of -CH=CH2, δ 

= 6.40 due to 2H of -CH=CH2. 

4.2.11 NMR shifts of acrylic terminated PCL5-PDMS30-PCL5 macromer 

δ = 0.01–0.22 due to 200H of SiCH3, δ = 0.50 due to 4H of -SiCH2CH2CH2NH-, δ = 1.39 due 

to 20H of -CH2CH2CH2CH2CH2O-, δ = 1.62 due to 40H of -CH2CH2CH2CH2CH2O-, δ = 2.11 

due to 4H of -SiCH2CH2CH2NH-, δ = 2.27 due to 20H of -CH2CH2CH2-CH2CH2O-, δ = 3.23 
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due to 4H of -SiCH2CH2CH2NH-, δ = 3.61 due to 2H of NH, δ = 4.02 due to 20H of -

CH2CH2CH2CH2CH2O-, δ = 5.82 due to 2H of -CH=CH2, δ = 6.11 due to 2H of -CH=CH2, δ 

= 6.40 due to 2H of -CH=CH2. 

4.2.12 NMR shifts of acrylic terminated PCL macromer 

δ = 1.40 due to 140H of -CH2CH2CH2CH2CH2CO-, δ =1.66 due to 280H of -

CH2CH2CH2CH2CH2CO-, δ = 2.32 due to 140H of -CH2CH2CH2CH2CH2CO-, δ =4.05 due to 

140H of -CH2CH2CH2CH2CH2CO-, δ =4.3 due to 4H of -CH2CO-, δ =5.82 due to 2H of -

CH=CH2, δ =6.11 due to 2H of -CH=CH2, δ = 6.40 due to 2H of -CH=CH2. 

Azemar et al. have reported similar spectra with peaks at δ = 0.06, 1.35, 1.65, 2.3 and 4.05 

ppm of PCL-PDMS-PCL triblock and composition is calculated by ratio of absorbance at 

0.06 ppm and 4.05 ppm.[4] Tian et al. have reported proton NMR for PCL diol and acrylic 

terminated PCL similarly.[162]  Number average molecular weight (Mn) and PCL:PDMS 

ratio are determined with help of 1H NMR. Molecular weights calculated by feed monomer, 

proton NMR and GPC is presented in Table 4.1. 

Table 4.1. Molecular weights by NMR, GPC, PDI by GPC and percentage conversion of 

PCL and PCL-PDMS-PCL macromers. 

Sample name Conversion (%) Mn (theoretical)  

(g mol−1) 

Mn (NMR) 

 (g mol−1) 

Mn (GPC) 

(g mol−1)  

PDI (GPC) 

PCL 98.0% 9500 8668 8653 1.8 

40-40 98.5% 11630 11220 11138 1.8 

30-30 97.3% 9348 9164 9090 1.7 

20-20 97.5% 7065 6984 7066 1.6 

10-10 96.0% 4783 4406 4643 1.5 

5-5 95.0% 3641 3266 3498 1.3 
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Figure 4.2. 400 MHz 1H NMR spectroscopy of (a) 40-40 OH, (b) 40-40 OAc, (c) 30-30 OH 

(d) 30-30 OAc (e) 20-20 OH (f) 20-20 OAc (g)10-10 OH (h) 10-10 OAc (i) 5-5 OH (j) 5-5 

OAc (k) PCL OH (l) PCL OAc  
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4.3 X-Ray diffraction (XRD) 

XRD diffractogram of PCL and PCL-PDMS-PCL triblock copolymeric films with varying 

PCL chain length and constant PDMS block lengths are presented in Figure 4.3. Three strong 

peaks marked with (*)  observed at 2θ angles 21.4⁰, 22.0⁰ and 23.6⁰, represent the (110), 

(111) and (200) planes, respectively, and a faint peak at 29.5° due to (210) plane of PCL 

exhibit the orthorhombic crystal structure[10]. Irrespective of chain length of PCL, well-

defined crystal structure of PCL at 2θ = 21.4⁰ and 23.6⁰ is visible without any shift upon 

copolymerization with PDMS. The intensity of peaks is reduced as the PCL content of the 

copolymer decreases, indicating very good crystallinity in the PCL phase which is well 

corelated with the crystal growth observed in optical microscope. However, sample of 5-5 

does not show any diffraction peak. The degree of crystallinity, Xc(%), is calculated by 

integrating the intensity of the diffraction peaks, crystalline region, Ic (which includes the 

areas corresponding to the (110), (111), (200) and (210) reflections in PCL), and the 

amorphous region, Ia using the equation (4.3): 

                                               𝑋𝑐 (%) = 
𝐼𝑐

𝐼𝑐+𝐼𝑎
 x 100                                      (4.3) 
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Figure 4.3. X-ray diffraction plot of PCL and PCL-PDMS-PCL triblock copolymer films 

The crystallinity of the PCL phase in these copolymers is influenced by the volume fractions 

and molecular weights of the PCL and PDMS blocks. There is very less crystallinity 

observed for 10-10 and no crystallinity for 5-5 samples. Table 4.2 shows the degree of 

crystallinity of the PCL in triblock copolymers using XRD patterns. With increase in PCL 

chain length, the percentage crystallinity increases from 4.7% to 36.1%. Lipase catalysed 

PCL-PDMS-PCL triblock copolymer synthesized by Poojari et al.[11]  having PDMS of Mn 

2500 and PCL chain length varying from 50-50 to 5-5 reported 54% to 40% crystallinity by 

XRD on the basis of PCL content though actual crystallinity is 54% to 9%  for complete 

copolymer corresponds to high molecular weight ranges from 13950 to 4400 g/mol. Yilgor et 



79 
 

al.[10] synthesized PCL-PDMS-PCL triblock copolymer with different Mn of PDMS block 

reported XRD crystallinity from 37% to 65% (on the basis of PCL content in copolymer) 

with increasing PCL content.  

Table 4.2 Crystallinity of PCL-PDMS-PCL triblock copolymer 

Samples Crystallinity (%) by XRD 

PCL 41.9 

40-40 36.1 

30-30 30.6 

20-20 23.8 

10-10 4.7 

5-5 No crystallinity 

 

4.4 Conclusion 

The PCL and PCL-PDMS-PCL triblock shape memory films are prepared by ring-opening 

polymerization followed by photo-crosslinking. Variation in PCL chain length is obtained 

according to monomer feed ratio and chain length of PCL varies from 40-40 to 5-5 in 

copolymers. Molecular weight obtained in the range of 11640 g/mol to 3641 g/mol. The 

percentage crystallinity obtained from X-ray diffraction pattern is between nil to 41.9% and 

decreasing as the PCL chain length get reduced. 
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Chapter 5 

Rheological Characterization of PCL-PDMS-PCL Triblock 

Copolymer Films 

Overview 

The chapter is designed to give a detailed analysis of rheological characteristics of PCL-

PDMS-PCL triblock copolymer films. Oscillatory shear rheology tests are performed to 

measure the dynamics of the viscoelastic behaviour of photocrosslinked films above their 

crystal melting temperature (Tcm). Time dependent effect on the copolymer films has been 

analyzed by creep recovery behaviour. Their structure recovery is also evaluated.  

5.1 Linear viscoelastic region 

 

Figure 5.1. Amplitude sweep showing linear viscoelastic region (LVER) of PCL and PCL-

PDMS-PCL triblock polymer at 80℃.  
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The linear viscoelastic properties of the PCL-PDMS-PCL copolymers with different 

molecular weight or varying PCL chain length were determined at 80℃. During an amplitude 

sweep, the amplitude of the shear stress was varied at a constant frequency of 10 rad/s. For 

the analysis, storage modulus G’ & loss modulus G′′ are plotted against the deformation 

(shear strain %) and results are shown in Figure 5.1. At low deformation, G′ and G′′ are found 

to be constant representing sample structure is undisturbed. This region is called linear-

viscoelastic (LVE). As soon as the moduli start to decrease, the structure is disturbed and 

represents the end of the LVE-region and the strain termed as critical strain value (γc) The 

plateau value of G′ in the LVE-region describes the rigidity of the sample at rest; the plateau 

value G′′ is a measure for the viscosity of the unsheared sample. The critical strain value is 

14%, 10%, 7%, 3%, 5% and 10% for PCL, 40-40, 30-30, 20-20, 10-10 and 5-5 respectively. 

Bouakaz et al. reported critical strain value from 0.01 to 10% for PCL and its blends with 

epoxy functionalised graphene and different clays, where PCL shows critical strain value of 

10% at 120℃.[28] In different rheological studies of  linear polycaprolactone, four armed 

star polycaprolactone, PCL/polylactide blends and PCL/CNT composites are carried out at 

strain value of  5% by Chae et al.[18], Noroozi et al.[23]  and Vega et al.[32] The ratio of the 

two moduli (G’ and G”) gives information about the characteristic of the sample. If the 

storage modulus is larger than the loss modulus, the sample behaves more like a viscoelastic 

solid. In the opposite case (G’’ > G′ ) it behaves as viscoelastic fluid[247]. Here, all the 

composition showed viscoelastic solid behaviour. It can be seen that for pure PCL showed 

stable structure up to 10% shear strain and no crossover point up to 100%. On addition of 

PDMS block, all composition showed viscoelastic solid behaviour and stable structure up to 

1% but crossover point seen above 10% which represent deformation of structure and 

viscoelastic fluid behaviour after 10% shear strain. It indicates that addition of PDMS block 

and decreasing PCL chain length didn’t affect stability of structure due to increasing 



82 
 

crosslinking density but viscoelastic fluid behaviour at lower shear strain due to addition of 

complete amorphous phase as PDMS.  

5.2 Frequency Sweep 

A dynamic frequency sweep was carried out at LVR range (γ=1%) and frequency range in 

log scale of 0.1 rad/sec to 100 rad/sec at 80℃ to study storage modulus, loss modulus, loss 

factor and complex viscosity. For analysis, the storage modulus loss moduli are plotted 

against frequency in Figure 5.2. The storage modulus of PCL and PDPCL is increasing with 

decreasing molecular weight.  Loss modulus increases for PCL, 40-40, 30-30 and 20-20 then 

its decreases for 10-10 and 5-5. With increase in angular frequency the storage modulus and 

loss modulus both are increasing and there is no cross-over point observed in the graph. 

Similar trends were observed for PCL by Noroozi et al.[23] , Wang et al.[30] and Vega et 

al.[32] that storage modulus and loss modulus are increasing with increased angular 

frequency in the rheology study of PCL/ polylactide blends, PCL/cellulose nanocrystals 

composite and PCL/ multiwalled carbon nanotubes composites. In the whole range of angular 

frequency, storage modulus is dominant over loss storage, while the gap between storage and 

loss modulus is increases with decreasing molar mass of the polymeric films which 

represents increase in solid like behaviour.  
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Figure 5.2. Storage modulus and loss modulus verses angular frequency plots of PCL and 

PCL-PDMS-PCL triblock polymer at 80℃.  

To understand damping properties of any viscoelastic material loss factor (tan δ) is analysed. 

This is defined as the ratio of energy dissipated in the material during vibration to the 

maximum potential energy stored in the material i.e. ratio of loss modulus to storage 

modulus. When the tan δ<1, and G’>G”, meaning that the sample behaves as the viscoelastic 

solid, on the contrary, when tan δ>1, the sample behaves as the viscoelastic fluid[248]. Here 

it can be clearly observed in Figure 5.3 that tan δ is less than one for each polymer 

composition and decreases with decreasing molar mass. It indicates solid like behaviour is 

dominant with decreasing molar mass or decreasing chain length in terpolymer 

photocrosslinked films. Here the crosslink density plays a major role in these observations. 

As the molar mass decreases, overall chain length decreased between two crosslink points 

resulted in increases the crosslink density[12] as depicted in Figure 5.5. Before crosslinking 
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the sample get melt and flow when heated above Tcm. These crosslink points, keep intact the 

polymer into moulded shape even when the temperature goes above the Tcm, though change 

is opacity is observed after Tcm due to melting of crystalline part of PCL. This increased 

crosslinked density with decreasing molar mass, resulted to increase in storage modulus, 

decrease in loss factor, and more solid-like behaviour as shown by frequency sweep plot.  

Winter et al.[249] analysed linear viscoelasticity of crosslinked polymer at gel point and 

reported that storage modulus keeps increasing with increasing crosslink density. The values 

of loss factor of PCL increase with increasing slope indicating fluid like behaviour at higher 

frequency. In case of copolymers, loss factor values are almost similar throughout frequency 

range means there is no significance effect of vibration potential on viscoelastic property of 

copolymers film above their crystal melting temperature (Tcm). Phase shift angle plotted 

against angular frequency shows that phase angle of PCL shifted from 16⁰ to 26⁰ whereas, no 

significant change is observed in phase shift angle of copolymers. The phase angle is around 

22⁰ for 40-40, 15⁰ for 30-30, 8⁰-12⁰ for 20-20, 7⁰-10⁰ for 10-10 and 5⁰-7⁰ for 5-5.  

 

Figure 5.3. Loss factor and phase shift angle against angular frequency of PCL and PCL-

PDMS-PCL triblock polymer at 80℃. 
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Figure 5.4 Complex viscosity of PCL and PCL-PDMS-PCL triblock polymer at 80℃. 

 

Figure 5.5. Pictorial presentation of PCL-PDMS-PCL photo-crosslinked copolymer, with 

increase in PCL chain length, crosslink points decreases and overall crosslink density 

decreases  



86 
 

The frequency dependant viscosity function, also known as complex viscosity was 

determined in frequency range 0.1 to 100 rad/s. The complex viscosity shows increase in 

values with increase in crosslink density as shown in Figure 5.4.  At lower frequency 

viscosity is high and keeps decreasing with increasing frequency shows a complete shear 

thinning behaviour as shown in Figure 4. Shear thinning fluids are non-Newtonian fluids that 

display decreasing viscosity with increased shear rate and account for the majority of non-

Newtonian fluid flows. Because shear-thinning materials are commonly used in everyday 

activities and in industries, their behaviour has gotten a lot of study in recent decades[250].  

5.3 Creep and Creep recovery behaviour  

Creep and creep recovery experiments are used to assess the dimensional stability of 

polymeric material by understanding their time dependent viscoelastic deformation behaviour 

under constant stress and temperature[251]. The creep recovery test was done by applying a 

load of 10 Pa for 300 sec and then removed for another 600 sec. The change in strain 

percentage with time after removal of load used to evaluate creep recovery results as shown 

in Figure 5.6(a). When a constant load applied, a maximum deformation of 1.2% in PCL, 

3.5% in 40-40, 2.0% in 30-30, 0.7% in 20-20, 0.2% in 10-10 and 0.16% in 5-5was observed. 

After release of load, films recovered the deformation, and showed permanent deformation of 

0.5% in PCL, 2.5% in 40-40, 1.6% in 30-30, 0.2% in 20-20, 0.02% in 10-10 and 0.003% in 5-

5. In other words, creep recovery happened of 58% in PCL, 29% in 40-40, 20% in 30-30, 

71% in 20-20, 90% in 10-10 and 98% in 5-5. The 40-40, 30-30 and PCL showed high creep 

due to higher crystalline content because of more semi-crystalline PCL content and lesser 

creep recovery due to less crosslink density. Whereas, in 20-20, 10-10 and 5-5 very less creep 

observed due to higher viscous content in the form of PDMS and high recovery because of 

high crosslink density. Wang et al.[30] reported creep and recovery for PCL/cellulose 

nanocrystal (CNC) nanocomposite. PCL of molecular weight showed creep of around 37% 
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while lower creep reported for PCL/CNC nanocomposite system due to percolation of filler 

and no recovery was reported after removal of load. 

 

Figure 5.6(a). Creep and creep recovery of PCL and PCL-PDMS-PCL triblock polymer at 

80℃. 

 

Figure 5.6(b). Creep compliance of PCL and PCL-PDMS-PCL triblock polymer at 80℃ 
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The Creep Compliance, J(t), is defined as change in strain as a function of time under 

constant load applied instantaneously and provide a method to measure a material’s ability to 

flow under instant load applied. For a linear viscoelastic material, creep compliance doesn’t 

change with applied stress due to linear relationship between stress and strain. All samples 

show initial increase in J(t) then it became constant with time which implies viscoelastic 

behaviour of all compositions as shown in Figure 5.6(b). The primary factor affecting rate of 

creep compliance is weight average molecular weight (Mw) or entanglement distance of the 

polymer[252]. The creep compliance rate of the copolymers of varying Mw differs noticeably, 

with the PCL copolymer of bigger Mw indicating the higher rate of contact creep compliance. 
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Figure 5.6(c). Burgers model fitting on the creep strain responses for PCL and PCL-PDMS-

PCL triblock polymer 
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Table 5.1. Parameters of the fittings of Burgers model on the creep behaviour of PCL/PCL-

PDMS-PCL triblock photocrosslinked copolymers 

Samples EE (Pa) EVe (Pa) ηVe (Pa.s) ηVv (Pa.s) R2 

PCL 38.42 25.93 373.19 1434.72 0.982 

40-40 38.58 8.37 386.79 2864.00 0.992 

30-30 45.54 16.65 466.47 5828.68 0.919 

20-20 50.92 27.78 669.70 17939.28 0.978 

10-10 76.24 253.61 749.41 68209.17 0.981 

5-5 87.37 300.5 862.84 148283.1 0.976 

The theoretical description of the creep responses, on the other hand, can still be used to 

investigate some relaxation features. In general, three basically distinct components 

contribute to total strain (ɛ(t)) during creep: elastic (ɛE), viscoelastic (ɛVe), and viscous (ɛVv) 

as per below equation (5.1): 

ɛ (t) = 
𝜎

𝐸𝐸
+

𝜎

𝐸𝑉𝑒
[1 − exp (−

𝑡𝐸𝑉𝑒

𝜂𝑉𝑒
)] +

𝜎

𝜂𝑉𝑝
𝑡                                  (5.1) 

Where EE is the instantaneous elastic modulus of the Maxwell region, EVe is elastic modulus 

of Kelvin-Voigt unit, ηVe and ηVv are viscosities in viscoelastic and viscous regions, σ is the 

applied stress and t is the creep time. As the stress is applied, the initial strain (εE) occurs in 

the spring with the modulus EE, and the later strain (εVe+εVv) is generated in parallel from the 

spring EVe, dashpot ηVe from Maxwell element representing the residual viscosity and dashpot  

ηVv from Kelvi-Voigt model stands for internal viscosity. This is known as four-parameter 

Burgers model which is a combination of Maxwell model and Kelvin-Voigt model used to 

analyse system deformation as shown in Figure 5.5(c). It is feasible to compare the internal 

structure of various systems by computing the values of EE, EVe, ηVe and ηVv[30, 253]. It can 

be seen from Table 5.1 that elastic modulus EE associated with Maxwell model which 

measure elastic strain that could recovered immediately after elimination of stress keep 
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increasing with PCL chain length and almost similar for PCL and 40-40. The viscoelastic 

strain due to molecular rearrangement shows higher relaxation scale than polymeric chain. 

The viscoelastic modulus of PCL is quite high due to high crystallinity and crosslink structure 

both and then in copolymers it increases with increasing crosslink density. The increase in 

residual viscosity and internal viscosity is having the same pattern as seen in complex 

viscosity results. The PCL/CNC composite system also follows Burgers model, where elastic 

moduli increases with higher filler content due to formation of percolation network as 

reported by Wang et al.[30] 

5.4 Structure Recovery 

 

Figure 5.7. Structure recovery of PCL and PCL-PDMS-PCL triblock polymer at 80℃ 
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The structural behaviour of polymer melts is examined by rotational shear test against time 

which provides time dependent viscosity in three intervals of shear stress applied.  For 

structure recovery study a low shear (rest) applied after being subjected to strong shear, 

exhibit change in viscosity which represents structure regeneration. Each sample shows high 

viscosity in first interval (Low shear or rest), then drastic change observed in viscosity under 

high stress as shown in Figure 5.7. In first interval higher the viscosity indicates, greater the 

entanglement and viscosity increase with increasing crosslink density as seen in complex 

viscosity results. When high shear is applied, the viscosity decreases and remains constant 

throughout the high shear period, and when again low shear is applied, the polymer melt 

regenerates its structure which resulted in increase in viscosity. Regeneration of structure is 

found almost 86% in PCL, 72% in 40-40, 81% in 30-30, 93% in 20-20, 98% in 10-10 and 

100% in 5-5 which represent high crosslink density helps to regenerate complete structure 

though samples possess lesser crosslink density which have higher semi-crystalline PCL 

chain length couldn’t reform their structure. As crystalline part become viscous over Tcm and 

cannot contribute in structure recovery in melted form but crosslink point helps to recover the 

structure in better way as they are intact at processing temperature. 

5.5 Tensile Properties and Dynamic Mechanical Analysis 

Tensile properties are investigated to assess the impact of PCL chain length on mechanical 

properties under ambient conditions. Table 5.2 displays the PCL and PDPCL triblock 

copolymer films' tensile strength and percentage elongation at breakage. There is decrease in 

percentage crystallinity as the PCL chain length reduces and increase in the crosslink density. 

Tensile strength (TS) decreases from 11.2 MPa for PCL to 0.4 MPa for PDPCL5 to and 

percentage elongation decreases from 980% (PCL)to 30% (PDPCL5). Here results are 

dependent on both percentage crystallinity and crosslink density because these 

characterizations are carried out ambient temperature (~25℃) which is below than Tcm of all 
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samples. So, it can be said that decrease in tensile strength is caused by a reduction in PCL 

crystalline domains because PCL chain length acts as physical crosslinks to reinforce the 

network at ambient temperature even when the crosslink density falls. Similar results of 

tensile study are reported by Schoener et al.[12] 

Table 5.2. Mechanical properties of PCL-PDMS-PCL triblock copolymer films 

Samples Tensile strength (MPa) Elongation at break (%) 

PCL 11.2 ± 0.6 980 ± 0.1 

40-40 10.8 ± 0.4 920 ± 0.1 

30-30 7.6 ± 0.5 460 ± 0.1 

20-20 4.8 ± 0.4 350± 0.1 

10-10 1.4 ± 0.3 98 ± 0.1 

5-5 0.4 ± 0.1 30 ± 0.1 

 

To evaluate thermomechanical properties at nanoscale, DMA experiments are performed and 

results are given in Figure 5.8. The storage modulus temperature plot (Figure 5.8(a)) at room 

temperature of 32℃ shows highest modulus for PCL of (1.35x109 Pa), then 4.87x108 for 40-

40, 2.53x108 for 30-30 and 1.68x108 for 20-20. The storage moduli are high for sample with 

higher percentage crystallinity as they are tested at well below temperature of their respective 

transition temperature (Ttrans). With increase in temperature the storage modulus of each 

composition starts decreasing and while going above the transition temperature. At above 

Ttrans the crystalline region become melt and playing factor for storage modulus is crosslink 

density. With decrease in molecular weight crosslink density keep increasing and accordingly 

storage modulus become higher for lower molecular weight composition as seen in Figure 

5.8(a). tan δ provides valuable information about the dissipation capability of the material 

when subjected to cyclic loads, with temperature gradients releasing heat rather than storing 
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them as energy. Figure 5.8(b) shows the tan δ vs. temperature plot indicates predominant 

elastic behaviour of all composition below Ttrans. As the temperature goes above Ttrans of 

individual composition, with increase in temperature the elasticity is increasing in the order 

of 20-20, 30-30, 40-40 and PCL. This increase in tan δ values can thus be attributed to the 

interlaced polymer chains slipping over each other but kept intact due to crosslink points 

which helps to maintain elasticity of specimen. PCL/α-cyclodextrin (CD) based nanofibers 

examined by Narayanan et al. exhibit increase in storage modulus and elasticity with addition 

of CD.[21] 

 

Figure 5.8. Dynamic mechanic analyses profiles of PCL, PDPCL40, PDPCL30 and 

PDPCL20 (a) Storage modulus and (b) tan δ vs. temperature 

5.6 Conclusion 

The rheological analysis of PCL and PCL-PDMS-PCL triblock copolymer films at 80°C 

(well above Tcm of all samples) is dependent on crosslink density and molecular weight. The 

linear viscoelastic region of PCL is up to 10% shear strain and for copolymers it is up to 1%. 

Based on amplitude sweep results, the frequency sweep is carried out at 1% shear strain for 

all samples.  but crossover point seen above 10%. In Frequency sweep, the storage modulus 
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of PCL and its copolymer is increasing with decreasing molecular weight. Due to increased 

crosslinked density with decreasing molar mass increase in storage modulus, decrease in loss 

factor and more solid like behaviour. Creep recovery happened of 58% in PCL, 29% in 40-

40, 20% in 30-30, 71% in 20-20, 90% in 10-10 and 98% in 5-5. Regeneration of structure is 

found almost 86% in PCL, 72% in 40-40, 81% in 30-30, 93% in 20-20, 98% in 10-10 and 

100% in 5-5 which represent high crosslink density helps to regenerate the structure of 

molecular chains. The mechanical strength and dynamic behaviour analysis at ambient 

temperature shows that tensile strength, elongation, storage modulus is decreasing with 

decrease in PCL chain length because PCL crystalline domains acts as physical crosslinks to 

reinforce the network at ambient temperature even when the crosslink density falls 
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Chapter 6 

Thermal Characterization of PCL-PDMS-PCL Triblock  

Overview 

This chapter gives an insight about thermal properties of PCL-PDMS-PCL triblock 

copolymer films. The thermal properties are studied by optical microscopy for crystal 

formation, Thermal gravimetry analyser, Differential Scanning Calorimetry in both non-

isothermal as well as isothermal mode. The crystal formation after melting point is observed 

by optical microscope. The non-isothermal mode of DSC is used to study about crystal 

melting temperature (Tcm) range and crystallization temperature (Tc).  The percentage 

crystallinity is also evaluated with DSC results. The Tcm and Tc range is used to study the 

thermal properties in isothermal mode. In isothermal mode of DSC, crystallization kinetics 

has been studied with the help of Avrami model and Lauritzen-Hoffman (LH) model to 

quantify energy barrier associated with nucleation and crystal growth.  With decrease in PCL 

chain length, the supercooling range for crystallization shifted to lower temperature gradually 

and increased the nucleation factor.  

6.1 Optical Microscope 

PCL-PDMS-PCL triblock copolymer films made up of crystalline (PCL)-amorphous (PDMS) 

blocks display interesting morphological behaviour with varying the chain length of PCL. 

The structure of the crystalline domains formed for PCL, 40-40, 30-30 and 20-20 are 

analysed by optical microscopy (OM) imaging, as shown in Figure 6.1. No crystal structure is 

observed for 10-10 and 5-5 films. The crystals of PCL homopolymer are overlapping each 

other and most of the crystallite cannot be seen in separate domain.  To analyse effect on PCL 
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crystallinity due to copolymerization, the crystal structure of homopolymer is used as a 

reference.  

The inclusion of PDMS strongly affects the nucleation, size of crystallite and rate of 

crystallization while varying the PCL chain length. For 40-40, 30-30, 20-20 samples, 

insertion of PDMS shows phase separated micro-regions dispersed between the crystalline 

domains of PCL. There is a restriction in PCL crystal growth because PCL blocks are 

restrained between PDMS matrix and therefore are limited in sizes, although there is non-

uniform size distribution. It can be seen from optical images that size of crystal becomes 

slightly smaller and crystal domains are well segregated, decresing the block length of PCL 

and keeping the PDMS content constant. Despite the short chain length of PCL and lower 

content, crystalline PCL domain development is apparent. The difference in solubility 

parameters and negligible intermolecular interactions between PCL and PDMS create a 

suitable platform to form microphase-separated crystals of PCL. The length of the PDMS and 

PCL block chains influences the extent of crystallization. The copolymers samples of 40-40, 

30-30 and 20-20 show microphase separated morphologies but are independent of block 

lengths or compositions. 

Wu et al. reported polarized optical images of block copolymer of cyclic butylene 

terephthalate and PCL at different cooling rates of 5℃/min and 1℃/min, where inclusion of 

PCL decreases the crystallization temperature and mixed type spherulitic morphology is 

observed.[154] Diblock copolymer of PLLA and PCL morphological studies showed that 

increasing block length of PCL influenced the twist of PLLA lamellae and formed non-

banded spherulitic structure as studied by Han et al.[69] 
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Figure 6.1. Optical images of crystallized films at time (a) t = 45 sec to 1 min 30 sec for PCL 

(b) t = 45 sec to 2 min 10 sec for 40-40 (c) t = 50 sec to 2 min 20 sec for 30-30  (d) t =50 sec 

to 2 min 30 sec for 20-20 (e) 10-10 and (f) 5-5 

6.2 Thermal Gravimetric Analysis 

The thermal degradation behaviour of PCL and PCL-PDMS-PCL photo-crosslinked films is 

analysed by TGA curves as shown in Figure 6.2. All the samples show single step thermal 

degradation. Neat PCL, its copolymers and composite[11, 18, 28, 246] shows single 

degradation curve whereas its blends with polylactic acid[33] and thermoplastic starch[24] 

shows two steps degradation as reported by earlier researchers. Compared to PCL 

homopolymer photo-crosslinked films, PCL/PDMS copolymer films are showing significant 
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increase in thermal stability. This is because of inclusion of PDMS block which is chemically 

bonded with PCL and increased crosslink density. With increase of PDMS content and 

photocrosslink density the stability increases. Poojari et al. also reported inflation in thermal 

stability with increase in PDMS content for PCL/PDMS copolymers with assumption of 

more thermally stable crosslinked product formed due to combination of free radicals[11]. 

The decomposition temperature (temperature at which 10% mass loss has occurred)[246] for 

PCL is 334℃ and increases for PDPCL40, PDPCL30, PDPCL20, PDPCL10, PDPCL5 

340℃, 346℃, 354℃, 356℃, 363℃ respectively. 100% degradation occur for PCL, 

PDPCL40, PDPCL30, PDPCL20 and there is 2.4% and 4.7% residue left for PDPCL10 and 

PDPCL5 at 700℃.  

 

Figure 6.2. TGA curves of PCL and PCL-PDMS-PCL photo-crosslinked films 

TGA results show that inclusion of PDMS block in triblock films has small effect on onset 

temperature (Temperature at which 5% weight loss occurred) of the samples. Indeed, a slight 

decrease in the onset temperature is observed for copolymer films while comparing with PCL 
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homopolymer film. This result is unexpected since inclusion of PDMS and increased 

crosslink density are enhancing the other thermal stability parameter as seen in 

decomposition temperature and residue content. A similar observation is reported by Bouakaz 

et al. where decrease in onset temperature of PCL/cloisite30B/cloisite15A/graphene 

nanocomposites is due to the catalytic effect  induced through organic modifier 

degradation[28]. 

6.3 Differential Scanning Calorimetry (DSC) 

6.3.1 Non-Isothermal  

A non-isothermal DSC thermogram of pure PCL and PCL-PDMS-PCL triblock copolymeric 

films of varying PCL chain length is shown in Figure 6.3. Crystal melting temperature (Tcm), 

enthalpy change (ΔHm) and degree of crystallinity Xc (%) are measured from the endothermic 

melting peak of the first cycle. The degree of crystallinity Xc (%) is calculated with equation 

(6.1) given below:  

                                        𝑋𝑐 (%) = 
∆𝐻𝑚

∆𝐻𝑚
°  x 100                                           (6.1) 

where ΔHm is enthalpy of crystal melting peak for that particular sample and ΔH0
m is the 

enthalpy of fusion of 100% crystalline PCL (139.5 J g-1).[12] The degree of crystallinity, 

crystal melting temperature range (Tcm) and crystallization temperature (Tc) range are 

tabulated in Table 6.1. Tcm  range shifted to lower temperature gradually with decreasing PCL 

chain length in copolymer. Tcm for PCL, 40-40, 30-30, 20-20 and 10-10 are observed at 53.5, 

52.2, 49.7, 43.5 and 33℃, respectively. The shortest PCL chain length sample of 5-5 showed 

no Tcm. With the decreasing PCL chain length, the degree of crystallinity also decreases from 

37% to 2.9%, supported by similar trend obtained in XRD.  
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Tc for PCL, 40-40, 30-30 and 20-20 are observed at 30.8, 26.3, 21.1 and 0.5 ℃, respectively. 

For 10-10 and 5-5, no crystallization peak is observed in thermogram. Tc is shifting to lower 

degrees with decrease in PCL chain length.  The absence of crystallization peak in 10-10 and 

5-5 samples inferred that very less PCL content resulted in no formation of crystal and it is 

further not useful for study of isothermal crystallization and shape memory properties.  

Figure 6.3. DSC thermograms of PCL and PCL-PDMS-PCL triblock copolymer films 

Yilgor et al.[10] synthesized PCL-PDMS-PCL triblock copolymer with different Mn of 

PDMS block reported XRD crystallinity from 37% to 65% with increasing PCL content 

which is supported by DSC results from 34% to 67% on the basis of PCL content. Azemar et 

al.[14] reported crystallinity varying from 60% to 16% with decreasing PCL molecular 

weight and content in triblock copolymer with PDMS. In case of PCL homopolymer of 

molecular weight 3000 and 9000 g/mol, the percentage crystallinity is 60 to 54.4 % which is 

higher than PCL crystallinity reported in this study. This may be due to difference in initiator 

from ethylene glycol to butan-1-ol and use of different solvents, THF and petroleum ether, 

for precipitation.  Schoener et al.[12] reported DSC crystallinity for PCL-PDMS-PCL with 
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Mn 3000 g/mol of PDMS block and PCL chain length varying from 50-50 to 20-20 is 36% to 

17% and Tcm 51℃ to 34℃. Poojari et al.[11]  reported 54% to 45% crystallinity by DSC on 

the basis of PCL content with Tcm 55℃ to 35℃. These significant variations in Tcm of 

triblock copolymeric films help to develop products for biomedical and packaging 

applications. 

6.3.2 Isothermal 

During the formation of the crystalline phase, the isothermal crystallization exothermic 

curves of PCL and PCL-PDMS-PCL triblock polymer are recorded. The following equation 

(6.2) is used to calculate relative crystallinity (Xt) at different crystallization times. 

𝑋𝑡 =
𝑄𝑡

𝑄∞
=  

∫ (
𝑑𝐻

𝑑𝑡
)𝑑𝑡

𝑡
𝑡0

∫ (
𝑑𝐻

𝑑𝑡
)𝑑𝑡

∞
𝑡0

        (6.2) 

where Qt is the enthalpy released at time t and Qꝏ is the enthalpy liberated at infinite time, 

respectively; t0 represents the time when the sample enters isothermal state, and dH/dt is the 

heat flow rate. Figure 6.4 represents the plots of relative crystallinity Xt versus time t for PCL 

and PCL-PDMS-PCL triblock copolymeric films. Since crystallization temperature for 10-10 

and 5-5 film samples does not observe, isothermal crystallization kinetics was carried out for 

20-20, 30-30 and 40-40 samples along with PCL. All the crystallization isotherms have 

typical sigmoid curves, as shown in Figure 6.4. With rising crystallization temperature Tc, 

these isotherms move to the right along the time axis. The slope of isotherms reduces with 

increasing Tc, representing successively slower crystallization rates, as can be seen in every 

individual graph. In comparison to PCL isotherms, copolymers with decreasing PCL chain 

length are plotted at lower degrees of temperature as per their respective non-isothermal 

crystallization temperature range.  
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Figure 6.4. Plot of relative crystallinity for (a) PCL, (b) 40-40, (c) 30-30 and (d) 20-20 PCL-

PDMS-PCL triblock copolymer films 

There is a modest rise in crystallinity with time after most of the crystallization has occurred, 

which is attributed to the occurrence of secondary crystallization. The time dependency is 

investigated under the assumption of two crystallization processes, primary and secondary.    

Time required to achieve 50% crystallinity from these curved is defined as crystallization 

half-time t1/2, which is used to describe the overall rate of crystallization. Higher value of t1/2 

represents the lower rate of crystallization. Plots of the obtained t1/2 values against Tc for pure 

PCL and PCL-PDMS-PCL copolymers are shown in Figure 6.5. There is no significant 
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change observed in overall crystallization for different samples as each one is examined at its 

own crystallization temperature range, as seen in Figure 6.5. The t1/2 values are summarized 

in Table 6.2 of 2.2, 1.95, 2.4 and 2.5 mins for PCL, 40-40, 30-30 and 20-20, respectively. 

Ninago et al. have studied that branches of poly(2- hydroxyethylmethacrylate) (PHEMA) 

hinder the formation of PCL crystallites by increasing final crystallization time in case of 

PCL/PHEMA graft copolymer.[151]  In a study by Nie et al.[254] on tetraethyl orthosilicate 

and PCL blends, the rate of crystallization decreases with decrease in ratio of PCL. 

 

Figure 6.5. Plot of crystallization half-time t1/2 against crystallization temperature Tc for PCL 

and PCL-PDMS-PCL triblock copolymeric films 

The Avrami equation (6.3), as given below, is used to analyze the isothermal crystallization 

kinetics of various PCL-PDMS-PCL copolymeric films:  

     1 − 𝑋𝑡 = exp (−𝑍𝑡𝑡𝑛)    (6.3) 

where Xt is the relative crystallinity, Zt is the overall kinetic rate constant including the 

nucleation and growth parameters, t is the time, and n is the Avrami index, which depends on 
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the nucleation and growth mechanism of the crystals. Taking double logarithmic of equation 

(6.3), it can be rewritten as equation (6.4): 

   log[− 𝑙𝑛(1 − 𝑋𝑡)] = log 𝑍𝑡 + 𝑛 log 𝑡   (6.4) 

The plot of  log[− 𝑙𝑛(1 − 𝑋𝑡)]  against log t should be a straight line with slope n and 

intercept log Zt if Avrami equation is applicable to explain the crystallization behavior of 

PCL in the copolymers. Avrami equation is advised to fit in initial experimental data of 

conversion to minimize the error and maximize R2 value. 

 

Figure 6.6. Isothermal crystallization tests and Avrami fit for (a) PCL, (b) 40-40, (c) 30-30 

and (d) 20-20 
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Figure 6.6 shows plots of log[− 𝑙𝑛(1 − 𝑋𝑡)] against log t for triblock copolymer and PCL as 

a general guideline Avarmi equation is only valid at low conversion (up to 20%). 

Accordingly, good linear relation is obtained for experimental data for the initial part of the 

conversion. The values of Zt and n at low conversion of crystallization at different Tc are 

obtained by using the experimental data summarized in Table 6.1. The Avrami index n for 

PCL is around 2.6 and increases significantly for copolymers. The values of Avrami 

exponent n change from 2.6 to 3.4 for copolymers, indicating that the nucleation mechanism 

of the PCL crystallization changed significantly. The shift in n value suggests that crystal 

growth for PCL is two-dimensional, whereas growth mechanism of crystal of PCL in the 

copolymers tends to be three-dimensional and the nucleation process is heterogeneous under 

the experimental condition.[144, 254] Table 6.1 shows the enthalpy of crystallization (ΔHc) 

decrease with decrease in the PCL chain length in copolymers which indicates that the 

crystallinity of PCL in the copolymers decreases. This observation is also quite evident in 

non-isothermal cooling curves and reported by different researchers that decrease in PCL 

chain length, or molecular weight decreases the crystallinity, enthalpy of melting and 

enthalpy of crystallization.[11, 12] Decrease in crystallinity is not only due to decreasing 

PCL length but increase in Mn of PDMS block has the same effect due to hindrance or 

interference effect generated by increasing PDMS chain length as per the study of Zhang et 

al.[13] 

Table 6.1 Avrami equation’s isothermal crystallization parameter at various Tcm 

Samples Tc (0C) T’cm (0C) t1/2 ΔHc (J/g) Zt (min-1) N Avg. n 

PCL 35 54.63 2.2 37.58 9.28x10-1 2.4 2.6 

33 54.22 1.6 42.53 8.13 x10-1 2.37 

31 53.95 0.91 43.26 9.17x10-1 2.45 
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29 53.68 0.61 45.65 1.86 2.75 

27 53.43 0.44 46.85 8.3x10-1 2.82 

25 53.23 0.34 45.46 7.5x10-1 2.75 

40-40 31 52.88 1.95 35.77 3.42 x10-1 3.70 3.1 

29 52.55 1.18 35.59 4.29x10-1 3.34 

27 52.29 0.78 37.75 1.40 2.78 

25 51.98 0.56 38.73 1.86 3.29 

23 51.71 0.42 38.49 1.87 3.19 

21 51.41 0.34 41.01 1.00 2.14 

30-30 

 

25 49.91 2.4 28.91 2.42 3.66 3.4 

23 49.56 1.8 29.80 2.47 3.75 

21 49.22 1.4 28.75 2.10 3.38 

19 48.89 1.06 27.31 1.89 3.20 

17 48.6 0.84 27.60 1.83 3.19 

15 48.38 0.67 29.44 1.79 3.15 

20-20 10 44.67 2.5 25.75 1.74 2.95 3.00 

 6 44.29 2.1 25.62 1.96 3.19 

 2 43.95 1.6 24.07 2.14 3.49 

 -2 43.70 1.27 21.57 1.55 2.85 

 -6 43.33 1 18.60 1.65 2.78 

 -10 43.17 0.9 14.98 1.68 2.76 

Further, the stability parameter (φ) is calculated. T0
cm values are plotted against Tcm for PCL 

and copolymers as shown in Figure 6.7 in the range of exothermic crystallization 

temperature. The Hoffman-Weeks equation (6.5) is used to fit the experimental data as given 

below: 
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T’
cm = φ Tc+(1-φ) T0

cm    (6.5) 

Where T0
cm is equilibrium crystal melting temperature and φ is a stability parameter related to 

morphological factors concerning the perfection and size of crystals. The values of T0
cm are 

obtained by the extrapolation of the least-squares fit lines of the experimental data to intersect 

the line of T0
c = Tcm, as shown in Figure 6.7. In equation 6.5, φ can be assumed in the range 

of 0 and 1. φ = 0 signifies T’cm = T0
c, while φ = 1 means T’cm = Tc. As a result, the crystals 

are most stable for φ = 0 and fundamentally unstable for φ = 1. The values of φ are 

determined by slope of these fit lines. T0
c for PCL and copolymeric films are summarized in 

Table 6.1. When PCL is copolymerized with PDMS, the depression of crystal melting points 

and T0
cm is observed with decrease in PCL chain length. From equation 6.5, it can also be 

found that the φ values of the PCL-PDMS-PCL copolymers are lower than that of PCL and 

decrease as the chain length of PCL in the copolymer decreases indicating that the stability of 

the crystals for PCL in the copolymer increases. This is attributed to confined micro-phase 

separation due to presence of PDMS blocks in between the PCL chains, as seen in optical 

microscope. 

 

Figure 6.7. Plots of T’cm verses Tc for PCL and PCL-PDMS-PCL triblock copolymeric films 
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The Lauritzen-Hoffman crystallization kinetic model is applied on experimental data to 

analyze the growth rate of the spherulites. According to the LH crystallization model, the 

relation between growth rate G, Tc and the undercooling that is ∆𝑇 = 𝑇𝑚
0 − 𝑇𝑐  can be 

expressed as below equation (6.6):  

𝐺 = 𝐺0exp (
𝑈∗

𝑅(𝑇𝑐−𝑇∞)
)) exp (−

𝐾𝑔

𝑇𝑐 (∆𝑇)𝑓
)            (6.6)  

where G0 is a pre-exponential factor, R is the gas constant, U* is the activation energy for the 

transit of the macromolecules chain into the molten mass, typically given by a universal value 

of 6280 J/mol. Tꝏ = Tg - 30 is a hypothetical temperature below which any viscous flow 

stops, where Tg is the glass-transition temperature of individual composition. f is a correction 

factor for the decrease in fusion enthalpy with Tc, f =
2 𝑇𝑐

(𝑇𝑐 +  𝑇𝑚
0  )⁄  . Equation (6.6) can be 

further written by taking log on both sides as equation (6.7):  

                                  ln G + 
𝑈∗

𝑅(𝑇𝑐−𝑇∞)
 = ln G0 - 

𝐾𝑔

𝑇𝑐 (∆𝑇)𝑓
                          (6.7) 

Nucleation parameter Kg can be defined as equation (6.8) as follows: 

 𝐾𝑔 =  
𝑍 𝑇𝑐𝑚

0 𝜎𝜎𝜎𝑒𝑏0

𝑘𝐵 ∆𝐻0
𝑚

              (6.8) 

Where Z = 4 for regimes I and III, and Z = 2 for regime II, due to small degree of 

supercoiling, regime I has been considered for calculation. σ is lateral surface free energy and 

σe is the fold surface free energy and σ = 0.1*b0*ΔHf where b0 is the distance between two 

adjacent fold planes, b0 = 4.38 x 10-10 m [254], kB the Boltzmann constant, ΔH0
m is the 

enthalpy of fusion of 100% crystalline PCL (139.5 J g-1). 
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Table 6.2 Equilibrium crystal melting temperature T0
cm, stability parameter φ, nucleation 

parameter Kg, pre-exponential factor G0 and fold surface free energy σe values for PCL and 

PCL-PDMS-PCL triblock copolymeric films. 

Samples T0
cm (℃) φ Kg (k2) G0 σe (J/m2) 

PCL 59.8 0.21 6.53 x104 5.61 x104 3.56 x10-3 

40-40 58.0 0.18 6.8 x104 1.14 x105 3.67 x10-3 

30-30 55.3 0.15 7.39x104 3.81x105 4.05 x10-3 

20-20 48.3 0.09 8.92x104 5.68 x105 4.98 x10-3 

 

Figure 6.8. Plot of ln G + U*/R (Tc-Tꝏ) against 1/Tc(ΔT) f for PCL and PCL-PDMS-PCL 

triblock copolymeric films 
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According to equation 6.7, the plots of ln G + U*/R (Tc-Tꝏ) against 1/Tc(ΔT) f for PCL and 

PCL-PDMS-PCL triblock copolymeric films are in Figure 6.8. The experimental data fit into 

the straight lines very well. The slopes and intercepts of those lines are used to compute the 

nucleation parameter Kg (energy barrier for the crystallization process), as well as the pre-

exponential factor G0, as shown in Table 6.2. For PCL, G0 is 5.61x 104 (min-1) PCL-PDMS-

PCL triblock copolymers exhibited G0 values 10-fold and Kg values are 1.3-fold to PCL. 

With decrease in PCL chain length G0 and Kg values increase. Here, small degrees of 

supercooling play a major role in nucleation factors. With decrease in PCL chain length, the 

supercooling range for crystallization shifted to lower temperature gradually and increased 

the nucleation factor effectively. In case of polyethylene terephthalate (PET) isothermal 

crystallization kinetics, Lu et al.[255] reported that at a small degree of supercooling regime I 

kinetic is operative and primary nucleation as surface nucleation completed rapidly over the 

surface and dominated by secondary nucleation for crystal growth. Ninago et al.[151]  are 

reported increase in Kg and G0 of 2 fold and 51 fold respectively for PCL-g-HEMA 

copolymer than pure PCL, indicating decrease in overall mobility of PCL chains due to major 

confinement, which reduces their final crystallization capacity. The fold surface energy 

calculated by equation 6.8 listed in Table 6.2 shows considerable increase in fold surface free 

energy, which indicates inclusion of PDMS block increases the energy barrier, which hinders 

the growth of PCL crystallite. Cesur et al. studied isothermal crystallization kinetics of PCL 

composites with oleic acid, zinc oxide, and glycerol monooleate and reported that small 

amount of filler expedites nucleation and crystal growth, but higher amount creates hindrance 

and slows down the crystal growth.[144, 145] 
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6.4 Conclusion 

With inclusion of PDMS block, microphase separated crystals are formed as observed via 

optical microscope. The thermal analysis demonstrated that with decrease in PCL chain 

length the percentage crystallinity, crystal melting temperature and crystallization 

temperature decreases from 41.9 to 23.8%, 53.5 to 43.5℃ and 30.8 to 0.5℃, respectively.  

The effect of PCL chain length on the crystallization kinetics has been studied for pure PCL 

and triblock copolymers of chain length 40-40, 30-30, 20-20 with the help of Avrami and 

Lauritzen-Hoffman model. The Avrami analysis indicated that primary crystallization is 

followed by secondary crystallization for pure PCL while three-dimensional spherical growth 

occurs in copolymers. The stability of crystal perfection (0.21-0.09) increases with inclusion 

of PDMS block. The energy barrier is increased with increasing content of PDMS and affects 

the growth rate of crystal.  

 

 

 

 

 

 

 

 

 



113 
 

Chapter 7 

Shape memory properties of PCL-PDMS-PCL triblock 

copolymer films 

 

Overview 

The semi-crystalline nature of PCL embraces shape memory properties of this copolymer. 

The shape memory properties are evaluated in this chapter via two modes: qualitatively and 

quantitively both. In qualitative mode the rectangular shape and cross shape samples have 

been prepared and converted to ring and cube respectively as temporary shape and checked 

for shape recovery at elevated temperature. While in quantitative mode the samples have 

been quantified for shape fixity and shape recovery ratio. It is observed that shape fixity 

increases with increase in PCL content in copolymers and % crystallinity and shape recovery 

ratio increase with decrease in molecular weight though difference is not much significant.  

7.1 Qualitative Analysis of Shape Memory Properties 

The crystallization temperature (Tc) and crystal melting temperature (Tcm) are prominent to 

determine shape memory behaviour of PCL and its copolymers. At Tc temporary shape is 

fixed and to recover permanent shape, sample is heated to Tcm. The presence of crosslinks in 

structures restrict the sliding of chain over one another and improves the shape recovery by 

entropy elasticity.[256] A visual demonstration of shape memory behaviours of PCL and 

PCL-PDMS-PCL copolymers is performed for better understanding as shown in Figure 7.1 

(a), (b), (c), (d) for sample size ~40 mm (length) × ~10 mm (width) × ~1 mm (thickness) and 

in Figure 7.2 (a), (b), (c), (d) for cross shaped sample to be converted into cube shape of ~10 

mm (side) × ~1 mm (thickness). The original shapes are deformed at 70℃ to temporary 

shape and fix them at their crystallization temperature in cold water bath while deformation 
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force applied. Temporary shape reheated at 70℃ in hot water bath for shape recovery. The 

time required to recover its shape is 12 sec, 6 sec, 5 sec and 4 sec for PCL, 40-40, 30-30 and 

20-20 (Irrespective to original and temporary shape), respectively including manual error. 

This difference is attributed to varying percentage crystallinity and time required to cover the 

temperature difference from Tc to Tcm. The images shown in Figure 7.1 and 7.2, represents 

that shape fixity and shape recovery is almost 100% in all four samples. As the PCL chain 

reduced the cooling temperature is reduced to sustain the temporary shape. 10-10 and 5-5 

samples do not exhibit any shape memory properties due to negligible crystallinity as 

observed in XRD and DSC results in Chapter 4 and 6, respectively. The sample size ~40 mm 

(length) × ~10 mm (width) × ~0.5 mm (thickness) also tested to understand the effect of 

thickness on shape memory behaviour for rectangular to ring shape. It has been observed that 

the time required to recover its shape is 3.50sec, 2.75 sec, 2.5 sec and 2.0 sec for PCL, 40-40, 

30-30 and 20-20, respectively including manual error. With decrease in thickness of samples, 

the rate of heat transfer increases, crystals melt faster due to which less time required for 

shape recovery. 
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Figure 7.1. Shape memory behaviour of from rectangular to ring with recovery time of 

PCL(a), 40-40(b), 30-30(c), 20-20(d) 
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Figure 7.2. Shape memory behaviour from cross-shaped to cube with recovery time of 

PCL(a), 40-40(b), 30-30(c), 20-20(d) 

7.2 Quantitative Analysis of Shape Memory Properties 

Shape fixity and shape recovery ratio of each sample for four cycles are calculated by 

equation 3.2 and 3.3 and presented in Table 7.1. All the samples show effective recovery of 

rectangular shapes irrespective of their dimension (change in thickness). The shape fixity 

increases with increase in PCL content in copolymers and percentage crystallinity. There is 

increase in shape recovery ratio with decrease in molecular weight though difference is not 

much significant. Shape fixity is almost similar for each cycle for various samples because 

percentage crystallinity is same at different cycle for that sample. Shape recovery decreased 
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with each cycle and most significantly from cycle 1 to cycle 2 because original cast film 

chains had to be extensively realigned after becoming distorted. Shape memory behavior is 

reported by Schoener et al. for PCL-PDMS-PCL triblock copolymers.[12] They have stated 

that 17% crystallinity (by DSC) is not enough to possess shape memory behavior, whereas in 

this study, it has been found that 20-20 samples with crystallinity of 17.9% (by DSC) and 

23.8% (by XRD) showed shape memory behavior. Here, along with crystallinity, Tcm (i. e. 

43.5℃) also plays a significant role which is well above ambient temperature after fixing the 

temporary shape in cold bath and keeping it fixed below Tcm.  

Table 7.1.  Thermomechanical cycles of shape memory properties for PCL-PDMS-PCL 

triblock copolymers.  

Samples Cycle Shape Fixity Shape recovery 

PCL 

1st 99.6 ± 0.3 96.8 ± 0.6 

2nd 99.6 ± 0.5 96.5 ± 0.4 

3rd 99.5 ± 0.6 97.0 ± 0.3 

4th 99.3 ± 0.4 97.0 ± 0.7 

40-40 

1st 99.3 ± 0.5 96.5 ± 0.7 

2nd 99.3 ± 0.3 96.1 ± 0.6 

3rd 99.3 ± 0.7 96.6 ± 0.4 

4th 99.3 ± 0.6 96.7 ± 0.3 

30-30 

1st 99.1 ± 0.4 97.2 ± 0.5 

2nd 98.9 ± 0.2 97.0 ± 0.3 

3rd 98.9 ± 0.5 97.5 ± 0.8 

4th 98.8 ± 0.4 97.5 ± 0.7 

20-20 

1st 98.3 ± 0.6 97.3 ± 0.6 

2nd 98.1 ± 0.5 97.0 ± 0.2 

3rd 98.2 ± 0.7 97.2 ± 0.5 

4th 98.0 ± 0.6 97.1± 0.5 
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7.3 Correlation of isothermal crystallization kinetics and shape memory properties 

As discussed in chapter 6, the increased crystal perfection stability with inclusion of PDMS 

helps to fix the temporary shape even with low percentage crystallinity. The shape fixity ratio 

decreases with decreasing crystallinity and increasing fold surface energy as it hinders the 

growth of PCL crystallite. Higher fold surface energy requires more time to generate full 

crystal of PCL segment (as seen in optical images), which ultimately affects the fixity to 

temporary shape and needs more time to fix the secondary shape. There is only a 1.4-fold 

change in fold surface free energy σe from PCL to copolymers which is reflected in the shape 

fixity ratio decreasing from 99.6 to 98.3. The increased pre-exponential factor, nucleation 

value and energy barrier hinder PCL crystal growth which results in faster recovery when Tcm 

is provided for shape recovery of samples. Here, along with crystallinity the crosslink points 

formed due to photocrosslinking are also an important factor for shape recovery even when 

the percentage crystallinity is less as seen in the case of 20-20. Tian et al. have presented the 

shape memory behavior of PCL homopolymers with molecular weights of 4000, 6000, 8000 

and 10,000 and they have found that with increase in molecular weight, shape fixity increases 

due to higher crystallization during elongation.[162]  

7.4 Conclusion 

Photocrosslinked films of PCL and PCL-PDMS-PCL triblock copolymers exhibit excellent 

shape memory properties. The shape fixity increases with increase in PCL content in 

copolymers and percentage crystallinity, while shape recovery is almost similar for PCL, 40-

40, 30-30 and 20-20. The shape fixity is almost same for each cycle though shape recovery 

decreases with each cycle due to rearrangement of crystals of PCL segment while melting 

and cooling. Crystal perfection stability, nucleation parameter, energy barrier and crosslink 

points affect the shape memory properties of triblock copolymeric films.    
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Chapter 8 

Biodegradation behaviour of PCL-PDMS-PCL triblock 

copolymer films 

 

Overview 

This chapter give a brief about soil burial degradation behaviour of PCL-PDMS-PCL triblock 

films with different PCL chain length. The samples have been buried for 180 days and 

checked for morphological properties by digital camera, Optical Microscope (OM) and 

Scanning Electron Microscope (SEM), whereas, degradation kinetics studied by weight loss 

during regular intervals. PCL is following second order of degradation kinetics while with 

inclusion of PDMS it becomes first order degradation kinetics. With decrease in PCL chain 

length degradation rate has been decreased. The structural changes and percentage 

crystallinity is also evaluated and mechanism of soil burial degradation has been proposed. 

8.1 Morphological Changes 

8.1.1 Macroscopic view 

Figure 8.1 shows the macroscopic pictures of samples obtained by digital camera (Zeiss 13 

megapixels). Initially, the surface of the PCL is smooth. After 80 days flakes are observed on 

the surface of the film. The disintegration is started and in 180 days film breakdown.  The 

PCL surface looks flake-like and starts disintegrating after 80 days. The cracks become quite 

visible and major breakdown of film happened. 40-40 is disintegrated after 80 days and 

cracks are observed and films are breakdown in 180 days. With decrease in PCL chain length 

of films, the visibility of flakes has reduced and films appeared smoother. 30-30 and 20-20 

show small disintegration at 180 days. There is no cracks and flake formation happened for 

10-10 and 5-5 though change in color is observed. The films appeared very patchy. The 

dimensional stability of the films is maintained. With decrease in PCL chain length the 
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surface erosion and disintegration are delayed significantly in triblock copolymer films. In 

current study, the crosslink density increases with lower molecular weight of copolymer or 

lower PCL chain length, which enhances the degradation stability.  

The composite of PCL with organic clays showed increase biodegradation time in simulated 

soil because clay acts as nucleating agent and increase the crystallinity as studied by Serap 

Cesur [48]. Azemar et al. [257] and Kai et al. [258] have studied the hydrolytic and buffer 

solution degradation of PCL-PDMS-PCL triblock copolymers. They depict that hydrophobic 

nature of PDMS increases the degradation time and helps to tune the degradation of 

copolymer as per application requirement. Beltran et al. [259] degraded PCL/PDMS scaffold 

under buffer solution (Non-accelerated degradation) and 1M NaOH solution (accelerated 

degradation) and found that inclusion of PDMS enhanced the degradation.  

 

Figure 8.1. Macroscopic view of PCL and PCL-PDMS-PCL triblock copolymer films at 

different intervals 
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8.1.2 Microscopic view 

The films are observed under optical microscope with resolution of 40x. The pictures are 

taken with Moticam Pro 285A camera. And the photos of samples are shown in Figure 8.2. It 

can be seen by optical microscope that there is development of cracks on the film surface 

with time. At initial period the surface is smooth and deposition of soil is negligible due to 

which images are much clear and brighter. As the time increases the cracks developed, in 

these cracks soil get deposited and cannot be removed by washing, due to which clarity of 

images get diminished and surface looks darker. With the time cracks become more visible 

and upper surface looks flaky. In case of 10-10 and 5-5, very less amount of microcracks 

become visible and these cracks sustain throughout the 180 days. The soil particles are easily 

visible inside the cracks of these two films.  

 

Figure 8.2. Microscopic view by optical microscope of PCL and PCL-PDMS-PCL triblock 

copolymer films 
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The SEM images have been taken at 0 days and 180 days to observe the morphological 

changes at micro level as shown in Figure 8.3. These images show different kind of surface 

changes on the basis of composition. The surface of PCL is eroded much more than samples 

with PDMS. This is supported with weight loss data shown in Figure 8.4. In case of PCL, 40-

40, 30-30, 20-20 the surface become rougher and holes are quite visible after degradation. 

The diameter of holes is calculated with the help of ImageJ software developed by National 

Institute of Health, Maryland, USA. It is observed that hole diameter decreases with decrease 

in PCL chain length (Table 8.1). The distribution of size of holes becomes uniform with 

decrease in PCL chain length. In case of 10-10 and 5-5 no holes are observed after 180 days 

of degradation in SEM images, although significant cracks are visible in both the cases.  For 

40-40, 30-30 and 20-20, the surface becomes rougher than without degradation. Though, 10-

10 and 5-5 do not show significant change on surface. Li et al. reported that enzymatic 

degradation of PCL/silica nanocomposite become more than neat PCL and surface become 

more rough in case of nanocomposite [260]. 

PCL
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Figure 8.3. SEM images of PCL and PCL-PDMS-PCL triblock copolymer films before 

degradation and after 180 days of degradation. PCL (a) before soil burial, #PCL (b) after 180 

days of soil burial, 40-40 (c) before soil burial, 40-40 (d) after 180 days soil burial, 30-30 (e) 

before soil burial, 30-30 (f) after 180 days soil burial, 20-20 (g) before soil burial, 20-20 (h) 

after 180 days soil burial, 10-10 (i) before soil burial, 10-10 (j) after 180 days soil burial, 5-5 

(k) before soil burial, 5-5 (l) after 180 days soil burial 

8.2 Macrolevel changes 

8.2.1 Weight loss in soil burial 

The photo crosslinked shape memory PCL-PDMS-PCL copolymer films are soil buried for 

180 days and analyzed at time interval of twenty days for percentage weight loss (equation 

3.8) as shown in Figure 8.4. The results clearly indicate that pristine PCL films have higher 

weight loss in comparison to PCL-PDMS-PCL copolymer films. In twenty days, the PCL 

weight loss is 13.8% whereas for 40-40, 30-30, 20-20, 10-10, 5-5 weight loss is 5.6%, 5.3%, 
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5.1%, 4.8% and 3.0% respectively. The rate of weight loss for PCL is low for initial 80 days 

then there is significant increase and 56.3% weight loss is observed. After 180 days the 

copolymer films show almost linear rate of change in weight loss. With the decrease in PCL 

chain length the percentage weight loss decreases as can be seen in Figure 8.4. Singh et al. 

have reported compost degradation rate of PCL and its composite with modified nanoclays. 

The weight loss for pristine PCL is almost 45% in 60 days while there is increase in weight 

loss for composite systems [261]. Park et al. reported a sharp decrease in degradation of 

poly(ethylene-co-vinyl alcohol)-graft polycaprolactone that is almost 1.2% in 75 days 

whereas 80% for PCL [44]. 

 

Figure 8.4. Percentage weight loss of PCL-PDMS copolymer films with time in soil burial 

8.2.2 Thermal Properties 

The TGA thermograms of PCL and PCL-PDMS-PCL triblock films are shown in Figure 8.5.  

First there is decrease due to water evaporation, then the organic functional group degrade 

between 250℃ and 450℃. The thermal degradation of PCL under inert atmosphere, such as 

nitrogen, occurs through the rupturing of the polyester chains via the ester pyrolysis reaction 

with the release of carboxylic acid groups, water and carbon dioxide gas. When two pyrolysis 
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reactions occur with the ester functions along the chain during thermal degradation of PCL 

under inert atmosphere, the 5-hexenoic is most probably formed [112]. The Inclusion of 

PDMS chain increased the degradation temperature and improved the thermal degradation 

behaviour of copolymer.  

 

Figure 8.5. TGA curves of a pure PCL and PCL-PDMS-PCL triblock copolymer films at 

different degradation time 
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Table 8.1 represents the degradation of PCL and PCL-PDMS-PCL triblock films degradation 

temperature at 50% degradation by weight. Before degradation it shows an increasing trend 

of temperature at 50% weight loss with inclusion of PDMS. While, in particular composition 

it has been observed that with increase in time of soil burial the temperature increases. The 

amorphous part degrades first in case of PCL and crystalline part later, so there is a 

significant difference in degradation temperature. In case of tri-blocks inclusion of PDMS 

increase the temperature stability, but here completely amorphous PDMS does not degrade 

due to hydrophobicity and non-biodegradability. With increase in soil burial time the 

amorphous part of PCL degrades first then, crystalline while PDMS part kept intact, which 

increase the difference in temperature stability after degradation of 180 days.  

Table 8.1. TGA data from Figure 8.5 and degradation analysis by SEM images of after 

degradation with hole diameter calculation 

Sample T50%(℃) Hole diameter calculated from SEM 

Images after degradation (in μm) 

0 Days 20 days 60 Days 120 days 180 days After 180 days 

PCL 385.6 388.3 401.2 408.8 409.0 10-16 

40-40 393.4 392.9 402.4 399.7 396.9 4-10 

30-30 394.5 396.9 405.8 405.9 406.5 3-7 

20-20 395.7 401.7 404.1 405.1 405.8 2-5 

10-10 396.4 402.8 404.6 409.9 418.8 No holes observed 

5-5 398.7 406.7 408.1 423.2 434.8 No holes observed 

 

Degradation of soil buried specimens are examined for crystal melting temperature and 

crystallization temperature with differential scanning calorimetry (DSC) for regular time 

interval as shown in Table 8.2. Before soil burial, samples have been tested for all these 

parameters to be consider as a reference mentioned as zero days. There is a continuous 

increase in crystal melting temperature for all the polymeric films while the crystallization 
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temperature is keep decreasing except 5-5. There is an interesting observation that 5-5 does 

not exhibit Tcm and Tc initially, though after 20 days of soil burial Tcm and Tc are observed in 

each time interval.  

8.3 Structural changes 

The structural analysis of triblock copolymer films was carried out by Fourier Transform 

Infrared spectroscopy for before degradation and after 180 days degradation as shown in 

Figure 8.6. The PCL characteristic bands are recorded at 2943 cm-1 for asymmetric –CH2 

stretching, 2865 cm-1 for symmetric –CH2 stretching, 1725 cm-1  for C=O carbonyl stretching, 

1294 cm-1 for C–O and C–C stretching, 1239 cm-1 for asymmetric C–O–C stretching and 

1169 cm-1 for symmetric C–O–C stretching for fresh sample. After degradation of 180 days 

the peaks intensity get diminished shows degradation up to molecular level. There is an 

additional peak in degraded sample at 800 cm-1 due to deposited and non-removable soil 

content. For PCL-PDMS-PCL copolymer films additional peaks are observed at 800 cm-1 for 

Si-C (methyl of PDMS), a weak band around 3300 cm-1 assigned to amino end groups, a very 

sharp peak for -CH3 stretching at 1259 cm-1 and doublet at 1090 and 1018 cm-1 assigned to 

Si-O-Si stretching. A non-hydrogen bonded C=O peak at 1723 cm-1 is observed due to ester 

group in PCL and there is slight shift observed in –CH2 stretching at 2961 cm-1 in case of 

triblock copolymer than pure PCL due to additional –CH2 chain of PDMS. Hydrogen bonded 

C=O stretching peak at 1649 cm-1 of amide I and H-N-C=O stretching peak at 1531 cm-1 of 

amide II are observed. Similarly, Meikail et al. have reported secondary amide and 

protonated amine stretching at 1648 cm-1 and 1555 cm-1 [245]. Poojari et al. reported 

absorption band at 1100 cm-1 for Si-O-Si  and at 1260 cm-1 for Si-CH3 bonds of PDMS [11]. 

Azemar et al. have reported peaks at 800 cm-1 for Si-CH3 bonds and 1097 cm-1 for Si-O bond 

of PDMS while peaks at 2943 cm-1 for methylene and at 1725 cm-1 for ester of PCL [4, 14]. 

Chan et al. have synthesized poly(PCL/PDMS) urethane and reported similar peaks [246]. In 
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triblock copolymers, 40-40, 30-30, 20-20 and 10-10, the intensity of peaks increases with 

increasing PDMS content for samples before degradation. After degradation the intensity of 

peaks reduces for respective sample accordingly. Peaks at 1649 cm-1 associated with 

hydrogen bonded C=O and at 1259 cm-1 associated with Si-CH3 bonds almost vanished. In 

case of 5-5 of highest PDMS content the intensity of peaks increased could be due to very 

less degradation and deposited soil content over the period. Cesur et al. have reported that 

there is no qualitative difference in PCL composite films after degradation, though there is 

quantitative difference observed. It was seen that first amorphous region degraded followed 

by crystalline region [47, 48]. 

 

Figure 8.6. FTIR of PCL and PCL-PDMS-PCL triblock films before degradation and after 

degradation of 180 days 
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Degradation of soil buried specimens are examined for crystal melting temperature and 

crystallization temperature with differential scanning calorimetry (DSC) for regular time 

interval as shown in Table 8.2. Before soil burial, samples have been tested for all these 

parameters to be considered as a reference mentioned as zero days. There is a continuous 

increase in crystal melting temperature for all the polymeric films while the crystallization 

temperature is keep decreasing except 5-5. There is an interesting observation that 5-5 does 

not exhibit Tcm and Tc initially, though after 20 days of soil burial Tcm and Tc are observed in 

each time interval.  

Table 8.2. Percentage crystallinity, crystal melting point and crystallization temperature of 

PCL and PCL-PDMS-PCL triblock copolymer films at before degradation and different time 

of interval of degradation 

 

The percentage crystallinity of PCL, 40-40, 30-30, 20-20, 10-10 and 5-5 before degradation 

are 45.8, 37.3, 31.6, 17.9, 1.9 and nil, respectively as shown in Figure 8.7. In 40 days, there is 

significant increase in percentage crystallinity due to initial degradation of amorphous region 

of PCL and causes surface erosion as seen in Figure 8.1 & 8.2. After 40 days there is 

decrease in percentage crystallinity indicates chain fragmentation of crystalline region of 

PCL. 5-5 doesn’t have crystallinity before degradation, though after 20 days of soil burial 

Sample/ 

Days 

PCL 40-40 30-30 20-20 10-10 5-5 

  Tcm Tc Tcm Tc Tcm Tc Tcm Tc Tcm Tc Tcm Tc 

0 days 53.5 30.8 52.2 26.3 49.7 21.1 43.5 0.5 33.6 nil nil nil 

40 days 53.1 27.7 52.5 24.7 50.0 21.4 46.7 10.1 47.8 20.2     

80 days 53.7 27.0 52.2 23.7 49.9 21.4 46.8 9.6, 

28.9 

35.8, 

52.2 

19.3 47.1 19.4 

120 days 53.5 27.8 53.2 25.2 49.8 19.5 47.3 8.9 49.7 15.5 46.8 19.2 

180 days 54.1 27.3 53.5 25.0 51.2 19.5 46.8 7.53 48.2 16.2 46.8 37.1 



132 
 

percentage crystallinity is observed in each time interval. Ma et al. analyzed the 

biodegradation of different molecular weight PCL films by Candida antarctica lipase for 20 

hours and reported that crystallinity decreased in initial 8 hour which indicate simultaneous 

degradation of both crystalline and amorphous region though in 8 to 20 hour the reduction in 

crystallinity is not in a regular pattern and not much significant [262]. 

 

Figure 8.7. DSC percentage crystallinity of PCL and PCL-PDMS-PCL triblock films before 

degradation and degradation at different time of interval 

8.3 Mechanism of degradation  

The degradation mechanism of PCL-PDMS-PCL triblock photo-crosslinked copolymer films 

is proposed as shown in Figure 8.8. The surface erosion takes place initially due to 

degradation of amorphous region of PCL content.  It reduces the smoothness and lusture of 

film. The presence of PDMS is somehow protecting the PCL content to degrade rapidly due 

to slow biodegradable behavior in presence of moisture. Further, soil microorganism and 

moisture attack on crystalline part of PCL content and causes chain scission and degradation 

of macromolecules. This resulted in cracks formation and breakage of films gradually. As the 

PCL chain length decreases and crosslink density increases, the rate of degradation of films 
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become low. So, inclusion of the PDMS and change in crosslink density are the key factors to 

tune the degradation rate of PCL copolymer for different application.  

 

Figure 8.8. Mechanism of degradation of PCL-PDMS-PCL photo-crosslinked triblock 

copolymer films 

8.5 Conclusion 

In this study, PCL-PDMS-PCL triblock copolymer films with different PCL chain length are 

evaluated for their degradation behavior in soil burial. The morphological changes observed 

with digital camera, optical microscope, and SEM, indicates that surface erosion takes place 

initially and gradually cracks become visible and film break due to chain scission and C-O 

bond cleavage. The macrolevel changes analyzed with thermal degradation of samples in 

different interval. The degradation temperature keeps increasing for fifty percent weight loss 

for each sample at different time interval of soil burial. The degradation temperature becomes 



134 
 

high with reduction in PCL chain length and increase in crosslink density. The crystal 

melting temperature keep increasing and crystallization temperature decrease continuously 

with soil burial time interval, though 5-5 does not follow the trend due to very low PCL 

content. The structural changes shows that PCL content is majorly degrade after 180 days of 

soil burial. The percentage crystallinity increased slightly after 40 days due to degradation of 

amorphous region of PCL content, further it decreases continuously due to attack on 

crystalline part as well as on amorphous part of PCL. The varying PCL length, inclusion of 

PDMS content and varying crosslink density become the influencing factor of degradation 

behavior of PCL-PDMS-PCL triblock photo-crosslinked copolymer films. For different 

application, requirement of slow degradation can be achieved by addition of PDMS and 

increase in crosslink density. 
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Chapter 9  

Conclusion and Future Scope 

 

9.1 Conclusion and future scope of the research work 

The PCL-PDMS-PCL triblock photocrosslinked films are synthesised via ring opening 

polymerisation. The PCL chain length varying from 40-40 to 5-5 while keeping the PDMs 

content constant in copolymer composition.  The molecular structure is determined by FTIR 

and NMR techniques. The molecular weight obtained is in the range of 11640 g/mol to 3641 

g/mol and percentage crystallinity from nil to 41.9%.  

The viscoelastic properties are evaluated above crystal melting temperature. It has been found 

that at 80°C, the viscoelastic properties of triblock films are dependent on molecular weight 

and crosslink density. The LVER range obtained is up to 1% shear strain for all samples. In 

Frequency sweep, the storage modulus is increasing with decrease in molecular weight. There 

is decrease in loss factor and more solid like behaviour as the PCL length get decrease and 

crosslink density increases. Creep recovery and structure recovery are increasing with 

decrease in PCL chain length. The tensile strength, elongation and storage modulus at 

ambient condition is decreasing with decrease in PCL chain length. This study helps to 

analyse the behaviour of films while going under stretching or stress for shape memory 

application.  

The range of crystallization temperature is obtained by non-isothermal DSC thermogram, 

which was further used to evaluate isothermal crystallization kinetics. The isothermal study is 

carried out with Avrami and Lauritzen-Hoffman model. The Avrami analysis helps to 

quantify the crystal growth of PCL and PCL-PDMS-PCL triblock copolymers. It concludes 
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that crystal growth for PCL is two-dimensional, whereas growth mechanism of crystal of 

PCL in the copolymers tends to be three-dimensional. With the inclusion of PDMS, stability 

of the crystals for PCL in the copolymer increases due to micro-phase separation which 

further helps to fix the temporary shape in shape memory application. The energy barrier is 

increased with increasing content of PDMS and affects the growth rate of crystal. The shape 

fixity ratio decreases with decreasing crystallinity and increasing fold surface energy as it 

hinders the growth of PCL crystallite. Higher fold surface energy requires more time to 

generate full crystal of PCL segment, which ultimately affects the fixity to temporary shape 

and needs more time to fix the secondary shape.  

Soil burial degradation decreases with inclusion of PDMS and amorphous part of PCL get 

degraded first followed by crystalline part. The shape memory properties are dependent on 

the semicrystalline structure of PCL, still with inclusion of PDMS the crystal perfection 

stability increases which keep intact the shape memory behaviour including shape fixity and 

shape recovery. 

The widens application of shape memory PCL-PDMS-PCL triblock copolymers are ended in 

landfill which make it obvious to study about soil burial degradation behaviour. This study 

tells that degradation behaviour of triblock can be tuned with PCL chain length. As the PCL 

length is getting decreases the degradation rate is getting decreased. The amorphous part of 

PCL is get attacked by microorganism first then its crystalline part. Still, PCL and PDMS 

both are biocompatible, so they are not going to affect the environment and soil negatively.  

From the attained results of the produced polymers in this work, it is apparent that 

mechanical properties need to be improved to broaden the application area. The incorporation 

of filler, and preparing a composite will certainly enhance the mechanical properties. Here 

the filler should be either natural or biocompatible so that, soil burial degradation behaviour 
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may not deviate much. Addition of antimicrobial additives will also lead to antimicrobial 

packaging and coatings applications. The cost analysis is required for the commercialisation 

of this polymer after final tuning of all the required properties according to application area.  

9.2 Future Scope 

• To synthesis other copolymers by using different biocompatible comonomers with 

Polycaprolactone to produce samples with broader range of temperature responsive shape 

memory behavior and study their properties. 

• With increasing environmental concerns, there is a growing demand for sustainable 

packaging materials. PCL copolymers, being biodegradable and derived from renewable 

resources, hold great potential for use in sustainable packaging solutions. Future 

developments may involve optimizing PCL copolymers for specific packaging 

requirements, improving their barrier properties, and exploring novel processing 

techniques for large-scale production. 

• PCL copolymers are widely used in additive manufacturing or 3D printing due to their 

low melting point, good mechanical properties, and biodegradability. Future 

advancements may involve developing new PCL-based filaments or resins with enhanced 

properties such as improved printability, higher resolution, and better compatibility with 

various printing techniques. 

• Future developments may involve exploring novel coating formulations, optimizing 

adhesion properties, and improving the durability and performance of PCL based coatings 

for applications in industries such as automotive, aerospace, and electronics. 
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