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ABSTRACT 

 
Electronic integrated circuit scaling, predicted by Moore, has been the driving force of the developments 

in semiconductor industry. But in the recent years, the rate predicted by Moore’s law has deteriorated 

but the ever-increasing demand for energy-efficient and high-performance computing is still on the rise. 

Novel structures of transistors have already been developed to sustain the rate dictated by Moore’s law. 

The current issues in the state-of-the-art CMOS technology are the interconnect bottleneck and 

heat management, which can be solved to an extent by employing light in the bottom layers of the 

circuit. To enable this, optical waveguides and devices must be scaled beyond the diffraction limit of 

light and it is enabled by plasmonics which provide subwavelength-scale confinement of light. 

 

In plasmonics, surface plasmon polaritons (SPPs) is a key area for wave computing applications. SPPs 

are electromagnetic waves coupled to electron oscillations, supported by a metal-dielectric interface. 

The dispersion relation for SPPs yields the subwavelength-scale confinement. The electric 

field amplitude of the SPP wave decays exponentially perpendicular to the direction of propagation i.e, 

Transverse Magnetic mode is supported. This decay depends on the material in which the SPP wave 

resides and this results in a tradeoff between propagation length and confinement. So different 

waveguide topologies are suited for specific applications.  

 

This works shows the theoretical details of surface plasmon polaritons and micro ring resonators in the 

point od view of employing them to realize all optical logic computing. A basic SOI ring resonator is 

implemented using 3-D FDTD in Lumerical FDTD Solver and various fields, on and off resonance 

were plotted. Further a Silver-Air-Silver Metal-Insulator-Metal waveguide is used to design an all 

optical NOT logic and various fields were observed using 2-D FDTD when input is enabled and 

disabled. Perfectly Matched Boundary Conditions were applied in both cases. 
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CHAPTER 1 

INTRODUCTION  
 

Today’s state-of-the-art microprocessors use fast transistors with dimensions on the order of 14 nm. 

But there lies a significant drawback when it comes to transferring digital information to the other end 

of a microprocessor that may be even a few centimeters away. Even though the conversion of the IC 

fabrication industry from aluminum to copper interconnects helped in an improvement of resistivity 

and electromigration for a brief period, it did not resolve the degradation of interconnect delay with 

further scaling down of feature sizes. Furthermore, numerous other issues still remain with metal 

interconnects including high power consumption, heating problem and Electromagnetic Interference 

(EMI). These limitations has become more evident over the recent years, as the rate of increase in the 

clock speed of microprocessors slowed down. 

 

Although fiber optic interconnect cables can transfer digital data with a capacity >1000 times that of 

electronic interconnects they are around 1000 times larger compared with electronic components. A 

circuit with nanoscale features that can carry optical signals and electric currents would be the ideal 

solution to these issues. One such solution is the is the surface plasmons, which are electromagnetic 

waves that propagate along the surface of a conductor. Plasmonics concerns to the study of interaction 

of light with matter and subsequent electron oscillations in metallic nanostructures and nanoparticles. 

Plasmonic circuits possess the ability to carry optical signals and electric currents through the same thin 

metal circuitry, thereby creating the platform to combine the superior technical advantages of photonics 

and electronics on the same chip.The integration of optics and electronics is limited by their 

incomparable sizes. Electronic circuits can be fabricated at dimensions below 100 nm. On the contrary, 

the wavelength of light used in photonics circuits is in the order of 1000 nm. When the dimensions of 

optical components become comparable with wavelength of light, diffraction obstructs the propagation 

of light thereby hindering the scaling of optical components. Photonic crystals provided a partial 

solution to this problem. A more promising solution is plasmonics - the study concerning surface 

plasmons, since it encompasses both the capacity of photonics and miniaturization of electronics. 

 

Surface plasmon allows to confine light to very small dimensions. SPs are light waves that occur at a 

metal/dielectric interface, where a group of coherent electrons collectively oscillates. These waves are 

trapped near the surface as they interact with the plasma of electrons near the surface of the metal. The 

resonant interaction between electron-charged oscillations near the surface of the metal and the 

electromagnetic field of the light creates the SP and thus it is a quasi-particle. SPs are bound to the 

metallic surface with exponentially decaying fields in both neighboring media. The decay length of SPs 

into the metal is defined by the skin depth, which is of the order of 10 nm—two orders of magnitude 

smaller than the wavelength of the light in air. This enhances the possibility of localization and the 

guiding of light in subwavelength metallic structures, and it can be used to construct miniaturized 

optoelectronic circuits with subwavelength components like waveguides, switches, couplers, 

modulators, resonators etc. Besides the excellent mode confinement, plasmonic devices have another 

significant advantage: the strong enhancement of the electromagnetic field. It is followed by many 

special physical properties, such as optical gradient forces, surface enhanced roman scattering (SERS) 

which are widely applied in optical trapping, nonlinear optics, etc. [1]. 
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1.1  MOTIVATION 

 

When in it comes to transmission and processing of data at high speeds, data are generally encoded on 

photons for transmission, which is then converted to the electronic signals for the faster processing. 

This is due to the fact that electrons can strongly interact with each other even in vacuum, while photon–

photon interactions require the presence of a suitable medium to for such an interaction. For this reason, 

electronic systems are used for signal processing and Boolean operations. On the contrary, optical 

carriers (with a frequency generally between 150 and 3000 THz) are used to transmit data over large 

distances, at a very high bit rate, and without the need of any regeneration stage. The need for ultrafast 

and mass-producible components for telecommunication and sensing applications, calls for the ability 

of optical components to manipulate signals. Integrated photonic platforms have rapidly developed, 

allowing scientists to realize the basic set of functionalities needed in a standard optical network, namely 

signal switching, routing, wavelength and format conversion, phase conjugation, phase sensitive 

amplification, time-lens based optical Fourier transformation and signal regeneration. All optical flip-

flops and logic gate are under study with the aim of implementing faster speed and lower energy 

consumption by replacing electrical circuits with photonic circuits. More specifically, they could be 

used in optical routers where signals are transmitted with light. 

 

The current state -of-art in all optical logic fac a lot of challenges and trade-offs. One of the reasons for 

considering all optical logic is the power saving due to the elimination of electro-optic conversion, but 

this improvement would we significant only id the system is fast enough. Another challenge faced is 

the difficulty in mass production and uniformity of structural parameters which is crucial. Another 

major challenge is the scalability. To ensure scalability, the input and output ports must be identical, 

the output power of a gate should be good enough to drive other gates in cascade and the system must 

be robust in case of power supply fluctuations [2].  

 
Figure 1. 1 Current challenges presented by  all optical logic gates. 

 

1.2  ORGANIZATION OF THE REPORT 

 

This report comprises of 6 chapters. Chapter 1 discusses the background of Plasmonics. The literatures 

that deal with all optical logic gates are briefly discussed in chapter 2. Chapter 3 deals with the 

theoretical details of Surface Plasmon Polaritons. Chapter 4 gives a brief overview of ring resonator 

structure and its performance factors. Chapter 5 introduces the method called FDTD, used for solving 

Maxwell’s equations in a plasmonic structures. 
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CHAPTER 2 

 
LITERATURE SURVEY 

 

Several studies have been proposed and investigated on the topic All-optical logic gates. Few of them 

are discussed here. 

 

Almeida et al. proposed the use of resonant structures with high confinement and more sensitivity of 

transmission response on change in refractive index. Experimental results of an all-optical gate based 

on a silicon micrometer-size planar ring resonator, which operates with low pump-pulse energies were 

presented. A strong modulation of transmitted signal was achieved by varying the resonant frequency 

brought about by the tuning of refractive index. Further minimization was limited by the decrease in 

wavelength selectivity and eventually the Q factor but the speed was far better than the then available 

switches [3] 

 

S. Kaur and R. S. Kaler proposed a gate structure that could implement AND, OR and NOT 

reconfigurable logic by employing only a single Semiconductor Optical Amplifier. The above logic was 

implemented at 40 Gb/s using Return to Zero modulated signals. Adequate values of extinction and 

contrast ratios were obtained and also the structure is suitable for photonic integration as it is compatible 

with CMOS technology [4]. 

 

A plasmonic component coupled to a silicon-on-insulator photonic crystal nanobeam cavity was 

proposed by Ivan S. Maksymov. It had the advantage that it exhibited the combined characteristics of a 

photonic cavity and plasmonic element, and also exploited the properties of Fano resonances resulting 

from interactions between the continuum and the localized cavity states.  The probe signal could be 

controlled by a strong cavity mode damping offered by plasmonic element thereby enabling the 

implementation of logic gates and switches [5]. 

 

A structure composed of a silicon micro-ring resonator coupled to a straight waveguide fabricated on 

SOI substrate using E-beam lithography, plasma dry etching, and plasma enhanced chemical vapor 

deposition (PECVD) for the SiO2 cladding deposition was studied by Q. Xu and M. Lispon. The logic 

operation was implemented based on the proposal in [3]. A strong optical control pulse and a weak 

continuous wave probe light are coupled into the ring resonator. Free carriers in the ring resonator are 

generated by the control pulse by virtue of due to the two-photon absorption (TPA) effect. These free 

carriers lower the refractive index of silicon through plasma dispersion effect and a blue-shift occurs in 

the resonant wavelength. This modulates the output power of the probe light. The resonant wavelength 

and the transmission of the probe light relax back due to the fast surface recombination of the free 

carriers once the control signal is removed. The extent of modulation and the strength of control pulse 

showed a dependency like logic gates. With the right choice of energy of control pulse, AND and 

NAND logic functionality were implemented [6]. 

 

AND, OR and NOT gates were implemented using silver nanowires with interconnections between 

them. Later these implementations were cascaded among them themselves to implement the 

functionalities of universal logic gates. The logical functionality was implemented by manipulation 

polarization and phase dependent interference between output beams [7]. 

 

https://www.sciencedirect.com/science/article/abs/pii/S0375960110016142#!
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A structure composed of plasmonic waveguides coupler with nano disk of the size of a few nanometers 

were proposed and analyzed for its behavior as logic gates.  XOR, XNOR, NAND and NOT gates were 

realized and FDTD simulations reveal the dependence of performance on structural characteristics of 

the proposed geometry. More logic functionalities can be implemented by cascading and combining the 

above-mentioned realizations [8]. 

 

An MIM structure with symmetric ring resonators and straight waveguides were proposed and 

numerically investigate using FDTD method. By using the coupling between the straight waveguide 

and ring resonator and by exploiting the dependence of the radii of the rings on resonant frequency, a 

NOT gate was implemented. A control input was used to manipulate the transmission of input signal to 

the output port [9]. 

 

Fu et al. proposed the realization of XOR, XNOR, NOT and OR gates using plasmonic Au-SiO2 slot 

waveguide structure by exploiting the linear interference between various surface plasmon polariton 

modes. A huge improvement in the miniaturization and intensity improvement was observed in this 

structure which was excited with a laser beam of 830nm and a high contrast ratio between logic 1 and 

logic 0 levels were obtained [10]. 

 

A T-shaped switch built using a square shaped ring resonator was employed as the basic building block 

for the realization of NOT, AND and NOR gates. Light intensity was controlled by non linear Kerr self 

and cross phase modulation. The subwavelength size and low input pumping power together with high 

contrast ratio between ON and OFF states makes it suitable for photonic integrated circuits [11]. 

 

All seven logic gates AND, OR, NOT, NAND, NOR, XOR and XNOR were implemented using a 

structure comprised of Insulator-Metal-Insulator straight waveguides and nanorings made of Silver-

Teflon and was analyzed by solving Maxwell’s equations using 2-D FEM method using a perfectly 

matched boundary condition. By examining the transmission characteristics, the transmission threshold 

was determined [12]. Similar behavior was implemented using Silver- Sapphire plasmonic waveguides 

[13]. 
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CHAPTER 3 
 

ELECTROMAGNETICS IN METALS AND ON METAL 

SURFACES 
 
Plasmons and Photons are the fundamental excitations in a material exhibiting conducting properties 

such as metal or extremely doped semiconductors. The free electron model considers metals as a gas of 

free electrons that are allowed to move freely within them. These electrons participate in electrical 

conduction and move independently throughout the lattice without interacting with each other and with 

the ion cores. Thus, the free electrons form the metal plasma comprising of positively charged ions and 

negatively charged electrons. Due to the low mass of electrons, they possess higher kinetic energies 

than those of ions. As a result of which the coupled excitation of electrons i.e., plasmons completely 

dominate the collective excitations of ions i.e., phonons. Plasmon is a quantum of collective excitation 

of conduction electrons inside a conducting media. There are two types of plasmons namely, Volume 

plasmon and Surface plasmon. Volume plasmons or Bulk plasmons arise due to longitudinal oscillations 

of electrons in a bulk material, whereas Surface plasmon is described as a surface wave arising by virtue 

of oscillations of free electron density at conductor surface. 

 

As is well known from everyday experience, for frequencies up to the visible part of the spectrum metals 

are highly reflective and do not allow electromagnetic waves to propagate through them. Metals are 

thus traditionally employed as cladding layers for the construction of waveguides and resonators for 

electromagnetic radiation at microwave and far-infrared frequencies. In this low-frequency regime, the 

perfect or good conductor approximation of infinite or fixed finite conductivity is valid for most 

purposes, since only a negligible fraction of the impinging electromagnetic waves penetrates into the 

metal. At higher frequencies towards the near-infrared and visible part of the spectrum, field penetration 

increases significantly, leading to increased dissipation, and prohibiting a simple size scaling of 

photonic devices that work well at low frequencies to this regime. Finally, at ultraviolet frequencies, 

metals acquire dielectric character and allow the propagation of electromagnetic waves, albeit with 

varying degrees of attenuation, depending on the details of the electronic band structure. Alkali metals 

such as sodium have an almost free-electron-like response and thus exhibit an ultraviolet transparency. 

For noble metals such as gold or silver on the other hand, transitions between electronic bands lead to 

strong absorption in this regime. 

 

These dispersive properties can be described via a complex dielectric function ε(ω). The underlying 

physics behind this strong frequency dependence of the optical response is a change in the phase of the 

induced currents with respect to the driving field for frequencies approaching the reciprocal of the 

characteristic electron relaxation time τ of the metal. 

 

Macroscopic Maxwell equations forms the basics of optical properties of metals and has advantage that 

details of the fundamental interactions between charged particles inside media and electromagnetic 

fields need not be taken into account, since the rapidly varying microscopic fields are averaged over 

distances much larger than the underlying microstructure. 

 

3.1. MAXWELL’S EQUATIONS 

 

The interaction of metals with electro-magnetic fields can be completely described within the frame of 
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classical Maxwell equations:  

 

∇ · D = ρ                    (3.1) 

∇ · B = 0                    (3.2) 

∇ × E = −∂B/∂t                   (3.3) 

∇ × H = J + ∂D/∂t,                  (3.4) 

 

which connects the macroscopic fields (dielectric displacement D, electric field E, magnetic field H and 

magnetic induction B) with an external charge density ρ and current density J.  

 

The four macroscopic fields are further linked via the polarization P and magnetization M by  

D = ε0E + P                    (3.5) 

H = 
1

𝜇0
B − M,                   (3.6) 

 

In the limit of linear, isotropic and non-magnetic media, there are few additional the material dependent 

relations:  

D = ε0εE                    (3,7) 

B = µ0H                    (3.8) 

 

with a frequency dependent dielectric constant:  ε= ε(ω), which is in general a complex function, ε = ε՛ 

+ i ε՛՛. It is furthermore connected to the complex index of refraction via n = n + iκ = √ε. Explicitly one 

can obtain the following expressions:  

 

ε՛=n2+κ2   ,  ε՛՛=2 n κ                  (3.9) 

 

n2=
𝜀՛

2
+

1

2
√𝜀՛2 − 𝜀՛՛2                                (3.10)

       

The real part of the refractive index n(ω) is responsible for the dispersion in the medium, the imaginary 

part κ(ω) (extinction coefficient) determines the absorption. Beer’s law describes the exponential decay 

of the intensity of a light beam (along the x direction) in a medium: I(x) = I0 exp(−αx). The absorption 

constant can then be determined from the extinction coefficient: α(ω) = 2κ(ω)ω/c. 

 

3.2.BULK PLASMONS OR VOLUME PLASMONS 

 

Over a wide frequency range, the optical properties of metals can be explained by a plasma model, 

where a gas of free electrons of number density n moves against a fixed background of positive ion 

cores. For alkali metals, this range extends up to the ultraviolet, while for noble metals interband 

transitions occur at visible frequencies, limiting the validity of this approach. In the plasma model, 

details of the lattice potential and electron-electron interactions are not taken into account. Instead, one 

simply assumes that some aspects of the band structure are incorporated into the effective optical mass 

m of each electron. The electrons oscillate in response to the applied electromagnetic field, and their 

motion is damped via collisions occurring with a characteristic collision frequency γ = 1/τ. τ is known 

as the relaxation time of the free electron gas, which is typically on the order of 10−14 s at room 

temperature, corresponding to γ = 100 THz. 

The equation of motion for an electron of the plasma sea subjected to an external electric field E, in this 

model is: 
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mx¨ + mγ x˙ = −Ee                (3.11) 

with the solution, 

   x(t) = e m(ω2 + iγω) E(t)               (3.12) 

 

 

The electrons which are displaced relative to the atom cores then generate a polarization P = −Nex. 

From this it follows for the dielectric displacement and the dielectric constant (from Eq. 5) 

   D = ε0(1 −
𝜔 𝑝

2

𝜔2  + 𝑖𝛾𝜔
)E,               (3.13) 

where 𝜔 𝑝
2 = 

𝑛𝑒2

𝜀0𝑚
 is the plasma frequency of the free electron gas. Therefore, the dielectric function of 

the free electron gas is: 

   ε(ω)= 1 −
𝜔 𝑝

2

𝜔2 + 𝑖𝛾𝜔
                (3.14) 

The dielectric function of the free electron gas (Eq.14) is thus also known as the Drude model of the 

optical response of metals. 

The real and imaginary components of this complex dielectric function ε(ω) = ε1(ω) + iε2(ω) are given 

by : 

ε1(ω) =  1 −
𝜔𝑝

2𝜏2

1+𝜔2𝜏2                (3.15) 

ε2(ω) =  
𝜔𝑝

2𝜏

𝜔(1+𝜔2𝜏2)
                (3.16) 

where we have used γ = 1/τ. 

 

The real part is related to a phase lag between the electric and magnetic fields and the imaginary part is 

related to energy absorption in the considered material. The permittivity derived here will be needed 

later on in the calculation of the dispersion relation and group velocity of SPPs. 

 

In case low frequency regime, where ωτ << 1, metals are strongly absorbing. The absorption constant 

then is given by: 

α =
2𝜔𝑝

2𝜏𝜔

𝑐2                               (3.17) 

The penetration depth of the fields at low frequencies on applying Beer’s law becomes δ = 2/α and is 

called the skin depth. However at large frequencies close to 𝜔𝑝, the approximation ωτ>>1 is valid. In 

this case the damping term iωτ can be neglected and ε(ω) becomes approximately real:  

ε(ω) = 1 − 
𝜔𝑝

2

𝜔2                   (3.18) 

The dispersion relation of electro-magnetic fields can be determined from k2 = |k|2 = ε ω2/c2:  

ω(k) = √𝜔𝑝
2 +

𝑘2

𝑐2                (3.19) 

This relation is plotted for a generic free electron metal in Fig. 3.1 For ω<ωp, propagation of transverse 

electromagnetic waves is hindered but for ω>ωp, the plasma supports transverse waves propagating 

with a group velocity vg = dω/dK< c.  
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Figure 3. 1 The dispersion relation of the free electron gas. Electromagnetic wave propagation is only allowed for ω>ωp 

 

In the small damping limit, ε(ωp) = 0 (for K = 0). This excitation must therefore correspond to a 

collective longitudinal mode as ε (K, ωp) = 0. The plasma frequency ωp can thus be recognized as the 

natural frequency of a free oscillation of the electron sea. The quanta of these charge oscillations are 

called plasmons (or volume plasmons). Due to this longitudinal nature of the excitation, volume 

plasmons do not couple to transverse electromagnetic waves, and can only be excited by particle impact. 

Thus, the bulk plasma cannot be excited from or strayed to direct irradiation.  Another consequence of 

this is that their decay occurs only via energy transfer to single electrons, a process known as Landau 

damping. In most metals, the plasma frequency is in the ultra-violet regime, with energies within 5-15 

eV, depending on the metal band structure. 

 
Figure 3. 2 Longitudinal collective oscillations of the conduction electrons of a metal: Volume plasmons 

 

 

3.3.SURFACE PLASMON POLARITONS AT METAL / INSULATOR INTERFACES 

 

Surface plasmon polaritons are electromagnetic excitations propagating at the interface between a 

dielectric and a conductor, evanescently confined in the perpendicular direction. These electromagnetic 

surface waves arise via the coupling of the electromagnetic fields to oscillations of the conductor’s 

electron plasma.  

 

Starting from Maxwell’s equations, the system of equations governing TM modes are: 
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   𝐸𝑥 = −𝑖
1

𝜔𝜀𝜀0

𝜕𝐻𝑦

𝜕𝑧
                (3.20) 

   𝐸𝑧 = −𝑖
𝛽

𝜔𝜀𝜀0
𝐻𝑦                (3.21) 

and the wave equation for TM modes is: 

   
𝜕2𝐻

𝜕𝑧2 +(𝑘0
2𝜀 − 𝛽2) 𝐻𝑦 =0                (3.22) 

 

 

 
Figure 3. 3 Geometry for SPP propagation at a single interface between a metal and a dielectric 

 

To detail the properties of SPPs, a one-dimensional problem of a single interface is considered here. 

The simplest geometry sustaining SPPs is that of a single, flat interface (Fig. 1.3) between a dielectric, 

non-absorbing half space (z > 0) with positive real dielectric constant ε2 and an adjacent conducting 

half space (z < 0) described via a dielectric function ε1(ω). The requirement of metallic character implies 

that Re [ε1] < 0. As shown in section 1.2.2, for metals this condition is fulfilled at frequencies below 

the bulk plasmon frequency ωp. The propagating wave solutions confined to the interface, i.e. with 

evanescent decay in the perpendicular z-direction are discussed. 

 

On applying the equations (20-22) in both half spaces we obtain: 

 

𝐸𝑌(𝑧) = 𝐴2𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧                                                                         (3.23) 

      

   𝐻𝑋(𝑧) = −𝑖𝐴2
1

𝜔µ0
𝑘2𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧                           (3.24) 

 

   𝐻𝑧(𝑧) = 𝐴2
𝛽

𝜔µ0
𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧                                       (3.25) 

    

For z>0 and 

 

 

                                             𝐸𝑌(𝑧) = 𝐴1𝑒𝑖𝛽𝑥𝑒−𝑘1𝑧                                                              (3.26) 

      

               𝐻𝑋(𝑧) = −𝑖𝐴1
1

𝜔µ0
𝑘1𝑒𝑖𝛽𝑥𝑒−𝑘1𝑧                           (3.27) 
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   𝐻𝑧(𝑧) = 𝐴1
𝛽

𝜔µ0
𝑒𝑖𝛽𝑥𝑒−𝑘1𝑧               (3.28) 

for z < 0.  

 

The Ez-field is plotted both in the dielectric (z > 0) and metal (z < 0) in Figure 1.4 and this was realized 

by applying equations (23-25) and (26-28) at an air-gold interface and at a wavelength of 1550 nm. 

Notice the range of the y-axis differs by a factor of 50 between both plots, indicating the electric field 

decays much faster into the metal as compared with the electric field in the dielectric. 

 
Figure 3. 4 Decay of the Ez-field 

 

Continuity of Ey and Hx at the interface leads to the condition 

 A1 (k1 + k2) = 0                 (3.29) 

    

Since confinement to the surface requires Re [k1] > 0 and Re [k2] > 0, this condition is only fulfilled if 

A1 = 0, so that also A2 = A1 = 0. Thus, no surface modes exist for TE polarization. Surface plasmon 

polaritons only exist for TM polarization. Also, continuity from Eqs. (23-25) and (26-29) between both 

the sections at z=0 implies that: 

   
𝜀2

𝜀1
= −

𝑘𝑧,2

𝑘𝑧,1
                 (3.30) 

Using the relations (Eq. 23-30) dispersion relation of propagating surface plasmon polaritons (at a single 

metal-dielectric interface) can be obtained as: 

   𝛽 =
𝜔

𝑐
√

𝜀2𝜀1

𝜀2+𝜀1
                     (3.31) 

    

Using the relative permittivity for air (𝜀2 = 1) and assuming a metal is used without absorption losses 

is used, the dispersion relation can also be written as: 

   𝛽 =
𝜔

𝑐
√

𝜔2−𝜔𝑝
2

2𝜔2−𝜔𝑝
2                                  (3.32) 

The different frequency regimes can be discussed from the plot of this relation. 
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Figure 3.5 Dispersion relation of a SPP at a single interface between semi-infinite gold and air sections with the real part 

(continuous line) and imaginary part (dashed line) separately plotted. 

The light line is the dispersion relation of a free photon. the real and imaginary components of the 

propagation constant are shown as a solid and dashed line respectively. In the low frequency 

regime(𝜔<𝜔𝑝), the SPP propagation constant, 𝛽 is comparable to k0 and since 𝛽 is small, waves extend 

to the dielectric space over many wavelengths. . Radiation into the metal occurs in the transparency 

regime (ω>ωp). Between the regime of the bound and radiative modes, a frequency gap region with 

purely imaginary β, prohibiting propagation exists. The curve has an asymptote at the surface plasmon 

frequency ωsp and at this frequency the group velocity v𝑔 = 
∂ω 

∂k 
 becomes zero meaning the surface 

plasmon mode is static.  

The surface plasmon frequency, ωsp is given as 

 

ωsp = 
ωp

√1+𝜀2
                 (3.33) 

 
Figure 3.6 a: Schematic of a surface plasmon polariton b: Exponential decay of the electric field Ez perpendicular to the 

propagation direction. δm and δd indicate the decay length into the metal and dielectric respectively 

3.4.MULTILAYER SYSTEMS  

 

In multi-layer systems, each single interface can sustain bound SPPs. When the separation between 

adjacent interfaces is comparable to or smaller than the decay length of the interface mode, interactions 

between SPPs give rise to coupled modes. In order to elucidate the general properties of coupled SPPs 

we consider two types of systems- Metal-Insulator-Metal and Insulator-Metal-Insulator. On extending 

the dispersion relation in single interface systems to multilayer systems the following observations are 
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obtained.  

 

In IMI geometry for odd modes, upon decreasing metal film thickness, the confinement of the coupled 

SPP to the metal film decreases as the mode evolves into a plane wave supported by the homogeneous 

dielectric environment. For real, absorptive metals described via a complex ε(ω), this implies a 

drastically increased SPP propagation length. The even modes exhibit the opposite behavior, their 

confinement to the metal increases with decreasing metal film thickness, resulting in a reduction in 

propagation length. 

 

Whereas in MIM geometries, the fundamental odd mode of the system, does not exhibit a cut-off for 

vanishing core layer thickness. Thus, β does not go to infinity as the surface plasmon frequency is 

approached, but folds back and eventually crosses the light line, as for SPPs propagating at single 

interfaces. It is apparent that large propagation constants β can be achieved even for excitation well 

below ωsp, provided that the width of the dielectric core is chosen sufficiently small .  

 

 
Figure 3. 7 a) SPP at the multilayer MIM Interface  b) Even and odd  modes 

 

It is well known that the IMI waveguide exhibits less propagation loss, leading to longer propagation 

length than the MIM waveguide. On the other hand, from a point of confining light, since the skin depth 

of SPPs fields into the dielectric medium is much longer than that into the metallic medium at the 

interfaces , the MIM waveguide is better than the IMI waveguide. Thus, the MIM waveguide is more 

suitable for high optical integration [14]. 
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CHAPTER 4 

 

MICRORING RESONATORS 
 

Optical ring resonators are waveguide structures that allow only a narrow band of frequency. They can 

also be used to couple two optical waveguides in opposite directions. A typical optical ring resonator 

has two parts, a straight waveguide, and a ring waveguide. The waveguide cores are placed close 

together and light waves are coupled from one waveguide to the other. In an optical ring resonator, light 

propagates around the loop and remains in the waveguides because of total internal reflection (TIR), a 

phenomenon in which light rays do not refract through the boundary of the medium they strike. Since 

only a few wavelengths reach resonance within these loops, optical ring resonators are used as filters. 

Two or more optical ring resonators can be combined to develop high-order optical filters with compact 

size, minimal losses, and easy integration into existing networks. 

 

 

4.1 PROPERTIES OF RING RESONATORS 

 

In general, a ring resonator consists of a looped optical waveguide and a coupling mechanism 

to access the loop. When the waves in the ring build up a round trip phase shift that equals an 

integer times 2π, the waves interfere constructively and the cavity is in resonance. Depending 

on the functionality, ring resonators are of two configurations: 

• All pass ring resonators 

• Add-drop ring resonators 

 

4.1.1 ALL PASS RING RESONATOR 

A basic all-pass ring resonator configuration can be thought of as looping one output of a 

directional coupler back to the input. In case the loop is elongated in the coupling region, it is 

called a racetrack resonator. The role of the waveguide is to couple light into the resonator. As 

it is shown in Figure 2.2, one input and one output port can be introduced for this filter. The 

Figure 4. 1 Geometry of a ring resonator 
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output port usually is named the through/pass port. The optical signal injected to the input port 

propagates through the waveguide to reach to the coupling region, which is the area of the 

waveguide with minimum distance with a ring resonator. In this region, a part of the light 

evanescently couples to the ring. The amount of coupling depends on the gap spacing between 

waveguide and ring, as well as matching between propagation constant of propagating mode 

through the waveguide and resonating mode inside the ring. The coupled light at resonance 

wavelengths, traps and builds up energy inside the ring. At other wavelengths, the light passes 

through the coupling region and reaches to the through port. 

 

 
Figure 4. 2 (a)All pass ring resonator (b) its spectral response 

Under the assumptions of continuous wave (CW) operation, matching fields and that the reflections 

back into the bus waveguide are negligible, the transfer function can be written as: 

 

𝐸𝑝𝑎𝑠𝑠

𝐸𝑖𝑛𝑝𝑢𝑡
= 𝑒𝑖(𝜋+𝜙) 𝑎−𝑟𝑒−𝑖𝜙

1−𝑟𝑎𝑒𝑖𝜙       (34) 

 

ϕ ˭ βL is the single-pass phase shift, with L the round-trip length and β the propagation constant of the 

circulating mode. a is the single-pass amplitude transmission, including both propagation loss in the 

ring and loss in the couplers. It relates to the power attenuation coefficient α [1/cm] as a2=exp(-αL). 

By squaring Eq. (1), we obtain the intensity transmission Tn, 

 

 𝑇𝑛 =
𝑎2−2𝑟𝑎𝑐𝑜𝑠𝜙+𝑟2

1−2𝑎𝑟𝑐𝑜𝑠𝜙+(𝑟𝑎)2       (35) 

 

r is the self-coupling coefficient. Similarly, we can define k as the cross-coupling coefficients, so r2 and 

k2 are the power splitting ratios of the coupler, and they are assumed to satisfy 𝑟2 + 𝑘2 = 1, which 

means there are no losses in the coupling section. This assumption can introduce a small error on the 

transmission power levels. 

 

The ring is said to be in resonance when the wavelength of light is an integral multiple of optical length, 

𝜆𝑟𝑒𝑠 =
𝑛𝑒𝑓𝑓𝐿

𝑚
 , m=1,2,3…      (36) 

 

There are 3 cases of coupling between waveguide and ring based on the values of r and a: 

 

• Under coupling (r < a): The amount of light coupled into the cavity is insufficient to overcome 

the cavity loss and there is no phase build-up when light is on resonance. 
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• Critical coupling (r = a): The amount of light coupled is equal to the cavity loss leading to zero 

transmission. 

• Over coupling (r > a): The amount of light coupled into the cavity is more than that lost inside it, 

resulting in a net phase build-up and a phase shift approximately equal to 2 𝜋(a decrease in phase 

shift). 

 

The phase argument of the field transmission varies periodically with frequency. All-pass resonators 

delay incoming signals via the temporary storage of optical energy within the resonator. 

 

4.1.2 ADD-DROP RING RESONATOR 

 

An add-drop structure includes two waveguides, which are placed on both sides of a ring resonator. The 

duty of one of the waveguides is to inject light to the resonator and the other one is responsible to couple 

light out of the resonator. As it is shown in Figure 4.2, four ports can be introduced for this structure. 

The optical resonance can be observed at two output ports. The first one at the other end of the input 

port is called the through/pass port. The transmission response of this port is similar to the through port 

of the all-pass filter, which means there is a dip at the transmission of the through port at resonance 

wavelength. The second output that has a reverse transmission response compared to through port is 

called drop port. 

 
Figure 4. 3 (a) An add-drop ring resonator (b) Spectral response 

 

The transmission to add and drop and drop port can be obtained as: 

𝑇𝑃 =
𝑟2𝑎2−2𝑟1𝑟2𝑎𝑐𝑜𝑠𝜙+𝑟1

2

1−2𝑟1𝑟2𝑎𝑐𝑜𝑠𝜙+(𝑟1𝑟2𝑎)2       (37) 

 

𝑇𝑛 =
(1−𝑟1)2(1−𝑟2)2𝑎

1−2𝑟1𝑟2𝑎𝑐𝑜𝑠𝜙+(𝑟1𝑟2𝑎)2      (38) 

 

If the cavity loss coefficient, a =1, critical coupling occurs when 𝑘1 = 𝑘2. 

 

4.1.3 SPECTRAL CHARACTERISTICS 

 

The performance of resonators can be measured in terms of the free spectral range (FSR), the full width 

at half maximum (FWHM), the finesse, extinction ratio, and the quality factor. The full width at half 

maximum (FWHM) is a measure of the sharpness of the resonance. As the name suggests, it is given 

as the width of the resonance peak where the power drops to half of the resonance value. The free 

spectral range (FSR) is defined as the wavelength difference between two successive maxima of the 

dropped power (or minima of the through power). 
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Figure 4. 4 Spectral parameters of a ring resonator 

The finesse is defined as the ratio of FSR and resonance width and the Quality factor is the ratio of 

resonant wavelength to FWHM. It’s a measure of the sharpness of resonance with respect to central 

frequency. Physically these terms can be explained in conjunction with the number of round trips of the 

cavity. The finesse is found to represent within a factor of 2π the number of round-trips made by light 

in the ring before its energy is reduced to 1/e of its initial value. The Q-factor represents the number of 

oscillations of the field before the circulating energy is depleted to 1/e of the initial energy. Another 

important parameter is the extinction ratio. It is the ratio of the amplitude of the signal in the through 

port at the resonant wavelength to that far away from the resonant wavelength in decibels [15]. 
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CHAPTER 5 

 

THE FINITE DIFFERNECE TIME DOMAIN (FDTD) 
 

The Finite Difference Time Domain method (FDTD) is a powerful engineering tool for integrated and 

diffractive optics device simulations, mainly because of its unique combination of features, such as its 

ability to model light propagation, scattering and diffraction, and reflection and polarization effects. 

The FDTD method allows for the efficient and powerful simulation and analysis of submicron devices 

with very fine structural details. The FDTD method, which was first developed by Yee in 1966, is a 

numerical method for solving Maxwell’s equations. Yee proposed a discrete solution to Maxwell’s 

equations based on central difference approximations of the spatial and temporal derivatives of the two 

Maxwell’s curl-equations.  

 

5.1  YEE’S ALGORITHM 

 

The algorithm used in FDTD simulations is known as the Yee algorithm. The original proposal was 

intended for homogeneous, isotropic and lossless media based on discretizing the volume into cells in 

Cartesian coordinates. The Yee algorithm solves for both electric and magnetic fields using the coupled 

Maxwell’s time-dependent curl equations, rather than solving for the electric field alone (or the 

magnetic field alone) with a wave equation. In principle the Yee algorithm places all electric (E) and 

magnetic (M) fields in an interlinked array with respect to Faraday’s and Ampere’s Laws inside a cubic 

cell. The E and the H field components are interlaced in all three spatial dimensions as shown in Figure 

5.1. 

 
Figure 5. 1 Electric and magnetic field components in a 3D staggered cubic unit cell of the Yee space lattice. 

 

This algorithm then solves both the E and H fields in a systematic approach: all of the E computations 

in the modelled space are completed and stored in computer memory for a particular time-point using 

previously stored H data. Then all the H computations in the space are completed using the E data just 
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computed. Inside a loop, this process continues until time-stepping, which is set by the user, is 

concluded. The computer simulation runtime increases with the size of the model and total number of 

time-steps. 

 

The method starts with the Maxwell’s equations (3.3) and (4.3) and results in six coupled scalar 

equations in a Cartesian coordinate that can be used to compute the field at a given mesh point. 

 

 
𝜕𝐸𝑥

𝜕𝑡
=  

1

𝜀
 (

𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
)                  (5.1) 

 

 
𝜕𝐸𝑦

𝜕𝑡
=  

1

𝜀
 (

𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
)                  (5.2) 

 

 
𝜕𝐸𝑧

𝜕𝑡
=  

1

𝜀
 (

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
)                  (5.3) 

 

 
𝜕𝐻𝑥

𝜕𝑡
=  

1

µ
 (

𝜕𝐸𝑦

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑦
)                  (5.4) 

 

 
𝜕𝐻𝑦

𝜕𝑡
=  

1

µ
 (

𝜕𝐸𝑧

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑧
)                   (5.5) 

 

 
𝜕𝐻𝑧

𝜕𝑡
=  

1

µ
 (

𝜕𝐸𝑥

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑥
)                  (5.6) 

 

 

For simplicity, we will look at the discretization of these equations in the 2D cases and the same steps 

can be used for 3D cases. 

 

5.2   2D YEE ALGORITHM  

 

We will now look at discretization of Maxwell’s equations based on the staggered cubic unit cell of the 

Yee space lattice given in Figure 5.1. In particular, we assume that there is no variation in the z direction. 

That means there is no propagation in the z direction, while propagation in either x- or y-directions (or 

both) is possible. Also, for simplicity, we neglect the magnetic or electric losses and assuming simple 

and source-free media, i.e., ε and µ are simple constants, independent of position, direction, or time. In 

the TM (TE) mode, only Hx and Hy (Ex and Ey) components are nonzero and are in the plane of 

propagation. We can now group Equation 4.1 according to field vector components. One set involving 

only Hx, Hy, and Ez, and another set involving Ex, Ey, and Hz, referred to respectively as the TM and 

TE modes. The resulting two sets of equations are given by : 

 
𝜕𝐻𝑥

𝜕𝑡
=  −

1

µ
 (

𝜕𝐸𝑧

𝜕𝑦
)                                 (5.7) 

 
𝜕𝐻𝑦

𝜕𝑡
=  

1

µ
 (

𝜕𝐸𝑧

𝜕𝑥
)                      (5.8) 

 
𝜕𝐸𝑧

𝜕𝑡
=  

1

𝜀
 (

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
)                    (5.9) 
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for TM mode. 

Here we considering only the discretization of TM mode. 

 

5.3  TRANSVERSE MAGNETIC (TM) MODE 

 

A portion of the Yee cell constituting a unit cell for the TM case is depicted in Figure 5.2. Note the 

spatial positions of the two magnetic field components (Hx and Hy) and the electric field component 

(Ez). The Ez component is located at integer grid points (i, j); the Hx component is located at integer x 

and half y grid point and the Hy component is located at half x and integer y components. 

 

 
Figure 5. 2 A 2D FDTD unit cell for transverse magnetic (TM) waves 

The spatially discretized versions of Equations 5.7-5.9 are: 

 

 

𝜕𝐻𝑥

𝜕𝑡
⃒𝑖, 𝑗 +

1

2
=  −

1

µ
[ 

𝐸𝑧⃒𝑖,𝑗+1−𝐸𝑧⃒𝑖,𝑗

∆𝑦
 ]                (5.10) 

 

𝜕𝐻𝑦

𝜕𝑡
⃒𝑖 +

1

2
, 𝑗 =  

1

µ
[ 

𝐸𝑧⃒𝑖+1,𝑗−𝐸𝑧⃒𝑖,𝑗

∆𝑥
  ]              (5.11) 

 

𝜕𝐸𝑧

𝜕𝑡
⃒𝑖, 𝑗 =  

1

𝜀
[ 

𝐻𝑦⃒𝑖+
1

2
,𝑗−𝐻𝑦⃒𝑖−

1

2
,𝑗

∆𝑥
−  

𝐻𝑥⃒𝑖,𝑗+
1

2
−𝐻𝑥⃒𝑖,𝑗

∆𝑦
 ]                                       (5.12)   

 

 

Solving Equations (5.10-5.12) for the time derivatives, the FDTD algorithm for TM waves is given by:

   𝐻𝑥|
𝑖,𝑗+

1

2

𝑛+
1

2 = 𝐻𝑥|
𝑖,𝑗+

1

2

𝑛−
1

2 −
∆𝑡

𝑢
𝑖,𝑗+

1
2

∆𝑦
[𝐸𝑧|𝑖,𝑗+1

𝑛 − 𝐸𝑧|𝑖,𝑗
𝑛 ]                   (5.13)
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𝐻𝑥|
𝑖+

1

2
,𝑗

𝑛+
1

2 = 𝐻𝑦|
𝑖+

1

2
,𝑗

𝑛−
1

2 −
∆𝑡

𝑢
𝑖+

1
2

,𝑗
∆𝑥

[𝐸𝑧|𝑖+1,𝑗
𝑛 − 𝐸𝑧|𝑖,𝑗

𝑛 ]             (5.14) 

 

    𝐸𝑧|𝑖,𝑗
𝑛+1 = 𝐸𝑧|𝑖,𝑗

𝑛 +
∆𝑡

𝜀𝑖,𝑗
[

𝐻𝑥|
𝑖+

1
2

,𝑗

𝑛+
1
2 −𝐻𝑦|

𝑖−
1
2

,𝑗

𝑛+
1
2

∆𝑥
−

𝐻𝑥|
𝑖,𝑗+

1
2

𝑛+
1
2 −𝐻𝑥|

𝑖,𝑗−
1
2

𝑛+
1
2

∆𝑥
]               (5.15) 

 

 

For the TM mode (Hx, Hy, Ez): E×H = −Ez Hy i − Ez Hx j. So, the light intensity for the TM mode is 

given by[16]: 

𝐼 = 〈𝑆̅〉𝑇𝑀 =
1

µ0
𝐸̅ × 𝐻̅                  (5.16) 

 

5.4  ABSORBING BOUNDARY CONDITION 

One of the great advantages of the FDTD method is that it does not require the storage of any field more 

than one time step back. However, the necessarily finite nature of any FDTD spatial grid is a critical 

limitation in the FDTD method. This means that the problem at the boundaries of the FDTD grid arises 

because the field components at the outer edge of a finite FDTD space are not completely surrounded 

by the field components required for an updated equation. Accordingly, there is not enough information 

to correctly update these components during the implementation of the FDTD algorithm. An absorbing 

boundary condition (ABC) is a means of approximately estimating the missing field components just 

outside the FDTD grid, in order to emulate an “infinite” space. Such an approximation typically 

involves assuming that a plane wave is incident on the boundary and estimating the fields just outside 

the boundary by using the fields just inside the boundary. In general, different ABCs are better suited 

for different applications and the choice of a particular ABC is also made by considering its numerical 

efficiency and stability properties. Among the different types of absorbing boundary conditions, our 

interest is specific to those based on surrounding the FDTD domain with a layer of absorbing material, 

known as Perfectly Matched Layers (PML).   

 

 
Figure 5. 3 : (a) Schematic of a typical wave-equation problem, in which there is some finite region of interest where sources, 

inhomogeneous media, nonlinearities, etcetera are being investigated, from which some radiative waves escape to infinity. (b) 

The same problem, where space has been truncated to some computational region. An absorbing layer is placed adjacent to 

the edges of the computational region—a perfect absorbing layer would absorb outgoing waves without reflections from the 

edge of the absorber. 
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A perfectly matched layer (PML) is an artificial absorbing medium that is commonly used to truncate 

computational grids for simulating Maxwell’s equations, and is designed to ensure that interfaces 

between the PML and adjacent media are reflectionless. The first effective PML was introduced by J. 

P. Berenger in 1994. Berenger’s PML method for absorbing waves which are incident on the boundaries 

of an FDTD grid is based on reflection and refraction of uniform plane waves at the interface between 

a lossless dielectric and a general lossy medium. The PML method involves modifying the medium of 

the simulation in a thin layer around the boundary, as shown in Figure 4.4, so that this layer becomes 

an artificially “absorbing” or lossy medium. The boundary layer is designed so that it absorbs enough 

of the outgoing wave so that reflections from the actual boundary are acceptably low. In addition, 

however, the boundary layer must be designed to prevent reflections from the interface between the 

actual medium and this boundary medium. This means the two media must be impedance-matched to 

very high accuracy. For this reason, the family of these methods is known as perfectly matched layers, 

or PMLs[17]. 
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CHAPTER 6 

 

SIMULATION 
 

 

6.1  SOFTWARE USED 

 

The tool used for the simulation and analysis of ring resonator and plasmonic logic gates here is 

Lumerical FDTD, which is a multipurpose designing tool for simulating and optimizing the 

performance of photonic integrated circuits. Lumerical FDTD solver uses the industry accepted FDTD 

method to accurately simulate the photonic and plasmonic devices involving subwavelength 

structures. It can solve arbitrary geometries and materials over any source bandwidth. 

 

6.1.1 FDTD WORKFLOW 

 

• Define Geometry 

• Define simulation region and mesh details. 

• Define the radiation source 

• Add monitors and analysis tools 

• Run simulation 

• Visualize results 

• Run parametric sweeps and optimizations 

 

6.2  SIMUALTION AND ANALYSIS OF A BASIC RING RESONATOR 

STRUCTURE 

 

A basic Silicon on Insulator (SOI) ring resonator structure is simulated in 3-D FDTD with the 

following structural specifications: 

 

Substrate  

Material SiO2 (Glass)- Palik 

Dimensions 16× 16 × 4 (µ𝑚) 

Ring Resonator  

Material Silicon-Palik 

Radius 3.1µm 

Coupling gap 0.1 µm 

Base width of waveguide 0.4 µm 

Base height of waveguide 0.18 µm 

Ports  

Type Mode Source 

Wavelength start 1.5µm 

Wavelength start 1.6µm 

Monitors Frequency domain field profile 

Boundary Condition PML 

 

Table 1 :Structural specifications of SOI ring resonator 



23 

 

6.2.1 SIMULATION SETUP AND RESULTS 

 

 
Figure 6. 1 Simulation Setup for SOI Ring Resonator 

 
Figure 6. 2 Perspective view of the structure along with solver

 

Figure 6. 3 Electric field distribution during On resonance condition (𝝀 = 𝟏. 𝟓𝟑𝟐𝟖µ𝒎) 
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Figure 6. 4 Electric field distribution at Off resonance condition(𝝀 = 𝟏. 𝟓µ𝒎)  

 
Figure 6. 5 Transmission Spectra at all four ports 

 
Figure 6. 6 Transmission spectra at the through port 
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Figure 6. 7 Variation of  S parameters when the ring radius is swept from 2.9 µm to 3.2µm 

 

6.3  SIMULATION OF ALL-OPTICAL PLASMONIC NOT GATE 

 

An all-optical plasmonic NOT logic using a Silver-Air-Silver MIM waveguide is simulated in 2-D 

FDTD method. 

The structural specification of the setup is elaborated in the table below: 

Table 2 :Structural specifications of All optical plasmonic NOT gate 

Substrate  

Material Ag (Silver)- Johnson and Christy 

Dimensions 1.6× 1.5 (µ𝑚) 

Ring Resonator  

Material Air (n=1.0003) 

Radius 0.1µm 

Coupling gap 0.02 µm 

Base width of ring 0.05 µm 

Base width of straight waveguide 0.05 

Ports  

Type Mode Source 

Wavelength start 0.61 µm 

Wavelength start 1.11 µm 

Monitors Frequency domain field profile 

Boundary Condition PML 
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6.3.1 SIMULATION SETUP AND RESULTS 

 

 
Figure 6. 8 Simulation setup for All-optical plasmonic NOT gate  

 

 
Figure 6. 9 Perspective view of the structure along with solvers 

 

Figure 6. 10 Refractive index profile of the structure 
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Figure 6. 11 Electric field distribution when input source is disabled 

 

Figure 6. 12 Magnetic field distribution when input source is disabled 

  

Figure 6. 13  Power distribution when input source is disabled 
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Figure 6. 14 Electric field distribution when input source is enabled

 

Figure 6. 15 Magnetic field distribution when input source is disabled 

 
Figure 6. 16 Power distribution when input source is disabled 
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Figure 6. 17 Transmission Spectrum at Output port when input is disabled 

 
Figure 6. 18 Transmission Spectrum at Output port when input is enabled 
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CHAPTER 7 

 

CONCLUSION AND FUTURE SCOPE 

 
The theoretical aspects of employing surface plasmon polaritons in all-optical logic was studied. The 

basic performance of microring resonators were investigated in an aim to use it realize all optical logic. 

An SOI waveguide ring resonator was implemented to analyze the fundamental working of a microring 

resonator. It was designed for a Free Spectral Range of 25.6nm at 1550nm and an approximate Q factor 

of 2000. Ripples are observed in the transmission spectrum due to an early shutoff of simulation. 

Furthermore, an Ag-Air-Ag MIM waveguide ring resonator was used to realize NOT logic and the 

functionality was achieved with an acceptable threshold between ON and OFF states. An amplification 

in the ports were observed due to early shutoff of simulation. The method used for solving the 

Maxwell’s in both the structures is Finite Difference Time Domain and the applied boundary condition 

is Perfectly Matched Layers (PML). 

 

Future Work 

 

This work can be extended to realize all the basic gates and universal gates and further to basic logic 

modules like MUX, DEMUX, Flipflop, Half Adder, Full Adder etc. Also works should be done to 

improvise the waveguide structure in terms of materials, geometry and area footprint. Further the logic 

data can be encoded in a different parameter of the light like phase rather than intensity. Improvements 

needs to done in the cascadability of the structure since an MIM waveguide has a low propagation 

length. 
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