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ABSTRACT 

Human Action Recognition research area is gaining interest due to its wide range of 

applications in the fields of elderly monitoring, suspicious activity monitoring, sports 

activity, pose estimation and health monitoring etc. The presence of a wide range of 

variations in normal human activities adds complexity to the recognition process. The use of 

automated systems is crucial in facilitating the increased utilization of cameras. These 

systems play a vital role in categorizing actions via the application of automated systems, 

namely Machine and Deep Learning. One of the primary objectives within the field of 

artificial intelligence is to create an automated system capable of effectively recognizing and 

comprehending human conduct and activities shown in video sequences. Over the last 

decade, several efforts have been undertaken to identify and acknowledge human activity 

inside visual sequences. However, this remains a formidable undertaking owing to factors 

such as the similarity of actions within the same class, occlusions, differences in viewpoint, 

and ambient circumstances. 

Due to the various issues and research gaps that were discovered in vision-based action 

recognition during the literature review phase, different state-of-the-reference methods are 

reviewed with their methodologies. The researcher used multiple approaches, like 

handcrafted-based feature extraction and automated feature extraction approaches with deep 

architecture. In this thesis, the suggested methods are categorized based on the modality, 

feature extraction techniques, and classification approaches. This work describes the various 

datasets along with their specifications and limitations. The latest approaches functionality 

is represented with their performance parameters. This thesis includes different methods that 

use ML- and DL-based techniques, along with their accuracy. 

Second, a Multi modal Deep Learning method is proposed for a Multiview dataset to deal 

with the Multiview problem. RGB, depth, and Skelton data are used in a multimodal base 

approach. A multi-modal based HAR approach is suggested. Depth, RGB and Skelton data 

are employed to evaluate the multimodal performance of the proposed approach. Depth 

Motion Map and Motion History Images are trained separately using the 5S-CNN model. 

On the other side, Skelton images are trained with the 5S-CNN and Bi-LSTM models.  
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In order to improve the rate of identification and correctness, the skeleton representation gets 

trained via the use of hybrid classification algorithms, namely the 5S-CNN and Bi-LSTM 

model. Next, the process of decision-level fusion is used to combine the score values 

obtained from three distinct movements. Ultimately, the activity of persons is determined 

according to how they combine value. To assess the effectiveness of the proposed 5S-CNN 

using the Bi-LSTM approach, an estimation is conducted. 

A lightweight pre-trained model is suggested, which takes fewer parameters in comparison 

to other models and evaluates the model's performance on various parameters. The main 

objective is to assess a recent pre-tested model in HAR that takes less time and data in the 

training phase. These models are efficient for mobile edge devices, which require less 

computation power as compared to other traditional DL models. The suggested approach 

performs well compared to the various recent techniques. 

This study describes the effectiveness of the vision transformer in action recognition. The 

sophisticated design of Vision Transformer models enables them to categorize activity 

properly. By using the UCF 50 dataset, we conducted an effective measure of these models 

and state-of-the-reference techniques to evaluate their respective efficacy. This research 

conducted a comparative study of several assessment measures, such as f1-score, precision, 

and recall, to assess the performance of the model. The proposed approach performs well 

compared to the state of the reference model. 

This thesis concludes with a discussion of significant findings and prospective research 

directions in the domain of HAR. 
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Chapter 1                                                                       

Introduction  

Human Activity Recognition (HAR) became the focus research area in computer vision due 

to its wide variety of applications. Its primary applications include surveillance video, video 

labelling and retrieval, monitoring of patients, automation, and scene modelling, to mention 

a few. This chapter has explained the human activity recognition system's overview, basic 

terminology, conventional architecture, different problems and situations in video analysis, 

and numerous applications of human activity identification in everyday life. Furthermore, 

research problem statements, contribution, motivation, study implication and thesis 

overview are discussed. 

1.1 Overview 

In HAR, action is defined as an observable object that may be viewed from the people eye 

or any other sensor device. Action can be categorized into four different categories based on 

the person's body involved in the human activity. 

• Gesture: Gestures are described as the motion of the body parts to describe tasks like 

sign language, head motion in negation, hand waving, etc. 

• Actions: When an individual human performs, several gestures are known as actions. 

For example, jogging, walking and jumping. 

• Interaction: Human-Human/Object is performing some action known as interaction. 

For example, playing guitar, washing clothes, two people conversing and cooking. 

• Behaviour: Any unusual facial expression indicating a person's behaviour at that time 

can be normal or abnormal. A person shouting with an unpleasant facial expression 

shows anger. 

• Group Activities: To accomplish a task by more than two people or groups of the 

person involved is known as a group activity. For example, playing football, military 

parades and protesting by groups. 
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Figure 1.1 represents the activity level with the complexity to recognize. Gestures and 

actions are fundamental to recognize. However, behaviour and interactions are intermediate. 

Group activities involving several people are incredibly complicated [1]. 

 

Figure 1.1 Classification of Human Activity 

1.2 HAR Process 

The HAR system is employed to analyze visual movements. After video data has been 

obtained, it is dealt with in accordance with the requirements of the which underlie 

application. The HAR process requires some basic steps to perform action detection like data 

pre-processing, feature extraction, action learning and action classification. Figure 1.2 

depicts the complete step-by-step process involved in the HAR problem. 

Data Pre-processing is used to improve the quality of input video sequences in order to 

extract robust characteristics. Background segmentation, silhouette extraction, histogram 

equalization, optical flow estimation, and other approaches were covered. Earlier human 
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action recognition systems relied on processing human silhouette extraction to depict human 

motion. It involves background removal, frame normalization, and vector quantization in a 

restricted setting. The primary drawbacks of these pre-processing approaches are that they 

are less suitable for real-time applications and are less efficient in unconstrained contexts 

such as complicated and low-light circumstances. 

Feature Extraction is the procedure to find robust features from the raw data to learn action 

efficiently. The utilization of handcrafted feature-driven approach representation is a long-

used conventional feature extraction approach that has delivered impressive results in several 

HAR applications. The primary contribution of feature extraction is eliminating unessential 

information from raw data and finding spatiotemporal relationships to recognize human 

activity. Several handcrafted feature extraction methods are used, like interest point-based, 

pose-based, shape-based, trajectory-based, motion-based, etc. In interest point based, 

STIP[2] is used to show local image features. STIP uses extra dimension to encode images. 

Pre-processing, such as background segmentation or human tracking, is not required for 

STIP algorithms. The aforementioned attributes exhibit resistance towards scaling, rotation, 

and occlusion, although they do not possess viewpoint independence. In trajectory-based 

methods, Motion trajectories are derived by tracking joints whereby interest spots are located 

alongside the input videos utilizing optical flow fields[3]. Methods used in trajectory-based 

are Histogram of Optical Flow (HOF), Histogram of Oriented Gradient (HOG) and Motion 

Boundary Histogram (MBH), etc. 

Handcrafted representations influence learning-based illustrations. Traditional machine 

learning algorithms rely on handcrafted feature representation. Deep Learning methods use 

automated feature extraction. Automated feature representation is dominating as compared 

to the handcrafted feature approach. Deep Learning methods use automated feature 

extraction. Automated feature representations are robust as compared to handcrafted 

features. Long Short-Term Memory (LSTM) or Recurrent Neural Network (RNN) works 

better to extract sequential information from video sequences. 

In Action learning, phase models are trained using the extracted features from data. Two 

Conventional methods for action learning are Machine Learning (ML) and Deep Learning. 

To circumvent the underfitting problem, these models are trained using a large quantity of 

data. 
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The Action Classification phase recognizes each action accordingly to train data. Various 

classifiers are used in conventional ML, like SVM, Random Forest, KNN and HMM.DL 

used the SoftMax layer to classify each action. 

In the complete process, we can observe how DL-based methods dominate in HAR 

compared to ML-based methods. ML-based methods are not suitable for large-scale data. 

 

Figure 1.2 Process of Human Activity Recognition 

We can suggest any novel or essential idea for any phase or collectively all steps of HAR. 

Because of continuous changes in the human body and surrounding conditions, every step 

has challenges and, for that reason, can introduce an effective method for HAR accuracy 

and processing speed. 

1.3 Challenges in HAR 

In vision-based HAR, we have several challenges due to the various aspects of the effect 

video stream, like background condition, view-invariant, lighting condition, camera motion, 

and noises in the visual stream. In vision-based HAR, we have several challenges due to the 

various aspects of the effect video stream, like background condition, view-invariant, 

lighting condition, camera motion, and noises in the visual stream. Any algorithm's 

effectiveness depends on the HAR dataset. If all sequences of action are captured in real 

conditions and manage all challenges, then this dataset will be more suitable to assess the 

effectiveness of the suggested approach. Accuracy is very challenging when we analyze and 

Data  

Pre-Processing 

Feature Extraction  

Action Classification 
Action Learning 

 



5 

 

represent the interaction between the object and the person[1]. Furthermore, HAR 

approaches are still not designed to recognize numerous gestures under varying backdrop 

circumstances, and they are not able to deal of gesture scaling and growth [4]. 

1.3.1 Occlusion 

Recognizing human action in the occluded visual streams is an arduous task. Other body 

parts or objects may also obscure the body components of the actor executing the action. 

When the leading actor's body parts are not clearly visible in video sequences, finding feature 

representations of occluded parts is very complex. In the domain of human posture 

assessment, occlusions may be categorized into two distinct types: self-occlusion and 

occlusion caused by external objects. Self-occlusion arises as a consequence of bodily parts 

colliding as a result of varying viewpoints, whereas other occlusions manifest when an object 

obstructs the visual field [5], [6]. 

1.3.2 Viewpoint Variation 

The viewpoint and position of the camera can influence the action emergence and are very 

complex to recognize. The action view captured in the action dataset is the primary concern 

in identifying human action. In a Multiview dataset, information of view is more robust than 

in a single-view dataset. The unsettled camera view causes multi-view variance, which 

delivers a new viewpoint to all activities. 

1.3.3 Intra-Class Variation and Interclass Similarity 

It may be shown that various people executed the identical acts in different ways. When 

contemplating the 'running' motion, a person may go slowly, quickly, or leap and then run. 

This indicates that an action classification may include several styles performed by human 

motion. Similarly, the processing time of action varies according to position change. All of 

these elements contribute to interclass posture and appearance variances. Action 

classification is challenging when action classes have a nearness in video streams. Running, 

Jogging and walking look similar in several action datasets. Developing an automatic 

recognition system is very challenging because of these issues. Specific features must be 

captured from the action videos to overcome intraclass variation and interclass similarity 

issues [7]. 
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1.3.4 Environmental Constraints 

The environmental condition can change the perspective of the scene. Due to the light 

sources that generate shadow on the object, variation in illumination occurs. Weather and 

daytime circumstances have a tremendous impact on the scene and the artifacts formed; such 

illustration, an action captured during rain, varies radically from the identical movement 

taken in broad daylight or the sunset. 

1.3.5 Data Imbalance  

HAR methods exhibited prominent results on significant action datasets. However, it's very 

complex to generalize these methods on large-scale datasets. The Deep Neural Network 

method shows better results on large-scale action datasets. These models needed a large 

volume of data with labelling for learning. The importance of data is a big concern when 

working with deep neural models. Deep model learning is very typical due to the 

unavailability of labelled data. 

1.3.6 Dynamic Camera 

Furthermore, when the action has been captured, it's possible that there's intrinsic movement 

in the camera, which has a negative impact on motion features because erroneous motion 

patterns are added to the recordings. When the Camera is static, human action can be 

classified easily compared to a dynamic Camera because it adds variation in pose and 

illumination, which makes it more typical to detect movement. 

HAR methods have various challenges. HAR methods manage all issues to give the crucial 

results for which they are introduced. The main aim of these methods is to provide 

surveillance, keep track of patients, and help the elderly together; with the growing installing 

prices arise some civil issues: receive by the community and privacy. Interpreting and 

distinguishing everyday actions in lengthy videos is a difficult task. It is because long-term 

recordings covering daily living activities are comprised of several complicated steps. Such 

tasks are challenging to describe due to their complicated structure and wide variety in how 

they are performed. Overlapping action is another issue because there needs to be a clear 

start and end time. This issue is addressed by [8] 

Traditional Machine Learning (ML) algorithms classify action vaulted with a large set of 

actions executed in a constrained environment. When data is vast, the ML algorithm does 

not perform better. Controlling imbalanced data may be a challenge when employing typical 
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ML-based solutions. Furthermore, training using ML approaches might be affected from a 

sluggish learning rate, which is exacerbated by huge-scale learning (training) data, as well 

as a dismal recognition rate. The preponderance of the effort in ML-based HAR approaches 

is done via supervised learning[9]. Although this gave potential answers, one issue with this 

technique is that categorizing all the activities required a significant strive again to 

evaluate data. 

Deep Learning (DL) based methods also suffer from challenges in HAR.DL approaches need 

a large amount of data to train the model; they perform poorly when data availability is 

limited. The DL method also suffers occlusion and illumination change conditions because 

their technique cannot capture exact features from data[9]. 

1.4 Application Of HAR 

Researchers introduced numerous HAR models in the last decade due to various 

applications. HAR can be utilized in content-based video retrieval, abnormal action 

detection, healthcare monitoring, sports monitoring and education. Figure 1.3 shows the area 

of application where HAR plays a crucial role. 

 

Figure 1.3 Application Area Of HAR 
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1.4.1 Video Surveillance 

Usually, Video surveillance systems depend on a mesh of vision cameras controlled by a 

manual(person) observer who must be aware of activities happening in the region of camera 

sight. Due to the increase in the number of vision camera installation, the efficiency and 

effectiveness of person observers has been strained. Usually, Video surveillance systems 

depend on an area of vision equipped and controlled by a manual (person) observer who 

must be aware of activities happening in the region of camera sight. Due to the increase in 

the number of vision camera installation, the efficiency and effectiveness of person observers 

has been strained. Therefore, companies are seeking a vision-based solution to replace 

human base supervision. One such issue that has piqued the interest of vision experts is the 

automatic detection of abnormalities in a camera's field of view. A similar application 

includes learning activity patterns from lengthy footage to search for an activity of interest 

in a vast dataset. Figure 1.4 depicts the monitoring of railway station security. 

 

 

Figure 1.4 Surveillance system 

1.4.2 Condition of Background 

The background condition matters for selecting an action, and sometimes the model does 

not perform correct classification due to a cluttered background. Backdrop clutter is defined 

as the movement patterns of background objects or people that detract from the primary 

activity of attention. In these instances, the foreground must be consistently split, and the 

foreground item must be monitored. However, such precise tracking may only be achieved 

on rare occasions because of low resolution and fluctuating background motion. The 

Weizmann dataset[10] has fewer changes in the action background compared to the KTH 
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dataset[11]. In Visual streams, the backdrop has dynamic, static, densely occupied, weather 

affected and occluded variations. 

1.4.3 Healthcare 

Elderly care is a significant issue because they are vulnerable to sickness. Falling and 

abnormal behaviour are the primary concern, so continuous monitoring is necessary for older 

adults. Phone-based sensors can be used to monitor the behaviour of abnormal patients. 

Nizam et al. suggested a method for fall detection using Kinect Sensor data, which extracts 

a person's speed and pose-based features. The technique uses the actor's position in the 

subsequent frame to verify the spotting of the fall from abnormal activity. Nizam et al. 

suggested a technique for fall detection using Kinect Sensor data, which extracts a person's 

speed and pose-based features[12]. The method uses the actor's position in the subsequent 

frame to verify the spotting of the fall from abnormal activity. 

1.4.4 Education 

Action recognition from the visual plays a crucial role in education. HAR helps the institute 

record the behaviour of students and monitor of presence in the classroom. Various 

automated recognition systems are used in the classroom to monitor attendance. HAR is also 

used in the examination system to monitor any suspicious activity and laboratory of 

university and college. 

1.4.5 Sports 

Trainers in sports can only monitor some actions in the large videos and it is difficult for the 

audience to follow along with games constantly. Activity-monitoring algorithms to identify 

athletes' movements is referred to as human action recognition in sports. Warm-ups, fitness 

training, and sport-specific training, matches, or contests may all be tracked. As a result, 

HAR may be used to track professionals' progress (for example, jogging), assess the 

numerous movements done by different athletes or many performances of individual players 

(for example, backhand in tennis, serve in volleyball) to assist in training a technique or 

develop the style, and so on. Furthermore, some systematic statistical tests of a sports 

competition or individual athlete performances may be offered utilizing HAR[13]. 

1.4.6 Abnormal Activity Detection 

In bus stations, City main areas, Airports and other places, security is very complex with a 

substantial quantity of surveillance equipment, so abnormal activity detection can be used to 
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ensure security. A single Dynamic Oriented Graph is used to identify abnormal behaviour in 

three categories: person, group, and vehicle. Manual tracking for abnormal activity is 

difficult, so Automated HAR is needed to ensure security in crowded places. Usually, it 

comprises undesired behaviours such as theft, conflicts, human attacks, or any kind of 

violence that must be identified and controlled. Automated abnormal detected systems are 

trained on various datasets to identify a person's suspicious behaviour. Abnormal activity 

can be tracked even if the object follows the same path. For instance, a human traversing a 

rail corridor is uncommon, but a rail traversing a rail corridor is considered normal 

behaviour. 

1.4.7 Content-Base Retrieval 

Due to the widespread usage of multimedia devices in the modern day, video material is 

expanding rapidly. This information might be laborious and time-consuming to get 

manually. This method is referred to as Content-Based Video Retrieval (CBVR). In order to 

improve the user experience of video-sharing services, it has become crucial to produce the 

efficient indexing and archiving strategies. This consists of learning connections from 

unprocessed videos and summarising videos according to their content. With advancements 

in content-based image retrieval, content-based video summarization has attracted increased 

attention. The synthesis and extraction of consumer material, such as sports footage, is one 

of this technology's most financially feasible uses [14]. 

1.5 Problem Statement 

Although the notion of HAR has been in use for more than two decades, cutting-edge 

methodologies show that the present classification techniques are inefficient[9] Based on the 

obstacles mentioned above, which include intra-class similarity, view variation, scales, 

shifting lighting conditions, clutter backdrop, and different forms of occlusions, it is 

necessary to design a HAR system capable of overcoming these limitations in video 

sequences. These obstacles include the selection of unsuitable dataset, lack of knowledge in 

advanced deep learning models, data collection errors, limited work on activity recognition 

involving more than one-person, limited work on diverse datasets, poor selection of 

classifiers, lack of ground truth, lack of knowledge for the selection of sensors and cameras, 

variation in viewpoint, execution rate, and limited work on multi-view activity recognition. 
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This work suggests multi-view and multimodal methods to address these issues effectively. 

The introduced framework used various modalities of data to understand human action. 

Several methods have been proposed to effectively tackle the challenge of action recognition 

in videos within a realistic context. We suggested a lightweight deep-learning model for 

HAR to address the computational problem. This model uses the pre-trained DL models for 

HAR. 

This work also investigates the latest models for HAR, like the Vision transformer, efficient 

net and other models. In this work, various datasets have been explored with their limitations 

and the environmental conditions they captured. Compare numerous existing works with the 

methodologies and techniques authors use to resolve HAR issues. 

1.6 Major Contribution of Thesis 

The primary objective of the research study is to create and implement more sophisticated 

systems for recognizing human activities. These systems should be able to identify human 

activities at a better recognition rate. Also, the theoretical foundation for the enhancement of 

the performance of HAR approaches is provided by this work. 

1.6.1 Theoretical Formulation 

• View invariant problem in HAR detected and dealt with the multi-view model 

approach. 

• Due to various challenges, more than the HAR single modality model is required to 

recognize the action accurately. 

• It has been determined that the HAR model needs better identification accuracy in 

various complex scenarios. 

• The difficulties of recognizing human movement under diverse illumination 

situations have been highlighted. 

• Exhibited is the computation of the motion-based temporal information of a moving 

individual. 

• Observations have been made on the performance of classifiers under different 

constraints of the activity performed. 

• When available data is huge, the training model from scratch is complicated. This 

issue is addressed by transfer learning techniques to deal with vast and small datasets 

to avoid the overfitting problem. 
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• The performance of various transfer learning models was compared and evaluated 

on a challenging human action dataset. 

1.6.2 Experimental Validation 

The introduced framework's performance is evaluated using various parameters over 

available human action datasets. Person, several people, human-human interaction, and 

human interaction with objects videos are collected in complex scenarios with environmental 

conditions. 

• A literature review was performed to identify emerging trends, challenges, 

limitations, handcrafted feature methods, deep/machine learning models, and 

publicly available datasets with their scope and future scope in HAR, which provided 

researchers with a brief knowledge of computer vision. 

• A multimodal for HAR is developed, evaluated on a Multiview dataset, and 

measured in terms of effectiveness with the state of the reference models. 

• Utilize a pre-trained model for action recognition, which reduces training time. 

• Design a lightweight DL model using a fine-tuned pre-trained action analysis model. 

• Studied various latest Transformer models for computer vision and evaluated the 

performance of these models in action recognition. 

1.7 Motivation of Study 

Over the past few years, understanding human activities in video sequences has been 

attached to complementary research such as human motion, segmentation based on 

semantics, objection identification, and domain adaptations. Currently, recognition of 

human actions can be learned automatically from multiple videos and applied across 

numerous everyday applications. 

The number of uploaded videos on social media platforms such as YouTube, Facebook, and 

Twitter have increased rapidly in recent years. Due to the availability of low-cost, high-

quality camera devices and fast internet connections in intelligent mobile phones, a large 

number of videos are uploaded annually to these social media platforms. Due to the vast 

quantity of data, there is a need for a system that can accurately analyze these videos and 

provide the required recommendations and solutions. Human action recognition is an 

essential component of these systems. 
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Robotics is an interdisciplinary discipline of science and engineering, as is evident. It focuses 

on the creation of devices that can supplant humans. Robots are a multipurpose mechanism 

that can be used in adverse situations such as explosives detection and de-activation or where 

humans cannot manage. In numerous robotics applications, human action recognition 

systems play a crucial role. Autonomous vehicles, which are a specific form of automaton 

that can govern the road situation and reduce the number of accidents, are one example. 

Autonomous driving necessitates accurate human pedestrian detection and body prediction, 

and it can avoid hazardous conditions. 

Recognizing human actions in video sequences was prompted by the broader spectrum of 

applications, including robotics, human-computer interaction, and video surveillance. 

1.8 Significance of Human Action Recognition 

Intelligence-based AR is a growing field of study in computer vision and deep learning. 

Human action recognition's primary objective is to intelligently identify and analyze human 

actions from data collected by sensors, such as video sequences, depth sensors, and 

additional modalities. Numerous applications include monitoring and security, assisting 

medical care, the interaction between humans and computers, the field of robotics user-

interface design, video perusing, sporting assessment, tracking of human objects, etc. Daily 

suspicious activities, traffic accidents, terrorist attacks, rioting, and stampedes are rising in 

the current social climate. Due to the vast amount of information extracted from video 

sequences, a HAR model effectively addresses such security concerns. 

1.9 Thesis Organization 

The present thesis is structured into a total of five chapters. The following section provides 

a concise overview of the outlines: 

• Chapter 1: This chapter contains the introduction and background information about 

HAR. This chapter also discusses the general framework of HAR, the challenges 

associated, its applications, the process of HAR and various basic terminology. In 

addition, this chapter covers research problem statements, the significant 

contribution of the study, the motivations behind conducting the research, and the 

overall significance of the study. 
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• Chapter 2: This chapter briefly describes the existing methodologies and their 

limitations. We have reviewed various handcrafted approaches, including 

classification-based methods, automated feature extraction methods, and various 

available datasets for the HAR problem. Different modality-based practices are 

reviewed, like unimodal and multimodal. Furthermore, this chapter included 

evaluation metrics to evaluate the model's performance. 

• Chapter 3: This chapter presents a multimodal approach for HAR. The suggested 

framework uses RGB, Depth and Skelton data. Multimodal HAR framework 

presented. After that 5S-CNN model used for training and compare with the state of 

the reference model. 

• Chapter 4: This chapter describes the numerous recent deep learning models on the 

HAR.UCF 50 datasets were used to evaluate the performance of the suggested 

approach. A light-weight Deep Learning model was evaluated in this chapter to 

address the HAR problem. This model used recent Deep Learning models and 

compared them with various state-of-the-art methods. 

• Chapter 5: In this chapter, the Vision Transformer model is used to evaluate the 

performance of the Human Action Recognition Approach. Vision Transformers have 

several variants, like Vision Transformers Large and Huge Pre-trained models 

require less training time than the conventional Deep Learning model because the 

pre-trained model has already been trained on a vast amount of data. This approach 

evaluates the performance of the Vision Transformer model for the HAR problem.  

This study helps the researcher evaluate the benefits of the latest Vision Transformer 

model in the domain of HAR. 

• Chapter 6: This chapter describes the performance of the recent Transfer Learning 

(TL) model in the HAR problem. Various models’ performance is discussed in this 

chapter. The UCF 11 and UCF 50 datasets are used to describe the effectiveness of 

these models. These models are comparable to the state of the reference model. This 

chapter provides a detailed view to analyze the TL model's performance and its 

appropriateness for the HAR problem. This chapter also discusses the use of the TL 

model compared to the DL model. 

• Chapter 7: This chapter summarizes suggested approaches, limitations, and specific 

findings. This chapter also provides enhancement areas for the HAR problem. 
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Chapter 2                                                                             

Literature Review 

This chapter discussed the advantages and disadvantages of current state-of-the-reference 

procedures. The conventional hand-crafted and automated learning feature descriptors for 

representing human activities in video sequences have been examined. It assists us in 

identifying research gaps in current solutions in the relevant field. In addition, we compare 

publicly accessible human activity datasets. In addition, the research goals are developed 

based on the research gaps addressed in this thesis. 

2.1 Introduction 

Researchers have developed HAR from video and image data since the early 1990s. In 

addition, how the human visual system operates is one of the most important directions 

scholars have explored in AR. In a brief amount of time and at a low level, the visual system 

of humans is capable of receiving several observations regarding what is happening and 

the shape of the human body. Next, these observations are sent to the intermediate human 

perception system for class identification, such as taking a stroll, exercising, and racing. The 

human visual and perceptual system is robust and highly accurate in recognizing observed 

movement. In order for a computer-based recognition system to attain a comparable level of 

performance, researchers have exerted considerable effort over the previous several decades. 

However, due to the numerous challenges and issues related to human activity recognition 

(HAR), such as the intricate nature of the environment, variations within the same class, 

changes in perspective, obstructions, and the flexible structure of individuals and objects, 

we are still far from achieving a level of performance comparable to that of the human visual 

system. 

When we look into the HAR process, the first step is how we can generate the best features 

for models to learn activity and the model could detect activity based on learning. In the last 

decade, numerous approaches to feature representation have been introduced. Based on these 

studies, we can broadly divide into two categories: Handcrafted-based action representation 

and automated feature learning methods. Figure 2.1 depicts the approaches for Action 

Recognition. 
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Figure 2.1 HAR Approaches 

2.2 Handcrafted Feature-Based Approaches 

Representation of activity requires the pull out of a group of characteristics from global and 

local attributes. The purpose of the activity depiction challenge is to identify features that 

are insensitive to occlusion, changes in backdrop of images and perspective change. The 

essential classification of human activities Recognition techniques utilize a conventional 

strategy referred to as a hand-crafted feature-based solution. It has been prevalent in the 

HAR community over the last few decades and has produced some fascinating results with 

well-recognized datasets. 

Approaches reliant on manually crafted attributes require human resourcefulness and 

preexisting knowledge to extricate unique features. These procedures require three 

significant steps: (1) Detection of the foreground in accordance with activity segmentation; 

(2) Feature selection and extraction by efficient method (3) Activity identification. Hogg 

[15] introduces the first step towards action detection from a video clip. To analyze human 

activities, a WALKER model constructed using 3D structural hierarchical modeling is 

presented. Rohr [16] introduced a similar method based on the linked cylindrical form to 

represent the limb connection for pedestrian detection. Traditional Handcrafted Feature base 

methods can be classified into Space-Time Base Approach, Appearance-based approach and 

other approaches shown in Figure 2.2. 

 

Human Activity 

Recognition 

Approaches 

Handcrafted 

Feature Based 

Approaches 

Automated 

Feature Based 

Approaches 



17 

 

 

Figure 2.2 Conventional HAR Techniques based on Handcrafted 

2.2.1 Space-Time Based  

Using sparse and dense feature extractors in Space-Time-based methodology, local and 

global features are extracted from the input video. The collected characteristics are combined 

with methods and a vocabulary, which is then utilized to classify actions using supervised 

and unsupervised learning techniques. The space-time technique represents activity by 

considering its spatial extent, temporal evolution, and its associated characteristics. The 

technique is used to establish a correlation between inputs and their corresponding 

representative models, with the aim of discerning the activity class. As seen in Figure 2.3, it 

is evident that AR may be achieved by evaluating the shape similarities and appearance using 

these approaches. 
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Figure 2.3 Approaches for Space-Time 

Space-Time Volume: The features within the space-time domain are depicted as space-time 

volumes (STV), which take the form of three-dimensional Spatiotemporal cuboids. The basis 

of STV-based approaches for action recognition is a likeness measure among two volumes. 

Bobick and Davis [17] did this by identifying real-time activity using two vector image 

components: Motion Energy Images (MEI) and Motion History Images (MHI). It develops 

a vector map for undetermined video frames, which is then compared to the representation 

corresponding to known motions. They have concentrated on the perspective of certain 

human motion activities, and action is taken into account across time. MEI and MHI 

templates both provide vital information about the object locomotive and eliminate the issue 

of a crowded backdrop in video streams. In [18]circumvent explicit flow computed by 

imposing a rank-based restrictions on spatiotemporal cuboids' the intensity information to 

ensure template and target consistency. This approach is validated on the Weizmann dataset 

and employed in sequences of videos to find behaviours of interest. It recognizes comparable 

actions and activities in video sequences despite visual variations caused by differences in 

clothes, backdrops, lighting, etc. There is no requirement for previous modelling or learning 

exercises. Volume-based techniques cannot function well in a congested context; they are 

only appropriate for basic action or gesture detection. Tian et al. [19] the gradient of the MHI 

template to improve activity recognition in a crowded backdrop by using the gradient. They 

identified the site of interest using the 2D Harris corner detector [20]at the high intensity 

Collection of Real-World Visual Sequence 

Volumes Features Trajectories 

Training Model for 

Volumes 

Training Model for 

Features 

 

Training Model for 

Trajectories 

 



19 

 

point in the MHI template. In addition, Spatiotemporal characteristics are represented by the 

HOG model, and actions are identified using the GMM model. Blank et al. [21] presented 

the Space-Time 3D shape model of the MEI template using binary silhouettes, 

outperforming previous human action identification, detection, and classification methods. 

Their method does not need video alignment and is relevant to real-world conditions.  

[22] use spatiotemporal volumes to distinguish view-variation human actions in visuals, 

using a similar methodology. Motion History-Volume (MHV) was created to describe view-

free human activity in multi-calibrated, segmented backdrop films. In addition, the PCA 

(Principal Component Analysis) and LDA (Linear Discriminate Analysis) algorithms 

minimize the dimensions, and the Fourier transform eliminates the phase to identify the basic 

action classes. 

[23] presented a maximum average correlation height (MACH) filter template-based 

approach for identifying video motion. Their system can solve the issue of intra-class 

variances with little computational expense. Yilmaz and Shah [24]suggested an action sketch 

for analyzing the 23 Spatiotemporal variations based on their differential geometrical surface 

features. Using the graph-theoretical technique, TV is constructed by stacking sequential 

contours along the time axis. Action sketch collected characteristics from the surface of STV 

in order to recognize activities and be invariant to perspective changes. During the years 

2001 and 2008, global features-based action representation methods were the most prevalent. 

Nonetheless, local characteristics and deep learning-based techniques now dominate the area 

of action recognition research. 

Space-Time Trajectories (STT): Trajectory-based techniques envision an activity as a 

collection of these trajectories in space-time. In these methods, a person is depicted by two-

dimensional (XY) or three-dimensional (XYZ) dots that correspond to the location of their 

bodily joints. According to the nature of an activity, a person's joint placements alter as he 

or she does it. 3D XYZ or 4D XYZT STT represents these modifications. Tracking the joint 

location of the body allows the space-time trajectories to discriminate between various sorts 

of activities. This set of methodologies represents the joint locations of the body with either 

two-dimensional or three-dimensional points that are tracked through the frame sequences 

to calculate trajectories of the activity.  
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With these observed alterations in the posture are employed to generate the activity three-

dimensional sight, that is a compilation of spatial-temporal trajectories. The above-

mentioned techniques effectively recognize complex actions and resist noise, view, and/or 

illumination changes. Campbell and Bobick released an article [25] in the late 90s' that 

utilized tracing joint positions and sequences in a three-dimensional XYT plane; nine atomic 

movements of a ballet dancer are identified.  

Rao et al. [26] presented a novel approach for learning activity that is independent of specific 

viewpoints, thereby avoiding the challenges associated with training models and mitigating 

the ambiguity inherent in action and trajectory recognition. Sheikh et al.[27] introduced a 

matching approach for 13 combined trajectories in a four-dimensional XYZT space. This 

approach has detected basic behaviours (seated, having to stand, and dancers) despite 

changes in perspective, anthropometry, and implementation rate. In contrast, Khan et al. [28] 

sought to identify complex behaviour in group activities (e.g., human marches) through a 

3D polygon. A vertex of the three-dimensional polygon portrayed the representation of each 

group member. To obtain corner spot trajectories in a four-dimensional XYZT space, the 

movement of each object was continuously observed across consecutive frames and 

subsequently documented. The authors [29] presented a novel approach to representing 

human action, wherein they utilized a particle filtering tracking scheme to extract short 

trajectories in both spatial and temporal dimensions. A longest common subsequence 

algorithm was employed to conduct a comparative analysis of distinct sets of trajectories 

associated with various actions. Trajectory-based methods Action trajectories are calculated 

by monitoring joints containing points of interest with supplied image sequences using 

optical flow fields. Densely sampled objects are traced employing optical flow area to derive 

trajectories [30]. Trajectories are beneficial in situations where lengthy data is recorded. 

Trajectories that are on the motion boundary are taken into consideration by the dense 

trajectory motion boundary-based sampling approach that was presented in [31] In addition, 

optical flow is employed to produce the motion boundary, and areas lacking motion 

boundary foregrounds are removed. Furthermore, activity detection is facilitated by a novel 

co-occurrence descriptor comprised of appearance and static information. Yu et al. expanded 

the concept of dense trajectories and integrated it with local and global motion points, 

resulting in a method where no background separation occurs during action recognition and 

dense trajectories are promptly retrieved and identified [32]. Mihir et al. [33] devised a 
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method for dissecting visual motion into STT, which are then used by a DCS descriptor 

according to shear data, divergence, and curl. In addition, the VLAD coding approach is 

utilized for action recognition, making this technique well-suited for conducting 

complementary functions. Messing et al. [34] demonstrated distinguishing human motion in 

a high-resolution video clip using a generative mixture model based monitored critical 

points' motion record (history of speed). The suggested model retrieved and tracked the 

feature trajectories using Birchfield's implementation of the tracker KL [35], which 

monitored those points of interest with eigenvalues exceeding a specified range using frame-

to-frame transformation and a consistency test. Human activities and interactions are 

detected utilizing trajectory attributes in [36]. Nevertheless, while camera motion and 

occlusions have existed in frame sequences, these features are not as strong; hence, sparse 

feature extraction is used for action identification [37]. Face recognition, scene restoration, 

and subspace clustering were all possible with the previous sparse coding approach.  

Devanne et al. [38] advised applying a skeleton of human model to the data in order to 

capture the 3D coordinates of the joints and their mobility over time. Consequently, the 

examination of the geometric similarity among trajectories on a Riemannian manifold is 

simplified to the activity of action recognition. KNN has been utilized to recognize this 

manifold. Using Kendall's form manifold, Amor et al. [39] analyzed both static and dynamic 

human skeletal data recorded with a depth camera. In addition, they developed an automated 

method for action identification based on depth camera data. 

Space-Time Features (STF): For HAR, STF based methods collect features from STV or 

trajectories. Frequently, these characteristics are local and include distinguishing aspects of 

an activity. Certain features may be classified as sparse or dense based on the attributes of 

STV and trajectories. Space-time features are local 3D volumetric characteristics on a scale 

of space-time. Mostly local features are frequently a suitable approximation for representing 

and perceiving the human actions, as approaches which relied on space-time features 

suppose that the 3-D STV is a rigid 3-D object and characterize individual action's 3-D 

volume by achieve with the operation of object matching. The space-time feature provides 

a straightforward representation of the 3D volume of human activity by eradicating object-

matching issues. In [40] introduced, an event-based distance measuring method that made 

use of local characteristics at several temporal scales. 
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 It requires no previous knowledge of the event model or segmentation of the background. 

Due to the operation of intensity gradients on several temporally scaled visual dimensions, 

this system's accuracy diminishes when the video's complexity increases. It is ineffective for 

video multiactivity recognition. Space–time point-based interest methods Space–Time 

Interest Point (STIP) may be used to depict a scene with local features. STIP characteristics 

encode images by adding a time dimension. Adding temporal domain information to spatial 

domain information enables the encoded picture to convey extra information about the action 

scene's contents and structure. By using clustering methods, STIP may be turned to saliency 

zones. The aforementioned characteristics exhibit invariance with respect to translation and 

scale yet lack invariance with respect to rotation [41]. This study [42] aims to detect and 

identify spatio-temporal interest points (STIPs) within multi-view images using a selective 

approach. This is achieved by applying local Spatial-temporal constraints to limit the search 

space and effectively suppress the surrounding elements. The intensity-based Space-Time 

Interest Point (STIP) algorithm exhibits robustness against shadows and highlights induced 

by disruptive photometric phenomena. Colour-based STIP outperforms intensity-based 

STIP. Soumitra et al. [42] introduced a facet model that makes use of STIP. The 3D Facet 

Model is used to identify STIP, and the 3D Haar wavelet transform is used to represent the 

discovered points. SVM is used as a classifier to acquire vocabulary for 200,000 descriptors 

for the purpose of categorization.  Local space-time characteristics are retrieved using the 

Harris detector technique and the HOF is used as a descriptor, as described by the author in  

[43]. In addition, Least Square Dual SVMs are utilized instead of SVM for classification 

purposes, thereby accelerating the classification process by a factor of four. 

Shillin et al. [44] suggested a novel approach for calculating STIP in time dimension using 

the Harris operator. Next, BOW and BOF are calculated and utilized for classification using 

the radial basis function in ada boost SVM. Using an interest point feature extraction 

technique, Niebles et al. [46] detected several actions in each visual sequence, resilient to 

scale changes and their location. Nevertheless, it does not provide perspective invariance 

since it represents the label of action by grouping cuboids into a series of visual code words.  

Since essential action identification does not need a spatial-temporal arrangement in the local 

characteristics retrieved from 3D ST. In [45] author proposed a method in which the position 

of human joints is calculated and separated into five body segments, and additional data 

mining techniques are used to mines spatial–temporal pose structures for action 
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representation. Additionally retrieved in one frame are spatial part sets corresponding to 

body part configurations and temporal part sets related to body part motions typical of human 

activities. 

Including optical flow and foreground flow, Ikizler-Cinbis and Sclaroff have [46] researched 

the retrieval of features of different objects and individuals. To find the localization of 

interest spots, the retrieved features are put into instances of multiple learning frameworks 

(MIL). In their research, Minhas et al. [47] used the 3D dual-tree discrete wavelet transform 

(DTDWT) to eliminate spatiotemporal characteristics. Additionally, they utilized SIFT to 

remove local features. They employed a hybrid combination of the two approaches to input 

feature values into an extreme learning machine (ELM). While both SIFT and HOG are local 

feature detectors, SIFT turns an input picture into a large collection of local feature vectors 

and hence takes more processing resources. As a result, SIFT is incompatible with real-time 

applications. It was shown that the speed-up robust feature (SURF), an enhanced estimate 

of SIFT, runs quicker than SIFT while maintaining the quality of recognized spots [48]. 

Space-time features are perfectly adapted for essential datasets; for complicated datasets, a 

mix of features is necessary, which increases computing complexity. These restrictions may 

hinder real-time applications. 

2.2.2 Appearance Based 

The term "appearance-based approach" refers to methods of recognition that rely on an 

object's outward appearance; these methods may be further subdivided into "shape-based," 

"motion-based," and "hybrid" categories. Both 2D and 3D depth pictures are used, relying 

on either shape characteristics, motion features, or a mix of the two. Because to the 

development of depth cameras, these procedures have become much easier to implement. 

Because of the development of depth sensors and approaches for the estimation of real-time 

skeleton, skeleton-based recognition methods have also made rapid strides. Human stance, 

silhouettes, and appearance models are used in shape-based approaches to action 

identification. In 2D, people are shown as squares, whereas in 3D, they take on a more 

volumetric aspect. 2D (XY) and 3D (XYZ) depth pictures may be used to display the sight 

or viewpoint of any object, and these approaches depend on information relating to shape, 

motion and a combination of both. 
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These approaches integrate feature extraction techniques that are relevant to the feature 

space, such as optic flow for motion-based features and shape and contour-based features. 

The human body is composed of interconnecting limbs. This highlights the importance of 

accurately dissecting video sets to extract specific body components. Yet, the body may not 

be entirely visible in every video frame. So, it's a problem in the HAR procedure. Yet, 

several academics have presented techniques that might help fix this issue. Several action 

representation and identification techniques combine form and motion features. The 

utilization of 3D-based techniques [49] involves the creation of a human body model to 

represent actions. This model can be constructed using various geometric shapes such as 

cylinders, ellipsoids, visual hulls derived from silhouettes, or surface meshes. 

Shape Base Methods: Using the human silhouette, localized features are extracted by 

subtracting the foreground silhouette using a segmentation algorithm[50]. The concept of 

positive space, which refers to the image silhouette, and negative space, which pertains to 

the surrounding area between the image border and the person, is commonly regarded within 

the realm of visual imagery [51]. The shape-based feature gives HAR information about the 

structure and movement of the human body, and the texture-based feature gives HAR 

information about motion in movies that use templates. Getting rid of the background might 

not be enough for outline extraction. Consequently, in [52] author utilises a texture-based 

segmentation approach for silhouette extraction. In the shape-based action representation 

approach, a person's Region of Interest (ROI) is determined using a silhouette representation. 

In addition to silhouette, pose invariant data are valuable for estimating human actions based 

on body form, and a contour-based technique leveraging multi-view key poses is employed 

for action detection. Shao et al. [53] introduced a method for segmenting distinct video input 

motions colour intensity-based and motion-based approaches. Activity was identified using 

dynamics and shape characteristics, with a description incorporating the local shape's spatial 

configuration. It is further expanded by contour point extraction from silhouette using a 

radial method for action representation and SVM classification. Utilizing scale-invariant 

silhouette characteristics, an additional method has been devised using pose-related data. 

Main key poses are generated by grouping these characteristics, which are then supplied into 

the action recognition weighted voting process[54]. Khan and Sohn [55]collected silhouette 

elements from videos to detect aberrant behaviours in the elderly. The R-transform is then 

applied to the features to generate scale- and translation-res) instant features. After the 
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background has been processed, align silhouettes in a radial scheme, irrespective of shape 

and contour duration, in order to obtain the contour points of the human silhouette using 

binary segmentation [56]. This yields a brief overview of every feature obtained from one 

viewpoint. By displaying the total value associated with every radial bin, dimension 

reduction for each radial bin can be increased [57]. To segment and keep track objects 

undergoing prevalent shaped changes, the author utilized a shaped-based different levels set 

dynamic contoured structure in  [58] to establish the object's boundary in the initial each 

frame. In [59] another research, the authors introduced the notion of finite-sized shape 

memory for the purpose of consistently retaining relevant shape information while 

simultaneously discarding irrelevant shape-related data. Using the technique provided by 

Ling Cai et al.[60], the object was tracked across low-contrast sequences by combining 

neighbourhood and boundary characteristics. 

The main objective of the object shaped-based feature points the descriptor was to identify 

points of correspondence between object forms. It generates a log-polar histogram of the 

perimeter boundaries of a shape for each point. Edge structures closer to the reference point 

are sampled with greater precision than those further away, as the histogram categories 

expand as the radius increases. Most local feature representation techniques exhibit 

resilience against partial occlusions and noise. 

Motion-Based Method: These methods employ features for action representation and a 

generic predictor for AR problems. This study focuses on the creation of a novel motion 

descriptor specifically designed for the representation of Multiview action depiction [61]. 

The histogram that represents the extent of motion is the focal point of this motion descriptor. 

Subsequently, a support vector machine is employed for classification purposes. Using an 

effective approach for identifying intelligent objects, the motion information of a moving 

target may be recorded. Motion tracking may be used for in-depth analysis of categorized 

items. Object detection and categorization compose the detection process. Exclusion of 

Background, optical flow, and spatiotemporal filtering may be used for object identification. 

Dynamic objects are recognized utilizing background subtraction via pixel-by-pixel or 

block-by-block differentiation of the consecutive frames and a background frame; here, 

motion is described by 3D Spatiotemporal data volume. The computing cost of this approach 

is modest, but it is subject to noise [62]. Hence, the optical flow methodology evaluates flow 

vectors of locomote objects to identify moving areas in pictures; nevertheless, these 
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techniques are computationally intensive. The periodic characteristic of the visual data may 

be employed in motion-based processes to identify persons[62]. 

They use a vector picture framework, including MEI and MHI in [65], and implement a 

view-based technique for identifying human motions (MHI). MEI component is a binary 

template that emphasizes picture information places where there is motion. A region's shape 

can signify both the scene's activity and the viewer's perspective. MHI is utilized to 

demonstrate the movement of picture motion. MEI and MHI are vulnerable to problems with 

elimination of background. Using remanufacture and decay operators to depict MHI 

[63]Space–time silhouettes convey spatial information about human positions, such as 

location and action direction. In addition, they indicate the aspect ratio of the various bodily 

components at any given moment. Kliper-Gross et al. [64] created a technique for action 

recognition based on the essential features of movement encoding and localized variations 

in locomotive direction recorded using the bag-of-words methodology. 

Hybrid-Based Method: Hybrid methods to action depiction Using hybrid action 

representation methods may improve HAR efficacy. Hybrid action representation may 

emerge in circumstances with comparable postures and actions, such as human activities. 

Hybrid approaches integrate both shape-based and motion-based information, namely by 

combining optic flow with silhouette-based features, to perform view-invariant action 

recognition. In [65], dimension reduction was also implemented using the analysis of 

principal components. A further approach for view-invariant action detection was 

introduced, which employed coarse silhouettes with radial grid-based characteristics and 

motion features [66]. These approaches to action representation combine shape-based and 

motion-based aspects. Several approaches to action recognition based on shape and motion 

data have been demonstrated [67]. Multiview [68] action recognition utilized coarse 

silhouette features, radial grid-based features, and motion features. Jiang et al.[69] employed 

shape-motion prototype trees to recognize human actions.  

Jalal et al. [70], where input visuals are taken into account to derive multi-fused 

characteristics like joints in the skeleton and body shape-based features like HOG and DDS. 

DDS is used to capture the geometry of the whole body, and the Hidden Markov Model is 

used to classify actions (HMM). Nonetheless, these functionalities are implemented for 

simple activities. In[71] temporal segmentation to achieve action recognition. MHI is 
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employed to describe form, whereas the Pyramid Correlogram of Oriented Gradients 

(PCOG) is used to describe features. Dong et al.[72] recommended a hybrid descriptor 

incorporating static data from the HOG descriptor and motion data from the MBH. The 

information obtained via dense trajectory sampling can be stored using the Vector of Locally 

Aggregated Descriptors (VLAD) technique, which is then used for action identification. The 

technique presented by Huimin et al. [73] incorporates information on morphology and 

motion. Identifying objects in frames by subtracting the background, extracting local 

characteristics such as shape and motion information, and global characteristics contour 

coding of a motion energy image. Utilizing a multi-class SVM classifier with a binary 

hierarchical structure, subsequent activities are classified.  

2.2.3 Local Binary & Fuzzy Logic-Based Approaches 

This course examines the two main activity recognition techniques, namely local binary 

pattern, in which vectors are generated using local binary patterns (LBP) and encoding 

geometric characteristics by their corners and edges. In contrast, fuzzy logic is based on our 

shared human comprehension of Boolean logic. FL mimics how humans make decisions, 

which encompasses all possibilities between the binary values YES and NO. In this fuzzy 

logic technique, rules for the activity identification of individuals from image sequences are 

developed. 

LBP [74] is a descriptor for categorizing visual textures. Since the inception of computer 

vision, numerous updated versions of this descriptor  [75], [76] have been used for numerous 

action classification-based problems. [77] illustrated a framework for HAR problem based 

on LBP merged with invariance of shape appearance and the patch matching. This 

framework was shown to be effective for AR problem when tested on numerous publicly 

accessible data sets. Using the LBP-TOP descriptor, another approach for action recognition 

was developed[78]. This framework divides the action scenario volume into numerous sub-

volumes and generates the histogram of features by combining these sub-volume histograms. 

This method represented motion at three distinct levels: pixel (single node in the histogram), 

region (sub-volume histogram), and global (combination of sub-volume histograms). 

Using kernel-based extreme learning machine learning (KELM), Chen et al.[79] evaluated 

Depth motion maps with local binary pattern action and presented a detection framework. 

LBP features from three distinct depth motion maps, namely front, side, and top, are fused 
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at the feature level and then used to classify actions at the decision level using KELM. One 

experiment with two splits out of three is used for training, while the second experiment with 

one separation out of two is used for training. Several human action views have also been 

identified using rely on approaches. A method for Multiview human action recognition based 

on contour-based pose features and constant orientation LBP, followed by SVM 

classification, has been outlined [80]. Motion Binary Pattern (MBP) was recently introduced 

as a new motion descriptor for Multiview action recognition [84]. This descriptor combines 

VLBP with optical flow. On the Multiview INRIA Xmas Movement Acquisition Scenes 

(IXMAS) dataset, this method yielded identification rates of 80.55 percent. 

Thanh et al.[81]  established an approach centred on reconstructing texture models based on 

local binary patterns (LBP). LBP includes the mobility locations of the surrounding 

environment, and the self-similarity function is used to highlight the traced form from 

unconstrained films for action detection. Swarup et al.[82] put forward an approach for 

binary silhouette synthesis via a directed LBP comprising orientation and intensity variation 

information. This allows for effective Object identification. In addition, these features are 

combined with an Edge Orientation Histogram to produce an even more complicated feature, 

and SVM is then used for classification and training. Enqing et al. [83]worked with the 

production of a LBP by merging a SHI and an MHI to make it more proficient in holding 

additional motion information, coupled with using PCA as a descriptor. In article [84] author 

introduced a multiresolution visual analysis methodology and utilised LBP in conjunction 

with the Zernike moment. 

For action representation and classification, conventional HAR in video systems utilize 

spatial or temporal information followed by a generalized classifier. Unfortunately, it is 

challenging to scale up these strategies to handle with the unpredictability and complication 

embedded in practical contexts. It is generally accepted that imprecise approaches are 

preferable for addressing these difficulties. The authors of this study have suggested a 

framework that utilizes fuzzy log-polar histograms and temporal self-similarities for the 

detection of human actions. The system incorporates SVM for the categorization of these 

actions [85].In [86] suggested a technique based on MEMS (multiple micro 

electromechanical systems) that retains numeric information collected by sensors of various 

everyday activities. Actions from everyday life are used to develop rules, which are then 

mapped to data using fuzzy rules in order to categorize the activities. Prudhvi et al.[87]n an 
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inertial measuring system and smart sneakers. Four inertial measurement units are mounted 

bilaterally on a human's thighs and shins, and ground-notified forces are measured using an 

extended Kalman filter capable of identifying six fundamental activities, including getting 

up and down stairs, moving in both directions, sprinting, walking, and positioned. In [88] 

presented an intriguing method of online action detection using HMM batteries that takes 

into account all conceivable time constraints and action categories. Bayesian normalization 

is accomplished correctly by iteratively comparing the instance to the templates over sliding, 

overlapping temporal frames, making this method appropriate for real-time settings. 

Using characteristics, in [89] author designed a high-level strategy for HAR. Attributes 

acquired manually based on intra-class variability are combined with data-driven attributes 

derived autonomously during training to create a highly informative characteristics 

collection. In order to assign accurate scores to the various features, a Latent SVM model is 

employed to learn the latent attributes. 

The preponderance of HAR systems is perspective-based and can identify activity from a 

fixed vantage point. A real-time algorithm for identifying human actions must be able to 

distinguish the action from any angle. Several cutting-edge systems collect data from various 

cameras for this purpose. However, this approach is unrealistic due to the difficulty of 

calibrating multiple cameras in real-world conditions. A single surveillance footage should 

be the optimal solution for view-invariant action recognition. In this vein, a fuzzy logic-

based technique [90] for view-invariant action identification with a single camera was 

developed. Before classifying viewpoints using clustering methods, the aforementioned 

method retrieved human outlines using the fuzzy qualitative Poisson human model for 

estimations of point of view. The findings suggest that the proposed approach for observing 

independent action recognition is highly effective. 

2.3 Automatic Feature Extraction Based Method for HAR 

Automated Feature Extraction is an alternative method for human activity identification 

instead of manually built feature-based methods. In addition, these methods may be classed 

as either non-deep learning or deep learning, as depicted in Figure 2.4. In recent years, DL-

based algorithms have been in high demand because to their capacity for autonomous feature 

learning, which lowers the need for arduous human interaction. Automated learning 

capability offers the ideal solution and eliminates the dilemma of which attributes should be 
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picked. The efficacy of systems for HAR systems primarily relied on the efficient and 

accurate depiction of data. The learning-based representation framework can automatically 

adequate the feasible features from the sequence of frames, introducing the concept of end-

to-end learning, which entails the transformation from the input image to action detection, 

in contrast to a handcrafted representation-based approach, where handcrafted feature 

detectors and descriptors depict another activity. 

 

Figure 2.4 Feature Learning-based Approach 

2.3.1 Non-Deep Learning Based  

Generic programming and dictionary learning are non-deep learning methodologies that are 

employed to automate the process of feature acquisition from a given type of input data. The 

dictionary learning method uses a compilation of training examples to teach characteristics. 

Dictionary learning leads a collection of atoms so that a sparse linear combination of these 

atoms can effectively imitate a specific image. In contrast, deep learning approaches attempt 

to extract semantic feature representations via a deep network. 

Dictionary learning is a kind of representation learning that involves the acquisition of 

sparsely represented representations. The sparse representation is suitable for classification 

applications involving images and videos. Dictionary learning approaches have been used 

in multiple applications for machine vision, including image classification and action 

identification [91]. The authors suggested an attribute dictionary learning technique for 

action recognition in information maximization. The use of the Gaussian Process (GP) model 

is employed in sparse representation to optimize the objective function of the dictionary. 

This enables the kernel locality in GP to enhance the intensity of the optimization process 

[92]. It was additionally capable of detecting invisible actions in videos. 
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Genetic programming is an effective evolutionary tactic derived from natural evolution. It 

can be used to tackle problems for which the solutions are unknown beforehand. Genetic 

programming may be used to determine the sequence of anonymous fundamental operations 

that would optimize the performance of a given task in recognition of human activities[93]. 

By combining data from smartphone sensors, genetic programming in [94]  is utilized to 

recognize fundamental behaviors such as seated, rising, walking, and running. In addition, 

ML-based methods such as SVM and Naive are employed to evaluate the accuracy 

parameters. Feng et al.[95] suggested a genetic programming-based method for merging 

mobile accelerometers, gyroscopes, and magnetic sensor data. Cell phone data is also used 

to capture environmental raw data to identify seven fundamental action types. 

2.3.2 Deep Learning Based 

DL is an essential subfield of machine learning that seeks to learn multiple layers of collected 

data and abstraction that can actually comprehend audio, images, and text. DL-based 

methods can manage images/videos in their unprocessed forms and automate feature 

extraction, representation, and classification. These systems use trainable feature extractors 

and computational models with multiple processing layers to represent and recognize 

actions. For HAR tasks, research is being conducted on feature learning methods based on 

deep learning techniques due to their promising performance, robustness in feature 

extraction, and ability to generalize to various types of data. During the training phase, these 

methods intensively collect data. They require knowledge of multiple levels of abstraction 

and representation that will enable the extraction of features in a fully automated fashion. 

Methods based on deep learning may be regarded as trainable feature extractors that facilitate 

the identification of intricate, high-level actions. Nonetheless, the training phase's enormous 

computational complexity and substantial data requirements remain recurrent obstacles [1]. 

Generative Methods: Unsupervised learning is used to deputize for any distribution of 

unlabelled data.  The data dimension was reduced by the new representation and conforms 

to its distribution. The fundamental aim of generative algorithms is to figure out the 

distribution of data, encompassing the attributes associated with each class, to reconstruct 

the authentic data distribution from the data used for the training set. When the training 

dataset is confined, the efficacy of the generative model is adequate [96]. 
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Discriminative Methods: The discriminative algorithm is considered more spartan than the 

generative model, and when sufficient training data is available, it achieves outstanding 

results [96]. These supervised models use a hierarchical learning model with multiple 

concealed layers to classify input raw data into multiple output categories. Deep Neural 

Networks (DNN), Recurrent Neural Networks (RNN), and Convolutional Neural Networks 

(CNN) are the most prevalent neural networks. Therefore, action labelling employs a 

sequential method. 

2.4 Action Analysis Approaches  

In addition to techniques founded on action representation, action analysis tasks are 

performed. While the low-level processes involved in recognizing actions may detect the 

motion of objects within the scene, this information is insufficient to deduce the action label. 

Action classification approaches are utilized for recognizing action sequences, utilizing 

traditional ML and DL approaches forming many of these methods. Figure 2.5 illustrates the 

inherent distinction between machine learning and deep learning approaches in the context 

of HAR methodologies. 

 

Figure 2.5 Comparison diagram showing how HAR uses both traditional machine learning 

methods and cutting-edge deep learning approaches 

2.4.1 Machine Learning Based Approaches 

ML is a subset of AI that seeks to construct an intelligent model by extracting unique 

characteristics that aid in spotting patterns in the input data [97]. Supervised and 

unsupervised machine learning (ML) methodologies exist. A mathematical model is 

constructed using the supervised method, which relies on the correlation between the input 
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and output data. Without prior knowledge of the outcome, the unsupervised method seeks to 

discern patterns in unprocessed input data. Figure 2.6 depicts the classification method in 

ML. 

               

Figure 2.6 Machine Learning Classification approaches for HAR 

Graph-Based Methods: HAR input properties are classified using graph-based algorithms 

like Random Forest (RF) and Geodesic Distance Isograph (GDI). Action identification 

accuracy is enhanced by using a graph of local action, with STIP features as the graph's 

nodes and edges denoting possible interactions. 

The RF classifier is an ML technique that uses several decision trees to get a conclusion. The 

RF classifier for HAR can handle several inputs[98]. Ensemble learning methods are highly 

sought after because of their superior accuracy and noise resistance compared to individual 

classifiers. RF's benefits comprise less ratio of error, undertake the convergence (Overfitting 

removed), reduce training time (because to a concentration on fewer features) that yields 

higher effectiveness and less noise, and ease of use[99]. In [100] employ RF classifier and 

randomized DT to train depth-based features, namely APJ3D features. Joint feature APJ3D 

contains the joint's location and angle. In [101] the RF classifier is utilized to characterize 

actions in the accelerometer sensor dataset. 

SVM is based on the separation of pieces of data using a hyperplane[102]. SVM algorithm 

is used to classify data points in a space with many dimensions. This is achieved by using a 

mapping technique that generates a linear decision surface for the input data, hence enabling 
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effective classification [102]. SVM employs a kernel approach to cope with high-

dimensional data and decrease computing load. Little sample sizes permit the use of SVM 

for HAR[73]. In [103], Author presented the BoVW model of local N-jet descriptors and 

vocabulary construction is achieved by integrating spatial pyramid and vocabulary 

compression, and two kernel-based SVM classifiers are used to classify human actions. Kim 

et al. [104] developed a method for optimizing and localizing human body components for 

a specified Region of Interest. In lieu of individual pixel classification from the input, the 

GDI (Geodesic Distance Iso) graph generates feature points at random, resulting in the 

computation of the total cost of the edges that connect two points along the shortest route. 

Next, the graph-cut method and SVM classifier are used to eradicate incorrectly classified 

feature points from the GDI graph that was previously created. In Shao et al.[71], SVM is 

fed the PCOG feature, descriptor of shape that generated from the MHI and MEI. A 

multiclass SVM with the RBF kernel is utilized to do offline training. Additionally, 

Sequence of the input training data are broken down into cycles throughout the span of each 

gesture to enhance the training technique. The Multi-class learning employing a one-versus-

one SVM classifier with a polynomial kernel is utilized to classify nonlinear data [105]. 

Yu et al.[106]  introduced the multi-class balanced Random Forest, a novel Random Forest 

structure. Several classes were predicted concurrently, so conserving memory and reducing 

computing costs. Using UT Interaction datasets, they attained a global accuracy of 91.7%. 

Oliver et al.[107] developed an active program that simulates the interaction between 

individuals and activities. The program identified and tracked human movement and to 

classify the motion, a feature vector is generated. After that feature vector was fed into a 

Hidden Markov Model, which was then utilized to activity classification. Robertson et 

al.[108] were the pioneers in modelling human behaviour as a sequence of stochastic acts. 

The recommendation in [109] was to match a human skeleton model to the data to 

characterise the 3D coordinates of the joints and their motion over time. Action recognition 

becomes a difficulty when comparing trajectory shapes on a Riemannian manifold. This 

manifold is identified using KNN. 

Non-parametric nearest neighbour classifiers make classification decisions based on data 

without requiring training. Nearest Neighbour (NN) estimation is the most common non-

parametric classifier. NN-image, a variation of NN, is used to classify images by comparing 

them to their closest image class. The results of the NN-image classifier are inferior to those 
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of the learning-based SVM and DT classifiers [110]. In [111], the k-nearest Neighbour 

classifier is combined with the Relevance Vector Machine method, a kernel-based sparse 

model with comparable functionality to the support vector machine (SVM). RVM utilizes 

the Bayesian learning method and Gaussian prior for model weight estimation due to the 

possibility of overfitting induced by maximum-likelihood estimation of model weights. The 

positive values of these weights are indicative of the significance of the relevance vector in 

the class that pertains to the depiction of human activity. In the study by Vishwakarma et al. 

[112], important postures are retrieved as silhouettes and categorized using a hybrid SVM 

and kNN method referred to as SVM–NN. The SVM–NN methodology includes silhouette 

extraction and PCA for dimension reduction. The SVM's misclassified data are sent to the 

kNN classifier. In Xu et al.[113], skeletal features are mapped to the Li group for behaviour 

recognition and SVM is utilized to classify features that have been optimized by PCA after 

PCA preprocessing. Error value and radius value optimization improves the prediction 

performance of SVM. 

2.4.2 Deep Learning Based Approaches 

DL strategies and their automated learning capabilities have made it popular recently. CNNs 

and RNNs are used to automate the learning of features in deep learning approaches. Data 

representation, the foundational principle underlying DL, enables the generation of optimal 

features. It discovers undiscovered patches from unprocessed data devoid of any human 

intervention. DL is a subset of machine learning methods in which many layers of 

hierarchical information processing stages are utilized to detect patterns or pictures. It 

represents the amalgamation of research areas including neural networks, optimization, 

pattern recognition, signal processing, and image processing. Deep learning approaches deal 

with the issue from the start to the end, while machine learning approaches break the problem 

down into its component components and then integrate the findings. Due to a vast number 

of factors, training requires more time. During validation, deep learning techniques require 

significantly less time than ML-based approaches. One additional concern associated with 

deep learning algorithms pertains to their limited interpretability. 

CNN creates maps utilizing neighbourhood-specific information. There are three processes 

in CNN design for extracting features: convolution, activation, and pooling. CNNs are 

models used for visual recognition that draw inspiration from biological processes. 

Variations of CNNs have been developed within this category. CNN has the capability to 
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automatically extract intricate high-dimensional nonlinear features and comprehensively 

acquire knowledge of them. Ji et al.[114]  looked into the utilization of CNNs in visuals for 

HAR. Author managed video frames as static pictures and used CNN to identify activities 

inside each frame. For the KTH dataset, the 3D CNN application gave an average precision 

of 90.2%. In contrast, 2D-CNN [115] is exclusively concerned with spatial domain 

convolution. According to Baccouche et al.[116] , the CNN convolution work is executed in 

the space and time domains. Due to this rationale, the 3D-CNNis capable of accepting input 

in the form of space-time volumes. Subsequently, the Long Short-Term Memory (LSTM) 

model training is conducted utilizing the extracted features obtained from the 3D-CNN. A 

3D-CNN enables spatiotemporal information extraction from the input video. The posture-

based features are extracted from a 3D-CNN in the study of Huang et al[117]. This network 

combines 3D pose, 2D appearance, and motion stream information. Incorporating colour 

joint features into the 3D CNN model introduces a significant level of complexity. As a 

solution, a 15-channel heatmap is generated, and convolution operations are performed on 

each map. Convolution networks for space and time levels are merged at the SoftMax level, 

whereas[118] studies produced superior results by fusing the final convolutional layer and 

class prediction layer can improve the performance of model. Two pre-trained ImageNet 

models take advantage of the space for 2-Dimensional features and temporal fusion. Madhuri 

et al.[119] suggested a DL-based framework using accelerometer sensors worn on the wrists 

of four distinct participants. After preprocessing, the CNN classifier extracts characteristics 

and classifies fundamental forearm motions. CNN-Bi-LSTM is trained in [120] to get the 

temporal information from visual data with the support of RGB frames. Late fusion is 

implemented at the network's decision level to offer end-to-end learning. Slow fusion hinges 

on linking two frames in both spatial and temporal dimensions. On the other hand, delayed 

fusion extracts motion-related information at the global level by combining two CNNs that 

are connected at a fully connected layer and apply them to two distinct frames. 

Recurrent neural networks (RNN) have been extensively utilised to handle sequences 

because they retain the previous state and send it to the subsequent unit. To make them 

simpler to use, RNNs such as the Long Short-Term Memory Network (LSTM) and the Gated 

Recurrent Unit (GRU) are utilized. RNN differs from other models in that its artificial 

neurons are time-linked. When the outputs of one layer filter back into the inputs of an earlier 

layer, a recurrence is established. Du et al. demonstrated how a hierarchical RNN model can 
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be utilised to develop a skeleton-based action recognition system. In addition, their 

recommended method was compared to five others deep RNN architectures that were 

derived from it. Their experiments utilized the MSR Action 3-D, the Berkeley MHAD 

dataset, and the HDM-05 dataset. The RNN tree framework was presented by Li et al. [121] 

as a model for adaptive learning for skeleton-based HAR. Their system classified activities 

according to category and employed RNNs arranged in a tree-like structure. Their method 

exhibited an accuracy score of 89.2% when applied to a novel dataset called the 3D-SAR-

140 dataset. 

Skeletal patterns are considered low-level features by numerous LSTM and RNN-based 

algorithms, which accept unprocessed skeletal data as inputs. Therefore, these models are 

not capable enough to derive high-level characteristics effectively[122]. However, CNN-

based techniques are effective for image-based recognition applications[123]. They can 

immediately transform raw skeletal data into imagery and maintain spatiotemporal 

information. Due to differences in perspective and appearance, the effectiveness of such 

systems may not be realistic. CNN may be used with LSTM to account for spatial and 

temporal behaviour. To take advantage of LSTM + CNN is more vital to LSTM and suitable 

for 3D datasets[124]. Feature extraction, network training, and score fusion is used for an 

AR problem. CNN and LSTM are used to input skeleton-based properties of the spatial and 

temporal domains into the network. Temporal features relate to Time and trajectory, whereas 

spatial features refer to the relative location and distance between joints. Employing late 

fusion, many of these traits are fused together [124]. 

Correlational Convolutional LSTM was devised by Majd and Safabakhsh [125] by extending 

a pre-existing LSTM module to account for spatial and motion information in addition to 

building temporal connections (C2LSTM) and represented. Their study was evaluated using 

two widely recognized comparison datasets, UCF-101 and HMDB-51 with achieved 

performance of network 92.3% and 61.0% (accuracy) respectively. Qi et al. [126] provided 

a novel method for creating a semantic RNN called stagNet, presenting the recognition of 

group and individual actions. The authors expanded upon their existing semantic network 

model by including the time dimension between video frames via the use of a structural 

RNN. The Volleyball dataset was evaluated with 90.5% group activity and 83.5% individual 

action using this method. 
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Figure 2.7 C 2 LSTM framework for HAR problem [125] 

Every frame of image is input into a convolutional tower consisting of convolutional and 

pooling layers. Then, all tower outputs are concatenated and sent to the C 2 LSTM layer. A 

classifier, often SoftMax, classifies the retrieved characteristics into a label at the conclusion 

[125]. 

In [182] authors suggested utilizing the Quaternion Spatiotemporal (QST) CNN and LSTM, 

which appears to be referred to as QST-CNN-LSTM, on RGB data by incorporating its 

spatio-temporal information. LSTM is employed to distinguish between consecutive visual 

frames. The method extracts the regions of motions and outperforms on the UCF-11 and 

UCF- sports datasets. The authors of [185] demonstrate that already-trained weights can 

influence the learning of a model and that this issue can be resolved using a Bi-LSTM model. 

They propose employing an attention mechanism to rank human behaviours within an 

animated sequence. Using the RGB D mode, the following method generates a series of 

atomic 3D streams. On the basis of these 3D streams, the RNN is employed to predict 

categorization actions. This model is compatible with all input modalities, including RGB, 

RGBD, and depth, and it represents spatial-temporal links and long-term motion 

dependencies [127]. RNN networks like LSTM or GRU work exceptionally well in 

sequential data modelling applications when the dimensionality of the data is low. However, 

when high dimensional data, such as video content and text, is examined, these models do 

not perform well because of the enormous memory requirements throughout the input-to-

hidden layer transition and the computational power complexity. 

Veeriah et al. [128] provide an approach called Differential RNN (DRNNT using Spatio-

temporal representation to depict actions. In contrast, the Back-Propagation-Through-Time 
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(BPTT) method is employed to train the network. Cross-validation accuracy is reported by 

Veeriah et al.[128] using random 16 participants for training and the remaining subjects for 

testing. The utilization of deep LSTM networks can facilitate the end-to-end action 

identification process by acquiring knowledge of feature co-occurrences derived from 

skeletal joints. 

Auto-encoders receive data representation by unsupervised learning, with a focus on low-

dimensionality data. Auto-encoders learn via hidden layers through the method known as 

encoding–decoding. An SAE (Stacked Autoencoder) is produced when these autoencoders 

are layered. Every layer is a fundamental auto-encoder model. The authors of [129] 

performed ongoing detection algorithm using auto-encoders with CNN, with CNN learning 

frame-level description. The autoencoder, therefore, does sequencing learning and feature 

dimension reduction. Then, contrary to CNN, another set of researchers employed similar 

approaches for HAR and autoencoders for anomalous action recognition, which avoids 

missing label concerns by learning spatiotemporal properties from data[130]. 

Gu et al.[131] developed a Stacked Denoising Auto-Encoders-based deep learning algorithm 

for Locomotion Action Recognition (LAR)[132]. SAE is a commonly used strategy for the 

unsupervised acquisition of new, valuable traits. Stacked Auto-Encoders strengthen the 

learned characteristics. In[133] combined a pair of auto-encoders and appended an 

additional SoftMax layer. The initial auto-encoder (AE) acquired knowledge using 561 

features, allowing the subsequent AE to learn a compacted code of 5 features using 80 

attributes. Backpropagation was performed on the network consisting of two AEs and the 

SoftMax classifier. 

Generative Adversarial Network: Generative approaches employ unsupervised learning to 

discover data representations from any sort of unlabelled data. They were used for producing 

synthetic data by learning the characteristics of each type from the actual data. In the current 

era, there is a profusion of unlabeled data that lacks value; however, generative 

methodologies have enabled the processing of such data. GAN has been adapted by a group 

of scholars to the preliminary estimation of human movement to reduce motion distortion 

issues and foretell future motion [134]. 
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2.5 Hybrid Model for Activity Recognition 

Using both handcrafted features and Deep network models, hybrid models combine the 

advantages of both approaches. Simonyan et al.[135] devised a dual-stream CNN-based 

framework by decomposing visual information into spatial and temporal domains, then 

learning a CNN on optic flow. Alternative approaches, such as optic flow stacking, trajectory 

stacking, and bidirectional optic flow, have been proposed by the researchers. To compare 

the accuracy of classification, activity datasets are utilized for two-stream training. 

In [136]  used RNNs to identify activity by employing joint angles that varied over time as 

well as were expressed by a multimodal features matrix. In their model, RNN-based activity 

detection and recognition showed improvement than HMM- and DBN-based models on the 

Microsoft Research Cambridge Research-12 (MSRC-12) dataset. In [137] a hybrid approach 

was evaluated employing a deep convolutional network and a genetic algorithm. Initial 

population undergoes fitness assessment and crossover mutation, which results in the 

production of CNN classifiers. Combining scores from many action banks using a genetic 

algorithm is utilized for label prediction.  

In[138], a unique technique to human activity recognition is described. This method focuses 

on visual analysis and extraction of features. GMM and KF methods are used to track human 

motions in the Mobility features (Figure 2.8). Using a model RNN with a Gated Recurrent 

Unit, the remaining attributes are derived from every visual attribute of each frame in the 

video sequence. This innovative method's primary advantages are analyzing and extracting 

every video frame and time-based characteristics. This hybrid model plays a crucial role in 

improving the performance of HAR problem. The suggested method is evaluated on the 

complex UCF-Sports, UCF-101, and KTH datasets. A mean of 96.3% is observed while 

evaluating the performance on the KTH dataset. Researchers have also employed 

combinations of diverse deep learning models to reach more remarkable performance in 

HAR. 

 A CNN and RNN hybrid model are described in [139] employing CNN for extracting 

neighbourhood relationships and RNN for discovering temporal associations among signal 

modalities. Initially the Fourier transform is used for the extraction of features, afterwards 

follows a series of layers of CNN for learning local dependencies. RNN layers, and lastly, 

the issue type determines the output layer. The model is considered unified since it has been 
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suggested and assessed for both regression and classification issues. In [140], CNN and RNN 

are combined to create the hybrid deep model Deep Conv-LSTM, which exploits the 

capabilities of CNN to extract differentiating features automatically and RNN to learn the 

complicated temporal dynamics of time series. A variety of DNN architectures were 

examined by Kanjo et al.[141], which encompassed hybrid models that utilized sensor data 

from multiple channels. To evaluate models, the Env Body Sens dataset is leveraged.The 

precision value of the MLP model was 72.9%, the CNN model was 78.6%, and the CNN + 

LSTM model was 94.7%. 

 

Figure 2.8 Shows the process flow of the action recognition prediction framework [138] 

In motion capture, authors employ GMM and KF to: a) provide the frame of a runner in the 

KTH dataset; and b) monitor the mobility of an object. b) the GMM-based background 

subtraction approach for detecting human motion. c) The human motion bounding boxes 

derived from the Kalman Filter monitoring method. The GRNN model has three layers: an 

input layer, a hidden layer, and an output layer.[138] . 

Yang et al. [144] proposed an effective approach for activity identification using depth maps. 

The depth maps also provide information on mobility and body contours. Using this 

approach, they created a Depth Motion Map (DMM) by projecting data onto the three 

orthogonal planes of a complete video clip. The histogram of oriented gradients (HMM) was 

then derived from each DMM corresponding to the video stream. For the MSRAction3D 

dataset, it has been determined that the given technique outperforms the previous method. 

In addition, they assessed the minimal number of frames necessary for the proposed 

technique to identify human activity. Then they determined that thirty to thirty-five frame 

sequences are enough for obtaining comparable findings.  
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2.6 Modality Based Human Action Recognition 

Methodologies of human actions Depending on the type of the detector, divides 

[142]recognition into two primary categories: Unimodal techniques that treat an action as a 

collection of visual properties and enable identification from single-modal data. Many 

modalities are used as a result of the employment of multi-modal approaches, which 

incorporate data from several sources. 

2.6.1 Unimodal 

Approaches for unimodal in nature human activity identification identify human activities 

using information from only a single modality.  

RGB data comprises three streams and is an essential component. Compared to the skeletal 

and depths modality, RGB data has several key features, including form, colour, texture, and 

flow. Owing to these qualities, several texture-based or shape-based feature extraction 

approaches, such as 2DCNN for single image-based spatial feature extraction or 3DCNN for 

volume-based spatial-temporal feature extraction, might also be directly applied to it. 

Activity recognition datasets are easily accessible to the public, which is another incentive 

to pick RGB data. Khan et al.[143]  also proposed an activity recognition fusion scheme 

based on DNN features and multi-view. The VGG-16 pre-trained network is used to retrieve 

the DNN features, while the horizontal and vertical gradients and vertical direction features 

are used to extract the multi-view features. After obtaining all the features, the optimal set 

of features has been retrieved with the support of three parameters: mutual information, 

relative entropy and strong correlation coefficient (SCC). The final optimal feature set is 

then provided to the Naïve Bayes classifiers for accurate activity recognition. The presented 

approach has been implemented on the five popular activity recognition datasets namely: 

KTH, IXMAS, YouTube, UCF sports and HMDB51 datasets and achieved 97.0%, 95.2%, 

99.4%, 98% and 93.7% recognition accuracy, respectively. Li et al. [144] postulated that a 

spatio-temporal attention network (STA) accumulates the discriminant features at the 

segmenand stream levels since a 3DCNN is limited to using equal frames for collecting 

spatial and temporal data from a specific video sequence. The suggested STA network can 

readily discern spatial and temporal aspects concurrently, enhancing the 3D convolutions' 

ability for learning. The described method has been applied to the HMDB51, UCF101, and 
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THUMOS 2014 activity recognition datasets and obtained 81.4% and 98.4% precision on 

HMDB51 and UCF101, respectively. 

Wang et al. [145] introduced a lightweight activity detection framework built around CNN 

LSTM nets and a temporal wise-attention model for use with RGB movies. CNN was 

initially employed in this configuration for detecting objects from the rest of the scene. 

Subsequently, two LSTM structures were implemented on two separate CNN layers—the 

completely connected layer and the pooling layer—in order to get mobility patterns. 

Next, a temporally aware attention model was used to learn the most significant 

characteristics from the video frames, followed by an optimization module to comprehend 

the internal relationships between these LSTM models. The provided method was assessed 

on three prominent datasets, namely UCF Sports, UCF101, and UCF11, and obtained 

recognition rates of 91.89 percent, 84.10 percent, and 98.76 percent, respectively. 

Depth data is a different kind of modality resistant to varying lighting conditions, partial 

occlusion, texture and colour, and has no better resolution than RGB data. The pros of depth 

data are that it is trustworthy and offers correct estimations of silhouette and 3D structural 

details in terms of the locations of the skeleton's body joints.  

As color-texture characteristics are absent from the depth data, the CNN, which relies 

heavily on texture characteristics, becomes less discriminative. Especially in comparison to 

RGB data, specific depth data is relatively limited and insufficient for learning 

discriminative representations directly from pixels. These models may be susceptible to 

overfitting while developed and tuned with inadequate data. 

Using depth data, Wang et al.[146] applied ConvNet to distinguish human activities. They 

used depth motion maps (DMMs) derived from depth data using three distinct 

methodologies. First, the virtual camera is spun to capture the various perspectives. Second, 

Pseudo RGB pictures are generated from DMMs using optimal encoding to identify the 

space-time characteristics contained in the edges and textures, and third, three ConvNets are 

applied independently to the colour DMMs generated in the previous phase. The provided 

technique is assessed on three public datasets, including MSRAction3D, 

UTKinectAction3D, and MSRAction3D, and outperforms previous methods in terms of 

accuracy. Le et al.[147] introduced an activity recognition approach based on depth data. 

Using several 2D planes, they translated 3D data to 2D data. Subsequently, they collected 
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dense trajectories with discriminative characteristics from each 2D plane. Several trained 

classifiers are used to integrate the projected scores in order to get a conclusion. A greedy-

based algorithm is applied to discover the best collection of trained classifiers. The suggested 

approach is evaluated on the MSRAction3D dataset and produces superior results compared 

to baseline methods that typically do not use multi-projection-based features. 

Liu et al.[148] developed a multi-view and hierarchical categorization framework for 3D 

human activities. In this framework, a 3D picture of human activity was projected onto three 

coordinating planes so that a 2D image could be obtained for each plane and inserted into 

the appropriate three subnets. When the number of layers in the subnet rises, the structure of 

the subnets is fused hierarchically, and the final structures of the depth video are fed into a 

neuron with a single layer. Using two publicly available datasets, the performance of the 

offered method is examined, and the findings illustrate the computational efficiency of the 

suggested model. 

To make use of local Spatio-temporal characteristics and collaborative depiction of 

classifiers using regularised least squares, Liang et al. [149] introduced a technique for 

activity detection using a multi-layered depth motion map and multi-scale histograms of 

oriented gradient (HOG) descriptors. The described process correctly describes an activity 

sequence's local temporal motion and structural alterations. In addition, they proposed an 

analytical approach for collaborative representation utilized to reduce recognition computing 

costs. For MSRAction3D and MS Gesture datasets, the efficacy of the recommended method 

has been assessed.  

The skeleton data is distinctive from RGB and depth maps and provides the location of the 

human body's joints. The locations of the skeletal joints are regarded as 3D data and offer a 

rich collection of features for activity detection in video sequences. Skeletal data is 

insensitive to variations in lighting, camera viewpoint, and movement pace. The ultimate 

focus of the skeleton-based technique is to turn the skeleton pattern into a two-dimensional 

representation with colour and texture, from which spatiotemporal patterns for activity 

detection may be retrieved. Du et al. suggested a Deep convolutional neural network for 

skeleton-based activity identification in [150]. They generated a vector by putting the joint 

coordinates of each skeleton sequences into a matrix and reordering them in chronological 
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order. The produced matrix is then transformed into an image and normalized for further 

processing. CNN is then used to extract characteristics and recognize the final image. 

Hou et al. [151] have provided an efficient approach for obtaining spatial-temporal 

information through skeletal optical spectrum color texture images (SOS). Subsequently, a 

Convnet is used to the picture acquired in the previous stage to identify the discriminative 

characteristics for robust activity identification. 

The experimental outcomes on three publicly accessible datasets indicate the effectiveness 

of the provided method. The Skeleton Net architecture was developed by Ke et al.[152]  

using deep learning and 3D skeleton-based activity identification. Initially, the body-part 

characteristics of each frame were retrieved. These characteristics are independent of 

scaling, translation, and rotation variables when compared to the original coordinates. To 

extract temporal information, retrieved features are translated into pictures and inserted into 

a deep learning network developed for this purpose. The proposed deep learning net has two 

components; the first portion extracts generic characteristics, while the second section 

extracts discriminative and dense representations for robust activity identification. The 

conveyed technique has been evaluated on three activity recognition datasets, including 

CMU, SBU Kinect interaction, and NTU RGB+D datasets, and achieves the highest 

recognition accuracy. 

Recurrent Neural Network (RNN) is ideally adapted for acquiring temporal features through 

3D skeletal joint locations. This technique extracts appearance and motion characteristics 

and feeds into an RNN for temporal evolution. [153]  presented an end-to-end hierarchical 

RNN method capable of learning extended temporal sequences for 3D skeleton-based 

activity recognition. Based on the human's physical structure, the skeleton is separated into 

five pieces and then integrated into five subnets. As the number of network layers increases, 

the subnet removes the representation from the input and combines them for the uppermost 

layer. The expression of the skeleton sequence is then input into a single-layer neuron, whose 

output represents the final choice. Lastly, five distinct RNN designs based on our model are 

compared to illustrate the efficacy of our proposed strategy. In addition, they reach the 

suggested technique to three more available datasets. The experimental outcomes of the 

recommended process outperform the cutting-edge techniques.  
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Zhu et al.[154] demonstrated an end-to-end fully associated deep LSTM network for activity 

identification, employing 3D skeleton joints to learn long-term temporal sequences 

automatically. As joint co-occurrences intrinsically describe human actions, a unique 

regularisation approach has been developed to understand the co-occurrence characteristics 

from the 3D skeletal data. In addition, to quickly learn the deep LSTM network, the author 

presented a unique dropout method that may operate in parallel with cells, gates, and LSTM 

neurons to perform more sophisticated activity identification tasks. The effectiveness of the 

suggested framework was assessed on the three HAR action datasets. Shahroudy et al. [155] 

devised a part-aware(P) LSTM model for HAR as an alternative to maintaining long-term 

memory in the cell. In the P-LSTM paradigm, memory is distributed across part-based cells. 

A series of experiments determined that the context of part of the body and the outcome of 

the P-LSTM unit are more effective for complicated activity recognition tasks. 

Zhang et al. [156] introduced a semantics-guided neural network, a simple but effective 3D 

skeleton-based human activity identification (SGN) technique. To enhance the feature 

representation, a combined semantics at a high level has been established. The authors 

offered two modules, including a module at the frame level and a model at the joint level, to 

develop the connections between the joints in a single frame or a series of frames. The given 

method performed better on the NTU60, SYSU, and NTU120 datasets. Huang et al. [127] 

also proposed the view transform graph attention recurrent network (VT+GARN) technique, 

which employs skeleton characteristics for a more accurate spatial-temporal representation. 

The provided method eliminates the influence of perspective change on the joint locations 

of the spatial-temporal skeleton and quickly learns the activity representation for 

classification. Extensive trials conducted on three activity recognition datasets, including 

NTU RGB+D, North-western-UCLA, and UWA3DII, indicate the effectiveness of the 

proposed approach. Ahad et al. [157] obtained kinematics posture features (KPF) from 3D 

skeleton joint locations using a KPF extractor. This technique established the Linear Joint 

Position Feature (LJPF), Angular Joint Position Feature (AJPF), and the slope among bones 

portions. LJPF and AJPF were merged for every visual frame to understand the movement 

pattern in the temporal domain.  

A linear SVM, Conv RNN, and CNNRNN framework are employed for classifying. The 

suggested method is used to evaluate five standard datasets, including UTKinectAction3D, 

Florence 3D, MSR3DActionPairs, Kinect Activity Recognition, and Office datasets. 
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2.6.2 Multimodal 

Activity recognition employing multi-modalities integrates the characteristics of many 

modalities, such as RGB, Depth, and Skeleton information, to execute activity detection 

tasks reliably and effectively. Duan et al.[158] introduced an RGBD-based activity 

recognition. They exhibited an interoperable consensus voting network with two streams for 

RGB data and a 3D depth-saliency ConvNet network for depth data. The 2SCVN network 

integrates the long-term and short-term structure of RGB sequences, and depth maps are 

additionally coupled with RGB sequences to lessen the influence of the backdrop. The given 

technique excels on the Chalearn Iso GD dataset and obtains the highest recognition 

accuracy of 96.74 percent. Zho et al. [159] presented a three-dimensional convolutional 

neural network (3DSTCNN) architecture for activity identification utilizing depth and 

skeletal data. Each independent stream is supplied the original depth map, depth motion 

maps derived from depth data, and 3D skeleton sequence for global space-time feature 

learning. Utilising depth and skeleton data, all streams have been designed to learn space 

and temporal aspects effectively. The suggested method is assessed using three activity 

recognition datasets, including UTD-MHAD, MSRAction3D, and UT-Kinect Action. 

Singh et al. [160] unveiled a multi-modal human activity recognition technique that employs 

RGB, Depth, and 3D joint coordinate information. Deep bottleneck multimodal feature 

fusion (D-BMFF) is a technique that uses all available data concurrently. The 3D joint 

coordinates are converted to an RGB skeleton MHI (RGB-SklMHI) before being combined 

with RGB and depth frames. The recovered features are then used to train a deep neural 

network. M-DCA is used to connect the characteristics obtained from the bottleneck layer 

right before to the top layer. Then, a multiclass SVM is employed to classify the features 

into several activity classes. The provided method is assessed on four activity recognition 

datasets, including UTKinectAction3D, SBU Interaction, CAD-60, and Florence 3D. 

Wu et al. [161] suggested a DL-based numerous stream framework that can retrieve 

several visual features leveraging CNN for multimodal extraction of features. The 

discovered feature data is supplied into an LSTM model, which subsequently integrates this 

knowledge for HAR after utilizing this information to identify long-term temporal 

fluctuations in the data. 
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Mukherjee et al. [162] proposed utilizing dynamic images created by extracting motion data 

from RGB and depth images independently and then joining them. Two segments of the 

Resnet-101 network are utilised to complete the task, resulting in a sparser matrix of video 

data. Zhang et al. [163] have also developed a semantics-based multi-stream DNN for action 

attribute training, motion detection, and zero-shot AR. Furthermore, the approach integrates 

joint learning and semantics in the context of graph regularisation with adaptive moment 

estimation optimization. For activity monitoring, the author in [164] employed temporal and 

posture-based data and proposed a Dual-stream framework based on skeletal and RGB data. 

Skeleton details offer insights into the positioning of the human body, whereas RGB data 

offers valuable time information for assessing human actions, enhancing the action 

recognition and process depicted in Figure 2.9.A comparison between various approaches 

for HAR is represented in Table 2.1. 

                         

Figure 2.9 Multimodal Human Action Recognition Process [164]
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Table 2.1 Methods for Recognizing Human Activity: Evaluation and Comparison. 

Reference Dataset 
Result 

(in %) 
Strengths Weakness Brief Study 

[89] UIUC 

Olympic Sport 

 

89.7 

74.38 

 

 

Problems caused by data are 

optimised by picking the most 

discriminative attributes. 

It is challenging to carry out 

complex activities as 

characteristics. 

K-Nearest Neighbour serves as a 

classifier to learn high-level 

semantic features automatically 

from training data and explicitly 

input data. 

[165] KTH 97.2 The use of LS-TSVM speeds 

up the identification 

procedure by 4 x. 

Instead of enhanced 

efficiency using fold, an 

evolutionary method with an 

adjustable penalty should be 

utilised. 

The HOF and the Harris Detector 

System are employed for feature 

extraction, using least square Twin 

SVM for classifying actions. 

[72] KTH 

Weizmann 

YouTube 

95.4 

97.8 

86.2 

Enhanced overall accuracy 

due to the combination of 

HOG and MBH, which results 

in a hybrid descriptor. 

Using PCA renders the 

results unstable and 

uncontrollable; hence, they 

are not combined. 

STIP extraction is performed on 

videotape with a hybrid feature 

descriptor, including static and 

mobility info; a VLAD is utilized 

as the video encoder. 
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[166] Weizmann  94.26 It is capable of differentiating 

multiple actions with 

excellent recognition results. 

Not suited for changes in 

perspective, point scaling, or 

point spinning. 

Histogram employs Directed 

LBP and MHI with 

Spatiotemporal information and 

SVM functions as the classifier. 

[79] MSRAction3D: 

MSRGesture3D:  

87.9 

94.6 

It’s not required more 

effort to execute in real time 

since its processing rates is 30 

fps. 

Close activities such as hand 

grab and hand chuck cannot 

be properly categorised. 

At the feature and decision levels, 

LBP and DMM from three angles, 

namely front, side, and top, are 

combined. The use of kernel 

extreme learning machine 

classification. 

[167] KTH 

UCF YouTube:  

93.3  

72.07  

Capable of recognising events 

in an unrestricted 

environment with a 

complicated context 

Dynamic background 

remains a classified 

challenge. 

Trajectories and LBP are used to 

characterise the spatial 

information of moving parts of a 

tracked body, while SVM is used 

as a classifier. 

[33] Hollywood2 

HMDB51 

62.5 

52.1 

Extraction of trajectories is 

facilitated by a 

straightforward and simple 

technique. 

No extrinsic visual cues are 

used, resulting in no 

enhancing approach efficacy. 

Vision mobility is split into space-

time trajectories that are then 

employed for descriptive purposes 

by the DCS descriptor. Moreover, 

the VLAD coding approach is 

employed for AR. 
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[67] KTH 

Weizmann 

i3Dpost 

Ballet 

IXMAS 

95.5 

100 

92.92 

93.25 

85.5 

This fusion strategy aims to 

provide a large number of 

unique feature vectors, which 

results in action modelling 

that is robust and devoid of 

disturbance. 

Not suitable for dynamic 

background and higher 

complexity. 

HAR based on the merging of 

SDEG of human postures and 

orientation of key poses of human 

silhouettes, which is conducted 

sequentially but individually, is 

described. 

[168] MSRAction3D-

Test1  

MSRAction3D-

Test2  

MSRAction3D-

Cross-subject 

test 

 

95.8 

 

97.8 

 

83.3 

It is then suggested to use 

Accumulated Motion Energy 

(AME) to conduct 

informative frame selection, 

which may eliminate noisy 

frames and minimize 

computing costs. 

These methods are helpful at 

close range and in specialised 

contexts because their high 

cost and precise requirements 

are not suitable in low light 

conditions. 

Eigen Joints-based approach for 

action recognition using NBNN 

classifier. Eigen Joints’ compact 

and discriminative frame format 

effectively captures the features of 

static posture, motion between 

successive frames, and overall 

dynamics relative to the neutral 

position. 

[80] Own dataset 

Video Web 

i3DPost 

WVU 

99 

99 

98.33 

99.33 

The technique takes less 

computational resources to 

perform. 

Neither trying to bend nor 

resting motions are fully 

acknowledged 

From silhouettes, mutually scale 

invariant contour-based posture 

structures and rotationally stable 

LBP are retrieved, and then SVM 

is used as a classifier. 
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[112] KTH 

Weizmann 

 

96.4 

100 

The issue of a lower 

recognition ratio in varying 

environmental circumstances 

has been resolved. 

This method is less efficient 

when an item is obscured. 

The Spatio-temporal form 

fluctuations of human silhouettes 

are conveyed by dividing the 

principal poses of the silhouettes 

into a specified number of grids 

and cells, resulting in a 

representation devoid of noise. 

The measurement of grid and cell 

parameters facilitates the 

modeling of feature vectors. This 

calculation of grid and cell 

parameters is further organized to 

preserve the temporal order of the 

silhouettes. 

 Berkeley MHAD 99.24 A membership function that 

facilitates categorization can 

be achieved with a minimal 

distance of three units from 

the ground. 

Evaluated on one dataset The membership function is 

constructed by utilizing a 

Convolutional Neural Network 

(CNN) with fuzzy inputs derived 

from motion capture data and the 

distances between the ground and 
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the left hand, right hand, and 

pelvis. 

[169] Weizmann 

 KTH 

89.2 

93.97 

The approach addresses the 

issue of ongoing activity 

recognition in visual frames. 

Instead of HMM, the time 

sequential model should be 

used. 

A hybrid technique using CNN to 

autonomously obtain features 

from visuals & the Viterbi 

algorithm for training. HMM is 

employed to perform 

classification. 

[170] UCF101 

HMDB51 

93 

70.2 

Apply for relatively small 

datasets to minimize the 

learning parameters to a 

minimum while maintaining 

performance. 

Not suitable for complex 

action. 

The proposed approach involves 

utilizing the Temporal Pooling 

Pyramid technique in the FCNN 

framework. Additionally, the 

integration of spatiotemporal and 

fuse strategies is employed to 

construct dual-stream fuse 

networks, which incorporate 

manually generated features. 

[171] JHMDB 

MPII Cooking 

79.5  

71.4 

The RGB and flow modalities 

are merged, which results in 

an assessment of human 

There is no CNN posture 

detection for each body 

CNN description is based on poses 

and contains information on 

mobility and appearances for 
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position that is more error 

resistant.   

component, including arms, 

legs, etc. 

every component, including both 

automatic and manual information 

[172] UCF101 

HMDB51 

95.5 

72.5 

Despite their 

easy implementation 

compared to RGB and optical 

flow images, dynamic images 

exhibit remarkable 

effectiveness. 

Incapable of handling rapid 

changes in a particularly 

complex video stream, 

dynamic graphics operate 

with a defined window size 

Four stream networks receive 

dynamic visuals comprised of all 

the video content in one frame, 

RGB, and optical flow, as well as 

rank pooling representing 

temporal data. 

[173] MCAD 

North-western-

UCLA:  

86.9%, 

88.9% 

 They calculated the inter-

view correlation by taking the 

pairwise dot product of the 

output of the LSTM network 

for each view, which is 

advantageous in multi-view 

scenario. 

This model requires lots of 

computation. 

A method for multi-view action 

detection in which frame-level 

features are extracted and fed to 

conflux LSTM. The correlation 

coefficient is then calculated using 

view-dependent pattern 

recognition and action 

categorization. 

[174] Activity-Net 39.37 The number of activities and 

sub-activities in each video 

are also found right away. 

This approach is not suitable 

for prolonged sequences of 

videos. 

A four-step method for identifying 

activity comprising frames 

conversion, human body 

detection, action recognition, and 
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occurrence time of action using 

two stream data (i.e., RGB image 

and optic flow) via a CNN-based 

network. 

[175] Activity Net 

 THOMUS 

53.5 

65.6 

Transformer networks help 

figure out where in time an 

action is happening in a video. 

The method is to use video 

features that have already 

been extracted, which has 

been done in many other 

ways. 

It includes information about 

multiscale feature representations 

and local self-attention and sends 

it to a decoder so that AR can be 

done. 

[176] Own -Dataset 90.89 Single-person activity 

recognition with better 

accuracy. 

Recognizing multi-person 

action may not work 

correctly. 

With MSR Kinect sensor V2, 25 

dissimilar joints can be found. 

Activity Recognition Using a 

Hybrid CNN+LSTM Conceptual 

Framework 

[177] NTU RGB + D 83.6 Not perform adequately when 

distinguishing identical 

activities 

Performs better than other 

approaches that are not based 

on deep neural networks. 

3D FCNN framework with depth 

images as inputs. 
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2.7 Dataset for HAR 

The primary assets for measuring the precision of the proposed technique are datasets. Many 

reference datasets, including a vast array of activities, have been presented so far. The 

decision of a dataset affects the selection of an appropriate method for human activity 

recognition. These datasets incorporate RGB, depth, skeleton data, or any combination 

thereof. In overall, these datasets were recorded with various sensors, including RGB 

cameras, Kinect depth sensors, and gyroscope sensors. Several regularly used recognition of 

human activity datasets have been evaluated in this research. This section describes 

numerous experimental and assessment datasets used in the study. 

2.7.1 KTH Dataset 

This dataset has several video clips. It consists of six classes of human actions: jogging, 

walking, sprinting, boxing, hand waving, and hand applauding [11]. Each action category 

contains 100 sequences featuring 25 actors performing acts in four distinct settings: 

outdoors, outdoors with varying attire, indoors with varying illumination, and outdoors with 

differing dimensions. The frame rate is 25 per second, and the resolution is 120 by 160 

pixels.  There is an excellent difference in video quality, time, and angles of view. 

2.7.2 Weizmann Dataset 

The Weizmann dataset [178]contains 90 clips of actions performed by humans, which 

include ten activities such as: 'walking', 'bending', 'jumping', etc.  One of ten distinct 

individuals carries out each of these 10 acts. The collection contains silhouettes as well as 

static backdrops. The lack of perspective flexibility prevents the simulation of many real-

world occurrences. The videos have a resolution of 144 by 180 pixels and 25 fps. 

2.7.3 IXMAS Dataset 

IXMAS dataset[179] includes activities collected from five perspectives. 11 individuals 

carry out 14 classes of activity. The actions may be performed in any orientation with respect 

to the camera setup. The viewpoint, backdrop, and lighting is all static. Due to this, the 

models developed expressly for this dataset perform poorly in several real-world contexts. 

This collection also contains silhouettes and voxel representations of the objects it has. 
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2.7.4 UCF 101 

The UCF 101 dataset[180] contains more than 13000 RGB video clips with 101 action types 

belonging to 25 distinct groups, with 5–7 videos per group. All activities may be categorised 

into five broad categories: human–human interaction, human–object interaction, physical 

motion, sports, and musical performance. The UCF 101 offers actual action films instead of 

produced action videos, enhancing the entire recognition task. 

2.7.5 UCF Sports 

The UCF sports [181]action dataset includes 140 + visual sequences and ten categories of 

sports acts, such as 'diving,' 'kicking,' 'weight-lifting,' 'horseback riding,' 'golf swinging,' 

'running, "skating,” ‘wielding a baseball bat,' and 'walking,' were retrieved from activities 

featured on broadcast television. Thus, it is somewhat more challenging to deal with since it 

consists of a natural pool of behaviours occurring in various locations and perspectives. The 

video resolution is 480 by 720 pixels. 

2.7.6 MSR Dataset 

The MSR action dataset was created to assess the performance of recognition methods in 

scenarios characterized by clutter and dynamic backgrounds. This dataset consists of more 

than 15 distinct classes and includes over 60 video recordings, which multiple actors 

conducted. Various movements encompass high arm waves, hand clapping, running, and 

other similar actions. The dataset was divided into two subsets: the MSR action dataset and 

the MSR action II dataset. Including depth films or 3D films in educational curricula presents 

a significant challenge in terms of anticipation despite the meticulous annotation of frames 

for each action. 

2.7.7 HMDB 51 

he HMDB51 dataset, as described by Kuehne et al. [161] comprises 51 distinct categories, 

each containing a minimum of 100 videos. The dataset consists of 6849 instances of various 

actions sourced from multiple origins. Five distinct types of action can be identified. The 

database in question is widely acknowledged as one of the most exceptional resources for 

recognizing human activities. 
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2.7.8 Activity Net 

It was presented by Heilbron et al. (2015) at the varsity of Del Norte, Colombia 

(http://activity-net.org/)[182] This colossal dataset aims to give a comprehensive taxonomy 

of videos depicting the actions of humans and to include an extensive range of subjects for 

each activity. These recordings were gathered from social video-sharing sites such as 

YouTube in recent years. The Activity Net dataset is separated into three divisions based on 

application area, including classification of untrimmed clips, classification of trimmed 

videos, and detection of activity in all untrimmed videos. The untrimmed video collection 

includes 2,7801 labeled films with 203 activity categories. The pruned activity dataset 

comprises 203 activity groups with an average of 193 samples per category to predict the 

label of solitary activity videos. 

2.7.9 MSR action pairs (3D action pairs) 

This dataset [183]emphasizes the two most essential elements, skeletal trajectories for 

comparable activities and the association between sets of motions. Within this dataset, 

combinations of behaviors; such as Pick up and place down, are chosen based on the premise 

that form signals may be similar, but their correlations vary. Ten individuals carry out six 

pairings of activities. Pick up/set down a carton, Raise or position a crate, push or pull a 

chair, don or remove a hat, don or remove a rucksack and then attach or remove a poster. 

Each movement is executed three times, and five actors are utilized throughout training for 

testing and recuperating. 

2.7.10 PKU-MMD 

It emphasizes activity recognition in long and complex continuous sequence data and 

multimodal action analysis. This dataset [184]was obtained using the Kinect 2.0 sensor. This 

collection is comprised of both short and long video streams, respectively. Phase 1 consists 

of 1076 3–4-minute-long video clips captured at 30 frames per second. In Phase 1, 66 actors 

perform 51 action courses, divided into 41 commonplace acts and 10 human contact actions. 

Phase 2 includes 2,000 1–2-minute films captured at 30 frames per second. Phase 2 consists 

of sixty actors performing forty-nine action lessons. This collection comprises RGB images, 

depth maps, skeletal joints, infrared sequences, and RGB visuals.
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2.8 Evaluation Metrices 

Human Activity Recognition incorporates several performance criteria taken from a variety 

of categorization domains. Many evaluation criteria from other categorization domains have 

been developed and used to the identification of human activities. In this subsection, we 

provide widely used measures such as accuracy, precision, recall, etc., based on [185]. 

Before summarising these measures, we define the following terms:  The most prevalent 

performance indicators are. 

Accuracy: Overall, instances that have been accurately classified constitute accuracy. It is 

estimated by dividing the ratio of accurate classifications by the whole number of categories. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Precision: It is also known as Positive Prediction Value (PPV) and refers to the probability 

that a detected instance of activity will really occur. Similarly, (1 -precision) influences the 

likelihood that the recognizer would misidentify an observed action. This is mathematically 

stated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F-Measure: It establishes the harmonic mean between accuracy and recall. It provides 

information on the test's reliability. Hence, F measure simultaneously influences the 

classifier's precision and robustness. Its highest value is 1 and its lowest is 0. This is 

technically stated as: 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙
 

The Area Under Curve (AUC) is commonly utilised to tackle binary classification 

problems. The estimation pertains to the probability that the classifier will assign a higher 

rating to a randomly chosen positive sample compared to a randomly chosen negative 

sample. The AUC represents the integral of the curve obtained by plotting the False Positive 

Rate (also known as Specificity) against the True Positive Rate (also known as Sensitivity) 

over a range of thresholds from 0 to 1. 
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Confusion Matrix: It provides a summary of the prediction results and a detailed description 

of the model's performance and is also known as the error matrix. The confusion matrix 

depicts classification errors and their corresponding categories. Each row of the matrix 

represents the anticipated class, while each column represents the actual class, or vice versa. 

The ROC curve, or precision-recall rate, compares the genuine positive rate to the true 

negative rate (FPR). Since the ROC curve is dependent on the number of True Negative 

classes, it is only applicable to detection models and cannot be utilised with imbalanced 

datasets, which are typical in deep learning-based human behaviour. 

Where 𝑇𝑃 : True Positive,𝐹𝑃 : False Positive,𝑇𝑁 : True Negative 𝐹𝑁: False Negative. 
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Chapter 3                                                                         

Multimodal Human Action Recognition System 

Recognizing human activity poses a significant challenge, particularly when confronted with 

the complexities of multiple actions and scenarios. This paper presents a proposed human 

action recognition (HAR) approach using a multi-view, multi-modal framework. The motion 

illustration of each Depth motion map, motion history images, and skeleton images is 

generated from data obtained from RGB-D sensor depth, RGB, and skeleton data. Following 

the motion representation, each individual motion is trained separately using a 5-stack 

convolutional neural network (5S-CNN). The recognition rate and precision are enhanced 

through the training of the skeleton representation using a hybrid classifier consisting of a 

5S-CNN and Bi-LSTM. The score values of three motions are combined using decision-

level fusion in a sequential manner. Human activity is identified based on the fusion value. 

In order to assess the effectiveness of the proposed 5S-CNN with the Bi-LSTM method, we 

utilise the UTD-MHAD dataset in our experimental analysis. The findings indicate that the 

proposed human activity recognition (HAR) method exhibited superior performance 

compared to other established methods in the field. 

3.1 Introduction 

HAR is a promising area for computer vision research. Common applications include 

interactions between humans and computers, healthcare settings, visual investigation, etc. 

The device records video for the present HAR procedure. Primarily, spatial-temporal 

characteristics are employed for identification[186]. As a result of the rapid development of 

imaging technology, depth cameras such as Microsoft Kinect cameras are currently utilised. 

This camera can record RGB, depth, and skeletal information. Deep and skeletal knowledge 

have the advantage of being less sensitive to changes in illumination conditions than 

conventional RGB information. Prior methods of recognizing actions based on depth 

information made use of explicitly constructed descriptors. The advantages of CNNs 

prepared exclusively for DMMs are outlined in [146], [187]. A DMM is an unambiguously 

shaped movement depiction image constructed from rudimentary depth outlines. This is 

similar to the development of MHI and optical stream illustrations derived from RGB 

outlines. [188], [189] describes the autonomous use of skeletal data for action recognition 
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based on meticulously crafted element descriptors. In [190], an attempt is made to generate 

surface images from skeleton joint clusters. 

DCNN can naturally distinguish features from data in the multiple phases processes of the 

visual cortex[191], [192] and are used for tasks related to image characterization, 

recognition, division, discovery, and recovery (ConvNets) employ techniques to effectively 

expand the capacity of organizations to encompass a significant number of boundaries. 

Additionally, ConvNets retrieve boundaries from an extensive repository of named data. The 

incorporation of RGB, depth, and skeletal data at the individual level has led to notable 

advancements in Human Activity Recognition (HAR) within the past few years. 

Nevertheless, experts still face difficulties in effectively incorporating these captivating 

viewpoints into various approaches to augment recognition further. The recognition of 

human action was achieved in [193] through the utilization of RGB and depth data. At both 

the component level and the chosen level, skeletal information and idleness information are 

intertwined [194] . In order to zero in on HAR, depth movement maps with skeleton 

information are combined within [195]. To enhance the efficacy of the HAR system, a 

Multiview multimodal HAR system is proposed in this methodology. 

3.2 Related Work 

A considerable proportion of scholars focus on the identification of human actions by 

employing multiple modalities. The following article presents a discussion of various 

research studies. 

In [195]sing a deep learning algorithm incorporating multiple modalities, including RGB 

and Skeleton data. The first step involves the extraction of MHI and MEI from the input 

RGB video. Subsequently, three distinct perspectives of the skeletal depiction were obtained 

through skeleton intensity. Following the motion extraction procedure, the extracted 

characteristics undergo training via LSTM. Ultimately, the decision is executed based on the 

value of the SoftMax score. The efficacy of this methodology was evaluated through 

experimentation on three prominent datasets, specifically UTD-MHAD, CAD-60, and NTU-

RGB + D120. 

In addition, Wang et al.[187] aimed to advance the field of Human Activity Recognition 

(HAR). This task's achievement was facilitated by utilizing a weighted hierarchical Dirichlet 

multinomial model (WHDMM) in conjunction with a three-channel deep convolutional 
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neural network (3 ConvNets). Using a 3D point, an initially distinct perspective of depth can 

be captured. This information is used to educate ConvNets. The AHDMM is then 

constructed from temporal dimensions. In fact, they utilised three types of datasets for 

simulation purposes. Chen et al.[196]  sought to design HAR by integrating skeleton, RGB, 

and depth information. Similarly, Escobedo et al. [197] created HAR utilizing skeleton and 

depth data.  

Gaglio et al. aimed to construct HAR using ML-based methods [198]. In this instance, 

skeleton joint data was utilised. The CNN stream based HAR system developed by Khaire 

et al.[199] Videos are used to generate MHI, DMM, and skeleton images, which are three 

types of motion representation images. After data extraction, each piece of data was 

individually trained using CNN classifier. From the outcomes of the classification, a final 

score was calculated. On account of the score value, recognition has taken place. Using three 

distinct datasets, the proposed method's efficacy was evaluated. 

 In addition, Guo et al.[200]  devised human activity recognition by combining Wi-Fi and 

video data. They influence how Wi-Fi signals transmit human activity data that was 

previously optically robust. To validate this creative concept, they devise a practical system 

for HAR and compile a dataset containing both video clips and Wi-Fi Channel State Info of 

human activities. Video highlights were extracted using a 3D convolutional neural network, 

while radio highlights were extracted using measurable calculations. After combining video 

and radio elements, an old-fashioned direct assist support vector machine was utilised as the 

classifier. 

Similar to this, Tran et al.[201] sought to develop a method to identify gesture-based 

recognition. Here, multi-modal streams were used to accomplish the recognition procedure. 

Three varieties of stream depth, RGB, and optical flow are utilised for the recognition 

procedure. These streams are incorporated into the process of feature extraction. Then, the 

classifier is supplied with these characteristics to classify a distinct activity. For simulation, 

various gesture datasets were utilized. Nie et al. intended to establish emotion recognition 

with a multi-layer LSTM classifier in [202]. 
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This classifier makes it easy to identify the activity. Due to the interval between video 

frames, this method cannot precisely detect the presence of motion. Khowaja et al. [203] 

intended to construct HAR using cross-modal learning at a fundamental level. In this case, 

RGB and optical flow were employed. UCF101 and HMDB51 datasets are employed for 

experimental analysis. 

3.3 Problem statement 

The researcher utilised the benefits of the skeleton joint and RGB video in [22]. In the 

proposed method, the authors learned CNN using RGB data and processed skeleton data 

using CNN and LSTM networks. After integrating the features, the authors presented four 

convolutional layers and three fully connected layers, resulting in a significant computation 

complexity despite the improved recognition accuracy. In order to minimize computational 

complexity and maximize the learning process, this methodology makes the following 

contributions. 

• At the outset, we generate Depth Map Models (DMMs), Multimodal Human 

Interaction (MHI) representations, and skeletal images using the depth, RGB, and 

skeletal data obtained from the RGB-D sensor. 

• Individual CNNs with 5 convolutional layers are trained using the extracted images. 

5S-CNN is trained on skeleton and DMM images for multi-views such as top, front, 

and side. 

• While The CNN network is implemented to acquire spatial information, Bi-LSTM is 

used to train skeleton images for temporal dependence. After extracting features from 

each Skelton image view using 5S-CNN, these features are combined and provided 

as input to the Bi-LSTM. 

• The WPM is utilized to combine the output score generated by each model. 

According to the combined results, the actions of persons is apparent. 

• Accuracy, F-score, precision, and recall are used to assess the effectiveness of the 

proposed scheme. 

3.4 Proposed Model 

Identifying human activity from video footage poses challenges due to factors such as partial 

opacity, background congestion, visual impairments, variations in size, alterations in 

appearance, and variations in illumination. Recognition systems play a crucial role in various 



65 

 

domains, such as facilitating human-computer communication, enhancing video surveillance 

systems, and enabling automata to analyze and interpret human behaviour. In the past, the 

utilization of Human Activity Recognition (HAR) predominantly relied on the Motion 

History image and depth map exclusively. The provided system does not offer the 

Recognition system with optimal precision. In order to address the aforementioned concern, 

this study presents a novel approach to automatic human action recognition that incorporates 

multiple views and modalities. In this context, recognition systems employ three modalities, 

namely MHI, DMMs, and skeleton images. Figure 3.1 depicts the overarching concept of 

the proposed approach. The suggested approach extracts derived DMMs, MHIs, and 

skeleton images through an RGB-D sensor's depth, RGB, and skeletal data. 

DMMs and MHI are independently trained by a 5S-CNN. Similarly, 5S-CNN gets used for 

training the Multiview skeleton images, and the trained output is inputted into the input of 

Bi-LSTM. 

Furthermore, the output scores of each model are combined using WPM. Fusion's output 

enables the identification of human activity. 

3.4.1 Constructing Motion Representation Images 

The primary objective of this section is to extract motion representation images (features) 

from every image input for HAR. In this paper, MHI, skeleton images, and DMMs are 

derived from RGB data, skeletal data, and the depth of an RGB-D sensor. 

a) Constructing MHI 

MHI is a simple and reliable method for representing video motion. It provides transient 

information regarding the movement of an image within a video. Local kinetic density 

correlates to the MHI pixel intensity. MHI distributes the time scale of human gestures 

because it can be encrypted multiple times over a range. When the intensity of an image's 

pixels is low, the motion occurred in the past. If the luminosity of an image's pixels is high, 

the movement occurred very recently. 

Eqn estimates the MHI. 3.1: 

𝑀𝜏(𝑎,𝑏,𝑘) = {
𝜏                                                                         𝑖𝑓 𝜃(𝑎,𝑏,𝑘) = 1

𝑚𝑎𝑥(0, 𝑀𝜏(𝑎,𝑏,𝑘−1) − 𝛿                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (3.1) 

Where Θ (a, b, k) →denotes the Occurrence of motion or object in the current frame in a video; 

k →time; (a, b) → position of pixel; δ→ decay parameter. 
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Figure 3.1  Architecture of Proposed Methodology 
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The transient movement is controlled by the parameter 𝜏. MHI is typically derived from a 

binary image extracted from the frame using a threshold ξ. 

 

𝜃(𝑞,𝑏,𝑘) = {
1 𝑖𝑓 𝐷(𝑎,𝑏,𝑘) ≥  𝜉

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                (3.2) 

 

𝐷(𝑎,𝑏,𝑘) = |𝐼(𝑘) − 𝐼(𝑎, 𝑏, 𝑘 ± ∆)|               (3.3) 

Where I (a, b, k) represent the intensity value. 

This methodology sets the threshold value Δ as 1 for all the experiments. The final output of 

MHI is obtained from 𝑀𝜏(𝑎,𝑏,𝑡). 

b) Depth Motion Map Construction 

Through the use of an RGB-D sensor, an image's depth map is acquired. This 3D structure 

captures the structure's form. The depth frame is projected onto three orthogonal Cartesian 

planes to extract additional body shapes. The ROI of each extended map is then defined as 

the standardized bounding box of a closer view (e.g., a non-zero region) with a fixed 

dimension. This standardization can reduce intra-class variations, such as the Material 

heights and operating lengths of various materials performing the same action. Each frame 

generates three perspectives, including front, side, and top views, denoted by MapF, MapS, 

and MapT, respectively. The kinetic energy of each frame is then calculated by subtracting 

two consecutive maps and applying a threshold. Kinetic energy refers to the elements or 

locations that are in motion at any given time interval. This is a clear indication of the sort 

of action being carried out. 

The DMM of the complete video can be estimated as follows: 

𝐷𝑀𝑀𝑖𝑢 = ∑ (|𝑀𝑎𝑝𝑢
𝑗+1

− 𝑀𝑎𝑝𝑢
𝑗
| > 𝜉)𝑁−1

𝑖=1              (3.4) 

Where v ϵ {f, s, t} →projection view, Mapu
i →Projected map of the ith frame, N→ Number 

of frames, |𝑀𝑎𝑝𝑢
𝑗+1

− 𝑀𝑎𝑝𝑢
𝑗
| > 𝜉→ Binary Map of the motion image. 

c) Skelton images 

The skeletal shots are primarily used in the process of activity recognition. The count of N-

number frames and K-number joints is available in the bone data. The quantity of action 

frames varies from function to function. The amount of frames varies between the various 
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subjects. The number of joints throughout the activity is frequently unaltered. Each frame 

contains a combination of three-dimensional coordinate values denoted by x, y, and z. 

Consider each joint in the skeleton to be a three-dimensional vector suggested by Ji, where i 

represents the active joints and Ji is a three-dimensional vector. Since the person can be seen 

anywhere within the sensor's field of view, it is necessary to organize the integration space 

in order to accommodate any joint. 

The hip centre point is the first normalization frame in the aforementioned study. The 

following equations are used to normalize the joint Eqn: (3.5)– (3.9). 

𝐷𝑖(𝑆) = 𝐿𝑖(𝑆) − 𝐿0(1)              (3.5) 

𝐷𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐷𝑖(𝑆))    ∀∈ 𝑗𝑜𝑖𝑛𝑡𝑠       𝑠 ∈ 𝑓𝑟𝑎𝑚𝑒𝑠          (3.6) 

  𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐷𝑖(𝑆))    ∀∈ 𝑗𝑜𝑖𝑛𝑡𝑠       𝑠 ∈ 𝑓𝑟𝑎𝑚𝑒𝑠     (3.7) 

                 𝑑𝑖(𝑆) = (𝐷𝑖(𝑆) − 𝐷𝑚𝑖𝑛)/(𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛)      (3.8) 

Where Li(S)→Coordinate the ith joint in the Sth frame; Di(S)→vector distance Li(S) and 

J0(1); di(p)→ The length of the gap between the vectors Li(S) and J0(1) normalized; L (1) → 

These are the coordinates of the centre of the hip in the first image. 

In order to make skeletal photos from skeletal photographs, the skeleton images are first 

separated into five segments, which include the trunk, the left and right arms, and the left 

and right legs. Each segment has dimensions of 160 x160 by 5, corresponding to the top, 

side, and bottom views. The extent that corresponds to this picture is 160 pixels by 160 

pixels. Let the image of the size x and y corresponding to the vith view of the body part S 

seen in the frame be denoted by the letters A x, y, vi Sth. 

𝑃𝑥(𝑡𝑜𝑝)𝑠𝑡 = ℎ1 + 𝑘1 + 𝑑𝑖(𝑡)𝑥        (3.9) 

𝑃𝑥(𝑠𝑖𝑑𝑒)𝑠𝑡 = ℎ3 + 𝑘3 + 𝑑𝑖(𝑡)𝑦        (3.10) 

𝑃𝑥(𝑓𝑟𝑜𝑛𝑡)𝑝𝑞 = ℎ1 + 𝑘5 + 𝑑𝑖(𝑞)𝑥         (3.11) 

𝑃𝑦(𝑡𝑜𝑝)𝑠𝑡 = ℎ2 + 𝑘2 + 𝑑𝑖(𝑡)𝑧         (3.12) 

𝑃𝑦(𝑠𝑖𝑑𝑒)𝑠𝑡 = ℎ2 + 𝑘4 + 𝑑𝑖(𝑡)𝑧          (3.13) 

𝑃𝑦(𝑓𝑟𝑜𝑛𝑡)𝑠𝑡 = ℎ4 + 𝑘6 + 𝑑𝑖(𝑡)𝑦        (3.14) 

Constants are the values of h1, h2, h3, h4, h5, and h6, as well as k1, k2, k3, k4, k5, and k6. 

The values of h1, h2, h3, h4, h5, and h6 are utilized to determine the center of the skeleton 

picture.  
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The values k1, k2, k3, k4, k5, and k6 are derived based on the distance between the joints 

and the stretch of the joint feature that has been provided. The values used for normalization 

might change depending on which joints are being examined. 

3.4.2 Training with 5S-CNN Classifier on RGB and Depth Data 

After the RGB, depth, and skeleton data have been generated, they are trained using a 5S-

CNN classifier. In this experiment, the MHI and DMM are both trained on a 5S-CNN 

classifier. On the other hand, a hybrid of 5S-CNN and Bi-LSTM classifiers is used to 

train the skeleton data. In this case, each of the visual frames undergoes its own individual 

training using a 5S-CNN classifier. The training procedure is shown quite well in Figure 3.2. 

An input layer, five convolutional layers, two pooling layers, and a fully connected layer 

make up the proposed CNN's four layers. The final phase is a wholly interconnected one. 

The arrangement of these levels is determined by the functions that they perform. The 

following provides a detailed explanation of the functioning of each layer of the proposed 

CNN architecture: 

Convolution Layer: Convolution occurs in the first layer of a CNN network. The input 

image's feature map is created by using this layer. In this study, a 5×5 filter is used to create 

a feature map. We provide a precise mathematical description of the convolution layer in 

Eqn 3.15. 

𝐵𝑖
𝑏 = ∑ 𝐵𝑗

𝑏−1 ⊗ 𝜉𝑖𝑗
𝑏 + 𝐿𝑖

𝑏
𝑗∈𝐹𝑖

         (3.15) 

Where "⊗" stands for the Convolution operator; The variable "𝜉𝑖𝑗
𝑏 " denotes the weight 

value,"i" represents the filter of the "bth" convolutional layer; 𝐿𝑖
𝑏 denotes the bias of ith filter 

of bth convolution layer and the representation of the activation map is depicted as 𝐵𝑖
𝑏. 

Pooling Layer: In CNNs, the pooling layer is a typical component used for image 

recognition. Its goal is to compress the width and height of the input volume while 

maintaining the essential details. The input volume is partitioned into non-contiguous areas, 

and a summary statistic, such as the maximum or average value, is calculated for each 

section.   

The resulting output volume has reduced spatial dimensions, which can help to reduce the 

computational complexity of subsequent layers in the network. Following the 

implementation of the convolutional layer is the pooling layer. This layer's purpose is to 
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reduce the dimensions of the feature map, thereby reducing the network's computational 

cost.  

On each feature map, a pooling method is implemented. Within the context of this academic 

article, maximal pooling is utilized. The following equation represents the combined map. 

 

𝑃𝑖 = max
𝑗∈𝑅𝑗

𝐹𝑖           (3.16) 

Fully Connected Layer: The layer that is ultimately linked to the input of the fully linked 

layer is provided with the reduced feature map. This layer serves as the classifier for the 

other layers. This neural network's completely connected layer has been created using a feed-

forward neural network. 

 

Figure 3.2 CNN Architecture 

3.4.3 Training Skeleton Data with 5SCNN and Bi-LSTM 

After skeleton data extraction, the three-view data are provided to the 5S-CNN and then the 

Bi-LSTM classifier. The 5S-CNN concept has already been explained in this section. The 

output of 5S-CNN is fed into the input of the Bi-LSTM classifier. Bi-LSTM is a sequential 

processing model that comprises of two LSTMs. The first is utilized in the forward direction 
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and the second in the reverse order. Bi-LSTMs maximize the quantity of network-accessible 

data in an efficient manner. Figure 3.3 depicts the structure of a Bi-LSTM. 

 

Figure 3.3 Bi-LSTM Architecture 

 

𝐼𝑡 = ([𝑚𝑡−1, 𝑣𝑡]𝑊𝐼 + 𝐷𝐼)𝜎          (3.17) 

𝐹𝑡 = ([𝑚𝑡−1, 𝑣𝑡]𝑊𝐹 + 𝐷𝐹)𝜎          (3.18) 

𝑂𝑡 = ([𝑚𝑡−1, 𝑣𝑡]𝑊𝑂 + 𝐷𝑂)𝜎         (3.19) 

𝑈𝑡̃ = 𝑡𝑎𝑛ℎ([𝑚𝑡−1, 𝑣𝑡]𝑊𝑈 + 𝐷𝑈)𝜎         (3.20) 

𝑈𝑡 = 𝑈𝑡̃ × 𝐼𝑡 + 𝑈𝑡−1 × 𝐹𝑡          (3.21) 

𝑚𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑡) × 𝑂𝑡           (3.22) 

Where tanh→ denotes the hyperbolic tangent function; 𝝈→sigmoid activation function; vt→ 

Vector input; It→ output of the input; Ft→ output of forget gate; Ot→ output of output gates 

at time t; d→ bias value; W→ weight of the control gates;𝑈𝑡̃ →Ccurrent state of input; Ut 

and ht→ update state and output at time t. 
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In the standard LSTM, the picture is encrypted in only one direction. Two LSTMs, also 

known as two-way LSTMs (B-LSTMs), can be utilized as bidirectional encoders. By 

incorporating the CAT mechanism to improve the state transmission system, this Bi-LSTM 

network can tackle the long-distance dependence problem of conventional RNs. 

The Bi-LSTM generates a series of hidden states in response to an input picture by using the 

image as input. The hidden state of the output that corresponds to the input value. The 

following is how it is determined: 

𝑚𝑡 = 𝐿𝑆𝑇𝑀(𝑚𝑡−1, 𝐼𝑡)         (3.23) 

𝑚𝑡́ = 𝐿𝑆𝑇𝑀(𝑚𝑡−1, 𝐼𝑡)         (3.24) 

𝑀𝑡 = [𝑚𝑡, 𝑚𝑡́ ]           (3.25) 

where the vector representing the concealed layer moving towards a positive orientation at 

time t is denoted by mt, and the vector of the hidden layer moving in the direction of negative 

at time t is represented by 𝑚𝑡́ . The vector representing the result at time t is denoted by the 

letter Mt. In the end, we were successful in obtaining the score value. This value of the score 

is utilised for the next stage of processing. 

3.4.4 Decision Level Fusion 

Afterward the learning procedure, the overall result was assigned to each input. Combining 

the calculated score values using WPM. The suggested WPM is utilized for making 

decisions primarily. Let MHIs, DMMF, DMMT, DMMS, SKT, SKF, SKS represent the MHI, 

DMM, and skeleton joint score values. These results function as the WPM decision-making 

criteria. Here, the number of classes is variable. On the basis of the results' parameters 

(scores), the optimal solution (class) is selected and classified. The score value is determined 

by Eqn 3.26. 

𝑊𝑃𝑀𝑆 = 𝑀𝑎𝑥[𝑀𝐻𝐼𝑠
1 × 𝐷𝑀𝑀𝐹

2 × 𝐷𝑀𝑀𝑇
3 × 𝐷𝑀𝑀𝑠

4 × 𝑆𝐾𝑇
5 × 𝑆𝐾𝐹

6 × 𝑆𝐾𝐹
7(3.26) 

Based on the score's worth, we can figure out the proper human action. 

3.5 Result Analysis 

The following section presents an analysis of the results obtained from the HAR system that 

was proposed. 
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3.5.1 Description of Dataset 

UTD-MHAD is the most recent functional database. There are twenty-seven human 

activities in this database. A subsurface camera and a passive sensor worn on the body are 

used to collect these database recordings. This database contains RGB and deep videos, as 

well as skeleton position data and transition signals. This database is utilised by the training 

and examination processes. For the training process, unusual models are utilised, while 

samples are used for testing. 

This dataset was gathered utilizing Kinect. There are numerous variations within each 

division. This dataset was collected as part of HAR research by combining depth and inertial 

sensor data. It includes 27 distinct activities performed by eight individuals (four females 

and four males). Each issue repeated each action four times. Figure 3.4 illustrates a set of 

frames extracted from the UTD-MHAD dataset, showcasing ten distinct action classes. 
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Figure 3.4 Sample Frames of Dataset 
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3.5.2 Experimental Setup 

The primary objective of the proposed methodology is to identify and classify human 

activities depicted in video or image data. The present study employs three modalities, 

namely MHI, DMMs, and skeletons, for the purpose of activity recognition. 

The sequence of the dataset is shown in Figure 3.5 and the confusion matrix is shown in 

Figure 3.6. The AUC for three distinct actions is shown in Figure 3.7. The trajectory is drawn 

between the rate of false positives and the rate of genuine positives. Here, the area under the 

ROC curve for boxing is 0.984; for archery, it is 0.9231, and for the tennis movement, it is 

0.9573. 

 

Figure 3.5 Dataset modality sequence, (a) RGB frames, (b) depth frames and (c) skeleton 

sequences 
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Figure 3.6 Presented Methodology Confusion Matrix 
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Figure 3.7 AUC for three actions (a) boxing, (b) bowling, and (c) tennis swing 
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Figure 3.8 and Figure 3.9 depict the accuracy and loss of the training dataset and validation 

data for 80 epochs. The graph demonstrates that the validation process achieved an accuracy 

of 96.2% and a loss of 0.45%. 

 

 

Figure 3.8 Accuracy versus Epoch 

 

 

Figure 3.9 Validation and Training Loss per Epoch 
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3.5.3 Comparative Results 

To illustrate the effectiveness of the recommended approach, the performance of our task 

has been compared to that of three different classifiers: SVM-based HAR, KNN-HAR, and 

CNN-based HAR. Predictions were made using a novel 5S-CNN + Bi-LSTM classifier in 

this study. Precision, accuracy, recall, and recognition rate were assessed to determine the 

performance. 

The accuracy of the proposed methodology is analyzed in relation to the variation of training 

and testing data size, as presented in Figure 3.10. The recognition process employs three 

distinct methods, MHI, DMMs, and skeletons, as per the recommended approach. Features 

are extracted from each technique. The aforementioned characteristics are trained through 

specific classifiers. 

The 5S-CNN classifier is used for MHI and DMM training. The skeleton image is trained 

similarly using the 5S-CNN and Bi-LSTM classifiers. The application of this hybrid 

procedure increases the level of accuracy. In order to demonstrate the efficacy of the 

proposed method, we undertake a comparative analysis of our algorithm against the K-

Nearest Neighbour Classifier (KNN), Support Vector Machine (SVM), and CNN Classifier. 

The methods in this program are trained utilizing a uniform classifier. As depicted in Figure 

3.10, the proposed approach attained a peak precision of 96.2%. Specifically, the KNN-

based recognition yielded an accuracy of 79%, while the CNN-based recognition techniques 

resulted in accuracies of 83% and 86%, respectively. Moreover, the analysis of the suggested 

approach's performance with respect to accuracy is presented in Figure 3.11. 

As depicted in Figure 3.11, the proposed approach yielded a peak precision of 96.5%. This 

outcome surpasses the recognition performance of K-Nearest Neighbour (KNN), Support 

Vector Machine (SVM), and Convolutional Neural Network (CNN) based methods. 
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Figure 3.10 Analysis of performance based on Accuracy 

 

 

Figure 3.11 Analysis of performance based on Precision 
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The observed result can be ascribed to the application of a hybrid 5S-CNN and dual-LSTM-

based skeletal training methodology, along with a three-step fusion procedure. The 

performance of the suggested approach is analyzed with respect to the size of recall in Figure 

3.12. An effective organization possesses the most extraordinary capacity for recall. 

As indicated by Figure 3.12, the prescribed approach entails extracting a maximum of 95%, 

which exceeds the values obtained through alternative methodologies. The human 

performance recognition performance, based on authorization rate, utilizing a multi-view 

multi-model approach, is presented in Figure 3.13. The measurement of the approval ratio is 

based on the value of the fusion score. The fusion process involves the integration of MHIs, 

DMMs, and skeletons. As indicated by Figure 3.13, our proposed methodology yields a peak 

recognition rate of 0.6. Specifically, the SVM-based recognition achieves a recognition rate 

0.53, while the CNN-based recognition attains a recognition rate of 0.52. Additionally, the 

CNN-based recognition yields a recognition rate of 0.46.  

The employment of 5S-CNN and Bi-LSTM-based training and integration techniques has 

resulted in higher accreditation rates in comparison to alternative methodologies. 

Furthermore, the analysis of time complexity is presented in Figure 3.14.The quantification 

of the amount of time an algorithm takes to execute in relation to the input's length is referred 

to as the algorithm's time complexity. Upon analysis of Figure 3.14, it can be observed that 

the proposed method exhibits a longer execution time in comparison to other techniques. 

This phenomenon can be attributed to the utilization of a hybrid approach. The duration of 

processing has no impact on the overall accuracy of recognition. 
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Figure 3.12 Analysis of performance based on Recall 

 

Figure 3.13 Analysis of performance based on Recognition Rate 
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Figure 3.14 Complexity-based Analysis of proposed Algorithm 

3.5.4 Comparison with State of the Reference Methods 

In order to demonstrate the efficacy of the proposed approach, a comparative analysis was 

conducted between the suggested algorithm and alternative methods, as presented in Table 

3.1. Within this section, we undertake a comparative study of our research with previously 

published works, including those of Chen et al. [204], Bulbul et al. [205], Annadani et al. 

[206], and Escobedo and Camara [197]. According to the data presented in the table, the 

precision of the suggested methodology is 96.2%. The recognition of human action is 

conducted in [204] through the utilization of depth and inertial sensors. 

This study employed the collaborative representation classifier (CRC) for recognition 

purposes. The UTD-MHAD dataset is used in this study. The aforementioned approach 

proves to be efficacious in the recognition of human actions across multiple modalities. 

The authors of reference [205] employ a fusion strategy that integrates three distinct types 

of features to address the AR challenge. The present study involves the extraction of three-

dimensional mathematical models (DMMs) through the utilisation of front, side, and top 

projection views obtained from input images or videos. Two decision-level fusions were 

developed in this context. The authors of reference [206]introduced a method for activity 

recognition based on skeleton data. The recognition process in [197]employs intensity, 

depth, and skeleton joints. 

Approaches suggested in. [204],  [205],  [206], and [197] are among the finest multimodal 

human activity recognition programs currently available. In addition, they employed MHI, 

DMMs, and skeletal representation. We have therefore chosen to evaluate the performance 
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of our proposed procedure to these. Table 2 compares the suggested framework with the 

previously mentioned method. When analyzing Table 3.1, our proposed method achieved a 

maximal precision of 96.2%, compared to 79.1% for [204], 88.4% for [205], 86.12% for 

[206], and 84.2% for [197]. The rationale behind our proposed strategy lies in its integration 

of three distinct training methodologies and a hybrid approach. The existing process was 

limited to utilizing only one or two methods. The results demonstrate that the proposed 

method yielded superior outcomes to alternative methods. 

Table 3.1 Comparison with Prior Approaches. 

Approaches Accuracy (%) 

Chen et al., [204] (Depth + Inertia) 79.1 

Bulbul et al.[205] (Depth) 88.4 

Annadani et al.[206] (Skeleton) 86.12 

Escobedo and Camara [197] (RGB + 

Depth + Skeleton) 
84.4 

Proposed (RGB + Depth + Skeleton) 96.2 

 

3.6 Discussion 

The primary objective of this study is to propose a framework for human activity recognition 

that utilizes multiple views and models. The problem of human actions is addressed by 

integrating the multiple view notes obtained from the RGB-D sensor for recognition. The 

first step involves the extraction of features from the input image. Subsequently, each 

individual feature is trained using separate classifiers. The mathematical expression for each 

phase is depicted. The experimental findings provide evidence that the suggested approach 

is suitable for diverse data methodologies and achieves superior outcomes compared to other 

existing studies. In the future, the focus of the Recognition procedure will be on the 

optimization of processes and the establishment of distinct classifications. 

 

 

 



85 

 

Chapter 4                                                                                   

Novel Light-Weight Deep Learning Model for Human Action 

Recognition in Videos 

Human Action Recognition (HAR) from a video feed has recently attracted considerable 

attention from computer vision researchers. Due to its extensive applications, including 

health surveillance, home automation, and tele-immersion, among others. However, it is still 

susceptible to human differences, occlusion, illumination variations, and complex 

backgrounds. The evaluation criteria rely on the accurate execution of the features collection 

method and learning data. The accomplishment of Deep Learning (DL) has produced 

numerous impressive outcomes, including neural networks. 

Nonetheless, an efficient classifier must have a robust features vector in order to provide the 

class label. Features are the fundamental element of any data set. Indeed, feature extraction 

may affect the algorithm's efficacy and computational expense. For this research framework, 

we extracted features from an image sequence using pre-trained deep learning models 

VGG19, Dense Net, and Efficient Net and classified each action using the SoftMax layer. 

UCF50 action dataset consists of 50 sections and measures performance using precision, 

recall, f1-score, and AUC score. Testing model accuracy yielded VGG19-90.11, DenseNet-

92.57, and EfiicientNet-94.25. 

4.1 Introduction 

In HAR, an action is an observable object that the human eye or a sensor device can detect. 

An activity such as strolling necessitates constant focus on a person in the field of vision. 

Actions can be divided into four categories based on the body parts required to perform 

them. [1]. 

• Gesture is determined by facial expression. Not requiring any form of action or verbal 

communication. 

• Action consisted of walking, playing, and striking.  

• Interaction: human-object interaction and human interaction, such as a salutation. An 

example of interaction is a hug. 

• Group activity: a group activity occurs when more than two actions occur, such as the 

combination of gesture and interaction. There are two or more actors involved in acting. 
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Over the past two decades, HAR has become integral to computer vision research. Based on 

a compilation of observations, HAR is intended to detect and identify the activities of one or 

more individuals. This can be performed for any number of individuals. This subsequently 

necessitated the advancement of human –computer interaction. Numerous researchers from 

around the world are drawn to this field of study due to its broad spectrum of applications. 

Among its most prominent applications are surveillance video, labelling and retrieving 

imagery, health monitoring, automation, and environmental modelling [9]. Human activities 

have an inherent hierarchical structure that denotes their numerous levels, which can be 

classified into three categories. First, there is a fundamental atomic element, and these action 

primitives represent progressively complex human actions. The actions/activities level is the 

second level after the action primitive level. The utmost level of categorization for human 

activities is complex interactions. Each category is adequately broad to warrant its field of 

study. This is primarily due to the unpredictability and ambiguity of actual human behaviour. 

HAR confronts numerous obstacles and impediments. 

HAR has emerged as a crucial component of computer vision research during the last decade. 

Based on an accumulation of observations, HAR is intended to detect and identify the 

activities of one or more individuals. This can be carried out for any number of people. 

Consequently, advancements in human–computer interaction were required. Due to its 

extensive range of applications, this field of study attracts many scholars from all over the 

globe [9] Its most prominent applications include surveillance video, image labelling and 

retrieval, health monitoring, automation, and environmental modelling. The inherent 

hierarchical structure of human activities denotes their numerous levels, which can be 

divided into three categories. These action primitives represent increasingly complex human 

actions. The actions/activities level follows the action primitive level as the second level. 

Complex interactions are the highest classification level for human activities. Each category 

is sufficiently comprehensive to necessitate its own academic discipline. This is attributable 

primarily to the unpredictability and ambiguity of actual human behaviour. HAR faces 

numerous obstacles and hindrances. 
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In the following step, actions are taught and recognized using extracted features. Essential 

components of action learning and identification incorporate learning new models 

introduced by the obtained features, determining which features are relevant to which action 

classes, and evaluating those features with the aid of classifiers.  

Machine Learning (ML) and Deep Learning (DL) techniques are two of the most prominent 

approaches to addressing the HAR issue. Conventional Artificial Intelligence takes a more 

deterministic approach, requiring the user to layout, prescribe, and refine extracted features 

and define action. We anticipate the deep neural network (DNN) by employing the latter 

strategy. Using the latter approach, on the other hand, we predict that the DNN will 

independently solve all the attributes by simulating the human brain [9][207]. 

ML-based methods such as random forest (RF), Bayesian networks (BN), Markov models 

(MM), and support vector machine (SVM) have been used for decades to solve HAR-related 

problems such as debris background, noise problems, and class similarity problems. In 

contexts with limited data inputs and stringent restrictions, conventional ML algorithms have 

performed admirably. Due to pre-processing stages with handcrafted features, machine 

learning algorithms are time-consuming and require special consideration; they must be 

improved. If the data size is substantial. DL has made significant progress in recent years. 

This is because research on deep learning has yielded outstanding results in various 

disciplines, including object detection and action recognition, frame classification, and 

natural language processing. 

DL substantially reduces the effort required to select the appropriate features compared to 

conventional ML algorithms, and its structure is suitable for unsupervised learning and 

reinforcement learning. Consequently, the number of proposed deep learning based HAR 

frameworks has increased. Figure 4.1 represents the ML-based and DL-based process to deal 

with the HAR problem. 
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Figure 4.1: A graphical representation of the conventional ML methods and the cutting-

edge DL methods employed for HAR [207] 

4.2 Literature Work 

In HAR, significant progress has been made. Due to its vast array of applications, numerous 

opportunities exist to enhance the prediction of human behaviour. In the past decade, 

numerous manually produced and automatically learned feature-based techniques for human 

activity detection in visuals have been developed. Earlier designs for human activity 

identification relied on handcrafted characteristics that were primarily concerned with small 

atomic activities that appear relevant to actual applications [208].  

Despite producing highly accurate models, the primary drawback of these techniques is that 

they require extensive data pre-processing and are difficult to generalise in practise. 

Following the success of convolutional neural networks (CNNs) in text and visual 

classification, numerous spatiotemporal approaches have been developed for video activity 

analysis; these algorithms can automatically train and classify from raw RGB video [135].  

Shuiwang Ji et al.[209] developed a 3D convolution technique for extracting spatial and 

temporal video data for action recognition. Consequently, the proposed architecture 
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generates multiple data channels from the video sequence and applies convolution and 

subsampling independently to each channel. Gu et al. proposed a DL-based technique for 

identifying locomotive motions pertinent to indoor localization and navigation. Their 

solution utilized stacked denoising auto-encoders that automatically learned data 

characteristics, reducing the need to construct the pertinent features [213] explicitly[210]. 

The proposed research framework is said to have greater precision than another classifier. 

Aubry et al. [211] devised a new method for determining what action is by analyzing RGB 

(Colour model) video. First, the human skeleton must be extracted by removing the motion 

from the video. This extraction was performed using Open Pose [212] a Deep Neural 

Network (DNN) employing an identification method that obtains a 2-D skeleton with 18 

known joints from each body object. In another scenario, motion patterns are converted into 

RGB images using an image classifier. Channels R, G, and B are used to store motion 

information. It produces an RGB image for use in an action sequence. Future neural networks 

that classify frames may be able to identify actions. 

Dai et al. [216] proposed a dual-stream model that employs an attention-based LSTM 

structure for localizing action within visual frames. They claimed to have resolved the issue 

of disregarding visual attention. With the UCF11 dataset, the accuracy of the architecture 

was 96.9%. The accuracy of the UCF Sports dataset was 98.6%, while the accuracy of the j-

HMDB dataset was 76.3%. Using a hierarchical RNN model, Du et al. [213]developed a 

skeleton-based framework for recognizing actions based on a skeleton. In addition, five 

distinct deep RNN designs based on their suggested methodologies were evaluated 

(compared). They utilised the MSR Action-3D dataset, the Berkeley MHAD dataset, and the 

HDM05 dataset throughout their evaluation.  

The Correlational Convolutional LSTM was created by Majd and Safabakhsh [214] by 

incorporating spatial and motion information into a pre-existing LSTM module and 

establishing temporal links. 

On the widely used benchmark datasets UCF101 and HMDB51, on which their work was 

evaluated, they attained correctness rates of 92.3% and 61.0%, respectively. To recognize 

group and individual activities, Qi et al.  [215] developed stag-Net, an alternative method 

for constructing a semantic RNN.  
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Using a structural RNN, they added a fourth dimension to their semantic network model: 

time. 90.5% of the Volleyball dataset was completed as a team endeavor and 8.5% as an 

individual effort using this method. 

Huang et al. [216] extract posture-based characteristics from a 3D convolutional neural 

network (ConvNet) by fusing 3-D Pose, 2-D appearance, and motion information. It is 

anticipated that the computation-intensive nature of 3-D CNNs derived from color-joint 

frame features will be a factor. To reduce noise, we apply convolution to each of the 15 

channels of the heatmap. Wang et al. used the (BN-inception) network architecture in 

Inception and Batch Normalisation [217]. As with two-stream networks, the method 

described above employs RGB variation frames (to simulate appearance change) and optical 

flow fields in conjunction with RGB and optical flow frames (to inhibit background motion). 

In [218], the author employed the GCN with a channel attention strategy for joints and graph 

pooling networks. The SGP design ultimately incorporated the human skeletal network and 

enhanced the convolution. Use of kernel-receptive regions to acquire specific human body 

data. The proposed SGP method has the potential to significantly enhance GCNs' ability to 

collect data based on motion characteristics while reducing computation costs.  

The study [223] employed context stream and fovea stream designs. The context channel 

receives frames with half their original resolution, whereas the fovea channel receives the 

central region with full resolution. Using each video as a compilation of short, fixed-length 

segments, the research teaches a model to identify three pattern classes: Early, Late, and 

Slow Fusion. CNN may produce single-frame animations by combining time and space in 

several methods.  

Singh et al. [219] proposed a highly connected ConvNet with RGB frames as the top layer 

for identifying human activities-term LSTM. Individual DMI are utilized to train the 

ConvNet model's lowest layer.  

The ConvNet-Bi-LSTM model is trained from inception for RGB frames to enhance the 

features of the pre-trained CNN. In contrast, the uppermost layers of the pre-trained ConvNet 

are modified to extract temporal information from video feeds. Using a late fusion technique 

that follows the SoftMax layer, the decision layer combines features to produce a value with 

a higher degree of precision by combining them after the SoftMax layer. Four RGB-D 
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(depth) datasets consisting of single-person and multi-person activities are utilized to 

evaluate the efficacy of the proposed methodology. 

4.3 Proposed Approach 

The DL model for HAR indicates the effect of each activity's classification. We discussed 

several deep-learning models, their classification accuracy, and how they operate. To train a 

DL model from scratch requires lots of computation power. Compared to transfer learning 

models, learning models are trained. They are learned using the massive quantity of 

ImageNet data [220]. ImageNet contains over 1 million images that can be used to train 

transfer learning models. This research paper classified each action using various transfer 

learning models and compared them to cutting-edge techniques. This study compared 

numerous transfer learning models to human action recognition. Human Action Recognition 

model with the pre-trained deep learning model is depicted in Figure 4.2. 

Transfer learning (TL)-based methodologies are evaluated using Dense Net [221]. Dense 

Net neural networks were selected due to their innovative techniques for contending with 

vanishing or growing gradients and their unique architecture, which enables one layer to 

learn from the feature maps of antecedent layers, thereby enabling feature reuse. VGG[190] 

is also trained using a transfer-learning-based HAR method due to its extremely deep 

architecture, which is achieved by employing minuscule (3 3) filters. Due to their 

complexity, VGG models frequently undergo gradient eruptions. We utilised VGG models 

with batch normalization layers to solve this issue to maintain gradient control. Efficient Net 

[222] method is also used to assess framework performance. 
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Figure 4.2 Proposed Methodology Architecture 
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4.3.1 Dense Net 

A dense Convolution neural network (Dense Net) [221] interconnects each successive 

network layer via feed-forward; this extensive interconnection has garnered it the moniker 

Dense Net. The data is initially routed through a Conv2D layer with a large filter size, 

followed by a dense block that creates dense connections with all subsequent layers. Each 

layer of a Dense Net receives new inputs from all preceding layers and broadcasts its feature 

maps to all succeeding layers. 

4.3.2 VGG 

VGG [190] is a CNN architecture that we incorporated into the TL-based strategy to 

recognize human actions. The images provided to VGG for training are 512 by 512 pixels 

(224, 224, 3) with a strict aspect ratio of 224, 224, 3. These images have been processed with 

convolutional layers containing 3-by-3-pixel filters. After particular conv2D layers, five 

max-pooling layers perform spatial pooling. Following a set of convolutional layers are 

dense layers with full connection and a SoftMax prediction layer. Figure 4.3 displays the 

VGG19 architectural design, in which conv represents the convolution layer, the pool is the 

pooling layer, and FC is the completely connected layer. 

 

Figure 4.3 Architecture of VGG 19 [190] 

4.3.3 Efficient Net 

Efficient Net [222] is an architectural and scaling strategy for convolutional neural networks 

that employs a compound coefficient uniformly scale all depth/width/resolution parameters. 

In contrast to current practice, which scales these elements arbitrarily, the Efficient Net 

scaling technique modifies network dimension (Breadth, Depth and Resolution) uniformly 

using a set of predefined scaling factors. 
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Efficient Internet [222] It is an exceptional CNN network with great parameter estimation 

efficiency and speed. Efficient Net [222] proposed a simple and complex scaling strategy to 

scale up CNN models more systematically by uniformly scaling network features such as 

depth, breadth, and resolution. Efficient Net [222] was also used as a spatial feature 

extraction network in classification applications. The Efficient Net family included seven 

CNN models labelled EfcientNet-B0 through EfcientNet-B7. EfcientNet-B0 surpassed 

Resnet-50[22] with fewer parameters and FLOPs (floating-point operations per second) 

accuracy, demonstrating that EfcientNet-B0 can extract features efficiently. 

4.3.4 Description of Dataset 

The UCF50 [223] dataset was utilised to assess model performance. Reddy et al. offered this 

dataset in 2012. For video gathering, online sites such as YouTube are employed. All videos 

are shot in a realistic setting and are not from a controlled environment. This dataset has 

been updated from the UCF11 dataset. It includes 50 activity lessons such as basketball, 

shooting, tabla, riding, violin, and so on. There are 6618 videos in all, covering a wide range 

of activities from general sports to daily life activities. Each activity class is divided into 25 

homogenous groups, with at least four films assigned to each activity. The same person, 

background, or viewpoint may appear in many films in the same genre. Figure 4.4 depicts 

action snippets from the UCF 50 dataset. 
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Figure 4.4 Dataset Frames [223] 

4.4 Experimental Results 

To classify each activity, we used three pre-trained deep-learning models—Dense Net, 

VGG19, and Efficient Net. We utilised pre-trained deep learning to extract value from the 

data collected from enormous datasets such as ImageNet. The transfer learning method 

trains a neural network on a new domain by transferring information from a previously 

trained model. The UCF50 action dataset, which comprises numerous image categories, is 

evaluated. In this approach, we assessed the effectiveness of multiple DL models on the 

dataset and compared their accuracy to that of state-of-the-art methods. First, frames from 

each action video group were extracted and input into a pre-trained deep learning model. 

The confusion matrix for recognising 50 activities from the UCF 50 dataset using the 

Clean & Jerk Base Ball Pitch Diving 

Drumming Javelin Throw Hula Hop 

Horse Riding Nun chucks Playing Violin 



96 

 

VGG19 model, Dense Net 161, and Efficient Net b7, is depicted in Figure 4.5, Figure 4.6, 

and Figure 4.7. 

 

Figure 4.5 Confusion Matrox for VGG 19 Model based Technique 
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Figure 4.6 Confusion Matrox for Dense Net Model based Technique 
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Figure 4.7 Confusion Matrox for Efficient Net Model based Technique 
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The classification result for the UCF 50 activity dataset is displayed as a Confusion matrix. 

The majority of activities are classified accurately and with high precision. On the UCF50 

action dataset, Table 4.1 contrasts frameworks evaluating matrices utilizing TL techniques. 

During the implementation phase, the captured frames were partitioned into training, 

validation, and testing phases. Figure 4.8 & Figure 4.9 represent the comparison of 

performance of models in HAR problem. Comparison with a variety of contemporary 

techniques, as shown in Table 4.2. 

Table 4.1 Comparison of various Light-Weight DL Models. 

Model 
Accuracy 

 (%)  

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

VGG19 90.11 91.92 90.34 90.53 

Dense Net 161 92.57 93.06 92.45 92.43 

Efficient Net b7 94.25 94.92 94.79 94.71 

 

Table 4.2 Comparison with State of the reference methods. 

Researcher Dataset Accuracy (%) 

L. Zhang et al[224] UCF50 88.0 

H. Wang et al[225] UCF50 89.1 

Q. Meng et. al[226] UCF50 89.3 

Ahmad Jalal et. al[227] UCF50 90.48 

VGG19_bn UCF50 90.11 

Dense Net 161 UCF50 92.57 

Efficient Net_b7 UCF50 94.25 
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Figure 4.8   Comparison of Various DL-based Models 

 

 

Figure 4.9 Performance comparison with State of the Reference Models 
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4.5 Discussion 

Deep learning models that have been pre-trained are used to classify human actions from the 

UCF 50 action dataset. UCF50 action dataset comprises 50 distinct action categories 

organized into 25 groups, with at least four recordings per group. Multiple evaluation 

metrics, namely precision, recall, F1 score, and AUC score, were employed to evaluate the 

models' precision, effectiveness, and overall performance. Models VGG19, Dense Net 161, 

and Efficient Net classify each action in the dataset. This study also contrasted cutting-edge 

techniques applied to the UCF50 dataset. The performance of these pre-trained deep learning 

models is superior to current best practices. With 94% accuracy, Efficient Net outperforms 

other pre-trained deep learning models. 
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Chapter 5                                                                                  

Vision Transformer-based Human Action Recognition in Videos 

Human Action Recognition (HAR) has attracted the interest of computer vision researchers 

due to its wide range of applications, including surveillance, behaviour detection, sports 

action monitoring, and elderly monitoring. As a result of the vast quantity of data, the Deep 

Learning-based method is more prevalent in HAR than the Machine Learning-based method. 

This investigation investigated the numerous Deep Learning and pre-trained Deep Learning 

models in HAR. In the pre-trained model, it is unnecessary to train it from the beginning 

because it has already been trained on massive amounts of data. This study examined the 

recent pre-trained Deep Learning model for accurately classifying actions. This study assists 

the researcher in assessing the value of the most recent Vision Transformer model in the 

field of HAR. This study employs the UCF 50 action dataset to evaluate the effectiveness of 

the Vision Transformer model in HAR. We obtained 94.70% accuracy on the UCF 50 action 

dataset using a Vision Transformer model variant. 

5.1 Introduction 

Due to its wide range of applications, including video retrieval, security, behaviour 

monitoring, patient activity, elderly surveillance, and defense, HAR is a highly active 

research field. Data pre-processing, feature extraction (pose-based, shape-based), a learning 

algorithm, and action classification are the steps that comprise HAR. Real-time Action 

Recognition (AR) is a popular research topic in HAR for security considerations. In real-

time, we must train the model on fewer available data; after that, the amount of data grows 

swiftly and requires extensive computation. Previously, the researcher used a classification 

method based on Machine Learning (ML) to identify the action. Due to the vast quantity of 

data, ML-based methods are not superior. Due to the ineffectiveness of the ML-based 

approach on massive data sets, the researcher employed Deep Learning (DL) techniques to 

identify action in video sequences. DL-based methods necessitate more computational 

capacity to train a model on massive data sets. 
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CONET serves a crucial function in computer vision for identifying images and patterns. 

Other deep learning models utilized by the research community include Long Short-Term 

Memory (LSTM), Recurrent Neural Networks (RNN), and Generative Adversarial 

Networks (GAN). Traditional ML-based methodologies are outperformed by the DL-based 

strategy [228]. The four action levels of HAR are Gesture, Interaction, Group Activity, and 

Action. 

Due to view-invariant, low-resolution, and variable-length sequences in datasets, HAR 

continues to struggle with action classification. Several machine learning (ML)-based 

algorithms have been developed, but each has its limitations. Some methods work well with 

a specific data set, brief videos, a single view, and impractical conditions. The optimal HAR 

model can overcome obstacles and perform better in every circumstance. Compared to ML 

methods, DL methods are better equipped to manage large amounts of data due to their need 

to perform better when data sets are enormous. Researchers are continually refining 

techniques for reliably recognizing actions. In addition, some multimodal approaches to 

learning specific activities are introduced. In the multimodal approach, we fed the model 

numerous modalities, such as RGB, Depth, and Skelton data. In a multimodal approach, 

fusion techniques (early fusion, delayed fusion, and late fusion) combine features obtained 

from various modalities. Data Pre-Processing, Object Segmentation, Feature Extraction, 

Data Training, and Classification are typical HAR process steps [228]. The DL-based 

method employs an automated feature extraction technique, whereas the ML-based method 

employs a pose- and shape-based handcrafted feature approach. Figure 5.1 depicts the 

processing step involved in HAR. 

 

 

Figure 5.1 HAR Complete Process 
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The DL method was successful in image classification, object detection, and action 

recognition. Deep Learning provides a variety of architectures, such as CONET, which uses 

the most compelling feature extraction method compared to the handcrafted feature 

extraction method [229]. Numerous frameworks rely on CONET to address the HAR issue. 

Recurrent Neural Network (RNN) is an additional DL framework, whereas Links between 

nodes create a directed graph along a time sequence, allowing for dynamic activity[230] . 

The primary contribution of this study is to classify action using the most recent Vision 

Transformer model and compare it to contemporary methods. 

5.2 Related Work 

Deep architecture CONET for feature extraction and sequential pattern learning using the 

LSTM architecture in [231]. Automatic Learning of the characteristics proposed by Ji et al. 

[114]. 3-D CONET was utilized for HAR. The inflexible architecture frames and optical 

flow input base dual stream model proposed by Simoyan et al. [135] and input fed to the 

pre-trained DL model render this model inadequate for variable-length segments. CONET 

is utilized for FE and action classification of KTH 1 or KTH 2 datasets in the two-step 

approach[116]. Ijjina and Mohan created a deep hybrid model by combining homogeneous 

CONETs, which achieved 99.68% precision on the UCF 50 dataset [232]. Liang et al.[233] 

investigated a highly unsupervised learning model for human segmentation tasks. Human 

mask inference based on video context and segmentation network learning based on CONET 

were iterated until mutual improvement was no longer feasible. PASCAL VOC 2012 passed 

rigorous testing with 81.8% accuracy. 

Safaei M. et al. [234] proposed a sophisticated CONET-based method for predicting future 

actions and identifying the form and position of the image's most prominent components. 

They trained a single framework for every move using a one-versus-all strategy and achieved 

an accuracy of 76.1 percent. Pose-based characteristics from the 3D CONET network can 

unify 3D posture, 2D appearance, and motion flow during [216] capture. Complexity will 

result from the extraction of joint colour features for the 3D CONET; consequently, a 15-

channel heatmap is generated, and convolution is performed in each map. Feichtenhofer et 

al. [118] present a two-stream convolution system for combining dual temporal and spatial 

streams, wherein RGB information (spatial) and optical flow (motion) are simultaneously 

modelled and estimates are aggregated in the final layers. Due to optical flow, this network 

cannot capture long-term motion; another disadvantage of the spatial CONET stream is that 
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its efficacy depends on a randomly chosen image from the input video. Due to background 

confusion and perspective adjustments, complications arise. 

Shi et al.[235]  recommend an additional two-stream network to enhance the efficacy of 

skeletal joint-based HAR. The Adaptive Graph Convolutional Network (AGCN) network 

processes a two-stream input that includes joint and bone information. The network is 

comprised of a hierarchical arrangement of these fundamental components. The soft-max 

layer has been incorporated into the ultimate product. Ullah et al. [129] perform HAR on the 

system using real-time visuals captured by a camera in motion. CONET, a technique based 

on deep learning, extracts autonomously frame-level characteristics. Jian et al. describe a 

method for ROI extraction using a Fully Convolutional Network (FCN) in their paper [236]. 

CONET is utilized to ascertain the posture probability of each frame. Key-frame extraction 

is performed using the probability difference between adjacent frames. The variation-aware 

key-frame extraction method takes into account the frame with the highest likelihood of a 

key pose, as determined by CONET. The Central frame is chosen if multiple frames yield 

the same probability value for the critical pose. 

Using a CONET and an LSTM recurrent network, a DL-based solution for 3D temporal 

poses identification difficulties. They begin by training the CONET before modifying the 

combination (CONET+ LSTM)[237]. CONET extracts the pertinent data, which the LSTM 

then utilises to classify the target action classes. This innovative training strategy 

outperforms conventional single-stage training. On limited data sets, the outcomes exceed a 

number of contemporary methods. [238] created a unique HAR model with three primary 

stages: pre-processing, background removal, and classification. Their method significantly 

improved the results for five action classes extracted from the INRIA and KTH datasets, 

namely sprinting, strolling, bounding, standing, and reclining. [191] presented a multi-

resolution CONET architecture for feature connectivity in the time domain to capture local 

Spatiotemporal data. This method is being evaluated on the current "YouTube 1 million 

videos dataset" with 487 action sequences of classes. The authors noted that the focalized 

design of CONET accelerated the complexity of training. Their action categorization rate 

for large datasets increased to 63.9%, but their recognition rate for UCF101 remains at 

63.3%, which is insufficient for such a crucial task as action recognition. 
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Bilen et al. [239] investigate the feature maps of a pre-trained model for the representation 

of dynamic image video. At the tuning stage, a rank pooling operator and an approximation 

rank pooling layer were introduced to aggregate the mappings of all frames into a singular 

dynamic image representing the entire film. Due to their extensive feature representation 

infrastructure, deep learning-based algorithms can reliably unearth concealed patterns in 

visual data. On the other hand, training requires a massive amount of data and a high level 

of computer processing capacity. Wu et al. [240] introduced an MPCA-Net technique for 

classifying human actions based on deep learning. This strategy utilizes tensor interaction to 

increase the recognition rate. It has three layers: projection dictionaries, projection encoder, 

and pooling. The effectiveness of the proposed method is evaluated using UCF11, various 

medical imaging datasets, and UCF sports action datasets. Majd et al.[214] proposed a 

correlational convolutional LSTM (C2 LSTM) for dealing with surveillance video data's 

spatial and movement knowledge. Conv-LSTM is a connectivity combination model 

proposed in[241]  for violence detection. 

This architecture fed the CONET network into the LSTM network for feature analysis and 

action classification. Jaoudi et al. proposed a novel method for motion tracking based on 

human observation and the extraction of spatial features from video sequences. Gaussian 

mixture model (GMM) and Kalman filter (KF) algorithms were used to detect and extract 

moving individuals, while Gated Recurrent Neural Networks were used to collect data in 

each frame and predict human activity. They evaluated their methodology with datasets from 

UCF Sports, UCF101, and KTH, achieving 89.01%, 89.30%, and 96.30%, respectively [242] 

5.3 Proposed Methodology 

With their models, CONET, LSTM, GAN, and Autoencoder, Deep Learning-based methods 

play a crucial role in action recognition and attain superior results than ML-based methods. 

DL-based methods are able to manage vast quantities of data. However, training from 

inception for each model is extremely complex, so numerous Transfer Learning-based 

methods propose models that have already been trained on a massive quantity of data. The 

proposed framework evaluated the effectiveness of Vision Transformer for action 

recognition problems in video sequences. Figure 5.2 depicts how VT detects a class of 

corresponding frames from sequence of frames. 
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Figure 5.2 Action Transformer architecture for action class recognition [243] 

 

5.3.1 Vision Transformer 

The standard Transformer is given a 1D sequence of token embeddings. To manage 2-D 

images, the Transformer reshapes required images  𝑥 𝜖ℝ 𝐻 ×𝑊×𝐶 into an order of flattened 

two-dimensional spots 𝑥𝑝𝜖ℝ𝑁×𝑃2×𝐶, where image resolution is represented by (H, W) and 

channel count is represented by C. Each image's resolution displays from (P, P) and the total 

number of patches represented by 𝑁 = 𝐻𝑊/𝑃2 , which also serves as the Transformer's 

essential input order span. 

Because the Transformer employs a constant latent vector size D across all its phases, they 

use a trainable linear projection to align the areas and convert them to D dimensions. The 

first layer of the VT sequentially reflects the refined regions into a domain that is shorter 

[243]. The characteristics resemble appropriate basis functions for a low-dimensional 
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representation of each patch's delicate structure. The patch representations are then enhanced 

with a learned position embedding following the projection. 

In location embedding similarity, the model is instructed to express distance within the 

visual, i.e., closer regions have more comparable position embeddings. The row-column 

structure is also evident, with identical fundamental characteristics within each row/column. 

Due to self-attention, VT can acquire data throughout the entire visual, including at the 

lowest levels. 

Positional Embedding: Positional embedding adds spatial information to the sequence. Due 

to the fact that the model is unaware of the spatial relationship between tokens, it may be 

beneficial to provide additional information to indicate this. This is typically a learned 

embedding, or tokens are assigned weights from two sine waveforms with high frequencies, 

which is sufficient for the model to learn that these tokens have a positional relationship. 

Transformer Encoder: A transformer encoder consists of a series of encoding layers 

stacked on top of one another. Each encoder layer is comprised of two sublayers: a Multi-

Headed Self-Attention (MHSA) head and a Multi-Layer Perceptron (MLP) head. Each sub-

layer includes a layer normalization (LN) and a residual link to the next sub-layer. 

Classification: Vision transformers frequently add an additional learnable [class] token to 

the sequence of embedded patches for classification, which reflects the class parameter of 

an entire image and its state after transformer encoding. The [class] token contains latent 

information and accumulates additional knowledge about the sequence for categorization 

purposes via self-attention. ViT [243] also investigated the alternative of aggregating output 

tokens but found no discernible performance difference. However, they found that the 

learning rates must be altered between the two variants: [class] token and average pooling. 

5.3.2 Dataset 

Using the UCF 50 action dataset, the efficacy of the VT model was evaluated. Reddy et 

al.[223] presented this dataset in 2012. Realistic action videos are compiled from online 

sources like YouTube and have a realistic setting. This dataset contains 50 distinct action 

classes, such as playing tabla, hurling a baseball, using a yo-yo, strolling a dog, and 

launching a discus. The dataset contains approximately 100 brief videos for each class, 

encompassing a wide range of camera motion, object appearance and posture, object scale, 
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perspective, congested background, illumination conditions, and other variables. Figure 5.3 

represents the dataset's visual frames of action. 

 

Figure 5.3 Sample Frame of Dataset [223] 

5.4 Implementation Details & Result 

Transfer learning is a weight initialization technique in which the neural network is not 

trained with stochastic weights and biases but with ImageNet-learned weights and biases. 

The network is then permitted to learn and improve its parameters using HAR vision datasets 

as training data. In this manner, it is fine-tuned for the categorization objective. We classified 

each action in the UCF50 dataset using the VT model and compared these classifications to 

current best practices. The VT variants are pre-trained deep learning models trained on the 

massive ImageNet dataset [220].  

These models can reliably classify each action without needing to be trained from inception. 

This study compares the precision of various variants of VT on the UCF 50 dataset. This 

study extracted image sequences for each action category and used them to train a neural 

network. Compared to the numerous Transfer Learning and DL models, VT performs better. 

Network. Compared to the numerous Transfer Learning and DL models, VT performs better. 

We generate the confusion matrix based on the result to evaluate the accuracy. In Figure 5.4 
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represent the classification result through vit_b_16 and Figure 5.5 illustrates the result 

through vit_l_16. Figure 5.6 depicts the various evaluation matrices to assess the 

performance of the vision transformer in the HAR problem. 

 

Figure 5.4 A confusion matrix for the classifying of the UCF 50 activity datasets employing 

the VT_B_16 model 
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Figure 5.5 A confusion matrix for the classifying of the UCF 50 activity datasets employing 

the VT_l_16 model 
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Table 5.1 entails the various performance evaluation matrices of Vision Transformer models 

& compares model's performance based on multiple evaluation matrices. 

Table 5.1 Comparison of performance between Vision Transformer models. 

Model Name Accuracy Precision Recall F1-Score 

Vision Transformer 

(vit_b-16) 94.70 94.36 94.17 94.11 

Vision Transformer 

(vit_l_16) 89 91.07 89.47 89.69 

 

 

Figure 5.6 Compares several evaluation parameters 

In this study, the UCF 50 action dataset has been utilized to evaluate the accuracy, precision, 

and recall of the VT model. VT models are pre-trained models that can effectively classify 

each action. We implemented VT models on GPU to evaluate these models' efficacy in HAR. 

This investigation employed VT variants VT_b_16 and VT_l_16, corresponding to the base 

or large model. There are sixteen by sixteen input sizes. The small model has 12 layers with 
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32 million parameters, while the large model has 24 layers with 307 million parameters. 

Table 5.2 depicts the comparison with other methodologies. 

Table 5.2 Comparison with State of the Reference Models. 

Reference Model Accuracy (in %) 

Action Bank [244]. 76.4 

Multi-Channel Descriptor [245] 83.3 

Global-Spatio Temporal Feature[246] 70.1 

Wang et al[247] 91.7 

Vision Transformer (VT_b_16) [243] 94.70 

Vision Transformer (VT_l_16) [243] 89.00 

 

5.5 Discussion 

This methodology examines the VT model in the HAR domain. Due to their intricate 

architecture, VT models are able to classify actions effectively. We compared the efficacy 

of these models to that of state-of-the-art methodologies using the UCF 50 data set. To 

determine its efficacy, this study contrasted various model evaluation metrics (f1-score, 

precision, recall, etc.). With an accuracy of 94.70%, the VT model outperforms other 

suggested methods on the UCF 50 action dataset. 

Complex and Multiview datasets can be evaluated in the future. These models can be utilised 

for online action classification and the identification of complex actions. Numerous 

Transformer variants with fewer parameters were proposed, demanding less time and 

computing power. These models are also utilized for rapid response in surveillance data. 
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Chapter 6                                                                            

Transfer Learning Models Effectiveness for Human Action 

Recognition 

This chapter explores the recent Transfer Learning (TL) models in HAR. These models’ 

performance is evaluated based on precision, recall and AUC score. The UCF 11 and UCF 

50 datasets are used to assess the performance of TL models. 

6.1  Introduction 

Pre-trained models have gained the attention of researchers in recent times in HAR. The 

conventional computer vision and ML approaches utilize handcrafted feature methods. 

Handcrafted feature methods are not robust and efficient in challenging conditions, like 

lighting, occlusion, and environmental conditions. Transfer learning models perform better 

than models trained from scratch on the HAR problem. TL models can be trained quickly 

compared to other models. These models have been used to develop HAR models for new 

domains or actions with less effort. 

6.2 Transfer Learning Models 

TL models refer to a category of DL models that undergo pre-training on a substantial dataset 

of visual and image sequences for a specific problem, followed by fine-tuning on 

comparatively less data of frames and image sequences for a unsimilar problem. There are 

two options available: either the final layers of the model can be removed, or they can be 

frozen. The process of freezing involves inhibiting the modification of the weights within 

those layers during the training phase, hence preserving the acquired knowledge from the 

original task. TL models are trained on large datasets to perform specific tasks. To perform 

action recognition, you may modify the model (Figure 6.1). 
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Figure 6.1 Transfer Learning visualization 

6.2.1 Mobile Net 

MobileNetV3 [248] refers to a collection of convolutional neural network designs 

specifically developed to facilitate fast and lightweight deep learning tasks. These 

architectures are particularly well-suited for deployment on mobile and embedded devices. 

The design is a progression from the previous MobileNetV1 and MobileNetV2 models, 

exhibiting enhanced performance and efficiency. The network design philosophy of 

MobileNetV3 encompasses the use of two distinct design methods, namely the "small" and 

"large" architectures. The smaller models have been designed and optimized to cater to low-

latency applications, prioritizing reduced response times. Conversely, the larger models have 

been specifically developed with the primary objective of maximizing accuracy. 

6.2.2 ResNet 50 

ResNet 50[249] is a DNN with 50 convolutional layers. This neural network is classified as 

a residual neural network, characterized by its utilization of skip connections to enhance the 

network's ability to acquire more effective representations of the input data. Skip 

relationships enable the neural network to acquire knowledge straight from the preceding 

layer, mitigating disappearing gradients. The network's depth allows it to effectively catch 

intricate details present in visuals. 
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6.2.3 VGG 19 

VGG-19[250] consists of 19 layers, 16 of which are convolutional and three wholly 

connected. At the time, VGG-19's use of deep layers was a notable feature that contributed 

to its efficacy in recognizing complex patterns and features in images. Small 3 × 3 filters 

with a stride of 1 and a padding of 1 are utilized in VGG-19's convolutional layers. Using 

modest filters throughout the network enables it to learn a hierarchical structure of features. 

Figure 6.2 depicts the process of HAR using pre-trained models. A pre-trained model learns 

features from image sequences and categorizes the action class. 

 

Figure 6.2 Transfer Learning model based HAR Problem 

6.3 Datasets  

UCF 11[251] and UCF 50[252] datasets are employed to assess the effectiveness of these 

models. Videos are gathered for these datasets from online resources and have realistic 

environments. UCF 11 contains eleven distinct daily activities. On the contrary, UCF 50 

comprises 50 different action groups. The UCF 11 dataset has 1600 videos encompassing 

various activity categories. UCF 50 dataset has 50 distinct action classes, such as playing 

tabla, baseball pitch, yo-yo, walking with the dog, and throwing discus. The dataset contains 

about 100 short videos on every class, with a broad range of camera motion, object look and 

posture, object scale, perspective, cluttered backdrop, illumination conditions, etc. The UCF 

11 action frame is represented in Figure 6.3. 
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Figure 6.3 UCF 11 action image sequences [251] 

6.4 Performance Analysis  

TL models’ performance is evaluated on various parameters like classification ratio matrix, 

accuracy, precision, recall and F1-Score. Figure 6.4, Figure 6.5 and Figure 6.6 represent the 

confusion matrix for classification of UCF 11 dataset actions. Figures represent the 

confusion matrix on the UCF-11 dataset from TL models. The confusion matrix can 

determine how models are capable of classifying activity accurately. 
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Figure 6.4 Confusion matrix for the MobileNet V3 model 

 

 

Figure 6.5 Confusion matrix for the ResNet 50 model 
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Figure 6.6 Confusion matrix for the VGG 19 model 
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Table 6.1 is used to determine the effectiveness of TL models in the HAR problem and these 

are compared on different performance evaluation matrices. After that, Table 6.2 is used to 

compare TL models with the state of the reference model to evaluate the effectiveness of the 

HAR problem.  

Table 6.1 Performance comparison of various TL models on the UCF 11 dataset. 

Model Accuracy Precision Recall F1-Score 

VGG 19 93.69 92.99 93.11 92.64 

ResNet 50 95.98 96.24 96.27 96.18 

Mobile Net V3 96.66 96.24 96.95 96.50 

 

Table 6.2 Comparison of various reference models on the UCF 11 dataset. 

Reference Model Accuracy (in %) 

Dense Trajectories[253] 84.2 

Visual Attention Model [254] 84.9 

Two Stream LSTM  [255] 92.2 

VGG 19 93.69 

ResNet 50 95.98 

Mobile Net V3 96.66 

 

Figure 6.7, Figure 6.8 and Figure 6.9 represents the confusion matrix for the UCF 50 action 

dataset. The confusion matrix is used to describe the classification model's effectiveness. 
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Figure 6.7 Confusion matrix for the MobileNet V3 model for the UCF 50 dataset 
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Figure 6.8 Confusion matrix for the VGG 19 model for the UCF 50 dataset 
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Figure 6.9 Confusion matrix for the ResNet 50 model for the UCF 50 dataset 
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Table 6.3 represents the comparison of TL models on numerous performance evaluation 

matrices to assess the effectiveness on the UCF 50 dataset. These models are also compared 

with the state of the reference model in Table 6.4 to evaluate the effectiveness for HAR 

problem. 

Table 6.3 Performance comparison of various TL models on the UCF 50 dataset. 

Model Accuracy Precision Recall F1-Score 

ResNet 50 90.0 90.56 90.2 89.88 

Mobile Net 92.27 92.65 92.60 92.1 

VGG 19 83.92 83.90 82.81 81.32 

 

Table 6.4 Comparative analysis with reference models on the UCF 50 dataset. 

Reference Model Accuracy 

Global-Spatio Temporal Feature[246] 70.1 

Convolutional Long Short Term (CLSTDN) 

[256] 
80.8 

Motion Modalities [226] 89.3 

VGG19 90.11 

ResNet 50 90.00 

Mobile Net V3 92.27 

Dense Net 161 92.57 

Efficient Net_b7 94.25 
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Figure 6.10 Performance comparison of TL models on UCF 11 & 50 datasets 

6.5 Discussion 

This chapter uses several recent TL models to perform the human action recognition task. 

To evaluate their performance, these models are trained on the UCF 11 and UCF 50 action 

datasets. The purpose is to compare these models’ performance on the HAR problem to 

predict action with less computing power. These models do not require more training time 

and have fewer parameters compared to other DL models. TL models are faster and smaller 

than CNN models. These models are suitable for mobile devices that require low 

computational resources. These models perform better as compared to several reference 

models with low computational power requirements. 
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Chapter 7                                                                             

Conclusion and Future Scope 

 

The following section presents a comprehensive overview of the suggested works, 

significant results, contributions, and limitations. Additionally, we outline potential avenues 

for future research in the area of human activity recognition in videos, encompassing both 

short-term and long-term perspectives. 

7.1 Conclusion 

This study covers essential modules, including handcrafted-based feature extraction, feature 

representation, summarized action dataset and classification of activity with the support of 

various methods. This study summarizes the past research on vision-based human activity 

detection systems. This study has described a general framework for AR. Numerous 

handcrafted feature extraction methods are described with comparative analysis. The fusion 

of features is also summarized. We have also represented various classification methods such 

as ML, DL, hybrid, and some pre-trained DL approaches. A considerable amount of data is 

needed to train, so hybrid DL methods and pre-trained DL methods are represented with 

improvement. This study presented a comparative analysis of the latest approaches for AR. 

We have summarized various available datasets. Evaluation matrices to test model 

performance are also discussed.  

• It has been found that recognizing action in a single still image poses more significant 

challenges than analyzing action in video sequences. Recognizing action in a still 

image may be perceived as more challenging compared to video analysis. This is 

because the method does not consider the temporal variations, illumination variation, 

and alignment of the images. 

• Various automatic feature extraction methods elaborated with their pros and cons. 

This study covers the traditional framework for HAR with feature extraction methods 

and classification techniques like ML-based or DL-based. 

• This study enlists various multimodal, hybrid models and various methods for HAR 

non-deep learning-based or Deep learning-based. 
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• According to the data variation, HAR has been categorized into two categories: 

Unimodal and Multimodal. These methods discuss in detail, with their approach, 

how they process human action. Multimodal techniques gain popularity due to their 

robustness; they utilize multiple cues, which is why they require a lot of 

computational power. 

• This study explains the type of activity according to the complexity level with 

benchmark action datasets and various states of the reference model analysis. 

• Several methods have been explored in this study to recognize human actions of the 

individual person, crowd behaviour, and gesture of human and observe that the 

space-time approach provides better results for the gesture. 

• Multiview modality is presented to solve the view-invariant issue with the use of a 

multimodal approach. This approach uses 5-S CNN, which is trained with various 

modalities of action sequence. For better representation of action, MHI and DMM 

are constructed. Bi-LSTM is employed to learn sequential information from video 

sequences. 

• Self-occlusions, noise, and error evident in the video have a significant impact on 

single-modality-based approaches, particularly in skeleton coordinates. Therefore, 

the RGB skeleton MHIs are used to eliminate errors in the estimation of three-

dimensional coordinates. 

• A lightweight deep learning model has been proposed that provides better accuracy 

in less time. Various pre-trained models are employed to recognize human action and 

compare it with the state of the reference model. To train a model from scratch 

requires a lot of time compared to a pre-trained model. 

• Efficient recognition of human action in less time is significant and fully fills the 

need for action recognition from video surveillance data. In this study, various latest 

pre-trained methods were used to develop an efficient HAR framework. 

• This study also discusses the Vision Transformer models, which are trained on huge 

amounts of data. The architecture of Vision Transformer is profound. Using the UCF 

50 action dataset, the efficacy of the transformer framework in HAR was evaluated. 

Comparing the precision of the proposed method to the current state of the reference 

model. 
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7.2  Future Directions 

The primary goal of HAR (Human Activity Recognition) system techniques is to identify 

and classify activities seen in films autonomously. The majority of solutions, including 

handcrafted features, are built and acknowledged as a means of activity recognition via the 

construction of action templates using a specified collection of movies. Numerous concerns 

remain unaddressed, yielding unsatisfactory outcomes. The structure of the action template 

is susceptible to human errors in manually created feature descriptions. Consequently, it is 

essential to direct our attention towards novel expansions for the most recent iteration of 

action templates. It is crucial for us to exhibit heightened awareness, particularly regarding 

the real-time implementations of computer vision systems that systematically use action 

templates on streaming video in an iterative manner. 

It has been noticed that the training of deep ConvNet architectures needs a substantial 

amount of labelled data in order to mitigate the issue of overfitting in the model. Moreover, 

the accuracy of action recognition systems is compromised as a result of imprecise labelling. 

However, it is feasible to use a combination of annotated and unannotated data in order to 

train the models. Hence, it is essential to develop Convolutional Neural Network (ConvNet) 

architectures that possess the capability to extract features from both annotated and 

unannotated data for the purpose of action recognition. 

Future research might potentially prioritize the development of resilient human identification 

methodologies that provide enhanced performance in scenarios characterized by low light, 

crowded backdrops, changing light conditions, and noisy data. However, the majority of 

models discussed in the existing literature have primarily been evaluated in indoor situations. 

In order to enhance the reliability and effectiveness of these models, it is essential to subject 

them to real-time environmental circumstances and include relevant characteristics. 

Furthermore, in order to improve performance, it will be imperative to investigate novel deep 

learning methods such as the vision transformer-trained DL technique and the lightweight 

DL method, for the effective detection of Human Activity Recognition from inadequately 

labeled data in the foreseeable future. The use of 3D CNN has the potential to enhance the 

performance of CNN due to its ability to exploit spatiotemporal features, hence conferring 

an advantageous edge. Labelled data gathering is often characterized by its significant 

financial and temporal demands. While deep generative models such as Autoencoders (AEs) 
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and Generative Adversarial Networks (GANs) have the capability to use unstructured data, 

their direct applicability to Human Activity Recognition (HAR) is limited. In prospective 

scenarios, there exists the potential for the use of multi-person recognition techniques. The 

potential for future study lies in the ability to make predictions about forthcoming events by 

analyzing current circumstances. Ensemble-based methodologies might be advantageous in 

scenarios when an excessive amount of data is being handled. 

Further investigation is required in order to adequately and efficiently understand the 

significance of various classifier systems. Considering the presence of overlapping activities 

is an additional issue to be taken into consideration. Individuals have the potential to engage 

in simultaneous locomotion and gesturing, as an illustrative instance. 

This research included many disciplines of augmented reality (AR) in order to contribute to 

varied methodologies, datasets, constraints, issues, and prospects within this field. 
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