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Abstract

This thesis documents our investigation of state and parameter estimation of lumped

and distributed parameter circuits using real-time stochastic filtering algorithms. We

used Kalman filter (KF) and its variants for this purpose. The complete study consists

of investigation of three related problems. The state and parameter estimation of

nonlinear circuits require accurate mathematical modeling of the circuit. Therefore,

the first problem is to drive the mathematical model of nonlinear circuits. In the case

of nonlinear system, it is difficult to obtain a closed form input-output equation. In

this case, we try to obtain an approximate nonlinear input-output relation. For this

purpose, we used Volterra and perturbation theory. Besides these, we also used

the bipolar junction transistor (BJT) models and transmission line models to obtain

mathematical expressions that include nonlinearity. The second problem is to choose

an appropriate estimation algorithm that involves less mathematical computation. For

example, Particle filter (PF) can also be used and it may give better results than

KF, but it requires additional computations for this purpose. The H-infinity based

filtering has faster convergence than KF, but the computation complexity is higher

than KF. In this work, the computational complexity of extended Kalman filter (EKF),

iterated extended Kalman filter (IEKF) and unscented Kalman filter (UKF) has been

compared for a typical circuit. The third problem is to choose some mathematical

tools to reduce the mathematical complexity. We used Kronecker product for sparse

matrix representation and compact representation.

In the following, we present a chapter-wise summary of the thesis.

Chapter 1 begins with a literature survey. Section 1.2 and 1.3 present the literature

gap and objectives. The contextual review of state estimation is mentioned in section

1.4. Theory of KF, EKF, IEKF and UKF are presented in sections 1.4.1, 1.4.2, 1.4.3,

and 1.4.4 respectively. Further, a brief theory of perturbation method, stochastic

differential equations (SDE), Volterra series, least mean square (LMS) algorithm and
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recursive least squares (RLS) algorithm are presented in sections 1.5, 1.6, 1.7, 1.8

and 1.9 respectively. Section 1.10 presents the organization of the thesis.

Chapter 2 deals with the implementation of perturbation theory along with Ebers-

Moll model of BJT to derive the linear and nonlinear closed form Volterra expression

between input and output of silicon controlled rectifier (SCR) circuit. It also presents

the computation of the distortion occurring due to linear part only.

Chapter 3 includes state estimation of the higher order RC low pass filter (LPF)

and RC high pass filter (HPF) circuit using EKF and UKF methods and compared the

estimation performance with LMS algorithm.

Chapter 4 deals with the state estimation of single-phase rectifier circuit using

EKF, IEKF and UKF methods and compared the estimation performance with LMS

algorithm.

Chapter 5 presents the state estimation of BJT based common emitter (CE) and

Darlington amplifier (DA) circuits using EKF, IEKF and UKF methods. In the first

part, we estimated the output voltage of CE BJT circuit using IEKF and compared the

performance of IEKF with EKF method. In the second part, we present the application

of UKF for output voltage estimation of DA circuit. This work uses Kronecker product

for vector multiplication. We compared the UKF estimation results with EKF and IEKF

methods.

In Chapter 6, we present the modeling and real-time state and parameter estimation

of nonuniform transmission lines (NTL) of single-phase and three-phase transposed

and untransposed circuits. For modeling purpose, we used transmission line model,

Fourier series expansion and Kronecker product. In first problem, state-space model

of the single-phase NTL circuit has been derived. As Telegrapher’s equations used

for modeling the NTL are a function of space and time, the Fourier series expansion

of the voltage and current have been used to obtain the time-dependent equations.

The measurements have been obtained by solving the eigenvector problem. The

frequency-domain analysis is used to obtain the state-space equations. For this, the

four distributed parameters of the line are expanded in Fourier series. We compared

the estimation performance of KF, EKF and UKF with RLS method. Secondly, we

present KF based state estimation and EKF and UKF based parameter estimation

for three-phase NTL. For this, state space model for three-phase transposed and

untransposed NTL has been obtained. Clarke transformation matrix has been utilized

for phase to sequence transformation which allows to represent the three-phase trans-
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mission line (TL) into fully transposed TL. Measurement model for current and voltage

vectors along the line are expressed in terms of Fourier series. Also, the frequency

domain analysis is used to obtain the eigenvalue and eigenvector for measurement

model. The voltage and current of NTL are expanded in Fourier series to obtain the

sparse matrix formulation using Kronecker product. Kronecker product representation

of discrete unitary trans-forms results in computer efficient implementation. This work

implements the analysis of nonlinearity effect in transmission lines using perturbation

theory. For this, the nonlinearity of the transmission line is included by perturbing the

voltage and current of the line. Also, we compared the estimation performances with

RLS method.

Finally, some concluding remarks are presented in Chapter 7 and some future work

direction is also presented.
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Chapter 1

Introduction

Real-time estimation is important for control and regularity of the system. Fast dynamic

state and parameter estimators are important for proper lumped and distributed para-

meter circuit monitoring. State estimation methods estimate and predict the desired

state variables of a dynamic system using noisy measurements. State estimation is

helpful for suppression of physical process where states cannot be measured directly

or the disturbance have a significant role. This thesis documents our investigation

of state and parameter estimation of lumped and distributed parameter circuits using

real-time stochastic filtering algorithms. We used KF method and its variants for this

purpose. The complete study consists of investigation of three related problems. The

state and parameter estimation of nonlinear circuits require accurate mathematical

modeling of the circuit. Therefore, the first problem is to drive the mathematical model

of nonlinear circuits. In the case of a nonlinear system, it is difficult to obtain a closed-

form input-output equation. In this case, we try to obtain an approximate nonlinear

input-output relation. For this purpose, we used Volterra and perturbation theory.

Besides these, we also used the BJT models and transmission line models to obtain

mathematical expressions that include nonlinearity. The second problem is to choose

an appropriate estimation algorithm that involves less mathematical computation. For

example, PF method can also be used and it may give better results than KF method

but it requires additional computations for this purpose. The H-infinity based filtering

has faster convergence than KF method, but the computation complexity is higher

1
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than KF method. In this work, the computational complexity of EKF, IEKF and UKF

methods has been compared for a typical circuit. The third problem is to choose

some mathematical tools to reduce the mathematical complexity. We used Kronecker

product for sparse matrix representation and compact representation. This chapter

discusses the basics of state estimation methods such as KF, EKF, IEKF, UKF, LMS

and RLS algorithms.

1.1 Literature survey

Literature survey is presented in various chapters. Nonlinear circuit analysis can be

done using different methods [1] - [10]. Kuntman [1] used the Ebers-Moll model of the

transistor to obtain the optimum source resistance of the amplifier circuit. To obtain

the nonlinear nodal solution, Newton Raphson method has been used. Fong and

Meyer [2] presented the Volterra model of common emitter amplifier and differential

pair transconductance using large signal model. Song et al. [3] used Volterra model

together with memory polynomial model for compensation of nonlinear distortion of a

power amplifier. Though Volterra series is the extension of linear system theory, large

number of parameters related to the Volterra series limits the practical application

of this model having modest memory. Also, Volterra series has the disadvantage

that modeling using this requires immoderate computations as the determination of

unknown coefficients increases exponentially with degree of non-linearity and the

Volterra filter length. The perturbation theory has the advantage of simple implementa-

tion as the method is applied by continuously improving the previously obtained approxi-

mate solution of a problem. It is implemented by a small deformation of a system that

is exactly solvable. Wu et al. [4] used the perturbation technique to get the amount

of asymmetry and nonuniformity during the transfer from differential to a common

mode in a differential circuit. Afifi and Dusseaux [5] implemented perturbation method

on scattering of electromagnetic wave to obtain coherent and incoherent intensities.

Mishra and Yadava [6] studied the effect of internal and external noise perturbations

in chaotic Colpitts oscillator. Liu et al. [7] presented a robust KF method in which a

random perturbation is taken into account. These random perturbations of parameters

have been considered in state and measurement matrices, which are known as state-

dependent multiplicative noises. Thuan and Huong [8] studied the effect of nonlinear

perturbations on stability and passivity of delayed switched systems, as the instability
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of system leads to poor performance of the dynamic system. Buonomo and Schiavo

[9] derived the nonlinear distortion in analog circuits using perturbation theory that

uses single and two-tone input signals. Wang et al. [10] presented perturbation

projection vector modeling of an oscillator which is based on memristor and used

it for pattern recognition. Wang et al. [11] studied the effect of nonlinear perturbation.

Lakshmanan et al. [12] presented the effect of the nonlinear perturbation on uncertain

systems.

1.2 Literature gap

(i) Estimation required for real time process:- Real-time estimation of lumped and

distributed parameter circuits are important for the reliable operation of systems as

the state and parameter change with time and environmental condition. Integration

of renewals, power electronics technology and new regulation of the market has

increased the complexity of power systems. This requires the proper monitoring and

control of power systems. There exist filters which can be used for nonlinear systems.

But, most of the noises are modeled as Gaussian noise. So, the use of KF method and

its variants is appropriate for estimations. For this purpose, modeling of these circuits

is obtained by stochastic differential equations and their estimation is performed by

real-time stochastic filtering algorithms.

(ii) Requirment of nonlinear modeling for precise estimation:- Due to linearization

of nonlinear systems around the operating point of states, performance and stability

are not assured for all operating conditions. The use of linearized equation in place

of nonlinear equation results in improper analysis of the system. So, it requires the

nonlinear mathematical modeling of systems. The use of Volterra representation and

perturbation theory is useful for this purpose.

(iii) Mathematical tools require to reduce the computation complexity:- The mathe-

matical derivations of nonlinear systems lead to mathematical complexity. Mathematical

tools such as Kronecker product and its properties are useful to reduce the complexity

of mathematical derivation. Kronecker product helps sparse representation of matrices

and compact representation of mathematical expressions.
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1.3 Objectives

In this work, the following have been used for real-time estimation for lumped and

distributed parameter circuits :-

1. Volterra series, perturbation theory, transistor models and transmission line

models to obtain the nonlinear mathematical expressions of the system.

2. KF, EKF, IEKF and UKF methods for state and parameter estimation purposes.

3. Kronecker product to reduce the mathematical complexity and compact represen-

tation of the mathematical expressions.

1.4 A Brief Contextual Review of State Estimation

The KF, PF and H-infinity filter are some of the state estimation methods in which

KF is the most popular method. KF versions have been applied in various areas

such as control system, robotics, etc. [13] - [23]. But, the limitation of KF method is

that it can be used for linear systems only. The KF method evaluates the minimum

mean square error (MSE) estimate of the random vector that represents the system

states. The KF dynamics are derived in the frame work of Gaussian probability density

function (pdf). These dynamics result from iterative use of prediction and filtering.

The KF method can be implemented for systems having linear state dynamics and

observation dynamics. But, nonlinearity in system model or observation model results

in non Gaussian pdfs. The variations of KF method that can be used for nonlinear

systems are: - EKF, IEKF, UKF, PF and H-infinity filter [24]. These filters use different

approaches to handle the nonlinearity. The EKF method uses the linearization of both

the transition and measurement functions of the nonlinear system, which involves

computation of Jacobian matrices. But, EKF method has two important shortcomings.

The shortcomings are :-1) difficulty in determining the Jacobian, 2) These linearization

results in filter instability, when sufficient small time step intervals are not used. Also,

EKF method has limitation in prorogating the constraints through the state and co-

variance calculation. EKF and IEKF are analytical methods as the approximation is

based on Taylor’s series expansion. IEKF algorithm resembles the conventional EKF

algorithm. The linearization of the prediction function is same for both the filters but

the only difference is in how the updated estimate is computed. To remove these
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shortcomings of EKF and IEKF methods, Julier et al. [25] and Simon [26] proposed

UKF method which is based on the fact that it is easier to approximate a probability

density function than a nonlinear function. It utilizes the statistical properties of Gaussian

variables having nonlinear transformation. The mean and variance are computed

using the unscented transformation (UT), which avoids the computation of Jacobians.

UKF method is an advanced version of KF method. It uses more accurate approxi-

mations to compute multi-dimensional integral as compared to EKF method. A set of

sample points knowns as sigma points are used for state distribution in UKF method.

These sigma points capture the posterior mean and variance of the state distribution.

Using a selected set of points, the UKF method accurately map the probability distribu-

tion of the measurement model. UKF method [27]- [28] is based on statistical approach,

which overcomes the limitations of EKF method. UKF method is used in many applica-

tions. In [29], Ahmeid et al. introduced a new method based on KF method for

real-time estimation to converter. The KF performance is improved using adaptive

tuning methods. Hoffmann et al. [30] used EKF method for grid impendence and

voltage estimation of power converter of electric network. The noise presented at the

connection point has been taken into account. This work also considered the use of

EKF method in distorted voltage waveform environment. In [31], Nadarajan et al. used

EKF method for state and parameter estimation of stator winding fault in brushless

synchronous generator. The model-based method is used and simplified the model

for online implementation. In [32], Yazdanian et al. used EKF method for parameter

estimation of ringdown signal. The method can be implemented for both constant and

time-varying parameters. In [33], Bogdanski et al. presented identification of vehicle

handling dynamics and presented review of UKF, EKF, and PF methods showed that

all three filters are suitable in real time for online estimation. For this, the paper used

simple and efficient model to obtain the independent parameters. Tian et al. [34]

proposed UKF based estimation for battery system which uses modified equivalent

circuit model. The method presents low computational cost and improved estimation

simultaneously. In [35], Ghahremani et al. implemented UKF method in synchronous

machine. Simple and effective propagation of probability density function in UKF

improved the estimation purpose.



6

1.4.1 Kalman Filter

KF is the least mean square error estimator for linear and Gaussian dynamic systems

where the state transition and observation models include additive Gaussian noise.

By propagating the mean and covariance at each time step, the KF method computes

the unknown state [26], [36]. The two steps of the KF method are :- (i) prediction step,

and (ii) updation step.

A discrete-time linear system is represented by the following equations :-

xn+1 = F nxn +Bnun +Gnwn (1.1)

zn = Hnxn +vn (1.2)

where xn ∈Rk and zn ∈Rm are state model and measurement model at time n respecti-

vely. F n ∈ Rk×k, Bn ∈ Rk×l and Hn ∈ Rm×m are the system transition matrix, input

matrix and output matrix respectively. un is a known input vector. wn ∈ Rl and vn ∈

Rm are the system and measurement uncorrelated Gaussian noise with the following

assumptions :- wn = 0, vn = 0, wnwT
n = Cwn , vnvT

n = Cvn, wnvT
j = 0 ∀ n& j. KF steps

are :-

1. Initialization: Initialize x̂0 = x0, Σ0 = Π0, Cw0 and Cv0.

2. State prediction:

(a) Computation of predicted state as :-

x̂n+1|n = F nx̂n|n +Bnun (1.3)

(b) Computation of covariance matrix of prediction error as :-

Σn+1|n = F nΣn|nF T
n +Cwn (1.4)

3. Measurement update:

(a) Computation of Kalman gain as :-

K n+1 = Σn+1|nHT
n (S)

−1 (1.5)

where S = HnΣn+1|nHT
n +Cvn
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(b) Updation of estimated state as :-

x̂n+1|n+1 = x̂n+1|n +K n+1(zn−Hn(x̂n+1|n)) (1.6)

(c) Computation of covariance error matrix as :-

Σn+1|n+1 = (I−K n+1Hn)Σn+1|n (1.7)

where n+1|n and n+1|n+1 are a prior and a post estimate.

1.4.2 Extended Kalman Filter

EKF is the modified version of KF method. EKF is broadly used for estimation

purpose in various applications [24], [37], [38]. It uses linearized model of the nonlinear

system to implement Kalman filtering. The linearization process uses the partial

derivative or Jacobian matrices of nonlinear function of the model. Using a priori and

posteriori error covariance, the estimation process is defined in terms of the linearized

observation model. The algorithm starts with initialization of mean value of the state

vector and covariance matrix.

A discrete-time nonlinear system is represented as :-

xn+1 = f n(xn,un)+Gnwn (1.8)

zn = hn(xn)+vn (1.9)

where f n(.) ∈ Rk and hn(.) ∈ Rm denote the time variant nonlinear functions. EKF

algorithm is a nonlinear version of KF algorithm and has been designed for nonlinear

state estimation. It includes updation in time and measurement at time n after initialization.

EKF linearizes the nonlinear function f n(.) and hn(.) using Taylor series. (1.8) and (1.9)

has been approximated using Taylor series expansion as :-

xn+1 ∼= f n(x̂n|n)+F nδn +Higher order terms (1.10)

zn ∼= hn(f n(x̂n|n))+Hnδn +Higher order terms (1.11)

where δn = xn− x̂n. δn denotes the priori estimated error. Pn denotes the covariance

error at time n. EKF steps are :-
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1. Initialization: Initialize x̂0 = x0, Σ0 = Π0, Cw0 and Cv0.

2. State prediction:

(a) Computation of Jacobian matrix as :-

F n =
∂ f n(xn,un)

∂x
|x=x̂n|n

(1.12)

(b) Computation of state as :-

x̂n+1|n = f n(x̂n|n) (1.13)

(c) Computation of predicted covariance of error as :-

Σn+1|n = F nΣn|nF T
n +Cwn (1.14)

3. Measurement update:

(a) Computation of Jacobian matrix as :-

Hn =
∂hn(xn,un)

∂x
|x=x̂n|n

(1.15)

(b) Computation of Kalman gain as :-

K n+1 = Σn+1|nHT
n (S)

−1 (1.16)

where S = HnΣn+1|nHT
n +Cvn

(c) Updation of estimated state as :-

x̂n+1|n+1 = x̂n+1|n +K n+1(zn−hn(x̂n+1|n)) (1.17)

(d) Computation of covariance error matrix as :-

Σn+1|n+1 = (I−K n+1Hn)Σn+1|n (1.18)
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1.4.3 Iterated Extended Kalman Filter

IEKF algorithm is the improved version of EKF method. The IEKF technique [24]

does the same linearization as the EKF method for f n, x̂n+1|n and Pn+1|n. The only

difference is that in IEKF, linearization of gn is based on the updated state estimation

of x̂n+1|n+1 rather than the predicted state estimate x̂n+1|n. In IEKF, vn is formulated as

:-

vn = gn(zn,xn) (1.19)

where gn is nonlinear function. In addition to additive white noise, measurement model

becomes

zn = hn(xn)+ζnvn (1.20)

Therefore

vn = (ζn)
−1(zn−hk(xn)) (1.21)

where ζn denotes the invertible matrix. IEKF algorithm steps have been mentioned as

:-

1. Initialization:

(a) Set threshold value ε, Σ0 = Π0, Cwn and Cvn.

(b) Set i = 0 and initialize x̂0,n|n=x̂0.

2. Prediction:

(a) Calculate x̂0
n+1|n and P̂i

n+1|n as depicts in (1.13)-(1.14) and increment i = i+1.

3. Update step:

(a) Linearization of error model as :-

H i
n =

∂gn

(
zn, x̂i

n|n

)
∂x

(1.22)

(b) Computation of Kalman gain :-

Ki
n+1 = Σn+1|nH i

n
T
(H i

nΣn+1|n H i
n

T
+Cvn)

−1
(1.23)
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(c) Updation of state as :-

x̂i
n+1|n+1 = x̂i

n+1|n +Ki
n+1(gn

(
zn, x̂i−1

n+1|n

)
+hi,k

(
x̂i

n+1|n− x̂i−1
n+1|n+1

)
) (1.24)

Repeat until

(
x̂i

n+1|n− x̂i−1
n+1|n+1

)
||< ε (1.25)

. Set i0 = i and computation of updated estimate as :-

x̂i
n+1|n = x̂i0

n+1|n+1 (1.26)

Computation of covariance of updated estimate as :-

Σn+1|n+1 = (I−Ki0
n H i0

n+1)Σn+1|n. (1.27)

1.4.4 Unscented Kalman Filter

UKF algorithm uses UT [39] to formulate the nonlinear transformation of a random

variable x by assuming its mean value x and covariance Σ0. UT consist of sigma point

denoted by Ωi. UT steps are as follows :-

1. Calculation of sigma points for i = 2L+1 as :-

Ω0 = x̂n

Ωi = x̂n +(η
√

Σn)i, i = 1, ...,L

Ωi = x̂n− (η
√

Σk)i, i = L+1, ...,2L (1.28)

where η =
√

L+λ . L and λ are the number of state and scaling constant

respectively.
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2. The weights associated to ith column of matrix x are :-

ϒ
(m)
0 =

λ

η
,

ϒ
(c)
0 =

λ

η
+(1−α

2 +β ),

ϒ
(m)
i = ϒ

(c)
i =

λ

2η
, i = 1, ...,2L (1.29)

Here, α and β indicate tuning parameter and positive weighing parameter

respectively.

3. Updation of time propagation using transformed sigma points as :-

Zi = ϕ(Ωi,un), i = 1, ...,2L (1.30)

4. Calculation of priori state and covariance error as :-

z̄ =
2L

∑
i=0

ϒ
(m)
i Zi (1.31)

Σz =
2L

∑
i=0

ϒ
(c)
i (Zi− z̄)(Zi− z̄)T (1.32)

5. The cross-covariance of x and z is estimated as :-

Σxz =
2L

∑
i=0

ϒ
(c)
i (Ωi− z̄)(Zi− z̄)T (1.33)

The steps for UKF algorithm are :-

1. Initialize x̂0 = x0, Σ0 = Π0.

2. Sigma point calculation: Computation of sigma point Ωi according to (1.28).

3. Time updation: (i) For i = 1, . . . ,2L, computation of Zi,n+1|n according to (1.30).

(ii) Calculation of predicted mean z̄n+1|n using (1.31).

(iii) Calculation of predicted covariance Σẑ = Σz + Cwn using (1.32).

(iv) For i = 1,2, ..., computation of propagating sigma points as :-

Zi,n+1|n = h(Zi,n+1|n ,un) (1.34)
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(v) Calculation of estimated output as :-

ẑn+1|n =
2L

∑
i=0

ϒ
(m)
i Zi,n+1|n (1.35)

(vi) The cross-covariance of x and z is computed as :-

Σzz =
2L

∑
i=0

ϒ
(c)
i (Zi− ẑn)(Zi− ẑn)

T (1.36)

4. Measurement updation :- (i) Computation of Kalman gain as :-

Kn+1 = (Σẑ + Cvk)Σ
−1
xz (1.37)

(ii) Updation of state as :-

x̂n+1|k+1 = x̂n+1|n +Kn+1(zn− ẑn+1|n) (1.38)

(iii) Calculation of covariance of updated estimate as :-

Σn+1|n+1 = Σn+1|n−Kn+1ΣznKT
n (1.39)

1.5 Perturbation Thoery

Perturbation theory is used to model a small deformation of a system that is exactly

solvable. It is implemented on a system that can not be solved exactly. It uses the

mathematical method of approximation to obtain the solution to a deformed system. It

is the method that continuously improves the previously obtained approximate solution

to a problem. In this way, the method allows to implement the computational efficiency

of idealized systems to more realistic problems. Also, it presents analytic insight into

complex problems. This method includes a small term ’ε ’ to solve the equation as :-

A = A0 + εA1 + ε
2A2 + ... (1.40)

where A0 is the known solution to the exactly solvable problem and A1, A2,... are

nonlinear terms. The use of only linear model for nonlinear system presents error

between the actual response and linear approximation, so nonlinear model is important.
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Nonlinear closed form input-output relation is also important for design and simulation

of complex circuits as transfer of physical description into mathematical form is required

for simulation.

Perturbation theory is widely used for different applications. Buonomo and Schiavo

[40] used perturbation method for periodic response of forced nonlinear circuit and

also considered the harmonic distortion. Majumdar et al. [41] implemented perturbation

technique to Ebers-Moll modeled transistor amplifier circuit. This method has been

used to derive the closed-form Volterra series. Rathee et al. [42] proposed perturbation-

based Fourier series model for representation of nonlinear distortion in circuits. This

method has the advantage of simple implementation. Rathee and Parthasarathy [43]

used perturbation method to decompose the driving force and circuit state into linear

and nonlinear components. Further, the nonlinear circuit is represented by a nonlinear

differential equation, in which the fluctuations are modeled using Îto stochastic differential

equations. The results obtained in this way are compared with perturbation-based

deterministic differential equations. This comparison presents the noise component.

Dang et al. [44] used perturbation method for space variance of range envelope in

synthetic aperture radar. In [45], perturbation method is implemented on 64-PSK.

1.6 Stochastic Differential Equations

In general, a continuous nonlinear SDE [36] is represented by :-

d
dt

xt = f (xt ,wt , t); t ≥ t0 (1.41)

where f (.) is a nonlinear function of time t. wt is the random input function. Consider

the initial condition xt0. The integral of (1.41) is well defined when f and wt are

restricted. (1.41) can be written as :-

xt−xt0 =
∫

t0
f (xt ,wt , t)dt (1.42)

The SDE with an additive white Gaussian function is expressed as :-

d
dt

xt = f (xt , t)+G(xt , t)wt ; t ≥ t0 (1.43)

dxt = f (xt , t)dt +G(xt , t)wtdt (1.44)
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where G(.) is matrix function and independent of wt . Integrating (1.44), we obtain

xt−xt0 =
∫

t0
f (xt , t)dt +

∫
t0

G(xt , t)dB(t) (1.45)

where wt =
dB(t)

dt . B(t) is the Brownian motion process. The first integral in (1.45) is

defined as the mean square Riemann integral. The second integral can be defined

only in the mean square sense by Itô because it has random component and is

known as Itô SDE. Let i(t) and v(t) denote line current and voltage Fourier series

coefficient vector respectively with size (2N+1)×1 where the Fourier series truncation

is from −N to +N. Let θ denotes the distributed parameter vector of Fourier series

coefficients. It is assumed that by taking the real and imaginary parts, in the voltage,

current and parameters Fourier series coefficients, the SDE becomes real. Then,[
v(t)T , i(t)T ,θ(t)T

]T
= η(t) becomes state vector and state equation has been formed

as :-

dx(t) = f (θ(t))η(t)dt +G(θ(t))B(t) (1.46)

where B(t) is a Brownian motion vector derived from the line loading. The measure-

ment model involves measuring only a small subset of the voltage and current Fourier

series coefficients. Thus the measurement model is of the form

dz(t) = Hη(t)dt +dv(t) (1.47)

where H is a sparse matrix of ones and zeroes. It should be kept in mind that

measurement of a given Fourier component may not be possible. But, it is possible

to measure the current and voltage vector at a finite set of spatial points along the

line and express these spatio temporal measurements in terms of the spatial Fourier

series coefficients. For example, v(t,z) can be measured as :-

v(t,z) = ∑
n∈z

vn(t)e j2πnz/d (1.48)

and likewise for i(t,z). The measured process [v(t,z1), ...,v(t,zn), i(t,z1), ..., i(t,zn)]
T

can then be expressed as a matrix of size 2n× (2(2N + 1)) multiplied by the Fourier

coefficient vector [vn(t); in(t) :−N ≤ n≤ N]R. Thus H gets modified.
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1.7 Volterra Series

Volterra series gives the input-output relation of a nonlinear, causal, time-invariant

system with fading memory. Volterra series is an extension of linear convolution and

nonlinear power series. The Volterra discrete time domain series is expressed as :-

y(n) =
P

∑
p=1

M

∑
i1=1

...
M

∑
ip=1

hp(i1, ..., ip)
p

∏
j=1

x(n− i j) (1.49)

where input x(n) and output y(n) are considered for system. hp(.) is the pth order

Volterra kernels.

1.8 Least Mean Square Algorithm

The LMS algorithm’s objective is to minimize the MSE to achieve the desired signal

at the receiving end. It is based on the gradient-based method of steepest descent.

LMS algorithm is used in various applications [46]- [50]. LMS has the advantage of

being easy to compute and not requiring matrix inversion. LMS method is based on a

linear regression approach to estimate the unknown parameters.

Let x(n) denotes signal at receiver end and output signal y(n) depends on x(n) as :-

y(n) =W H ∗ x(n) (1.50)

W is the weighted coefficient W = [W1...Wp] and x= [x1(n)...xp(n)]. where p denotes the

number of input element and H denotes the hermitian transpose. The error between

a desired signal d(n) and received signal y(n) is :-

e(n) = d(n)− y(n) (1.51)

The LMS algorithm is used to minimize the error. Weight is updated using steepest

decent as :-

W (n+1) =W (n)+
1
2

µ[−∇J(n)] (1.52)
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where µ is step size (0≤ µ ≤ 1). The gradient vector ∇J(k) is expressed as :-

∇J(n) =−2r(n)+2R(n)W (n) (1.53)

where r(n) and R(n) denote cross-correlation and covariance between d(n) and x(n)

which is expressed as :-

r(n) = d∗(n)∗ x(n) (1.54)

R(n) = x(n)∗ xH(n) (1.55)

Substituting (1.54)-(1.55) into (1.53), we get

W (n+1) =W (n)+µx(n)e∗(n) (1.56)

1.9 Recursive Least Squares Algorithm

The RLS is adaptive filtering. It obtains the filter coefficients in recursive manner. It

uses the minimization of weighted least square cost function criteria to obtain the filter

weights by considering the input signal as the deterministic signal. It has widespread

applications in engineering including signal processing and communication. Various

form of this algorithm is also used in literature for parameter estimation and system

identification purpose. The two classes of least squares method are :-

(i) Iterative method for offline identification.

(ii) Recursive methods for online identification.

The least squares have applications in control and function fitting, estimation and

system identification. The RLS filter is used in different applications [51] - [54].

RLS computes the state recursively and gives the optimal solution in the mean

squared sense [55]. In the RLS algorithm, the past errors are rounded-off and present

state computations are propagated to the future instant which results in error accumula-

tion. Consider the desired signal dk and optimum solution Wk = [W1 W2...WM−1]
T . The

desired signal is given by

dk = yT
k Wk +w(R)

k (1.57)

where yk = [yk...yk−M+1]
T is the observation vector, w(R)

k is the zero mean white

Gaussian noise. The aim of the RLS algorithm is to estimate Wk such that sum of
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weighted mean square error
k
∑
j=1

λ k− j[d j−WkyT
j ]

2 is minimized. Here λ is forgetting

factor. Consider the correlation matrix Ck = ∑
k
i=1 λ k−iy(i)yT (i) = λCk−1 + y(i)yT (i).

P(R)
k is the inverse correlation matrix given by P(R)

k = C−1
k . The steps involved in RLS

algorithm are

ζk = dk−yT
k Wk (1.58)

K(R)
k =

P(R)
k−1yk

1+yT
k P(R)

k−1yk

(1.59)

Wk = Wk−1 +K(R)
k ζk. (1.60)

λk = 1−

(
1−yT

k K(R)
k

)
ζ 2

k

χ
(1.61)

P(R)
k = λ

−1
k P(R)

k−1−λ
−1
k K(R)

k yT
k P(R)

k−1 (1.62)

where ζ denotes estimation error, K(R)
k is the RLS gain. χ is constant value. The

variable forgetting factor is used to stabilize P(R)
k as it is sensitive to any disturbance

that causes the increase in estimation error. This algorithm can be easily derived

using the so called matrix inversion lemma.

1.10 Organization of the Thesis

The organization of the problems investigated in the thesis is as follows :-

Chapter 2 deals with the implementation of perturbation theory to derive the linear

and nonlinear closed form Volterra expression between the input and output of SCR

circuit. It also presents the computation of the distortion occurring due to linear part

only.

Chapter 3 includes state estimation of the higher order RC LPF and RC HPF circuit

using EKF and UKF methods and compared the estimation performance with LMS

algorithm.

Chapter 4 deals with the state estimation of single-phase rectifier circuit using EKF,

IEKF and UKF methods and compared the estimation performance with LMS algorithm.

Chapter 5 presents the state estimation of the following circuits using EKF, IEKF and

UKF methods :-

(i) CE-based BJT circuit.

(ii) BJT-based DA circuit.
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In the first part, we estimated the output voltage of CE BJT circuit using IEKF method

and compared the performance of IEKF method with EKF method. The state space

model of CE BJT circuit has been obtained using Kirchhoff’s current law (KCL) and

Ebers-Moll model of the transistor. In second part, we present the application of UKF

method for output voltage estimation of DA circuit. Implementation of UKF algorithm

requires state-space model of DA circuit, which has been obtained using Kirchhoff’s

voltage law (KVL), KCL and Gummel-Poon model of BJT. This work uses Kronecker

product for vector multiplication. We compared the UKF estimation results with EKF

and IEKF methods. We present the brief description of few recent methods of state

estimation and compared estimation using EKF, IEKF and UKF methods.

In Chapter 6, we present the formulation of NTL dynamics modeling using Fourier

series expansion and Kronecker product along with the state and parameter estimation

using KF and EKF methods. The following circuits have been used for estimation

purposes :-

(i) Single-phase NTL circuit.

(ii) Three-phase transposed and untransposed NTL circuit.

In first problem, state-space model of the single-phase NTL circuit has been derived.

As Telegrapher’s equations used for modeling the NTL are a function of space and

time, the Fourier series expansion of the voltage and current have been used to obtain

the time-dependent equations. Kronecker product has been used for representation

of Fourier unitary transform. The measurements have been obtained by solving the

eigenvector problem. The frequency-domain analysis is used to obtain the state-

space equations. For this, the four distributed parameters of the line are expanded in

Fourier series.

Secondly, we present KF-based state estimation and EKF and UKF-based parameter

estimation for three-phase NTL. For this, state space model for three-phase transposed

and untransposed NTL has been obtained by including Fourier series expansion of

state and Gaussian noise vectors in the SDEs. Clarke transformation matrix has

been utilized for phase to sequence transformation which allow to represent the three-

phase TL into fully transposed TL. Measurement model for current and voltage vectors

along the line are expressed in terms of Fourier series. Also, the frequency domain

analysis is used to obtain the eigenvalue and eigenvector for measurement model.

The voltage and current of NTL are expanded in Fourier series to obtain the sparse
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matrix formulation using Kronecker product. Kronecker product representation of

discrete unitary transforms results in computer efficient implementation. This work

implements the analysis of nonlinearity effect in transmission lines using perturbation

theory. For this, the nonlinearity of the transmission line is included by perturbing the

voltage and current of the line. Also, we compared the estimation performances with

RLS method. This chapter also discusses a few recent methods used for state and

parameter estimation and their disadvantages.

Finally, some concluding remarks are presented in Chapter 7 and some future work

direction is also presented.



Chapter 2

Nonlinear Modeling of Analog Circuits

Using Perturbation Theory

This chapter 1 presents the modeling of SCR circuit using perturbation theory (Chapter

1.5). Generally, nonlinear circuit components are approximated by linear model for

different applications. But, use of linear model causes signal distortion, which affects

the performance of the nonlinear circuit component. This requires nonlinear closed-

form expression of circuit components. For the simulation of on-chip circuits, an

accurate model of the SCR is necessary. Although models are available based on the

experimentally reported behaviour of the SCR, nonlinear closed-form relationships

between the SCR’s input and output are unavailable. Further, these models were

developed using the existing device models, which affects the overall SCR model.

However, the model developed in this work makes it possible to use a single block

as an SCR model in software like SIMULINK, which offers flexibility and access to

all the SCR circuit parameters [56]. The derived equation can be applied to the

SCR model for computer-aided design. Typically, the SCR model is effective for

designing systems that prevent electrostatic discharge (ESD) [57]. Tap changing

transformers based on thyristor are used in various applications ranging from very

high power aluminum potline to small hydrogen electrolyzer for gas station. [58] used
1The result of this chapter is based on the following research paper (i) Amit Kumar Gautam and Sudipta

Majumdar, “Volterra model of silicon controlled rectifier,” in International Conference on Functional Materials,
Characterization, Solid State Physics, Power, Thermal and Combustion Energy, AIP Conference Proceedings
1859, 020060, pp.1-8, 2017.

20
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SCR for ICS’s ESD protection that is operated in K/Ka band (26.540 GHz) and used in

short range communication. [59] applied SCR for ESD issue of differential low noise

amplifier that is used in RF receiver. [58] proposed inductor assisted light activated

silicon controlled rectifier (LASCR) for ESD protection of the Gigahertz ICs in nanoscale

CMOS technologies. In the design of integrated circuits, simulation is essential. It

reduces the amount of time needed for circuit design. Before manufacturing the

chips, it also provides circuit verification, testing, and early modifications. However,

mathematical expressions of the circuit are necessary for accurate simulation. Addi-

tionally, the device’s nonlinearity property is an important feature, therefore we used

the Ebers-Moll model and perturbation theory to obtain closed form nonlinear express-

ions of SCR input and output.

SCR are commonly used as front-end devices in recent adjustable-speed drive

system [60]. [61] used SCR as a reliable switch in high rating power electronics. [62]

used SCR as a bridge-type fault current limiter. The p-channel laterally diffused

metal–oxide-semiconductor (PLDMOS) works as a high voltage power SCR [63]. In

IC applications, electrostatic discharge (ESD) is a major reliability problem. SCR

provides significant ESD (anti-electrostatic device) robustness per length [ [64], [65],

[66]]. The stacked high holding voltage silicon controlled rectifier (HHVSCR) is

proposed by [67] for ESD protection. The laterally diffused metal-oxide-semiconductor

(LDMOS) transistor, which is used in RF and microwave communication power amplifier

modules, has also been used in high voltage integrated circuits (IC) [65]. Further,

Various systems including power management IC, dc-dc converters, LED and liquid

crystal display, drivers power electronic modules and automotive microcontrollers

(MCUs) use LDMOS transistors. SCR stacking architectures with high holding voltage

are useful for a battery monitoring 60 V pins IC. In continuous torus, the circuit is

triggered by SCR [68]. Altolaguirre [69] introduced the quad-silicon controlled rectifier

which is a revolutionary electrostatic discharge prevention device. According to [70],

SCR is also used in line commuted converters (LCC) for controlling the speed of DC

motors.

Volterra modeling (Chapter 1.7) of SCR using Ebers-Moll model with perturbation

method has been presented in section 2.1.1. To observe the effect of nonlinear

expression, simulation results have been presented in section 2.1.2. Also, the distortion

error has been computed by varying input amplitude and frequency is shown is Table

2.1.
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2.1 Volterra Model of Silicon Controlled Rectifier

2.1.1 Mathematical Modeling

The SCR circuit shown in Figure 2.1 contains input resistance Rg and output resistance

RE1. Q1 and Q2 represent the transistors with current amplification factors β1 and β2

respectively. The gate voltage Vg is applied to Q2 as the trigger voltage. v denotes

the sinusoidal input voltage. Following equations represent the circuit dynamics using

Figure 2.1: Circuit diagram of SCR.

KCL and KVL as :-

− v+ i1e×RE1 + v1eb + v2ce = 0 (2.1)

−Vg +(i2b− i1c)×Rg + v2be = 0 (2.2)(
1+

1
β1

)
× i1c− i1e = 0 (2.3)

The three state variables namely v1e, v1b, v1c are obtained by equating the values of

v2b = v1c, v2e = 0, v2c = v1b. Emitter, collector and base current are denoted as ie, ic
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and ib respectively. (2.4)-(2.5) represent the Ebers-Moll model [41] of BJT circuit.

ic = αF IES

[
exp

vbe

VT
−1
]
− ICS

[
exp

vbc

VT
−1
]

(2.4)

ie =−IES

[
exp

vbe

VT
−1
]
+αRICS

[
exp

vbc

VT
−1
]

(2.5)

where αF and αR are forward current gain and reverse current gain. IES and ICS

denote leakage current at emitter terminal and leakage current at collector terminal.

VT denotes thermal voltage. (2.4) and (2.5) for both transistors are now separated into

linear and nonlinear parts as :-

i1c =a11v(0)1b +a12v(0)1c +a13v(0)1e + εψ1(vb,vc,ve)

=a11v(0)1b +a12v(0)1c +a13v(0)1e + ε(b11v2(0)
1b +b12v2(0)

1c +b13v2(0)
1e +b14v2(0)

1b v2(0)
1e +b15v2(0)

1b v2(0)
1c )

(2.6)

i2c =a21v(0)2b +a22v(0)2c +a23v(0)2e + εψ2(vb,vc,ve)

=a21v(0)2b +a22v(0)2c +a23v(0)2e + ε(b21v2(0)
2b +b22v2(0)

2c +b23v2(0)
2e +b24v2(0)

2b v2(0)
2e +b25v2(0)

2b v2(0)
2c )

(2.7)

i1e =c11v(0)1b + c12v(0)1c + c13v(0)1e + εφ1(vb,vc,ve)

=c11v(0)1b + c12v(0)1c + c13v(0)1e + ε(d11v2(0)
1b +d12v2(0)

1c +d13v2(0)
1e +d14v2(0)

1b v2(0)
1e +d15v2(0)

1b v2(0)
1c )

(2.8)

i2e =c21v(0)2b + c22v(0)2c + c23v(0)2e + εφ2(vb,vc,ve)

=c21v(0)2b + c22v(0)2c + c23v(0)2e + ε(d21v2(0)
2b +d22v2(0)

2c +d23v2(0)
2e +d24v2(0)

2b v2(0)
2e +d25v2(0)

2b v2(0)
2c )

(2.9)

where the parameters ψ1, ψ2 , φ1 and φ2 are nonlinear function. ε uses a small value

that accounts for the circuit’s nonlinearity. Comparing the equations (2.4), (2.6), (2.7)

and (2.5), (2.8), (2.9), the values of ai j and bi j are :-

a11 =
αF1 IES1−ICS1

VT
, a12 =

ICS1
VT

, a13 =−
αF1 IES1

VT
, b11 =

αF1 IES1−ICS1

2V 2
T

b12 =−
ICS1
2V 2

T
, b13 =

αF1 IES1
2V 2

T
, b14 =−

αF1 IES1
V 2

T
, b15 =

ICS1
V 2

T
,

a21 =
αF2 IES2−ICS2

VT
, a22 =

ICS2
VT

, a23 =−
αF2 IES2

VT
, b21 =

αF2 IES2−ICS2
2V 2

T
,

b22 =−
ICS2
2V 2

T
, b23 =

αF2 IES2
2V 2

T
, b24 =−

αR2 IES2
V 2

T
, b25 =

IES2
V 2

T
,

c11 =
αR1 ICS1−IES1

VT
, c12 =−

αR1 ICS1
VT

, c13 =
IES1
VT

, d11 =
αR1 ICS1−IES1

2V 2
T

,

d12 =
αR1 ICS1

2V 2
T

, d13 =−
IES1
2V 2

T
, d14 =

IES1
V 2

T
, d15 =−

αR1 ICS1
V 2

T

c21 =
αR2 ICS2−IES2

VT
, c22 =−

αR2 ICS2
VT

, c23 =
IES2
VT

, d21 =
αR2 ICS2−IES2

2V 2
T

,
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d22 =
αR2 ICS2

2V 2
T

, d23 =−
IES2
2V 2

T
, d24 =

IES2
V 2

T
, d25 =−

αR2 ICS2
V 2

T

where ε is assumed to be unity.

vb = v(0)b + εv(1)b (2.10)

ve = v(0)e + εv(1)e (2.11)

vc = v(0)c + εv(1)c (2.12)

Substituting values of vb, ve and vc from (2.10)-(2.12) and ic, ie from (2.6)-(2.9) into

(2.1)-(2.3), we get

v = RE1c11(v
(0)
1b + εv(1)1b )+RE1c12(v

(0)
1c + εv(1)1c )+RE1c13(v

(0)
1e + εv(1)1e )+RE1ε(d11v2(0)

1b

+d12v2(0)
1c +d13v2(0)

1e +d14v(0)1b v(0)1e +d15v(0)1b v(0)1c +(v(0)1e + εv(1)1e ) (2.13)

Vg =

(
Rga21

β2

)
(v(0)2b + εv(1)2b )+

(
Rga22

β2

)
(v(0)2c + εv(1)2c )+

(
Rg

β2

)
ε(b21v2(0)

2b +b22v2(0)
2c

+b23v2(0)
2e +b24v(0)2b v(0)2e +b25v(0)2b v(0)2c −Rga11(v

(0)
1b + εv(1)1b )−Rga12(v

(0)
1c + εv(1)1c )

−Rga13(v
(0)
1e + εv(1)1e )−Rgε(b11v2(0)

1b +b12v2(0)
1c +b13v2(0)

1e +b14v(0)1b v(0)1e +b15v(0)1b v(0)1c ) (2.14)(
1+

1
β1

)
[a11(v

(0)
1b + εv(1)1b )+a12(v

(0)
1c + εv(1)1c )+a13(v

(0)
1e + εv(1)1e )

+ ε(b11v2(0)
1b +b12v2(0)

1c +b13v2(0)
1e +b14v(0)1b v(0)1e +b15v(0)1b v(0)1c )]

− c11(v
(0)
1b + εv(1)1b )− c12(v

(0)
1c + εv(1)1c )− c13(v

(0)
1e + εv(1)1e )

− ε(d11v2(0)
1b +d12v2(0)

1c +d13v2(0)
1e +d14v(0)1b v(0)1e +d15v(0)1b v(0)1c ) = 0 (2.15)

The linear and nonlinear components of voltages are obtained by comparing the

coefficient of ε in (2.13) - (2.15) . The linear components are expressed as :-

v = RE1c11v(0)1b +RE1c12v(0)1c +(1+RE1c13)v
(0)
1e (2.16)

Vg = Rg

(
a22

β2
−a11

)
v(0)1b +

(
1−Rga12 +

Rga21

β2

)
v(0)1c −Rga13v(0)1e (2.17){

(1+
1
β1

)a11− c11

}
v(0)1b +

{
(1+

1
β1

)a12− c12

}
v(0)1c +

{
(1+

1
β1

)a13− c13

}
v(0)1e = 0

(2.18)

Equation (2.19) represents state vector as :-

X0(s) = [v1b,v1c,v1e,v2b,v2c,v2e]
T (2.19)
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The Laplace transform (LT) equation obtain the following solution as :-

X0(s) = F−1(s)G(s)v(s)+F−1(s)H(s)VCC (2.20)

where

F =


c11RE1 c12RE1 1+ c13RE1

(−a11 +
a22
β2
)Rg

Rga21
β2

+1−Rga12 −a13Rg

−c11 +(1+ 1
β1
)a11 −c12 +(1+ 1

β1
)a12 −c13 +(1+ 1

β1
)a13

 .

Zi(s) = F−1(s)G(s) (2.21)

v(0)1b (t) = v∗ z1(t)+φ1(t) (2.22)

v(0)1c (t) = v∗ z2(t)+φ2(t) (2.23)

v(0)1e (t) = v∗ z3(t)+φ3(t) (2.24)

where convolution operator is represented by ’∗’ notation. Representing (2.21) in terms

of LT as :-

Z1(s) =
F11
|F | , Z2(s) =

F12
|F | , Z3(s) =

F13
|F | , φ1(s) =

F21
|F |Vg, φ2(s) =

F22
|F |Vg, φ3(s) =

F23
|F |Vg.

where φ(t) represents the inverse LT of F−1(s)H(s)VCC. The small signal equivalent

model’s impulse responses are :-

v(0)1b (t) = v∗δ (t)×K1 +K2×Vg×δ (t) (2.25)

v(0)1c (t) = v∗δ (t)×K3 +K4×Vg×δ (t) (2.26)

v(0)1e (t) = v∗δ (t)×K5 +K6×Vg×δ (t) (2.27)

where δ (t) denotes unit impluse function.

K1 =
F11
|F | , K2 =

F21
|F | , K3 =

F12
|F | , K4 =

F22
|F | , K5 =

F13
|F | , K6 =

F23
|F |

Now comparing the coefficients of ε1, we obtain the expressions of nonlinear components
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as :-

u1(t) = b11v2(0)
1b +b12v2(0)

1c +b13v2(0)
1e +b14v(0)1b v(0)1e +b15v(0)1b v(0)1c (2.28)

u2(t) = b21v2(0)
2 2b+b22v2(0)

1c +b23v2(0)
1e +b24v(0)2b v(0)2e +b25v(0)2b v(0)1c (2.29)

u3(t) = d11v2(0)
1b +d12v2(0)

1c +d13v2(0)
1e +d14v(0)1b v(0)1e +d15v(0)1b v(0)1c (2.30)

u4(t) = d21v2(0)
2b +d22v2(0)

1c +d23v2(0)
1e +d24v2(0)

2b v2(0)
2e +d25v2(0)

2b v2(0)
1c (2.31)

v(1)1 (B)(s) =

[
RgF21− (1+ 1

β1
)F31

|F |

]
U1(s)−

[
RgF21

|F |β2

]
U2(s)+

[
F31−RE 1F11

|F |

]
U3(s) (2.32)

v(1)1 (C)(s) =

[
RgF22− (1+ 1

β1
)F32

|F |

]
U1(s)−

[
RgF22

|F |β2

]
U2(s)+

[
F32−RE 1F12

|F |

]
U3(s) (2.33)

v(1)1 (E)(s) =

[
RgF23− (1+ 1

β1
)F33

|F |

]
U1(s)−

[
RgF23

|F |β2

]
U2(s)+

[
F33−RE 1F13

|F |

]
U3(s) (2.34)

v(1)1b (t) = K7× (u1(t)∗δ (t))+K8× (u2(t)∗δ (t))+K9× (u3(t)∗δ (t)) (2.35)

v(1)1c (t) = K10× (u1(t)∗δ (t))+K11× (u2(t)∗δ (t))+K12× (u3(t)∗δ (t)) (2.36)

v(1)1e (t) = K13× (u1(t)∗δ (t))+K14× (u2(t)∗δ (t))+K15× (u3(t)∗δ (t)) (2.37)

where

K7 =

[
RgF21−(1+ 1

β1
)F31

|F |

]
, K8 =

[
RgF21
|F |β2

]
, K9 =

[
F31−RE 1F11
|F |

]
, K10 =

[
RgF22−(1+ 1

β1
)F32

|F |

]
,

K11 =
[

RgF22
|F |β2

]
, K12 =

[
F31−RE 1F11
|F |

]
, K13 =

[
RgF23−(1+ 1

β1
)F33

|F |

]
, K14 =

[
RgF23
|F |β2

]
,

K15 =
[

F33−RE 1F13
|F |

]
.

2.1.2 Simulation Results

From the circuit shown in Figure 2.1, the linear (zeroth order) and first order nonlinear

output voltages have been plotted in MATLAB for various input voltages and frequencies

which is shown in Figure 2.2. The percentage distortion due to linear term only has

been calculated using (2.38). Table 2.1 shows the distortion error by varying the value
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(b) First order nonlinear output.

Figure 2.2: Anode currents of SCR output.

of amplitude and frequency of input signal. Percentage distortion is expressed as :-

Percentage distortion =
Ie1− Ie

Ie1
×100% (2.38)

The result shows the significance of nonlinearity. In SIMULINK software, the resulting

equations are used as a half wave rectifier (HWR) circuit. The input output voltages

are presented in Figure 2.4.

Table 2.1: Percentage of distortion errors for various input values.

S.No. Peak amplitude (Volts) Distortion error(%)
1 0.70 0.3883%
2 0.90 0.4640%
3 1.00 0.5028%
4 1.30 0.6117%
5 1.50 0.6729%

2.1.3 Conclusions

In this chapter, the closed form nonlinear expressions of SCR has been derived. The

derived expressions have been used to plot the SCR characteristic in MATLAB. The

use of closed form expressions to model SCR in SIMULINK provides direct access to

circuit parameters, which is helpful for designing and analysis of new circuits.
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Figure 2.3: Simulation diagram of HWR circuit using SCR.

Figure 2.4: Input and output voltage across series RC component.



Chapter 3

State Estimation of Higher Order RC

Circuit

This chapter 1 presents the implementation of different versions of KF algorithm on

higher order RC LPF and HPF circuits for state estimation. For this, the state space

model of the circuit is obtained using KCL.

In the previous chapter, the closed form Volterra expression of SCR has been

derived. In this chapter, state space model of the circuit has been derived as required

by KF methods.

The Major contributions of the proposed work are :- (i) state estimation of the analog

RC circuit using different versions of KF have been computed. (ii) state-space model

of dynamic analog RC circuits has been obtained using KVL and KCL. (iii) input

voltage is modeled as the zero mean white noise. (iv) The output results of different

versions of KF algorithm have been compared with each other. Simulation results

demonstrate the effectiveness of the proposed method.

Parameter estimation is an important area in the field of science and technology.

Various estimation techniques have been used by researcher. There are two basic

parameter estimation methods: - 1) methods based on optimization approaches and

2) methods based on stability theory. Differential evolution, particle swarm optimization
1The result of this chapter is based on the following research papers (i) Amit Kumar Gautam and Sudipta

Majumdar, “Parameter estimation of RC circuits using extended Kalman filter,” International Journal of
Advanced in Management, Technology and Engineering Sciences, ISSN no. 2249-7455, vol. 8, no. 1, pp. 83-91,
2018, (ii) Amit Kumar Gautam and Sudipta Majumdar, “State estimation of RC filter using unscented Kalman
filters,” International Journal of Innovative Technology and Exploring Engineering, ISSN no. 2278-3075, vol. 9,
no. 9, pp. 91-96, 2020.
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are examples of optimization-based methods and Lyapunov stability method, synchro-

nization approach based on Lasalle’s principle are stability-based estimation methods.

The parameter estimation methods based on the deterministic minimizes error function

between model output and measurement data. Various methods have been used for

parameter estimation of systems. In [71], the effects of white noise perturbation on

the parameters of electrical network have been analyzed and least square estimation

has been used after transferring the deterministic model into stochastic models. [72]

presented the total least square estimation of signal parameter via rotation invariance

method. [73] proposed an extended stochastic gradient (ESG) filtering and multi-

innovative filtering for parameter estimation. [74] proposed a parameter estimation of

permanent magnet synchronous machine using a dynamic particle swarm optimization

method.

RC LPF has many applications. It is used as a discrete-time repetitive controller

for a fly-back inverter in continuous conduction mode. The RC LPF has been also

used for tracking and rejection of periodic signals in a typical frequency range. In [75],

RC circuit has application in micro-electromechanical systems (MEMS) sensor that

includes a ring oscillator, an RC controlled pulse generator together with a self-tuned

inverter converter. The RC HPF reduces the bandwidth of noise source. [76] proposed

RC LPF with good asymptotic behavior in the pass band. In [77], the RC LPF is

also used in a flexible continuous time delta sigma modulator. [78] presents RC filter

implementation in chopper stabilized thin film transistor low noise amplifier, which

is used for electroencephalogram (EEG) signal acquisition and biomarker extraction

system. In [79], it is used in linear periodically time-varying filter circuit which is used

in spectrum scanner.

The state space representation of higher order RC LPF and RC HPF using KCL has

been derived in section 3.1. Section 3.2 presents implementation of EKF method to

RC LPF and RC HPF circuits. Simulation results of RC circuits using EKF and UKF

methods are presented in sections 3.3 and 3.4 respectively.

3.1 State Space Model

A second-order dynamic LPF with R and C components is shown in Figure 3.1(a).

Let u1(t) be the input sinusoidal signal. Vc1(t) is capacitor voltages across C1 and Vc2(t)

is the capacitor voltages across C2. The state space model for the circuit shown in
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(a) (b)

Figure 3.1: a) RC low pass filter, b) RC high pass filter.

Figure 3.1 (a) is obtained by using KCL. The equations are as follows :-

vc1(t)
R1
− u1(t)

R1
+

vc1(t)
R2
− vc2(t)

R2
+C1

dvc1(t)
dt

= 0 (3.1)

vc2(t)
R2
− vc1(t)

R2
+C2

dvc2(t)
dt

= 0 (3.2)

Representing (3.1)-(3.2) as state space model, we havev
′
c1
(t)

v
′
c2
(t)

=

− 1
C1
( 1

R1
+ 1

R2
) 1

R2C1
1

R2C2
− 1

R2C2

vc1(t)

vc2(t)

+
 1

R1C1

0

u1(t) (3.3)

where ′ symbol represents d
dt . The output voltage of RC LPF can be written as :-

z = vc2(t) (3.4)

Representing (3.3)-(3.4) as state space model, we have

d
dt

x = Fx+Bu (3.5)

where x and u are state and input vector respectively.

F =

 − 1
C1
( 1

R1
+ 1

R2
) 1

R1C1
1

R2C2
− 1

R2C2

 ,B =
[

1
R1C1

0
]T

(3.6)

z is the measurement model given as :-

z = Hx+Cu (3.7)
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where H denotes the measurement matrix as :-

H =
[

0 1
]

and C =
[

0
]

(3.8)

Similarly, state-space model for RC HPF shown in Figure 3.1 (b) can be represented

as :-

d
dt

vc1(t)

vc2(t)

=

− 1
C1
( 1

R1
+ 1

R2
) − 1

R2C1

− 1
R2C2

− 1
R2C2

vc1(t)

vc2(t)

+
 1

C1
( 1

R1
+ 1

R2
)

1
R2C2

u2(t) (3.9)

z =
[
−1 −1

]vc1(t)

vc2(t)

+u2(t) (3.10)

The matrices F, B, H and C for RC HPF are :-

F =

− 1
C1
( 1

R1
+ 1

R2
) − 1

R2C1

− 1
R2C2

− 1
R2C2

 ,B =

 1
C1
( 1

R1
+ 1

R2
)

1
R2C2

 ,H =
[
−1 −1

]T
,C =

[
0 1

]
(3.11)

3.2 Implementation of EKF algorithm

The state model in (3.5) and (3.7) can be discretized using first-order exponential

method. The transformed equations are expressed as :-

xk+1 = Fkxk +Bkuk +Gkwk (3.12)

zk = Hkxk +Ckuk +Dkvk (3.13)

(3.12) and (3.13) are discrete representation of equations (3.5) and (3.7) respectively

obtained using t = kTs, where k = 1,2,3, .... where Ts is sampling time. The matrices

Fk, Bk, Ck and Hk are obtained by discretizing F, B, H and C respectively. They are :-

Fk = eTs = I +FTs =

1− Ts
C1
( 1

R1
+ 1

R2
) Ts

R1C1
Ts

R2C2
1− Ts

R2C2

 (3.14)

Bk = BTs =
[

Ts
R1C1

0
]T

,Hk =
[
0 1

]
,Ck =

[
0
]
. (3.15)
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Table 3.1: Comparison of SNR value for different methods.
Input signal SNR by EKF method SNR by LMS method
Sinusoidal signal in LPF 43.769 32.737
Square wave in LPF 55.994 34.314
Sinusoidal signal in HPF 58.144 26.866
Square wave in HPF 62.650 60.480

The matrices Fk, Bk, Hk and Ck for RC HPF are obtained by discretizing equations

(3.9)-(3.10). They are :-

Fk =

1− Ts
C1
( 1

R1
+ 1

R2
) − Ts

R2C1

− Ts
R2C2

1− Ts
R2C2

 ,Bk =

 Ts
C1
( 1

R1
+ 1

R2
)

Ts
R2C2

 ,Hk =
[
−1 −1

]T
,Ck =

[
0 1

]
(3.16)

3.3 Simulation Results using EKF Method

We estimated the output voltage of RC LPF and RC HPF for two different inputs. The

applied sinusoidal input contains maximum amplitude of 10 V and frequency 0.01 Hz.

The white Gaussian noise of zero mean and 0.5 variance has been used for estimation

purpose. The output response of LPF circuit using EKF method (Chapter 1.4.2)

and LMS method (Chapter 1.8) is shown in Figure 3.2(a) and 3.2(b) respectively.

Figure 3.2(c) and 3.2(d) show output voltage estimation of HPF using EKF and LMS

methods respectively for sinusoidal noisy input. Figure 3.3(a) and 3.3(b) show the LPF

estimated output voltage for noisy square wave input signal. Similarly, Figure 3.3(c)

and 3.3(d) show output voltage estimation of HPF for noisy square wave input signal

using EKF and LMS methods respectively. Table 3.1 shows the signal to noise ratio

(SNR) in each case. The SNR expression is given as :-

SNR = 10log10


n
∑

i=1
(ŷi)

2

n
∑

i=1
(ŷi− yi)

2

 (3.17)

where ŷ denotes estimated value, y denotes actual value and n is the number of

samples.
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(a) Estimated output voltage of LPF using EKF method. (b) Estimated output voltage of LPF using LMS method.

(c) Estimated output voltage of HPF using EKF method. (d) Estimated output voltage of HPF using LMS method.

Figure 3.2: Estimated output voltage of RC filter for sinusoidal wave.
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(a) Estimated output voltage of LPF using EKF method. (b) Estimated output voltage of LPF using LMS method.

(c) Estimated output voltage of HPF using EKF method. (d) Estimated output voltage of HPF using LMS method.

Figure 3.3: Estimated output voltage of RC filter for square wave.
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Table 3.2: Performance of different methods for LPF.
input signal Parameter EKF method UKF method
Noisy input signal with
µ = 0, σ2 = 0.1

SNR(dB)
RMSE

24.44
0.2842

40.55
0.0402

Noisy input signal with
µ = 0, σ2 = 0.5

SNR(dB)
RMSE

11.17
0.5803

31.56
0.0991

Noisy input signal with
µ = 0, σ2 = 1.0

SNR(dB)
RMSE

7.57
1.4794

23.66
1.2746

Table 3.3: Performance of different methods for HPF.
Input signal Parameter EKF method UKF method
Noisy input signal with
µ = 0, σ2 = 0.1

SNR(dB)
RMSE

28.57
0.1588

40.12
0.0457

Noisy input signal with
µ = 0, σ2 = 0.5

SNR(dB)
RMSE

14.46
1.0521

26.15
0.1867

Noisy input signal with
µ = 0, σ2 = 1.0

SNR(dB)
RMSE

8.96
1.810

20.99
0.2175

3.4 Simulation Results using UKF Method

We estimated the output voltage of RC LPF and RC HPF for two different inputs:-

(i) noiseless input, and (ii) noisy input. The applied sinusoidal input with maximum

amplitude of 10 V and frequency 0.04 Hz. The white Gaussian noise of zero mean

and different variances have been used as noisy input for estimation purpose. The

PSPICE simulated values have been taken as actual value. The output voltages of

LPF and HPF circuits using UKF method (Chapter 1.4.4) and EKF method under

different noisy inputs have been shown in Figure 3.4. Figure 3.5 presents the error

comparison of EKF and UKF methods for different noise values. Table 3.2 and 3.3

show the comparison of SNR and root mean square error (RMSE) for both circuits

using UKF and EKF methods. RMSE is expressed as :-

RMSE =

√√√√ n
∑

i=1
(ŷi− yi)

2

n
(3.18)

where ŷ denotes estimated value, y denotes actual value and n is the number of

samples.



37

0 20 40 60 80 100 120

Time(Second)

-80

-60

-40

-20

0

20

40

60

80

A
m

p
lit

u
d

e
 (

V
o

lt
s
)

measured value
Estimated value by UKF
Estimated value by EKF

(a)

0 20 40 60 80 100 120

Time(Second)

-8

-6

-4

-2

0

2

4

6

8

A
m

p
lit

u
d

e
 (

V
o

lt
s
)

measured value
Estimated value by UKF
Estimated value by EKF

(b)

0 20 40 60 80 100 120

Time(Second)

-8

-6

-4

-2

0

2

4

6

8

A
m

p
lit

u
d

e
 (

V
o

lt
s
)

measured value
Estimated value by UKF
Estimated value by EKF

(c)

0 20 40 60 80 100 120

Time(Second)

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
m

p
lit

u
d

e
 (

V
o

lt
s
)

measured value
Estimated value by UKF
Estimated value by EKF

(d)

0 20 40 60 80 100 120

Time(Second)

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
m

p
lit

u
d

e
 (

V
o

lt
s
)

measured value
Estimated value by UKF
Estimated value by EKF

(e)

0 20 40 60 80 100 120

Time(Second)

-15

-10

-5

0

5

10

15

20

A
m

p
lit

u
d

e
 (

V
o

lt
s
)

measured value
Estimated value by UKF
Estimated value by EKF

(f)

Figure 3.4: Comparison of output voltage estimation of LPF using noisy input with a) µ = 0,
σ2 = 0.1, b) µ = 0, σ2 = 0.5, c) µ = 0, σ2 = 1.0, Comparison of output voltage estimation of
HPF using noisy input with d) µ = 0, σ2 = 0.1, e) µ = 0, σ2 = 0.5, f) µ = 0, σ2 = 1.0.
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Figure 3.5: Comparison of estimation error for LPF using noisy input with a) µ = 0, σ2 = 0.1,
b) µ = 0, σ2 = 0.5, c) µ = 0, σ2 = 1.0, Comparison of estimation error for HPF using noisy
input with d) µ = 0, σ2 = 0.1, e) µ = 0, σ2 = 0.5, f) µ = 0, σ2 = 1.0.
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3.5 Conclusions

In this chapter, output voltage of RC LPF and HPF has been estimated using EKF

and UKF methods. Results show that though EKF method provide better estimation

as compared to LMS method, But UKF methods results are better than EKF method

due to smaller linearization error of UKF method. Also, the SNR value of UKF method

is better than EKF method. UKF method presents smaller RMSE as compared to EKF

method as UKF method is accurate to the third order for any nonlinearity.



Chapter 4

State Estimation of Single-Phase Rectifier

Circuit

This chapter 1 presents the implementation of different versions of KF algorithm on

single-phase rectifier circuit for state estimation. For this, the nonlinear system dynamics

have been modeled using differential equations. To obtain the state space model of

the circuit, Kirchhoff’s laws have been used.

In the previous chapter, EKF and UKF methods have been implemented on RC

circuits. In this chapter, EKF, IEKF (Chapter 1.4.3) and UKF methods have been

implemented on diode circuit.

The Major contributions of the proposed work are :- (i) real-time state estimation of

the single-phase rectifier circuit using different versions of KF has been computed. (ii)

state-space model of dynamic single-phase rectifier circuit has been obtained using

KVL and KCL (iii) input voltage is modeled as the zero mean white noise. (iv) The

output results of different versions of KF algorithm have been compared with each

other. Simulation results validate the performance of the proposed method.
1The result of this chapter is based on the following research papers (i) Amit Kumar Gautam and Sudipta

Majumdar, “Parameter estimation of diode circuit using extended Kalman filter,” World Academy of Science,
Engineering and Technology International Journal of Electronics and Communication Engineering, ISSN no.
1307- 6892, vol. 12, no. 9, pp. 605-610, 2018, (ii) Amit Kumar Gautam and Sudipta Majumdar, “Iterated
extended Kalman filter based state estimation of diode circuit,” in Journal of Physics: Conference Series 2070
(2021) 012092, pp. 1-10, 2021, (iii) Amit Kumar Gautam and Sudipta Majumdar, “State estimation of single-
phase rectifier based load using unscented Kalman filter,” in 2nd IEEE International Conference on Power
Electronics, Intelligent Control and Energy Systems (ICPEICES-2018), pp. 1172-1177, 2018.

40



41

Single-phase rectifier circuit has been used in various applications including voltage

clamper for ac-dc power conversion [80], as pulse width modulation rectifier [81] and

railway electrical traction system [82].

The state space modeling of single-phase full wave rectifier (FWR) circuit has been

derived in section 4.1. Section 4.2 presents implementation of EKF method to single-

phase FWR circuit. Simulation results of single-phase FWR circuit using EKF, IEKF

and UKF methods are presented in sections 4.3, 4.4 and 4.5 respectively.

4.1 State Space Model

Single-phase FWR circuit is shown in Figure 4.1. vi(t) is the input voltage. The

circuit consists of inductor Ls and resistor Rs. The capacitor C is used at the output,

which is in parallel with the load resistance RL. We assumed that D1 to D4 are

identical diodes with voltage drop equal to vD. iD(t) and vc(t) are the diode current

and capacitor voltage respectively. Using the KVL and KCL, we have

Figure 4.1: Circuit diagram of single-phase FWR.

C
d
dt

vc(t)+
vc(t)
RL

= iD(t) (4.1)

vi(t) = RSiD(t)+LS
d
dt

iD(t)+2vD + vc(t) (4.2)
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where iD(t) = I0(evD/vT − 1). Representing (4.1) and (4.2) in terms of state equations,

we have

d
dt

vc(t) =−
1

RLC
vc(t)+

1
C

iD(t) (4.3)

d
dt

iD(t) =−
1
LS

vc(t)−
(RS +2VT/I0)

LS
iD(t)+

VT

LSI2
0

i2D(t)−
1
LS

vi(t) (4.4)

Here, VT and I0 denote the thermal voltage and reverse saturation current of diode

respectively. Representing (4.3) and (4.4) in state space form as :-

d
dt

x = Fx+Bu (4.5)

where x is the state vector consisting of two states vc(t) and iD(t) respectively. The

state transition matrix F and input vector B are :-

F =

 − 1
RLC

1
C

− 1
LS
− (RS+2VT /I0)

LS
+

2V 2
T

I0

 ,B =
[

0 1
LS

]T
(4.6)

The state space model is given as :-

d
dt

vc(t)

iD(t)

=

− 1
RLC

1
C

− 1
LS
− (RS+2VT /I0)

LS
+

2V 2
T

I0

vc(t)

iD(t)

+
 0

1
LS

vi(t) (4.7)

The measurement model is :-

z = Hx (4.8)

where

H =

 1 0

0 1

 (4.9)

4.2 Implementation of EKF algorithm

The discrete form of equation (4.7) can be obtained using Euler-Maruyama method.

Substituting t = kTs. Where k = 1,2,3, ... and Ts is sampling time. In general, the
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Table 4.1: Comparison of capacitor voltage (vC) estimation using different methods.

Input signal Parameter LMS method EKF method
Noiseless
input

SNR(dB)
RMSE

0.42
1.24

1.07
0.86

Noisy input signal with
mean 0 and variance 0.1

SNR(dB)
RMSE

0.40
1.50

1.01
0.96

Noisy input signal with
mean 0 and variance 0.5

SNR(dB)
RMSE

0.35
2.10

1.00
1.01

Noisy input signal with
mean 0 and variance 1.0

SNR(dB)
RMSE

0.26
2.15

0.90
1.02

Noisy input signal with
mean 0 and variance 2.0

SNR(dB)
RMSE

0.10
3.17

0.76
2.42

discrete-time state-space equations can be written as :-

xk+1 = Fkxk +Bkuk +Gkwk (4.10)

zk = Hkxk +Ckuk +Dkvk (4.11)

The matrices Fk, Bk and Hk are :-

Fk =

 1− Ts
RLC

TS
C

− Ts
LS

1− Ts(RS+2VT /I0)
LS

+
2V 2

T Ts
I0

 ,Bk =

 0
Ts
LS

 ,Hk =

 1 0

0 1

T

Ck = 0,Dk = 0. (4.12)

4.3 Simulation Results using EKF Method

The states of single-phase rectifier circuit have been estimated in MATLAB using

EKF method and compared with LMS method. The sinusoidal input of 10 volts and 50

KHz frequency has been used. The system noise and measurement noise are white

Gaussian noise of zero mean with 0.5 and 0.1 variances respectively. The PSPICE

simulated values have been considered as the actual value. Simulations have been

performed using noiseless input signal and noisy input signal respectively. Figure 4.2

to 4.3 show the comparison of estimated capacitor voltage and diode current using

EKF and LMS methods with PSPICE simulations. Table 4.1 and Table 4.2 compare

the RMSE and SNR(dB) of EKF and LMS methods for capacitor voltage and diode

current respectively.
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Figure 4.2: Estimated voltage using EKF and LMS methods for noisy signal with a) µ = 0,
σ2 = 0.1, b) µ = 0, σ2 = 0.5, c) µ = 0, σ2 = 1.0, d) µ = 0, σ2 = 2.0.

Table 4.2: Comparison of diode current (iD) estimation using different methods.

Input signal Parameter LMS method EKF method
Noiseless
input

SNR(dB)
RMSE

0.258
0.69

1.290
0.3359

Noisy input signal with
mean 0 and variance 0.1

SNR(dB)
RMSE

0.20
1.40

1.05
0.66

Noisy input signal with
mean 0 and variance 0.5

SNR(dB)
RMSE

0.16
2.45

1.01
1.56

Noisy input signal with
mean 0 and variance 1.0

SNR(dB)
RMSE

0.10
2.55

1.0
1.82

Noisy input signal with
mean 0 and variance 2.0

SNR(dB)
RMSE

0.054
2.95

0.87
2.56
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Figure 4.3: Estimated current using EKF and LMS methods for noisy signal with a) µ = 0,
σ2 = 0.1, b) µ = 0, σ2 = 0.5, c) µ = 0, σ2 = 1.0, d) µ = 0, σ2 = 2.0.
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Table 4.3: Comparison of capacitor voltage (vC) estimation using different methods.

Input signal Parameter IEKF method EKF method
Noiseless
input

SNR(dB)
RMSE

1.42
0.24

1.07
0.86

Noisy input signal with
mean 0 and variance 0.1

SNR(dB)
RMSE

1.39
0.50

1.01
0.96

Noisy input signal with
mean 0 and variance 0.5

SNR(dB)
RMSE

1.15
0.89

1.00
1.01

Noisy input signal with
mean 0 and variance 1.0

SNR(dB)
RMSE

1.06
1.10

0.90
1.57

4.4 Simulation Results using IEKF Method

The simulations have been performed in MATLAB software. The capacitor voltage

and diode current have been estimated using IEKF method and compared with EKF

method. A sinusoidal input of 10 volts and frequency 50 Hz has been used at input for

simulation purpose. The system and measurement noise are white Gaussian noise

with zero mean and variance 0.5 and 0.01 respectively. The thermal voltage (VT ) and

reverse saturation current (I0) are 0.025 volts and 10 amperes respectively. The diode

model used for PSPICE simulation is D1N4002. The circuit component values are:

RL = 750, RS = 17.5, LS = 91.9mH and C = 100µF . Figure 4.4 to Figure 4.5 show

the comparison of estimated capacitor voltage and diode current using IEKF method

with EKF method and PSPICE simulated values. The PSPICE simulated values have

been considered as the actual value. The RMSE and SNR(dB) values have been

used to evaluate the performance of proposed method. Table 4.3 and 4.4 present

the comparison of the estimated parameters using IEKF method with EKF method

and PSPICE simulated values. The estimated currents are identically mapped to

the transients over the first half period, whereas deviations are noted between the

estimated and actual values in succeeding half periods due to change in initial value

of the capacitor voltage.



47

(a) (b)

(c) (d)

Figure 4.4: Estimated voltage using EKF and IEKF methods for a) noiseless input signal, b)
signal with µ = 0, σ2 = 0.1, c) signal with µ = 0, σ2 = 0.5, d) signal with µ = 0, σ2 = 1.0.

Table 4.4: Comparison of diode current (iD) estimation using different methods.

Input signal Parameter IEKF method EKF method
Noiseless
input

SNR(dB)
RMSE

1.55
0.19

1.290
0.336

Noisy input signal with
mean 0 and variance 0.1

SNR(dB)
RMSE

1.20
0.40

1.05
0.66

Noisy input signal with
mean 0 and variance 0.5

SNR(dB)
RMSE

1.16
0.50

1.01
1.56

Noisy input signal with
mean 0 and variance 1.0

SNR(dB)
RMSE

1.10
0.53

1.0
1.82
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(a) (b)

(c) (d)

Figure 4.5: Estimated current using EKF and IEKF methods for a) noiseless input signal, b)
signal with µ = 0, σ2 = 0.1, c) signal with µ = 0, σ2 = 0.5, d) signal with µ = 0, σ2 = 1.0.
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Table 4.5: Comparison of capacitor voltage (vC) estimation using different methods.

Input signal Parameter UKF method EKF method
Noiseless
input

SNR(dB)
RMSE

2.42
0.40

1.07
0.86

Noisy input signal with
mean 0 and variance 0.1

SNR(dB)
RMSE

2.40
0.50

1.01
0.96

Noisy input signal with
mean 0 and variance 0.5

SNR(dB)
RMSE

1.35
0.70

1.00
1.01

Noisy input signal with
mean 0 and variance 1.0

SNR(dB)
RMSE

1.26
0.75

0.90
1.02

4.5 Simulation Results using UKF

The capacitor voltage and diode current of single-phase rectifier circuit have been

estimated for sinusoidal input voltage. The applied sinusoidal input contains maximum

amplitude of 10 V and frequency 50 KHz. The white Gaussian noise of zero mean

and different variances have been used for estimation purpose. The system noise

and measurement noise are white Gaussian noise of zero mean with variance 0.5

and 0.01 respectively. The parameters used for simulations are RL = 750 , RS = 17.5

, LS = 91.9mH and C = 100µF . D1N4002 diode model of PSPICE has been used

for simulations. The PSPICE simulated values have been considered as the actual

value. The capacitor voltage vc of single-phase rectifier circuit has been estimated

using UKF and EKF methods. Figure 4.6 (a) to Figure 4.6 (c) show the capacitor

voltage estimation for different noise values. Also, the estimation of diode current iD

using UKF and EKF methods are shown in Figure 4.6 (d) - Figure 4.6 (f). Table 4.5

and Table 4.6 show the comparison of SNR (dB) value and RMSE for UKF and EKF

methods.

4.6 Conclusions

The estimation of parameters of a single-phase rectifier using UKF method is present-

ed in this chapter and compared with LMS, EKF and IEKF methods. Simulation results

show the better closeness of estimated values using UKF with PSPICE simulated

values as compared to the LMS, EKF and IEKF methods. The SNR value of UKF

method is better than LMS, EKF and IEKF methods. Also, RMSE values using UKF
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(a) Signal with µ = 0, σ2 = 0.1. (b) Signal with µ = 0, σ2 = 0.5.

(c) Signal with µ = 0, σ2 = 1.0.
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(d) Signal with µ = 0, σ2 = 0.1.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time(Second)

-8

-6

-4

-2

0

2

4

6

8

10

A
m

p
lit

u
d

e
 (

C
u

rr
e

n
t)

EKF
UKF
Simulated output

(e) Signal with µ = 0, σ2 = 0.5.
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(f) Signal with µ = 0, σ2 = 1.0.

Figure 4.6: Comparison of capacitor voltage and diode current estimation using UKF and EKF
methods.
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Table 4.6: Comparison of diode current (iD) estimation using different methods.

Input signal Parameter UKF method EKF method
Noiseless
input

SNR(dB)
RMSE

2.50
0.10

1.290
0.336

Noisy input signal with
mean 0 and variance 0.1

SNR(dB)
RMSE

2.20
0.40

1.05
0.66

Noisy input signal with
mean 0 and variance 0.5

SNR(dB)
RMSE

2.16
0.45

1.01
1.56

Noisy input signal with
mean 0 and variance 1.0

SNR(dB)
RMSE

2.10
0.55

1.0
1.82

method are smaller than LMS, EKF and IEKF methods due to small linearization error

of UKF method. Simulation results demonstrate the superiority of the UKF method.



Chapter 5

State Estimation of Transistor Circuit

This chapter 1 presents the implementation of different versions of KF algorithm on

the following circuits for state and parameter estimation:-

(i) CE-based BJT circuit.

(ii) BJT-based DA circuit.

For this, the nonlinear system dynamics have been modeled using Kronecker product.

To obtain the state-space model of the circuit, Gummel Poon model, Ebers-Moll model

of the BJTs and Kirchhoff’s laws have been used.

In the previous chapter, various state estimation filtering has been implemented on

diode circuit, whereas in this chapter, these filering are implemnted on BJT circuit. The

use of Ebers Moll model and Gummel Poon model to obtain the state space model

increases the complexity as compared to the diode circuit. The use of Kronecker

product reduces the mathematical complexity of the BJT circuit.

Major contributions of the proposed work are :- (i) real-time state estimation of the

analog transistor circuits using different versions of KF has been computed, (ii) state-

space model of dynamic analog circuits has been obtained using Ebers-Moll Model

and Gummel Poon model with KVL and KCL, (iii) input voltage is modeled as the zero

mean white noise, (iv) The output results of different versions of KF algorithm have
1The result of this chapter is based on the following research papers (i) Amit Kumar Gautam and Sudipta

Majumdar, “State estimation of common emitter amplifier using iterated extended Kalman filters,” International
Journal of Innovative Technology and Exploring Engineering, ISSN no. 2278-3075, vol. 8, no. 9, pp. 1784-
1789, 2019, (ii) Amit Kumar Gautam and Sudipta Majumdar, “Kronecker product based modeling of Darlington
amplifier and state estimation using unscented Kalman filter,” International Journal of Electronics Letters, ISSN
no. 2168-1732, 2022.
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been compared with each other. Simulation results validate the performance of the

proposed method.

CE BJT is an important IC which is useful in different electronic circuits and chip

designing applications such as two cascaded common base and CE devices [83],

wideband resistive feedback low noise amplifier (LNA) [84], trans impedance amplifier

circuit [85], frequency reconfigurable millimeter wave power amplifier (PA) [86], class-

F PA [87]. Also, it is useful in dual-vector phase rotator (DVR) to drive a Dohetry

amplifier in beamformer [88]. Monolithic microwave integrated circuit chips also use

the CE BJT circuit [89] and BJT-based trans impedance amplifier is used in optical

network link [90].

Darlington amplifier has been used in various applications including broadband high

data rate communication systems. The three-stage Darlington feedback amplifier

presents better stability than single stage Darlington feedback amplifier. DA circuit

has been used in various broadband circuits. Also, it has high speed applications.

Beside these, it is also used in low noise amplifier [91], mixer [92], power amplifier [93],

distributed amplifier and active baluns [94]. The DA is also used as a benchmark for

verification of compact models at mm-wave frequencies [95]. Shukla and Pandey [96]

used DA together with Sziklai to model two stage small signal amplifier. Mojab and

Mazumder [97] proposed optical Darlington transistor for high power applications.

Weng et al. [98] proposed broadband DA using heterojunction bipolar transistor for

high speed data communications. Various designs have been proposed for DA. Lee

et al. [99] proposed the design of ultra wideband DA. Weng et al. [100] proposed

design of DA for microwave broadband applications.

The Kirchhoff’s law and the Ebers-Moll model are applied for state modeling of the

CE BJT circuit in section 5.1.1. Section 5.1.2 includes the implementation of EKF

and IEKF methods to CE amplifier circuit. Section 5.1.3 presents simulation results.

Section 5.2.1 formulates state modeling of DA circuit using KCL and Gummel-Poon

model. Section 5.2.2 presents implementation of UKF with Kronecker product to DA

circuit. Section 5.2.3 presents simulation results.
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5.1 State Estimation of CE Amplifier Circuit

5.1.1 State Space Model

Figure 5.1 shows the CE BJT amplifier. It consists of resistors RC, RE and R1. CB

is mainly used to suppress dc voltage. It also consists of collector capacitor CC and

emitter capacitor CE . Input u is applied to the base terminal and output v0 is taken

across the load resistor RL. The dynamic equations for this circuit are obtained using

Figure 5.1: Diagram of CE amplifier circuit.

KCL as :-

IE =CE
d
dt

vE +
vE

RE
(5.1)

IB =CB
du
dt
−CB

dvB

dt
+

VCC

R1
− vB

R1
(5.2)

CC
d
dt

(vC)−CC
d
dt

(v0) =
v0

RL
(5.3)

VCC

RC
− vC

RC
= IC +

v0

RL
(5.4)

where state variables are namely vE , vB, vC and v0. In order to obtain the state space

equations, the Ebers-Moll model [101] is used. Using Taylor’s series expansion, (2.4)
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and (2.5) can be expanded as follows :-

IE =K1vE +K2vB +K3vC +K4vEvE +K5vBvB +K6vCvC +K7vBvE +K8vBvC (5.5)

IC =K9vE +K10vB +K11vC +K12vEvE +K13vBvB +K14vCvC +K15vBvE +K16vBvC (5.6)

IB =(K1−K9)vE +(K2−K10)vB +(K3−K11)vC +(K4−K12)vEvE +(K5−K13)vBvB

+(K6−K14)vCvC +(K7−K15)vBvE +(K8−K16)vBvC (5.7)

where

K1 =
IES
VT

, K2 =− IES−αRICS
VT

, K3 =−αRICS
VT

, K4 =− IES
2V 2

T
,

K5 =− IES−αRICS
2V 2

T
, K6 =

αRICS
2V 2

T
, K7 =

IES
V 2

T
, K8 =−αRICS

V 2
T

,

K9 =
−αF IES

VT
, K10 =

αF IES−ICS
VT

, K11 =
ICS
VT

, K12 =
αF IES
2V 2

T
,

K13 =
αF IES−ICS

2V 2
T

, K14 =
−ICS
2V 2

T
, K15 =

−αF IES
V 2

T
, K16 =

ICS
V 2

T
.

Substituting (5.5)-(5.7) in (5.1)-(5.4), we get :-

dvE

dt
=K17vE +K18vB +K19vC +K20vEvE +K21vBvB +K22vCvC +K23vBvE +K24vBvC (5.8)

dvB

dt
=K25vE +K26vB +K27vC +K28vEvE +K29vBvB +K30vCvC +K31vBvE +K32vBvC +u

′

+K33VCC (5.9)

dvC

dt
=K34vE +K35vB +K36vC +K37v0 +K38vEvE +K39vBvB +K40vCvC +K41vBvE +K42vBvC

(5.10)

dv0

dt
=K34vE +K35vB +K36vC +K43v0 +K38vEvE +K39vBvB +K40vCvC +K41vBvE +K42vBvC

(5.11)

where u
′
= d

dt u.

K17 =
1

CE

(
K1− 1

RE

)
, K18 =

K2
CE

, K19 =
K3
CE

, K20 =
K4
CE

,

K21 =
K5
CE

, K22 =
K6
CE

, K23 =
K7
CE

, K24 =
K8
CE

,

K25 =
K9−K1

CB
, K26 =

1
CB

(
K10−K2 +

1
R1

)
, K27 =

K11−K3
CB

, K28 =
K12−K4

CB
,

K29 =
K13−K5

CB
, K30 =

K14−K6
CB

, K31 =
K15−K7

CB
, K32 =

K16−K8
CB

,

K33 =
1

CBR1
, K34 =

−αF RLRC
CE ZE

(
K1− 1

RE

)
, K35 =

−αF RLRCK2
CE ZE

, K36 =
−αF RLRCK3

CE ZE
,

K37 =
RC

RL(RL+RC)
, K38 =

−αF RLRCK4
CE ZE

, K39 =
−αF RLRCK5

CE ZE
, K40 =

−αF RLRCK6
CE ZE

,

K41 =
−αF RLRCK7

CE ZE
, K42 =

−αF RLRCK8
CE ZE

, K43 =
1

CC(RL+RC)
.
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5.1.2 Implementation of EKF and IEKF

The discrete time state space equations can be written as :-

xk+1 = Fkxk +Bkuk +Gkwk (5.12)

zk = Hkxk +Ckuk +Dkvk (5.13)

where

xk =
[

vE(k) vB(k) vC(k) v0(k)
]T

(5.14)

Bk =
[

0 1 0 0
]T

,Ck = 0,Dk = 0 (5.15)

Fk =
d
dx

ϕ(xk,uk) =


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

 (5.16)

where

F11 = 1+K17 +K20vE(k−1), F12 = K18 +K21vB(k−1)+K23vE(k−1),

F13 = K19 +K22vC(k−1)+K24vB(k−1), F14 = 0,

F21 =K25+K28vE(k−1), F22 = 1+K26+K29vB(k−1)+K31vE(k−1),

F23 = K27 +K30vC(k−1)+K32vB(k−1), F24 = 0,

F31 = K34 +K38vE(k−1), F32 = K35 +K39vB(k−1)+K41vE(k−1),

F33 = 1+K36 +K40vC(k−1)+K42vB(k−1), F34 = K37,

F41 = K34 +K38vE(k−1), F42 = K35 +K39vB(k−1)+K41vE(k−1),

F43 = K36 +K40vC(k−1)+K42vB(k−1), F44 = 1+K43.

The state space model is :-


vE(k)

vB(k)

vC(k)

v0(k)

=


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44




vE(k−1)

vB(k−1)

vC(k−1)

v0(k−1)

+


0

1

0

0

u
′
(k−1) (5.17)

The measurement model is :-

zk = Hkxk (5.18)
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where

Hk =
d

dx
h(xk,uk) =

[
0 0 0 1

]
(5.19)

The following steps have been used to implement EKF :-

1. Initialization: We used the following steps after initializing Cw,Cv, Σ0 and x0.

2. State prediction: Using (5.16), we computed Fk. (1.14) is used to compute Σk.

3. Measurement update: To determine Kk, zk, and Σk, Hk is computed using (5.19).

To implement IEKF algorithm, firstly threshold value ε is set to a small value. Counter

i is set to zero. Then, state x is estimated. The counter i is increased by one. Then,

until (1.25) is satisfied, Kk and state update are computed using (1.23) and (1.24)

respectively. Finally, covariance error is calculated using (1.27).

5.1.3 Simulation Results

MATLAB software has been used to implement the equations of CE BJT circuit.

The following circuit elements and parameter values are used for simulations :- R1 =

100KΩ, RC = 10KΩ, RE = 6KΩ, RL = 5KΩ, CB = 10µF , CC = 10µF , CE = 10µF , αF =

0.98, αR = 0.25, IES = 1×10−15, ICS = 1×10−13, VT = 0.026V , VCC = 20V .

Thus, two distinct scenarios: (i) estimation with noiseless input, and (ii) estimation

with noisy input have been taken into account. Figure 5.2(a) shows the input sinusoidal

wave with a frequency of 10 kHz and a sample step size of 0.1. Then, the output

voltage of the CE BJT circuit was estimated with noisy inputs with different variances

and zero-mean white Gaussian noise. The initial value of variances for process noise

is 0.5 and initial value of standard deviation for measurement noise is 0.01. The SNR

value for noisy inputs using EKF and IEKF methods is shown in Table 5.1. The RMS

error for both approaches for noisy input is shown in Table 5.2. The estimated output

for noiseless input using the IEKF and EKF methods is shown in Figure 5.2 (b). The

estimated output for noisy input using the IEKF and EKF methods is shown in Figure

5.2 (c) and compared with simulated values.
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(a) (b)

(c)

Figure 5.2: a) Input signal, b) Estimated output for the noiseless input using the IEKF and EKF
methods with PSPICE simulation, c) Estimated output for the noisy input using the IEKF and
EKF methods with PSPICE simulation.

Table 5.1: Comparison of SNR value using EKF and IEKF methods.
Noise Variance SNR (dB) SNR (dB)
(σ2) by EKF by IEKF

0.5 33.34 34.86
1 27.82 28.43
5 15.1763 15.68
10 8.51 9.56

Table 5.2: Comparison of parameters using EKF and IEKF methods.
Parameter EKF IEKF
Computation Time (Sec.) 4.04 2.28
RMSE(dB) 78.1 73.9
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5.1.4 Conclusions

This chapter estimated the output voltage of BJT CE circuit using IEKF method and

compares the performance of IEKF with EKF method. MATLAB simulations show

that IEKF method gives better SNR as compared to EKF method, as IEKF method

reduces the linearization error by considering the measurement during linearization

of measurement model.
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5.2 State Estimation of DA Circuit using Unscented Kalman

Filter

5.2.1 State Space Model

Figure 5.3: Circuit diagram of Darlington pair amplifier.

DA circuit is shown in Figure 5.3. Q1 and Q2 are the emitter follower and common

emitter transistor respectively. This circuit consists of resistors RC, RE , R1, R2, RL and

capacitors CB, CC and CE respectively. Sinusoidal input u has been applied to the

circuit. v0 denotes the output voltage of the amplifier circuit. Q1 and Q2 are identical

transistors and operate at the same collector current namely IC. β is the current gain

of each transistor, and then overall gain βT is calculated as :-

βT = β
2 (5.20)

The equations (5.21)-(5.25) represent the dynamic equations of the DA, which have
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been obtained using KVL and KCL.

CB
d
dt

(vB1−u)+ IB1 +
vB1

R2
+

vB1−VCC

R1
= 0 (5.21)

IE2 =CE
d
dt

vE2 +
vE2

RE
(5.22)

CC
d
dt

(vC− v0) =
v0

RL
(5.23)

IC = IC1 + IC2 +
v0

RL
(5.24)

VCC = RCIC +VC2E2 +ZEIE2 (5.25)

where IB1, IB2 , IC1, IC2, IE1 and IE2 are the base, collector and emitter currents of Q1 and

Q2 respectively. ZE denotes the total impendence at the emitter terminal. The emitter

voltages of Q1 and Q2 are vE1 and vE2 respectively. vB1, vC and v0 are the base voltage

of Q1, collector voltage and output voltage respectively. The transistor is replaced by

Gummel-Poon model. The Gummel-Poon equations are :-

IBF =
IS

βF
[e(qVBE/NF KT )−1] (5.26)

IBR =
IS

βR
[e(qVBC/NRKT )−1] (5.27)

ILE = ISE [e(qVBE/NE KT )−1] (5.28)

ILC = ISC[e(qVBC/NCKT )−1] (5.29)

ICT = IS[e(qVBE/NF KT )− e(qVBC/NRKT )] (5.30)

where VT and Is denote thermal voltage and saturation current (SC) respectively. NF

and βF are emission coefficient (EC) and current gain in forward direction, NR and βR

are EC and current gain in reverse direction, NE and ISE are EC and SC at base to

emitter, NC and ISC are EC and SC at base to collector. IC, IE and IB are obtained as :-

IC = ICT − ILC− IBR−CBC
d
dt

vBC (5.31)

IE = ICT + ILE + IBF +CBE
d
dt

vBE (5.32)

IB = IE − IC (5.33)
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Substituting (5.26)-(5.30) into (5.31)-(5.33), we obtain IC, IE and IB as :-

IC =K1vB +K2vE +K3vC +K4vBvB +K5vCvC +K6vEvE +K7vBvC +K8vBvE −CBC
d
dt

vBC

(5.34)

IE =K9vB +K10vE +K11vC +K12vBvB +K13vCvC +K14vEvE +K15vBvC +K16vBvE +CBE
d
dt

vBE

(5.35)

IB =(K9−K1)vB +(K10−K2)vE +(K11−K3)vC +(K12−K4)vBvB +(K13−K5)vCvC

+(K14−K6)vEvE +(K15−K7)vBvC +(K16−K8)vBvE +CBE
d
dt

vBE −CBC
d
dt

vBC

(5.36)

where

K1 =
IS

VT

{
1

NF
− 1

NR

(
1+

1
βR

)}
− ISC

NCVT
, K2 =

−IS

NFVT
,

K3 =
IS

VT

{
1

NR

(
1+

1
βR

)}
+

ISC

VT NC
, K4 =

IS

2V 2
T

{
1

N2
F
− 1

N2
R

(
1+

1
βR

)}
− ISC

2V 2
T N2

C
,

K5 =
−1
2V 2

T

{
ISC

N2
C
+

IS

N2
R

(
1+

1
βR

)}
, K6 =

IS

2N2
FV 2

T
,

K7 =
1

V 2
T

{
ISC

N2
C
+

IS

N2
R

(
1+

1
βR

)}
, K8 =

−IS

N2
FV 2

T
,

K9 =
1

VT

{
ISE

NE
+

IS

NF

(
1+

1
βF

)
− IS

NR

}
, K10 =

−1
VT

{
IS

NF

(
1+

1
βF

)
+

ISE

NE

}
,

K11 =
IS

NRVT
, K12 =

1
2V 2

T

[
ISE

N2
E
+ IS

{
1

N2
F

(
1+

1
βR

)
− 1

N2
R

}]
,

K13 =
−IS

2N2
RV 2

T
, K14 =

1
2V 2

T

{
ISE

N2
E
+

IS

N2
F

(
1+

1
βF

)}
,

K15 =
IS

N2
RV 2

T
, K16 =

−1
V 2

T

[
ISE

N2
E
+ IS

{
1

N2
F

(
−1+

1
2βF

)}]

Now, input can be modeled as Ornstein-Uhlenbeck process considering both the

Brownian process and white Gaussian noise as :-

du
dt

=−γu+σ jρ jN j(t) (5.37)

du(t) =−γudt +σ jρ jdB j(t) (5.38)

where γ, σ j and ρ j are positive constants. N j(t) denotes white Gaussian noise with

N (0,1). B j(t) denotes Brownian motion process. Substituting (5.34) - (5.36) into (5.21)
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- (5.25), we obtain the following equations :-

dvE1 =K17vE1dt +K18vE2dt +K19vCdt +K20vE1vE1dt +K21vE2vE2dt +K22vCvCdt

+K23vE1vCdt +K24vE1vE2dt (5.39)

dvE2 =K25vE1dt +K26vE2dt +K27vCdt +K28vE1vE1dt +K29vE2vE2dt +K30vCvCdt

+K31vE1vCdt +K32vE1vE2dt (5.40)

dvB1 =K33vE1dt +K34vE2dt +K35vB1dt +K36vCdt +K37v0dt +K38vE1vE1dt

+K39vE2vE2dt +K40vCvCdt +K41vB1vB1dt +K42vE1vCdt +K43vE1vE2dt

+K44vB1vCdt +K45vB1vE1dt +K46[−γu+σ1ρ1B1(t)]+K47VCCdt (5.41)

dvC =K48vE1dt +K49vE2dt +K50vB1dt +K51vCdt +K52v0K53vE1vE1dt

+K54vE2vE2dt +K55vCvCdt +K56vB1vB1dt +K57vE1vCdt +K58vE1vE2dt

+K59vB1vCdt +K60vB1vE1dt +K61[−γu+σ2ρ2B2(t)]+K62VCCdt (5.42)

dv0 =K48vE1dt +K49vE2dt +K50vB1dt +K51vCdt +K63v0dt +K53vE1vE1dt

+K54vE2vE2dt +K55vCvCdt +K56vB1vB1dt +K57vE1vCdt +K58vE1vE2dt

+K59vB1vCdt +K60vB1vE1dt +K61[−γu+σ3ρ3B3(t)]+K62VCCdt (5.43)

where

K17 =
K9
CE

(
1− CBE

CBC

)
, K18 =

1
CE

{
K10− 1

RE
− CBE

CBC

(
−1+ 1

ZE

)}
,

K19 =
K11
CE

(
1− CBE

CBC

)
, K20 =

K12
CE

(
1− CBE

CBC

)
,

K21 =
K14
CE

(
1− CBE

CBC

)
, K22 =

K13
CE

(
1− CBE

CBC

)
,

K23 =
K15
CE

(
1− CBE

CBC

)
, K24 =

K16
CE

(
1− CBE

CBC

)
,

K25 =
−K9
CE

CBE
CBC

, K26 =
K10
CE
− 1

CE RE
+ 1

CBC

(
−K10 +

1
ZE

)(
1+ CBE

CE

)
,

K27 =
K11
CE
− 1

CBC

(
1+ CBE

CE

)
, K28 = K12

{
1

CE
− 1

CBC

(
1+ CBE

CE

)}
,

K29 =
K14
CE

(
1− CE+CBE

CBC

)
, K30 =

K13
CE

(
1− CE+CBE

CBC

)
,

K31 =
K15
CE

(
1− CE+CBE

CBC

)
, K32 =

K16
CE

(
1− CE+CBE

CBC

)
,

K33 =
K1+3K2−2K10+K17(2CBE−CBC)

2(CB+CBE)−CBC
, K34 =

K2+K18(2CBE−CBC)
2(CB+CBE)−CBC

,

K35 =
3K1−2

(
K9+

R1R2
R1+R2

)
2(CB+CBE)−CBC

, K36 =
4K3−2K11+

1
RC

+K19(2CBE−CBC)

2(CB+CBE)−CBC
,

K37 =
1

RL{2(CB+CBE)−CBC} , K38 =
K4+3K6−2K14+K20(2CBE−CBC)

2(CB+CBE)−CBC
,

K39 =
K21

(
2CBE− 1

CBC

)
2(CB+CBE)−CBC

, K40 =
2CBE K3+4K5−2K13−K22CBC

2(CB+CBE)−CBC
,

K41 =
3K4−2K12

2(CB+CBE)−CBC
, K42 =

K7+K23(2CBE−CBC)
2(CB+CBE)−CBC

,

K43 =
K8+K24(2CBE−CBC)

2(CB+CBE)−CBC
, K44 =

3K7−2K15
2(CB+CBE)−CBC

,

K45 =
3K8−2K16

2(CB+CBE)−CBC
, K46 =

2CB
2(CB+CBE)−CBC

,
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K47 =
2

RL{2(CB+CBE)−CBC} , K48 =
K2−K10+K17CBE−(CB+CBE−CBC)(−K17+

K1+K2
CBC

)

2(CB+CBE)−CBC
,

K49 =
K18CBE−(CB+CBE−CBC)(−K18+

K2
CBC

)

2(CB+CBE)−CBC
, K50 =

K1

{
1− 1

CBC
(CB+CBE−CBC)

}
−K9−

R1R2
R1+R2

2(CB+CBE)−CBC
,

K51 =
K3−K11+K19CBE−(CB+CBE−CBC)

(
−K19+

2K3+
1

RC
CBC

)
2(CB+CBE)−CBC

, K52 =
(CB+CBE−CBC)

RLCBC{2(CB+CBE)−CBC} ,

K53 =
K6−K14+K20CBE−(CB+CBE−CBC)

(
−K20+

2K6+K4
CBC

)
2(CB+CBE)−CBC

, K54 =
K21(CB+2CBE−CBC)

2(CB+CBE)−CBC
,

K55 =
−K13+K22(1+CBE)
2(CB+CBE)−CBC

, K56 =
K4

{
1− 1

CBC
(CB+CBE−CBC)

}
−K12

2(CB+CBE)−CBC
,

K57 =
K23CBE+(CB+CBE−CBC)(K23−

K7
CBC

)

2(CB+CBE)−CBC
, K58 =

K24CBE+(CB+CBE−CBC)(K24−
K8

CBC
)

2(CB+CBE)−CBC
,

K59 =
K7

{
1− 1

CBC
(CB+CBE−CBC)

}
−K15

2(CB+CBE)−CBC
, K60 =

K8

{
1− 1

CBC
(CB+CBE−CBC)

}
−K16

2(CB+CBE)−CBC
,

K61 =
CB

2(CB+CBE)−CBC
, K62 =

1
RL{2(CB+CBE)−CBC} ,

K63 =
1

RL{2(CB+CBE)−CBC}

{
−1
CC

+ (CB+CBE−CBC)
CBC

}
.

5.2.2 Implementation of UKF

Representing (5.39)-(5.43) as state space model in terms of Kronecker product, we

have

dx(t) = F1x(t)+F2[x(t)⊗x(t)]+F3u(t)+F4[x(t)⊗u(t)]+F5dB(t)

+F6[x(t)⊗dB(t)]+F7Vcc (5.44)

where ⊗ denotes the Kronecker product. State vector x(t) is formed as :-

x(t) =
[

vE1(t) vE2(t) vB1(t) vC(t) v0(t)
]T

(5.45)

where

F1 =



K17 K18 0 K19 0

K25 K26 0 K27 0

K33 K34 K35 K36 K37

K48 K49 K50 K51 K52

K48 K49 K50 K51 K63


,
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F2 =



K20 K24 0 K23 0 0 K21 0 0 0 0 0 0 0

K28 K32 0 K31 0 0 K29 0 0 0 0 0 0 0

K38 K43 0 K42 0 0 K39 0 0 0 K45 0 K41 K44

K53 K58 0 K57 0 0 K54 0 0 0 K66 0 K56 K59

K53 K58 0 K57 0 0 K54 0 0 0 K60 0 K56 K59


,

F3 =
[

0 0 −γK46 −γK61 −γK61

]T
, F4 = 0,

F5 =



0

0

ρ1σ1

ρ2σ2

ρ3σ3


, F6 = 0, F7 =

[
0 0 K47 K62 K62

]T
,

dB(t) =
[

dB1(t) dB2(t) dB3(t) dB4(t) dB5(t)
]T

.

Measurement model is :-

dz(t) = Hx(t)+σvdCv (5.46)

where

H =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


In discrete time, (5.44) is represented as :-

xk+1 = F1
k xk +F2

k [xk⊗xk]+F3
k uk +F4

k [xk⊗uk]+F5
k Bk +F6

k [xk⊗Bk]+F7
k Vcc (5.47)

where

xk =
[

vE1,k vE2,k vB1,k vC,k v0,k

]T
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F1
k = d

dxk
f (xk,uk) =



1+TsK17 TsK18 0 TsK19 0

TsK25 1+TsK26 0 TsK27 0

TsK33 TsK34 1+TsK35 TsK36 TsK37

TsK48 TsK49 TsK50 1+TsTsK51 TsK52

TsK48 TsK49 TsK50 K51 1+TsK63


,

F2
k =



TsK20 TsK24 0 TsK23 0 0 TsK21 0 0 0 0 0 0 0

TsK28 TsK32 0 TsK31 0 0 TsK29 0 0 0 0 0 0 0

TsK38 TsK43 0 TsK42 0 0 TsK39 0 0 0 TsK45 0 TsK41 TsK44

TsK53 TsK58 0 TsK57 0 0 TsK54 0 0 0 TsK66 0 TsK56 TsK59

TsK53 TsK58 0 TsK57 0 0 TsK54 0 0 0 K60 0 TsK56 TsK59


,

F3
k =

[
0 0 −γTsK46 −γTsK61 −γTsK61

]T
, F4

k = 0,

F5
k =



0

0

Tsρ1σ1

Tsρ2σ2

Tsρ3σ3


,F6

k = 0,

F7
k =

[
0 0 TsK47 TsK62 TsK62

]T
,

Bk =
d

duk
ϕ(xk,uk) =

[
0 0 TsK46 TsK61 TsK61

]T
.

where Ts is the sampling time. The measurement model is :-

zk = Hkxk (5.48)

where

Hk =
d

dxk
h(xk,uk) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



5.2.3 Simulation Results

For PSPICE simulations, we used NPN DA transistor (Q2N2222). The derived

equations (5.47) and (5.48) have been implemented in MATLAB software. For simulation,
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following values have been used :-

R1 = 22KΩ, R2 = 5KΩ,

RC = 1KΩ, RE = 0.1KΩ,

RL = 10Ω, CC = 22µF,

CB = 22µF, CE = 11µF,

q = 1×10−19, k = 1.38×10−23,

T = 300k, IS = 4.11×10−15,

ISE = 1.8×10−15, ISC = 0,

NC = 4.064, NE = 3.43

Cbc = 8.83×10−13, Cbe = 5.46×10−13,

N f = 1, Nr = 1,

β f = 416.64, βr = 0.711,

β = 2, VCC = 20.

We estimated the output voltage of EKF, IEKF and UKF methods for the sinusoidal

input signal with a maximum amplitude of 1 mV and frequency 1 KHz. The white

Gaussian noise of zero mean and different variances have been used for estimation

purposes. The output voltages of amplifier circuit have been estimated using EKF,

IEKF and UKF methods for different noisy inputs as shown in Figure 5.4. Tables 5.3

and 5.4 show the comparison of SNR (dB) and RMSE for amplifier circuit using EKF,

IEKF and UKF methods. Tables 5.5, 5.6 and 5.7 show the computational complexity

of EKF, IEKF and UKF methods respectively for a single iteration. It shows that UKF

method has less complexity than EKF and IEKF methods. We use the following

dimensions for various parameters :-

xk ∈ Rn×1, Fk ∈ Rn×n,uk ∈ R1×p,Σk ∈ Rn×n, Cw,k ∈ Rn×n, Hk ∈ Rd×n and zk ∈ Rd×n.

The identification of the parameters for covariance matrices Cw,k and Cv,k are impor-

tant aspect of a good estimation. But, due to the complexity in choosing the optimum

value of Cw,k and Cv,k, many methods have been proposed in literature. We used

typical trial and error method [102]. The advantage of using this method is that it is

simple to be accomplished. Table 5.8 shows different Cw,k and Cv,k values with their

corresponding MSE value obtained by trial and error method. We used covariances of

system noise Cw,k = diag [0.001,0.001,0.001,0.001,0.001] and covariance of measurement
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Figure 5.4: a) Input sinusoidal voltage. Comparison of output voltage estimation of DA using
EKF, IEKF and UKF methods for noisy input with b) µ = 0, σ2 = 0.1, c) µ = 0, σ2 = 0.5, d)
µ = 0, σ2 = 1.0.

noise Cv,k = 0.1 which corresponds to minimum MSE.

5.2.4 Conclusions

The voltage estimation of a DA using UKF method is presented in this chapter, and

the results have been compared with EKF and IEKF methods. Simulation results

using UKF method show the better closeness of estimated output voltage with actual

simulated values as compared to the EKF and IEKF methods. UKF method presents

a smaller MSE value as compared to EKF and IEKF methods as UKF method is

accurate to the third order for any nonlinearity.
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Table 5.3: Comparison of SNR (dB) of DA for different methods.
S.No. Noisy signal with

Gaussian noise
Input Frequency
(Hz)

EKF
method

IEKF
method

UKF
method

1 µ = 0, σ2 = 0.1 20
200
2000

101.600
101.620
101.645

103.250
103.750
104.125

116.140
116.409
116.456

2 µ = 0, σ2 = 0.5 20
200
2000

87.851
87.832
88.150

90.460
90.490
92.460

106.960
107.060
107.960

3 µ = 0, σ2 = 1.0 20
200
2000

83.021
84.350
84.990

85.250
85.500
86.250

98.120
98.512
99.120

Table 5.4: RMSE of output voltage estimation using EKF, IEKF and UKF methods.
S.No. Noisy signal

with Gaussian noise
Input Frequency
(Hz)

EKF
method

IEKF
method

UKF
method

1 µ = 0
σ2 = 0.1

20
200
2000

0.610
0.620
0.635

0.561
0.570
0.579

0.390
0.399
0.401

2 µ = 0
σ2 = 0.5

20
200
2000

0.640
0.645
0.652

0.592
0.599
0.605

0.410
0.421
0.429

3 µ = 0
σ2 = 1.0

20
200
2000

0.672
0.679
0.690

0.608
0.618
0.650

0.422
0.452
0.459

Table 5.5: Computational complexity for EKF method.
Equation number Number of multiplication

(1.13) n2 +np
(1.14) 2n3

(1.16) 2n2d +3nd2

(1.17) 2n2d
(1.18) n2d +2n3

Total no. of multiplication 4n3 +n2 +5n2d +3nd2 +np≈O(4n3)
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Table 5.6: Computational complexity for IEKF method.
Equation number Number of multiplication

(1.13) n2 +np
(1.14) 2n3

(1.23) 2n2d +3nd2

(1.24) 5nd2 +2d2

(1.25) n2d +2n3

Total no. of multiplication 4n3 +n2 +3n2d +3nd2 +2d2 +5nd +np≈O(4n3)

Table 5.7: Computational complexity for UKF method.
Equation number Number of multiplication

(1.30) n2 +np
(1.32) 4n2

(1.33) 4nd
(1.34) nd
(1.36) 4d2

(1.37) nd2

(1.38) 2nd
(1.39) n2d +nd2

Total no. of multiplication 5n2 +n2d +2nd2 +4d2 +7nd +np≈O(5n2)

Table 5.8: Comparison of MSE with different values of Cw,k and Cv,k using trial and error
method.

S.No. Values of Cw,k and Cv,k MSE Remarks
1. Cw,k = 1e−6 and Cv,k = 1e−2 17.156 Very poor
2. Cw,k = 1e−7 and Cv,k = 1e−3 22.876 Very poor
3. Cw,k = 1e−4 and Cv,k = 1e−1 3.9870 Poor
4. Cw,k = 1e−3 and Cv,k = 1e−2 0.3648 Good
5. Cw,k = 1e−3 and Cv,k = 1e−1 0.2438 Very Good



Chapter 6

State Estimation and Parameter

Estimation of Transmission Line

This Chapter 1 presents the implementation of KF (Chapter 1.4.1), EKF and UKF

methods on NTL for state and parameter estimation. For this, state-space model of

the NTL circuit has been derived. As Telegrapher’s equations used for modeling the

NTL are a function of space and time, the Fourier series expansion of the voltage and

current have been used to obtain the time-dependent equations. Further, Kronecker

product has been used for representation of Fourier unitary transform. The measure-

ments have been obtained by solving the eigenvector problem. The frequency-domain

analysis is used to obtain the state-space equations. For this, the four distributed

parameters of the line are expanded in Fourier series.

Till now versions of KF method have been implemented on lumped circuits. Now,

these algorithms are implemented on distributed circuits.

Major contribution of this work is :- (i) state space model for NTL has been obtained

by including Fourier series expansion of state and Gaussian noise vectors in the SDE,

(ii) Clarke transformation matrix has been utilized for phase to sequence transformation

which allows to represent the three-phase transmission line into fully transposed
1The result of this chapter is based on the following research papers (i) Amit Kumar Gautam, Sudipta

Majumdar and Harish Parthasarathy, “State and parameter estimation of non-uniform transmission line using
Kronecker product based modeling,” IEEE Transactions on Power Delivery, ISSN no.1937-4208, 2022.(ii) Amit
Kumar Gautam and Sudipta Majumdar, “Application of stochastic filter to three-phase nonuniform transmission
lines,” International Journal of Electronics, ISSN no. 1362-3060, 2023.
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transmission line, (iii) measurement model for current and voltage vectors at a finite

set of spatial points along the line is expressed in terms of the spatial Fourier series

coefficients. Also, the frequency domain analysis is used to obtain the eigenvalue

and eigenvector for measurement model, (iv) The voltage and current of NTL are

expanded in Fourier series to obtain the sparse matrix formulation using Kronecker

product. Kronecker product represention of discrete unitary transforms results in

computer efficient implementation. (v) This work implements the analysis of non-

linearity effect in transmission line using perturbation theory. For this, the nonlinearity

of the transmission line is included by perturbing the voltage and current of the line.

(vi) Finally, KF, EKF and UKF algorithms have been used for state and parameter

estimation respectively which requires the measurement model. The measurement

model involves the current and voltage Fourier series coefficients. The measurements

have been obtained by forming the eigenvalue problem.

In literature, various methods have been proposed for state estimation of power

system. In [103], Ghiasi et al. proposed one node method for voltage and current

estimation at the intermediate points of a lossy transmission line. It uses the Bergeron

model of a transmission line. This method has the advantage of using parameters at

one end of the transmission line which needs less computation time, less input data,

and less memory than other methods. In [104], Fan et al. used an ensemble KF

for fault location on transmission lines. The advantage of this method is its easy

implementation. Also, the foreknowledge of fault type or fault location is not required.

In [105], Rakpenthai et al. presented a nonlinear optimization based weighted least

squares method that uses constrained nonlinear optimization. The method uses

the bus voltage phasors and temperature of transmission line conductor for state

estimation purpose. In [106], Malhara et al. proposed a least squares based state

estimation for transmission line using various parameters to prevent malicious attacks.

In [107], Liu et al. used dynamic state estimation for protection of series compensated

transmission lines. The method used the dynamic model of protection zone. It

has the advantage of faster detection of internal faults as compared to the legacy

protection function. In [108], a least squares based state estimation of transmission

line equation is proposed to estimate the conductor sag levels to generate the warning

signal. In [109], Liu et al. proposed protection of mutually coupled transmission lines

that uses dynamic state estimation based protection (EBP) algorithm and performed

numerical experiments on various scenarios. In [110], Liu et al. proposed dynamic
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state estimation for fault location of transmission line that works on the sample values

and uses the dynamic model. The method provides the higher accuracy than traditional

methods. In [111], Liu et al. proposed the fault location of non-homogeneous trans-

mission line using state estimation. The unconstraint weighted least square method is

used for estimation by formulating the method of the non-homogeneous transmission

line with fault. In [112], Yang et al. used unscented information filtering (UIF) method

for state estimation of power networks. As the UIF is a nonlinear state estimation

method, it achieves better accuracy than centralized UIF, maximum a posteriori (MAP)

and the local UIF estimator. In [113], Li et al. proposed fully distributed state estimation

using weighted least square method and graph theory for estimation of power system.

The method has better performance than the traditional methods. In [114], Mohammed

et al. used a modified reiterated Kalman filter for state estimation of power system

that can handle the lost and delayed measurements. In [115], Alhelou et al. used

dynamic state estimation for decentralized load frequency control. The method has

the advantage of high accuracy, efficiency and easy implementation.

In [116], Dobakhshari et al. proposed closed-form and non-iterative solution for Super-

visory Control And Data Acquisition (SCADA) based state estimation. The method

has the advantage of fast implementation and low computation burden.

Various methods have been used in the literature for parameter estimation of trans-

mission lines. Ritzmann et al. [117] proposed the impedance estimation method for

transmission lines by assuming linearly changing parameters for short periods. The

method presents better accuracy as compared to other methods. [118] presented

a technique for estimation of electrical parameter of transmission line. The method

uses synchronized sampled data. This method has the ability to obtain the steady

state values of voltage and current of the transmission line as a function of time and

line logic. Also, it has the ability to overcome practical obstacles during estimation.

Tolic et al. [119] presented a method for determining the transmission losses in which,

probability density estimation is done using the nonlinear least squares method. Yang

et al. [120] proposed a method for conditional failure rate of transmission line. In

[121], Asprou et al. proposed a method to estimate the erroneous transmission line

parameters that are stored in database of power system control centre. The main

advantage is that it needs only one phasor measurement units. In [122], Wang

et al. presented least squares estimation based single line parameters estimation

method to estimate the actual transmission line parameters. The method presents
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very small estimation errors. In [123], Sima et al. proposed an analytic method

for estimating the lightning performance of transmission lines. This takes smaller

computation time as compared to the traditional method. In [124], Sivanagaraju et al.

proposed transmission line parameter estimation using hybrid measurements from

phasor measurements and used for differential protection of the transmission lines.

In [125], Halligan et al. presented a method to estimate the maximum crosstalk

in transmission line. In [126], Ren et al. used state estimation and parameters

tracking iteratively along with static parameter estimation to estimate the parameters

of overhead transmission lines. The method is able to track the transmission line

parameter for different conditions. They used state and parameter estimation of three-

phase untransposed transmission line. For this, they used weighted-least-square

(WLS) method for static state estimation and KF method for parameter estimation.

We used KF and EKF for state and parameter estimation of single-phase transmission

line.

The State space model of NTL circuit has been derived in Section 6.1.1. Section

6.1.2 describes the frequency domain analysis of NTL to obtain a measurement

vector. Section 6.1.3 presents state and parameter estimation for transmission line

circuit. Simulation results are presented in Section 6.1.4. Section 6.2.1 presents the

mathematical modeling of three phase NTL circuit. Section 6.2.2 describes modeling

of transposed and untransposed NTL. the frequency domain analysis of the parameter

estimation of three-phase NTL is presented in section 6.2.3. Section 6.2.4 includes

state and parameter estimation of NTL circuit. Section 6.2.5 presents simulation

results.

6.1 State Estimation and Parameter Estimation of Single-

Phase nonuniform Transmission Line

6.1.1 State Space Model

This section presents the state space analysis of NTL. An equivalent circuit of a

transmission line has been shown in Figure 6.1. The four fundamental parameters of

the nonuniform distribution line are namely, resistance R(z), inductance L(z), capaci-

tance C(z) and conductance G(z) per unit length d. The line voltage v(t,z) and line

current i(t,z) at any point on the NTL is represented by both space and time dependent
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Figure 6.1: Circuit diagram of a nonuniform transmission line.

partial differential equations (Telegrapher’s equation) as :-

d
dz

v(t,z)+R(z)i(t,z)+L(z)
d
dt

i(t,z) = wv(t,z) (6.1)

d
dz

i(t,z)+G(z)v(t,z)+C(z)
d
dt

v(t,z) = wi(t,z) (6.2)

where R(z)=R(z|θ), L(z)=L(z|θ), C(z)=C(z|θ) and G(z)=G(z|θ) are NTL parameters.

They can be assumed as :-

R(z) = R(z|θ) =
p

∑
m=1

θ [m]Rm(z) (6.3)

L(z) = L(z|θ) =
p

∑
m=1

θ [m]Lm(z) (6.4)

C(z) =C(z|θ) =
p

∑
m=1

θ [m]Cm(z) (6.5)

G(z) = G(z|θ) =
p

∑
m=1

θ [m]Gm(z) (6.6)

wv(t,z) and wi(t,z) are zero mean exponential correlation process. Also, consider the

voltage v(t,z), current i(t,z), wv(t,z) and wi(t,z) vectors of transmission line in terms of
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spatial Fourier series as :-

v(t,z) = ∑
n

vn(t)exp
(

j2πnz
d

)
(6.7)

i(t,z) = ∑
n

in(t)exp
(

j2πnz
d

)
(6.8)

wv(t,z) = ∑
n

wv,n(t)exp
(

j2πnz
d

)
(6.9)

wi(t,z) = ∑
n

wi,n(t)exp
(

j2πnz
d

)
(6.10)

where d is the total length of the transmission line. vn(t), in(t), wv,n(t) and wi,n(t) are

the Fourier coefficients with respect to time t. (6.7)-(6.10) can also be expressed in

their matrix form as :-

V (z) = ∑
N

v(n)W N
nz (6.11)

I(z) = ∑
N

i(n)W N
nz (6.12)

W v(z) = ∑
N

wv(n)W N
nz (6.13)

W i(z) = ∑
N

wi(n)W N
nz (6.14)

where V (z), I(z),W v(z),W i(z) are N point DFT at k = 0, ...,(N−1). Weight matrix (W N)

is simply defined as :-

W N = e j2π/N =


W 0

N W 0
N W 0

N ... W 0
N

W 0
N W 1

N W 2
N ... W N−1

N. . . ... .
. . . ... .
. . . ... .

W 0
N W N−1

N W 2N−1
N ... W (N−1)2

N

 (6.15)

This Weight matrix (W N) can be represented by sparse matrix factorization using

Kronecker product [127] as :-

W N =
{

B
}

N/2
⊗W N/2,W 1 = 1 (6.16)

where N is a power of two, and
{

B
}

N/2
has N/2 matrices in the set, with the ith matrix

i = 0 to (N/2−1) given by

Bi =


[1 1

1 j
]
, i = 1[

1 1
1 −1

]
, otherwise


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For example, if we choose N = 8, then W 8 can be expressed as:-

W 8 =
{

B
}

4
⊗
{

B
}

2
⊗W 2 (6.17)

where

{
B
}

4
=


[

1 1
1 −1

]
[1 − j

1 j

]
[

1 1
1 −1

]
[

1 1
1 −1

]

,
{

B
}

2
=

[
I2⊗

[
1 1
1 −1

]
I2⊗

[
1 − j
1 j

] ],

and W 2 = I4⊗
[

1 1
1 −1

]
. Therfore, (6.11)-(6.14) are rearranged as:-

V (z) = ∑
N

v(n)×
{

B
}

N/2
⊗W N/2 (6.18)

I(z) = ∑
N

i(n)×
{

B
}

N/2
⊗W N/2 (6.19)

W v(z) = ∑
N

wv(n)×
{

B
}

N/2
⊗W N/2 (6.20)

W i(z) = ∑
N

wi(n)×
{

B
}

N/2
⊗W N/2 (6.21)

From (6.3)-(6.6), the value of Rm(z), Lm(z), Cm(z) and Gm(z) can be expressed in terms

of spatial Fourier series in z with period d as:-

Rm(z) = ∑
n

Rm[n]exp
(

j2πnz
d

)
(6.22)

Lm(z) = ∑
n

Lm[n]exp
(

j2πnz
d

)
(6.23)

Cm(z) = ∑
n

Cm[n]exp
(

j2πnz
d

)
(6.24)

Gm(z) = ∑
n

Gm[n]exp
(

j2πnz
d

)
(6.25)
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where the cofficients Rm[n], Lm[n], Cm[n] and Gm[n] are represented in finite form. (6.26)-

(6.29) are truncated their Fourier series from m = 1 to m = P as :-

R[n|θ ] = R[n] =
p

∑
m=1

θ [m]Rm[n] (6.26)

L[n|θ ] = L[n] =
p

∑
m=1

θ [m]Lm[n] (6.27)

C[n|θ ] =C[n] =
p

∑
m=1

θ [m]Cm[n] (6.28)

G[n|θ ] = G[n] =
p

∑
m=1

θ [m]Gm[n] (6.29)

Substituting (6.3)-(6.10) along with (6.22)-(6.29) into (6.1)-(6.2) and equating both sides

coefficients, we have

∑
m

R[n−m|θ ]im(t)+∑
m

L[n−m|θ ]i
′
m(t)+

j2πn
d

vn(t) = wv,n(t) (6.30)

∑
m

G[n−m|θ ]vm(t)+∑
m

C[n−m|θ ]v
′
m(t)+

j2πn
d

in(t) = wi,n(t) (6.31)

where i
′
m(t) =

d
dt im(t) and v

′
m(t) =

d
dt vm(t). vn(t), in(t), wv,n(t) and wi,n(t) are defined in

their Fourier series vectors of samples size 2N +1 as :-

((
v(n)(t)

))+N

−N
= v(t) (6.32)((

i(n)(t)
))+N

−N
= i(t) (6.33)((

w(v,n)(t)
))+N

−N
= wv(t) (6.34)((

w(i,n)(t)
))+N

−N
= wi(t) (6.35)
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Also, the line parameters are expressed in terms of Fourier series matrices as follows

:-

((
R[n−m|θ ]

))
−N≤n,l≤N

= R(θ) =
p

∑
m=1

θ [m]Rm (6.36)

((
L[n−m|θ ]

))
−N≤n,l≤N

= L(θ) =
p

∑
m=1

θ [m]Lm (6.37)

((
C[n−m|θ ]

))
−N≤n,l≤N

= C(θ) =
p

∑
m=1

θ [m]Cm (6.38)

((
G[n−m|θ ]

))
−N≤n,l≤N

= G(θ) =
p

∑
m=1

θ [m]Gm (6.39)

where

Rm =
((

R[n− l]
))
−N≤n,l≤N

,Lm =
((

L[n− l]
))
−N≤n,l≤N

Cm =
((

C[n− l]
))
−N≤n,l≤N

,Gm =
((

G[n− l]
))
−N≤n,l≤N

Substituting (6.32)-(6.35) along with (6.36)-(6.39) into (6.30)-(6.31), we get

R[θ ]i(t)+L[θ ]i
′
(t)+ jD v(t) = wv(t) (6.40)

G[θ ]v(t)+C[θ ]v
′
(t)+ jD i(t) = wi(t) (6.41)

where D = diag[2πn
d ;−N ≤ n ≤ N]. Rearranging (6.40)-(6.41) to find their state space

model, we get

d
dt

v(t)

i(t)

=−

C[θ ]−1G[θ ] jD

jD L[θ ]−1R[θ ]

v(t)

i(t)

+
C[θ ]−1 0

0 L[θ ]−1

wi(t)

wv(t)

 (6.42)

where state vector matrix denoted by ξ (t) is represented as :-v(t)

i(t)

= ξ (t) = ξ R(t)+ jξ I(t) (6.43)

Here, ξ R(t) and ξ I(t) denote real and imaginary terms respectively.

State transition matrix F (θ) obtained from (6.42) is defined in real and imaginary
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terms as :-

−

 C[θ ]−1 G[θ ] j D

j D L[θ ]−1 R[θ ]

= F R(θ)+ jF I(θ) (6.44)

Also, processes noise matrix is C[θ ]−1 0

0 L[θ ]−1

= PR(θ)+ j PI(θ) (6.45)

wi(t)

wv(t)

= w(t) = wR(t)+ jwI(t) (6.46)

Substituting (6.43)-(6.46) into (6.42), the line equation is

(ξ
′

R(t)+ jξ
′

I(t)) = ( F R(θ)+ j F I(θ))(ξ R(t)+ jξ I(t))+( PR(θ)+ j PI(θ))(wR(t)+ jwI(t))

(6.47)

Seperating into real and imaginary parts, we get

ξ
′

R(t) = F R(θ)ξ R(t)− F I(θ)ξ I(t)+ PR(θ)wR(t)− PI(θ)wI(t) (6.48)

ξ
′

I(t) = F R(θ)ξ I(t)+ F I(θ)ξ R(t)+ PR(θ)wI(t)+ PI(θ)wR(t) (6.49)

Rearranging into matrix notation, we get

d
dt

ξ R(t)

ξ I(t)

=

 F R[θ ] − F I[θ ]

F I[θ ] F R[θ ]

ξ R(t)

ξ I(t)

+
 PR[θ ] − PI[θ ]

PI[θ ] PR[θ ]

wR(t)

wI(t)

 (6.50)

where d
dt θ(t) = εθ(t) The parameter vector to be estimated must are added in (6.43) to

obtain the augmented matrix as :-

η(t) =
[
ξ R(t),ξ I(t),θ(t),

]T
(6.51)

Therefore, the combined augmented state space model is :-

d
dt


ξ R(t)

ξ I(t)

θ(t)

=


F R[θ ] − F I[θ ] 0

F I[θ ] F R[θ ] 0

0 0 I




ξ R(t)

ξ I(t)

θ(t)

+


PR[θ ] − PI[θ ] 0

PI[θ ] PR[θ ] 0

0 0 I




wR(t)

wI(t)

εθ(t)

 (6.52)
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where I is the unitary matix of sample size 2N +1. For EKF implementation in (6.52),

we must calculate the Jacobian matrix. Therefore, we differentiate F R(θ), F I(θ),

PR(θ), PI(θ) w.r.t. θ . These expressions are derived as follows :-

d
dθ(m)

( F R(θ)+ j F I(θ)) =−

 d
dθ(m) C[θ ]−1 G[θ ] 0

0 d
dθ(m) L[θ ]−1 R[θ ]

 (6.53)

d
dθ(m)

C[θ ]−1 G[θ ] =− C[θ ]−1 d
dθ(m)

C[θ ] C[θ ]−1 G[θ ]+ C[θ ]−1 d
dθ(m)

G[θ ] (6.54)

=− C[θ ]−1 Cm C[θ ]−1 G[θ ]+ C[θ ]−1 Gm (6.55)

similarly,

d
dθ(m)

L[θ ]−1 R[θ ] =− L[θ ]−1 d
dθ(m)

L[θ ] L[θ ]−1 R[θ ]+ L[θ ]−1 d
dθ(m)

R[θ ] (6.56)

=− L[θ ]−1 Lm L[θ ]−1 R[θ ]+ L[θ ]−1 Rm (6.57)

Considering the equations of the form

dξ (t) = F (t,ξ (t),θ(t))dt + G(t,ξ (t),θ(t))dB(t) (6.58)

dθ(t) = dεθ(t) (6.59)

and the measurement equation is of the form

dz(t) = h(t,ξ (t))dt +dv(t) (6.60)

In fact, the state equations are linear in ξ (t) and hence can be expressed as :-

dξ (t) = F (t,θ(t))ξ (t)dt + G(t,θ(t))dB(t) (6.61)

dθ(t) = dεθ(t) (6.62)

and the measurement equations are also linear in ξ (t) and hence can be expressed

as :-

dz(t) = Hξ (t)dt +dv(t) (6.63)
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Equivalently, in the discretized form,

ξ n+1 = ( I +∆ F n(θ n))ξ n + Gn(θ n)wn+1 (6.64)

θ n+1 = θ n + εn+1 (6.65)

zn = Hξ n +vn (6.66)

Thus if the parameter θ n = θ are known, we would require a simple KF to estimate

the state as :-

ξ̂ n|n = E(ξ n|zk,k ≤ n) (6.67)

ξ̂ n+1|n = E(ξ n+1|zk,k ≤ n) (6.68)

If however, θ is unknown, then we must use the EKF in the following form :-ξ̂ n+1|n

θ̂ n+1|n

=

( I +∆ F n(θ̂ n|n)ξ̂ n|n

θ̂ n|n

 (6.69)

ξ̂ n+1|n+1

θ̂ n+1|n+1

=

ξ̂ n+1|n

θ̂ n+1|n

+ K n+1(zn+1− H ξ̂ n+1|n) (6.70)

Pn+1|n = APn|nAT + Gn(θ̂ n|n)Θ Gn(θ̂ n|n)
T (6.71)

Pn+1|n+1 = (I−K n+1H)Pn+1|n(I−K n+1H)T +K n+1RvK T
n+1 (6.72)

where

K n+1 = Pn+1|n HT ( Rv + H Pn+1|n HT )−1 (6.73)

A =

 Id +∆ F n(θ̂ n|n) ∆F
′
n(θ̂ n|n)( I⊗ ξ̂ n|n)

0 IP

 (6.74)

The use of state estimation for measurement techniques in real system is as follows

:- Suppose a transmission line is not operating satisfactorily owing to noise. For

example, it may cause the voltage supply coming from the mains to fluctuate a great

deal. Then we require to introduce control terms along the line. Since we do not

have direct access to the line voltage/current but only to its real EKF estimate, we can

design a feedback controller that computes the error between the desired state ξ̂ d(t)

(i.e. the desire line voltage and current with ξ̂ (t)) and its true EKF estimate ξ̂ (t) into

the line dynamics. Such a feedback control will result in modified state dynamics of

the form

dξ (t) = F (t,θ(t))ξ (t)dt +G(t,θ(t))dB(t)+K c(ξ d(t)− ξ̂ (t)) (6.75)
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or equivalently in the discrete-time domain, we have :-

ξ n+1 = (I +∆F n(θ))ξ n +Gn(θ n)wn+1 +K c(n)(ξ dn− ξ̂ n|n) (6.76)

The feedback control coefficient K c(n) is adaptively or on a block processing basis

controller to minimize E||ξ d(n+1)−ξ n+1||2. For example, the noiseless dynamics of ξ dn

is ξ̂ d(n+1) = (I +∆F n(θ))ξ dn and hence,

ξ d(n+1)−ξ n+1 = (I +∆F n(θ))(ξ dn−ξ n)−Gn(θ)wn+1−K c(n)(ξ dn− ξ̂ n|n) (6.77)

where

ξ̂ n+1|n+1 = (I +∆F n(θ))ξ̂ n|n +K (n+1)(Hξ n+1 +vn+1−H(I +∆F n(θ))ξ̂ n|n) (6.78)

= (I +∆F n(θ))ξ̂ n|n +K (n+1)(H((I +∆F n(θ))ξ n +Gn(θ)wn+1 +vn+1

−H(I +∆F n(θ))ξ̂ n|n) (6.79)

= (I +∆F n(θ))ξ̂ n|n +K (n+1)H(I +∆F n(θ))(ξ n− ξ̂ n|n)

+K (n+1)Gn(θ)wn+1 +K (n+1)vn+1 (6.80)

Thus

ξ d(n+1)− ξ̂ n+1|n+1 = (I +∆F n(θ))(ξ dn− ξ̂ n|n)−K (n+1)H(I +∆F n(θ))(ξ n− ξ̂ n|n)

−K (n+1)Gn(θ)wn+1−K (n+1)vn+1 (6.81)

From these two coupled linear stochastic difference equations (Chapter 1.6) for the

two kind of error, trajectory tracker error (ξ dn− ξ n) and state estimation error (ξ dn−

ξ̂ n|n), we can in principle compute ∑nE||(ξ dn − ξ n)||2 and ∑nE||(ξ dn − ξ̂ n|n)||2 and

choose the feedback controller coefficient K c(n) to minimize some weighted combination

in these two error energies.

The measurement model consists of measuring the line voltage and current at the

spatial points z1, ...,zm. so that this model becomes

dξ v,n(t) = v(t,zn)dt +dwv,n(t), n = 1,2, ...,m (6.82)

dξ i,n(t) = i(t,zn)dt +dwi,n(t), n = 1,2, ...,m (6.83)

Now noting that v(t,zn) and i(t,zn) can be expressed as linear combinations of the
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Fourier series components of the line voltage and current, i.e.

v(t,zn) = ∑
n

vn(t)exp( j2πnzn/d), n = 1,2, ...,m (6.84)

i(t,zn) = ∑
n

in(t)exp( j2πnzn/d), n = 1,2, ...,m (6.85)

We can separate this into real and imaginary components and then express the

measurement model in vector form as :-

dz(t) = (H1ξ R(t)+H2ξ I(t))dt +v(t) = Hη(t)dt +dv(t) (6.86)

where z(t) = [ξ v,1(t), ...,ξ v,m(t),ξ i,1(t), ...ξ i,m(t)]
T is a 2m×1 real vector.

H = [H1,H2,0] (6.87)

where the non-zero matrix elements of H1,H2 are cos(2πnξ n/d),sin(2πnξ n/d). Recall

that η(t) is the extended state vector [ξ R(t)
T ,ξ I(t)

T ,θ(t)T ]T with ξ R(t) being built out

of the real parts of the Fourier series components vn(t), in(t) of the line voltage and

current and ξ I(t) being built out of their imaginary parts.

6.1.2 Modeling of NTL using Frequency Domain Analysis

The line voltage V (ω,z) and current I(ω,z) are the Fourier transform of v(t,z) and

current i(t,z) and can be expanded into an infinite set of spatial harmonics [128] as

follows :-

V (ω,z) = ∑
n

e−γ(ω)z×Vn(ω)× e j2πnz/d (6.88)

I(ω,z) = ∑
n

e−γ(ω)z× In(ω)× e j2πnz/d (6.89)

where γ(ω) is propagation constant as :-

γ(ω) =
√

[R(ω,z)+ jωL(ω,z)] [G(ω,z)+ jωC(ω,z)] (6.90)
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(6.1)-(6.2) can be expressed in frequency domain using Fourier transform as :-

− d
dz

V (ω,z) = [R(z)+ jωL(z)] I(ω,z)+Wv(ω,z) (6.91)

− d
dz

I(ω,z) = [G(z)+ jωC(z)]V (ω,z)+Wi(ω,z) (6.92)

where

Z(z) = Z(z|θ) = R(z|θ)+ jωL(z|θ) = ∑
n

Zn(ω|θ)e j2πnz/d

Zn(ω|θ) = Rn(θ)+ jωLn(θ).

Similarly,

Y (z) = Y (z|θ) = G(z|θ)+ jωC(z|θ) = ∑
n

Yn(ω|θ)e j2πnz/d

Yn(ω|θ) = Gn(θ)+ jωCn(θ).

Substituting the Fourier series expansion of the distributed parameters (6.3)-(6.6) along

with (6.88) and (6.89) into (6.91) and (6.92). By equating the coefficients of both sides,

we get :- (
γ(ω)− j

2πn
d

)
Vn(ω) = ∑

k
Zn−k(ω|θ)Ik(ω)+Wv,n(ω) (6.93)(

γ(ω)− j
2πn

d

)
In(ω) = ∑

k
Yn−k(ω|θ)Vk(ω)+Wi,n(ω) (6.94)

Here, Vn(ω), In(ω), Zn−k(ω|θ) and Yn−k(ω|θ) are periodic with total samples 2N + 1.

Now, perturbation theory is implemented to voltage (Vn(ω)) and current (In(ω)) to

account the nonlinearity of the transmission line. Expanding the line voltage and

current by adding σ as a perturbation parameter, we have :-

Vn(ω) =V (0)
n (ω)+σV (1)

n (ω)+σ
2V (2)

n (ω)+ ... (6.95)

In(ω) = I(0)n (ω)+σ I(1)n (ω)+σ
2I(2)n (ω)+ ... (6.96)

where V (0)
n (ω) and I(0)n (ω) are the line voltage and current with σ = 0 respectively, i.e.

linear terms, whereas σV (1)
n (ω) and σ I(1)n (ω) respectively represent the perturbation

of voltage and current caused by non-linearity. Substituting (6.95) and (6.96) into (6.93)
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and (6.94) and equating the coefficients of σ0 and σ1 terms, we have

(γ(ω)I− jD) V(0)(ω) = Z (ω|θ) I(0)(ω) (6.97)

(γ(ω)I− jD) I(0)(ω) = Y (ω|θ)V(0)(ω) (6.98)

Now, the voltage and current Fourier series vectors and the line impedance and

admittance Fourier series matrices are defined as :-

V(ω) =
((

V (ω)
))+N

−N
(6.99)

I(ω) =
((

I(ω)
))+N

−N
(6.100)

Z (ω|θ) =
((

Zn−k(ω|θ)
))+N

−N
(6.101)

Y (ω|θ) =
((

Yn−k(ω|θ)
))+N

−N
(6.102)

(6.97) and (6.98) can further be organized in the form of a matrix eigenvalue problem

for the propagation constant γ(ω) (eigenvalue) and voltage-current Fourier series

vector (eigenvector) which is used as measurement vector during the estimation pro-

cess in KF and EKF method. In matrix form, these equations can be written as :- jD− γ(ω) Z (ω|θ)

Y (ω|θ) jD− γ(ω)

⊗ In×

 V(ω)

I(ω)

= 0 (6.103)

For simulations, measurements have been done using (6.103).

6.1.3 State and Parameter Estimation for Transmission Line Circuit

To implement the state estimation technique for NTL, the state-space model in (6.42)

needs to be discretized. The first-order exponential method is used to discretize the

model. The discrete model of the NTL is given in (6.104) and (6.105).

xn+1 = F nxn +Bnun +Gnwn (6.104)

zn = Hnxn +vn (6.105)
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where

F n =

1−TsC[θ ]−1G[θ ] − jTsD

− jTsD 1−TsL[θ ]−1R[θ ]

 ,Bn =
[
1,1
]T

,

Gn =

C[θ ]−1 0

0 L[θ ]−1

 ,Hn =

 1 0

0 1

 .
xn denote the state vector as xn =

[
Vn, In

]T
. Here un is the input vector. wn and vn

are zero mean Gaussian noise in the state vector with covariance matrix Qn and in

the measurement vector with covariance matrix Rn, respectively. The state model is

written as :-Vn+1

In+1

=

1−TsC[θ ]−1G[θ ] − jTsD

− jTsD 1−TsL[θ ]−1R[θ ]

Vn

In

+
C[θ ]−1 0

0 L[θ ]−1

wi,n

wv,n


(6.106)

zn =

 1 0

0 1

 Vn

In

+
v1n

v2n

 (6.107)

where Ts is the sampling time. v1n and v2n are the measurement vector of line voltage

and line current respectively. As the equation (6.106) is a linear estimation problem,

KF has been used to estimate line voltage and line current. A fourth-order parameter

vector θ n = [Rn, Ln, Cn, Gn]
T is defined for parameter identification. The parameters

to be estimated must are added in (6.106) to obtain the augmented matrix as :-

xa
n =

[
xT

n , θ
T
n
]T

(6.108)

The augmented state model is :-

xa
n+1 = F a

nxa
n +Ba

nun +Ga
nwa

n (6.109)

za
n = Ha

nxa
n +va

n (6.110)
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where

xa
n =

[
Vn, In,Rn,Ln,Cn,Gn

]T
,Ba

n =
[

1,1,0,0,0,0
]T

,

Ga
n =


C[θ ]−1 0 0 0 0 0

0 L[θ ]−1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,wa
n =

 wT
x

wT
θ

 .
Now, F a

n is nonlinear function of xn and θ n. Therefore, EKF can be used to linearize

F n matrix using Jacobian transform as :-

F a
n =



df 1
dx1

df 1
dx2

df 1
dθ 1

df 1
dθ 2

df 1
dθ 3

df 1
dθ 4

df 2
dx1

df 2
dx2

df 2
dθ 1

df 2
dθ 2

df 2
dθ 3

df 2
dθ 4

df 3
dx1

df 3
dx2

df 3
dθ 1

df 3
dθ 2

df 3
dθ 3

df 3
dθ 4

df 4
dx1

df 4
dx2

df 4
dθ 1

df 4
dθ 2

df 4
dθ 3

df 4
dθ 4

df 5
dx1

df 5
dx2

df 5
dθ 1

df 5
dθ 2

df 5
dθ 3

df 5
dθ 4

df 6
dx1

df 6
dx2

df 6
dθ 1

df 6
dθ 2

df 6
dθ 3

dϕ6
dθ 4


(6.111)

F a
n =


1+Ts(C[θ ]−1Gm−C[θ ]−1CmC[θ ]−1G[θ ]) 0 0 0 0 0

0 1+Ts(L[θ ]−1Rm−L[θ ]−1LmL[θ ]−1R[θ ]) 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6.112)

Ha
n =

 1 0 0 0 0 0

0 1 0 0 0 0

 (6.113)

va
n =

[
vT

x , vT
θ

]T
(6.114)

6.1.4 Simulation Results

MATLAB software has been used for simulation of derived equations. As compared

to the other line losses, the power loss insulation resistance is small, so conductance

G can be neglected. The objective is to estimate line resistance R, reactance X and

susceptance B based on measurements up to time n. The per unit (p.u.) parameters

values used for simulations are: R0 = 1.92 Ω/Km, X0 = 39.168 Ω/Km, B0 = 1.65×

10−3S/Km and d = 1000. The line voltage of NTL is estimated using KF and RLS [129]

methods (Chapter 1.9) for a 500 kV, 50 Hz transmission line. The white Gaussian
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Figure 6.2: Voltage estimation using KF and RLS methods with Gaussian noise input, (a) µ=0,
σ2 = 0.1, (b) µ=0, σ2 = 0.5.

Table 6.1: Comparison of RMSE for R,X ,B using RLS and EKF methods.
S.
No.

Gaussian noise
at input source

Parameter RMSE using
RLS method

RMSE using
EKF method

1 µ = 0
σ2 = 0.0

R(Ω)
X(Ω)
B(S)

0.5730
0.6108
0.5898

0.3775
0.3803
0.3780

2 µ = 0
σ2 = 0.01

R(Ω)
X(Ω)
B(S)

0.6031
0.6347
0.5970

0.3853
0.3920
0.3849

3 µ = 0
σ2 = 0.1

R(Ω)
X(Ω)
B(S)

0.6155
0.6778
0.6678

0.3902
0.4052
0.4602

4 µ = 0
σ2 = 0.5

R (Ω)
X(Ω)
B (S)

0.7166
0.7058
0.7785

0.4287
0.4135
0.5091

noise of zero mean and different variances have been used for estimation. The

process noise and measurement noise used are white Gaussian noise with zero

mean and variances 0.001 and 0.1 respectively. The line voltages of NTL circuit

have been estimated using KF and RLS methods for different noisy inputs are shown

in Figure 6.2. Estimated values have been compared with theoretical value obtained

by solving the eigenvalue problem given in equation (6.103). Further, we estimate

the distributed parameters of the line. Figure 6.3 shows the estimation of different

parameters.

Remarks

1. True EKF is only a suboptimal estimator based on second order truncated Taylor
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Figure 6.3: Parameters estimation using EKF and RLS methods with Gaussian noise input, (a)
µ=0, σ2 = 0.1, (b) µ=0, σ2 = 0.5.
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Table 6.2: Comparison of standard deviation of parameter errors (σe) for R,X ,B using RLS
and EKF methods.

S.
No.

Gaussian noise
at input source

Parameter σe using
RLS method

σe using
EKF method

1 µ = 0
σ2 = 0.0

R(Ω)
X(Ω)
B(S)

0.832
0.041
0.788

0.177
0.013
0.178

2 µ = 0
σ2 = 0.01

R(Ω)
X(Ω)
B(S)

1.102
0.090
0.990

0.255
0.013
0.250

3 µ = 0
σ2 = 0.1

R(Ω)
X(Ω)
B(S)

1.201
0.803
1.102

0.356
0.045
0.530

4 µ = 0
σ2 = 0.5

R (Ω)
X(Ω)
B (S)

1.504
1.995
2.503

0.482
0.090
0.804

Table 6.3: Comparison of SNR (dB) and RMSE for line voltage (v) estimation using KF and
RLS methods.

Gaussian noise
at input source
with µ=0

SNR using
KF method

SNR using
RLS method

RMSE using
KF method

RMSE using
RLS method

σ2 = 0 41.080 36.975 0.6831 0.7259
σ2 = 0.1 40.505 35.858 0.7239 0.9598
σ2 = 0.5 37.508 35.192 0.8712 1.0128
σ2 = 1.0 33.877 32.687 0.9549 1.2139
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expression but when a very large number of random effects contribute to the

dynamics, for example, a very large number of Brownian motions in different

Fourier bins mode, then the signals by the central limit theorem are the approxi-

mately Gaussian and further, when the noise variance is small and the signals

are passed through nonlinearly then the output signals equal approximately non-

random quantity plus small Gaussian fluctuations i.e.

f (x(t))� f (Ex(t)+δx(t))' f (Ex(t))+ f
′
(Ex(t))δx(t) (6.115)

So that f (x(t)) can be treated as being approximately Gaussian as the EKF

method represents a good approximation of the KF method which has good

convergence results.

2. State and measurement model equations are:-

xn+1 = f (xn)+wn+1 ,xn ∈ Rd×1 (6.116)

zn = h(xn)+vn (6.117)

Consider the EKF

x̂n+1|n = f (x̂n|n) (6.118)

x̂n+1|n+1 = x̂n+1|n +K n+1(zn+1−h(x̂n+1|n)) (6.119)

= f (x̂n|n)+K n+1(h(xn+1)−h(x̂n+1|n)+vn+1) (6.120)

= f (x̂n|n)+K n+1(h(x̂n+1|n +en+1|n)−h(x̂n+1|n)+vn+1) (6.121)

' f (x̂n|n)+K n+1(h
′
(xn+1|n)en+1|n +vn+1) (6.122)

en+1|n = xn+1− x̂n+1|n ' f (xn)+wn+1− f (x̂n|n) (6.123)

So

en+1|n+1 = xn+1− x̂n+1|n+1 (6.124)

= f (x̂n|n +en|n)+wn+1− x̂n+1|n+1 (6.125)

' f
′
(x̂n|n)en|n +wn+1−K n+1(h

′
(f (x̂n|n))(f

′
(x̂n|n)en|n +wn+1)+vn+1)

(6.126)
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or

en+1|n+1 ≈ f
′
(x̂n|n)−K n+1h′(f (x̂n|n))f

′
(x̂n|n)en|n

+(I−K n+1h
′
(f (x̂n|n)))wn+1−K n+1vn+1 (6.127)

Suppose the nominal value of the state estimator x̂n|n is x̂0 and the error co-

variance matrices Pn+1|n and Pn|n have converged to some constant values to

the K n+1→K 0, Then the above recursion can be cast in the form (with en = en|n)

:-

en+1 ≈ (I−K 0h
′
(f (x̂0)))f

′
(x̂0)en +(I−K 0h

′
(f (x̂0)))wn+1−K 0vn+1 (6.128)

It is clear that en → 0 approximately if the maximum magnitude eigenvalue of

the matrix (I −K 0h
′
(f (x̂0)))f

′
(x̂0) is smaller than unity. We have ensured this

during our simulations by taking nominal values of x̂0. The maximum magnitude

eigenvalue of a matrix A is also called its spectral radius and is given by ρ(A) =

limn→∞ ||An||1/n ≤ ||A|| where ||.|| denotes spectral norm. Hence, we can ensure

stability of the EKF by forcing ||(I−K 0h
′
(f (x̂0)))f

′
(x̂0)||< 1. This can be achieved

by changing the Kalman gain matrix K 0 slightly. This may equivalently be achiev-

ed by estimating the error en (using a desire state) and giving a negative error

feedback (−K cen) into the EKF method so that the dynamics of en becomes (in

the absence of noise):-

en+1 = (I−K 0h
′
(f (x̂0)))f

′
(x̂0)en−K cen (6.129)

with the feedback control matrix K c being chosen so that ρ((I−K 0h
′
(f (x̂0)))f

′
(x̂0)−

K c)< 1. Further denoting

A = (I−K 0h
′
(f (x̂0))f

′
(x̂0)−K c (6.130)

B1 = I−K 0h
′
(f (x̂0)) (6.131)

B2 =−K 0 (6.132)

We can write the estimation error evolution equation in the presence of noise as

en+1 = Aen +B1wn+1 +B2vn+1 (6.133)



94

which gives to noise contribution to en as

en =
n−1

∑
k=0

An−k−1(B1wk+1 +B2vk+1) (6.134)

which has variance of

E[||en||2] =
n−1

∑
k=0

Tr[An−k−1(B1QBT
1 +B2RBT

2 )A
T (n−k−1)

] (6.135)

which is bounded above by

d
n−1

∑
k=0
||A||2(n−k−1)||B1QBT

1 +B2RBT
2 ||= d

[
1−||A||2n

1−||A||

]
||B1QBT

1 +B2RBT
2 ||

(6.136)

are assuimg stablity so that ||A||< 1, we get

lim
n→∞

E[||en||2]≤
d

1−||A||
||B1QBT

1 +B2RBT
2 || (6.137)

3. Our estimation shows that the upper bound is very small as compared to ||x̂n|n||2

so that noise does not significantly affect the convergence.

4. Inductance of the line is less prone to noise than the R, G values for the following

reason. The line equation in the frequency domain is

d
dz

V (ω,z) =−(R+ jωL)I(ω,z)+Wv(ω,z) (6.138)

Owing to the factor of w in the numerator and w2 in the denominator in the

expression for L̂, it is clear that if we operate at high frequencies, L̂ will have a

smaller variance related to L2, as compared to that of R̂ relative to R. Specially,

substituting for V
′
(ω,z) is the expression for R̂, L̂ gives

R̂ =

[
∑Re[I(ω,z)((R+ jωL)I(ω,z)+Ev(ω,z))]

∑ |I(ω,z)|2

]
(6.139)

= R+

[
∑ |I(ω,z)|2 Re[I(ω,z)Ev(ω,z)]

∑ |I(ω,z)|2

]
(6.140)

L̂ =

[
∑ω Im[I(ω,z)((R+ jωL)I(ω,z)+Ev(ω,z))]

∑ω2|I(ω,z)|2

]
(6.141)
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equivalently

∑
ω,z

Re[I(ω,z)V
′
(ω,z)] = R̂∑

ω,z
|I(ω,z)|2 (6.142)

and

∑
ω,z

ω Im[I(ω,z)V
′
(ω,z)] = L̂∑

ω,z
ω

2|I(ω,z)|2 (6.143)

R̂ =

[
∑ω,z Re[I(ω,z)V

′
(ω,z)]

∑w,z |I(ω,z)|2

]
(6.144)

L̂ =

[
∑ω,z ω Im[I(ω,z)V

′
(ω,z)]

∑ω,z ω2|I(ω,z)|2

]
(6.145)

= L+

[
∑ω Im[I(ω,z)Ev(ω,z)]

∑ω2|I(ω,z)|2

]
(6.146)

So,

Var(R̂−R)≈ σ
2
Ev
/∑ |I(ω,z)|2 (6.147)

Var(L̂−L)≈ σ
2
Ev
/∑ω

2|I(ω,z)|2 (6.148)

where Ev(ω,z) is white noise with

E[Ev(ω,z)Ev(ω
′
,z′)] = σ

2
Ev

δ
ωω
′δzz′ (6.149)

Thus,
Var(R̂−R)

R2 � Var(L̂−L)
L2 (6.150)

when ω varies over high frequencies for which ωL� R.

6.1.5 Conclusions

In this chapter, KF and EKF methods have been applied for state and parameter

estimation of non-uniform transmission line. For this, stochastic based state

equations are derived using Telegrapher’s equation for transmission line. Measure-

ment equation is formed and measurements for estimation purpose have been

obtained by solving the eigenvalue problem. Sparse matrix factorization using

Kronecker product for Fourier unitary transform ease the mathematical implemen-

tation by providing compact representation. The state and parameters estimated

using KF and EKF methods have been compared with RLS method. As the

process noise and measurement noise are taken into account by KF and EKF
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methods, they present better estimation than RLS method.
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Figure 6.4: Circuit diagram of a three-phase transmission line.

6.2 State Estimation and Parameter Estimation of Three-

Phase Transmission Line

6.2.1 Modeling of Three-Phase Transmission Line

A three-phase transmission line model is represented by a 3×3 matrix by assum-

ing that ground has zero potential. An equivalent circuit of three-phase NTL is

shown in Fig. 6.4. This circuit has been expressed in the form of differential

equations using partial derivatives of phase voltages and phase currents. Segment

x and x+∆x are considered as sending-end and receiving-end terminal respectively.

va, vb, vc are the phase voltages and ia, ib, ic are the phase current respectively.

Note that, phase voltage and current are the function of both time t and distance

x. (6.151)-(6.156) are obtained by applying KCL in the circuit. They are :-
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∂

∂x
va +La(x)i

′
a +Mab(x)i

′
b +Mac(x)i

′
c +Ra(x)ia +Rg(x)(ia + ib + ic) = wva (6.151)

∂

∂x
vb +Lb(x)i

′
b +Mba(x)i

′
a +Mbc(x)i

′
c +Rb(x)ib +Rg(x)(ia + ib + ic) = wvb (6.152)

∂

∂x
vc +Lc(x)i

′
c +Mca(x)i

′
a +Mcb(x)i

′
b +Rc(x)ic +Rg(x)(ia + ib + ic) = wvc (6.153)

∂

∂x
ia +Ca(x)v

′
a +Cab(x)(v

′
a− v

′
b)+Cac(x)(v

′
a− v

′
c)+Gag(x)va

+Gab(va− vb +Gac(x)(va− vc = wia (6.154)

∂

∂x
ib +Cb(x)v

′
b +Cba(x)(v

′
b− va)+Cbc(x)(v

′
b− vc)+Gbg(x)vb

+Gba(x)(vb− va)+Gbc(x)(vb− vc) = wib (6.155)

∂

∂x
ic +Cc(x)v

′
c +Cca(x)(v

′
c− v

′
a)+Ccb(x)(v

′
c− v

′
b)+Gcg(x)vc

+Gca(x)(vc− va)+Gcb(x)(vc− vb) = wic (6.156)

where symbol ′ represents the derivative w.r.t. time t. R j(x), L j(x) and C j(x)

are resistance, self inductance and self capacitance of phase j respectively (∀

j = a,b,c). M jk(x) and C jk(x) are mutual inductance and mutual capacitance

between phase j and k respectively (∀ j,k = a,b,c). Assuming that the absolute

value of mutual inductance and mutual capacitance among phases a,b,c are

equal. G jk(x) denotes conductance among phases a,b,c and ground g. Rg(x)

denotes resistance of ground.

Representing the phase impedance (Zabc) and phase admittance (Yabc) of a

three-phase NTL as:-

Zabc =


Za Zab Zac

Zab Zb Zbc

Zac Zbc Zc

 ,Yabc = j


Ba Bab Bac

Bab Bb Bbc

Bac Bbc Bc

 (6.157)

where the off-diagonal terms represent the mutual impedance among the phases

ab,ba,bc,cb,ac and ca. The phase impedance matrix (Ω/km) and admittance

matrix (Ω−1/km) has the following form :-

Z j = R j + jX j (6.158)

Yj = jB j (6.159)
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where j = a,b,c,ab,bc,ac. We neglect G j term because it has small impact on

the types of studies that use the model.

6.2.2 Modeling of Transposed/Untransposed Transmission Line

The model in the previous section can be used to represent either transposed or

untransposed TL. Positive sequence quantities are used to represent transposed

line. The phase quantities are converted into sequence quantities for this purpose.

A zero-sequence currents and voltages are expressed as :-

i0 =
1
3
(ia + ib + ic) (6.160)

v0 =
1
3
(va + vb + vc) (6.161)

Using (6.160)-(6.161) and (6.151)-(6.156) we obtain :-

∂

∂x
va +(La(x)−Mab(x))i

′
a +3Mab(x)i

′
0 +Ra(x)ia +3Rg(x)i0 = wva (6.162)

∂

∂x
vb +(Lb(x)−Mbc(x))i

′
b +3Mbc(x)i

′
0 +Rb(x)ib +3Rg(x)i0 = wvb (6.163)

∂

∂x
vc +(Lc(x)−Mca(x))i

′
c +3Mca(x)i

′
0 +Rc(x)ic +3Rg(x)i0 = wvc (6.164)

∂

∂x
ia +Ca(x)v

′
a +3Cab(x)(v

′
a− v

′
0)+Gag(x)va +3Gab(x)(va− v0) = wia (6.165)

∂

∂x
ib +Cb(x)v

′
b +3Cbc(x)(v

′
b− v

′
0)+Gbg(x)vb +3Gab(x)(vb− v0) = wib (6.166)

∂

∂x
ic +Cc(x)v

′
c +3Cca(x)(v

′
c− v

′
0)+Gcg(x)vc +3Gca(x)(vc− v0) = wic (6.167)

Voltages and currents in the equation (6.162)-(6.167) are the function of line

length x and time t, and their analysis is complicated due to presence of mutual

effects among phase conductors and ground. Linear transformation of three-

phase system into three independent single-phase circuit allows for removing

these mutual effects. In order to de-couple phase quantities, a suitable transfor-

mation called Clarke transformation [130] is used to convert the phase quantities

into sequence quantities. Clarke transformation matrix gives the relations between

phase values with index a,b,c and values with sequence index α, β , 0.

fαβ0 = T−1 fabc (6.168)
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where T =


1 1 1

1 a2 a

1 a a2

, a = exp( j 2π

3 ).

(6.169)-(6.170) show the relationship between the phase voltages and currents

and the sequence voltages and currents respectively.

Vαβ0 = T−1Vabc (6.169)

Iαβ0 = T−1Iabc (6.170)

where

Vαβ0 =


Vα

Vβ

V0

 , Iαβ0 =


Iα

Iβ

I0

 , Vabc =


Va

Vb

Vc

 , Iabc =


Ia

Ib

Ic


(6.171)-(6.172) show the relationship between the phase impedance/admittance

matrix and the sequence impedance/ admittance matrix. The sequence impedance

matrix is not diagonal for untransposed TL. This means that the positive sequence

impedance depends on all three (positive, negative and zero) sequence components

which increase the computation complexity. The sequence impedance/admittance

matrix has the following form :-

Zαβ0 = T−1ZabcT (6.171)

Yαβ0 = T−1YabcT (6.172)

where:

Zαβ0 =


Zα 0 0

0 Zβ 0

0 0 Z0

 ,Yαβ0 = j


Bα 0 0

0 Bβ 0

0 0 B0


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The following assumptions are taken for obtaining sequence quantities of trans-

posed NTL as :-

L = La = Lb = Lc,R = Ra = Rb = Rc,C =Ca =Cb =Cc,

G = Gab = Gac = Gbc,Gg = Gag = Gbg = Gcg,

M = Mab = Mac = Mbc = Mba = Mcb = Mca,

Cm =Cab =Cac =Cbc =Cba =Ccb =Cca (6.173)

substituting (6.173), (6.169) and (6.170) into (6.162)-(6.167), we obtain the SDE

for NTL. They are :-

∂

∂x
vi +Li(x)i

′
i +R(x)ii = wvi (6.174)

∂

∂x
ii +C(x)v

′
i +Gg(x)vi = wii (6.175)

where i = α,β ,0. wvi and wii are zero mean exponential correlation process. Ri,

Li, Ci and Gi denote the positive sequence resistance, inductance, capacitance

and admittance respectively. These values are :-

L0 = L + 2M, Lα = Lβ = L−M, Cα = Cβ = C + 3Cm, R0 = R+ 3Rg, Gα = Gβ =

3G+Gg. Now, considering ζ is the parameters R,L,C,G as :-

ζi(x) = ζi(x|θ) =
p

∑
m=1

θ [m]ζi,m(x) (6.176)

Representing vi, ii, wvi and wii in terms of spatial Fourier series as :-

ξi = ∑
n

ξi,n(t)exp
(

j2πnx
d

)
(6.177)

where ξ denotes v, i,wv,wi. d is the total length of the transmission line.

Representing (6.177) in matrix form as :-

ξi(x) = ∑
N

ξi(n)W N
nx (6.178)
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where ξi(x) denotes N point DFT at n = 0, ...,(N − 1). Weight matrix (W N) is

simply defined as :-

W N = e j2π/N =


W 0

N W 0
N W 0

N ... W 0
N

W 0
N W 1

N W 2
N ... W N−1

N. . . ... .
. . . ... .
. . . ... .

W 0
N W N−1

N W 2N−1
N ... W (N−1)2

N

 (6.179)

(6.179) can be represented by sparse matrix factorization using Kronecker product

[127] as:-

W N =
{

B
}

N/2
⊗W N/2,W 1 = 1 (6.180)

where N is a power of two, and
{

B
}

N/2
has N/2 matrices in the set, with the kth

matrix k = 0 to (N/2−1) given by

Bk =



1 1

1 j

 , k = 11 1

1 −1

 , otherwise


Therefore, (6.178) is rearranged as :-

ξi(x) = ∑
N

ξi(n)×
{

B
}

N/2
⊗WN/2 (6.181)

From (6.176), the value of ζi,m(x) can be expressed in terms of truncated Fourier

series as :-

((
ζi[n−m|θ ]

))
−N≤n,l≤N

= ζi(θ) =
p

∑
m=1

θ [m]ζim (6.182)
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Substituting (6.176) along with (6.182) into (6.174)-(6.175) and equating both sides

coefficients, we have

R[θ ]iα(t)+Lα [θ ]i
′
α(t)+ jD vα(t) = wvα

(t) (6.183)

R[θ ]iβ (t)+Lβ [θ ]i
′
β
(t)+ jD vβ (t) = wvβ

(t) (6.184)

R0[θ ]i0(t)+L0[θ ]i
′
0(t)+ jD v0(t) = wv0(t) (6.185)

Gα [θ ]vα(t)+Cα [θ ]v
′
α(t)+ jD iα(t) = wiα (t) (6.186)

Gβ [θ ]vβ (t)+Cβ [θ ]v
′
β
(t)+ jD iβ (t) = wiβ (t) (6.187)

G0[θ ]v0(t)+C0[θ ]v
′
0(t)+ jD i0(t) = wi0(t) (6.188)

where D = diag[2πn
d ;−N ≤ n ≤ N]. Rearranging (6.183)-(6.188) to find their state

space model, we get

∂

∂ t
ξ (t) = F(θ)ξ (t)+P(θ)w(t) (6.189)

State transition matrix F(θ) obtained from (6.189) is defined in real and imaginary

terms as :-

−F(θ) =−FR(θ)− jF I(θ) =
C−1

α [θ ]Gα [θ ] 0 0 jC−1
α [θ ]D 0 0

0 C−1
β

[θ ]Gβ [θ ] 0 0 jC−1
β

[θ ]D 0

0 0 C−1[θ ]Gg[θ ] 0 0 jC−1[θ ]D
jL−1

α [θ ]D 0 0 L−1
α [θ ]R[θ ] 0 0

0 jL−1
β

[θ ]D 0 0 L−1
β

[θ ]R[θ ] 0

0 0 jL−1
0 [θ ]D 0 0 L−1

0 [θ ]R0[θ ]

 (6.190)

State vector matrix denoted by ξ (t) is represented as :-

ξ (t) = ξ R(t)+ jξ I(t) =
[
vα(t),vβ (t),v0(t), iα(t), iβ (t), i0(t)

]T
(6.191)
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Here, ξ R(t) and ξ I(t) denote real and imaginary terms respectively. Also, process

noise matrix is

P(θ) = PR(θ)+ jPI(θ)

=


C−1

α [θ ] 0 0 0 0 0
0 C−1

β
[θ ] 0 0 0 0

0 0 C−1[θ ] 0 0 0
0 0 0 L−1

α [θ ] 0 0
0 0 0 0 L−1

β
[θ ] 0

0 0 0 0 0 L−1
0 [θ ]

 (6.192)

w(t) = wR(t)+ jwI(t) =[
wiα (t),wiβ (t),wi0(t),wvα

(t),wvβ
(t),wv0(t)

]T
(6.193)

Substituting (6.190)-(6.193) into (6.189), the line equation are :-

(ξ
′

R(t)+ jξ
′

I(t)) = (FR(θ)+ jF I(θ))(ξ R(t)+ jξ I(t))

+(PR(θ)+ jPI(θ))(wR(t)+ jwI(t)) (6.194)

The real and imaginary parts are :-

ξ
′

R(t) = FR(θ)ξ R(t)−F I(θ)ξ I(t)+PR(θ)wR(t)

−PI(θ)wI(t) (6.195)

ξ
′

I(t) = FR(θ)ξ I(t)+F I(θ)ξ R(t)+PR(θ)wI(t)

+PI(θ)wR(t) (6.196)

The combined augmented state space model is

∂

∂ t


ξ R(t)

ξ I(t)

θ(t)

=


FR[θ ] −F I[θ ] 0

F I[θ ] FR[θ ] 0

0 0 I




ξ R(t)

ξ I(t)

θ(t)



+


PR[θ ] −PI[θ ] 0

PI[θ ] PR[θ ] 0

0 0 I




wR(t)

wI(t)

εθ (t)

 (6.197)



105

where I is the unitary matrix of sample size 2N +1. The measurement model is

∂ξ vi,n(t) = vi(t,xn)∂ t +∂wvi,n(t), n = 1,2, ...,m (6.198)

∂ξ ii,n(t) = ii(t,xn)∂ t +∂wii,n(t), n = 1,2, ...,m (6.199)

where i=α,β ,0. Now noting that vi(t,xn) and ii(t,xn) can be expressed as linear

combinations of the Fourier series components of the line voltage and current,

i.e.

vi(t,xn) = ∑
n

vi,n(t)exp( j2πnx/d), n = 1,2, ...,m (6.200)

ii(t,xn) = ∑
n

ii,n(t)exp( j2πnx/d), n = 1,2, ...,m (6.201)

When the measurement of Fourier component is not possible, then measurement

of the current and voltage vector at a finite set of spatial points along the line can

be used. Thus H gets modified. The measurement model in vector form is as

follows :-

∂Z(t) =(H1ξ R(t)+H2ξ I(t))∂ t +∂V (t)

= Hη(t)∂ t +∂V (t) (6.202)

where Z(t) = [ξ vi,1(t), ...,ξ vi,m(t),ξ ii,1(t), ...ξ ii,m(t)]
T is a 6m×1 real vector.

H = [H1, ...,H6,0] (6.203)



106

6.2.3 Modeling of NTL using Frequency Domain Analysis

Expanding line voltage vi and line current ii in frequency domain using Fourier

transform as :-

− ∂

∂x
Vα = [R(x|θ)+ jωLα(x|θ)] Iα +Wvα

(6.204)

− ∂

∂x
Vβ =

[
R(x|θ)+ jωLβ (x|θ)

]
Iβ +Wvβ

(6.205)

− ∂

∂x
V0 = [R0(x|θ)+ jωL0(x|θ)] I0 +Wv0 (6.206)

− ∂

∂x
Iα = [Gα(x|θ)+ jωCα(x|θ)]Vα +Wiα (6.207)

− ∂

∂x
Iβ =

[
Gβ (x|θ)+ jωCβ (x|θ)

]
Vβ +Wiβ (6.208)

− ∂

∂x
I0 = [G0(x|θ)+ jωC(x|θ)]V0 +Wi0 (6.209)

where

Zi(x) = Zi(x|θ) = Ri(x|θ)+ jωLi(x|θ) = ∑
n

Zi,n(ω|θ)e j2πnx/d

Zi,n(ω|θ) = Ri,n(θ)+ jωLi,n(θ)

Similarly,

Yi(z) = Yi(z|θ) = Gi(z|θ)+ jωCi(z|θ) = ∑
n

Yi,n(ω|θ)e j2πnx/d

Yi,n(ω|θ) = Gi,n(θ)+ jωCi,n(θ)

Using (6.176) and (6.217)-(6.201) into (6.204)-(6.209) and apply the perturbation

theory to consider the nonlinearity of the Transmission line. We express line

voltage and current in terms of σ , the perturbation parameter.

Vi,n(ω) =V (0)
i,n (ω)+σV (1)

i,n (ω)+σ
2V (2)

i,n (ω)+ ... (6.210)

Ii,n(ω) = I(0)i,n (ω)+σ I(1)i,n (ω)+σ
2I(2)i,n (ω)+ ... (6.211)

where V (0)
i,n (ω) and I(0)i,n (ω) are linear terms. σV (1)

i,n (ω) and σ I(1)i,n (ω) are nonlinear

terms.
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Measurement model is represented as :-



jD 0 0 Zα (ω|θ) 0 0

0 jD 0 0 Zβ (ω|θ) 0

0 0 jD 0 0 Z0(ω|θ)
Yα (ω|θ) 0 0 jD 0 0

0 Yβ (ω|θ) 0 0 jD 0

0 0 Y0(ω|θ) 0 0 jD

⊗ In×



vα(ω)

vβ (ω)

v0(ω)

iα (ω)

iβ (ω)

i0(ω)


= 0 (6.212)

For simulations, measurements have been done using (6.212).

6.2.4 State Estimation for Transmission Line

(6.189) has been discretized to implement the state estimation technique. The

discrete model of the NTL is represented as :-

Xk+1 = FkXk +BkUk +GkWk (6.213)

Zk = HkXk +Vk (6.214)

where Fk

=


1−TsC−1

α [θ ]Gα [θ ] 0 0 −Ts jC−1
α [θ ]D 0 0

0 1−TsC−1
β

[θ ]Gβ [θ ] 0 0 −Ts jC−1
β

[θ ]D 0

0 0 1−TsC−1[θ ]Gg[θ ] 0 0 −Ts jC−1[θ ]D
−Ts jLα [θ ]

−1D 0 0 1−TsL−1
α [θ ]R[θ ] 0 0

0 −Ts jL−1
β

[θ ]D 0 0 1−TsL−1
β

[θ ]R[θ ] 0

0 0 −Ts jL−1
0 [θ ]D 0 0 1−TsL−1

0 [θ ]R0[θ ]

 ∈ R6×6,

Hk =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


∈ R6×6,Gk =


C−1

α [θ ] 0 0 0 0 0
0 C−1

β
[θ ] 0 0 0 0

0 0 C−1[θ ] 0 0 0
0 0 0 L−1

α [θ ] 0 0
0 0 0 0 L−1

β
[θ ] 0

0 0 0 0 0 L−1
0 [θ ]

 ∈ R6×6

Xk ∈ R6×1 denotes the state vector as :-

Xk =
[

vα,k vβ ,k v0,k iα,k iβ ,k i0,k
]T

(6.215)

The state model is given as :-
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

Vα,k+1

Vβ ,k+1

V0,k+1

iα,k+1

iβ ,k+1

i0,k+1


=



K1 0 0 K2 0 0

0 K3 0 0 K4 0

0 0 K5 0 0 K6

K7 0 0 K8 0 0

0 K9 0 0 K10 0

0 0 K11 0 0 K12





Vα,k

Vβ ,k

V0,k

iα,k

iβ ,k
i0,k



+


C−1

α [θ ] 0 0 0 0 0
0 C−1

β
[θ ] 0 0 0 0

0 0 C−1[θ ] 0 0 0
0 0 0 L−1

α [θ ] 0 0
0 0 0 0 L−1

β
[θ ] 0

0 0 0 0 0 L−1
0 [θ ]





Wiα ,k

Wiβ ,k

Wi0,k

Wvα ,k

Wvβ ,k

Wv0,k


(6.216)

where

K1 = 1−TsC−1
α [θ ]Gα [θ ], K2 =−Ts jC−1

α [θ ]D, , K3 = 1−TsC−1
β
[θ ]Gβ [θ ]

K4 =−Ts jC−1
β
[θ ]D , K5 = 1−TsC−1[θ ]Gg[θ ], K6 =−Ts jC−1[θ ]D,

K7 =−Ts jLα [θ ]
−1D, K8 = 1−TsL−1

α [θ ]R[θ ] , K9 =−Ts jL−1
β
[θ ]D

K10 = 1−TsL−1
β

[θ ]R[θ ] , K11 =−Ts jL−1
0 [θ ]D , K12 = 1−TsL−1

0 [θ ]R0[θ ].

Ts is the sampling time. Vin is the measurement vector of line voltage and line

current respectively.

Zk ∈ R6×6 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





Vα,n

Vβ ,n

V0,n

iα,n

iβ ,n
i0,n


+



V1n

V2n

V3n

V4n

V5n

V6n


(6.217)

As the equation (6.217) is a linear estimation problem, KF method has been used

to estimate line voltage and line current. The number of unknown parameters

can be identified by considering whether the estimation is being performed in

the real or complex domain. This is illustrated in Table 6.4. For transposed TL, a

ninth order parameter vector θ k ∈R9×1 = [Rα(k),Rβ ,k,R0,k,Xα,k,Xβ ,k,X0,k,Bα,k,Bβ ,k,B0,k]
T
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Table 6.4: Unknown Parameters of Estimation Methods.
Complex Domain Real Domain

Transposed Line Z1,Y1 R1,X1,B1

Untransposed Line Zi,Yi Ri,Xi,Bi

i = α,β ,0,αβ ,α0,β0.

is defined for parameter identification. The parameters to be estimated must are

added in (6.216) to obtain the augmented matrix as :-

X a
k =

[
X T

k , θ
T
k
]T ∈ R15×1 (6.218)

The augmented state model is :-

X a
k+1 =F a

k X a
k +Ba

kUk +G a
k W a

k (6.219)

Z a
k =H a

k X a
k +V a

k (6.220)

where

G a
k =

 [Gk] [0]

[0] [0]

 ∈ R15×15,W a
k =

 W T
§

W T
θ

 ∈ R15×1

H a
k =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

 ∈ R6×15 and V a
k =

 V T
x

V T
θ

 ∈ R6×15

F a
k ∈ R15×15 is nonlinear function of Xk and θk. Therefore, EKF algorithm can

be used to linearize Fk matrix using Jacobian transform as :-

Fk =−
∂

∂θ(m)


C−1

α [θ ]Gα [θ ] 0 0 jC−1
α [θ ]D 0 0

0 C−1
β

[θ ]Gβ [θ ] 0 0 jC−1
β

[θ ]D 0

0 0 C−1[θ ]Gg[θ ] 0 0 jC−1[θ ]D
jLα [θ ]

−1D 0 0 L−1
α [θ ]R[θ ] 0 0

0 jL−1
β

[θ ]D 0 0 L−1
β

[θ ]R[θ ] 0

0 0 jL−1
0 [θ ]D 0 0 L−1

0 [θ ]R0[θ ]


(6.221)

X a
k =

[
Vα,k,Vβ ,k,V0,k, iα,k, iβ ,k, i0,k,Rα,k,Rβ ,k,R0,k,Xα,k,Xβ ,k,X0,k,Bα,k,Bβ ,k,B0,k

]T
.

For untransposed line, all of the following 6 different complex entries (Zα , Zαβ ,

Zα0, Zβ , Zβ0 and Z0) in Zαβ0 are considered to be unknown. The total number

of real unknown parameters will be 12. Similarly, Yαβ0 has 6 real unknown

parameters by excluding Gi term due to negligible effect (discussed above).
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So therefore, total 18 unknown parameters for a three-phase untransposed

transmission line. These parameter are defined as θ k ∈R18×1. Then the dimension

of augmented matrices are X a
k ∈ R24×1, G a

k ∈ R24×24, W a
k ∈ R24×1, F a

k ∈ R24×24

and H a
k ∈ R6×24.

6.2.5 Simulation Results

In general, TL are classified into three section: 1) short TL (d ≤ 80 km), 2)

medium TL (80 ≤ d ≤ 250 km) and 3) long TL (250 ≤ d km). Among all, long TL

is considered to get high accuracy of calculating the line parameters modeled

in distributed form. MATLAB software has been used to implement the derived

equations. The conductance G is neglected as the value of line conductor is

very low. This is due to the power lost in the insulation resistance is very small

as compared to the other line losses.

We estimate line resistance R, reactance X and susceptance B. We consider a

300-km three-phase long transmission line. On the sending terminal, a balanced

440 KV/60 Hz three-phase source is attached. The receiving terminal of the

transmission line is connected to a three-phase load of 500 kVA with a power

factor (PF) of 0.97 [118]. The parameters’s value for simulation are given as :-

[
Zαβ0

]
=


0.058+ j0.636 0.471+ j0.326 0.470+ j0.273

0.471+ j0.326 0.058+ j0.636 0.471+ j0.326

0.470+ j0.273 0.470+ j0.326 0.058+ j0.636

Ω/km

[
Yαβ0

]
=


j4.261 − j0.922 − j0.309

− j0.922 j4.439 − j0.922

− j0.309 − j0.922 j4.261

µS/km (6.222)

The initial values of variance of process noise and measurement noise are 0.005

and 1.0 respectively. The line currents and voltages at α, β , 0 of NTL have

been estimated using RLS, KF and UKF methods for different noisy inputs as

shown in Fig. 6.5 to 6.10. Further, we estimated the behaviour of the circuit

parameters along the line. Table 6.5 and 6.6 show the comparison of RMSE

and standard deviation of the parameter errors for state vectors in NTL using

RLS, KF and UKF methods. Table 6.7 and 6.8 show comparison of RMSE

for different parameters in transposed and untransposed line using RLS, KF
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Figure 6.5: Comparison of line currents using Gaussian noisy input (µ = 0 and σ2 = 0.1) with
RLS, KF and UKF methods.

and UKF methods. It shows UKF method has less variability in the parameter

estimates compared to RLS and EKF methods.

Remarks: The limitation of this work are:

(a) The parameters of the transposed/untransposed NTL have been estimated

by excluding mutual effects among phase conductors and ground as it

increases the mathematical complexity.

(b) Higher order perturbation theory can be used, as it will present more accurate

nonlinear mathematical expressions but it will increase the mathematical

complexity.

6.2.6 Conclusions

This chapter estimates the states and parameters of a transposed and un-

transposed three-phase nonuniform transmission line circuit using KF, EKF and

UKF methods and compared the results with the classical RLS method. To

implement the various Kalman filtering algorithms, we used Kirchhoff’s current

law, Fourier series expansion and Clarke transformation matrix to derive the
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Figure 6.6: Comparison of line currents using Gaussian noisy input (µ = 0 and σ2 = 0.25)
with RLS, KF and UKF methods.

Figure 6.7: Comparison of line currents using Gaussian noisy input (µ = 0 and σ2 = 0.5) with
RLS, KF and UKF methods.
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Figure 6.8: Comparison of line voltages using Gaussian noisy input (µ = 0 and σ2 = 0.1) with
RLS, KF and UKF methods.

Figure 6.9: Comparison of line voltages using Gaussian noisy input (µ = 0 and σ2 = 0.25)
with RLS, KF and UKF methods.
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Table 6.5: Comparison of RMSE for line currents and line voltages using RLS, KF and UKF
methods.

S.
no.

Gaussian noise
at input source

State RMSE using
RLS method

RMSE using
KF method

RMSE using
UKF method

1 µ = 0
σ = 0.0

iα
iβ
i0
vα

vβ

v0

0.6738
0.6415
0.7010
0.5890
0.6894
0.6404

0.4482
0.4297
0.2321
0.2723
0.3882
0.5841

0.0932
0.0982
0.0782
0.0992
0.1092
0.1321

2 µ = 0
σ = 0.1

iα
iβ
i0
vα

vβ

v0

0.7328
0.7409
0.8304
0.6819
0.8012
0.7194

0.5181
0.5260
0.4122
0.3821
0.4281
0.6349

0.1031
0.1006
0.0889
0.1019
0.1132
0.2387

3 µ = 0
σ = 0.25

iα
iβ
i0
vα

vβ

v0

0.8118
0.9109
0.9201
0.7610
0.9411
0.8791

0.6780
0.6619
0.6125
0.4521
0.5129
0.7719

0.2531
0.1326
0.1018
0.1329
0.2332
0.5487

4 µ = 0
σ = 0.5

iα
iβ
i0
vα

vβ

v0

0.9411
1.3401
1.0921
0.9811
1.5112
0.9931

0.8781
0.7854
0.7224
0.6522
0.7221
0.8211

0.6532
0.2521
0.2211
0.6529
0.3532
0.6687
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Table 6.6: Comparison of standard deviation of the parameter errors (σe) for line currents and
line voltages using RLS, KF and UKF methods.

S.
no.

Gaussian noise
at input source

State σe using
RLS method

σe using
KF method

σe using
UKF method

1 µ = 0
σ = 0.0

iα
iβ
i0
vα

vβ

v0

0.6738
0.6415
0.7010
0.5890
0.6894
0.6404

0.3488
0.3927
0.2319
0.2714
0.3690
0.5001

0.1218
0.1910
0.1109
0.0912
0.3690
0.1060

2 µ = 0
σ = 0.1

iα
iβ
i0
vα

vβ

v0

0.7718
0.7811
0.9012
0.6710
0.7719
0.8810

0.5481
0.5127
0.3620
0.4314
0.4312
0.7019

0.5511
0.2511
0.2310
0.1012
0.4409
0.2310

3 µ = 0
σ = 0.25

iα
iβ
i0
vα

vβ

v0

0.8782
0.9101
1.1011
0.8710
0.9019
0.9912

0.6182
0.6117
0.5121
0.5514
0.5710
0.9120

0.6232
0.3940
0.3632
0.4510
0.5701
0.3611

4 µ = 0
σ = 0.5

iα
iβ
i0
vα

vβ

v0

0.9910
0.9561
1.3101
0.9610
0.9920
1.0232

0.7880
0.7210
0.7220
0.7602
0.6540
1.0820

0.9901
0.5441
0.6732
0.4032
0.7712
0.4510

Table 6.7: Comparison of RMSE for different parameters in transposed line using RLS, EKF
and UKF methods.

Parameter RMSE of R
using RLS

RMSE of R
using EKF

RMSE of R
using UKF

RMSE of
X or B
using RLS

RMSE of
X or B
using EKF

RMSE of
X or B
using UKF

Zα (Ω)
Zβ (Ω)
Z0(Ω)
Bα (Ω)
Bβ (Ω)
B0(Ω)

1.06881
1.06881
1.96154
-
-
-

0.22543
0.22543
0.25530
-
-
-

0.01543
0.09543
0.17530
-
-
-

0.25786
0.25786
0.97765
0.09376
0.10983
1.05154

0.00676
0.00676
0.24439
0.00576
0.00410
0.03512

0.00176
0.00176
0.09439
0.00110
0.00410
0.01012
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Figure 6.10: Comparison of line voltages using Gaussian noisy input (µ = 0 and σ2 = 0.5)
with RLS, KF and UKF methods.

Table 6.8: Comparison of RMSE for different parameters in untransposed line using RLS,
EKF and UKF methods.

Parameter RMSE of R
using RLS

RMSE of R
using EKF

RMSE of R
using UKF

RMSE of
X or B
using RLS

RMSE of
X or B
using EKF

RMSE of
X or B
using UKF

Zα (Ω)
Zβ (Ω)
Z0(Ω)
Bα (Ω)
Bβ (Ω)
B0(Ω)
Zαβ (Ω)
Zα0(Ω)
Zβ0(Ω)
Bαβ (Ω)
Bα0(Ω)
Bβ0(Ω)

2.00664
1.98566
1.06765
-
-
-
3.78118
1.78718
5.77658
-
-
-

0.00619
0.00986
0.00988
-
-
-
0.00587
0.00485
0.00604
-
-
-

0.00109
0.00326
0.00198
-
-
-
0.00120
0.00325
0.00094
-
-
-

0.34771
0.34778
0.78781
0.18098
0.18123
0.18118
1.34778
2.34781
1.11801
0.81981
0.78118
0.78110

0.00481
0.00481
0.00676
0.00771
0.00347
0.00347
0.00118
0.00718
0.00781
0.00347
0.00781
0.00781

0.00101
0.00101
0.00326
0.00221
0.00097
0.00121
0.001001
0.00532
0.00342
0.00121
0.00432
0.00398
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Telegrapher’s equation of NTL and used perturbation theory to include line curr-

ents and voltages. Further, implementation of Kronecker product has been

utilized to obtain the sparse matrix formulation. Simulation results show better

precision in estimated values using UKF method with actual values as compared

with RLS, KF and EKF methods. For state estimation, RMSE values of parameters

using UKF method are smaller than KF and RLS methods. UKF method provide

better estimations than RLS and EKF methods since UKF method is accurate to

the third order for any nonlinearity. Further, EKF and UKF methods are real-time

estimation methods for estimating the states and parameter of TL in space-time

which demonstrates the superiority of these methods over RLS method.



Chapter 7

Conclusions and Future Scope

7.1 Conclusions

We have studied the state and parameter estimation of linear and nonlinear

systems described by SDE using KF, EKF, IEKF and UKF methods. We recapitu-

late the salient features of this investigation study and results obtained for real-

time state estimation and parameter estimation in the following points :-

(a) As a first problem, we used the classical mathematical model, namely,

Ebers-Moll model together with perturbation theory to obtain closed-form

Volterra expressions between input and output of SCR. The derived equa-

tions can be used as a model for designing, analysis and development

of new integrated circuits in advance before the formation of chips. The

closed form expressions can also be used for circuit parameter estimation

purposes. The derived equations are useful as a model in any simulation

software such as SIMULINK, as this software provides direct access to

circuit parameters. The main advantage of the method is that the use of

nonlinear expressions obtained using perturbation theory instead of using

the linear expression represents distortion which shows the importance of

nonlinear expression. Percentage distortion for SCR circuit is approximately

0.5028 % for 1 V input voltage.

118
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(b) As a second problem, we estimated the states of higher-order RC LPF

and RC HPF circuits using EKF and UKF methods. It also compared the

estimation results with LMS method. The EKF method presents better

estimate than LMS method as EKF method accounts for measurement

noise. Also, the maximal precision of simulation requires the modeling of

circuit in terms of device parameters and circuit elements, so the method is

able to provide good estimation. The method presents real-time estimation.

For sinusoidal signal, SNR for RC LPF circuit using EKF method is 43.769

dB and using LMS method is 32.737 dB approximately. For sinusoidal

signal, SNR for RC HPF circuit using EKF method is 58.144 dB and using

LMS method is 26.886 dB approximately. Also, for square wave, SNR for

RC LPF circuit using EKF method is 55.994 dB and using LMS method

is 34.314 dB approximately. For square wave, SNR for RC HPF circuit

using EKF method is 62.650 dB and using LMS method is 60.480 dB

approximately. While using UKF method for state estimation, we obtained

better closeness of estimated capacitor voltage and diode current with PSPICE

simulated values as compared to the EKF method. This is due to smaller

linearization error of UKF method. Also, the SNR value of UKF method is

better than EKF method. UKF method presents smaller RMSE as compared

to EKF method as UKF method is accurate to the third order for any non-

linearity.

(c) As a third problem, we estimated the states of single phase rectifier circuit

using different versions of KF method. The results show that for noiseless

sinusoidal signal, the SNR (dB) value of capacitor voltage vc using LMS,

EKF, IEKF and UKF methods are 0.42 dB, 1.07 dB, 1.42 dB and 2.42

dB respectively whereas, for noisy input signal with zero mean and 1.0

variance, the SNR (dB) values using LMS, EKF, IEKF and UKF methods are

0.26 dB, 0.90 dB, 1.06 dB and 1.26 dB respectively. Further, for noiseless

sinusoidal signal, the RMSE value of capacitor voltage vc using LMS, EKF,

IEKF and UKF methods are 1.24, 0.86, 0.24 and 0.40 respectively whereas,

for noisy input signal with zero mean and 1.0 variance, the RMSE values

using LMS, EKF, IEKF and UKF methods are 2.55, 1.82, 1.10 and 0.55

respectively. This shows the significance of nonlinearity within the system.

The simulation results show that the SNR value for UKF method is higher
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compared to LMS, EKF and IEKF methods. Also, UKF method has small

RMSE value than the other methods and also less affected by noise. The

UKF method presents better estimate than other versions of KF method.

(d) As a fourth problem, the states of following transistor circuits have been

estimated :-

(ii) CE BJT circuit.

(iv) BJT DA circuit.

The output voltage of CE BJT circuit using EKF and IEKF methods are

compared with the simulated value. For noisy input signal with zero mean

and 1.0 variance, the SNR (dB) values using EKF and IEKF methods are

27.82 dB, 28.43 dB respectively. The result shows that IEKF method provides

a higher SNR than EKF method because it reduces the linearization error

by taking measurement into account when the measurement model is linear-

ized. Performance and stability are not guaranteed for all operating conditions

with the EKF approach since nonlinear systems are linearized around the

operating points of states. Both transistor states and transistor model para-

meters can be estimated using the derived extended state equation. Results

indicate that because IEKF method takes linearization error into account,

it is better able to track the state than EKF method. Further, The voltage

estimation of a DA using UKF method is presented in this paper and the

results have been compared with EKF and IEKF methods. Simulation

results using UKF method show the better closeness of estimated output

voltage with actual simulated values as compared to the EKF and IEKF

methods. UKF method presents smaller MSE value as compared to EKF

and IEKF methods as UKF method is accurate to the third order for any

nonlinearity. As the modeling of the circuit has been performed using

transistor model and circuit elements, the proposed method is able to provide

the maximal precision of simulation. Also, the use of Gummel-Poon model

presents more accurate modeling as compared to the Ebers-Moll model.

This is due to secondary effects of the transistor being taken into account

by the Gummel-Poon.

(e) As a fifth problem, we present the formulation of NTL dynamics modeling

using Fourier series expansion and Kronecker product along with the state

and parameter estimation using KF, EKF and UKF methods. The following



121

circuits have been used for estimation purposes :-

(i) Single-phase NTL circuit.

(ii) Three-phase transposed and untransposed NTL circuit.

In the first problem, state-space model of the single-phase NTL circuit has

been derived. As Telegrapher’s equations used for modeling the NTL are a

function of space and time, the Fourier series expansion of the voltage and

current have been used to obtain the time-dependent equations. Further,

Kronecker product has been used for representation of Fourier unitary trans-

form. The measurements have been obtained by solving the eigenvector

problem. The frequency-domain analysis is used to obtain the state-space

equations. For this, the four distributed parameters of the line are expanded

in Fourier series.

Secondly, we presented KF-based state estimation and EKF and UKF-

based parameter estimation for three-phase NTL. For this, state space

model for three-phase transposed and untransposed NTL has been obtained

by including Fourier series expansion of state and Gaussian noise vectors

in the stochastic differential equations. Clarke transformation matrix has

been utilized for phase to sequence transformation which allows to represent

the three-phase TL into fully transposed TL. The measurement model for

current and voltage vectors along the line are expressed in terms of Fourier

series. Also, the frequency domain analysis is used to obtain the eigenvalue

and eigenvector for measurement model. The voltage and current of NTL

are expanded in Fourier series to obtain the sparse matrix formulation using

Kronecker product. Kronecker product representation of discrete unitary

transforms results in computer efficient implementation. This work imple-

ments the analysis of nonlinearity effect in transmission line using perturba-

tion theory. For this, the nonlinearity of the transmission line is included

by perturbing the voltage and current of the line. Also, we compared the

estimation performances with RLS method. This chapter also discusses

few recent methods used for state and parameter estimation and their

disadvantages.
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7.2 Scope for Future Work

For working with nanotechnology-based circuits both with lumped and distributed

parameters, we require to formulate circuit or transmission line dynamics in

terms of quantum stochastic differential equations in the sense of Hudson and

Parthasarathy. Noisy Heisenberg dynamics for circuit observables like current

and voltage can be derived from noisy Schrodinger dynamics. For this, one

must first start with a circuit Hamiltonian based on the total electrostatic energy

in capacitors plus total magnetic energy in inductors and then include Lindblad

noise terms so that the corresponding Heisenberg quantum stochastic differential

equation (QSDE) generalised a classical situation. Then by taking non-demolition

measurements, in the sense of V. P. Belavkin, we use the Belavkin quantum

filter to estimate parameters and the system state on a real-time basis. This has

direct applications to devices like quantum tunnelling diodes, nanomotors and

more generally quantum electromagnetic fields enclosed within nanocavities.

Molecular dynamics in the presence of radiation can also be controlled using

this approach which enables us to alter the chemical properties of compounds

leading to the manufacture of new kinds of drugs a science well known by the

name molecular medicine.
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