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ABSTRACT

This report deals with a branch of mathematics of utmost importance to scientists and engineers
concerned with actual mathematical calculations. This further deals with the basic theory of some
special functions, as well as applications of this theory to specific problems of physics and engineering.
In the choice of topics, we have been guided by the goal of giving a sufficiently detailed exposition of
those problems which are of greatest practical interest.

Beginning with the basic function and their properties like BETA FUNCTIONS, GAMMA FUNC-
TIONS and HYPERGEOMETRIC FUNCTIONS, further exploring special functions including CYLIN-
DRICAL and SPHERICAL FUNCTIONS.

Chapters containing BESSELS AND LEGENDERS FUNCTIONS are described according to their
different types along with their important properties. Certain applications of these functions in math-
ematics and physics are used to convey the importance of these functions in various fields. Also solved
examples would help in the implication of these formulas derived, in the real world.

The text is also supported with few graphs of the above-mentioned function to provide a good
visual representation along with the study of these special functions. Finally, the references have been
brought up-to-date.
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CHAPTER : 1

Beta Function

1. Beta Function

The Beta function is represented by β (m,n) (where m,n > 0 ) and defined by the definite integral as

β(m,n) =

∫ 1

0

xm−1(1− x)n−1dx

1.1. Properties of Beta Function

i.

β(m,n) = β(n,m)

ii.

β(m,n) =

∫ ∞

0

xn−1

(1 + x)m+n
dx =

∫ ∞

0

xm−1

(1 + x)m+n
dx

iii.

β(m,n) = 2

∫ (π)/2

0

(sin θ)2m−1(cos θ)2n−1dθ
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CHAPTER : 2

Gamma Function

2. Gamma Function

The Gamma Function is denoted by Γn ,where n>0 and defined by

Γn =

∫ ∞

0

e−x(x)m−1dx

2.1. Properties of Gamma Function

i.

Γ1 = 1

ii.

Γ(n+ 1) = nΓ(n) = n!

iii.

Γ(n) = zn
∫ ∞

0

e−zx(x)n−1dx n, z > 0

iv.

Γ(n) =

∫ 1

0

(log
1

y
)n−1dy

v.

Γ(n+ 1) =

∫ ∞

0

e−y
1
n dy

vi.

Γ
1

2
= Γπ

2.2. Relationship between Beta and Gamma Function

β(m,n) =
ΓmΓn

Γ(m+ n)

2.3. Duplication Formula

ΓmΓ(m+
1

2
) =

√
π

22m−1

√
2m

3



CHAPTER : 3

Cylinder Function (Bessel’s Function)

3. Cylinder Function(Bessel’s Function)

By a Cylinder Function we mean a solution of the second order Linear differential equation

u” +
1

z
u′ + (1− ν2

z2
)u = 0 (5.1)

z = complex number

ν= parameter which can take real or complex values

(5.1) is called the Bessel’s equation of order ν

3.1. BESSEL FUNCTION OF NON NEGATIVE INTEGRAL ORDER

One of the solution of Bessel equation with ν being a non negative integer n

u” +
1

z
u′ + (1− n2

z2
)u = 0

is u1 = Jn(z) = BESSEL’S FUNCTION OF FIRST KIND OF ORDER n ,

defined by the series

Jn(z) =

∞∑
k=0

−1k( z2 )
n+2k

k!(n+ k)!
, |z| < ∞ (5.1.1)

Using the Ratio test , series converges . Therefore it represents entire function of z .

Now denote left hand side of (5.1) by l(u)

Consider

αk =
(−1)k

2n+2kk!(n+ k)!

Therefore,

l(u1) =

∞∑
k=0

[
(n+ 2k)(n+ 2k − 1) + (n+ 2k)− n2

]
αkz

n+2k−2 +

∞∑
k=0

αkz
n+2k

=

∞∑
k=0

4 [k(n+ k)]αkz
n+2k−2 +

∞∑
k=0

αkz
n+2k

4



=

∞∑
k=0

[4αk+1(k + 1)(n+ k + 1) + αk] z
n+2k

= 0

Therefore Jn(z) satisfies the Bessel’s equation i.e. it is a Cylinder Function .

• ORDER 0

J0(z) =

∞∑
k=0

−1k( z2 )
2k

k!(k)!

= 1− (z/2)2

(1!)2
+

(z/2)4

(2!)2
− (z/2)6

(3!)2
. . .

• ORDER 1

J1(z) =

∞∑
k=0

−1k( z2 )
1+2k

k!(1 + k)!

=
z

2
− (z/2)3

(2!)
+

(z/2)5

(3!)(2!)
. . .

=
z

2
− (z/2)3

(2!)
+

(z/2)5

(3!)(2!)
. . .

=
z

2

[
1− (z/2)2

1!2!
+

(z/2)4

3!2!
+

(z/2)6

3!4!
+ . . .

]

Bessel’s function of higher order can be represented in terms of two functions
J0(z) and J1(z) .

By multiplying (5.1.1) by zn and differentiating with respect to z, we get,
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d

dz
[znJn(z)] =

d

dz

[ ∞∑
k=0

(−1)kz2n+2k

k!(n+ k)!2n+2k

]

=

∞∑
k=0

(−1)k(2n+ 2k)z2n+2k−1

k!(n+ k)!2n+2k

= zn
∞∑
k=0

(−1)k(2n+ 2k)zn+2k−1

k!(n+ k)!2n+2k

= zn
∞∑
k=0

(−1)k(n+ k)zn+2k−1

k!(n+ k)!2n+2k−1

= zn
∞∑
k=0

(−1)k

k!(n+ k − 1)!

(z
2

)n+2k−1

= znJn−1(z)

Therefore we derived,

d

dz
[znJn(z)] = znJn−1(z)

Some other recurrence relation are as follows:

d

dz
[z−nJn(z)] = −z−nJn+1(z)

PROOF

d

dz
[z−nJn(z)] =

d

dz

[ ∞∑
k=0

(−1)kz2k

k!(n+ k)!2n+2k

]

6



=

∞∑
k=0

(−1)k(2k)z2k−1

k!(n+ k)!2n+2k

=

∞∑
k=0

(−1)kz2k−1

(k − 1)!(n+ k)!2n+2k−1

=

∞∑
m=0

(−1)m+1z2m+1

(m)!(m+ n+ 1)!2n+2m+1

= −z−n
∞∑

m=0

(−1)m

(m)!(m+ n+ 1)!
(
z

2
)n+2m+1

= −z−nJn+1(z)

By performing differentiation in the above derived result, we get

[znJ ′
n(z)] + zn−1Jn(z)n = znJn−1(z)

⇒ J ′
n(z) +

n

z
Jn(z) = Jn−1(z)

[z−nJ ′
n(z)] + z−n−1Jn(z)(−n) = −z−nJn+1(z)

⇒ J ′
n(z)−

n

z
Jn(z) = −Jn+1(z)

Therefore ,

Jn−1 + Jn+1 =
2n

z
Jn n = 1, 2, . . .

Jn−1 − Jn+1 = 2J ′
n

For n = 0 we must be replaced by ,

J ′
0(z) = J1(z)

7



3.2. GENERATING FUNCTIONS

The Bessel’s function of first kind Jn(z) are related to the coefficient of ”Laurent expansion” of ,

w(z, t) = e
1
2 z(t−

1
t ) =

∞∑
n=−∞

cn(z)t
n

0 < |t| < ∞

multiplying the power series ,

e
zt
2 = 1 +

(z/2)

(1!)
t+

(z/2)2

2!
t2 + . . .

e
−z
2t = 1− (z/2)

(1!)

1

t
+

(z/2)2

2!

1

t2
+ . . .

We obtain , by combining coefficients of tn and t−n respectively ,

Cn(z) = Jn(z)

n = 0, 1, 2, ...

Cn(z) = (−1)nJ−n(z)

n = −1,−2, ...

w(z, t) = J0(z) +

∞∑
n=1

Jnz[t
n + (−1)nt−n

0 < |t| < ∞

called the generating function of Bessel’s Function.

3.3. BESSEL’S FUNCTION OF ARBITRARY ORDER

Bessel’s function of the first kind of order 0 is represented by Jν(z) i.e

Jν(z) =

∞∑
k=0

(−1)k(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)

|z| < ∞ , |argz| < π

This satisfies Bessel’s equation with parameter ν .

l(u) = u” +
1

z
u′ + (1− ν2

z2
)u = 0

8



Let u1 = Jν(z)

l(u1) =

∞∑
k=0

[
(ν + 2k)(ν + 2k − 1) + (ν + 2k)− ν2

]
αkz

ν+2k−2 +

∞∑
k=0

αkz
ν+2k

=

∞∑
k=0

4 [k(ν + k)]αkz
ν+2k−2 +

∞∑
k=0

αkz
ν+2k

=

∞∑
k=0

[4αk+1(k + 1)(ν + k + 1) + αk] z
ν+2k = 0

where,

αk =
(−1)k

2ν+2kk!(ν + k)!

(1) Now for integral ν = n where n = 0, 1, 2....

Γ(k + ν + 1) = (n+ k)!, therefore

Jn(z) =

∞∑
k=0

(−1)k(z/2)n+2k

(k)!(k + n)!

(2) For negative integral ν = −n , where −n = −1,−2, ....

the first n terms of Jν(z) =
∑∞

k=0
(−1)k(z/2)ν+2k

Γ(k+1)Γ(k+ν+1) vanishes and the series becomes,

J−n(z) =
∞∑

k=n

(−1)k(z/2)−n+2k

(k)!(k − n)!

=

∞∑
s=0

(−1)n+s(z/2)n+2s

(s)!(s+ n)!

where k = n+ s

Hence ,

J−n(z) = (−1)nJn(z) n = 1, 2, 3...

And so the Bessel’s function of negative integral order differs only by the sign from the corresponding
function of positive integral order. So the generating function will be,

9



Figure 1: Graph of Bessel’s function of the first kind with different orders

w(z, t) = e
1
2 z(t−

1
t )

=

∞∑
ν=−∞

Cν(z)t
n

where,

Cν(z) = Jν(z) ν = 0, 1, 2...

Cν(z) = (−1)nJν(z) ν = −1,−2...

And finally we get,

w(z, t)

∞∑
ν=−∞

Jν(z)t
ν

The recurrence formula for Bessel’s function of non-negative integral order remains same for arbi-
trary order i.e

•
d

dz
[zνJν(z)] = zνJν−1(z)

•
d

dz
[z−νJν(z)] = −z−νJν+1(z)

•
Jν−1 + Jν+1 =

2ν

z
Jν(z)

10



•
Jν−1 − Jν+1 = 2J ′

ν(z)

3.4. BESSEL’S FUNCTION OF SECOND KIND

A second solution of Bessel’s equation must be required, which is linearly independent of Jn(z) .
We name it ”u2 = Yn(z)”. Thus general expression for cylinder function of order ν = n is linear
combination of Bessel’s Equation of first and second kind i.e

u = Zn(Z) = AJn(z) +BYn(z)

n = 0, 1, 2, ....

Now,

l(u) = u” +
1

2
u′ +

(
1− ν2

z2

)
u = 0

hence general form,

u = Z0(z) = C1u1(z) + C2u2(z)

u1 & u2 are arbitrary independent solution of Bessel’s Equation .

Now choosing u1 + Jν(z) and u2 = J−ν(z) is also a solution of Bessel’s Equation for non-integral

ν the ASYMPTOTIC BEHAVIOUR of these solutions as z → 0 is

u1 ∼ (z/2)ν

Γ(1 + ν)

u2 ∼ (z/2)−ν

Γ(1− ν)

Therefore , General Cylinder Function -

u = Zν = C1Jν(z) + C2J−ν(z)

ν ̸= 0,±1,±2.....

• If ν is a integer , the particular solution u1&u2 are Linearly Dependent and u = Zν = C1Jν(z)+
C2J−ν(z) is no longer solution of Bessel’s Equation .

11



We now introduce Bessel’s Function of second kind by Yν(z)

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ

For integral ν , the right hand side of above equation becomes indeterminate therefore we define ,

Yn(z) = lim
ν→n

Yν(z)

Both numerator and denominator are entire function of ν

d

dν
sin νπ = π cosπν ̸= 0

if ν = n

this limit exist and can be calculated by L’Hospital Rule .

Therefore,

Yn(z) =
1

π

[
d

dν
Jν(z)|ν=n − (−1)n

dν

dν
J−ν(z)|ν=n

]

And so,

Yν(z) is an analytic function of z in the plane cut,which is along [−∞, 0] and entire function of the
parameter ν for fixed z.

Therefore , Solution u1 = Jν(z) & u2 = Yν(z) are linearly independent for integral ν

Hence,

u = Zν(z) = C1Jν(z) + C2Yν(z)

Some of the Recurrence relation are as follows -

1.
d

dz
[zνYν(z)] = zνYν−1(z)

2.
d

dz
[z−νYν(z)] = −z−νYν+1(z)

3.

Yν−1 + Yν+1 =
2ν

z
Yν(z)

4.
Yν−1 − Yν+1 = 2Y ′

ν(z)

12



Figure 2: First and second kind of Bessels function comparison

5.
Y−n(z) = (−1)nYn(z)

n = 0, 1, ...

3.5. SERIES EXPANSION OF Yn(z)

Consider,

d

dν
Jν(z)|ν=n =

∞∑
k=0

(−1)k(z/2)n+2k

k!(n+ k)!

[
log

z

2
−Ψ(k + n+ 1)

]

where, Ψ(z) = Γz′

Γz , logarithmic derivative of gamma function.

Similarly,

d

dν
J−ν(z) =

∞∑
k=0

(−1)k(z/2)−ν+2k

k!Γ(k − ν + 1)

[
− log

z

2
−Ψ(k − ν + 1)

]

As ν → n ,Γ(k − ν + 1) → ∞ and Ψ(k − ν + 1) → ∞.

Therefore first n terms of last series becomes indeterminate. Now,

limν→n
Ψ(k − ν + 1)

Γ(k − ν + 1)
= limν→n

[
Γν − k sin(ν − k)

Ψ(ν − k) + π cotπ(ν − k)

π

]
= (−1)n−k(n− k − 1)!

where k = 0, 1, 2 . . . n− 1

Thus introducing p = k − ν we get,

13



d

dν
J−ν |ν=n(z) = (−1)n

n−1∑
k=0

n− k − 1

k!
(z/2)2k−n + (−1)n

∞∑
p=0

(−1)p

(n+ p)!p!

[
− log

z

2
−Ψ(p+ 1)

]
(
z

2
)2p+n

Therefore,

Yn(z) =
−1

π

n−1∑
k=0

n− k − 1

k!
(z/2)2k−n +

1

π

∞∑
k=0

−1n

k!(n+ k)!
(z/2)2k+n

[
2 log

z

2
−Ψ(k + 1)−Ψ(k + n+ 1)

]

n = 0, 1, 2, ....

Also Ψ(1) = −γ , Ψ(m+ 1) = −γ + 1 + 1
2 + . . .+ 1

m , where γ = 0.577= Euler’s constant

Finally we get the series expansion as,

Yn(z) =
2

π
Jn(z) log

z

2
− 1

π

n−1∑
k=0

n− k − 1

k!
(z/2)2k−n− 1

π

∞∑
k=0

(−1)k

k!(n+ k)!
(z/2)2k+n [Ψ(k + 1) + Ψ(k + n+ 1)]

For asymptotic representations,

Y0(z) ∼
2

π
log

z

2
z → 0

Yn(z) ∼
−(n− 1)!

π
(
z

2
)−n z → 0

n = 1, 2, ...

Which shows ,

Yn(z)becomes infinite as z → 0

3.6. BESSEL’S FUNCTION OF THIRD KIND (Hankel Function)

Hankel Function denoted by H
(1)
ν (z) and H

(2)
ν (z) where ,

H(1)
ν (z) = Jν + ιYν (1)

H(2)
ν (z) = Jν − ιYν (2)

Linear Combination of Jν and Yν have very simple asymptotic expression for large |z| .

Therefore , H
(1)
ν (z) and H

(2)
ν (z) are linearly independent of each other and Jν ,

Therefore ,
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u = Zν(z) = A1Jν(z) +A2H
(1)
ν (z)

= Zν(z) = B1Jν(z) +B2H
(2)
ν (z)

= Zν(z) = D1Hν(z) +D2H
(2)
ν (z)

Also Hankel functions satisfies some recurrence relations -

1.
d

dz
[zνHνP (z)] = zνHp

ν−1(z)

2.
d

dz
[z−νHP

ν (z)] = −z−νHp
ν+1(z)

3.

Hp
ν−1 +Hp

ν+1 =
2ν

z
Hp

ν+1

4.

Hp
ν−1 −Hp

ν+1 = 2
dHp

ν

dz

p = 1, 2

3.7. BESSEL FUNCTION OF IMAGINARY ARGUMENT

Consider,

Iν(z) =

∞∑
k=0

(z/2)ν + 2k

Γ(k + 1)Γ(k + ν + 1)
|z| < ∞, |argz| < π

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin νπ
, ν ̸= 0,±1,±2...

Therefore, Iν(z) and Kν(z) are simply related to Bessel’s function of argument ze±
πi
2 .

(1) If −π < argz < π
2 i.e. −π/2 < argze

πi
2 < π, then

Jν(ze
πi
2 ) =

∞∑
k=0

(−1)k( z2e
πi
2 )ν+2k

Γ(k + 1)Γ(k + ν + 1)

= e
πi
2

∞∑
k=0

(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)

= e
πi
2 Iν(z)
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therefore,

Iν(z) = e−
πi
2 Jν(ze

πi
2 ) − π < argz <

π

2

Similarly,

Hν(ze
πi
2 ) =

J−ν(ze
πi
2 )− e

−πi
2 Jν(ze

πi
2 )

i sin νπ

=
J−ν(ze

πi
2 )− e

−πνi
2 Iν(z)

i sin νπ

=
2

πi
e

−πνi
2 Kν(z)

Hence we get,

Kν(z) =
πi

2
e

πνi
2 Hν(ze

πi
2 ), −π < argz <

π

2

(2) If −π/2 < argz < π i.e. −π < argze
πi
2 < π, then

Iν(z) = e
πνi
2 Jν(ze

−πi
2 )

,
which is MODIFIED BESSEL’S FUNCTION OF FIRST KIND

Kν(z) =
πi

2
e

πνi
2 Hν(ze

πi
2 )

which is called the MACDONALD’S FUNCTION

Iν(z) and Kν(z) are linearly independent solution of differential equation,u”+ 1
zu

′ +(1− ν2

z2 )u = 0
in which

u = C1Iν(z) + C2Kν(z)

SOME OF THE SIMPLE RECURRENCE RELATIONS ARE-

1.
d

dz
[zνIν(z)] = zνIν−1(z)
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2.
d

dz
[z−νIν(z)] = z−νIν+1(z)

3.
d

dz
[zνKν(z)] = −zνKν−1(z)

4.
d

dz
[z−νKν(z)] = −z−νKν+1(z)

OTHER TWO USEFUL FORMULAS ARE

(1) I−n(z) = In(z) n = 0,±1,±2...

(2) K−ν(z) = Kν(z)

17



CHAPTER : 4

(Applications of Cylinder Function)

4. APPLICATIONS OF CYLINDER FUNCTIONS

4.1. Separation of Variables

Consider the partial differential equation ,

∆2u =
1

a2
δ2u

δt2
+ b

δu

δt
+ cu (1)

Where ∆2u is the Laplacian operator,t is the time, and a,b,c are constants.Many of the mathematical
physics differential equation are of the above given form. The boundary conditions on function u
often require the use of the cylindrical coordinates system given by, r, ϕ, z related to rectangular
coordinates x,y,z by

x = r cosϕ

y = r sinϕ

z = z

Where ,

0 ≤ r < a,
−π ≤ ϕ < π,
−a ≤ z < a

In Cylindrical coordinates ,

1

r

d

dr
(r
du

dr
) +

1

r2
d2u

dϕ2
+

d2u

dz2
=

1

a2
d2u

dt2
+

du

dt
+ cu (2)

has infinite many solution of form

u = R(r)Z(z)Φ(ϕ)T (t) (3)

where each on the functions depends on only one variable
Putting (3) into (2)

1

r

d

dr

(
(r
dR(r)Z(z)Φ(ϕ)T (t)

dr

)
+

1

r2

(
d2R(r)Z(z)Φ(ϕ)T (t)

dϕ2

)
+
d2 (R(r)Z(z)Φ(ϕ)T (t))

dz2
=

1

a2
d2(R(r)Z(z)Φ(ϕ)T (t))

dt2
+
d(R(r)Z(z)Φ(ϕ)T (t))

dt
+c(R(r)Z(z)Φ(ϕ)T (t))

and now dividing by RZΦT
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1

Rr

d

dr
(r
dR

dr
) +

1

r2Φ

d2Φ

dϕ2
+

1

Z

d2Z

dz2
− c =

1

T

(
1

a2
d2T

dt2
+ bT

)
(4)

Since r, ϕ, z, t are independent of each other , both side of (4) must equal a constant say - χ2

Therefore , this leads to the following equations

1

a2
d2T

dt2
+ bT + Tχ2 = o (5)

1

Rr

d

dr
(r
dR

dr
) +

1

r2Φ

d2Φ

dϕ2
+ χ2 = c− 1

z

d2Z

dz2
(6)

By the same reason , both side of (5) must equal to a constant , say −λ2,

c− 1

z

d2Z

dz2
= −λ2

=⇒ (c+ λ2)Z =
d2Z

dz2

and

r2
[

1

Rr

d

dr
(r
dR

dr
) + (λ2 + χ2)

]
= − 1

Φ

d2Φ

dϕ2
(7)

Again , equating last equation by constant say µ2,

d2Φ

dϕ2
+ µ2ϕ = 0 (8)

1

r

d

dr
(r
dR

dr
) + (λ2 + χ2 +

µ2

r2
)R = 0 (9)

This process is called separation of variables , leads to infinite many solution of form (3) de-
pending on the parameters χ, λ, µ

TWO IMPORTANT SPECIAL CASES OF EQUATION ARE

i. LAPLACE’S EQUATION (∆2u = 0)

where we consider (a = b = c = 0)
equation has particular solution which have the following form

u = R(r)Z(z)ϕ(ϕ) (10)

where ,

1

r

d

dr
(r
dR

dr
) + (λ2 − µ2

r2
)R = 0 (11)
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d2Z

dz2
− λ2Z = 0

d2Φ

dϕ2
+ µ2Φ = 0

In the special case where the conditions are such that u is not dependent of the angular coordi-
nate ϕ, thus we now have

u = R(r)Z(z) (12)

where,

1

r

d

dr
(r
dR

dr
) + λ2R = 0 (13)

d2Z

dz2
− λ2Z = 0 (14)

ii. FINAL SOLUTION OF LAPLACE EQUATION

We have the first differential equation as,

(i)
d2Z

dz2
− λ2Z = 0

Considering , m2 − λ2 = 0

⇒ m = +λ,−λ (ROOTS ARE DISTINCT)

Hence the solution,

Z(z) = C1e
λz + C2e

−λz

We have the second differential equation as,

(ii)
d2Φ

dϕ2
+ µ2Φ = 0
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Considering , m2 + λ2 = 0

⇒ m = +iλ,−iλ (ROOTS ARE COMPLEX)

Hence the solution,

Φ(ϕ) = C3 cosλϕ+ C4 sinλϕ

We have the third differential equation as,

(iii)
1

r

d

dr
(r
dR

dr
) + (λ2 − µ2

r2
)R = 0

On simplifying further we get,

1

r

[
r
d2R

dr2
+

dR

dr

]
+Rλ2 − µ2

r2
R = 0

⇒ d2R

dr2
+

1

r

dR

dr
+

(
λ2 − µ2

r2

)
R = 0

⇒ d2R

dr2
+

1

r

dR

dr
+

(
λ2r2 − µ2

r2

)
R = 0

and as earlier shown, is identified as the Bessel’s equation , then its corresponding solution will be,

R(r) = C5J√λ2r2−µ2(r) + C6Y√λ2r2−µ2(r)

where J(r) and Y(r) are solutions of Bessel’s equation of the first and second kind , with order√
λ2r2 − µ2 respectively.

Also in the special case where the conditions are such that u is independent of the angular coordi-
nate ϕ, we have

u = R(r)Z(z)

we have the following solution,

1

r

d

dr
(r
dR

dr
) + λ2R = 0 R(r) = C7J0(rλ) + C8Y0(rλ)

d2Z

dz2
− λ2Z = 0 Z(z) = C1e

λz + C2e
−λz
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iii. HELMHOLTZ’S EQUATION (∆2u+ k2 = 0)

subjected to the conditions (a = b = 0, c = −k2)

The particular solution from separation of variable obtained is of the form

u = R(r)Z(z)Φ(ϕ) (15)

where ,

1

r

d

dr
(r
dR

dr
) + (λ2 − µ2

r2
)R = 0 (16)

solution to which is given by,

R(r) = C1J√λ2r2−µ2(r) + C2Y√λ2r2−µ2(r)

d2Z

dz2
− (λ2 − k2)Z = 0 (17)

solution to which is given by,

Z(z) = C3e
√
λ2−k2z + C4e

−
√
λ2−k2z

d2Φ

dϕ2
+ µ2Φ = 0 (18)

solution to which is given by,

Φ(ϕ) = C5 cosλϕ+ C6 sinλϕ
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Figure 3: Dirichlet problem for a cylinder

4.2. THE DIRICHLET PROBLEM FOR A CYLINDER

THE BOUNDARY VALUE PROBLEM OF POTENTIAL THEORY

A function u = u(x, y, z)is said to be harmonic in a domain τ ifu and its first and second par-
tial derivatives with respect tox, yandz are continuous and satisfy Laplace’s equation ∆2u = 0in τ .
Consider the problem of deriving a function u which has harmonic nature in τ and satisfies one of the
three boundary conditions -

u|σ = f

δu

δn
|σ = f

(
δu

δn
+ hu

)
|σ = f h > 0

where σ is the boundary of τ , f is a given function of a variable point of σ, and δu
δn denotes the

derivative with respect to the exterior normal to σ. This problem is called the first boundary value
problem of potential theory or the Dirichlet problem if the boundary condition is u|σ = f

We now consider the Dirichlet problem for the case where τ is a cylinder of length l and radius a.
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Letr, ϕ, zbe a cylindrical coordinate system, with z-axis along the axis of the cylinder and origin in one
face of the cylinder. To satisfy the boundary condition u|σ = f , we first solve two simpler problems
corresponding to the boundary conditions

u|r=a = 0 , u|z=0 = f0 , u|z=l = fl u|r=a = F , u|z=0 = u|z=l = 0

We temporarily assume that the boundary conditions are independent of the angular coordinate ϕ, so
that,

f0 = f0(r) fl = fl(r) F = F (z)

As obtained earlier, the particular solution of Laplace equation independent of ϕ will have the form
u = R(r)Z(z) where R(r), Z(z) satisfies the equation obtained by separation of variables method ,

1

r

d

dr
(r
dR

dr
) + λ2R = 0

d2Z

dz2
− λ2Z = 0

Solving these equations we get,

R(r) = AJ0(rλ) +BY0(rλ)

and
Z(z) = Ceλz +De−λz

Re writing Z(z) in terms of sinh and cosh we get,

Z(z) = C coshλz +D sinhλz

(1) We consider the first three boundary conditions.SinceJ0(λr) → 1 , Y0(λr) → ∞ as r → 0 ,
and since the solution R must satisfy the physical requirement of being bounded on the axis of the
cylinder, the constant B=0.

Therefore homogeneous boundary condition becomes ,

AJ0(aλ) = 0

Thus the values of the parameter λ are λn = xn/a where the xn are the positive zeros of the Bessel
function J0(x) . So we obtain the following set of particular solutions of Laplace’s equation

u = un =
[
Mn cosh

(
xn

z

a

)
+Nn sinh

(
xn

z

a

)]
J0(xn

r

a
)

By superposition of these solutions, we can construct a solution of our problem. In fact, suppose
each of the functions f0(r)and fl(r) can be expressed in a Fourier-Bessel series as,

f0(r) =
∑∞

n=1 f0,nJ0(xn
r
a ) fl(r) =

∑∞
n=1 fl,nJ0(xn

r
a )
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where ,

fρ,n =
2

a2J2
1 (xn)

∫ a

o

rfρ(r)J0(xn
r

a
)dr, ρ = 0, l

therefore we get the series,

u =

∞∑
n=1

[
f0,n

sinh(xn
l−z
a )

sinh(xn
l
a )

+ fl,n
sinh(xn

z
a )

sinh(xn
l
a )

]
J0(xn

r

a
)

which satisfies the Laplace’s equation and the required boundary conditions.

(2) We consider the remaining boundary conditions. Here we set C= 0 and let,

λ =
nπi

l
, n = 1, 2, 3....

to satisfy the homogeneous boundary condition . Then the solution obtained would be ,

R(r) = AI0(
nπr

l
) +BK0(

nπr

l
)

Z(z) = D sinh(
nπz

l
)

where I0 and K0 are Bessel’s function of imaginary argument. Setting B = 0 since K0(
nπr
l ) → ∞ as

r → 0. Therefore solution of Laplace equation is now,

u = un = MnI0(
nπr

l
) sin(

nπz

l
), n = 1, 2, ...

By applying superposition method, we find the solution as,

u =

∞∑
n=1

Fn

I0(
nπr
l )

I0(
nπa
l )

sin(
nπz

l
)

where Fn are the Fourier coefficients of F(z) such that,

Fn =
2

l

∫ l

0

F (z) sin(
nπz

l
)dz

i. SOLVED EXAMPLE ON THE DIRICHLET PROBLEM OF A CYLINDER

Find the stationary distribution of temperature u in a cylinder of length l and radius a,
with one end held at temperature u0, while the rest of the surface is held at temperature
0.

SOLUTION

According to the given condition we set, f0 = u0 and fl = 0
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We derived the solution for the case where f vanishes on the lateral surface of the cylinder, hence
we will use the set of solution,

u =

∞∑
n=1

[
f0,n

sinh(xn
l−z
a )

sinh(xn
l
a )

+ fl,n
sinh(xn

z
a )

sinh(xn
l
a )

]
J0(xn

r

a
)

where

fρ,n =
2

a2J2
1 (xn)

∫ a

0

rfρ(r)J0(xn
r

a
)dr, ρ = 0, l

f0(r) =
∑∞

n=1 f0,nJ0(xn
r
a ) fl(r) =

∑∞
n=1 fl,nJ0(xn

r
a )

Given fl(r) = 0 and f0(r) = u0 we get the final temperature solution equation as,

u =

∞∑
n=1

[
f0,n

sinh(xn
l−z
a )

sinh(xn
l
a )

]
J0(xn

r

a
)

And,

f0,n =
2

a2J2
1 (xn)

∫ a

0

ru0J0(xn
r

a
)dr

We also know that

Jν(z) =

a∑
k=0

(−1)k(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)

|z| < a , |argz| < π

Therefore for order ν = 0 we have

J0(xn
r

a
) =

a∑
k=0

(−1)k(xn
r
a )

2k

Γ(k + 1)Γ(k + 1)

Substituting these values in the final series solution we get,

u =

∞∑
n=1

[
sinh(xn

l−z
a )

sinh(xn
l
a )

2u0

a2J2
1 (xn)

∫ a

0

rJ0(xn
r

a
)dr

]
J0(xn

r

a
)

= 2u0

∞∑
n=1

[
sinh(xn

l−z
a )

sinh(xn
l
a )

1

a2J1(xn)

∫ a

0

r
J0(xn

r
a )

J1(xn)
dr

]
J0(xn

r

a
)
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= 2u0

∞∑
n=1

 sinh(xn
l−z
a )

sinh(xn
l
a )

1

a2J1(xn)

∫ a

0

r


∑a

k=0
(−1)k(xn

r
a )2k

Γ(k+1)Γ(k+1)∑a
k=0

(−1)k(xn)2k+1

Γ(k+1)Γ(k+2)

 dr

 J0(xn
r

a
)

= 2u0

∞∑
n=1

[
sinh(xn

l−z
a )

sinh(xn
l
a )

1

a2J1(xn)

∫ a

0

r

a∑
k=0

{
( ra )

2k(k + 2)

xn

}
dr

]
J0(xn

r

a
)

= 2u0

∞∑
n=1

[
sinh(xn

l−z
a )

sinh(xn
l
a )

1

xnJ1(xn)

a∑
k=0

(k + 1)

a2k+2

∫ a

0

r2k+1dr

]
J0(xn

r

a
)

= 2u0

∞∑
n=1

[
sinh(xn

l−z
a )

sinh(xn
l
a )

1

xnJ1(xn)

a∑
k=0

(k + 1)

2(k + 1)

]
J0(xn

r

a
)

= u0

∞∑
n=1

[
sinh(xn

l−z
a )

sinh(xn
l
a )

J0(xn
r
a )

xnJ1(xn)

]

which is the required stationary distribution of temperature u in the cylinder.

4.3. COOLING OF A HEATED CYLINDER

Consider the problem of the cooling of an infinitely long cylinder of a radius a ,heated to the temper-
ature u0 = f(r) and the radiating heat into the surrounding medium at zero temperature.

This problem reduces to solving the equation of heat conduction

cρ
δu

δt
= k∆2u (1)

subject to boundary condition(
δu

δr
+ hu

)
|r=a = 0 (2)
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and the initial condition

u|t=0 = u0 = f(r) (3)

where k = thermal conductivity of the cylinder
c = heat capacity
ρ = density
λ = emissivity

h =
λ

k

Using the separation of variables, and assuming the solution to be

u = R(r)T (t)

we find the cylindrical equations ,

b
dT

dt
+ χ2T = 0

,
1

r

d

dr

(
r
dR

dr

)
+ χ2R = 0

Where −χ2 is the separation constant and b = Cρ/k

with the solutions ,

R = AJ0(χr) +BY0(χr)

,

T = Ce−χ2t/b

Since J0(χr) → 1 ,Y0(χr) → ∞ as r → 0 and R must satisfy the physical requirement of being bounded
on the axis of the cylinder , the constant B must be zero.

From (2) χ must satisfy the equation,

hJ0(χa)− χJ1(χa) = 0 (4)

If x = χa, then the above equation becomes,

haJ0(x)− xJ1(x) = 0 (5)

which has only real roots, with respect to the origin.Let

0 < x1 < x2 . . . < xn < . . .

be the positive roots of the equation (5). Then the value of χ are χn = xn

a and the set of particular
solution of (1) would be

u = un = MnJ0

(
xn

r

a

)
e

−(xn)2t

a2b , n = 1, 2, . . .
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Superposition of these solution gives,

u =

∞∑
n=1

MnJ0

(
xn

r

a

)
e

−(xn)2t

a2b (6)

because of the initial condition (3), the coefficients Mn must satisfy the relation,

f(r) =

∞∑
n=1

MnJ0

(
xn

r

a

)
, 0 ≤ r < a (7)

By expanding f(r) in a Dini series we have,

Mn =
2

a2 [J2
0 (xn + J2

1 (xn)]

∫ a

0

rf(r)J0

(
xn

r

a

)
dr (8)

Therefore solution of our heat conduction problem is given by (6).

29



CHAPTER : 5

(Hyper Geometric Functions)

5. HYPER-GEOMETRIC FUNCTIONS

Hyper-geometric series is the power series

∞∑
k=0

(α)k(βk)

(γ)kk!zk

wherezis complex variable ,α, β, γ are parameter which take complex or real values and the symbol
(λ)k denotes the quantity,

(λ)0 = 1 (λ)k =
Γ(λ+ k)

Γ(λ)
= λ(λ+ 1) . . . (λ+ k − 1), k = 1, 2, ...

Thus, the hyper geometric is defined by,

F (α, β; γ; z) =

∞∑
k=0

(α)k(βk)

(γ)kk!zk
−−−−−− > (18)

where,
|z| < 1

Its integral representation is given by,

F (α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∞∑
k=0

(α)k
k!

zk
∫ 1

0

tβ−1+k(1− t)γ−β−1dt

,where reversing the order of summation and integration is justified by an absolute convergence argu-
ment.
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5.1. SPHERICAL HARMONICS

Solution of the Linear Differential Equation -

(1− z2)u′′ − 2zu′ +

[
ν(ν + 1)− µ2

1− z2

]
u = 0 (1)

where z = complex number
ν, µ = parameters belonging to real numbers or complex numbers.

Such equation in mathematical physics is used in orthogonal curvilinear co ordinates to solve the
boundary value problems for special domains i.e. sphere , spheroids or torus.

5.2. THE HYPER-GEOMETRIC EQUATION AND ITS SERIES SOLU-
TION

(1− z2)u′′ + [γ − (α+ β + 1)z]u′ − αβu = 0

Let u =
∑∞

k=0 ckz
k+s, c0 ̸= 0 be a particular solution.

THEREFORE , u′ =
∑∞

k=0 ck(k + s)zk+s−1

and u′′ =
∑∞

k=0 ck(k + s)(k + s− 1)zk+s−2

Now substituting the values we get,

(z−z2)

[ ∞∑
k=0

ck(k + s)(k + s− 1)zk+s−2

]
+(γ−(α+β+1)z)

[ ∞∑
k=0

ck(k + s)zk+s−1

]
−αβ

∞∑
k=0

ckz
k+s = 0

=

∞∑
k=0

ck(k + s)(k + s− 1 + γ)zk+s−1 −
∞∑
k=0

ck [(k + s)(k + s− 1) + (k + s)(α+ β + 1) + αβ] zk+s = 0

=

∞∑
m=−1

cm+1(m+1+s)(m+s+γ)zm+s−
∞∑
k=0

ck [(k + s)(k + s− 1) + (k + s)(α+ β + 1) + αβ] zk+s = 0

= c0z
s−1(s)(s−1)+γs+

∞∑
k=0

ck+1(k+s+1)(k+s+γ)zk+s−
∞∑
k=0

ck [(k + s)(k + s− 1) + (k + s)(α+ β + 1) + αβ] zk+s = 0

= C0 +

∞∑
k=0

[ck+1 [(k + s+ 1)(k + s+ γ)]− [(k + s)(k + s− 1) + (α+ β + 1)(s+ k) + αβ] ck] z
k+s = 0
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Put coefficient of zs−1 and zk+s as 0,

zs−1 : c0 [s(s− 1) + γs] = 0 which implies , s = 0 or s = 1− γ

zs+k : ck+1 [(k + s+ 1)(k + s+ γ)] = [(k + s)(k + s− 1) + (α+ β + 1)(s+ k) + αβ] ck

which implies ,

ck+1 =
[(k + s)(k + s− 1) + (α+ β + 1)(s+ k) + αβ] ck

[(k + s+ 1)(k + s+ γ)]

k= 0,1,2....

Now for s = 0,

ck+1 =
[(k)(k − 1) + (α+ β + 1)(k) + αβ] ck

[(k + 1)(k + γ)]

=
(k + α)(k + β)ck
(k + 1)(k + γ)

Therefore ck = (αk)(βk)c0
k!(γk)

hence solution u = u1 = F (α, β, γ; z) =
∑∞

k=0
(αk)(βk)z

k

k!(γk)

Now for s = 1− γ ,

ck+1 =
[(k + 1− γ)(k − γ) + (α+ β + 1)(1− γ + k) + αβ]

[(k − γ + 2)(k + 1)]
ck k = 0, 1, 2....

ck =
[(k − 1 + γ)(k − γ) + (α+ β + 1)(k − γ) + αβ]

[(1 + k − γ+)(k)
ck−1 k = 1, 2, 3....

=
[(k − γ)(γ + k + αβ) + αβ]

[(1 + k − γ+)(k)
ck−1

=
(k + α− γ)(k + β − γ)

(k)(k + 1− γ)
ck−1

Therefore,

ck =
(1 + α− γ)k(k + β − γ)k

(k!)(2− γ)k
c0

hence solution u = u2 = z1−γ
∑∞

k=0
(1+α−γ)k(1+β−γ)k

(k!)(2−γ)k
zk
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= z1−γF (1 + α− γ, 1 + β − γ; 2− γ; z)

Therefore general solution,

u = AF (α, β; γ; z) +Bz1−γF (1 + α− γ, 1 + β − γ; 2− γ; z)
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CHAPTER : 6

(Legendre’s Function)

6. LEGENDRE’S FUNCTION

(1− z2)u′′ − 2zu′ + ν(ν + 1)u) = 0 is known as Legendre’s equation (1)

which can be reduced to hyper geometric equation by making suitable changes of variables.

(i)Puttingt = (1− z)/2 in (1) we get ,

t(1− t)u′′ + [(1− 2t)]u′ + ν(ν + 1)u = 0 (2)

which is a special case of hyper-geometric equation where,

α = −ν, β = ν + 1, γ = 1

(ii)Puttingt = z−2, u = z−v−1ν converts (1) to

t(1− t)
d2v

dt2
+

[(
ν +

3

2

)
−

(
ν +

5

2

)
t

]
dv

dt
−

(ν
2
+ 1

)(
ν

2
+

1

2

)
v = 0

which is also a special case of hyper geometric equation where,

α = ν
2 + 1, β = ν

2 + 1
2 , γ = ν + 3

2

Therefore 2 particular solution of (1) are -

u = u1 = F

(
−ν, ν + 1; 1;

1− z

2

)
, |z − 1| < 2

u = u2 =

√
πΓ(ν + 1)

Γ(ν + 3
2 )(2z)

v+1
F

(
ν

2
+ 1,

ν

2
+

1

2
; ν +

3

2
,
1

z2

)
, |z| > 1, |argz| < π, ν ̸= −1,−2,−3....

where F(α, β; γ, z)is a hyper geometric series.

THESE SOLUTIONS ARE CALLED THE LEGENDRE’S FUNCTION OF DEGREE ν OF THE
FIRST KIND AND THE SECOND KIND , DENOTED BY Pν AND Qν , RESPECTIVELY.

Therefore,
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Figure 4: Graph of Legendre’s function of first kind of various orders

Pν(z) = F

(
−ν, ν + 1; 1;

1− z

2

)
, |z − 1| < 2

Qν(z) =

√
πΓ(ν + 1)

Γ(ν + 3
2 )(2z)

v+1
F

(
ν

2
+ 1,

ν

2
+

1

2
; ν +

3

2
,
1

z2

)
, |z| > 1, |argz| < π, ν ̸= −1,−2,−3....

Thus the general solution u of (1) can be expressed as a linear combination of Legendre’s function of
the first kind and second kind , i.e.

u = APν(z) +BQν(z)

where
|arg(z − 1)| < π, ν ̸= −1,−2, .....
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CHAPTER : 7

(Applications of Legendre’s Function)

7. APPLICATIONS OF LEGENDRE’S FUNCTION

7.1. Solutions of LAPLACE’S EQUATION in spherical coordinates

Orthogonal curvilinear coordinates using separation if variables in Laplace’s equation in the spherical
coordinates systemr, θ, ϕ to the rectangular coordinates x,y,z by the formula

x = r sin θ cosϕ
y = r sin θ sinϕ
z = r cos θ (1)

given that,

0 ≤ r < ∞ , 0 ≤ θ ≤ π , −π < ϕ ≤ π

We consider for triply orthogonal system of surfaces such that sphere r = const , circular cone
θ = constant and the plane ϕ = const passing through z axis.

Also we know squares of the element of arc length is given by

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 (2)

Now in terms of metric-coefficients hα, hβ , hγ the Laplacian operator is defined as

∆2u =
1

hαhβhγ

[
δ

δα

(
hγhβ

hα

δu

δα

)
+

δ

δβ

(
hαhγ

hβ

δu

δβ

)
+

δ

δγ

(
hαhβ

hγ

δu

δγ

)]
(3)

Hence according to (1) , the metric-coefficients here would therefore be

hr = 1, hθ = r, hϕ = r sin θ

And corresponding Laplacian equation is given as

∆2u =
1

r2
δ

δr

(
r2

δu

δr

)
+

1

r2 sin θ

δ

δθ

(
sin θ

δu

δθ

)
+

1

r2 sin2 θ

δ2u

δϕ2
= 0 (4)

By the SEPARATION OF VARIABLES METHOD we get the particular solution of the form

u = R(r)Θ(θ)Φ(ϕ) (5)
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Substituting (5) in (4) we get,

∆2 [R(r)Θ(θ)Φ(ϕ)] =
1

r2
d

dr

(
r2

d(R(r)Θ(θ)Φ(ϕ))

dr

)
+

1

r2 sin θ

d

dθ

(
sin θ

d(R(r)Θ(θ)Φ(ϕ))

dθ

)
+

1

r2 sin2 θ

d2(R(r)Θ(θ)Φ(ϕ))

dϕ2
= 0 (6)

Now dividing the above equation by RΦΘ and multiplying by r2 sin2 θ we get the following ,

[
1

R

d

dr

(
r2

dR

dr

)
+

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
sin2 θ = − 1

Φ

d2Φ

dϕ2

,possibly when both sides equal a constant say , µ2. This leads to 2 equations,

d2Φ

dϕ2
+ µ2Φ = 0

1

R

d

dr

(
r2

dR

dr

)
+

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
=

µ2

sin2 θ
(7)

Now equating the above equation by a constant say, ν(ν + 1). Therefore we get another 2 set of
equations as,

1

R

d

dr

(
r2

dR

dr

)
− ν(ν + 1)R = 0

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
ν(ν + 1)− ν2

sin2 θ

]
Θ = 0 (8)

The corresponding Laplace’s equation depends on the parameters µ and ν , which can be used to
construct solution of boundary values problem of mathematical physics involving spherical domains.

Now the corresponding differential solution for particular equations are as follows ,

(i)
d2Φ

dϕ2
+ µ2Φ = 0

Solution to which is,

Φ(ϕ) = C1 cosµϕ+ C2 sinµϕ

(ii)
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
ν(ν + 1)− ν2

sin2 θ

]
Θ = 0
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which is a Legendre’s function , general solution to which is,

Θ(θ) = APν(µ sin θ) +BQν(µ sin θ)

(iii)
1

R

d

dr

(
r2

dR

dr

)
− ν(ν + 1)R = 0

which is a Bessel’s function with arg = kr and order ν + 1
2 and substituting R = r1/2v we get ,

v′′ +
1

r
v′ +

[
k2 − (ν + 1/2)2

r2

]
v = 0

Solution to which is,

R(r) = r1/2
[
CJν+ 1

2
(kr) +DHν+ 1

2
(kr)

]

For rotationally symmetric case , we have u independent of Φ , hence we have the general
solution as,

u = r1/2
[
AJν+ 1

2
(kr) +BHν+ 1

2
(kr)

]
[CPν(µ sin θ) +DQν(µ sin θ)]

7.2. DIRICHLET PROBLEM OF A SPHERE

Here we consider the interior Dirichlet problem for a spherical domain.We also assume that boundary
function f and the solution u are independent of angle ϕ.

Choosing the origin at the center of the sphere of radius a the the z axis along the line of sym-
metry, we have the following problem

FIND THE FUNCTION u(r, θ) SUCH THAT -

1. u IS HARMONIC IN THE DOMAIN r < a AND CONTINUOUS IN THE CLOSED DOMAIN
r ≤ a

2. u SATISFIES THE BOUNDARY CONDITION u|r=a = f(θ) , WHERE f(θ) IS CONTINU-
OUS IN THE INTERVAL 0 ≤ θ ≤ π

We obtain the rotational symmetricity by setting Φ = 1 in (5)and µ = 0 in (8)
then the we obtain the differential equation for the Legendre’s function of argument x = cos θ which
for −1 < x < 1 has general solution

Θ = APν(cos θ) +BQν(cos θ)

where Pν(x) and Qν(x) are Legendre functions of the first kind and the second kind whereν is the
arbitrary complex number.

Since x = cos θ ranges over closed [−1, 1] and as x → 1 , Qν(x) → ∞ but Pν(x) remains bounded.So
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we must set B= 0 for the problem to be bounded .

Moreover since Pν(x) → ∞ as x → −1 unless ν is a non negative integer. Choosing ν = n . Thus
the only solution of for µ = 0 which remain bounded in the closed interval 0 ≤ θ ≤ π correspond to
non negative integral ν and are of the form,

Θ = APν(cos θ), n = 0, 1, 2...

where the Pn(x) is the Legendre polynomial having degree n. As for the radial equation ,which is an
Euler equation , with general solution ,

R = Crν +Dr−ν−1

In the present case ν = n and the solution must be bounded at the center of the sphere , D = 0.

R = Crν wheren = 0, 1, 2.....

and hence the appropriate set of particular solution of Laplace’s equation inside the sphere is ,

u = un = Mnr
2Pn(cos θ)

where n = 0, 1, 2.....

Now we can solve the boundary value problem by superposition of the above solution. The boundary
function f(θ) can be expanded in a series of Legendre’s polynomial as

f(θ) =
∑
n=0

∞fnPn(cos θ), 0 ≤ θ ≤ π

where ,

fn = (n+ 1/2)

∫
0

πf(θ)Pn(cos θ) sin θdθ

Now if the series f(θ) converges uniformly in the interval [0, π], then we let Mn = fna
( − n) and

thus we get solution as,

u =
∑
n=0

∞fn

( r
a

)
Pn(cos θ)

which solves the Dirichlet’s problem of a sphere when boundary conditions are applied as u|r=a = f(θ)

7.3. DIRICHLET PROBLEM OF A CONE

The ability to separate variables in Laplace’s equation written in spherical coordinates also allows us
to solve boundary value problems for the domain bounded by the surface of an infinite circular cone.
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Figure 5: Dirichlet problem for a cone

Choose the origin at the vertex of the cone, and let the z axis lie along the same axis of symme-
try of the cone. Then the equation of the cone is θ = θ0(θ0 < π), and the Dirichlet problem for the
case of axially symmetric boundary conditions can be stated as follows ,

Find the functions u = u(r, θ) such that
1) u is harmonic in the domain 0 < r < ∞, 0 ≤ θ ≤ θ0 and continuous in the closed domain
0 ≤ r < ∞, 0 ≤ θ ≤ θ0

2) u satisfies the boundary condition u|θ=θ0 = f(r) and the condition at infinity u|r→∞ → 0
uniformly in θ, where f(r) is continuous in the interval 0 ≤ r < ∞ and f(r)|r→∞ = 0

Using the solution obtained by Laplace’s equations we get the the general solution as,

Θ = APν(cos θ) +BQν(cos θ)

Setting B= 0 for the bounded solution on the axis of the cone . Also Pν(cos θ) is bounded for arbitrary
ν if 0 ≤ θ ≤ θ0. letting ν = −1/2 + iτ where τ ≥ 0 Therefore,

u = uτ = [Mτ cos(τ log r) +Nτ sin(τ log r)]r
−1/2P−1/2+iτ (cos θ)

Mτ and Nτ are continuous functions.

Using the definition of the Legendre’s function of first kind we get,

P−1/2+iτ (cos θ) = F

(
1/2− iτ, 1 + iτ ; 1; sin2

θ

2

)
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= 1 +
1/4 + τ2

(1!)2
sin2

θ

2
+

(1/4 + τ2)( 94 + τ2)

(2!2)
sin4

θ

2
+ ....

which shows that P−1/2+iτ (cos θ) is real and satisfies the following,

1 ≤ P−1/2+iτ (cos θ), 0 ≤ θ ≤ π

P−1/2+iτ (cos θ) ≤ P−1/2+iτ (cos θ0), 0 ≤ θ ≤ θ0

Now we suppose that f(r) is such that ϕ(r) = r1/2f(r) having Fourier expansion of the form ,

g(r) = r1/2f(r) =

∫ ∞

0

[Gc(τ) cos(τ logr) +Gs(τ) sin(τ logr)] dτ

where,

Gc(τ) =
1
π

∫∞
0

f(r)r−1/2 cos(τ log r)dr Gs(τ) =
1
π

∫∞
0

f(r)r−1/2 sin(τ log r)dr

where we have uniform convergent integral in [r1, r2] such that 0 < r1 < r2 < ∞. Then letting,

Mr =
Gc(τ)

P−1/2+iτ (cos θ0)

Nr =
Gs(τ)

P−1/2+iτ (cos θ0)

We then obtain the solution of the problem by integrating with respect to parameter τ from 0 to ∞,

u = r1/2
∫ ∞

0

[Gc(τ) cos(τ logr) +Gs(τ) sin(τ logr)]
P−1/2+iτ (cos θ)

P−1/2+iτ (cos θ0)
dτ
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CONCLUSION

This report aimed to present examples of the new application of the special functions to solve
problem in the field of theoretical physics and mathematics. Special functions used in the theoretical
physics were introduced as a result of the search for the solutions of practical problems. These have
immensely important role in aspects related to cylinders, spheres, cone torus, spheroids, ellipses etc.

Diagrammatic representation of these special functions provides good knowledge of the function’s
behaviour as well as related examples gives clear application of these functions in the real world.

This research work concludes by the goal of giving a sufficiently detailed exposition of some spe-
cial function and related problems, which are of greatest practical interest.
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