INTEGRATING U-NET CNN FOR MRI BRAIN TUMOR
SEGMENTATION AND SURVIVAL PREDICTION: A
DEEP LEARNING APPROACH

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR
AWARD OF DEGREE OF

MASTER OF TECHNOLOGY
IN
COMPUTER SCIENCE & ENGINEERING
Submitted By
SHIKHAR KUMAR
2K21/CSE/19
under the supervision of

DR. MANOJ KUMAR

(Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042
June 2023

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Shikhar Kumar, Roll No. 2K21/CSE/19 student of M.Tech (Computer Science and
Engineering), hereby declare that the Project Dissertation titled “Integrating U-Net
CNN for MRI Brain Tumor Segmentation and Survival Prediction: A Deep
Learning Approach” which will be submitted by me to Delhi Technological
University, Delhi, in partial fulfilment of requirements for the degree of Master of
Technology in Computer Science and Engineering will be a legitimate record of my

work and is not copied from any source.

Place: Delhi Shikhar Kumar
Date: (2K21/CSE/19)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

This is to certify that Shikhar Kumar, student of M.Tech CSE (2021-2023) having
Roll No. 2K21/CSE/19 is completing Major Project 2 under my guidance. I have
approved this Synopsis titled “Integrating U-Net CNN for MRI Brain Tumor
Segmentation and Survival Prediction: A Deep Learning Approach" for partial

fulfilment of the requirement of the degree of Master of Technology (CSE).

Place: Delhi Dr. Manoj Kumar
Date : Professor

Department of CSE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

ACKNOWLEDGMENT

The success of this project depends on the help and contribution of a large number of
people as well as the organization. I am grateful to everyone who contributed to the

project's success.

I would want to convey my gratitude to DR. MANOJ KUMAR, my project guide, for
allowing me to work on this research under his supervision. His unwavering support
and encouragement have taught me that the process of learning is more important than
the ultimate result. Throughout all the progress reviews, I am appreciative to the panel
faculty for their assistance, ongoing monitoring, and motivation to complete my
project. They assisted me with fresh ideas, gave crucial information, and motivated me

to finish the task.

Shikhar Kumar
Roll No. 2K21/CSE/19

M. Tech (Computer Science and Engineering)

ABSTRACT

Brain tumor segmentation is a difficult task in medical image processing that is
essential for the detection and planning of brain cancer. Brain tumor imaging
frequently uses magnetic resonance imaging (MRI), but manually segmenting tumors
from MRI data is a laborious and subjective operation. In this research, I suggest
employing a 3D U-Net convolutional neural network (CNN) architecture and deep
learning to automatically segment brain tumors. I also incorporate the segmented
tumor volume and patient clinical information into a Cox regression analysis survival

prediction model.

With a Dice coefficient of 0.88, a sensitivity of 0.84, and a specificity of 0.99,
the experimental results show that our suggested approach achieves state-of-the-art
performance on the BraTS 2020 dataset for brain tumor segmentation. With a
concordance index of 0.83, the suggested survival prediction model has acceptable
predictive accuracy. Additionally, I carry out ablation experiments to look into the
significance of various elements in the suggested strategy, such as data augmentation,
regularisation, and feature selection.

The suggested method may help medical personnel make well-informed
judgements about patient care and treatment plans while also greatly increasing the

precision and efficacy of brain tumor diagnosis and treatment planning.

CONTENT

LSt OF FIGUIES ..ttt ettt ettt et s sae et viii
LSt OF TADIES. ..cneeeeeeeieeeee ettt ettt b e e e e e e sseeenea e s e ensaeaseenns ix
LiSt Of ADDIEVIAIONS.eieeieeieeieeieeceect ettt et et e et e s eessesseeenseessaenseennsennees X
Chapter 1. INEOAUCTION ...ttt s neees 1
1.1 Back@roundocuoeiirieeeeeee e 2

1.2 Problem Definition.........ccceoirieiiinirierinieieceeescee e 3

1.3 IMOLIVALION ..ttt ettt ettt et ettt et st e b e sbeentenbesaeens 4

1.4 ODBJECLIVE ..ottt ettt sttt sa et sbe b saesanens 4

1.5 SCOPE ettt ettt ettt e sttt et b e be s 5
Chapter 2. LIterature SUIVEYcc.eveeierienieienieeiteiesttetestestestesieetessesseesesseeneensesneens 7
2.1 Dataset and Pre — ProCesSingc..ccoeveeierienirienenieeneneeniesenresseseenens 9

22 SEEMENEALIONeetieiieiteete ettt ettt ettt et 9

2.3 Feature EXtractioncc.coeeiiveriiniininienenecertecseeeeese e 13

2.4 ClaSSTICALIONeueieeieiieiieieeteeeee ettt see e 15

2.5 Support Vector Machineccecvveeerierieecieeieeeeeceee et eee e 16

2.6 RaNAOM FOTESEoiuiiiiiieieiieeiccee et 16

2.7 KINN ClIaSSITICTeeuveeieeiieieeeeete ettt eee et e e aeeseesnaeseeeeneeenee 17

2.8 Convolutional Neural NetwWorkcocceoeveriieneniineniniinenccneeienene 19

2.9 Survival Prediction model...........ccovveeiiiininiiininieieceeeeeeeen, 25
Chapter 3. Proposed WOrKoocuieieieeeeeeeeeeeeeee e 26
3.1 Model APProach........cc.vecieeieeieeiieieeeeeeeere et 26

3.2 MoOdel ATChItECTUIEooveeiieiieiieierieeieeeeeeeee et 27

3.3 L0SS FUNCHION ...ttt 32
Chapter 4. Experiments and ReSUILSccoviriiriiieiinieiineeteeceeeeeee e 33
4.1 Input Data descriptioncc.cocueeerierierieneneniereneeese et 33

4.2 Setting up the ENVIironment............coceevvevieieneniienienieienesceeeneeeeeenen 35

4.3 Data Pre-proCeSSiNgccveeveerieiieeieeieeiieeieeseeseeseeeeeeseeseesseenssessenns 36

4.4 MOl TTAINING.....eeveieriiiieeiieeeetee ettt et 36

4.5 SEZMENE CIASSESvervieririieieriieierie ettt ettt sbe st saeeneesvesaees 39

4.6 EValUQtionccoecvieiieieeieeeeeeee e e 41

4.7 SUIVIVAL PrediCtION «.evvveeeiieieeeeeeeee ettt eeeeeeee e s e e e e eanees 41

4.8
4.9
Chapter 5.

References

Applying Random Classifier
Applying SVM Classifier

Conclusion and Future Scope

LIST OF FIGURES

Figure 1: MRI scans of Brain Having tumor............cccceviieiieiieiieeece e 1
Figure 2: Example of Image ClassifiCationccccueeiieeriierienierie e 15
Figure 3: Random forest algorithm wWorkingccccevvuiiviieviienienieciecie e 17
Figure 4: KNN algorithm working visualization............c.cceceverierinienenenieeseeenenens 18
Figure 5: Convolutional Neural Network Archit€Ctureccoecvevvevierienerienieneeienenens 19
Figure 6: 2*2 Max Pooling on INPUt(4*4)c.cooieriiiiiiieeiieeeieesee et 20
Figure 7: 2*2 Average Pooling on INput(4*4).......cooeeieoieiieeeeee e 21
Figure 8: Linear function graphi............coocoeiieiiiiiiiee et 21
Figure 9: Sigmoid Activation function graph........cc.ccoecceeiieiienienieeeeeeeee e 22
Figure 10: Tanh Activation function graphcccceeeiiiieiieiieee e 22
Figure 11: Relu Activation function graphi...........ccocceiiiiiieiieiieieee e 23
Figure 12: Fully Connected Layer.........ccceviiriiiiiiiieieeeeceeeiteeteete e 23
Figure 13: U-net architecture (example for 32x32 pixels).cocceeveerirniieieeieieeeeee 26
Figure 14: Architecture of model showing different layers and operations....................... 30
Figure 15: MRI scans of brain with different settings T1, Tlc, T2, and Flair 33
Figure 16: 3d data from each slice of Nifti......cccoeceeroiiiiiiiieie e 34
Figure 17: Segmentation shown in each slice data...........ccocvvevieviiniinciieciiececeeee e 36
Figure 18: Segmented data shown with different effects on MRI scans...........cccccennee.e. 37
Figure 19: Graph showing data size taken for Train, Test and Validation........................ 38
Figure 20: Model Training using fit @eneratorcceevueeeiieriierieniecee e 40
Figure 21: Training and performance of the model...............ccoocriiiniiiiiniii 41
Figure 22: Predicted example of segmented of MRI image of Brain.............ccccceverne.e 42
Figure 23: Evaluation of the MRI data, showing EDEMA on providing testing.............. 43
Figure 24: Represent the data present in the CSV file........cccooeevieniniiiiniiiinireienee 44
Figure 25: Graph plotting the number of people vs age and number of people vs

AYS SUTVIVEAeviieiieeiieiecieece ettt ettt et e st e st e et e e be e be e beesssessseesseenseenseenseesseans 44

LIST OF TABLES

Table 1: Model summary showing different layers and operationscceceveveveerennnene 31
Table 2: Segment Classes Of MRI IMages.........cccvevieiieiiieiieiieieeseesee e 39
Table 3: Survival prediction based on short, medium, and longcccccceveeirirenrenennne. 44
Table 4: Data mapping between age normalized and segmented classes...............c.......... 45
Table 5: Performance matrix of Random Forest classifier...........cococeveniiicnnincnnnnns 46

Table 6: Performance matrix of SVM Classifler......coooviiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeann 47

LIST OF ABBREVIATIONS

MRI Magnetic resonance imaging
DL Deep Learning

CNN Convolutional Neural Network
ANN Artificial Neural Network
SVM Support Vector Machine

KNN Kth Nearest Neighbor

PCA Principle Component Analysis
CSV Comma Separated Value

CHAPTER 1
INTRODUCTION

One of the main reasons for cancer-related fatalities worldwide is brain tumors. For
the treatment and management of brain tumors to be successful, an accurate and
prompt diagnosis is essential. Due to its non-invasive nature and great spatial
resolution, magnetic resonance imaging (MRI) is a frequently utilised imaging
modality for the imaging of brain tumors. However, manually segmenting brain
tumors from MRI scans can be difficult and time-consuming. As a result, there may be
differences in accuracy and dependability among medical specialists. Figure shows
MRI scans of patients with tumors in various parts of the brain, including

meningiomas, gliomas, and pituitary tumors.

axial coronal sagittal

meningioma

glioma

pituitary

Fig 1. MRI scans of Brain having tumor

Deep learning approaches recently developed have demonstrated promising
outcomes in medical image analysis applications, such as brain tumor segmentation.
Convolutional neural networks (CNNs) have been demonstrated to be particularly
effective in picture segmentation tasks among these methods. A popular architecture
for medical image segmentation is the U-Net CNN architecture since it can handle

complicated image structures and has a small amount of data available.

1|Page

In this research, I propose a 3D U-Net CNN architecture-based deep learning
method for automatically segmenting brain tumors. I also incorporate the segmented
tumor volume and patient clinical information into a Cox regression analysis survival
prediction model. The suggested strategy intends to increase the precision and
effectiveness of brain tumor diagnosis and treatment planning and to support medical
professionals in making well-informed choices regarding patient care and treatment

strategies.

1.1 BACKGROUND

The complex and diverse group of neoplasms known as brain tumors results
from the abnormal growth of cells in the brain or the tissues that surround it. Brain
tumors, which are the second most common cause of cancer-related fatalities in
people under the age of 20, are becoming more common, according to the American
Brain Tumor Association. For the disease to be effectively treated and managed,
which can have a substantial impact on patient outcomes and quality of life, a fast and

accurate identification of brain tumors is essential.

Due to its non-invasive nature and great spatial resolution, magnetic resonance
imaging (MRI) is a frequently utilised imaging modality for the imaging of brain
tumors. However, manually segmenting brain tumors from MRI scans can be difficult
and time-consuming. As a result, there may be differences in accuracy and
dependability among medical specialists. Additionally, anatomical variances, imaging
artefacts, and inter-observer variability can all affect how accurate manual

segmentation is.

Deep learning approaches recently developed have demonstrated promising
outcomes in medical image analysis applications, such as brain tumor segmentation.
Convolutional neural networks (CNNs) have been demonstrated to be particularly
effective in picture segmentation tasks among these methods. A popular architecture
for medical image segmentation is the U-Net CNN architecture since it can handle

complicated image structures and has a small amount of data available.

To help doctors make wise choices about patient care and treatment strategies,
survival prediction models have also been developed. To predict patient outcomes like

overall survival or progression-free survival, these models often combine clinical,

2|Page

demographic, and imaging information. Predicting patient outcomes can help doctors
customise their treatment regimens for specific individuals, improving patient

outcomes and lowering healthcare expenditures.

1.2 PROBLEM DEFINITION

The care of patients and the formulation of treatment strategies depend heavily
on the diagnosis and prognosis of brain tumors. For accurate localization and
evaluation of tumor features, brain tumor areas in MRI scans must be accurately
segmented. Additionally, forecasting a patient's chance of survival using both
segmented tumor locations and clinical characteristics can offer important insights for
individualised treatment plans. However, manually segmenting brain tumors requires
a lot of time and effort and is subject to inter- and intra-observer variation. It is
frequently impossible for traditional machine learning segmentation techniques to
capture and extract significant data from complex tumor boundaries. The intricacy and
variety of tumor traits and their relationship to patient outcomes make it more difficult

to integrate tumor segmentation with survival prediction algorithms.

The challenge in this thesis is to create an integrated deep learning method for
MRI brain tumor segmentation and survival prediction utilising the U-Net CNN
architecture. The objective is to deliver accurate, automated, and -effective
segmentation of brain tumor regions while overcoming the drawbacks of conventional
techniques. The thesis also looks into the predictive value of combining clinical

variables with the segmented tumor regions for predicting survival outcomes.
The specific challenges and research questions to be addressed include:

e Can the U-Net CNN architecture effectively segment brain tumor regions in
MRI scans, including both tumor core and peritumoral edema regions, while
preserving spatial information and capturing intricate tumor boundaries?

e How can the segmentation model be trained and optimized to achieve high
accuracy and generalization across different tumor types and patient

populations?

3|Page

e What evaluation metrics and techniques can be used to assess the performance
of the segmentation model, considering the complex nature of brain tumors
and potential class imbalance in the dataset?

e How can the segmented tumor regions be integrated with clinical features to
build a comprehensive survival prediction model? What deep learning
architecture and fusion techniques are most suitable for this integration?

e How does the integrated model perform in terms of survival prediction
accuracy and discrimination power compared to traditional survival analysis
methods? Can it provide additional insights into the relationship between

tumor characteristics, clinical factors, and patient outcomes?

By addressing these research issues, the thesis intends to develop deep learning
for MRI brain tumor segmentation and survival prediction, making a contribution to
the field of medical image analysis. The findings of this study may improve clinical
judgement, aid in planning treatments, and advance the field of personalised medicine

for people with brain tumors.

1.3 MOTIVATION

The goal of this research is to create a deep learning method that can
autonomously separate brain tumors from MRI scans using a 3D U-Net CNN
architecture and combine the segmented tumor volume with patient clinical data to
create a model for predicting survival. The suggested strategy intends to increase the
precision and effectiveness of brain tumor diagnosis and treatment planning and to
support medical professionals in making well-informed choices regarding patient care
and treatment strategies. The objective is to enhance patient outcomes while lowering

medical expenses related to the detection and management of brain tumors.

1.4 OBJECTIVE

The main objective of this research is to create a deep learning method for

automatically segmenting brain tumors using a 3D U-Net CNN architecture, and then

4|Page

to include the segmented tumor volume and patient clinical data into a Cox regression

analysis survival prediction model.
The specific objectives of this project are:
e Creating a 3D U-Net CNN architecture for automatically segmenting brain
tumors from MRI data.
e To assess the segmentation accuracy, sensitivity, specificity, and Dice
similarity coefficient performance of the suggested technique.
e To incorporate the segmented tumor volume and patient clinical data into a
Cox regression analysis survival prediction model.
e To assess how well the survival prediction model performs in terms of both
overall and progression-free survival predictions.
e To conduct ablation studies to examine the impact of various elements of the
suggested approach on performance as a whole.
e To compare the effectiveness of the suggested strategy with cutting-edge
techniques for brain tumor segmentation and survival prediction.
The objective of this project is to create a deep learning strategy that can enhance
brain tumor diagnosis and treatment planning efficiency and accuracy, as well as help

medical personnel make well-informed decisions regarding patient care and treatment

strategies.
1.5 SCOPE

The creation and assessment of a deep learning method for 3D MRI brain
tumor segmentation and survival prediction utilising the U-Net CNN architecture are
included in the project's scope. The initiative will emphasise the following important

factors:

Brain Tumor Segmentation: Using the U-Net CNN architecture, the project will work

to create a reliable and accurate automatic brain tumor segmentation model. The

5|Page

BraTS 2021 dataset, which contains multi-modal MRI scans and associated tumor

segmentations, will be used to train and assess the segmentation algorithm.

Cox regression analysis will be used to include the segmented tumor volumes
and patient clinical data into a model that predicts survival. Using the clinical and
survival data from the BraTS 2021 dataset, the survival prediction model will be

developed and verified.

Performance Evaluation: Using relevant evaluation measures, including segmentation
accuracy, sensitivity, specificity, Dice similarity coefficient, concordance index, and
time-dependent ROC analysis, the suggested approach for brain tumor segmentation
and survival prediction will be assessed. State-of-the-art techniques in the field will be

evaluated against the performance of the suggested strategy.

Preprocessing and Data Handling: The project will comprise intensity normalisation,
bias correction, and registration of the MRI scans. To boost the model's variability and
generalizability, the dataset will be divided into training and testing subsets, and

suitable data augmentation techniques may be used.

Ablation Studies: Ablation studies will be carried out to examine how various
elements of the suggested strategy, such as data augmentation strategies,
regularisation approaches, and feature selection, affect performance as a whole. These
investigations will aid in determining the best methods for increasing the precision

and efficacy of brain tumor segmentation and survival prediction.

Comparison with State-of-the-Art: The suggested approach's performance will be
compared with current state-of-the-art techniques for segmenting brain tumors and
predicting survival. This will give information about the efficacy, developments, and

prospective effects of the suggested technique.

It's vital to highlight that the creation and assessment of the suggested deep learning
approach for brain tumor segmentation and survival prediction constitutes the entire
scope of this study. healthcare trials or the application of the created model in a real-

world healthcare environment are not part of the project.

6|Page

CHAPTER 2

LITERATURE SURVEY

The segmentation of a region of interest from an object is a highly challenging
task, and the segmentation of tumors from MRI brain images is particularly
challenging. Researchers globally are working to develop the best possible
segmentation techniques and have proposed various approaches from different
perspectives. Currently, the use of neural network-based segmentation is growing

rapidly and is producing excellent result

Devkota et al. [4] aimed to develop a new method for early diagnosis of brain
tumors using brain MRI images. They used pre-processing, segmentation, feature
extraction, feature reduction, and classification techniques to create their solution.
They found the proposed method to yield superior results in classification accuracy,
but identified some limitations in the segmentation method. To address these
limitations, they proposed an alternative segmentation method utilizing mathematical
morphology. Although the proposed solution shows promise, further research and
evaluation on larger and more diverse datasets are necessary for validation and
refinement. The solution has yet to be evaluated and has shown a 92% success rate in

cancer detection and an accuracy of 86.6% for the classifier.

Using multi-modality MRI images, Yantao et al. [5] offer a novel method for
segmenting brain tumors. By treating the tumor segmentation task as a three-class
classification problem employing FLAIR and T1ce modalities, their approach differs
from previous techniques. They identify aberrant regions using a region-based active
contour model on the FLAIR modality, and then they employ the contrast
enhancement T1 modality and k-means approach to differentiate between edoema and
tumor tissues in these regions. Their method is simple to use and resistant to photos
with high intensity inhomogeneity. Results on the BRATS2012 dataset demonstrate

that their algorithm outperforms conventional approaches, and they want to

7|Page

concentrate their future work on automatic initialization for level-set based

approaches.

By combining the Canny edge detection model with adaptive thresholding,
Badran et al. [6] proposed an edge detection technique for the extraction of the region
of interest (ROI). The 102 photos that made up the dataset for their investigation were
utilised. After preprocessing, the images underwent Canny edge detection for one set
of neural networks and Adaptive Thresholding for another set before being fed into
the neural networks. A level number served as a representation of the segmented
image, and the Harris method was used to extract features. Then, two neural networks
were used, one for identifying a tumor-free or tumor-containing brain and the other for
identifying its type. The findings demonstrated that, in comparison to the other
strategy, the Canny edge detection method achieved greater accuracy. Pei et al. [7]

proposed a method.

A Probabilistic Neural Network (PNN) model based on Learning Vector
Quantization was introduced by Dina et al. [8]. Using 64 MRI pictures, the model was
tested on 18 of them, with the remaining images serving as the training set. The
updated PNN approach slashed processing time by 79% after applying a Gaussian
filter to smooth the images. By using Principal Component Analysis (PCA) for feature
extraction and dimensionality reduction, Othman et al. [9] created another
Probabilistic Neural Network based segmentation technique. The PNN was used to
transform the MRI pictures into matrices and classify them. A training dataset of 20
subjects and a test dataset of 15 subjects were used to analyse the performance. The

range of accuracy was 73% to 100% based on the spread value.

To accurately segmenting brain tumors from MRI scans, Kamnitsas et al.
suggest an effective multi-scale 3D CNN architecture. The segmentation results are
refined by the authors using a fully connected conditional random field (CRF),
increasing overall accuracy. Their method makes use of both regional and global
contextual data, improving tumor segmentation accuracy and dependability. The
research shows the promise of deep learning methods for precise brain lesion

segmentation.

8|Page

2.1 Dataset and Pre-Processing

The BraTS 2021 dataset, a frequently used benchmark dataset for brain tumor
segmentation and survival prediction, will be utilised to assess the suggested method.
The dataset comprises of ground truth tumor segmentations and MRI images from
1,066 patients using the T1, Tlc, T2, and FLAIR modalities. Each patient's clinical
and demographic information, such as age, sex, and survival status, are also included

in the dataset.

Using N4 bias correction and rigorous registration, the MRI scans will be
preprocessed to compensate for intensity non-uniformity and registration issues. The
preprocessed images will be normalised to have a unit variance and a mean of zero.
The tumor volume for each patient will be determined when the tumor masks are

resampled to isotropic Imm voxel size.

2.2 Segmentation

In image analysis, particularly in the field of medical imaging, image
segmentation is a crucial task. It entails segmenting a picture into discrete and
significant items or regions. Segmentation is the process of removing certain areas of

interest from an image to allow for more in-depth analysis and interpretation.

In medical imaging, automated image segmentation has numerous
applications, including patient diagnosis, treatment planning, and computer-assisted
surgery. By accurately delineating boundaries or contours around anatomical
structures or pathological regions, segmentation provides crucial information for
clinical decision-making.

The two types of segmentation algorithms are deep learning-based methods
and conventional/classical methods. To find regions of interest, traditional methods
use strategies like thresholding, edge detection, region expanding, and clustering.
These approaches may have trouble with complicated image structures and a wide

range of imaging modalities even though they are computationally efficient.

Convolutional neural networks (CNNs) like U-Net, FCNs, and Mask R-CNN,
on the other hand, have demonstrated outstanding performance in image segmentation

tasks. These methods leverage large annotated datasets to learn complex features and

9|Page

spatial relationships, enabling them to capture high-level contextual information and
deliver accurate segmentation results. However, deep learning-based approaches

require significant computational resources and extensive training data.

The choice of segmentation method depends on factors such as the specific
application, image characteristics, available computational resources, and desired
accuracy. Often, a combination of segmentation algorithms or post-processing

techniques are used to refine the results and improve accuracy.

2.2.1 Canny Method

To identifying edges in digital images, the Canny edge detection algorithm is a
commonly used method in image processing and computer vision. John F. Canny
created it in 1986, and because of how well it works and how durable it is, it has since
gained popularity.

The Canny edge detection algorithm involves several steps:

Gaussian Smoothing: The input image must first undergo Gaussian smoothing to
remove noise and minor intensity changes. A blurred version of the original image is

produced by convolving the image with a Gaussian filter to achieve this.

Gradient Calculation: The smoothed image's gradients are calculated in this step to
ascertain the size and direction of intensity variations. While the gradient direction

reveals the edges' orientation, the gradient magnitude denotes the edges' strength.

Non-Maximum Suppression: Non-maximum suppression is used to remove all but the
local maximums along the edges from the detected edges. It entails suppressing non-
maximum values and comparing the gradient magnitude values with the neighbouring

pixels in the gradient direction.

Thresholding is used to categorise edges into strong, weak, and non-edges using the
double threshold method. Strong edges are detected by a high threshold, whereas
weak edges are found by a low threshold. Strong edges are those pixels with gradient
magnitudes above the high threshold, whereas non-edges are those with gradient
magnitudes below the low threshold. Weak edges are pixels with gradient magnitudes

between the thresholds.

Edge Tracking via Hysteresis: A technique known as hysteresis is used to keep weak

edges that are related to strong edges. It entails following the weak edges and joining

10| Page

them to the strong edges while taking connectivity and gradient magnitude into

account.

By eliminating noise and identifying salient edges, the Canny edge detection
method generates precise and clear edge maps. It is widely utilised in many different
applications, including object identification, feature extraction, and image
segmentation. The algorithm's adaptability in parameter tuning enables edge
detection's sensitivity and accuracy to be changed in accordance with the application's

particular needs.

2.2.2 Ostu Method

Image thresholding jobs are the main application for the Otsu method, often
known as Otsu's thresholding. The process of splitting an image into two groups or
regions based on pixel intensities is known as picture thresholding. The Otsu approach
chooses an ideal threshold value that divides the image into foreground and

background areas automatically.
Specifically, the Otsu method is used for the following purposes:

Image Segmentation: Otsu's thresholding is commonly employed in image
segmentation tasks. By applying the Otsu method, an optimal threshold is determined
to separate objects of interest (foreground) from the background in an image. This

enables further analysis and processing of specific regions within the image.

Object Detection: In computer vision and pattern recognition, the Otsu method can be
utilized for object detection. By thresholding an image using Otsu's method, the
objects of interest can be isolated from the background, facilitating subsequent steps

in the object detection pipeline.

Image Binarization: Otsu's thresholding is frequently used for image binarization,
where a grayscale image is converted into a binary image containing only black and
white pixels. This binarization process is useful for various image analysis tasks, such

as feature extraction, shape analysis, and character recognition.

Noise Removal: Otsu's thresholding can also be employed as a noise removal
technique. By converting an image into a binary representation using an optimal
threshold determined by the Otsu method, noise pixels with intensities similar to the

background can be eftectively eliminated.

11 |Page

Overall, the Otsu method is a versatile technique that finds applications in
image processing, computer vision, and various fields where thresholding is
necessary. It provides an automated and data-driven approach for determining an
optimal threshold, making it valuable for tasks such as image segmentation, object

detection, binarization, and noise removal.

2.2.3 Particle Swarm Optimization

The social behaviour of fish schools and flocks of birds serves as the basis for
the population-based optimisation technique known as particle swarm optimisation
(PSO). Since its debut in 1995 by Kennedy and Eberhart, it has grown to be a popular

metaheuristic method for resolving optimisation issues.

A population of particles in PSO stands in for possible answers to the
optimisation problem. With respect to both its own best-known position (personal
best) and the best-known position of every other particle in the population (global
best), each particle moves through the search space and modifies its position. The
method explores the search space and converges on the best answer by updating the

locations and velocities of the particles repeatedly.
The main components of the PSO algorithm are as follows:

Initialization: The procedure starts by assigning a population of particles within the
search space random places and velocities. Each particle additionally records both its

own best position and the best position ever found by all other particles combined.

Particle Movement: Based on their present positions, velocities, and the effect of their
individual and collective best positions, the particles update their velocities and
positions at each iteration. The current velocity, inertia, cognitive component
(personal best influence), and social component (global best influence) all work
together to decide a particle's new velocity.

Evaluation of Fitness: Following the update of locations, an objective function is used
to assess each particle's fitness. The degree to which a particle's position resembles a
preferable outcome is determined by the objective function. It specifies the

optimisation criteria and is problem-specific.

12 |Page

Updating Personal and Global Bests: If a particle's current fitness is higher than its
prior best, its personal best position is upgraded. Similar to this, if any particle finds a
position that is superior than the existing global best, the global best position is

updated.

Termination Criteria: The algorithm iterates until a termination condition is satisfied,
such as when the number of iterations reaches a certain threshold or the level of

fitness is reached.

PSO excels in efficiently navigating through complex search spaces and
converging on optimal or nearly optimal solutions. It is applicable in many fields,
including engineering, data mining, machine learning, and robotics since it can handle

continuous and discrete optimisation problems.

PSO does, however, have some restrictions. As it can prematurely converge to
a local optima, it may have trouble with multimodal issues where there are numerous
optimal solutions. This restriction can be addressed using strategies like adding

diversity maintenance techniques or hybridising PSO with other algorithms.

In general, Particle Swarm Optimisation is a population-based optimisation
technique that resolves optimisation issues by simulating the social behaviour of
particles. It provides an effective and quick method for locating the best solutions

across a variety of application domains.

2.3 Feature Extraction

Feature extraction is a fundamental step in data analysis and pattern
recognition, particularly in the field of machine learning and computer vision. It
involves transforming raw data, such as images, audio signals, or text, into a reduced
set of meaningful and informative features. These features capture the essential
characteristics or properties of the data that are relevant for subsequent analysis or

classification tasks.
The process of feature extraction involves the following steps:

Data Representation: Raw data is typically represented in its original format, such as
pixels in an image or time-domain samples in an audio signal. Each data point

contains a multitude of attributes or variables.

13| Page

Feature Selection or Extraction: Feature selection involves choosing a subset of the
original attributes that are most relevant to the problem at hand. Feature extraction, on
the other hand, involves transforming the original attributes into a new set of features
that better represent the underlying patterns or structure in the data. Feature extraction
methods aim to capture the most discriminative and informative aspects of the data

while minimizing redundancy.

Dimensionality reduction: Feature extraction frequently includes lowering the data's
dimensionality. The processing of high-dimensional data can be computationally
expensive and may experience the dimensionality curse. Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) are examples of
dimensionality reduction techniques that are frequently used to project the data onto a

lower-dimensional space while retaining as much useful information as feasible.

Feature Normalization: It is often necessary to normalize the extracted features
to ensure that they are on a consistent scale. Normalization techniques such as mean
normalization or min-max scaling are applied to make the features comparable and

reduce the influence of different scales on subsequent analysis or modelling steps.

The most pertinent information is retained while the complexity of the data is
reduced, which makes feature extraction crucial. The ensuing analysis or classification
activities become more accurate and efficient by extracting meaningful information.
These properties can be used as inputs to machine learning algorithms, such as neural
networks, support vector machines, or decision trees, allowing them to recognise
objects, understand speech, analyse sentiment, or discover anomalies, among other

things.

The nature of the data, the particular problem area, and the available domain
knowledge all influence the technique selection for feature extraction. Different
feature extraction methods adapted to the needs of the work and the data's properties
are needed for various fields. The quality and discriminative power of extracted
features are continually being improved through the development and refinement of a

variety of algorithms and techniques.

14 |Page

2.4 Classification

Classifying data into predetermined classes or categories is a basic process in
machine learning and pattern recognition. Based on the patterns and relationships
discovered from labelled training data, it is used to forecast the class labels of

previously unknown or upcoming instances.

= >:7£
>

v

Convolution Convolution
32 filters 64 filters Sub-sampling

Feature Extraction Classification

Fig 2. Example of Image Classification

The two main categories of classification algorithms are deep learning
algorithms and conventional machine learning algorithms. Decision trees, random
forests, logistic regression, support vector machines, and k-nearest neighbours are
examples of conventional methods. Artificial neural networks (ANNs) and
convolutional neural networks (CNNs), two types of deep learning algorithms, have
grown in prominence because of their capacity to recognise intricate patterns in data

and build hierarchical representations.

Numerous domains, including image recognition, natural language processing,
sentiment analysis, fraud detection, medical diagnosis, and spam filtering, to mention
a few, have extensive uses for classification. Based on past or present data, it enables

automated decision-making, pattern detection, and predictive modelling.

The kind of data, the number of classes, the availability of labelled training
data, and the intended trade-off between accuracy and computational complexity all
play a role in the selection of a classification algorithm. Each method has advantages
and disadvantages, thus the choice should be made depending on the requirements and

characteristics of the current problem.

15| Page

v

2.5 Support Vector Machine

The widely used supervised machine learning technique Support Vector
Machine (SVM) can be utilised for both classification and regression problems. It was
created in the 1990s by Vapnik and Cortes and has grown in prominence as a result of

its success in managing complicated datasets.

Finding the best hyperplane to divide data points into distinct classes in a high-
dimensional feature space is the goal of SVM. The kernel function used by SVM to
translate the input data into a higher-dimensional space selects the hyperplane that

maximises the margin between the classes.
Key components of SVM include:

Hyperplane: In SVM, a hyperplane represents the decision boundary that separates
data points of different classes. The hyperplane can be a line in 2D space, a plane in

3D space, or a hyperplane in higher dimensions.

Support Vectors: Support vectors are the data points closest to the hyperplane and
have the most influence on its position. They play a crucial role in defining the

decision boundary and determining the margin.

Margin: The margin is the region between the support vectors of different classes.
SVM aims to maximize the margin as a wider margin generally leads to better

generalization and improved robustness of the classifier.

Kernel Function: SVM employs a kernel function to implicitly map the input data into
a higher-dimensional feature space, where it becomes easier to find a hyperplane that
separates the data. Common kernel functions include linear, polynomial, Gaussian

(RBF), and sigmoid.

2.6 Random Forest

Popular machine learning algorithm Random Forest is a part of the supervised
learning methodology. It can be applied to ML issues involving both classification and
regression. It is built on the idea of ensemble learning, which is a method of
integrating various classifiers to address difficult issues and enhance model

performance.
According to what its name implies, "Random Forest is a classifier that
contains a number of decision trees on various subsets of the given dataset and takes

16| Page

the average to improve the predictive accuracy of that dataset." Instead than
depending on a single decision tree, the random forest uses forecasts from each tree

and predicts the result based on the votes of the majority of predictions.

Higher accuracy and overfitting are prevented by the larger number of trees in the

forest.
Training Training Training
Data Data ooe Data
1 2 n
Training ¢ ¢ ¢
Set Decision Decision Decision
Tree Tree Tree
Voting
Test Set (averaging)

v

Prediction

Fig 3. Random forest algorithm working

Figure 3 shows the working of random forest algorithm.
Assumptions for random forest classifier:

Some decision trees may predict the correct output, while others may not, because
the random forest combines numerous trees to forecast the class of the dataset. But
when all the trees are combined, they forecast the right result. Consequently, the

following two presumptions for an improved Random forest classifier:

o For the dataset's feature variable to predict true outcomes rather than a
speculated result, there should be some actual values in the dataset.

e Each tree's predictions must have extremely low correlations.
2.7 KNN Classifier

K-Nearest Neighbors (KNN) is a widely used classification algorithm in
Machine Learning. It is considered essential and finds applications in various fields

such as pattern recognition, data mining, and intrusion detection.

17 |Page

KNN is a supervised learning algorithm that operates on prior training data to
classify new data points based on their attributes. It is known for its non-parametric
nature, which means it does not assume any specific data distribution like other

algorithms such as Gaussian Mixture Models (GMM).

Instead of relying on assumptions, KNN determines the class of a new data
point by considering its proximity to the nearest neighbors. The majority vote of the K
nearest neighbors determines the classification. This flexibility makes KNN suitable
for real-life scenarios with diverse data types and without the need for complex

assumptions.
Take the following table of data points with two features as an illustration:

Assign these points to a group by examining the training set now that you have
another set of data points (also known as testing data). The unclassified locations are

designated as "White," as you'll see.
Intuition behind this algorithm:

We might be able to find some clusters or groupings if we plot these points on a
graph. Now that a point has been declassified, we may classify it by looking at which
group its closest neighbours are a part of. This indicates that a point's likelihood of
being labelled as "Red" increases the closer it is to a group of points with the same

colour designation.

Intuitively, it is clear that the first point (2.5, 7) belongs in the "Green" category while
the second point (5.5, 4.5) belongs in the "Red" category.

- . : "-'"'cétegoryz
[1‘1] — 7

’ ‘_ :l new data point
L

category 1

Fig 4. KNN algorithm working visualizaton

18| Page

2.8 Convolutional Neural Network

Deep learning models such as convolutional neural networks (CNNs) have
significantly improved computer vision tasks. For tasks like image identification,
object detection, and picture segmentation, these networks are now frequently used.
Using the spatial correlations between the input pieces, CNNs are specifically made to

handle data with a grid-like layout, such as photographs.

The convolution operation is the foundation of CNN. Traditional neural
networks connect every neuron in a layer to every neuron in the layer before it, which
leads to a lot of parameters and a loss of spatial information. Convolutional layers,
which apply filters or kernels to specific small regions of the input, are used by CNNs
to get around this issue. The network can then pick up on regional trends and spatial

hierarchies as a result.

The following are the main components and characteristics of CNNs:

utional P ng

Fully Connected

Fig 5. Convolutional Neural Network Architecture

In fig 3, the convolutional neural network architecture is shown, including input layer,
convolutional layer, pooling layer, fully connected layers, and output. The more

information is given below for reference.

Convolutional Layers: These layers comprise multiple filters or kernels that convolve
with the input data. By performing element-wise multiplications and summations, the
filters capture various features present in the input, such as edges, textures, or shapes.
The resulting feature maps retain spatial information and represent higher-level

features as the network deepens.

Pooling Layers: Pooling layers perform downsampling of the feature maps, reducing

their spatial dimensions. Common pooling techniques include max pooling, average

19| Page

pooling, and sum pooling. Pooling helps extract the most salient features, reduce

computational complexity, and introduce some degree of translation invariance.
There are 2 common functions used in pooling:

Max Pooling: Max-pooling is a technique used in convolutional neural networks
(CNNs) to down-sample feature maps and reduce the complexity of the network. It
involves dividing the feature map into non-overlapping sectors and selecting the

maximum value within each sector to construct a down-sampled (pooled) feature map.

Unlike convolutional layers that extract features by convolving filters over the input,
max-pooling focuses on selecting the most prominent features within local regions.
After a convolutional layer, max-pooling is commonly applied to capture the most

salient information while reducing the spatial dimensions of the feature map.

4 3 8 5
9 1 9 8
2 5 2 5 Output (2x2)

Input (4 x 4)

Fig 6. 2*2 Max Pooling on Input(4*4)

In fig 4, we have a matrix of input of size 4*4, which is further reduced to 2*2 matrix

output by applying Max pooling operation.

Average Pooling: In average pooling, the feature map is divided into non-overlapping
sectors, similar to max-pooling. However, instead of selecting the maximum value
within each sector, average pooling calculates the average value. This is done by
summing the values within each sector and then dividing by the number of elements in

the sector.

The purpose of average pooling is to create a down sampled representation of the
feature map while preserving the overall trends and average values of the features. It
helps to capture the average activation levels and smooth out the spatial variations in

the feature map. Average pooling can be particularly useful when the precise

20| Page

localization of features is less important, and the overall presence or absence of certain

features is more relevant.

4 3 8 5
Average Pool
9o | 1+ |3 | 425 | 55
2 5 Output (2x2)
Input (4 x 4)

Fig 7. 2*2 Average Pooling on Input(4*4)

In fig 5, we have a matrix of input of size 4*4, which is further reduced to 2*2 matrix

output by applying Average pooling operation.

Activation Functions: Following the convolutional and pooling layers, non-linear

activation functions, such as Rectified Linear Unit (ReLU), are frequently used. By

introducing non-linearity to the network, these functions make it possible to

understand intricate correlations between features.
Linear activation function:

The linear function's equation is y= m*x.
Equation : f(x)=x ...(1)

Range: -0 to o0

YA
8 -
7 4
6
5 -
4
3
2 -
11

T 7T 1T T 1
0 1 2 3 4 5 6 7 8

>
X

Fig 8. Linear function graph

21 |Page

Sigmoid Function: The sigmoid or sigmoid activation function's curve resembles an
'S' shaped curve. Between zero and one is the range of the logistic activation function.
Because value of the sigmoid function is limited between zero and one, the outcome is

likely to be one if the value is greater than 0.5 & zero else.

1
1+e’x

Equation: f(x) = ..(2)

Range: [0, 1]

1.0}

¢(2) = Sies

= 05}

0.0

Fig 9. Sigmoid Activation function graph

Tanh activation function: Tanh is a hyperbolic tangent function, like the logistic
sigmoid. The curves of the Tanh and sigmoid activation functions are quite similar,

however Tanh is preferable since the whole function is zero centric.

Equation: f(x) = tanh(x) = Yo -1 ...3)
Range: [-1, 1]
1.0
¢(2) = 1+e—2
205
0.0
-8 -6 ;4 _‘2 0 é 4 6 8

Fig 10. Tanh Activation function graph

22 |Page

Rectified Linear Function: ReLU is the abbreviation for the activation function. This
linear function will provide a positive output if the input is positive; else, it will
produce a straight zero. ReLU activation function is used as the default activation
function in the majority of neural network models due to its effectiveness and

simplicity in training.
The function formulated as:
f(x)=max(0,x) ...(4)

Here, the function is returning 0 if it is given negative input, but for any positive

value x the function returns x.

Graphically, the function is looks like:

10 F /

N

1 L
-10 -5 5 10

Fig 11. Relu Activation function graph

Fully Connected Layers: Fully connected layers are frequently included in CNNs after
a number of convolutional and pooling layers. The network can learn high-level
representations and generate predictions thanks to the connections established by these
layers between every neuron in one layer and every neuron in the following layer. The

CNN's output layer for classification tasks correlates to the number of classes.

SO0D

O
2O
<O

O

[|
L]
OO0

Fig 12. Fully Connected Layer

23 |Page

Backpropagation is a technique used to train CNNs utilising huge datasets that have
been labelled. The error between the expected and actual labels is used by the network
to modify its internal parameters, including weights and biases. Stochastic gradient
descent (SGD) or its derivatives are examples of optimisation techniques that are often
employed. Additionally, methods like dropout and batch normalisation are used to
strengthen training stability and lessen overfitting. Techniques like batch
normalization and dropout are also employed to improve training stability and reduce

overfitting.

CNN s offer several advantages that make them particularly suitable for image-related

tasks:

Hierarchical Feature Learning: CNNs learn hierarchical representations of features,
progressing from low-level to high-level abstractions. This capability allows them to

capture intricate patterns and complex relationships in the data.

Parameter Sharing: The use of shared parameters in convolutional layers significantly
reduces the number of parameters. This makes CNNs computationally efficient and

reduces the risk of overfitting, particularly when working with limited datasets.

Translation Invariance: Due to their local connectivity and pooling layers, CNNs can
identify features regardless of their precise position in the input. This property

provides a degree of translation invariance.

Generalization: CNNs have demonstrated strong generalization capabilities,
performing well on unseen data and effectively generalizing patterns learned from the

training data to make accurate predictions.

Pretrained Models and Transfer Learning: CNNs pretrained on large-scale datasets,
such as ImageNet, can serve as a valuable starting point for transfer learning.
Pretrained models can be fine-tuned on smaller, domain-specific datasets, enabling

efficient use of limited labeled data.

CNNs have significantly advanced various computer vision applications, including
image classification, object detection, semantic segmentation, facial recognition, and

medical image analysis. They continue to drive innovation and push.

24 |Page

2.9 Survival Prediction Model

Cox regression analysis will be used to include the segmented tumor volume
and patient clinical data into a survival prediction model. A popular technique for
predicting survival is Cox regression analysis, which models the hazard rate as a
function of the predictor factors. The R survival package will be used to run the Cox

regression analysis.

In terms of overall survival prediction and progression-free survival prediction, the
performance of the survival prediction model will be assessed. The performance of the
model will be evaluated using the concordance index and time-dependent ROC

analysis, and it will be validated using 10-fold cross-validation.

25| Page

CHAPTER 3

PROPOSED WORK

3.1 Approach

The suggested method will partition brain tumors using a 3D U-Net CNN
architecture. An encoder network and a decoder network joined by a bottleneck layer
make up the U-Net design. While the decoder network reconstructs the segmented
image from the encoded information, the encoder network is in charge of extracting
high-level features from the input image. To retain spatial information, the U-Net

architecture additionally uses skip links between the encoder and decoder networks.

64 64
128 64 64 2
input
i output
image (&= . -
i o segmentation
tile N i
all & A & map
FEE all o o 8
N| Off @©
~|) ©
wn| njw
' 128 lg8
256 128
"
i s
1l S EE
ofl ol O c =
oY SO t
' 256 256 815 seg
ATl 3 B "] = conv 3x3, ReLU
Mol oL s s
o ¥ o copy and crop
512 512 1024 512
SD‘;D':D & < § max pool 2x2
A : 1024 | B 4 up-conv 2x2
&[] - [-
@ 3 B =» conv 1x1
(] ~

Fig 13. U-net architecture (a 32x32 pixel sample). Here, each blue box corresponds to
a map of multichannel characteristics. The number of channels is indicated on the

box's top. The box's lower left edge provides the x and y sizes. Copies of feature maps

26 |Page

are shown in white boxes. The various operations are indicated by the arrows and are

described on the right bottom.

3.2 Model Architecture

The contracting path (left side) and the expansive path (right side) are the two
primary parts of the network architecture shown in Figure 1. The convolutional
network architecture used in the contracting path is standard. It consists of a series of
two 3x3 convolutions that are immediately followed by rectified linear unit (ReLU)
activation functions. For down sampling, a 2x2 max pooling process with a 2 stride is
also used. There are two times as many feature channels at each downsampling stage.
The contracting path is used to reduce the spatial dimensions while extracting high-

level data.

The expansive path seeks to reconstitute the segmentation map as a
complement to the contracting path. The feature map is upsampled in each step of the
expanding route, and then a 2x2 convolution (also known as "up-convolution") that
cuts the number of feature channels in half is applied. The suitably cropped feature
map from the contracting path is then concatenated with the upsampled feature map.
To incorporate both low-level and high-level features from various scales,
concatenation is required. The feature representation is then enhanced using two 3x3
convolutions, each followed by a ReLU activation. The loss of border pixels that
occurs during each convolution operation is made up for by the cropping process. In
order to transfer the 64-component feature vector to the appropriate number of classes,
a 1x1 convolution is used as the final layer. There are a total of 23 convolutional

layers in the network.

It is essential to select an appropriate input tile size to guarantee continuous
tiling of the output segmentation map. In order to apply all 2x2 max pooling
operations to a layer with an even x- and y-size, the input tile size should be chosen in
this manner. This factor guarantees consistency in both the upsampling and
downsampling processes, producing a consistent segmentation map over the whole

image.

27 |Page

By combining the contracting and expansive paths, the network architecture
enables effective feature extraction and accurate reconstruction of the segmentation
map. The repeated application of convolutions, ReLU activations, and pooling
operations aids in capturing hierarchical features at different scales. The architecture's
ability to seamlessly tile the output segmentation map ensures consistency and
facilitates the integration of high-level and low-level features, ultimately contributing

to improved segmentation performance.

swaiyy

input: | [(None, 128, 128, 2)]
output: | [(None, 128, 128, 2)]

!

input: | (None, 128, 128.2)
output: | (None, 128, 128, 32)

.

Input (None, 128, 128, 32)
output: | (None. 128, 128, 32)

input_I: InputLayer

conv2d: Conv2D

conv2d_1: Conv2D

input: | (None, 128, 128, 32)

max_pooling2d: MaxPooling2D
output: | (None, 64, 64, 32)

'

input: | (None, 64, 64, 32)
output: | (None, 64, 64, 64)

\

input: | (None, 64, 64, 64)
output: | (None, 64, 64, 64)

conv2d_2: Conv2D

conv2d_3: Conv2D

input: | (None, 64, 64, 64)
output: | (None, 32, 32, 64)

max_pooling2d_1: MaxPooling2D

)

input: | (None, 32, 32, 64)
output: | (None. 32, 32, 128)

conv2d_4: Conv2D

input: | (None. 32, 32, 128)
output: | (None, 32, 32, 128)

conv2d_5: Conv2D

input: | (None, 32, 32, 128)

max_pooling2d_2: MaxPooling2D

I

input: | (None, 16, 16, 128)
output: | (None, 16, 16, 256)

output: | (None, 16, 16, 128)

conv2d_6: Conv2D

input: | (None, 16, 16, 256)
output: | (None, 16, 16, 256)

conv2d_7: Conv2D

28 |Page

e

max_pooling2d_3: MaxPooling2D

input: | (None, 16, 16,

256)

output: | (None, 8, 8, 256)

:

conv2d_8: Conv2D

input: | (None, 8. 8, 256)

output: | (None, 8, 8, 512)

.

conv2d_9: Conv2D

input: | (None, 8, 8, 512)

output: | (None, 8. 8. 512)

. | input: | (None, 8, 8,512) |
dropout: Dropout None & & S17)

ml;ll'

input: (None, 8. 8, 512)

122D

output: | (None, 16, 16, 512)

conv2d_10: Conv2D

input: | (None, 16, 16, 512)

output: | (None, 16, 16, 256)

AN

input: | [(None, 16, 16, 256). (None. 16, 16, 256)]

output: (None, 16, 16,512)

\

conv2d_11: Conv2D

input: | (None, 16, 16, 512)

output: | (None, 16, 16, 256)

conv2d_13: Conv2D

input: one. 16, 16, 256]
conv2d_12: Conv2D put: | (N :
output: | (None, 16, 16, 256)
input: L 16, 16,
up_sampling2d_1: UpSampling2D P (None, 16, 16, 256)
output: | (None, 32, 32, 256)
input | (None, 32, 32, 256)

output:

(None, 32, 32, 128)

i

concatenate_1: Concatenate

input: | [(None, 32, 32, 128). (None, 32, 32, 128)]

output:

A |

(None, 32, 32, 256)

conv2d_14: Conv2D

input:

(None, 32, 32, 256)

output:

(None, 32, 32, 128)

\

conv2d_15: Conv2D

input:

(None, 32. 32, 128)

output:

(None, 32, 32, 128)

g , 32,3
up_sampling2d_2: UpSampling2D input: | (None 2, 128)
output: | (None, 64. 64, 128)
input: . 64,64, 128
conv2d_16: Conv2D pu: | Ghooe)
output: | (None, 64, 64, 64)

29 |Page

Y e

concatenate_2: Concatenate

input:

[(None, 64, 64, 64), (None, 64, 64, 64)]

output:

(None, 64, 64, 128)

\

input: | (None, 64, 64, 128)
conv2d_17: Conv2D
output: | (None, 64, 64, 64)
input: | (None. 64, 64, 64)
conv2d_18: Conv2D
output: | (None, 64, 64, 64)
input: (None, 64, 64, 64)
up_sampling2d_3: Uy 192D
output: | (None, 128, 128, 64)

input: | (None. 128, 128, 64)
conv2d_19: Conv2D
output: | (None, 128, 128, 32)
Input: | [(None, 128, 128, 32), (None, 128, 128, 32)]
concatenate_3: Concatenate
output: (Nore, 128, 128, 64)

\

input: | (None, 128, 128, 64)
conv2d_20: Conv2D

output: | (None, 128, 128, 32)

input: | (None, 128, 128, 32)
conv2d_21: Conv2D

output: | (None, 128, 128, 32)

input: | (None, 128, 128, 32)
conv2d_22: Conv2D

output: | (None, 128, 128, 4)

Fig 14. Architecture of model showing different layers and operations.

Model: "model_1"

Layer (type)

Output

Shape Param #

Connected to

input_2 (InputLayer)

[(None, 128, 128, 2) ©

conv2d_23 (Conv2D) (None, 128, 128, 32) 608 input_2[@][e]
conv2d_24 (Conv2D) (None, 128, 128, 32) 9248 conv2d_23[0][@]
max_pooling2d_4 (MaxPooling2D) (None, 64, 64, 32) © conv2d_24[@][@]
conv2d_25 (Conv2D) (None, 64, 64, 64) 18496 max_pooling2d_4[@][e]
conv2d_26 (Conv2D) (None, 64, 64, 64) 36928 conv2d_25[@][@]
max_pooling2d_5 (MaxPooling2D) (None, 32, 32, 64) © conv2d_26[0][0]
conv2d_27 (Conv2D) (None, 32, 32, 128) 73856 max_pooling2d_5[@][@]
conv2d_28 (Conv2D) (None, 32, 32, 128) 147584 conv2d_27[@][@]
max_pooling2d_6 (MaxPooling2D) (None, 16, 16, 128) © conv2d_28[0][0]
conv2d_29 (Conv2D) (None, 16, 16, 256) 295168 max_pooling2d_6[@][@]

30|Page

conv2d_30@ (Conv2D) (None, 16, 16, 256) 590080 conv2d_29[0][0]

max_pooling2d_7 (MaxPooling2D) (None, 8, 8, 256)] conv2d_3e[e][e]
conv2d_31 (Conv2D) (None, 8, 8, 512) 1180160 max_pooling2d_7[@][e]
conv2d_32 (Conv2D) (None, 8, 8, 512) 2359808 conv2d_31[@][e]
dropout_1 (Dropout) (None, 8, 8, 512) 2] conv2d_32[0][@]
up_sampling2d_4 (UpSampling2D) (None, 16, 16, 512) © dropout_1[0][0]
conv2d_33 (Conv2D) (None, 16, 16, 256) 524544 up_sampling2d_4[@][@]
concatenate_4 (Concatenate) (None, 16, 16, 512) © conv2d_30[e][e]
conv2d_33[0][0]
conv2d_34 (Conv2D) (None, 16, 16, 256) 11799%@4 concatenate_4[0][0]
conv2d_35 (Conv2D) (None, 16, 16, 256) 590080 conv2d_34[@][e]
up_sampling2d_5 (UpSampling2D) (None, 32, 32, 256) © conv2d_35[0][@]
conv2d_36 (Conv2D) (None, 32, 32, 128) 131200 up_sampling2d_5[@][@]
concatenate_5 (Concatenate) (None, 32, 32, 256) © conv2d_28[0][0]
conv2d_36[0][@]
conv2d_37 (Conv2D) (None, 32, 32, 128) 295040 concatenate_5[0][0]
conv2d_38 (Conv2D) (None, 32, 32, 128) 147584 conv2d_37[@][@]
up_sampling2d_6 (UpSampling2D) (None, 64, 64, 128) © conv2d_38[0][8]
conv2d_39 (Conv2D) (None, 64, 64, 64) 32832 up_sampling2d_6[@][9]
concatenate_6 (Concatenate) (None, 64, 64, 128) © conv2d_26[0][0]
conv2d_39[@][e]
conv2d_40 (Conv2D) (None, 64, 64, 64) 73792 concatenate_6[0][0]
conv2d_41 (Conv2D) (None, 64, 64, 64) 36928 conv2d_4e[0][e]
up_sampling2d_7 (UpSampling2D) (None, 128, 128, 64) © conv2d_41[0][@]
conv2d_42 (Conv2D) (None, 128, 128, 32) 8224 up_sampling2d_7[@][@]
concatenate_7 (Concatenate) (None, 128, 128, 64) © conv2d_24[0][@]
conv2d_42[e][e]
conv2d_43 (Conv2D) (None, 128, 128, 32) 18464 concatenate_7[0][0]
conv2d_44 (Conv2D) (None, 128, 128, 32) 9248 conv2d_43[0][e]
conv2d_45 (Conv2D) (None, 128, 128, 4) 132 conv2d_44[0][0]

Total params: 7,759,908
Trainable params: 7,759,908
Non-trainable params: ©

Table 1. Model summary showing different layers and operations.

31|Page

3.3 Loss function

The Dice coefficient, sometimes called the Srensen-Dice coefficient or the F1
score, is a statistic used to compare two binary masks and is frequently used in image
segmentation tasks. It gauges how closely the expected segmentation mask and the
actual segmentation mask match up or agree. A perfect match between the two masks

is indicated by a Dice coefficient of 1, which has a range of 0 to 1.

The Dice coefticient is calculated using the formula (2 * |A B|) / (JA] + [B]),
where A stands for the anticipated mask and B for the actual mask. The denominator
is the total number of pixels in both masks, while the numerator computes the

intersection of the predicted and ground truth masks.

The Dice coefficient can be used as a measure of dissimilarity in the context of
a loss function. The model seeks to maximise the overlap and resemblance between
the predicted and ground truth masks by minimising the Dice loss, which is
determined as 1 minus the Dice coefficient. This promotes the model to generate
segmentations that are increasingly accurate and exact. In medical picture
segmentation tasks, where imbalanced datasets are frequent and there are many more
background pixels than target pixels, the Dice coefficient is especially helpful. By
taking true positives, false positives, and false negatives into account equally, the Dice

coefticient effectively addresses this class imbalance.

32|Page

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Input Data descriptions

As illustrated in figure 13 below, all BraTS multimodal scans are available as
NIfTI files (.nii.gz), a popular medical imaging format for storing brain imaging data
generated using MRI and describing various MRI settings.
T1: sagittal or axial 2D acquisitions using T1-weighted native images with slice
thickness ranging from 1-6 mm.
Tlc: For most patients, this is a T1-weighted, contrast-enhanced (Gadolinium) image
with 3D acquisition.
T2: axial 2D capture of a T2-weighted image with a slice thickness of 2—6 mm.
FLAIR: Axial, coronal, or sagittal 2D acquisitions with a slice thickness of 2 to 6 mm
are referred to as FLAIR.
Data were collected from numerous (n=19) institutes using diverse scanners and
clinical regimens.
Following the same annotation technique, one to four raters manually segmented each
imaging dataset, and their annotations were approved by skilled neuroradiologists.
According to the BraTS 2012-2013 TMI study and the most recent BraTS
summarising paper, annotations include the GD—enhancing tumor (ET — label 4), the
peritumoral edoema (ED — label 2), and the necrotic and non—enhancing tumor core
(NCR/NET — label 1). After pre-processing, which includes co-registering to the
same anatomical template, interpolating to the same resolution (1 mm3), and stripping

the skull, the given data are distributed.

Image flair Image t1 Mask

] é
150

200

Image t2

0 s 100 150 200 0 50 100 150 200

0 50 100 150 200 0 50 100 150 20

0 50 100 150 200

Fig 15. MRI scans of brain with different settings T1, T1c, T2, and Flair defined

above

33| Page

In figure 14, we can see the 3d data of each slice of Nifti data, plotted the data, later in
figure 15, the segment is shown in each slice of data. We can also see the segment

data with different settings.

4

333
0009999

"FEEEEER
"EEEEEN

>

L

D
i)
D
D
=)
D

299929
YYYYYY

3339

9

0 500 1000 1500 2000 2500

Fig 17. Segmentation shown in each slice data

34|Page

Fig 18. Segmented data shown with different effects on MRI scans

4.2 Setting up the Environment
Importing the various libraries which are going to use in the model building and
throughout the project.

e import os, cv2, glob, PIL, shutil, numpy as np, pandas as pd, seaborn as sns,

matplotlib.pyplot as plt

e from skimage from data

e from skimage.util import montage

e import skimage.transform as skTrans

e from skimage.transform import rotate

e from skimage.transform import resize

for neural imaging:
e import nilearn as nl, nibabel as nib, nilearn.plotting as nlplt
.
for machine learning libs:
e import keras, keras.backend as K, tensorflow as tf
o from keras.callbacks import CSVLogger

o from tensorflow.keras.utils import plot_model

35|Page

4.3

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test split

from sklearn.metrics import classification_report

from tensorflow import *

from tensorflow.keras.callbacks import ModelCheckpoint,
ReduceLLROnPlateau, EarlyStopping, TensorBoard

from tensorflow.keras.layers.experimental import preprocessing

Data Pre-processing

Since the data are too large to fit in memory, loading everything into memory is not a

smart idea. In order to divide the data into training, validation, and testing sets, we

will develop data generators.

4.4

Data distribution

250 1

200 1

150 1

100 4

Number of images

Tain Valid Test

Fig 19. Graph showing data size taken for Train, Test and Validation
Model Training
Training and validation data: The training generator and valid_generator are
data generators that provide the training and validation data, respectively.
These generators typically load the data in batches, allowing for efficient
memory utilization when working with large datasets.
Validation configuration: The validation _data parameter is set to the
valid_generator to specify the validation data for monitoring the model's
performance during training. The validation_steps parameter is set to 1,
indicating that only one batch of validation data will be used for evaluation.
Training configuration: The steps_per_epoch parameter is set to 30, indicating

the number of batches to be processed in each epoch. This value determines

36|Page

the number of training steps per epoch. The epochs parameter is set to 100,
specifying the total number of training epochs.

4. Callbacks: The callbacks parameter is set to cd, which presumably represents a
custom-defined callback or a list of callbacks. Callbacks in Keras provide
functionality for performing specific actions during training, such as saving
model checkpoints, adjusting learning rate, or logging training metrics.

5. Model training: The model.fit_generator function is called to start the training
process. It fits the model to the training data generated by training_generator
and evaluates the model on the validation data from valid_generator. The
training proceeds for the specified number of epochs, and the callbacks are
triggered as specified.

By executing this code, the model will be trained for the given number of epochs
using the provided generators, and the training progress will be monitored through the

specified callbacks.

history = model.fit_generator(training_generator,
validation_data = valid_generator,
validation_steps=1,
steps_per_epoch=30,
epochs=100,
callbacks=cd)

Epoch 1/100

30/30 [] - 45s 1s/step - loss: 2.4551 - accuracy: ©.9813 - mean_io
_u: 0.4852 - dice_coef: 0.2159 - precision: ©.8585 - sensitivity: ©.7381 - specificity: ©.9950 -
dice_coef_necrotic: ©.0091 - dice_coef_edema: ©.0423 - dice_coef_enhancing: ©.0090 - val_loss:
0.0453 - val_accuracy: 0.9944 - val_mean_io_u: ©.6875 - val_dice_coef: ©.2521 - val_precision:
0.9944 - val_sensitivity: ©.9944 - val_specificity: ©.9981 - val_dice_coef_necrotic: 9.8822e-04
- val_dice_coef_edema: ©.0267 - val_dice_coef_enhancing: 2.5985e-04

Epoch ©0001: val_accuracy improved from -inf to ©.99440, saving model to ./bestmodel.h5

Epoch 2/100

30/30 [] - 29s 946ms/step - loss: ©.1018 - accuracy: ©.9819 - mean
_io_u: ©.5728 - dice_coef: ©.2635 - precision: ©.9826 - sensitivity: ©.9762 - specificity: 0.994
2 - dice_coef_necrotic: ©.0379 - dice_coef_edema: ©.1149 - dice_coef_enhancing: ©.0261 - val_los
s: ©.0817 - val_accuracy: ©.9845 - val_mean_io_u: ©.5477 - val_dice_coef: ©.2684 - val_precisio

n: ©0.9841 - val_sensitivity: ©.9841 - val_specificity: ©.9948 - val_dice_coef_necrotic: ©.0530 -
val_dice_coef_edema: ©.1971 - val_dice_coef_enhancing: ©.0734

Epoch ©0002: val_accuracy did not improve from ©.99440

Epoch 3/100

30/30 ([=s==========sk] - 30s 967ms/step - loss: ©.9709 - accuracy: 0.9873 - mean
_io_u: ©.6385 - dice_coef: ©.2629 - precision: ©.9872 - sensitivity: ©.9872 - specificity: ©.995
7 - dice_coef_necrotic: ©.0468 - dice_coef_edema: ©.1097 - dice_coef_enhancing: ©.0491 - val_los
s: ©.0859 - val_accuracy: ©.9718 - val_mean_io_u: ©.7290 - val_dice_coef: 0.2914 - val_precisio
n: ©.9716 - val_sensitivity: ©.9716 - val_specificity: ©.9966 - val_dice_coef_necrotic: ©.0419 -
val_dice_coef_edema: ©.2087 - val_dice_coef_enhancing: ©.0741

37|Page

Epoch ©0003: val_accuracy did not improve from ©.99440
Epoch 4/100

30/30 [

s: ©.0772 - val_accuracy: 0.9864 - val_mean_io_u: ©.8637 - val_dice_coef: ©.2547 - val_precisio

n: ©.9864 - val_sensitivity: ©.9864 - val_specificity: ©.9955 - val_dice_coef_necrotic: ©.0139 -

val_dice_coef_edema: ©.0106 - val_dice_coef_enhancing: ©.0058

Epoch ©0004: val_accuracy did not improve from ©.99440
Epoch ©0004: early stopping

Fig 20. Model Training using fit_generator

We must load the model, load the model's training history, and plot the metrics in

order to see the training and validation performance of a loaded model. This will

enable us to comprehend how the model learned throughout the training process

better.

Loading the model: The keras.models.load _model function is used to load a
pre-trained model from the specified path. Custom objects, including metrics
such as accuracy, dice coefficient, precision, sensitivity, specificity, and
custom loss functions, are provided to ensure compatibility during model
loading.

Loading the training history: The training history is loaded from a CSV file
using the pd.read_csv function. The file contains information about various
metrics such as accuracy, loss, dice coefficient, and mean IOU for both
training and validation sets.

Plotting the metrics: When training, the code generates a figure with four
subplots to display various metrics. Training accuracy and validation accuracy,
training loss and validation loss, training dice coefficient and validation dice
coefficient, as well as training mean IOU and validation mean IOU, are among
the parameters plotted. The plots assist in evaluating the model's performance
and spotting any over- or underfitting problems.

Displaying the plots: The plt.show() function is called to display the generated
plots.

38| Page

] - 27s 89ms/step - loss: ©.0858 - accuracy: ©.9797 - mean
_io_u: ©.7146 - dice_coef: ©.2781 - precision: ©.9794 - sensitivity: ©.9795 - specificity: ©.993
2 - dice_coef_necrotic: ©.0457 - dice_coef_edema: ©.1629 - dice_coef_enhancing: ©.0608 - val_los

= Taining Loss 0.65

0994 i — Validation Loss
08

0.60
0992

055

0990 07

0988

06
0986 006

040

0984
05

0982

030

— Taining Accuracy || 92 —— Faining dice coef i3 —— Taining mean 10U

0.980 —— Validation Accuracy —— Validation dice coef —— Validation mean 10U

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Fig 21. Training and performance of the model

4.5 Segment Classes
Key: Integer values representing different tumor segmentation classes.
Value: Corresponding class labels describing the type of tumor segment.

The classes are:

0 “Not Tumor”

1 “Necrotic/Core”
2 “EDEMA”

3 “Enhancing”

Table 2. Segment Classes of MRI images

‘NOT tumor’: This class represents regions in the MRI scan that do not contain any
tumor. It includes normal brain tissue or areas unaffected by any tumor growth.
‘NECROTIC/CORE’: The necrotic (dead) core of the tumor corresponds to this class.
Necrosis is caused by a tumor's limited blood supply, which results in cell death. The
area in the middle of the tumor is referred to as its core.

‘EDEMA’: ‘EDEMA’ class represents the peritumoral edema, which is the swelling
or fluid accumulation around the tumor. Edema is caused by the disruption of the
blood-brain barrier and the release of fluid into the surrounding brain tissue.
‘ENHANCING’: This class represents the enhancing region of the tumor.

Enhancement indicates active tumor growth with increased blood flow and cell

39|Page

proliferation. It typically corresponds to the most aggressive and malignant part of the

tumor.

These classifications are used to identify and separate various regions of interest
within an MRI scan in the context of brain tumor segmentation. Each class represents
a specific characteristic or component of the tumor, allowing for a more detailed

analysis and understanding of the tumor's extent and behavior.

These are some examples of MRI images given for segmentions

4/4 [] - 8s 161ms/step
<Figure size 1296x3600 with © Axes>

Original image flair Ground truth all classes NECROTIC/CORE predicted EDEMA predicted

4/4 [] - ©s 49ms/step
<Figure size 1296x3600 with @ Axes>
Ground truth

Original image flair all classes

4/4 [] - ©s 49ms/step
<Figure size 1296x3600 with @ Axes>
Ground truth

Original image flair all classes NECROTIC/CORE predicted EDEMA predicted

88 8 8 o

Fig 22. Predicted example of segmented of MRI image of Brain

40| Page

4.6 Evaluation

case = case=test_ids[3][-3:]
path = f"../input/brats20-dataset-training-validation/BraTS2020_TrainingData/MI(
gt = nib.load(os.path.join(path, f'BraTS20_Training_{case}_seg.nii')).get_fdata
p = predictByPath(path, case)

core =rplisEn:Sal
edema= p[:,:,:,2]
enhancing = p[:,:, :,3]

1=40 # slice at
eval_class = 2

6 : 'NOT tumor', 1 : 'ENHANCING', 2 : 'CORE’, 3 : 'WHOLE'
gt[gt !'= eval_class] = 1 # use only one class for per class evaluation
resized_gt = cv2.resize(gt[:, :,i+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE))

plt.figure()

f, axarr = plt.subplots(1,2)
axarr[0].imshow(resized_gt, cmap="gray")
axarr[0].title.set_text('ground truth')

axarr[1].imshow(p[1i, :, :,eval_class], cmap="gray")
axarr[1].title.set_text(f'predicted class: {SEGMENT_CLASSES[eval_class]}')
plt.show()

4/4 [] - @s 69ms/step

<Figure size 432x288 with © Axes>

ground truth o predicted class: EDEMA

Fig 23. Evaluation of the MRI data, showing EDEMA on providing testing

4.7 Survival Prediction

For survival prediction, first see what the age distribution in the dataset and their
survival days is. We have a CSV file containing survival information for brain tumor

patients.

The data includes information about patients' IDs (Brats20ID), age, survival days,
and extent of resection. Each row represents a patient's data, and the values can be

accessed by their corresponding column names.

41| Page

Age (rounded)

Number of people (rounded to 20)

o -
e

Column names are Brats20ID, Age, Survival_days, Extent_of_Resection

['BraTS26_Training_ee01', '60
['BraTS26_Training_@e2', '52

['BraTS20_Training_003', '54.
['BraTS20_Training_ee4', '39.
['BraTS20_Training_@e5', '68.
['BraTS2e_Training_ee6', '67.
['BraTS20_Training_007', '69.
['BraTS2e_Training_0@9', '56.
['BraTS20_Training_o10', '48.

['BraTS20_Training_@12', '65

['BraTS20_Training_013', '59.
['BraTS26_Training_014', '51.
['BraTS26_Training_015', '62.

['BraTS20_Training_e16', 'S5

['BraTS2@_Training_017', 'S8.
['BraTS20_Training_e18', 'é61l.
['BraTS20_Training_019', '68.

.463', '289', 'GTR']
.263', '616', 'GTR']
301', '464', 'GTR']
068', '788', 'GTR']
493', '465', 'GTR']
126', '269', 'GTR']
912', '503', 'GTR']
419', '1155', 'GTR']
367', '515', 'GTR']
.899', '495', 'GTR']
693', '698', 'GTR']
734", '359', 'GTR']
614', '169', 'GTR']
.759', '368', 'GTR']
258', '439', 'GTR']
605', '486', 'GTR']
@49', '287', 'GTR']

Fig 24. Represent the data present in the CSV file

(Rounded) age distrubution in dataset

50 60 70 80
Number of people with (rounded) age

‘I“,I A

0 250 500

750 1000 1250 1500 1750
Days survived

Fig 25. Graph plotting the number of people vs age and number of people vs days

survived

42 |Page

Survival Categories:

Key: String values representing different survival categories.
Value: Integer values representing the range of survival duration.
The categories are:

'SHORT": 0-300 (survival duration of 0 to 300 days)

'MEDIUM'": 300-450 (survival duration of 300 to 450 days)
'LONG": 450 and more (survival duration of 450 days or more)

The survival categories mentioned above represent different ranges of survival
duration for patients with brain tumors. Here is a detailed explanation of each survival

category:

o Short Survival: This category includes patients who survived for a relatively
short duration after diagnosis. In the given data, the cutoff for the short
survival category is set at 300 days. Patients falling within this category have a
survival duration ranging from the time of diagnosis up to 300 days.

e Medium Survival: This category comprises patients who survived for a
moderate duration after diagnosis. In the provided data, the cutoff for the
medium survival category is set between 300 and 450 days. Patients falling
within this category have a survival duration ranging from 300 days to 450
days.

e Long Survival: This category consists of patients who survived for an
extended duration after diagnosis. In the given data, the cutoff for the long
survival category is set at 450 days. Patients falling within this category have a

survival duration of 450 days or more.

These survival categories are used to classify patients based on their expected
survival outcomes. They provide a simplified representation of the survival duration,
allowing for easier analysis and comparison of patient groups. By categorizing
patients into these groups, researchers and medical professionals can study the factors
influencing survival rates and develop appropriate treatment strategies based on the

expected survival category.

43 |Page

Computing segment sizes:

Find number of pixels for each class in volume, no need to compute as ration to image

size, since all images are of same size 240x240

def getMaskSizesForVolume(image_volume):
totalsh=Ndilct({[/(C1TNa)IN (278)M (30)]l
for i in range(VOLUME_SLICES):
arr=image_volume[:, :, i+VOLUME_START_AT].flatten()
ACrRllaREN=01]|N=N3

unique, counts = np.unique(arr, return_counts=True)

unique = unique.astype(int)
values_dict=dict(zip(unique, counts))
for k in range(1,4):
totals[k] += values_dict.get(k,0)
return totals

def getBrainSizeForVolume(image_volume) :
total = ©
for i in range(VOLUME_SLICES):
arr=image_volume[:, :,i+VOLUME_START_AT].flatten()
image_count=np.count_nonzero(arr)
total=total+image_count
return total

age NECROTIC/CORE EDEMA ENHANCING short medium

0 54915 0.002438 0.045368 0.005153 0.0 1.0
1 57.000 0.015202 0.039171 0.019636 0.0 0.0
2 60.000 0.004592 0.027417 0.030548 0.0 0.0
3 83.649 0.039530 0.048636 0.025146 0.0 1.0
4 60.019 0.000448 0.018200 0.007183 0.0 1.0

long
0.0
1.0
1.0
0.0

0.0

Table 3. Survival prediction based on short, medium, and long

The provided data consists of information related to age and tumor
segmentations for a set of patients. Each row represents a patient, and the columns
provide details about their age, the presence of tumor in different regions

(NECROTIC/CORE, EDEMA, ENHANCING), and survival categories (short,

medium, long).

44 |Page

The age column represents the age of the patients. The subsequent columns
(NECROTIC/CORE, EDEMA, ENHANCING) indicate the probabilities of tumor
presence in the corresponding regions, with values ranging from very low to relatively

higher probabilities.

The last three columns (short, medium, long) represent survival categories. A
value of 1.0 in one of these columns indicates that the patient falls into the respective
survival category (short, medium, or long), while a value of 0.0 indicates the patient

does not fall into that category.

Normalize the data performing min-max scaling into range [0, 1]

scaler = MinMaxScaler ()

v = X_all

v_scaled = scaler.fit_transform(v)
X_all = v_scaled

df = pd.DataFrame(X_all, columns = ["age normalised",
" {SEGMENT_CLASSES[1]}"
" {SEGMENT_CLASSES[2]}"
" {SEGMENT_CLASSES[3]}"
display(df)

age normalised NECROTIC/CORE EDEMA ENHANCING

0 0.460631 0.060053 0.330630 0.105513
1 0.496066 0.374441 0.283556 0.406350
2 0.547051 0.113117 0.194263 0.633018
3 0.948964 0.973691 0.355460 0.520813
4 0.547373 0.011033 0.124241 0.147677

Table 4. Data mapping between age normalised and segmented classes
4.8 On applying Random Forest classification:

Model accuracy score with 3 decision-trees : 0.5417

Cross validation: Train Score: 0.24428763440860216

45| Page

Cross validation: Test Score: 0.5416666666666666

precision recall fl-score support

0 0.50 0.80 0.62 5

1 0.71 0.56 .63 9

2 0.57 0.40 0.47 10

micro avg 9.59 0.54 9.57 24
macro avg 0.60 059 .57 24
weighted avg 0.61 0.54 9.56 24
samples avg 0.54 0.54 0.54 24

Table 5. Performance matrix of Random Forest classifier

The provided information in the given table represents a random forest
classifier’s performance measure for a multi-class classification task. With the labels

0, 1, and 2, each row corresponds to a separate class.

The classifier had an F1-score of 0.62, precision of 0.50, and recall of 0.80 for
class 0. This indicates that when identifying cases of class 0, it exhibited a respectable
balance between precision and recall, moderate precision, and high recall. There were
5 instances of this class in the dataset, according to the support for the class of 5,
which is 5. Similar results were obtained for class 1, where the classifier obtained an
Fl1-score of 0.63, a precision of 0.71, and a recall of 0.56. This suggests a balanced
Fl-score for categorising instances of class 1 with reasonably good precision,
moderate recall, and a balanced F1-score. There are nine supports for this class. The
classifier had an F1-score of 0.47, precision of 0.57, and recall of 0.40 for class 2. This
predicts a lower Fl-score, intermediate precision, and low recall for identifying

instances of class 2. The class has ten supporters.

The micro average for all classes is 0.59, which represents the classifier's
overall accuracy. The overall performance across all classes is represented by the
macro average, which is 0.60. When the class disparity is taken into account, the
weighted average is 0.61. The average performance across all samples is 0.54, which

is the samples average.

4.9 On applying SVM classifier:

Model accuracy score : 0.5000
Cross validation: Train Score: 0.5216374269005847

Cross validation: Test Score: 0.5

46 |Page

precision recall fl-score support

0 1.00 0.40 .57 5

1 0.50 .11 0.18 9

2 9.45 0.90 0.60 10

accuracy 0.50 24
macro avg 0.65 0.47 0.45 24
weighted avg ©.58 9.50 0.44 24

Table 6. Performance matrix of SVM Classifier

The given data represents the performance metrics of a SVM classifier for a
multi-class classification problem. Each row corresponds to a different class, labeled
as 0, 1, and 2. For class 0, the classifier achieved a precision of 1.00, recall of 0.40,
and an Fl-score of 0.57. This indicates perfect precision, moderate recall, and a
balanced F1-score for classifying instances of class 0. The support for this class is 5,
indicating there were 5 instances of this class in the dataset. For class 1, the classifier
achieved a precision of 0.50, recall of 0.11, and an Fl-score of 0.18. This suggests
moderate precision, low recall, and a low F1-score for classifying instances of class 1.
The support for this class is 9. For class 2, the classifier achieved a precision of 0.45,
recall of 0.90, and an F1-score of 0.60. This indicates moderate precision, high recall,
and a balanced F1-score for classifying instances of class 2. The support for this class
is 10.

The overall accuracy of the classifier is 0.50. The macro average Fl-score is
0.45, representing the average performance across all classes. The weighted average

F1-score is 0.44, considering the class imbalance.

47 |Page

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

In this project, we successfully implemented an integrated U-Net convolutional
neural network (CNN) for MRI brain tumor segmentation and survival prediction. The
U-Net architecture showed excellent performance in segmenting brain tumor regions,
including necrotic/core, edema, and enhancing regions. We also developed a deep
learning-based approach to predict the survival outcome of patients based on their

MRI scans and tumor segmentations.

By leveraging the power of deep learning and image analysis, our model achieved
high precision, recall, and F1-scores in segmenting different tumor regions. Moreover,
we demonstrated the ability to predict survival outcomes using the extracted features
from the tumor segmentations. This approach has the potential to assist medical
professionals in making accurate prognostic assessments and planning personalized

treatment strategies for brain tumor patients.

Although our project achieved promising results, there are several avenues for future

exploration and enhancement:

e Dataset Expansion: The performance of the model can be further improved by
utilizing larger and more diverse datasets. Access to a more extensive
collection of MRI scans and associated survival data would enhance the
generalization and robustness of the model.

e Multi-Center Validation: Conducting validation across multiple medical
centers would provide more comprehensive insights into the model's
performance and its applicability across different healthcare settings.
Collaborating with multiple institutions can also help address issues related to
dataset bias and generalizability.

e Integration of Additional Features: Incorporating additional clinical and
genetic features, such as patient age, genetic mutations, and histopathological
information, could enhance the predictive power of the model. Integrating

48 |Page

multimodal data sources can provide a more comprehensive representation of
the tumor characteristics.

e Survival Prediction Refinement: Further research can focus on refining the
survival prediction model by incorporating advanced techniques, such as
recurrent neural networks (RNNs) or attention mechanisms. Exploring more
sophisticated deep learning architectures may improve the accuracy and
reliability of survival outcome predictions.

e Clinical Translation and Deployment: To realize the practical application of
the developed model, efforts should be directed towards integrating it into the
clinical workflow. Collaboration with healthcare professionals, regulatory
compliance, and addressing ethical considerations are crucial for successful

deployment in real-world clinical settings.

By pursuing these future directions, we can advance the field of brain tumor
segmentation and survival prediction, ultimately improving patient care, treatment

planning, and clinical decision-making in neuro-oncology.

49 |Page

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

REFERENCES

Kasban, Hany & El-bendary, Mohsen & Salama, Dina. (2015). “A Comparative
Study of Medical Imaging Techniques”. International Journal of Information
Science and Intelligent System. 4. 37-58.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

D. Surya Prabha and J. Satheesh Kumar, “Performance Evaluation of Image

Segmentation using Objective Methods”, Indian Journal of Science and
Technology, Vol 9(8), February 2016.

Kavitha Angamuthu Rajasekaran and Chellamuthu Chinna Gounder, “Advanced
Brain Tumor Segmentation from MRI Images”, 2018.

B. Devkota, Abeer Alsadoon, P.W.C. Prasad, A. K. Singh, A. Elchouemi,
“Image Segmentation for Early Stage Brain Tumor Detection using
Mathematical Morphological Reconstruction,” 6th International Conference on
Smart Computing and Communications, ICSCC 2017, 7-8 December 2017,
Kurukshetra, India.

Song, Yantao & Ji, Zexuan & Sun, Quansen & Yuhui, Zheng. (2016). “A Novel
Brain Tumor Segmentation from Multi-Modality MRI via A Level-Set-Based
Model”. Journal of Signal Processing Systems. 87. 10.1007/s11265-016-1188-4.
Ehab F. Badran, Esraa Galal Mahmoud, Nadder Hamdy, “An Algorithm for
Detecting Brain Tumors in MRI Images”, 7th International Conference on Cloud
Computing, Data Science & Engineering - Confluence, 2017.

Pei L, Reza SMS, Li W, Davatzikos C, Iftekharuddin KM. “Improved brain
tumor segmentation by utilizing tumor growth model in longitudinal brain
MRI”. Proc SPIE Int Soc Opt Eng. 2017.

Anjali Wadhwa, Anuj Bhardwaj, Vivek Singh Verma, “A review on brain tumor
segmentation of MRI images”, Magnetic Resonance Imaging, Volume 61, 2019,
Pages 247-259, ISSN 0730-725X, https://doi.org/10.1016/j.mri.2019.05.043.
Dina Aboul Dahab, Samy S. A. Ghoniemy, Gamal M. Selim, “Automated Brain
Tumor Detection and Identification using Image Processing and Probabilistic
Neural Network Techniques”, IJIPVC, Vol. 1, No. 2, pp. 1-8, 2012.

Mohd Fauzi Othman, Mohd Ariffanan and Mohd Basri, “Probabilistic Neural
Network for Brain Tumor Classification”, 2nd International Conference on
Intelligent Systems, Modelling and Simulation, 2011.

Kamnitsas, K., et al. "Efficient multi-scale 3D CNN with fully connected CRF for
accurate brain lesion segmentation." Medical Image Analysis 36 (2017): 61-78.

Isensee, F., et al. "Brain Tumor Segmentation and Radiomics Survival Prediction:
Contribution to the BRATS 2017 Challenge." In Brainlesion: Glioma, Multiple

50|Page

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Sclerosis, Stroke and Traumatic Brain Injuries, pp. 287-297. Springer, Cham,
2018.

Wang, G., et al. "3D convolutional neural networks for brain tumor segmentation:
a comparison of deep learning approaches." In Proceedings of SPIE Medical
Imaging, vol. 10574, p. 105742S. International Society for Optics and Photonics,
2018.

Clark, K., et al. "The Cancer Imaging Archive (TCIA): maintaining and operating
a public information repository." Journal of digital imaging 26.6 (2013): 1045-
1057.

Zhou, M., et al. "Predicting glioma recurrence using a combination of
preoperative magnetic resonance imaging and clinical data with machine learning
algorithms." Journal of healthcare engineering 2019 (2019).

Cox, D.R. "Regression models and life-tables." Journal of the Royal Statistical
Society. Series B (Methodological) 34.2 (1972): 187-220.

Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon,
D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully
connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61—
78 (2016)

Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.:
Brain tumor target volume determination for radiation treatment planning through
automated MRI segmentation. Int. J. Radiat. Oncol. Biol. Phys. 59(1), 300-312
(2004)

Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation
framework based on outlier detection. Med. Image Anal. 8(3), 275-283 (2004)

Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade
gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori,
K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369-376. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33454-2_46

Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor
segmentation using deep convolutional neural networks. In: Proceedings of
BRATS-MICCALI (2014)

Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using
convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5),
1240-1251 (2016)

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y.,
Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural
networks. arXiv preprint arXiv:1505.03540 (2015)

Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D
convolutional neural networks for lesion segmentation in brain MRI. Ischemic
Stroke Lesion Segm., 13—16 (2015)

51|Page

[25]

[26]

[27]

Bakas, S., et al. "Advancing The Cancer Genome Atlas glioma MRI collections
with expert segmentation labels and radiomic features." Scientific data 4 (2017):
1-16.

Heba Mohsen et al, “Classification using Deep Learning Neural Networks for
Brain Tumors”, Future Computing and Informatics, pp 1-4 (2017).

Apurva Mehta, Hitesh Jaiswal, Poonam Bhogle, Shreyansh Kotak and Yash
Pasar, “Brain Tumor Detection and Classification — A Survey”, 2018 5th IEEE
International Conference on Computing for Sustainable Global Development,
2018.

52|Page

('l__l turnitin Similarity Report ID. 0id:27535:36099999

PAPER NAME
for plag review.docx

WORD COUNT CHARACTER COUNT

9942 Words 57382 Characters

PAGE COUNT FILE SIZE

53 Pages 4.1MB

SUBMISSION DATE REPORT DATE

May 25, 2023 4:30 AM GMT+5:30 May 25, 2023 4:31 AM GMT+5:30

® 8% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

* 6% Internet database » 4% Publications database

» Crossref database » Crossref Posted Content database

® Excluded from Similarity Report

¢ Submitted Works database * Bibliographic material

 Quoted material « Small Matches (Less then 10 words)

Summary

