
EMBEDDED LINUX FOR

HEALTHCARE APPLICATIONS

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

VLSI DESIGN & EMBEDDED SYSTEMS

Submitted by:

 Ishita Sagar

2K19/VLS/06

Under the supervision of

Dr. Malti Bansal
 Assistant Professor

ELECTRONICS & COMMUNICATION

ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

2019-2021

i

ELECTRONICS & COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Ishita Sagar, Roll No. 2K19/VLS/06, student of M.Tech (VLSI & Embedded

systems), hereby declare that the project Dissertation titled “EMBEDDED LINUX

FOR HEALTHCARE APPLICATIONS” which is submitted by me to the

Department of Electronics and Communication Engineering, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the

degree of Master of Technology, is original and not copied from any source without

proper citation. This work has not previously formed the basis for the award of any

Degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi (Ishita Sagar)

Date:14/06/2021

ii

ELECTRONICS & COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Embedded Linux for Health

Care Applications” submitted by Ishita Sagar, 2k18/VLS/06, Electronics and

Communication Engineering, Delhi Technological University, Delhi in partial

fulfillment of the requirement for the award of the degree of Master of Technology,

is a record of the project work carried out by the student under my supervision. To

the best of my knowledge this work has not been submitted in part or full for any

Degree or Diploma to this University or elsewhere.

 Place: Delhi Dr. Malti Bansal

 Date: 14/06/2021 Assistant Professor

iii

ACKNOWLEDGEMENT

A successful project can never be prepared by the efforts of the person to whom the

Project is assigned, but it also demands the help and guardianship of people who

helped in completion of the project. I would like to thank all those people who have

helped me in this research and inspired me during my study.

With profound sense of gratitude, I thank Dr. Malti Bansal, my Research Supervisor,

for his encouragement, support, patience, and her guidance in this project work.

Furthermore, I would like to thank my mentors at my internship who helped me

throughout to learn and understand new concepts and work. I would also like to thank

my friends and family for their constant support.

I take immense delight in extending my acknowledgement to my family and friends

who have helped me throughout this project work.

 Date:14/06/2021 Ishita Sagar

iv

CONTENTS

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Contents iv

List of Figures vi

List of Tables vii

CHAPTER 1 INTRODUCTION 1

1.1 Linux Overview 2

1.2 Linux for Medical Devices 3

1.3 Linux features helpful in Medical Devices 4

1.4 Objective 7

1.5 Organization of the report 8

CHAPTER 2 LITERATURE SURVEY 9

2.1 Embedded Systems 9

2.2 CPU Architectures for the Embedded Systems 11

2.2.1 x86 11

2.2.2 MIPS 12

2.2.3 Power System 13

2.2.4 ARM 14

2.3 Embedded Linux 16

2.4 Benchmarking 18

CHAPTER 3 PRODUCTS BASED ON EMBEDDED LINUX 23

3.1 Neptune3 23

3.2 Sonopet 26

3.3 Mutligen2 28

3.4 Core2 29

CHAPTER 4 EXPERIMENTAL WORK AND RESULTS 32

v

CHAPTER 5 CONCLUSION AND FUTURE SCOPE 51

References 52

vi

 List of Figures

1. Figure 1. Linux commercial vendors vs open-source distributions

2. Figure 2. Software Development for medical purposes

3. Figure 3. Embedded System Setup

4. Figure 4. x86 System-on-chip

5. Figure 5. Structure of UNIX

6. Figure 6. General Sysbench Syntax

7. Figure 7. Neptune3

8. Figure 8. Neptune3-in use screen

9. Figure 9. Smoke Evacuator

10. Figure 10. Sonopet Handpiece

11. Figure 11. Tips

12. Figure 12. Console

13. Figure 13. MultiGen2

14. Figure 14. Core2 Console

15. Figure 15. MaaXBoard Top View

16. Figure 16. MaaXBoard Block Diagram

17. Figure 17. Burning image via Balena Etcher

18. Figure 18. Serial Putty Settings

19. Figure 19. Connections for Boot-up

20. Figure 20. Login after boot-up

21. Figure 21. Board Start-up

22. Figure 22. Turning LEDs OFF

23. Figure 23. Turning LEDs ON

24. Figure 24. UART Test with Baud Rate 115200

25. Figure 25. UART Test with Baud Rate 9600

26. Figure 26. Installing Sysbench

27. Figure 27. Sysbench Version

28. Figure 28. General Syntax used for Sysbench

29. Figure 29. CPU Benchmark Test

30. Figure 30. CPU benchmark Results for 20000 nos.

31. Figure 31. CPU Benchmarking for 40000 nos.

32. Figure 32. CPU Benchmark with 8 threads in use

vii

33. Figure 33. Memory Workload Test results

34. Figure 34. Steps for fileio benchmark

35. Figure 35. Creating Test files

36. Figure 36. Fileio Benchmarking

37. Figure 37. Removing and clearing Test files

38. Figure 38. Threads Benchmark with 64 threads

39. Figure 39. Threads Benchmark with 128 threads

40. Figure 40. Mutex Benchmarking

41. Figure 41. Build Successful

vii

i

LIST OF TABLES

Table. No Title Page No.

TABLE 2.1 CPU architectures for Embedded Systems 14

TABLE 2.2 Common command line options

20

1

CHAPTER 1

INTRODUCTION

In today’s fast pace world, healthcare has become the most important and care-worthy

aspect of human life. Everyone wishes to stay fit and healthy and get the correct and

fast-paced treatment if diagnosed with any disease. Without the provision and access to

proper healthcare, the human life is at risk.

Healthcare in today’s date has become very advanced and effective. This advancement

in achieving great healthcare services and provision, is owed to the interference of

technology in the healthcare areas. The healthcare future has shaped and continues to

shape in front of our eyes as technology interferes with it. The future and excellence of

healthcare moves hand-in-hand with technology. Many different areas of science and

engineering are involved in multiple areas of healthcare. One such area that has helped

develop medical equipment to a great extent is Embedded Linux.

An Embedded System refers to a computer hardware and software combination which

is designed to perform any specific functionality. Embedded systems can also function

under the hood of larger systems. As embedded systems are computing systems, they

range from having minimal or no user interface, to having a highly complex one. Now,

moving further, it is possible to combine Embedded Systems with the Linux operating

systems to achieve great heights. Embedded Linux refers to a category of Linux

operating system or kernel which is created to be installed and operated inside of

embedded devices and other appliances. It is nothing but a cut-down or trimmed version

of Linux, usually for low power consumption. We can call it as a compact and smaller

version of Linux operating system that provides all the necessary features according to

the embedded system requirement.

Embedded Linux has made its way through the healthcare domain. There are many

reasons for the vast use of Embedded Linux in healthcare applications. Firstly, Linux is

an open-system operating system which can offer multiple applications over numerous

2

platforms. However, there are specific requirements and restrictions which are imposed

for Linux when it is used in medical systems and equipments.

1.1 Linux Overview

Linux operating system was launched in 1991 as an alternate option to the Unix

operating system. ‘Linux’ as known today was developed using the kernel from Linus

Torvalds in combination with the free software by GNU project, which was started by

Richard Stallman. When the linux kernel was combined with GNU system, it gained

immense popularity majorly due to its open-source nature and availability. Moving

forward, the system produced numerous versions and distributions, from vendors

including Fedora, Ubuntu, Red Hat etc. and even completely open-source distros

including Linux Mint, Debian, Slackware etc.

Figure 1. Linux commercial vendors vs open-source distributions

Linux is compatible with several varieties of hardware platforms, due to its portability.

It needs moderate demands, such as 8 or 16 Mb of RAM, 32 Mb of flash, and a small

ARM core. These are the minimum requirements for Linux hardware, and they increase

depending upon the kind of application. In order to run any custom ized hardware, any

3

operating system requires a customized firmware image. The same rule is also

applicable for Linux. While building a custom Linux image, one can face issues in

kernel configuration or with the availability of drivers. Linux allows for several

modifications with the choice of multiple applications in combination with security

patches. The global Linux experts ensure the security of the operating system, making

it resistant to any kind of malware or virus.

1.2 Linux for Medical Devices

The medical or the healthcare industry has adopted the integration of high tech solutions

for its products and procedures. However, the rise of this adoption practice has slowed

down and saturated due to the medical industry being highly and regularly regulated,

and the scope of any update or change with ancient methods becomes a challenge for

any medical device company. The manufacturing company needs to ensure that the

product completely follows and meets the required relevant standards and the regulatory

documents as well. When it comes to a medical device, it also needs to follow the

requirements of safety and security performance. This entire process is a tedious one

and not a very budget friendly one. This is the major reason for many manufacturers of

medical devices to have been keep using the old software and hardware for decades.

The operating system of Linux is a sound alternative for both porting of a system from

the older versions of software platforms and also the complete and effective

development of a new product from the scratch. This is one of the reasons that Linux

operating system has been chosen by many companies.

The entry of Linux in the medical industry is owed to the open-source nature of the

operating system. It helps in cutting down costs on the development and maintenance

of any medical device or software. Linux can combine both general purpose operating

system and real time operating system, thereby covering the entire range of medical

applications ranging from a simple one to a life-critical application or use. Linux

effectively provides high levels of security, that upholds the tight standards of safety-

4

sensitive aspects of the medical industry. It is a perfect fit for smooth working of

equipment that support life or even transmission of any patient’s data with utmost

security. Finally, Linux copes well with healthcare regulations. The software can either

be developed separately in the form of a medical device, or it can also be embedded or

fit inside of a medical equipment or device.

Figure 2. Software Development for medical purposes

1.3 Linux features helpful in Medical Devices

It is apparent that an open-source answer is tons greater appealing from the industrial

factor of view than a proprietary running system. It is obvious that one of these

challenge gives advantages on implementation and maintenance, however it also helps

in saving costs for the license and support. Linux offers immense customization due to

the flexibility of the operating system. This open-source platform provides a huge

variety of pre-present designs that can fulfill the specific requirements of the software

or design. Necessary adjustments can be made to the code whenever needed. Features

can be easily added or removed in order to make the design more functional, clean and

effective. Special development platforms are available which are helpful in creating

5

customized images for any embedded system, irrespective of the target hardware.

Yocto-project is a common example for such a platform. Yocto-project provides a very

wide-range of open-source tools with proper support for developing embedded linux

which can successfully run over numerous architectures including ARM, MIPS, Intel

etc. Security is one of the major advantages offered by Linux. Linux being malware

resistant, stands against cyber-attacks, hence protecting the personal data of any patient.

Any issue related to security can be easily and quickly identified and resolved. Linux

systems are armed with encryption technologies. Since linux can support both general

purpose operating system and real time operating system, it makes it an ever more

suitable option. General purpose option for linux is a good option for a simple portable

device which does not require large memory, real time performance and also limited

time response. However, today’s technology demands high accuracy and reliability

from embedded medical devices, with additional low power consumption. Such devices

are to be designed such that they can run on high speeds and also run any real time

application. In such cases, real time capabilities can be used in embedded linux for

medical devices. Such real time systems can include life support systems, which

constantly monitor the patients’ condition, and hence actions have to be performed at

specific instants of time. Missing any such instant of time can be fatal for the health of

the patient.

Owing to the high portability feature of Linux, when any system has to be moved over

to a new hardware, the software can be ported easily. Linux is also compatible with

outdated hardware. An operating system that is based on the new linux kernel is easy to

run an older hardware. Linux being flexible, finds its application in major areas ranging

from desktops, networks, servers, to embedded medical product and devices. It can be

used in a small sample measuring device or even in complex medical devices such as

MRI or a CT Scanner. Going with Linux can be considered as a forward-thinking plan

or strategy. The product viability becomes very essential, when weighed against

Windows platform end of life. We can avoid all such issues with Linux. Since linux is

6

globally developed and supported, linux has higher longevity. Linux zealots

continuously develops newer version of the linux operating system, coming up with

new tools, features, applications and the support which is needed in the long run.

However, the open source nature of linux can also be a concern when it comes to

certification.

7

1.4 Objective

 This thesis talks about four medical devices, Neptune, Core2, Multigen and Sonopet

which are based on Embedded Linux. A generic board present in all the four products,

called the SOM board, fits well in these. The SOM board currently being used uses the

processor i.MX53 by NXP, which is going to be obsolete soon. The current processor

is being replaced by the i.MX 8M, another processor by NXP. Compatibility of the

application of all the products needs to be checked. Basic testing such as benchmarking

is also being carried out, using evaluation board, which is the MaaXBoard by AVNET.

The MaaXBoard is a low-cost board, based on the NXP i.MX 8M processor. It is a

single board computer, which stands to be ideal for applications such as Embedded

Computing. The evaluation board is brought up , basic communication testing is done

for the board. Benchmark using Sysbench is carried out, and once the benchmark results

are obtained, the application software for one of the products, Neptune is ported to the

evaluation board and tested if it gets built and run successfully.

8

1.5 Organization of the report

This report has been divided into 5 chapters. Chapter 1 introduces the overlap of medical

devices and Embedded Linux. It also includes objective of the report. Chapter 2 talks

about the Literature Survey. Chapter 3 talks about the practical work, the test results

and application testing. And in Chapter 5 Conclusion and Future Scope is given.

9

 CHAPTER 2

INTRODUCTION

2.1 Embedded Systems

The definition of an Embedded System can be stated as a combination of both

computer hardware and software which reside inside a much bigger system or device.

The device or systems completely encapsulates the software and hardware, usually

making believe that we cannot recognize the embedded system inside the appliance.

The embedding device is usually controlled by such systems. Several other tasks

include communication between the multiple equipment pieces. The functionality of

embedded systems is limited to few restricted options, usually they are created for

performing a specific functionality, which is contrary to simple desktop computers.

When a general purpose computer or a desktop computer is the manufactured, it is

not known what the customer will be using it for. They can use it for simple purposes

such as playing games, as a server or anything else. However, in embedded systems,

both the hardware and software are designed to deliver specific applications. Whereas

a desktop computer consists of multiple embedded systems. When embedded systems

are used for controlling purposes, they are bound under stringent timing conditions.

In case important calculations are not completed within the defined deadline, the

machine or even the part being worked upon can be damaged. Real time deadlines are

specifically very important to meet.

Going with the definition, software and a processor are both present inside an

embedded system. Other mandatory components are also present, like ROM or a flash

chip for permanently storing the software, and RAM in order to store the run time

data. According to the storage requirements of the developing system, both on chip or

external memory devices can be used. Small devices have less than 1kB of RAM and

ROM, whereas bigger systems have up to several megabytes of memory.

10

Apart from memory, embedded systems have input and outputs, to receive, process

and send data. Figure 3 shows the setup of an Embedded System.

Figure 3. Embedded System Setup

Apart from the above mentioned features, which are common and mandatory in all

embedded systems, the remaining embedded hardware is uniquely designed in order

to achieve the specific requirements of the device. There are some embedded systems

which have to be used with other such similar systems, and hence communication

interface is needed between them. This can be achieved by some network type, like

CAN, LIN etc.

Other design requirements include the following:

1. Processing Power: The register width needs to fit the requirement, in addition to

the number of operation per second, MIPS. Processors from 4 bit width to 64 bit

width are widely used in embedded systems. Like a small application of windows

lift controller can operate using 4 bits, whereas an electronically controlled engine

needs usually higher bits such as 16 or 32 bits or more.

2. Number of costs and Development Cost: These costs include the cost of the

hardware as well as the software. It being a fixed cost, it becomes less important

for higher volume products, whereas it becomes a dominating factor when the

number of units to be produced are less.

11

3. Expected Lifetime and Reliability: A device is expected to function for several

years, and also give effective performance and hence being reliable. Lifetime and

reliability are important design decisions to be made, ranging from the selection

of the components to the expenses for production and development.

4. Electromagnetic Compatibility (EMC): Owing to the close connections to the

embedding device, there are standards and requirements which have to be met and

considered for emissions and susceptibility of the electromagnetic disturbances,

which have to be checked.

5. Environmental Requirements: The embedded systems also need to be resistant

against many harmful influences in hostile environments. These influences can

include dust, humidity, vibration, shock and temperature fluctuations. These

factors have high importance in automotive applications.

 2.2 CPU Architectures for the Embedded Systems

 In general, the processor designed for an embedded system is chosen such as to meet

 and deliver the needs of any device. A processor's architecture has a big impact on the

 aforementioned requirements, especially in terms of computational power and cost.

 2.2.1 x86

 The x86 architecture family, sometimes known as desktop computer architecture, was

introduced by Intel. However, a number of x86 processor are designed especially for

the embedded systems. A “standard” x86-CPU requires an extra chipset, which

typically consists of Southbridge and North-, to interface to peripheral devices or

memory. There is just a lot of waste of resources, such as electricity and the space,

when ordinary x86 CPUs are used in an average embedded system.

12

Embedded x86 processors, on the other hand, combine the chipset, CPU, and some

extra glue code in a single integrated circuit. Figure 4 shows the architecture of x86

System-on-chip.

Figure 4. x86 System-on-chip

The x86 architecture is the one of the most well-documented amongst several

architectures. The details of this architecture are covered in a number of books and online

documents. When working on an Intel PC, development of the x86 is quite simple; cross

platform development is not required (like most developers do). At work or at home,

almost everyone has a computer with this architecture.

This architecture, however, only accounts for a minor portion of the typical embedded

system marketplace. One factor is heavy cost of the x86-Processors, while other one is

the architecture's comparatively more electricity consumption when compared with the

another known architecture.

2.2.2 MIPS

 The Stanford’s "Microprocessor without Interlocked Pipeline Stages" experiment gave

13

birth to the MIPS Platform. MIPS Technologies Inc. has licensed the CPU core as

intellectual assets to numerous manufacturers.

Because this has so many different instruction sets, the OS and the software packages must

be customized as per the target board.

 Practical devices such as Sony's PlayStation 2 and 1, Nintendo’s 64, SGI servers and

workstations, as well as routers and other networking equipment, all use MIPS CPUs.

According to MIPS technologies (source http://www.mips.com/), MIPS products can

easily be found in 72 percent of VoIP (Voice over IP) applications, around 76 percent of

cable set-tops, around 70 percent of the DVD recorders, and maximum cable modems.

2.2.3 Power PC

The PowerPC - architecture is the outcome through the teamwork between Motorola,

Apple and IBM. Despite their origins in personal computing (Motorola’s 68k CPUs being

used by Apple Macs using) and also the mainframes (known Architecture of IBM called

power), PowerPC processors were built for the use as quite high-performance processors

and being embedded.

PowerPC is extensively based on the IBM's previous architecture called POWER, with

which it has a high degree of compatibility. These 2 architectures have stayed close

enough that the same programmes and OS will operate on both provided proper

preparation is performed. The whole PowerPC instruction set is implemented in newer

POWER series CPUs.

PowerPC CPUs are most frequently linked with Apple's MAC computers, but they also

appear in a range of other devices, including the original TiVo hard-disk recorder and a

number of set-top boxes. Like the x86, this also is very well documented and maintained by

a wide range of OS.

14

2.2.4 ARM

The Advanced RISC Machine (ARM) - originally Acorn RISC Machine, like the MIPS

architecture, is offered as intellectual property to chip makers. [30] ARM Ltd. are the one

who solely creates CPU cores, which it then licences to companies like Atmel, Samsung

and others. Marvell Technology Group also just purchased Intel's XScale series.

Unlike the MIPS’s architecture, all the ARM's processors share the very same instruction

set, ensuring that all of the processors are compatible to the software (assembly and binary

code).

ARMv5TE and ARMv4 architectures are being used in almost all modern ARM CPUs.

Only the clock speed, the cache, and some other characteristics differ.

ARM’s processors are dominating in the mobile-electronics sector, where the low

electricity consumption is a crucial design aim, due to their power-saving characteristics.

According to ARM Limited, ARM has a market share of about 75% in the embedded

RISC CPU market. ARM Partners shipped over 2.5 billion ARM's core-based

microprocessors by January 2005.

Unlike several other vendors, they do not provide free chip documentation. Only the

reference manuals are provided, which are mostly sufficient in the vast majority of

circumstances. Because individual chip makers are the in charge of chip development, so

they can provide some information.

Table 1 shows some key data comparison of the architectures.

Table 2.1. CPU architectures for Embedded Systems

15

 With increasing need for technology and their applications, embedded systems have

become more and more complex. Easy and simple microcontroller circuits are easy to

program, using either an assembly language or a simple language such as C. But these

approaches have limited functionality once we want to use advanced features such as

multitasking. The implementation of advanced featured by human hand can be tedious

and prone to errors. The efficient solution for this is to use an operating system, which

makes it easy and favorable to access such features. Linux is one of the commonly used

operating systems for Embedded Systems. The history of Linux is well known in the

computer history. The name Linux can be used interchangeably with Linux Kernel,

Linux Distribution or Linux system. Linux stands only for kernel. Any such system can

be built using customizations, and can also be based on present binary distributions, an

example of which is Debian. Linux was developed as a Posix conform gpos. Linux

serves as a multi-user system, which fits well for any application type, mostly multi-

functional. Hence it is a big system, which needs multiple resources from memory to

processing power, and other scheduler requirements. A large amount of memory which

is used in desktop distribution include desktop utilities, documents, etc., and are a

removable option when it comes to embedded targets. It is a great possibility to

successfully create a linux system which is completely functional by using a very small

amount of memory. The kernel offers high customization options, and it is also an

option to remove kernel functionalities that are not required. Linux is readily available

for both 32 and 64 bit architectures. Three software costs are available in traditional

embedded systems. The initial development setup is the cost for purchasing the license

from the vendor for the OS. The cost for additional tools includes the tools which are

given by the developer package, in case they turn out to be insufficient. And the runtime

royalties include the cost per unit when the system is deployed. All development tool

and OS Components are readily available for Linux, free of cost whereas the license

prevents the royalties.

16

 2.3 Embedded Linux

The main difference between Linux and Embedded Linux is found in its configuration.

Where a normal Linux is more generic, Embedded Linux is usually aligned with a

hardware in combination to the application for which it is intended. A generic Linux

kernel can run across multiple devices and machines, and embedded linux kernel can

have issues in the same.

 Linux uses an architecture in protected mode, with the help of memory implementation

 in memory mode in Intel processors from 80386. The processor is capable of operating

 using four privilege levels. Any program running at the highest level, level 0 has all

 privileges such as I/O instructions, interrupt enabling and disabling and many more.

 Lower levels, on the other hand, prevent programs from carrying out many operations.

 In the context of Linux, Level 0 refers to kernel space and level 3 refers to the user

 Space.

Figure 5. Structure of UNIX

Two shown layers are further divided into two more layers. Hardware controllers are

present in the bottom layer. It is a combination of all physical devices in a UNIX or

linux installation. The next layer is the kernel, and its purpose is to abstract and provide

access to the hardware resources, even the CPU. The user layer consists of the OS-

services and the user applications as well. The operating system has all the OS-services.

The programming interface for the kernel, is a part of this sub-system.

Linux kernel can be referred to as a monolithic kernel. It runs only in the kernel space

in the supervisor mode. It provides a high level of virtual interface, by which

17

computer’s hardware can be accessed. The use of the kernel is computer resource

management, and the provision for programs to run and make use of those resources.

The resources offered include the CPU, the memory and the input-output. CPU is the

heart of the system, responsible for the execution of all programs. The responsibility

of making the decision that which running process has to be assigned belongs to the

kernel. A scheduling algorithm is used by the kernel for selection of tasks, as the linux

system works on pre-emptive multitasking.

Instructions and data is stored in the memory. For a program to execute successfully,

data and set of instructions both should be present inside the memory. The kernel

decides which memory any process is allowed to use, and how to proceed if there is

not enough memory available. Any input output present as a part of the system,

including disks, displays etc. are a responsibility of the kernel too. The kernel is the

deciding partner on allocating application requests to perform any input-output

operation for the requested device. The kernel's C-Library provides routines for the

kernel's system calls, which allow programmes to use the services offered by the

kernel. These system calls are used to call all kernel functions. Inter-process

communication, or IPC, is another feature of the kernel that allows for synchronization

and communication between processes.

At runtime, executable kernel modules can be loaded and unloaded dynamically. As a

result, when needed, the kernel's capabilities can be simply extended. Hardware

modules, for example, might be loaded exactly before the hardware is needed.

When compared to code that is directly built into the kernel, kernel modules introduce

a tiny overhead. Despite this, only loading modules when they are required helps to

reduce the amount of code executing in kernel space. Kernel modules can usually only

be loaded into kernels for which they were designed. In order to create a stable Linux

kernel, you must have the sources for all kernel modules required by your system.

Some hardware manufacturers only provide closed-source drivers, making it difficult

18

to upgrade or to create a kernel that is custom-made for the system. Pre-made kernel

modules are notorious for causing instability, but there is a kernel feature that allows

you to load modules designed for a different kernel.

2.4 Benchmarking

Benchmark stands for the condition where several programs or tests, with the motive

to assess the hardware as well as the software of the system. Benchmark testing can

also be put as a scientific method for testing the performance indicator for the different,

but same type of object to be tested. Hardware benchmarking is different from software

benchmarking. Hardware benchmarking evaluates parameters such as the processor

performance, graphics card, memory card, the network and the hard disk. Two types

of benchmarking are present: application and synthetic benchmarking. Application

benchmarking is used to evaluate the performance of real-time applications, including

servers and databases. On the other hand, synthetic benchmarking includes putting

stress on a component, which can include reading or writing data. The purpose of

benchmarking i.MX 8M is to weigh its performance against the previous processor,

i.MX 53. The CPU performance needs to be checked using benchmarking, to confirm

whether applications for the products can run on the new processor and are compatible

with minimal compromises in performance. Multiple tools are available for

benchmarking linux systems. These tools are available under open-source license and

can be used easily. Some of these tools include SysBench, 7z, IOzone, HardInfo and

many more. We have used SysBench tool for our work. SysBench is a cross-platform,

modular, multi-threaded tool for benchmarking various OS parameters which are

necessary for any system which runs a database under the influence of wide and

extensive database . The SysBench tool helps to gather information about the system

performance, without the need of setting up any complex database benchmark. It is

also possible to run this benchmark without installing any database. The SysBench

model enables to test various system parameters such as File I/O performance, the

19

scheduler performance, the memory allocation and transfer speed, POSIX threads

implementation performance and database server performance. SysBench runs over a

very simple design. It executes a fixed number of threads which execute all requests

simultaneously in parallel format. Different test modes produce different levels of

workload, hence the workload produced is dependent on the test mode running. The

total number of requests or the total time for which the benchmark runs, or even both

when the situation demands. The test modes which are available use compiled-in

modules when being implemented. Every test mode has additional customizable option

available. Any new test modes can also be added according to need. The version used

in our work is 1.0.18.

The general syntax for Sysbench is shown as follows:

Figure 6. General Sysbench Syntax

Some commonly used commands and their meanings are given below.

Prepare: This command carries out the necessary actions which are needed in few tests

in the preparation step. For example, it helps in creating the required files on the disk

space for the file io test, the database filling during oltp test.

Run: It runs the actual test using the –test=name option.

Cleanup: When certain tests use the prepare option to create files for testing, the

cleanup command helps removing those temporary files to free up space.

Help: This command can provide with the available options for any test, using –

test=name option.

20

Table 2.2. Common command line options

In some circumstances, having not just the end benchmark statistics, but also frequent

21

dumps of current stats to see how they change through the test run is beneficial.

SysBench supports a batch execution mode for this purpose, which is enabled with the -

-batch option. The delay between consequent dumps can be expressed using seconds,

using the –batch-delay provision.

Example, sysbench –batch –batch-delay=5 –test-threads run.

This will start SysBench in threads test mode, and every 5 seconds, the current minimum,

average, maximum, and percentile values for request execution times will be reported.

The various test modes available in sysbench are as follows:

1. CPU: The cpu is among SysBench's most basic benchmarks. Each request in this

mode consists of computing prime numbers up to the value supplied by the --cpu-

max-primes option. All calculations are done in 64-bit mode. Each thread conducts

requests in parallel until the overall number of requests or total execution time

exceeds the restrictions set by the common command line arguments. Example,

sysbench –test=cpu –cpu-max-prime=20000 run

2. Threads: This test mode is created to measure the performance of schedulers,

specifically when a scheduler has a high number of threads contending for a set of

mutexes. SysBench produces a certain number of threads and mutexes based on the

number of threads and mutexes given. Next, every thread begins processing the

requests by locking the mutex, yielding the CPU so that the scheduler can place the

thread in the run queue, and then unlocking the mutex when the thread is rescheduled

to execution. The following steps are repeated numerous times in a loop for each

request, and the more iterations are completed, the more concurrency is imposed on

each mutex. –threads-yield and –thread-lock options are provided in this test mode.

–threads-yield option is used to set the number of locks loops which are to be

executed per request.

22

3. Mutex: This test mode was created to simulate a situation in which all threads run

concurrently for the most of the time and the mutex lock is only held for a short

duration (incrementing a global variable). The motive behind the benchmark is the

examination of the mutex implementation performance. The default value for the

actual mutex lock to be randomly chosen before each lock is 4096.

4. Memory: This test mode is useful for evaluating sequential memory reads and writes.

For all memory operations, each thread can access either a global or a local block,

depending on command line settings. The size of memory block to be used can be

customised with this benchmark, the default value is 1K. The total size of data to be

transferred can be defined, with both read and write operations available.

5. Fileio: This test mode may generates a wide range of file I/O workloads. SysBench

produces a specified number of files with a specified total size during the prepare

stage, and then each thread performs specified I/O during the run stage. This group

of files has been subjected to operations.

23

 CHAPTER 3

 PRODUCTS BASED ON EMBEDDED LINUX

Neptune3, Sonopet, Core2 and Multigen are products developed on the base of Embedded

Linux.

3.1 Neptune3

Neptune3 is a medical device, that falls under the hood of Waste Management System.

During any surgery, hazardous bodily fluids and smoke are complimentary. They can

prove to be very dangerous for the surgeon’s as well as the patient’s overall health and

well-being. There are times during a surgery, when cotton heavily soaked in blood is

mistaken for blood clots and may be left inside the human body after the completion of

the surgery. Such cases have been reported in the past, where the patient comes back later

with complaints. Neptune3, a successor to its previous versions, was developed with the

motive to avoid and completely remove the possibility of such situations. The Neptune3

Waste Management system was successfully developed after five years of research and

development. It is a multi-tasking device, used by surgeons all around the world,

providing them with considerable safety and efficiency. Neptune3 has successfully

moved surgical suction to a completely new level.

The product has the availability of the Hush Vacuum Pump. As the name suggests, this

pump provides a quieter fluid suction system. The current version of the product produces

a noise level of just 4.3 sones, which is up to 48% quieter than its predecessor, the

Neptune2. A household ventilating fan can produce up to 7 sones of noise, making the

Neptune3 even quieter than it.

Figure 7 depicts the Neptune3 device. It has multiple suction range indicators with two

displays. High suction audio alerts with manifold suction range indicators are also

available. Integrated smoke evacuator is the standard equipment, with an 80-hour

24

ULPA filter. Two independent suction cannisters work in the range of 50-520 mm-Hg of

suction. Tactile feedback dials are provided for the control of suction limit, which

displays on the screen as on-screen numeric and indicators for low-medium-high

indicators. The SealShut Technology successfully locks away all the sucked biohazards.

 Figure 7. Neptune3

A typical in-use screen of the Neptune3 is shown in figure 8. It depicts the menu which

provides the start or stop data of the suction range, the actual mm-Hg, the suction limits

available and the total cannister volume with the cannister volume reset.

25

 Figure 8. Neptune3-in use screen

Figure 9 depicts the screen for the built-in smoke evacuator. This built-in evacuator

automatically detects the smoke at the surgical site and has the provision of adjusting the

flow once the device is switched to auto-mode. The product has the provision of patient-

to-patient reuse by just changing the manifold. The presence of internal rotating power

washers has provided extra cleaning power. The electromagnetic couplers themselves

engage in automated process of limiting the physical touch.

Figure 9. Smoke Evacuator

26

3.2 Sonopet

The Sonopet is an Ultrasonic Aspirator that delivers Flexibility, for both the surgeon and

the patient. It finds it use and applications in the areas of soft-tissue and fine-bone dissection.

Since soft-tissue and fine-bone do not require high power for operation, Sonopet offers fine

control and dependable power to fragment, emulsify and aspirate soft-tissue and bone.

The Sonopet system has three major components, each designed for maximum

performance and reliability. The first component is the hand piece, shown in figure 10.

The hand piece is a lightweight, ergonomic product, with angled and straight 25kHz

models. It also has the provision of 34kHz, with provides even greater precision. Due to

the provision of higher frequency, it gives lower amplitude, that is the distance which

the tip moves along its length.

Figure 10. Sonopet Handpiece

The second component, the tip, is shown in figure 11.

With the structure of the product, 20 options are available for the soft-tissue and bone

procedures. It is possible to customize the diameters as well as the length of the structure.

The several numbers of tips include up to four soft-tissue tips with another five fibrous

27

 tissue tips and remaining 11 as bone tips. Different procedures require different length of

the tip according to the bod part that is being operated on. Standard and super long lengths

are provided to meet the requirement. The third component, the console, is depicted in

figure 12.

Figure 11. Tips

The console is the heart of the device, which is easy to setup and operate as well, with the

provision of Automatic Hand piece Recognition. Controlling the power at which suction is

performed, the control of irrigation and ultrasonic power are the main functions of the

console.

During a complex surgery or procedure, it is crucial for the surgeon to have superior control

over the hand piece. Its lightweight nature supports the same. Tactile feedback is another

feature present in the system. There is no necessity of an external cooling system, as the

system is self-sufficient in the same. Cavitation is the process that helps in the surgeries

using the Sonopet system. Negative pressure in the targeted tissue is created using the

vibrations of the ultrasonic tip. As the vibrations continue, the cells start to expand, until

they cannot anymore, and finally end up bursting. This process of cavitation is selective in

nature, as the tissues with higher water content, are more prone to the process.

28

 Figure 12. Console

3.3 Mutligen2

The MultiGen 2 is another medical device which finds its Core in Embedded Linux. The

device is responsible for generating radiofrequencies, required for the removal of bodily

tissues, a common practice during many surgeries and procedures. This product is an

advanced tool especially used by physicians, keeping in mind to cause minimal pain to the

patient.

 Figure 13. MultiGen2

29

The MultiGen2 can handle up to 4 lesions at any instance of time, with the added advantage

of controlling them independently. The radiofrequencies generated by the device can be

used for monopolar as well as bipolar procedures simultaneously. Thermal and pulsed

procedures are also carried out at the same time. This differentiation between the procedure

or surgery type is an automated process. Compared to its predecessor, the device achieves

the target temperature, with minimal errors, usually working at 100Watts. The order of

lesions can be selected easily with independently run channels. The device provides the

freedom to customize the procedure based on various deciding factors such as the patient

needs, the end goals of the procedure and the personal preference. In the Conventional Heat

Lesion mode, RF Frequency up to 1MHz, aperiodic damped sinusoid, with deviation of

+10% to -10% can be generated. Whereas in the Pulse mode, 1MHz sine wave with

selected pulse frequency and on time can be easily generated . The overall time in SI joint

procedure or surgery is reduced with the use of larger lesions. Intradiscal procedures, such

as spinal procedures, are also supported by the device. The time and temperature step

profiles are pre-programmed into the device for intradiscal procedures.

The Multigen2 RF Generator, with the Venom Cannula and Electrode system, can

generate less-invasive lesions in a very short period of time.

3.4 Core2

Core2, which stands for Consolidated Operating Room Equipment, Console is also a

medical device that has its roots in the Embedded Linux system. This console brings

together several power tools, which can be effectively used and controlled using the

console itself. It is a versatile device, finding its application areas from orthopedic, dental

areas, ENT, neuro and spine areas, to other endoscopic areas as well [9]. The device is

capable of powering small as well as large bone drills, saws and drivers, ENT shavers,

foot pedals, both small and large joint shavers and bone mill and irrigation [9].

The device is helpful in placing or cutting screws, pins, metal, wires or any other fixation

30

device [9]. The irrigation flow is customizable and can be set according to the surgery

and body part being operated on. Due to the capability of the device to operate a spectrum

of power tools and devices, the need of multiple power sources has become redundant.

Figure 14. Core2 Console

There are three hand piece ports available on the system, with the availability of foot

pedals as well. Two foot pedal ports are present, with the provision of assigning two pedals

to a single hand piece as well. The choice of foot pedals includes NSE footswitch, Bi-

directional footswitch and the uni-directional footswitch. Setting the device or instrument

settings during an on-going operation/procedure should be avoided as a healthy practice.

The device helps to eliminate such disruptions by being able to retrieve all customizations

needed for the procedure. These customizations can be set and saved for future purposes.

User profiles can also be set and saved. Multiple features can be set and customized on

the device including RPM of motor or device, rate of oscillation, direction of movement

of hand piece or power tool, break and irrigation control, acceleration settings and so on.

The foot pedals can also be customized according to the situation and need. These setting

and preferences can be shared with other Core2 consoles over USB cable. Integrated

irrigation is set up in the device with one-step

insertion and removal. No additional hardware components are required to affix or tubes

to threads. Pole brackets are also available on the device. More room is provided around

31

the irrigation cassette by using refined port locations. The provision of an internal

irrigation pump is the core supplier of coolant for the cutting target, also with adjustable

irrigation flow rates. The console is capable of taking the input as 100VAC -230VAC and

can successfully drive power-duty hand pieces as well.

32

 CHAPTER 4

 EXPERIMENTAL WORK AND RESULTS

All the experimentation and tests were run on an evaluation board. The evaluation board

used in our work is MaaXBoard, by NXP. The MaaXBoard is a low-cost board based on

the i.MX 8M processor. The family of i.MX 8M processors are based on Arm Cortex A-

53 and Cortex-M4 cores. Fig 15 depicts the top view of the board.

Figure 15. MaaXBoard Top View

The board has a 40-pin expansion interface. 2GB DDR4 SDRAM is present on board,

with 8GB eMMC and a Micro SD slot. Multiple options are available for

communications and user interface including Gigabit Ethernet, HDMI, Wi-Fi, Bluetooth

and more.

A block diagram showing the major components of the board is shown in figure 16.

33

Figure 16. MaaXBoard Block Diagram

The board was powered up using type-C cable (5V/3A) and connecting it to a power

port. Since all products and requirements find its core in Embedded Linux, the board

was run over a linux system. A Debian image was flashed on the SD Card to boot up the

board. The Debian image was a RAR file, which was converted to an ISO file, that is a

disc image file, with the motive to be flashed on the SD Card. The software, Balena

Etcher was used to burn the ISO image file to the SD Card, shown in figure 17.

Figure 17. Burning image via Balena Etcher

34

The board has two LEDs, the system LED, and the user LED. Three buttons are also

present on the board, which are S2(power button), S3(back button) and S4(home

button). Before powering up the board, it was connected to a monitor using the HDMI

port and cable. When the board was powered up, LED0 was lit up, green in color,

indicating that the board is connected to power and the Bootloader, that is U-Boot is

successfully loaded. As the board boots up, LED1 starts to blink, and multiple character

lines are printed on the screen.

Another method was used to check board bring-up with SD Card. This was done by

using the serial software, Putty. The following settings were made, as shown in figure

18.

Figure 18. Serial Putty Settings

35

The Connection type was selected as SSH, ‘Serial’ connection. The correct port was

selected, the baud rate for the communication was set as 115200 bps, and the number of

stops bits was selected as 1. The debug pins were connected to the PC, and the board

was connected to it using a USB-to-TTL connector. Pin number 6,8 and 10 of base plate

J10 on the board correspond to GND, UART1_TXD and UART1_RXD. Pin 8 was

connected to RXD of the USB-to-TTL cable, and Pin 10 was connected to the TXD of

the same cable. Both the grounds were shorted together as shown in figure 19.

Figure 19. Connections for Boot-up

The SD Card was inserted into the slot, that is J19, and then the board was powered up

with a type-C cable of 5V/3A. On booting the board using serial communication, the

board displayed the following:

Figure 20. Login after boot-up

36

The login ‘root’ was used and the password ‘avnet’ was used. The demo application was

installed automatically on booting using serial port, and the board restarted automatically

after displaying the following.

 Figure 21. Board Start-up

The board was now ready to use.

The two user LEDs present on the board were tested first. The tests were carried out using

command line. LED0 is the user-led, and LED1 is the system-led. To turn LED0 on and

off, the following commands were given.

Figure 22. Turning LEDs OFF

Figure 23. Turning LEDs ON

The board supports multiple communication protocols such as I2C, SPI and UART.

UART test was carried out using command line. Before checking for UART

communication, pin 16 and pin 18 on plate J10 were shorted together using a male-to-

37

male jumper wire. Pin 16 corresponds to the Receiver of UART_2 and pin 18 corresponds

to the Transmitter of UART_2. These need to be shorted for effective loopback of data.

The UART test was carried out using the command line as shown in figure 23.

Figure 24. UART Test with Baud Rate 115200

The baud rate used to check UART was taken as 115200 bps. The baud rate for the test

was changed to different values, such as 9600 bps and shown in Figure 24, and the same

results were achieved.

Figure 25. UART Test with Baud Rate 9600

The data, ‘1234567890’ is looped backed effectively from the transmitter pin of the UART

module to the receiver pin of the module.

Next, benchmarking of the processor was carried out. Benchmark stands for the condition

where several programs or tests, with the motive to assess the hardware as well as the

software of the system. Benchmark testing can also be put as a scientific method for testing

the performance indicator for the different, but same type of object to be tested. Hardware

benchmarking is different from software benchmarking. Hardware benchmarking

evaluates parameters such as the processor performance, graphics card, memory card, the

network and the hard disk. Two types of benchmarking are present: application and

38

synthetic benchmarking. Application benchmarking is used to evaluate the performance

of real-time applications, including servers and databases. On the other hand, synthetic

benchmarking includes putting stress on a component, which can include reading or

writing data. The purpose of benchmarking i.MX 8M is to weigh its performance against

the previous processor, i.MX 53. The CPU performance needs to be checked using

benchmarking, to confirm whether applications for the products can run on the new

processor and are compatible with minimal compromises in performance. Multiple tools

are available for benchmarking linux systems. These tools are available under open-source

license and can be used easily. Some of these tools include SysBench, 7z, IOzone,

HardInfo and many more. We have used SysBench tool for our work. SysBench is a cross-

platform, modular, multi-threaded tool for benchmarking various OS parameters which

are necessary for any system which runs a database under the influence of wide and

extensive database. The SysBench tool helps to gather information about the system

performance, without the need of setting up any complex database benchmark. It is also

possible to run this benchmark without installing any database. The SysBench model

enables to test various system parameters such as File I/O performance, the scheduler

performance, the memory allocation and transfer speed, POSIX threads implementation

performance and database server performance. SysBench runs over a very simple design.

It executes a fixed number of threads which execute all requests simultaneously in parallel

format Different test modes produce different levels of workload, hence the workload

produced is dependent on the test mode running. The total number of requests or the total

time for which the benchmark runs, or even both when the situation demands. The test

modes which are available use compiled-in modules when being implemented. Every test

mode has additional customizable option available. Any new test modes can also be added

according to need.

The Linux image flashed on our evaluation board was a Debian image, and hence the

following steps were used to install SysBench on the system:

39

Figure 26. Installing Sysbench

The version of the sysbench software installed was as shown in the below figure:

Figure 27. Sysbench Version

Version 1.0.18 has been used for our work. The general syntax of commands used in

sysbench follow the following format:

Figure 28. General Syntax used for Sysbench

Some common commands available in SysBench include ‘prepare’, which carries out the

preparative actions for the tests that require the same. Examples can include creation of

test files which are needed for the fileio test, the filling of test databases for the oltp test

and so on. Another command ‘run’ is used to begin the actual test with the –test=name

option. The ‘cleanup’ command helps in the removal of the temporary test files and data

which is created during running of any test. ‘Help’ command shows all the possibilities or

usage information for any available test [17]. The first test run for the work was the CPU

benchmarking test. It was carried out using the following command:

Figure 29. CPU Benchmark Test

The purpose of CPU Benchmark command is to put full load on the CPU, and test its

performance under high load. To achieve the same, what SysBench does is that it produces

the specified number (for our case=20000 prime numbers). Then these prime numbers are

40

verified by performing a standard division of the numbers between 2 and the square root

of the same number. On doing so, if the remainder produced is zero, the next number is

then calculated. This is done to put more and more stress on the CPU, in order to check

its performance. Our test results for CPU benchmarking are shown in figure 29.

Figure 30. CPU benchmark Results for 20000 nos.

41

:

Figure 31. CPU Benchmarking for 40000 nos.

On an average, generating and checking CPU performance with 20000 prime numbers

takes upto 3.37 ms, whereas this average time increases when 40000 numbers are

generated and goes upto 8.58 ms. A lower average time means the CPU takes lesser

amount of time to reach the limit.

For multithreaded applications, another test was run with the appropriate number of --

threads as per need.

42

Figure 32. CPU Benchmark with 8 threads in use

Here, the number of events increase as we have used 8 threads. --cpu-max-prime is a

measure of the work done per event, which means that a single event calculates the prime

numbers up to the specified limit.

Memory was tested next. For memory tests, we can test both read and write speeds. Either

of the two mode can selected using –memory open. Sequential and random access modes

can also be selected using –memory-access-mode. Memory benchmark also has a special

stop condition –memory-total-size, which can be used for the test. Depending on the

command line, every thread has the option of accessing either a local or global block for

all the memory operations involved. The test results for Memory workload are shown in

figure 32.

43

Figure 33. Memory Workload Test results

When the memory workload test is performed, the benchmark application that is

Sysbench, allocates a memory buffer from which it can either read or write to, every time

equal to the size of the pointer, which is either 64-bit for our test, and continues for every

execution until the total specified buffer size has been read from or written into. This

process is repeated until the specified volume given by –memory-total-size is reached.

The important result obtained from is the throughput and the number of operations per

second, which is 49385981 (4936120.19 per second) for our processor.

The next test carried out was the fileio standard test. This benchmarking is carried out in

three steps: The first step is creating test files for the benchmark, here we create 128 test

44

files. We have used 5Gb of space for our work. The next step is to run the benchmark

using the test files and display the results. The last step includes removing all the test files

which have been used already. The three steps are shown below:

Figure 34. Steps for fileio benchmark

Step 1:

Figure 35. Creating Test files

Step 2:

Figure 36. Fileio Benchmarking

45

Figure 37. Removing and clearing Test files

The type of workload which has to be run can be chosen from sequential read, write, or

random read and write, or a combination of both. In our work, we have used random read

and write, rndrw. The time duration of the test was given using –max-time. The benchmark

provides information about reads/s and writes/s which are 176.92 and 117.37 for our test.

The read and write throughput are 2.76MB/s and 1.83MB/s.

Another benchmark carried out was Threads benchmark. This benchmark is carried out to

check the scheduler performance, specially under the case when a large number of threads

compete for the same set of mutexes. A specific number of threads and mutexes are

created. Next, every threads starts to run the request which includes locking the mutex,

CPU yielding, hence placing the thread in the run queue by the scheduler, and finally

unlocking the mutex once the threads get rescheduled for execution. For every request,

these steps repeat multiple times in a loop in order to perform more iterations, and hence

more concurrency is put on each mutex.

The threads test and its results are shown in figure 37 below:

46

Figure 38. Threads Benchmark with 64 threads

Total time of 10.03 seconds was approximately consumed, with an average latency of

83.14ms. When the number of threads were increased from 64 to 128, the following results

were obtained:

47

Figure 39. Threads Benchmark with 128 threads

From both the threads benchmarks, we can see the total time and latency increase up to

10.0879 secs and 117.27ms.

Next we carried out the Mutex benchmark. When this benchmark is carries out, a situation

is emulated where all threads run concurrently, and acquire a mutex lock for a small/short

period of time.

48

Figure 40. Mutex Benchmarking

Mutex implementation was tested, with 64 threads running. The performance of mutex

implementation is examined using this benchmark. Under the mutex workload, sysbench

runs a single request per thread. The benchmark first puts stress on the CPU by the use of

an incremental loop, by the –mutex-loops parameter. Then it uses a random mutex, or lock,

increments the value of the global parameter and then releases the lock. These steps are

repeated multiple times up to the limit of the number of locks --mutex-locks.

After all the benchmarking was complete, the software bundle for one of the products,

Neptune was ported to the evaluation board. The following steps were followed to make

the system ready for running the Neptune application:

Step 1: Install the necessary packages using Apt-get install command

Apt-get install build-essential libc6-dev libtool sharutils libncurses5-dev libgmp3-dev

49

libmpfr-dev gawk gettext bison flex gperf indent texinfo libgtk2.0-dev libgtk2.0-bin

libsdl1.2-dev swig python-dev texlive-latex3 texlive-extra-utils binutils-dev automake

guile-1.8 icon-naming-utils libdbus-glib-1-dev wget gtk-doc-tools libxml-parser-perl zip

unzip ecj fastjar x11-xkb-utils libglade2-dev libperl-dev python-libxml2 libexpat1-dev

gconf2 groff libc6-dev

Step 2: run dpkg-reconfigure dash and respond "No" to the prompt asking "Install dash as

/bin/sh?"

Step 3: Once the base packages are involved, main screen string generation utility and

volume screen string generation utility are made and installed.

Step 4: chmod 777 .config command was used to get read and write permissions and

everything was built successfully.

Figure 41. Build Successful

The system was successfully built. As the system was successfully built over the new

50

processor, POC, Proof of Concept was successful. The modules can be switched over the

new processor with the necessary pin mapping changes.

51

 CHAPTER 5

 CONCLUSION AND FUTURE SCOPE

With the aim of moving the SOM board over to a new processor, an evaluation board with

the new processor, that is i.MX8 was used. The board was successfully brought up and

basic communication and LED testing was carried out. The main communication protocol

used is UART. Rigorous testing of the evaluation board was done, and the processor was

benchmarked. All the benchmarking tests were successful and the software for one of the

existing products was pushed on the board, and the build was successful. For future works,

pin mapping will be carried out from the old processor, i.MX53 to the new one. The kernel

might need some customization changes when moving to the new processor. U-Boot will

also be built on the same path. The software for other products will also be checked for

successful build on the evaluation board, and moved with necessary pin mapping.

52

REFERENCES

[1]https://www.mddionline.com/software/6-advantages-linux-medical-device-

applications

[2] https://www.embeddedcomputing.com/technology/open-source/linux-freertos-

 related/using-linux-in-medical-devices

[3] M. Jin, X. Zhou, P. Duan, Z. Tian and J. Zhou, "The Design and Implementation of

Embedded Configuration Software Based on Embedded-Linux," 2008 International

Conference on Computer Science and Software Engineering, Wuhan, China, 2008, pp. 98-

101, doi: 10.1109/CSSE.2008.640.

[4] 9100-003-550-Rev-A_SI160646-N3-4-Page-Slick-v9_pdf_stryker

[5] Weinger, Matthew, et al. "Handbook of Human Factors in Medical Device Design."

CRC Press, 2011. PrintM. Young, The Technical Writer’s Handbook. Mill Valley, CA:

University Science, 1989.

[6]Stryker-Sonopet-brochure-catalog:

https://www.stryker.com/content/dam/stryker/navigation/products/sonopet/resources/SO

NOPET-catalog-brochure.pdf

[7] Stryker – MultiGen2-catalog : http://necod.com.ar/catalogoPdf/7/i.pdf

[8] Stryker – MultiGen2-manual : http://orthosurgical.es/1/upload/multigen_2.pdf

[9] https://neurosurgical.stryker.com/products/core-2-console/

[10] Core2 console brochure - https://www.stryker.com/content/dam/stryker/nav-

nse/products/Core-2/resources/Core%202%20Brochure.pdf10

[11]http://www.wemed1.com/downloads/dl/file/id/6434/product/1118/manual_for_or_s5

400_50.pdf - Manual

[12] MaaXBoard Hardware user manual

[13]https://www.prevas.dk/download/18.58aaa49815ce6321a327da/1506087244328/Yoc

to_Debian_Whitepaper.pdf

https://www.mddionline.com/software/6-advantages-linux-medical-device-applications
https://www.mddionline.com/software/6-advantages-linux-medical-device-applications
https://www.embeddedcomputing.com/technology/open-source/linux-freertos-
https://www.stryker.com/content/dam/stryker/navigation/products/sonopet/resources/SONOPET-catalog-brochure.pdf
https://www.stryker.com/content/dam/stryker/navigation/products/sonopet/resources/SONOPET-catalog-brochure.pdf
http://necod.com.ar/catalogoPdf/7/i.pdf
http://orthosurgical.es/1/upload/multigen_2.pdf
https://neurosurgical.stryker.com/products/core-2-console/

53

[14] A. G. Moya and Á. B. Barros, "Practical course of embedded Linux for XUPV2P

development boards," 2012 Technologies Applied to Electronics Teaching (TAEE), Vigo,

Spain, 2012, pp. 98-102, doi: 10.1109/TAEE.2012.6235416.

[15] P. Radhavan, A. Lad, S. Neelakandan: “Embedded Linux System – Design and

Development”, Auerbach Pub. 2006.

[16] Z. Jiang, "A Linux Server Operating System's Performance Comparison Using

Lmbench," 2016 International Conference on Network and Information Systems for

Computers (ICNISC), Wuhan, China, 2016, pp. 160-164, doi: 10.1109/ICNISC.2016.043.

[17] https://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf

54

