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ABSTRACT 

      In the list of most commonly occurring neurodegenerative disorders, Parkinson’s 

disease ranks second while Alzheimer’s disease tops the list. It has no definite 

examination for an exact diagnosis. It has been observed that the handwriting of an 

individual suffering from Parkinson's disease deteriorates considerably. Therefore, 

many computer vision and micrography-based methods have been used by researchers 

to explore handwriting as a detection parameter. Yet, these methods suffer from two 

major drawbacks, i.e., the prediction model's biasedness due to the imbalance in the 

data and low rate of classification accuracy. The proposed technique is designed to 

alleviate prediction bias and low classification accuracy by use of hybrid resampling 

(Synthetic Minority Oversampling Technique and Wilson's Edited Nearest 

Neighbours) techniques and Extreme Gradient Boosting (XGBoost). Additionally, 

there is proof of  innate neurological dissimilarities between men and women and the 

aged and the young. There is also a significant link of the dominant hand of the person 

and the side of the body where initial manifestation begins. Further, the gender, age, 

and handedness information have not been utilized for Parkinson’s disease detection. 

In this research work, a prediction method is developed incorporating age, gender, and 

dominant hand as features to identify Parkinson’s disease. The proposed hybrid 

resampling and XGBoost method's experimental results yield an accuracy of 98.24% 

highest so far when age is taken as a parameter along with nine statistical parameters 

(root mean square, largest value of radius difference between ET and HT, smallest 

value of radius difference between ET and HT, standard deviation of ET and HT radius 

difference, mean relative tremor, maximum ET, minimum HT, standard deviation of 

exam template values, number of instances where the HT and ET radius difference 

undergoes a change from negative value to positive value or vice versa) achieved on 

the HandPD dataset. The conventional accuracy is 98.24% (meanders) and 95.37% 

(spirals) when age is used along with nine statistical parameters extracted from the 

dataset. It becomes 97.02% (meanders) and 97.12% (spirals) when age, gender and 

handedness information are utilised. The proposed method results were compared with 

existing methods, and it is evident that the method outperforms its predecessors. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects 

motion. The indicators/symptoms have slow manifestation. It can begin with an 

imperceptible tremor manifestation in merely one hand. The most common indicators 

are tremors. Although slowing of movement or stiffness is also seen in many patients. 

In the preliminary stages of PD, the patients’ facial expressions can be hardly 

noticeable or none at all, arms of the patients may not swing while walking. The speech 

may be affected and become slurred or soft. PD symptoms get worsen as one’s 

condition progresses over time. 

Despite the fact that PD is incurable, medications might help improve the symptoms 

significantly. Surgery can be done (occasionally) to control certain regions of the brain 

which might rectify the symptoms. 

 1.1.1 Symptoms seen in PD patients 

PD signs and symptoms can vary from one person to another [1]. In the early stages, 

the signs/indications may be mild and inconspicuous. The symptoms usually start on 

one side of the patients’ body and worsen on that side, even after they start affecting 

both sides. 

These include: 

1. Tremor – It generally originates in a limb (hand or fingers). A pill-rolling 

tremor (i.e., rubbing one’s thumb and forefinger back and forth) or trembling 

hands while they are at rest are also examples of tremors.  

2. Bradykinesia (Slowed movement) – PD progression affects movement such 

that day-to-day tasks become difficult and tedious like getting out of a chair. 

One’s steps may become shorter while walking and/or feet might drag while 

trying to walk. 
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3. Rigid muscles – Patients may feel stiffness in muscles which is painful and 

restrict the motion range. 

4. Reduced balance and stooped posture - One might find it difficult to balance 

his/her body weight while standing and end up being stooped because of PD. 

5. Deprivation of reflexes - The potential to accomplish unconscious 

movements, like swinging arms while walking, smiling or blinking may 

deteriorate. 

6. Changes in speech – Soft, staggered, quick, or slurred speech while talking 

are the changes seen in speech patterns. It becomes a monotone instead of the 

usual inflections. 

7. Changes in writing – Handwriting of the patient diminishes. It becomes hard 

to write as the grip on the pen/pencil loosens due to the disease. 

1.1.2 Causes of the disease 

In PD, the neurons (nerve cells) of the brain perish or gradually break down. Most 

indicators are a result of the deprivation of neurons that manufacture dopamine, a 

chemical messenger in the brain. When the level of dopamine decreases, the activity 

of the brain becomes abnormal. Consequently, the movement of the body is impaired 

and other indicators of PD become visible. 

The following factors play a key role in causing PD: 

1. Genes – There are certain mutations in the genes that can lead to PD as identified 

by researchers. These are however less frequent except in cases of family history of 

PD. Although some gene changes seem to heighten the chances of PD but with a 

relatively smaller risk of PD for each of these genetic markers. 

2. Triggers due to environmental elements - Being exposed to specific toxins or 

environmental components might heighten the chances of later PD, however, the 

probability is negligible. 

Researchers have found certain changes that happen in the brain of PD patients, though 

it is no clear evidence as to why they occur. These are listed as follows: 

i. The presence of Lewy bodies – The microscopic markers of PD are the 

clumps of certain elements present inside brain cells known as Lewy bodies. 

Researchers claim that Lewy bodies are significant in the context of the cause 

of PD. 
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ii. Alpha-synuclein present within Lewy bodies - There are many elements 

within Lewy bodies. It is believed that the most significant one is known as 

alpha-synuclein (a-synuclein) protein. This is a significant factor to focus on 

among the recent research in PD. 

1.1.3 Major factors that pose as risk in PD 

PD has the following risk factors: 

1. Age – PD rarely affects young people. It usually starts in adulthood or late 

life and the probability rises with age. The disorder generally develops 

around age of 60 or elderly. 

2. Heredity – A family history of PD may hike the chances that a person might 

develop it. Nevertheless, the risk is negligible unless most of the relatives in 

the family have been afflicted with the disease. 

3. Sex - Males are more vulnerable to PD as compared to females. 

4. Exposure to toxins - Being exposed to pesticides and herbicides may 

heighten the chances of PD. 

 

1.1.4 Complications encountered by the patients 

PD is often accompanied by the following issues (which might be curable): 

1. Difficulty in thinking – Dementia and thinking difficulties might occur in 

patients. These are usually seen in the later phases of PD and are unresponsive 

to medications. 

2. Emotional changes and depression - One might experience depression in the 

preliminary phases. Therapy for depression can help manoeuvre the other 

issues of the disease. A person might also experience changes in emotions, 

such as loss of motivation, fear, and anxiety. However, these symptoms are 

curable with medications. 

3. Swallowing problems – It might become difficult to swallow as the disease 

progresses. This results in the accumulation of saliva causing the person to 

drool. 

4. Eating and chewing difficulties - PD starts affecting the muscles of the mouth 

in the later stages. This makes it difficult for the person to chew food which 

can end up in gaging and nutrition deficiency. 
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5. Sleep disorders/problems - PD patients often have problems with sleep. This 

includes staying up the whole night, staying up early, or sleeping throughout 

the day. Patients may have brisk eye motions or sleep behaviour disruptions 

which includes acting out your dreams. Medications may aid in alleviating the 

sleep issues. 

6. Bladder issues - Inability in controlling urine or having difficulty urinating are 

the problems faced by PD patients. 

7. Constipation – PD patients suffer from constipation due to a slower digestive 

tract. 

Besides the above-mentioned signs, patients can experience: 

1. Changes in blood pressure – A person gets giddy or lightheaded when he/ she 

stands. This is because there is an instant drop in blood pressure (orthostatic 

hypotension). 

2. Dysfunction of the sense of smell – There can be issues with the sense of 

smell. It might be difficult to recognize a particular odour or distinguish 

between odours. 

3. Fatigue - Persons suffering from PD no longer have energy and feel tired, 

particularly later in the day.  

4. Pain - PD patients encounter pain, either in certain regions of their bodies or 

in their entire bodies. 

5. Sexual dysfunction - Few PD patients exhibit reduced sexual desire or 

performance. 

1.2 Impact of PD on motor system 

PD causes a variety of signs and symptoms listed in Table 1.1 below. Symptoms 

labelled as "General" are very frequent and are seen in several patients at some 

stage or the other. Universal symptoms include bradykinesia, akinesia, and 

hypokinesia as they occur in most patients. They are generally seen in the starting 

stages of the disease. All the three terms i.e., “bradykinesia,” “akinesia,” and 

“hypokinesia” generally point to a reduction in slower. Walking becomes time-

consuming. Additionally, there is a reduction in the recurrence of spontaneous 

movements like smiling, blinking and shrinking. This results in a subtle or dull 

looking face. In the Table 1.1 shown below, the term “bradykinesia” is used to 
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refer to slow walking; "hypokinesia" for a reduction in mobility (and/or strength); 

and “akinesia” for two conditions - of delayed onset of movement and reduced 

mobility. Poor management when the balance is disrupted is called "Temporary 

instability". In a simple situation like stumbling on an uneven road, the patient can 

cause a fall as he/she is not responsive is not enough to restore the balance. An 

increase in muscle tone is termed as “Strength”. The body shows more resistance 

than usual when the organ is removed (e.g., through operation). The unusual 

posture with a shoulder fall and a head bend is called “Stooped posture”. 

“Relaxing vibration” is a recurring movement back and forth of any organ, or 

head, jaw or trunk, which happens when that portion of the body is motionless. 

Typical kinds of vibrations include callousness - raising the arm and twisting - 

finger extension. Some patients with PD have never experienced tremors. 

Table 1.1 Parkinson’s Disease - Signs and Symptoms. 

General Shortage/Delay of movement (Akinesia) 

Slowness in motion (Bradykinesia) 

Decreased amplitude of movement (Hypokinesia) 

Inability to regain posture control when balance is disturbed 

High resistance is seen in joint motion (passive) 

Stooped posture 

Tremor at rest 

Occasionally 

present 

Severe trunk flexion(Camptocormia) 

Reduced arm swing 

Reduced dexterity 

Reduction in range of repetitive movements 

Struggling to get up from a chair 

Trouble performing tasks simultaneously 

Drooling 

Slurred speech (Dysarthria) 

Problem in swallowing (Dysphagia) 

Unusual body posture (Dystonia) 

Tiredness/Fatigue 

Shortened steps/ getting stuck in a place (Festination) 

Sudden, temporary, short episodes of moving ability (Freezing of gait) 

Decrement in expressions of the face (Hypomimia) 

Decreased volume of voice (Hypophonia) 

Diminishing size of writing (Micrographia) 

Gait shuffling with short steps 

Rapid speech/erratic rhythm(Tachyphemia) 
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 1.3 Literature review   

In the practice of medical sciences, the detection of impairments in motion of the 

patients is based on the neurological investigation. This is done at the time of doctor 

consultations and home records made by the patients or their nurses. Although, a small 

duration of inspection may not reveal the data significant enough in the determination 

of the manifestation of the disease. Moreover, the data of the daily records may be 

subjective. Many types of research have been conducted for PD detection which has 

their focus on symptoms like impaired voice, loss of olfactory senses, etc.  

The observed symptoms are usually linked to vocal impairment and speech issues. 

Abdullah Caliskan made use of a deep neural network (DNN) to exploit this fact [2]. 

Initially, the noise is omitted and then segmented making use of time windows while 

filtering the speech signal. In the next step, several attributes are extracted from every 

segment. Afterward, DNN classification is done making use of Stacked Auto Encoders 

(SAE). DNN was performed on Parkinson’s Telemonitoring Voice Dataset taken from 

UCI ML Repository by Srishti Grover [3]. The data was then classified uniquely into 

two categories - “severe” and “not severe”. The input layer of the neural network 

consists of 16 units, 3 hidden layers with 10, 20, 10 units in each layer while the output 

is a 2 neuron layer. The model yielded 81.6667% accuracy. The researchers [4] tried 

to categorise the PD group based on various sets of features. Feature sets were created 

based on PCA and OFS. Non-linear features were generated for the dataset taken from 

Max little University Oxford. Regression tree (Bagging CART), Bagging 

classification, Random Forest (RPART) were used as nonlinear classifiers for 

classification with 96.83% as the classification accuracy using a combination of RF 

and PCA. There is a decrease in the levels of dopamine, which is a liquid produced by 

neurons (brain cells). This is another pathological symptom of PD. The dopamine 

levels can be measured by FP-CIT SPECT i.e., a dopamine transporter imaging 

technique. Therefore, the researchers constructed a deep-learning model which was 

automated and interpreted using the FP-CIT SPECT image dataset [5] taken from 

PPMI repository. Images in SPECT are given as input to the 3D convolutional layer 

initially. Following the progression through 7×7×7 convolutional filters, max-pooling, 

and ReLU activation layer along with output layer, 16 3D outputs are produced in the 

next step. Subsequently, Shu Lih Oh [6] proposed the first ever distinctive automatic 
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model for detection PD using EEG signals with CNN. It was seen that techniques of 

non-linear features extraction could be utilized to distinguish a typical (normal) EEG 

signal from a PD EEG signal. The CNN model comprised of 13 layers with ReLU 

activation within hidden layers succeeded by SoftMax function in the output layer. 

This CNN model was 88.25% accurate and 84.71% sensitive. Sleep Behaviour 

Disorder (RBD), loss of olfactory senses and Rapid Eye Movement (REM) along with 

the information from PPMI were used in later research [7]. Self-operating diagnostic 

models built using machine learning methods namely, Boosted Random Forest, MLP 

and Boosted Logistic Regression having 97.16% accuracy were also executed. The 

neuro-imaging methods like PET (non-invasive methods), MRI and EEG (invasive 

methods) have been significant in studying neural activities in the human brain [8]. 

They make use of ALFF, Functional Connectivity, fALFF and ReHo as features. 

Additionally, swarm intelligence was used to speed up the performance of existing 

neural methods [9]. Parallel methods also enhance the performance by training on 

large datasets [10] [11]. 

Ornelas Vences et al. [11] developed a fuzzy inference system which was established 

on the assessors' insight of turning rate formed on 4 biomechanical features derived 

from sensors placed on lower limbs. Detection and rating bradykinetic gait employing 

waist-worn sensor was proposed by Sama et al. [12]. MashhadiMalek et al. [13] 

calculated the link between rigidity and tremor in PD. The most commonly occurring 

disorder is tremor and thus it is one of the most studied features in literature. The reason 

behind this is that it is quite challenging to manually capture the subtle tremor features. 

Rigas et al. [14] studied both actions and resting tremors based on the information 

gathered using accelerometers. Two, equivalent Hidden Markov Models were used to 

assess the posture, severity and action. The research done by Abdulhay et al.[15] 

described the tremor and gait features obtained while deep stimulation of the brain. 

The data was acquired as a result of sensors set beneath the patient’s feet and the 

forefingers. In addition, the methods of machine learning were fed to the automatic 

diagnosis system of PD. Methods of deep learning have been employed time and again 

in PD diagnosis. Kim et al. [16] developed some Convolutional neural networks to 

differentiate between the gravity of the symptoms. 
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1.3.1 Handwriting as a tool for detection  

Speech and gait analysis for PD detection are simple yet they have some drawbacks. 

The speech recording needs high-quality recording with negligible background noise 

while the gait monitoring needs specialized instrumentation with sufficient space to 

enable walking. The fear of falling while walking in PD restricts the utilisation of gait 

analysis in PD identification. Unusually small and constricted handwriting is called 

micrographia and it is proved to be associated with the disease. Handwriting omits the 

requirement of a distortion/noise-free environment and gait-related problems in 

measurement. It has also proved to be a potential marker in the diagnosis of PD. It was 

observed [17] that in-air movements during handwriting significantly affect the 

detection accuracy for PD. Handwriting exams were used [18] to distinguish the 

patients from the healthy ones. A study involving 20 patients and 20 healthy ones were 

conducted. Each person wrote his/her name and address on a page. Later, mean 

pressure and related velocity parameters were calculated, and the method yielded an 

accuracy of 97.5%, 95% sensitivity, and a specificity of 100%. The main disadvantage 

of the methods above was the limited data size. Consequently, their significance was 

limited. Therefore, data from 37 PD patients and 38 healthy ones were used for 

research [19]. The data was collected from eight different handwriting tasks. Three 

models, namely Adaboost (Adb) Ensemble model, Support Vector Machine (SVM) 

and k-Nearest Neighbors (KNN), were developed, and the classification 81.3% 

accuracy was achieved. Recently, Pereira gathered data from 18 healthy persons and 

37 PD patients [20]. This data had spiral drawings that were used to differentiate 

between healthy and PD patients using Naïve Bayes (NB), SVM and Optimum Path 

Forest (OPF). The optimum accuracy of 78.9% was achieved with the NB model. Their 

next research developed the infamous HandPD dataset taken from 74 patients and 18 

healthy ones [21]. This dataset contains spiral and meander drawings. The drawings' 

features were extracted using NB, SVM, and OPF, and a classification accuracy of 

67% was obtained. There are two major drawbacks of working with the HandPD 

dataset – biasedness of the models and low PD detection rate. It comprises 19.56% 

data of healthy subjects and 80.44% data of PD patients. Thus, the models that train 

on this data are biased for the majority class as the minority class instances occur 

rarely. 
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Consequently, test samples of minority classes are usually misclassified. The model is 

highly sensitive to the majority class (PD patients in this case) and shows a low 

specificity rate (for healthy subjects of the minority class). Recently, a model was 

designed [22] which tried to solve these two issues and developed four separate 

models, namely, Linear Discriminant Analysis (LDA), Decision Tree (DT), Gaussian 

Naïve Bayes (GNB), and KNN, to show the impact of biasedness. They employed 

random undersampling to overcome biasedness and a cascade of Chi2-Adaboost 

ensemble models to improve accuracy. However, the accuracy still needed much 

improvement. In literature, many methods were employed to deal with data imbalance 

[23], [24], and [25]. However, the accuracy score was not significant. 

It is seen that PD detection is associated with the gender and age [26] of the person. 

The dominant hand is also significant in the context of prediction as to the side of the 

initial manifestation; that is, the dominant side is impacted first in the majority of both 

right and left-handed patients [27]. 

1.4 Research Gap 

In the methods listed under the handwriting-based detection of PD, there are two 

issues: the imbalanced nature of data and low classification accuracy. These two 

drawbacks have the following consequences:  

1. When one trains machine learning models based on imbalanced data, the models are 

biased as they neglect the minority class and favour the majority one. This happens 

because minority class instances are a rare occurrence which also makes their 

predictions infrequent or undiscovered. As a result, the minority class test instances 

are wrongly interpreted more often as compared to the majority ones. Therefore, while 

handling binary classification cases (like in the case of HandPD data), the model is 

highly sensitive (if the patient is of the majority class) and depicts low specificity 

(when healthy subjects are in minority). This is a clear indication of biasedness for the 

majority class.  

Remedy of imbalanced data: The general method used to remove the issue of 

imbalance in the data is resampling. This can be done in two ways:  

a) Oversampling – The class having a lesser number of samples has its sample 

replicated to balance the size of every class in the training data.  
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b) Undersampling – The class having a majority number of samples has some of its 

samples omitted to balance the size of each class in the training data.  

  

Remedy for low accuracy rate: An ensemble model is used for prediction or 

classification. The most significant advantage of using ensembles is to enhance the 

average prediction performance over any contributing member in the ensemble.  

1.5 Research Objective 

This dissertation has the following objectives: 

1. To explore the impact of model bias (in prediction) and  

i. Age as a feature in PD detection using Spiral and Meander images from 

the HandPD dataset  

ii. Gender and dominant hand of the patient as parameter for PD 

and propose a hybrid resampling with XGBoost as the prediction model. 

2. To test the validation of the model proposed here in terms of accuracy, 

sensitivity, specificity, F-score, Mathew Correlation Coefficient and ROC 

curve. 

 1.6 Structural organisation of the dissertation 

The remaining part of the dissertation is arranged in the following manner: Chapter 2, 

describes the problem of class imbalance in detail. It also gives the solutions developed 

over the years through research to solve the imbalance issue of datasets. Further, it 

highlights the importance of age as the factor in influencing the spread, symptoms, and 

severity of the disease. It also covers the aspects like dataset used and step by step 

execution of the proposed method. Chapter 3 describes the effects of gender and 

laterality (dominant side) on the disease manifestation. Chapter 4 includes the 

performance parameters and validation of the method. It also consists of that enlists 

the work's advantages and limitations, while Chapter 5 is the conclusion and future 

aspects. 
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CHAPTER 2 

PROPOSED RESAMPLING TECHNIQUE FOR DATA 

IMBALANCE WITH AGE BASED PARKINSON’S DISEASE 

DETECTION 

2.1 Introduction 

This chapter is focused on three major factors: 

1. The issue of class imbalance. 

2. The importance of age as a parameter for PD detection. 

3. Introduction and step by step execution of the proposed methodology. 

Class imbalance is encountered where datasets have unequal distribution in between 

the classes. If this is neglected during the preprocessing tasks, the prediction model 

built based on learning from an imbalanced dataset is biased. This biasedness is termed 

as the inclination of the prediction model shown towards the majority class samples. 

This is due to the fact the since there is a higher sample count of the majority class, the 

model learns better about this class in comparison to that of the minority one. This is 

a serious hindrance when the studies aim towards learning crucial information about 

the minority class. Resampling can aid in alleviating imbalance. Moreover, a classifier 

ensemble can significantly improve the accuracy of the prediction which was earlier 

degraded due to imbalance. 

The latter half of the chapter emphasizes the role of age advancement in PD. There are 

various changes in the person’s body as he/she advances in age. Many such changes 

contribute to symptoms which can be key factors of PD manifestation. All the 

variations in the brain and cells are described in detail and help understand how the 

disorder can be well recognized in the context of these indicators. 

Data acquisition/mining describes in detail about the dataset that was used in the 

research. It also consists of the distribution of the dataset. The flowchart represents the 

step by step execution of the prediction model. It includes the crucial stage of feature 

extraction and how the nine statistical features namely, root mean square, largest HT 

and ET radius difference, smallest HT and ET radius difference , HT and ET’s radius 

difference’s standard deviation, mean relative tremor,  minimum HT, maximum ET, 

exam template values’ standard deviation,  total instances where the HT and ET radius 
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difference undergoes a change from negative value to positive value or vice versa were 

calculated. It also gives the implementation of resampling and boosting. 

2.2 Impact of imbalance on a prediction model 

This section illustrates the details of what exactly is class imbalance issue, its remedies 

and why the SMOTE and ENN techniques are used for the research. 

2.2.1 Class Imbalance 

Imbalanced classification is an issue with the datasets having skewed spread of data 

samples. It has the attributes listed below:  

1.    Class overlapping: Data instances of various classes overlap (Fig.2.1 a)). In such 

scenarios, the classifiers have difficulty in accurately differentiating between various 

classes. This leads to the misclassification of samples associated to the minority class 

into the majority class.  

2.    Small sample size: Gathering a sufficient amount of details for imbalanced 

datasets is quite difficult in reality. A remedy of this issue is to counterbalance the 

ratios of imbalance in the datasets to diminish the misclassification error.  

3.    Small disjuncts: Minority class data instances are scattered in many feature 

spaces, as seen in Fig. 2.1 b). This increases complexity in the classification stage. 

There is a relevant distinction between the size of samples of two separate classes 

(large ratio of imbalance). The classifiers may take few data instances of the minority 

class as aberrations which results in a large misclassification rate of error for the 

minority class. With the increase in the magnitude of the data, the impact of the class 

imbalance issue becomes larger. 

Class imbalance is encountered while handling real-world datasets, in which one class 

(i.e., the minority class) consists of a smaller number of instances and the other (i.e., 

the majority class) consists of a greater number of instances. It is a Herculean task to 

construct an optimal model using conventional data mining and machine learning 

methods without preprocessing step. The main function of preprocessing is to balance 

the datasets.  
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Fig. 2.1 a) Example of class overlapping      b) Example of small disjuncts 

 
Additionally, the majority of data mining algorithms find it difficult to identify rare 

objects among the common ones [28][29][30].This issue is seen in applications like 

financial troubles, forecasting medical diagnosis and filtering e-mail [31]. Moreover, 

the focus of the data accumulation task is often the rare class. 

If the class imbalance problem is neglected, the constructed models or learning 

algorithms can become swamped with the majority class and consequently neglect the 

minority class. Let us consider a two-class dataset with the ratio of imbalance as 99%, 

where the majority class makes up 99% of the data set while the minority class has 

only 1%. To reduce the error rate to a minimum, the learning method categorises the 

entire sample set into the majority class, which has the rate of error as 1%. In such a 

situation, the minority class instances are of prime importance and must be recognized 

as misclassified [32]. A practical class imbalance problem is seen in bankruptcy 

prediction [33][34]. To be specific, the minority class is described by the number of 

bankruptcy cases whereas the majority class is made of non-bankruptcy cases. When 

a prediction model misclassifies a bankruptcy case into the non-bankruptcy class, it is 

termed as type I error rate. This is more critical in comparison to the average 

classification accuracy rate as higher type I error rates can probably raise bad debts for 

organizations.  

The methods to solve this imbalance issue are classified as follows:  

1.    Algorithmic-level techniques  

2.    Data-level techniques  

3.    Cost-sensitive techniques 

4.    Classifier ensembles 
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The data-level techniques concentrate on preprocessing the imbalanced datasets prior 

to the classifier development. In this way, data preprocessing and process of training 

the classifie can be uncorrelated and thus performed independently. Galar et al. [31], 

did a compared multiple famous approaches along with an amalgamation of data 

preprocessing techniques with classifier ensembles. Data preprocessing methods form 

their basis in resampling techniques. It is done before the model enters the training 

stage. 

2.2.2 Solutions for class imbalance  

There are three ways to remove the class imbalance issue on the basis of data, 

algorithms, and cost sensitivity [35]. Classifier ensembles are also used to alleviate the 

imbalance issue [36] [31]. 

a. Data-level solutions: These include balancing/preprocessing the acquired 

imbalanced training dataset by using either of the two resampling techniques: 

undersampling or oversampling. Undersampling decreases the instances of majority 

class, whereas the oversampling extends the instances in the minority class. This aids 

the classifier training processes and sampling to become independent of each other. 

Thus, various sampling techniques can be amalgamated with classifiers. It was 

deduced by Batista et al. [28] that the methods of sampling method can efficiently 

elucidate the class imbalance issue and enhance the performance of the classifier. 

Galar et al. [31] claimed that sampling closes in and various classifier ensemble 

combinations have been contemplated for the class imbalance issue. 

b. Algorithm-level solutions: These include developing new or transforming existing 

algorithms to manoeuvre imbalanced datasets. The most common ones include the 

threshold technique and the one-class learning technique. The former method involves 

initializing various thresholds for several classes while the classifier is in the learning 

stage [30] while the latter technique necessitates training the classifier using a training 

set that consists of only one particular class [37][38]. Other techniques include 

clustering personalized modelling, clustering in neuro-fuzzy systems, clustering 

through quantum-inspired evolutionary methods, developing clustering of dynamic 

data in skewer neural networks, and clustering through quantum-inspired progressive 

algorithms also deal with imbalanced data [39][40][41][42].  
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c. Cost-sensitive solutions: Their main aim is to define various cost of 

misclassification of classifiers for various class labels. Following that, a confusion 

matrix is developed for the computation of the cost of misclassification as seen in 

Table. 2.1 below. Here, the correct categorisation cost is 0; otherwise, if the instances 

of data whose actual class is j is misclassified into the i class, λij  is its cost of 

misclassification . Hence, the risk of αi to reduce the cost of misclassification [43] is 

evaluated as shown below in equation 2.1.  

 

𝑅(𝑎𝑖|𝑥) =  ∑ 𝜆𝑖𝑗𝑃(𝑣𝑗|𝑥)𝑖                          (2.1) 

 

Table 2.1 Confusion Matrix for the misclassification cost. 

 

 

 

2.3 Resampling techniques for data imbalance  

Class imbalance is witnessed when there is a differing distribution or spread of classes 

in a dataset i.e., the number of data points in the majority/ negative class very large 

compared to that of the positive class (minority class).  

 

Fig. 2.2 Pictorial representation of a two- class imbalanced dataset. 
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Usually, the positive or minority class is the primary focus and thus the model needs 

to achieve optimum outputs for this class. When the imbalanced issue is not resolved 

during preprocessing steps, then it significantly reduce the efficiency of the classifier. 

The predictions mainly correspond to the majority class and treat the minority class 

features as distortions in the data and neglect them. This leads to a large bias in the 

model. 

Resampling is a significant preprocessing task [28] used to solve the imbalanced issue. 

This is achieved by adding samples to the minority class or dropping samples from the 

majority class. The former process is termed oversampling while the latter is termed 

undersampling. The schematic representation of the aforementioned methods is given 

in Fig. 2.3. Three oversampling and three undersampling techniques are discussed 

briefly below for the empirical study. ROS (Random Over Sampling), SMOTE 

(Synthetic Minority Oversampling TEchnique), and ADASYN (ADAptive SYNthetic 

sampling) are oversampling techniques. RUS (Random Under Sampling), CUS 

(Cluster-based Under Sampling), and Near Miss are the under-sampling techniques 

chosen for discussion.  

a. Random Over Sampling  

The simplest preprocessing technique is random oversampling. Samples of the 

minority class are randomly selected and replicated, such that the sample count of the 

minority/rare class becomes equal to that of the majority class. 

 

 

Fig. 2.3 Schematic representation of undersampling and oversampling method. 

However, the repetition of the same data increases the chances of overfitting. Thus, 

synthetic samples generation of minority class is done to avoid this issue.  
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b. SMOTE  

SMOTE was first developed by Chawla et.al [44]. It helps generate synthetic samples 

rather than duplicating the same data. This is done by considering the k-nearest 

neighbors of the smaller class. Here ‘k’ is based on the count of new instances that are 

required to be formed. The difference between the neighboring sample and the featured 

vector is computed. In the next step, the difference is multiplied with an arbitrary 

number between 0 and 1. This new vector value is added to the selected featured vector 

to generate a new instance of the minority class. 

c. ADASYN  

It is an upgraded version of SMOTE. It makes use of a weighted distribution for 

different minority class samples depends on the toughness to learn them. More 

synthetic samples are generated for complicated minority samples than the minority 

samples which are less complex to learn. This adopted strategy reduces the bias due to 

the class imbalance [45].  

d. RUS  

It selects the samples of the majority class arbitrarily. The chosen instances are then 

omitted from the actual set of data. Nevertheless, its main disadvantage is that it may 

remove certain significant data in the context of the learning process.  

e. CUS  

Lin et.al [24] developed a clustering-based undersampling method to resolve the issues 

with RUS. In this method, the K-means algorithm aids in clustering the majority class 

instances. A cluster centroid represents each cluster. This centroid adds to the newly 

generated instance list of the majority class.  

f. NearMiss  

This method chooses the majority class samples which are nearer to the minority class 

samples i.e., it retains majority class samples whose distances are short to the minority 

class samples [46]. 

 

2.4 Adopted methodology 

 

The steps for the method used for the prediction of class labels using imbalanced 

datasets is shown below:  

i) Selecting the imbalanced datasets.  
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ii) Pre-processing the datasets to convert string valued attributes to integer type 

Panda’s data frame facility.  

iii) Splitting the dataset into the Training set and Test set in the ratio.  

iv) Resampling the training set.  

v) Learning and fitting the model using an ensemble of classifiers like AdaBoost, 

XGBoost, etc.  

vi) Evaluating the classifier’s performance after sampling.  

 

 

Fig. 2.4 Block diagram of generalised methodology for imbalance issue removal. 

 

2.5 Reason of choosing SMOTE and ENN over other resampling 

techniques 

This section describes SMOTE and ENN in detail. It also gives the reason behind the 

preference of these two techniques over other resampling techniques for removing 

imbalance. Hybrid resampling using a combination of these two is also discussed 

briefly. 
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2.5.1 Why SMOTE? 

SMOTE generates synthetic instances for minority classes making use of information 

from the dataset and not by random instance duplication. Synthetic samples are created 

using a linear combination of two similar samples of the minority class, in which one 

sample is arbitrarily selected among the minority class nearest neighbors of another. 

The basis of sample generation is the operations in feature space rather than data space. 

 

Fig. 2.5 SMOTE working process. 

 

In the first step, the total count of oversampling instances N is initialized. It is usually 

chosen to make the ratio of binary class distribution as 1:1. However, this ratio can be 

changed as per the requirement. Subsequently, the iteration begins with choosing a 

positive class instance arbitrarily being the first step of the process. Afterward, KNN’s 

(the default value is 5) of that particular instance are obtained. In the last 

step, N number of these K instances are chosen to interpolate new synthetic ones. Any 

distance metric which computes the difference in distance between the feature vector 

and its neighbors is used for this purpose. The difference is multiplied by any arbitrary 

value in (0,1] and added to the preceding feature vector. This process is described in 

Fig. 2.5. 

The results of this research reveal that the SMOTE approach can enhance the accuracy 

of classifiers for a minority class as it is an up-gradation of over-sampling. 
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Fig. 2.6 Python code for SMOTE. 

 

SMOTE, in amalgamation with under-sampling, works more efficiently than the 

conventional under-sampling process. When there is mere replication of the minority 

class sample (oversampling), the decision region that yeilds  a classification decision 

for the minority class can be diminished and concise. This is due to the repetition of 

minority samples in that area. This is just the reverse of the desired result. SMOTE 

causes the classifier to develop wider decision regions that contain nearby minority 

class samples within them. This is the reason why SMOTE is more efficient than  

Naive Bayes and Ripper’s loss ratio. It yields more relevant minority class instances 

to learn and interpret from , thus permitting a learner to sculpt broader decision regions, 

yielding greater description of the minority class. 

 

 

Fig. 2.7 SMOTE resampling in sample space. 
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2.5.2 Why ENN?  

KNN is a relevant algorithm used for classification purposes. It finds k nearest 

neighbors of every targeted instance based on a dissimilarity estimate. Afterward, a 

judgement is made based on the recognised categorisation of these neighbors. This is 

done by designating the category of the highest voted class amidst these k neighbors. 

When the amount of training data n reaches infinity tends to the optimal Bayes error 

as and k/n→0, this is termed as asymptotic classification error of k-NN. When k = 1, 

the error is circumscribed by approximately double that of the Bayes error [47]. k-NN 

is a lazy learning algorithm. Here, the function is locally estimated and the entire 

calculation is deferred until classification. Thus, k-NN learns more easily in 

comparison with other classifiers (which need to be trained) as it only requires reading 

in the training set without further processing. Yet, the high degree of local sensitivity 

makes k-NN highly vulnerable to noisy samples in the training set [48]. The samples 

with errors in the input vector or those not representatives of typical cases or with 

errors in the output class are termed as noisy instances. Such samples can negatively 

impact the ability of generalization of k-NN [49]. To decrease the effect of noisy 

instances in k-NN either an indirect or direct approach is used. While the direct 

approach tries to omit the noisy samples, the indirect method tries to alleviate the 

disadvantage of noisy instances without omitting them. The indirect methods might 

involve increasing the nearest neighbors’ count or using distance-weighted voting. 

One of the most relevant of these methods is nearest neighbor editing [49]. It removes 

error-prone samples from the training set and avoids chances of overlapping amidst 

the classes. ENN omits all the misclassified samples (by k-NN rule) from the training 

set. Fig. 9 illustrates the impact of ENN. The hollow circles and the solid circles in the 

figure represent samples that are associated to two separate classes. Fig 2.8 a) depicts 

a hypothesis training set in which misclassified samples using the 1-NN rule are 

marked with dotted circles around them. Fig 2.8 b) depicts the decreased training set 

post ENN application.  

ENN is based on the aberrations can be removed efficiently and probable overlapping 

amidst classes from a given training set can also be avoided. This makes the training 

of the corresponding classifier easy. Penrod and Wagner [12] claim that the accuracy 

of the ENN classifier closes in on the Bayes error as the number of samples tends to 

infinity. 
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Fig. 2.8 a) ENN editing with 1-NN classifier with misclassified samples marked by dotted  

regions. b) Removal of misclassified samples. 

 

The steps of this ENN algorithm are listed in Table 2.2 below. 

 

Table 2.2: ENN algorithm 

 

Table 2.3: Repeated ENN algorithm 

 

ENN removes samples based on the voting of their nearest neighbors. A 

misclassified/noisy sample is removed when its label varies from that acquired by the 

voting of its nearest neighbors (called a voting label). This data editing is effcient only 

when the real label of a sample is the same as its voting label. In particular, the 

performance of data editing seems to improve when the training samples’ labels are 

anticipated accurately by their nearest neighbors. 

2.5.3 Hybridization: SMOTE + ENN 

SMOTE + ENN is a hybrid resampling method in which more samples are omitted 

from the sample space. Integrating the ENN method with oversampling done using 

SMOTE aids in extensive data cleaning. In this process, the nearest neighbors’ samples 
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from both classes are removed when misclassified. This yields in a clearer and concise 

class separation. 

 

Fig. 2.9 Python code for the hybrid resampling. 

 

 

Fig. 2.10 SMOTE+ENN resampling in sample space. 

 

2.6 Impact of age on PD  

Aging is the greatest risk factor in the context of PD. PD is accompanied by a complex 

array of symptoms. A significant region of the brain (the substantia nigra (SN)) is 

impacted by severe cell loss in PD. This causes the associated motor symptoms due to 

the disorder. The dopaminergic neurons of the pars compacta within the SN perish. 

Additionally, this brain region changes pathologically more with aging as compared 

to other regions as seen in Fig. 2.12 below. Buchman et al. [51] studied over 750 
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elderly individuals with a mean age of 88.5 years. These people did not have clinically 

defined PD. However, the results showed that approximately one-third of the total 

showed mild to severe neuronal loss within the SN. 10% showed Lewy body 

pathology. 

 

Fig. 2.11 Impact of age on SN neurons. 

Fig. 2.11 shows the changes seen in SN neurons with advancing age. The portion 

labeled as (A) depicts the increase in cells with dysfunctional mitochondria 

accompanied by the loss of major mitochondrial proteins like complex I subunits are 

shown by the arrow. Neuronal survival image marked as (B) is significantly affected 

by changes in network dynamics and the potential of the mitochondrial membrane. (B) 

describes the mitochondrial network of a healthy neuron within the culture. This 

network’s segregation is following variations seen in the potential of mitochondrial 

membrane and before the deterioration through mitophagy. The mage labeled as (C) 

displays SN of a 69-year-old patient while image (D) displays SN of a 53-year-old. 

The loss of pigmented cells (even with a low magnification) is a representation of 

neurons lost in the SN of the 69-year-old PD patient. 

The reason for the death of SN cells with age advancement can give significant insight 

into the cause of cells lost due to PD. The ventral tegmental area (VTA), 

pedunculopontine nucleus (PPN), the dorsal motor nucleus of the vagus nerve (DMV), 

and the locus coeruleus (LC) are several other regions of the brain which are also 

affected in PD. These are like the neurons of the SN which may emphasize not only 

their susceptibility in PD but also the processes important factors for the loss of SN 

neurons. Hence, vulnerable neuronal populations display few characteristics which are 
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common to those of SN neurons. This reflects that the unique combination of such 

features within the SN has an important role in PD development. 

 

Fig. 2.12 Effects of ageing on the person’s body and consequent changes responsible for PD. 

 

Several processes are vital for the function of SN neurons like protein degradation 

decline, dopamine metabolism, and wild-type mitochondrial DNA copy number are 

seen in patients as they advance in age. An ample amount of reactive oxygen species 

is generated by dopamine metabolism that will influence many different processes 

within the neurons. Reduction in wild-type mtDNA copy number will result in a lower 

ATP production and a reduction in efficient protein degradation will affect the 

functioning of neurons. The accumulation of neuromelanin along with the ability of 

neurons and mitochondria to manoeuvre calcium and the levels of iron within these 

neurons will also be influenced. Mitochondrial complex I and IV deficiencies and 

aggregating alpha-synuclein cause the loss of vulnerable neurons, once this cell loss 

reaches a certain threshold, the symptoms of PD become visible. 

The changes in cells due to progressive age involves oxidative damage, accumulation 

of neuromelanin and that of mitochondrial DNA defects (Fig.2.13). Therefore, there is 

rise in susceptibility of SN neurons. This further leads to mitochondrial dysfunction 

and toxic alpha-synuclein causing cell death. All these processes acting simultaneously 

cause neuron loss inside the brain. Several such processes are sufficient to cause death 
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of SN in PD. Thus, developing new information about PD could be accelerated if the 

research on aging and PD were planned together, and the perspective provided by 

gerontology gains relevance in this field [13]. 

 

Fig. 2.13 Variations seen in processes due to age advancement which led to SN cell death. 
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Table 2.4 Characteristics and mechanisms of cells common to both ageing and PD. 

 

 

2.7 Proposed Methodology 

This section gives the step by step process explanation of the method used. 

2.7.1 Data acquisition  

The experiments were done using the HandPD dataset accessible from the internet 

publicly. The dataset was introduced by Pereira et al. [14]. It consists of drawings made 

in a form with a prototype for guideline uses (Fig. 2.15), showing tasks specially 
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orchestrated to evaluate distinctive symptoms of PD patients. Fig. 2.14 below shows 

the distribution of the dataset. 

Fig. 2.14 Dataset description 

 

Only 19.56% of the entire dataset comprises healthy individuals and while 80.44% is 

of PD patients. Thus, this dataset is highly imbalanced. Each person performed six 

different tasks shown in Fig. 2.15 below. Among these tasks, meander and spiral 

drawings were recorded. Each subject drew four spirals and four meanders. Thus, there 

were 92*4 = 736 drawings from which 368 were spirals and 368 meanders. 

 

 

Fig. 2.15 Sample form filled by a PD patient 
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2.7.2 Flow Diagram 

The proposed method’s flowchart depicting its various stages is seen in Fig. 2.16 

below. 

 

 

Fig. 2.16 Proposed method’s flowchart. 

 

a. In the first step, the HandPD dataset is retrieved. The dataset was collected from 92 

people at the Sao Paulo State University’s Faculty of Medicine of Botucatu, Brazil. 

b. In the next step, feature extraction is done. Handwritten trace made by a person 

(HT) was separated from the exam template given in the form (ET) using an automated 

method, as shown in Fig. 2.17 below. Consequently, nine numerical features, namely, 

root mean square, largest ET and HT radius difference, smallest ET and HT radius 

difference , standard deviation of ET and HT radius difference, mean relative tremor, 

maximum ET, minimum HT, standard deviation of exam template values, number of 

instances where the HT and ET radius difference undergoes a change from negative 

value to positive value or vice versa. 

 

 

Fig. 2.17 (a) HT and ET for a Spiral image (b) HT and ET for a Meander image. 
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The deviations were calculated with respect to the radius of the meander or spiral. The 

radius was defined as the distance between the straight line connecting the center of a 

meander or spiral and the sample point under consideration as shown in Fig. 2.18. The 

high deviations point to more impact of the PD resulting in more tremors. 

 

Fig. 2.18 Arbitrary points of spiral and meander images. Every vector starts from the central 

point of meander or spiral and ends up at the point selected randomly. 

The features extracted from the dataset are as follows: 

1. Root Mean Square (RMS) – It is calculated as 

𝑅𝑀𝑆 =  √
1

𝑛
∑ (𝑟𝐻𝑇

𝑖 − 𝑟𝐸𝑇
𝑖 )2𝑛

𝑡=1           (2.2) 

where n = sampled points’ number, 𝑟𝐻𝑇
𝑖  = HT radius of ith sample point and 𝑟𝐸𝑇

𝑖  

= ET radius of ith sample point. 

2. The largest ET and HT radius difference which is given by 

𝑑𝑚𝑎𝑥 =  𝑎𝑟𝑔 max
𝑖

{|𝑟𝐻𝑇
𝑖 − 𝑟𝐸𝑇

𝑖 |}         (2.3) 

3. The smallest ET and HT radius difference given by 

𝑑𝑚𝑖𝑛 =  𝑎𝑟𝑔 min
𝑖

{|𝑟𝐻𝑇
𝑖 − 𝑟𝐸𝑇

𝑖 |}           (2.4) 

4. The standard deviation of ET and HT radius difference. 

5. Mean Relative Tremor (MRT) – It measures the amount of tremor is as follows 

𝑀𝑅𝑇 =  
1

𝑛−𝑑
∑ |𝑟𝐸𝑇

𝑖 −  𝑟𝐸𝑇
𝑖−𝑑+1𝑛

𝑖=𝑑 |      (2.5) 

where d is the data points’ displacement used to calculate the difference in the 

radius. Three features listed below are computed using relative tremor |𝑟𝐸𝑇
𝑖 −

 𝑟𝐸𝑇
𝑖−𝑑+1|. 

6. Maximum ET. 

7. Minimum ET. 

8. Standard Deviation of exam template values. 
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9. The number of instances where the HT and ET radius difference undergoes a 

change from negative value to positive value or vice versa. 

These features are then compiled in a .csv file separately for spiral and meander data 

of the HandPD dataset along with other details as shown in Fig. 2.19 below.  

 

Fig. 2.19. Columns heads of the .csv file generated after feature extraction (10 features are 

used for prediction). 

c. The nine extracted features along with age, gender and dominant hand information 

are then scaled using MinMax Scaler. This estimator scales and interprets each feature 

individually such that it is in the given range on the training set. 

d.  The data is resampled using SMOTE and ENN. 

e.  SMOTE 

Synthetic Minority Oversampling Technique (SMOTE) is used to balance the data 

while working with imbalanced datasets. It balances class spread by arbitrarily 

expanding minority class samples by repeating them. It generates new samples in the 

middle of existing minority samples. It creates the synthetic training data points for 

the minority class using linear interpolation. These virtual sample points are created 

by arbitrarily at least one of the k-nearest neighbors for every sample of the minority 

class. The steps for the algorithm are as follows: 

 

Algorithm 1: SMOTE 

1. Initialising the minority class set A, for every 𝒙 ∈ 𝜜, the k-nearest 

neighbours of x are generated by computing the Euclidean distance 

of x with every other data point in set A. 
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2. N, the rate of sampling is initialised in accordance with the proportion of 

imbalance. For every 𝒙 ∈  𝜜, N samples (i.e. x1, x2, …xn) are selected 

arbitrarily from its k-nearest neighbours, and they build the set A1. 

3. For every example 𝒙𝒌  ∈  𝜜𝟏 (k=1, 2, 3…N), a new sample point is 

generated using the formula shown below: 

 𝒙′ = 𝒙 + 𝒓𝒂𝒏𝒅(𝟎, 𝟏) ∗ |𝒙 − 𝒙𝒌|        (2.6) 

 

SMOTE is preferred over random oversampling. Random oversampling merely 

increases the training data size set through repetition of the original samples. It does 

not cause any increase in the variety of training examples, whereas SMOTE creates 

new (artificial) training examples based on the original ones. For instance, if it sees 

two examples (of the same class) near each other, it creates a third artificial one in 

between the original two. Table 2.5 depicts the number of samples after the applying 

of SMOTE on the HandPD dataset. 

Table 2.5  Samples before and after the application of SMOTE on meander and spiral 

data when 10 features are used for prediction. 

CLASS MEANDER DATA SPIRAL DATA 

Before SMOTE After SMOTE Before SMOTE After SMOTE 

Class 0 (Parkinson’s Patient) 296 296 296 296 

Class 1 (Healthy subject) 72 296 72 296 

 

f. Wilson’s ENN 

Following the SMOTE oversampling process, the data is rebuilt, and Wilson’s ENN 

is applied to it to undersample the data. Wilson developed the ENN algorithm [15] 

where S (Sample set) is initialised the same as TS (training set), consequently every 

sample in S is omitted if it does not go along with most of its k nearest neighbors 

(with k=3, generally). ENN erases the noisy samples along with close boundary ones, 

resulting in smooth decision boundaries. Additionally, it sustains all intermediate 

points, which keeps it in check from decreasing the need of storage as much as other 

major reduction methods. The steps involved in ENN algorithm can be summarised as 

follows: 
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Algorithm 2: ENN 

1. Initialise S = X. 

2. For every xi in X do: 

-Remove xi from S if it is miscategorised using the k-NN rule with exemplars in 𝜲 −

{𝒙𝒊 }. 

 

Table 2.6 Samples before and after the application of ENN on meander and spiral data 

when 10 features are used for prediction. 

CLASS MEANDER DATA SPIRAL DATA 

After SMOTE After ENN After SMOTE After ENN 

Class 0 (Parkinson’s Patient) 296 296 296 296 

Class 1 (Healthy subject) 296 274 296 278 

 

g. XGBOOST 

XGBoost (Extreme Gradient Boosting) [16] is the application of Gradient Boosting 

Machine (GBM). It is significant among the most optimum performance algorithms 

used for supervised learning. It can be utilised for both classification and regression 

issues. It is relevant due to its high execution speed. The working is summarised as 

follows: 

 

Algorithm 3: XGBoost 

1. If dataset DS with n number of samples and m features DS = 

{(𝒙𝒊, 𝒚𝒊): 𝒊 = 𝟏 … . 𝒏, 𝒙𝒊  ∈  ℝ𝒎, 𝒚𝒊  ∈  ℝ }.   

2. Let 𝒚𝒊̂ be the anticipated output of the ensemble tree model obtained by: 

Å.𝒊 =  ∅(𝜲𝒊) =  ∑ 𝒇𝒌(𝜲𝒊), 𝒇𝒌  ∈  𝓕𝑲
𝒌=𝟏       (2.7) 

where K is the sum total of trees in the model as seen in Fig.7 below, 𝒇𝒌 

depicts the kth tree. 

3. To solve the above equation, the optimum functions set is computed by 

cutting down the loss and regularisation objective. 

(∅) = ∑ 𝒍(𝒊 𝒚𝒊, Å.𝒊 ) + ∑ Ω(𝒇𝒌)𝒌                     (2.8) 

where l is the loss function (predicted output 𝒚𝒊̂ and the actual output 

𝒚𝒊 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆) 
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4. Ω measures model complexity and helps eliminate overfitting. It is computed 

as: 

Ω(𝒇𝒌) =  𝜸𝜯 +
𝟏

𝟐
𝝀||𝝎||𝟐                                (2.9) 

where T is the sum total of leaves of the tree and 𝝎 is each leaf’s weight. 

5. Boosting is employed for training the model to minimise the objective 

function. The minimisation is done by appending a new function 𝒇 in each 

iteration of training. For the tth iteration, the objective function is given as: 

𝓛(𝒕) =  ∑ 𝒍(𝒚𝒊, Å.𝒊
(𝒕−𝟏)

+ 𝒇𝒕(𝜲𝒊)
𝒏
𝒊=𝟏 ) + Ω(𝒇𝒕)                                (2.10) 

 

6. 𝓛𝒔𝒑𝒍𝒊𝒕 =  
𝟏

𝟐
[

(∑ 𝒈𝒊𝒊𝝐𝑰𝑳
)

𝟐

∑ 𝒉𝒊𝒊𝝐𝑰𝑳
+𝝀

+  
(∑ 𝒈𝒊𝒊𝝐𝑰𝑹

)
𝟐

∑ 𝒉𝒊𝒊𝝐𝑰𝑹
+𝝀

−  
(∑ 𝒈𝒊𝒊𝝐𝑰 )𝟐

∑ 𝒉𝒊𝒊𝝐𝑰 +𝝀
] − 𝜸            (2.11) 

𝒈𝒊 =  𝝏Å(𝒕−𝟏)𝒍(𝒚𝒊, Å.𝒊
(𝒕−𝟏)

)                                                           (2.12) 

𝒉𝒊 =  𝝏
Å(𝒕−𝟏)
𝟐  𝒍(𝒚𝒊, Å.𝒊

(𝒕−𝟏)
)                                                          (2.13) 

 

 

2.8  Concluding Remarks 

Class imbalance is encountered while handling real-world datasets, where one class 

(i.e., the minority class) contains a lesser number of instances than the other (i.e., the 

majority class) consists of many instances. It can be solved using algorithmic-level 

methods, data-level methods, cost-sensitive methods and ensembles of classifiers as 

discussed in this chapter. There is also emphasis on why SMOTE and ENN are used 

as resampling techniques in the proposed model. This chapter has also described the 

impact of age on the manifestation of PD. Furthermore, the entire process of the 

proposed methodology has been discussed step by step along with the mathematical 

equations in this chapter. 
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CHAPTER 3 

IMPACT OF GENDER AND DOMINANT HAND ON 

PARKINSON’S DISEASE DETECTION 

3.1 Introduction 

This chapter is divided into two parts:  

1. How the gender of a person influences the manifestation of PD? 

2. What is the role of lateralization/handedness in PD manifestation? 

The role of biological sex along with environment, genetics, aging and immunity 

status, is a significant aspect in the progression of PD has been described in detail. 

There are comprehensible evidences of gender-associated variances in clinical and 

epidemiological traits of the disease. The chances of men getting affected by PD is 

twice more than those of women. Men and women not only do encounter the disorder 

differently, but also various mechanisms appear to be entailed in the disease 

pathogenesis. 

The second half of the chapter describes how the dominant side of the body is 

associated with the initial manifestation of the disease visible in the preliminary stages. 

There is an evident association that is present between the dominant hand and the side 

of the initial motor symptom in PD. Whether the initial symptom happens on the 

dominant or non-dominant side, it has implications for the reported first symptom, the 

time to diagnosis, and the time to dopaminergic treatment initiation. The side of 

disease onset does not influence the severity of the disease, as evaluated by the Unified 

Parkinson Disease Rating Scale. 

3.2 Impact of gender on PD 

Studies reveal that there are shreds of evidence of gender-related variances in clinical 

and epidemiological characteristics of the disease: PD manifestation in men is double 

as compared to that in women [53][54]. However, women have a higher mortality rate 

and the disease spreads faster in them [55]. Additionally, females have distinct 

symptoms and varied responses to deep brain stimulation and pharmacological 

therapies methodologies and in the individual assessment of  well-being compared to 
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males [56]. PD-MCT (Parkinson’s Disease Multimodal Complex Treatment) which is 

a posteriori analysis of multi-professional medicaments was performed in Germany in 

2010– 2016. It contained pharmacological and non-pharmacological ministrations 

options like occupational, speech, and physical therapy. This claimed that more men 

were treated than women patients under this program [57]. 

Research on 7209 patients at 21 centres in Israel, the US, Canada, and the Netherlands 

revealed that females are also less vulnerable than males to have informal caregiver 

support (i.e., support from spouse, family, or friends). Consequently, many women use 

the assistance of paid caregivers. This is due to the prolonged average lifespan of 

women and their natural biasedness towards being caregivers rather than receivers of 

care, despite the fact that their spouse or caregiver is still present in their lives [55]. 

3.2.1 Clinical Differences 

An age-associated increasing situation of PD is seen in both genders, according to a 

recent analysis. However, a sharp increase is seen in males of age 60– 69 and 70– 79 

[58]. There are rising cases of PD in males recorded both for disease with the presence 

or absence of dementia [59]. Gender-based dissimilarities are key parameters that 

affect life prognosis in PD. The utilization of the relative survival method revealed that 

the identification of PD with dementia has a greater influence over life span in women 

than in men [60]. Park and his colleagues showed that a low body mass index (<18.5) 

is firmly linked with decreased time of survival, however, this decrease is relevant only 

in males [61]. In addition to the variances between men and women in PD prevalence 

and prognosis and studies have proven that there are gender-related differences in the 

clinical phenotype as seen in Fig. 3.1 below. Patients have varied clinical phenotypes 

based on their gender. Distinct factors like GLA (galactosidase alpha) contribute to the 

risks of the disease in men and women. PD diagnosis is largely dependent on the 

visibility of motor symptoms. The identification of probable gender-related variations 

in motor symptom plays a critical role in terms of therapeutic strategies and diagnostic 

accuracy. The impact of gender on the expression and severity of PD motor symptoms 

has been discussed in detail. Motor symptoms in females have certain characteristics 

like a decrease in rigidity [62], tremor (as a preliminary symptom) [56], higher 

propensity to generate instability in posture, and high risk of levodopa-related motor 

complications [63].  
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Fig. 3.1 PD risk factors and symptomatology variations in men and women. 

On the contrary, the male gender has been linked with the freezing of gait as a symptom 

in the later stages which is the major incapacitating motor complexity of PD [64]. The 

female gender was indicated in the list of forecasters of progression of falls due to 

balance loss in PD [65]. Camptocormia, a motor distortion of PD points to aberrant 

severe forward bending or folding of the trunk that happens when one tries tostand or 

walk . This recedes in a supine position. Male patients of PD have a higher probability 

of developing camptocormia along with the advancement of disease [66]. 

3.2.2 Non-motor symptoms 

A complex study on 951 PD subjects assessed the predominance and severity of non-

motor symptoms according to gender. It was deduced that symptoms like depression, 

exhaustion, fidgety legs, pain, constipation, loss of taste or smell, drastic change in 

weight, extreme sweating lie among more acute symptoms categories and are 

frequently seen in females [67]. 

The link between women and pain was revealed in a wide-range clinical research 

showing that, along with effective and endogenous symptoms, motor impediments and 

younger age, female gender forecasts comprehensive severity of pain [68]. Fig. 3.2 

shown below illustrates the effect of gender on PD pathophysiology. It summarizes 
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the major gender-related variations as the major game changers of pathogenesis of PD, 

concentrating on the defenceless of the dopaminergic mechanism (upper portion), 

neuroinflammatory cells (central portion) and oxidative stress (lower portion). IP10, 

interferon-inducible protein 10. 

 

Fig. 3.2 PD pathophysiology variations in both genders. 

3.2.3 Impact of gender on PD pathophysiology 

The distinguishing clinical characteristics and the influence of various risk factors 

reveal that PD manifestation involves different pathogenetic procedures (or the same 

mechanism but in a different manner) in men and women respectively. Oestrogens 

have a relevant contribution in the gender variations in PD, giving disease prevention 

as shown by the similar incidents of the disease in males and females after menopause. 

It is important to note that sex hormones function throughout the brain of both men 

and women. Gender variations are now underlined in regions of brain and mechanisms 

that were previously not considered subject to such differences are now taken into 

consideration for an enhanced interpretation and insight of biological sex-associated 

behaviour and functions. Clinical and experimental proofs that support the idea that 

PD varies between males and females. Both sexes encounter the disease distinctly and 
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distinct mechanisms are contributors in the pathogenesis of the disease. Thus, 

biological sex is a significant feature in the manifestation and phenotypical expression 

of PD. 

 

3.3 Impact of handedness on PD 

The laterality and lateralization of symptoms often affect disease characteristics in PD. 

Usually, one side of the body is asymmetric with initial involvement and tends to 

worsen as the disease progresses. Reports claim of probable lateralized motion of 

nigrostriatal motor network [69]. Handedness has been associated with the initial side 

of the body impacted by the symptoms of PD; with the observation that the dominant 

side is usually the first to be affected, in both right-handed and left-handed persons 

[27]. Furthermore, studies show some relationship between the side of the body 

affected at onset of PD and clinical attributes of the disease manifestation; particularly 

the course of disease progression, with the right-sided onset reported to be associated 

with faster progression [70]. 44 participants comprising 27 males and 17 females 

(p=0.688); sex of the participants and side of the body presented with motor traits of 

Parkinson’s disease [71]. This resulted in the deductions shown below in Table 3.1 

and Table 3.2. 

 

Table 3.1. PD influenced by laterality at onset along with age and duration of motor 

symptoms. 
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Table 3.2. p-value (level of significance) of link between PD features and laterality. 

 

 

Table 3.3 p-value (level of significance) of link between lateralisation of symptom and 

handedness with PD features. 

 

3.4 Proposed Methodology 

The methodology used is same as that discussed in chapter 2, section 2.7. The only 

changes are seen in the features taken as parameters of the model. The features used 

are age, gender, dominant hand of the subjects along with nine statistical features 

extracted from the image dataset (root mean square, largest value of radius difference 

of  ET and HT, smallest value of radius difference of ET and HT, standard deviation 

of ET and HT radius difference, mean relative tremor, maximum ET, minimum HT, 

standard deviation of exam template values, number of instances where the HT and 

ET radius difference undergoes a change from negative value to positive value or vice 

versa) i.e., 12 features as shown by the python code snippet below: 
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Fig. 3.3 Columns heads of the .csv file generated after feature extraction (12 features are used 

for prediction). 

The results of resampling of data when the features mentioned are used for prediction 

are seen in Table 3.4 below. 

Table 3.4. a) Samples before and after the applying SMOTE on meander and spiral data 

when 12 features are used for prediction. 

CLASS MEANDER DATA SPIRAL DATA 

Before SMOTE After SMOTE Before SMOTE After SMOTE 

Class 0 (Parkinson’s Patient) 296 296 296 296 

Class 1 (Healthy subject) 72 296 72 296 

 

Table 3.4. b) Samples before and after the applying ENN on meander and spiral data when 

12 features are used for prediction. 

CLASS MEANDER DATA SPIRAL DATA 

After SMOTE After ENN After SMOTE After ENN 

Class 0 (Parkinson’s Patient) 296 296 296 296 

Class 1 (Healthy subject) 296 261 296 281 

 

Apart from these variations, the method is same as that described in section 2.7. 

3.5 Concluding remarks 

This chapter describe the role of a person’s gender and his lateral orientation on the 

manifestation of PD. These factors can thus be used to identify the disease in early 

diagnosis. It is seen that risk of getting afflicted with PD is double in men as compared 

to women, however, women have a higher rate of mortality and rapid manifestation of 
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the disease. Also, irrespective of laterality of body-side dominance, the dominant side 

of the body is often influenced by PD at onset and remains predominantly affected in 

the course of the disease. REM sleep behaviour disorder is more common when 

symptoms are predominant in the dominant limbs. The aim is to construct tailored 

intercessions and develop innovative methods to cater to the distinct needs of patients. 
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CHAPTER  4 

RESULTS AND DISCUSSION 

4.1  Introduction 

This chapter broadly describes the performance parameters used to test the validation 

of the methodology. Once the entire process of data balancing and prediction is 

completed, the measurement of the validity and efficiency is determined. The 

performance of the model used here depends on five major parameters. These are 

sensitivity, F-measure/F-score, accuracy, specificity, Matthew Correlation Coefficient 

(MCC). Apart from these, ROC and area under the ROC curve are also utilised to test 

how effective the proposed model is. 

4.2 Performance parameters 

The performance of the proposed model is evaluated using five evaluation metrics, 

namely: 

a) Sensitivity 

b) F-measure/F-score 

c) Accuracy 

d) Specificity 

e) Matthew Correlation Coefficient (MCC) 

It is seen that the traditional accuracy metric is unable to show the actual 

behaviour of a model in case of imbalanced data. Therefore, balanced accuracy 

metric is used for better demonstration of the functioning of the models. The 

accuracy, balanced accuracy, sensitivity, specificity is calculated as under: 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4.1) 

 

                  𝑆𝑒𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (4.2) 

 

𝑆𝑝𝑒𝑐 =  
𝑇𝑁

𝑇𝑁+𝑇𝑃
           (4.3) 
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𝐴𝐶𝐶𝑏𝑎𝑙 =
𝑆𝑒𝑛+𝑆𝑝𝑒𝑐

2
    (4.4) 

 

𝑀𝐶𝐶 =  
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (4.5) 

 

𝐹 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (4.6) 

where TP - True Positive 

FP - False Positive 

TN - True Negative 

FN - False Negative 

F - F-score/F-measure. It returns a value between 0 and 1 where 0 means 

worst prediction and 1 indicates perfect prediction. 

MCC – It is usually between -1 and 1 where -1 means worst prediction and 

1 indicates perfect prediction. 

In order to validate its effectiveness, the proposed model is compared with five other 

earlier models. The first two models [17] and [14] work with balanced data. The effect 

of in-air movements while writing is used for PD detection [17]. KNN and SVM along 

with Adb learning model [14] achieved 81.3% accuracy. The spiral drawings were 

considered to distinguish between healthy and PD subject using NB model. SVM and 

NB along with OPF were used to obtain 67% accuracy on HandPD dataset [18]. 

The Chi2-Adaboost ensemble [19] used to remove model biasedness yielded the 

highest accuracy (balanced accuracy) of 78.04%. Table 4.1 shown below gives the 

detailed description of the effectiveness of the proposed hybrid resampling along with 

XGBoost prediction model in terms of the parameters: accuracy, balanced accuracy, 

F-score, sensitivity, specificity and Mathew’s correlation coefficient. 

4.2.1 ROC analysis 

To compare the efficiency of the proposed method with the existing work 

[19], Receiver Operator Characteristic (ROC) charts are also utilized along with 

considered performance measures.  
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Table 4.1 Comparison of the proposed model with other models. Here IBT: Imbalanced 

Training, BT:Balanced Training, ACCbal:Balanced Accuracy, MCC: Mathews 

Correlation Coefficient. 

Training Dataset Model ACC ACCbal Sen % Spec % F score MCC 

BT [17] 20 PD 

20 Healthy 

MANOVA 97.5 - 95 100 - - 

BT [14] 37 PD 

38 Healthy 

KNN+Adb+SV

M 

81.3 - - - - - 

IBT [18] 37 PD 

18 Healthy 

NB 78.9 - - - - - 

IBT [18] HandPD OPF+NB+SVM 67 - - - - - 

BT [19] Meander Chi2-Adb 74.80 78.04 68.58 87.50 0.799 0.450 

Spiral 69.40 72.46 69.96 75.00 0.794 0.365 

BT Meander Resample with 

Xgb prediction 

using age 

98.24 98.14 100 96.29 0.984 0.965 

Spiral 95.37 95.43 94.62 96.25 0.956 0.907 

BT Meander Resample with 

Xgb prediction 

using age, gender 

& dominant hand. 

97.02 97.44 94.84 100 0.973 0.941 

Spiral 97.12 97.08 97.82 96.34 0.972 0.942 

 

It is fabricated by plotting the true positive rate (TPR) against the false positive rate 

(FPR). The ROC curve shows the trade-off between sensitivity (or TPR) and 

specificity (1 – FPR).Classifiers with curves closer to the top-left corner indicate better 

performance. To compare different classifiers, it can be employed to summarize each 

classifier's performance into a single measure by calculating the area under the ROC 

curve, which is abbreviated to AUC. The ROC-AUC score of the XGB model with 10 

features (age along with nine statistical features) is 0.9971 for Meander data, and that 

for Spiral data is 0.9936. The ROC-AUC score of the XGB model with 12 features 

(age, gender, and dominant hand along with nine statistical features) is 0.9911 for 

Meander data, and that for Spiral data is 0.9984. 

It is evident from the ROC charts in Fig. 4.1 and 4.2 that the proposed model works 

better than the Chi2-Adaboost method that was used earlier. 
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Fig. 4.1 (a) ROC comparison of the proposed method with Chi2-Adboost using 

Meander data with 10 features  

 

 

Fig. 4.1 (b) ROC comparison of the proposed method with Chi2-Adboost using 

Meander data with 12 features 
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Fig. 4.2 (a) ROC comparison of the proposed method with Chi2-Adboost using Spiral 

data with 10 features  

 

 

Fig. 4.2 (b) ROC comparison of the proposed method with Chi2-Adboost using Spiral 

data with 12 features 

 

4.3 Advantages 

The proposed method successfully eliminates the problem of data imbalance that 

comes with using the HandPD dataset. It uses gender, age and dominant hand 

information along with nine features extracted from the images. Moreover, 
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categorisation into gender, handedness and age gives a clear perceptive of the 

distinguishability of a parameter while writing task serves as an indicator of PD. These 

is no need for computation or instrumentation to access these features and they thus 

do not add to any further required mechanisms as compared to other pathological 

techniques. Additionally, the XGBoost prediction model works comparatively faster 

than the conventional Adaboost model. 

 

4.4 Limitations 

The proposed hybrid resampling and XGBoost prediction-based model have been 

employed to work only with the patients' handwritten samples and healthy subjects. 

Thus, it only makes use of the fact that the handwriting of the PD patients is affected. 

However, there are other symptoms like changes in motion [20] and voice impairments 

[21]. The handwritten data can further include parameters for measuring movement 

amplitudes, slowness, and rigidity that are not covered in this research. The prediction 

model only diagnoses the presence and absence of the PD. In future works, it can be 

used to state the severity of the disease. Furthermore, more parameters of the patients 

should be considered which impact the body neurologically similar to ageing which 

can help in early diagnosis.  
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

In this work, resampling is done using SMOTE and Wilson’s ENN along with 

XGBoost prediction. The HandPD dataset was inherently imbalanced, which led to 

biasedness in the machine learning models. Therefore, a low rate of specificity and a 

high sensitivity rate was seen due to the Parkinson’s patients being in the majority and 

healthy individuals in the minority. To remove this biasedness, resampling was used. 

Moreover, an XGBoost model was implemented to improve the accuracy.  

The parameters of test subjects like age, gender and dominant hand while writing is 

also taken as features in order to help the prediction models learn better about the 

distinct characteristics of the PD patients and healthy individuals. These features play 

an important role in the manifestation and diagnosis of the disease. It was seen that the 

proposed model performed better than existing state-of-the-art models. When age was 

taken as a feature along with nine numerical features namely, root mean square, largest 

value of radius difference of ET and HT, smallest value of radius difference ET and 

HT, standard deviation of radius difference between ET and HT, mean relative tremor, 

maximum ET, minimum HT, standard deviation of exam template values, number of 

instances where the HT and ET radius difference undergoes a change from negative 

value to positive value or vice versa, the highest accuracy of 98.24%, sensitivity of 

100%, and specificity of 96.29% was achieved for the meander data. Similarly, for the 

spiral data, the model yielded an accuracy of 95.37%, sensitivity of 94.62%, and 

specificity of 96.25%. 

It was seen that the proposed model yielded an accuracy of 97.12%, sensitivity of 

94.84%, and highest specificity of 100% for meander data with age, gender and 

dominant hand information of the individuals taken into account along with the nine 

statistical features mentioned above. Similarly, for the spiral data, the model displayed 

an accuracy of 97.12%, sensitivity of 97.82%, and specificity of 96.34%. 
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5.2 Scope for future work 

The proposed hybrid resampling and XGBoost prediction-based model has been 

employed to work only with the patients' handwritten samples and those of healthy 

subjects. Thus, it only makes use of the fact that the handwriting of the PD patients is 

affected. However, there are other symptoms like changes in motion and voice 

impairments. The handwritten data can further include parameters for measuring 

movement amplitudes, slowness, and rigidity that are not covered in this research. The 

prediction model only diagnoses the presence and absence of the PD. In future works, 

it can be used to state the severity of the disease. 
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