CART POLE SYSTEM ANALYSIS
AND CONTROL USING MACHINE
LEARNING ALGORITHMS

A DESSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE AWARD OF
THE DEGREE OF

MASTER OF TECHNOLOGY
IN

CONTROL & INSTRUMENTATION
Submitted by:

FAIZ MOHAMMAD ALI
Roll No. 2K20/C&1/01

UNDER THE SUPERVISION OF
PROF. MADHUSUDAN SINGH

ELECTRICAL ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

MAY 2022

ELECTRICAL ENGINEERING DEPARTMENT
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Faiz Mohammad Ali, Roll No. 2K20/C&I/01, an M.Tech (Control &
Instrumentation) student, hereby declare that the MAJOR PROJECT titled "Cart pole
system analysis and control using Machine Learning algorithms' is submitted by me to

the Department of Electrical Engineering, Delhi Technological University, Delhi for the
partial fulfillment of the requirements for the award of the degree of Master of Technology,
and that this submission is original and not copied from any source without proper citation.
This work has never been used to give a degree, diploma associate ship, fellowship, or any

other equivalent title or recognition.

Place: Delhi . , _——
j‘:%\ Nehorwnod. Al
v

FAIZ MOHAMMAD ALI

Date: May, 2022

ELECTRICAL ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

| hereby certify that the MAJOR PROJECT titled ** Cart pole system analysis and

control using Machine Learning algorithms"™ submitted by Faiz Mohammad Ali,

2K20/C&I/01, Electrical Engineering Department, Delhi Technological University, Delhi in
partial fulfillment of the requirement for the award of a Master of Technology degree is a
record of the project work completed by the student under my supervision. To the best of
my knowledge, this work has never been submitted in part or in whole for any degree or

diploma at this university or anywhere else.

e
e A
Place: Delhi PROF. MADHUSUDAN SINGH
Date: May 2022 Electrical Engineering Department

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering Bawana Road, Delhi-110042)

ACKNOWLEDGEMENT

| am really thankful to the Department of Electrical Engineering at Delhi Technological University
(DTU) for allowing me to work on this project.

| wish to express my sincere gratitude to my supervisor Prof. Madhusudan Singh of the
Department of Electrical Engineering at DTU, for his able guidance and support in completing this
project work, which has been extremely helpful in carrying out my current work.

Finally, I'd want to thank all of the academic members of DTU's Electrical Engineering

Department for their intellectual support throughout my M.Tech studies.

ABSTRACT

The cart and pole system balancing is a classical benchmark problem in control theory which
is also referred as inverted pendulum. It is a prototype laboratory model of an unstable
mechanical system. It is mainly used to model the control problems of rockets and missiles in
the initial stages of their launch.

This system represents an unstable system because an external force is required to keep the
pendulum in vertically upright position when cart moves on horizontal track.

Designing optimal controllers for the Cart and pole system is a challenging and complex
problem as it is an inherently nonlinear system. The principal advantage of reinforcement
learning (RL) is its ability to learn from the interaction with the environment and provide an
optimal control strategy. In this project, RL is explored in the context of control of the
benchmark cart-pole dynamical system. RL algorithms such as Q-Learning, SARSA, and
value-function approximation applied to Q-Learning are implemented in this context. By
using a fixed Force value of +10N or -10N, decided by a policy that maximizes the

approximate value function, the agent achieves optimal control of the system.

TABLE OF CONTENTS

ACKNOWIEBAGEMENT ...ttt et b e bbb et s b e s nnes v

AADSTFACT ...ttt bbb ettt e bt e et b nten \Y

Chapter 1: INtrOACULION.ocuieiieitiiie et ettt ettt et e eveeeve e vt eaveesbeeeteesveebe e beesbesasessseenseenssesreesrneas 8
1.0 INtrOdUCTION. . .o e e e 8
| O 7<) 20 (I 1 () P 10
1.1.1 Introduction to [Iterature TEVIEWoouvuieenieit it 10
1.1.2 Referred LIteratureo.oiuenineie ettt 10
1.2 Motivation for machine learning algorithms................ccooiiiiiiiiiiiiiii e, 13
1.3 Objective of Present WOorK.o.uiiiiit e e 14
1.4 Organization Of theSIS.uivtit i e e e e e ns 14

Chapter 2: Mathematical modeling of Cart Pole dynamics and applications of Reinforcement Learning

AlGOTIENIMS. ... et b et 15
2.0 Overview of cart pole dynamics and reinforcement learningcccoccvveeevivriieninnnn. 15
2.1 Cart POLE SYSTEIMviiiieiieiieiie ettt s nre e 16

2.2 Reinforcement Learningooueviiiiiititiiiienie e see e see e seesieeseeseenesneene 18

2.2.1 Elements of Reinforcement Learningcoviiiiininninniiesiee e sesiieeseenne. 18

2.2.2 Finite Markov DeCiSION PrOCESSEScovrveiiveirisiinieinieisieisiee e 19
2.2.3 The Agent — Environment INterface ..o 19
2. 2.4 REIUIMS ..ottt r e r e e r et nne e 20
2.2.5 The MarkOV PrOPEITYccviieiieciiceece ettt sttt st srene e sre e 21
2.3 Cart Pole Model for Reinforcement Learning.ccooveveevereeenenieneresreninnnns 22
2.4 Temporal DIfference LEarNINGcocovviiirerieieiesieeeesesie e 24
2.5 CONCIUSION ..\uvtittitit ittt et ieite et e et e e e a ettt ste e sbe e sbe e s ab e beesbeesbeesbeesbeesbeeneeenbeenbaens 26
Chapter 3: Application of Reinforcement Learning for stabilization of cart pole system................ 26
3.1 On-policy Temporal Difference control algorithm (SARSA)cccoovvviienenennennn 26
3.2 Off-Policy Temporal Difference control algorithm (Q-learning)........cc.ccocecvvvvrinnnnn. 28
3.3 Q-Learning with value function approXimation............c.cceererieenenenennese e 30
Chapter 4: Conclusions and Future SCOPe OF WOTK.........ccouiiiiiiniiiiii s 33
RETEIENCES ... 35

N 0] 1= T [P 41

Vi

Vil

LIST OF TABLES AND FIGURES

List of tables

TABLE NO.

LABEL

Table—2.1

Constraints of the Cart-pole environment considered

List of figures

FIGURE NO. LABEL

Figure— 1.1 Cart-Pole System

Figure - 1.2 Cart-Pole state based on action

Figure — 2.1 Diagram of the pendulum environment with actuating forces
Figure — 2.2 Forces acting on Cart Pole System

Figure—3.1 The agent — environment interaction in reinforcement learning
Figure — 3.1 SARSA method Cart-Pole state against time steps

Figure — 3.2 Q-Learning method Cart-Pole state against time steps

Figure —3.3 RBF neural network

Figure — 3.4 Value function approximation method Cart-Pole state against time

steps

CHAPTER -1

INTRODUCTION

1.0 INTRODUCTION

In the context of control system, the cart pole is a benchmark control problem. A cart pole
system consists of a pole pivoting on a cart that may travel along a horizontal axis. The main
challenge is to use bi-directional forces applied on the cart by an electromechanical system and
balance the pole in an upright position.

Fig 1.1 shows a schematic diagram of Cart-pole balancing which is a well-known control
benchmark problem. It is designed mechanical system which is inherently unstable and
underactuated. The dynamics of this system are used to better comprehend challenges like
maintaining balance (e.g., a human walking), self-balancing systems and thruster control of
rockets.

I /777777

Figure 1.1 — Cart-Pole System

The Cart Pole balancing problem has been used as a benchmark for Reinforcement Learning
algorithms for many decades. While the newer definitions of the Cart Pole balancing problem
focus on achieving control in complex state and action spaces, the older definitions of the problem
are fundamental and have been derived from an Adaptive Control technique known as the
BOXES and thus has been explored by both the Reinforcement Learning and Control research
communities in the past. In addition to its prominence in these literatures, this problem is a
challenge for the RL agent as it has to select and take actions in a very limited and discrete action

space.

The condition of the cartpole (if it's tilted to the left or right) is referred to as state. Any data that
represents the cart-pole, which includes the cart's speed and position, the pole's angle, and pole
speed on the tip, may be taken into consideration as states. For this work the cart's state is the four

characteristics listed above.

move left move right

Figure 1.2 — Cart-Pole state based on action

Depending at the motion taken, it may result in one-of-a-kind different states as shown in Fig.1.2.
Suppose the pole is beginning straight, if the cart is going left, the pole is more often than not to
head right, that's a brand-new state. Therefore, for the duration of every time-step, any movement

taken will usually cause a one-of-a-kind state.

10

1.1 LITERATURE REVIEW

1.1.1 AN OVERVIEW

With increasing demand for complex nonlinear control systems, design of optimal controllers
through classical methods is challenging. The fact that Reinforcement Learning enables a system
to learn through exploration, and adapt to a dynamic environment makes it optimal to be applied
to control a nonlinear complex system. Cart Pole balancing problem is a non-linear control
problem, with inherent instability and is often used as a benchmark for control techniques. Cart
Pole balancing problem focuses on achieving control in complex state and action spaces.

In literature various techniques are used to balance the cart pole system as well as various other

systems.

1.1.2 REFERRED LITERATURE

In [1] an artificial neural network is utilised to control the angle and position of a non-linear
inverted pendulum system as an artificial intelligence technology. In [2] a continuous-state system
is considered and pursue a near-optimal policy through online learning and new online RL
algorithm—MSEC (Multi-Samples in Each Cell) is proposed. In [3] linear and nonlinear control
approaches are used to solve the problem of balancing an inverted pendulum on an unmanned
aerial vehicle (UAV). In [4] an experience replay is proposed for least-squares policy iteration
(ERLSPI) for improving the utilization efficiency. The inverted pendulum system is then solved
using the ERLSPI approach. A game theoretic Lyapunov fuzzy controller that is both safe and
stable is utilised to improve a Markov games-based reinforcement learning controller that is
additionally hybridised with a Lyapunov theory-based control in [5].

In [7] a new approach is proposed for stabilization of a cart inverted pendulum system using
PID controller based on Linear Quadratic Regulator (LQR) and Artificial Neural Network
(ANN). In [8] a method is proposed to research the assistive techniques immediately from
interactions among the person and the robotic and system of a learning hassle of assistive
techniques as a coverage seek hassle to relieve heavy burdens to the person for information

acquisition is executed with the aid of using exploiting a information-green model-primarily based

11

totally reinforcement learning framework. In [9] one-of-a-kind reinforcement algorithms are used,
Q-learning and Adaptive Heuristic Critic (AHC) algorithm, on famous cart-pole balancing hassle
and their overall performance is examined. In [10] it’s miles proven that an intermittent controller
may be installed obviously thru reinforcement learning. In [11] the symmetry definition is elevated
from finite to countless state space after which a unique sort of symmetric foundation capabilities
is proposed for fee characteristic approximation to combine the earlier expertise of symmetry
approximately the surroundings for big or maybe countless state space.

In [12] Reinforcement Learning has been utilized to develop a controller for stabilization
of a Double Inverted Pendulum. In [13] a robot version-primarily based reinforcement learning

approach that mixes thoughts from version identity and version predictive control is presented.

In [14] a self-learning method is evolved which permits the agent to adaptively expand an
inner reward signal primarily totally based on a given ultimate goal, without requiring a specific
external reward signal from the environment. The problem of cart-pole balancing withinside the
continuous state space setup with restrained track length is provided in [15].

In [16] a Control Algorithm by implementing the Q-Learning techniques in the PD control
scheme is presented.

The challenge of stabilising an inverted pendulum system with known/unknown internal
dynamics is described in [17] with simulations to show the advantages of the RL technique over
the conventional approach. In the method proposed in [18] the learning cycles of online
reinforcement learning systems are adaptively changed to acquire a necessary and sufficient set of
states for them by using a growing self-organizing map to estimate the state for fast learning speed.
To enhance the time of the single inverted pendulum swinging up, [19] uses an improved
reinforcement learning algorithm that is modelled in a double-layer BP neural network. The
MQTT protocol is used on the Ethernet connection as a deep reinforcement learning environment,
and the agent is learned to control the real device located remotely from the controller, and the
classical PID controller is also used to implement imitation reinforcement learning and facilitate
the learning process in [20]. A rotary inverted pendulum composed of a cyber environment and
physical environment based on the OpenFlow network, and the MQTT protocol is used on the
Ethernet connection as a deep reinforcement learning environment, and the agent is learned to

control the real device A cyber physical system (CPS) is constructed in [21] to show that a deep

12

RL agent can successfully manage a rotary cartpole system.

In [23] stochastic variations of a classic cartpole balancing task are implemented using three

algorithms: Vanilla Policy Gradient, Natural Policy Gradient, and TRPO. In [24] the control
problem of nonlinear system under continuous state space is solved using a neural Q-learning
algorithm based on residual gradient method.
In [25] DQN based on VREP simulation environment, is used to try to solve inverted pendulum
problem. In [26], a successful solution to the pruning performance reduction problem in the DRL
domain is presented, as well as a functional approach known as Policy Pruning and Shrinking
(PoPS) for training high-performing DRL models while preserving a compact representation of
the DNN. In [27] a brand new set of rules primarily based totally on SARSA is proposed to keep
away from the overestimation hassle in conventional reinforcement learning. In [28] the train
throughput evaluation is executed with RLIib and IMPALA on CartPole and Pong and the results
of diverse scalability metrics, clustering, and commentary dimensions on train throughput are
analyzed.

In [30] RLHTM a brand new learning technique of Reinforcement learning is provided

primarily based totally on brain-stimulated learning called HTM and the overall performance
of Hierarchical Temporal Memory (HTM) in a reinforcement learning device is analyzed via way
of means of changing the Q characteristic in RL with HTM.
In [31] a federated reinforcement learning based on multi agent environment is proposed. In [32]
a lightweight on-device reinforcement learning approach for low-cost FPGA devices is proposed
which exploits a recently proposed on-device learning approach based on neural networks that
does not employ backpropagation but instead uses the OS-ELM (Online Sequential Extreme
Learning Machine) training algorithm. In addition, for on-device reinforcement learning, a
combination of L2 regularisation and spectral normalisation is proposed. State change predictions
are employed as an unbiased and non-sparse supplement for TD-targets in [34], and transfer
learning from model dynamics prediction to Q value function approximation is allowed by
training a forward model that shares the initial layers of a Q-network. In [35] learning a potential
function concurrently with training an agent using a reinforcement learning algorithm based on
the potential-based reward shaping framework, which guarantees policy invariance is proposed.
The topic of transfer learning between areas with strong similarities is examined in [36].

Various deep Q learning implementations for discrete action space systems are examined in

13

[37], and the efficiency of the solutions for the classic Cartpole problem transferred to the Gazebo
environment is investigated. A unique model compression framework for DRL models is
described in [38], which uses a sparse regularised pruning method and policy shrinking technology
to achieve a great balance between high sparsity and compression rate.

[39] investigates the adaptive optimal stationary control of continuous-time linear stochastic
systems with both additive and multiplicative noises using reinforcement learning techniques, and
proposes a novel off-policy reinforcement learning algorithm based on policy iteration called
optimistic least-squares-based policy iteration.

In [40], a twin delayed deep deterministic policy gradient (TD3) actor-critic algorithm is utilised
to solve the Inverted Pendulum control issue, and a unique dynamic and enhanced reward function

is proposed for the same goal.

1.2 MOTIVATION FOR MACHINE LEARNING ALGORITHMS

The development of computational power is constantly on the rise and makes for new
possibilities in a lot of areas. Two of the areas that has made great progress thanks to this
development are control theory and artificial intelligence. The most eminent area of artificial
intelligence is machine learning. The difference between an environment controlled by control
theory and an environment controlled by machine learning is that the machine learning model
will adapt in order to achieve a goal while the classic model needs preset parameters. This
supposedly makes the machine learning model more optimal for an environment which changes
over time. This theory is tested in this research work on a model of an inverted pendulum. Three
different machine learning algorithms are implemented on a cart pole model. Changes are made
to the model machine learning algorithms are tested. As a result, one of the algorithms were able
to mimic the classic model but with different accuracy.

1.3 OBJECTIVE OF PRESENT WORK

This dissertation mainly focuses on applications of machine learning algorithms for
balancing of cart pole system. The following are main contributions in this project.
I. To study the mathematical model of cart pole dynamics and identification of system.
ii. Implement reinforcement learning algorithms (SARSA and Q-Learning) on a discretized

cart pole system.

14

iii. Implement Q-Learning technique with value function approximation on cart pole system.

1.4 ORGAIZATION OF THESIS

This dissertation contains 4 chapters, Chapter — 1 includes a brief introduction of the present
work. Chapter 2 explains, dynamics of cart pole system and Reinforcement learning algorithm.
Chapter 3 shows the implementation and results of SARSA, Q-Learning and Q-Learning with

value function approximation. In chapter 4 the outcomes of this work has been concluded.

15

CHAPTER -2

MATHEMATICAL MODELING OF CART POLE
DYNAMICS AND APPLICATIONS OF
REINFORCEMENT LEARNING ALGORITHMS

2.0 OVERVIEW OF CART POLE DYNAMICS

The inverted pendulum operates in an environment with the following parameters; A cart
that has a mass M. External force F is added at the sides. The pendulum itself has a mass m and is
connected to the cart through a rigid massless rod with a length I. The pendulum is rotated from
the vertical line by a quantity 6 in the counter clockwise direction. There’s also a friction force f
that works in the opposite direction of the external force and a gravitation constant g. Figure 2.4

describes the environment.

Figure 2.1: Diagram of the pendulum environment with actuating forces
The system state of the pendulum at any time is defined by four state variables:
I. Angular Position 6

ii. Angular Velocity 6

16

iii. Linear Position of the cart x

iv. Linear Velocity of the cart

The system has the freedom to move in two different ways, the cart can move horizontal

with the x-axis and the pendulum can rotate against its pivot point 360 degrees.

Reinforcement Learning involves learning how to connect situations to behaviours in
order to maximise a numerical reward signal. These problems are closed-loop because the
learning system’s actions influence its later inputs. Furthermore, unlike many forms of machine
learning, the learner is not directed specific actions to take, but instead must discover
which actions yield the most reward by trying them out. In most complex problems,
actions may affect not only the immediate reward but also the next situation and, through
that, all subsequent rewards. Thus, these are the three most important distinguishing features of a
reinforcement learning problem:

i. Being closed-loop
ii. Nothaving commands as to what moves to take, and the effects of those moves consisting
of reward signals.

iii. Operate for longer periods of time

2.1 MATHEMATICAL MODELING OF CART POLE SYSTEM

P
-~
mg
N (N
F £ friction
e
P = bx

QO OL .

Figure 2.2: Forces acting on Cart Pole System

17

In section 2.0 it was stated that the pendulum has the freedom to move in two different ways and
the forces acting on the pendulum are shown in Fig.2.2.
This leads to two state variables:

Xs = Displacement of cart on x-axis relative to starting position.

8s = Angular displacement for the pivot relative to upright position.

To derive the equations of motions using Lagrange’s equations (2.1).

den o
dt*ogq;” o

Qi (2.1)

Where L is the difference between the kinetic energy (T) and the potential energy (V).
L=T-V (2.2)
The potential energy of the system is going to be the potential energy of the pendulum since the
cart will never have any stored energy.
V = mglCosf (2.3)
Finding the kinetic energy is a little more complicated since it involves both the pendulum and the

cart.
T = %sz + %msz
— %(sz +m(VE+Vy))
_ %(sz + m((% — 16Cos6)? + 16Sin8)?))
= Z((M+m)22 — m(2216Cos6 — P (Cos?0 + Sin’6)))
_ %((M +m)2 — m(2416Cos6 — 1262)) 2.4)

By then combining formula 2.2, 2.3, and equation 2.4 can be solved for L.
L= %((M + m)%* — 2mx10Cosf + mI*6* — 2mglCos6) (2.5)
Using Lagrange’s equations (2.1) and calculating the equations of motions for our state variables
Xs and 0s we can get the equations of motions for the system.
xXs 1 (M +m)i — mlfCosO + ml16?>Sind = F (2.6)

Where F is the external force applied to the state variable X

18

05 : mx16Sin® + ml* — mxlCos® — mx10Sinf — mglSin
= ml*§ — m%lCos6 — mglSinf
= 16 — ¥Cosf — gSinf = 0 (2.7)
Equation 2.7 is equal to O because there will be no external force actuating on state variable 6,
2.2 REINFORCEMENT LEARNING

Learning from a training set of labelled examples provided by an external supervisor is
known as supervised learning. The objective of this kind of learning is for the system to extrapolate
or generalize its responses so that it acts correctly in situations not present in the training set.
Unsupervised learning deals with finding structure hidden in collections of unlabeled data.
Reinforcement learning is therefore, a third machine learning paradigm that deals with a goal-
directed agent interacting with an uncertain environment.

One of the challenges that arise in reinforcement learning, and not in other kinds of
learning, is the trade-off between exploration and exploitation. The agent must utilise what it
already knows to maximise reward, but it must also explore in order to make better action
decisions in the future. Neither exploration nor exploitation can be pursued exclusively without
failing at the task. In case of a deterministic environment, the agent must explore by trying various
actions in each state, and progressively learn to select the best action at each state. On the other
hand, a stochastic environment requires repeated trials of the same action at each state in order to
obtain an estimate of the amount of reward expected from that state. This dilemma between

exploration and exploitation is one of the key features of reinforcement learning.
2.2.1 Elements of Reinforcement Learning

I. Policy: A policy describes the learning agent's behaviour at a specific moment in time, i.e.,
A policy is the relation of environmental perceptions to steps to perform when such

perceptions are realized. It corresponds to the stimulus - response rules of psychology.

ii. Reward signal: In a reinforcement learning problem, the aim is described by means of a
reward signal. Any Reinforcement Learning algorithm's sole aim is to maximize the full
reward it gets over time. The reward signal as a result defines the agent's effective and

terrible events. In a organic system, rewards are analogous to pleasure or pain experiences.

19

iii. Value function: A state's value function is the full quantity of reward an agent can assume
to build up in the future, starting with that state. The RL algorithm estimates the value
function as a feature of rewards. Unlike rewards, which decide the immediate, intrinsic
desirability of environmental states, values suggest the long-time period desirability of
states after accounting for the states which might be in all likelihood to follow and the

rewards to be had in those states.

iv. Model: A model simulates the environment's behaviour or, to put it another way, allows
conclusions about how the environment will behave. Models are employed in planning,

which is a means of deciding on a course of action by anticipating future events.

2.2.2 Finite Markov Decision Processes

Markov Decision Processes (MDPs) are a mathematical framework for describing decision
making structure in scenarios where the result is partially random and partially under the decision
making agent's control. MDPs are used to tackle a variety of optimization and control problems,

which are solved using different reinforcement learning techniques.

2.2.3 The Agent — Environment Interface

The reinforcement learning venture is a easy manner to border the hassle of learning from
interaction so one can achieve a goal. The agent is each a learner and a choice maker. The
environment refers back to the device with which it interacts, which incorporates the entirety
outside of the agent. As visible in Fig.3.1, the agent chooses actions, and the environment responds
by providing new conditions to the agent. The environment additionally produces rewards, which
can be unique numerical values that the agent tries to maximize over time. A task is a kind of
reinforcement learning problem this is described with the aid of using an in-depth description of

an environment, inclusive of how rewards are calculated.

Ll
A entI
9

state reward action
51 R A

R.'-.
Sl Environment Iﬂl

Figure 2.3: The agent — environment interaction in reinforcement learning

20

The agent and environment interact at different time steps, t=0, 1, 2, 3... At each and every time
step t, the agent receives a new environment state, St € S, where S is the set of possible states, and
depending on the state chooses an action, At € A(S;) , where A(S;) is the set of actions possible
in state S; . After one time, the agent receives a numerical reward, Ri+1 € R and finds itself in a
new state St+1 as a consequence of its action in the previous state. Figure 1 shows the agent —

environment interaction.

At all time steps, the agent performs a mapping from states to probabilities of performing
each available action. This mapping or state-action pair is the agent’s policy denoted as z:, where
mi(als) is the probability that Ar = a if S; = s. The agent's policy changes as a result of its
experience, as defined by reinforcement learning approaches. The agent's long-term goal is to
maximise the total amount of compensation it receives.

This framework is generic and adaptable, allowing it to be used to solve a wide range of
issues. The same frame work of MDP has been implemented in the optimization and control

problems that have been solved in the later stages of this report.

2.2.4 Returns
The agent’s goal is to maximize the cumulative reward it receives in the long run. If the sequence
of rewards received after time step tis denoted as Rt+1, Ri+2, Rt+3,..., then in general, the expected
return is maximized over time. If is defined as some specific function of the reward sequence, in
the simplest case, the return is the sum of rewards:

Gt = Rt+1+ Rew2+ Riva+.... + Ry (2.8)

where T is a final time step. Each final time step marks the end of an episode, and each episode
ends in a special state called the terminal state. The next episode begins from a standard pre-
defined starting state, or randomly. These are known as episodic tasks. On the other hand, in many
cases the agent-environment interaction does not break naturally into identifiable episodes, but
goes on continually without limit. These tasks are called continuing tasks. Various reinforcement
learning algorithms have been used to solve the control problem as an episodic task in this report,

and their results have been compared.

21

The additional concept that we need is discounting. According to this method, the agent
strives to choose activities that maximise the total of discounted benefits it receives in the future.

In particular, it chooses At to maximize the expected discounted return:
Gt = Rw1+ YRu2+ Y2Rua+ ... = 2:;0 Y*R k41 (2.9)
where Y is a parameter, 0 < Y < 1, called the discount rate.
The discount rate determines the present value of future rewards: a reward received k time steps

in the future is worth only Y*~* times what it would be worth if it were received immediately.

2.2.5 The Markov Property
In a reinforcement learning task, a state signal that compactly summarises past feelings while yet
retaining all relevant information is desired. Such a signal that succeeds in retaining all relevant
information is said to be Markov, or said to have Markov property. Consider how a general
environment might respond at time t+1 to the action taken at time t. In the broadest sense, this
response could be influenced by everything that has happened previously. In this case, the
dynamics can be defined only by specifying the complete joint probability distribution:
Pr{St+1=5",Re+1 =r |So,A0,R1 ,, St1, At-1, Re, St, A } (2.10)
forall r,s’, and all possible values of the past events: So, Ao, Rt , ..., St1,At1, R, St, At.
A state signal is considered to have the Markov property if the next state and reward earned by
the agent from the environment dynamics received at time t+1 are solely dependent on the
system's state and the RL agent's behaviour at time t. The agent can maintain an estimate of the
inherent environment dynamics through State Transition Probabilities, which can be defined by:
p(s’,r|s,a)=Pr{S#+1=5",Re+1 =1 |St=s,At=a} (2.11)
Forallr,s’,sanda
If an environment has the Markov property, we may anticipate the next state and predicted next
reward based on the current state and action using one-step dynamics. By iterating this equation,
one may prove that knowing simply the current state allows one to forecast all future states and
expected rewards as well as knowing the entire history up to that point would allow. As a result,
Markov states are the finest potential foundation for making decisions. That is, the best policy for
selecting actions based on a Markov state is identical to the best policy for selecting actions based

on entire histories.

22

2.2.6 Value Functions

Almost all reinforcement learning methods include predicting value functions, which are
functions of states or state-action pairs which assess how good it is for the agent to be in a
particular state. The concept of 'how good' is defined in terms of anticipated future rewards, or
expected return. The value of a state s under a policy z, denoted as v,(s), is the expected

return when starting in s and following = thereafter.
Va() =B [GtlSt=5]1=Ex[Y Y*ReyislSe = s (2.12)
v, is called the state-value for policy 7 .
Similarly, g, (s, a) is defined as the value of taking action a in state s under a policy = .
Gr(s,0) = E [Ge ISy = s, Ac=a] = Ex[Y,_ Y*Rex4alS: = s, A, =a] (2.13)

q,; is called the action-value function for policy =

2.2.7 Bellman Equation
The fact that value functions satisfy specific recursive relationships is a crucial property of
reinforcement learning and dynamic programming. For any policy = and any state s, the following

consistency condition holds between the value of s and the value of its possible successor states:
Ve(s) =Bz [Gt[St=s]=E, [ZRZOYRRt+k+1| St = 5]
= En[Rt+1 +Y ZkzOYth+k+2| St = 5]

= Lam(als) Zo 5 p(s',rls, @) [r+ YEx [T, Y Resiral Seva = 5]

v (s) =Zam(als) Es rp(s',rls, @) [r +Yvr(sH] (2.14)
Equation (2.14) is the Bellman equation for v,..It expresses a relationship between the value of a
state and the values of its successor states. The value function v, is the unique solution to its
Bellman equation. Bellman equation forms the basis of a number of ways to compute,

approximate, and learn v,, using various reinforcement learning algorithms.

2.3 CART POLE PLANT MODEL FOR REINFORCEMENT LEARNING
When Reinforcement Learning is applied to the Cart-Pole problem, the dynamics of the
Cart-Pole subsystem remain the same. However, a few changes are made in order to incorporate

features of Reinforcement Learning and ensure that the Cart-Pole Plant can be completely

23

described by a Markov Decision Process.

Reinforcement Learning requires that the Environment be in the form that can be
described as a Markov Decision Process, where the Action space must be finite. Thus, to limit the
number of actions that can be taken on the pendulum, a simplified form is considered and the
environment has constraints as given in Table 3.1. Here, a constant magnitude of Force F is

considered. As a result, the RL agent can take either a +F or a —F action on the Environment.

Index Observation Min Max

0 Cart Position -2.4 2.4

1 Cart Velocity -Inf Inf

2 Pole Angle ~-0.209 rad (-12°) ~ 0.209 rad (12°)
3 Pole Angular Velocity | -Inf Inf

Table 2.1 — Constraints of the Cart-pole environment considered

2.3.1 State Space Quantization

An entire class of Reinforcement Learning algorithms are known as Tabular Lookup
Methods. In Tabular Lookup Methods, unlike Continuous methods, the states of the Cart-Pole
system are quantized, that is, the quantities pendulum angle, velocity, cart positioning, and
velocity across their whole range have been divided into numerous bins. A box is defined here, as

a tuple comprising of one bin from each of the four state variables.

These quantized states are the states with which the RL Agent builds a Value function,
similar to that of Dynamic Programming. To investigate the influence of quantization on the
algorithm's performance, the Cart-Pole plant model was quantized using various quantization

parameters.

In the first type of State Space Quantization, the states of the Cart position and velocity as well

as the Pole angle and angular velocity have been quantized into 15 bins, and permuted to 162 different

boxes representing a tuple of @, 8, x, and x using the following rule:
0:[-12,-6), [-6, -1). [-1, 0), [0, 1), [1, 6), [6, 12] degrees

0 : (-inf, -50), [-50,50], [50, inf) degrees /second

x:[-2.4,-0.8), [-0.8,0.8], (0.8, 2.4] meters

24

x : (-inf, -0.5) [-0.5, 0.5], (0.5, inf) meters/second

2.4 Temporal Difference Learning:

Temporal Difference Learning (TD) is a type of Reinforcement Learning algorithm that

uses one-step value function updates and bootstrapping to estimate a state's quality.

TD methods are step-by-step algorithms with online updates of value estimates. At every
step of an episode, the quality of the state is updated using the reward obtained at that step and the
old estimate of the quality of the next state. In other words, a guess of the state’s quality is updated
towards a better guess.

The TD Learning update equation for:

I. Prediction:
V(S:) «— V(S + alR; +YV(Si41) — V(Sp)] (2.15)
Where S, corresponds to the current state,
S.,+1 corresponds to the next state,
V(S,) is the quality of the agent being in state (S,)
(Ry) is the reward obtained by from state (S,)
ii. Control:
Qe Ar) — Qe A+ alRe + YQ(St41, Aes1) — Q(Se, Ap)] (2.16)
Where (S;, A;) corresponds to the current state and action,
(S:+1,As4+1) corresponds to the next state and action,
Q(S;, A,) is the quality of the agent being in state S; and taking action A;

R, is the reward obtained by taking an action A, from state S,

When using Model Free Learning for Control, there are two ways to join Policy evaluation
and Policy improvement into Generalized Policy Iteration. Exploration of the environment is
necessary to ensure that the agent is not trapped inside the local maxima of expected return while
selecting actions based on the quality of the state. This exploration can be performed in many
ways, one being to choose actions randomly in the given state. On the other hand, Exploitation or
choosing the action which results in the maximum reward is required to achieve the objective.

This trade-off is handled by two methods of Model Free control:

25

i. On-Policy Control:
The single policy algorithm is utilized by the agent to choose actions from the action value

estimates in addition to generating action value assessments. Example SARSA, etc.

ii. Off-Policy Control:
The agent selects actions from action value estimates using one policy algorithm, usually
a greedy policy, and generates action value estimates using another policy method, usually

an exploratory policy. Example Q-Learning.

2.5 CONCLUSION

System dynamics is an important part of control process. In this chapter a cart pole system
and its characteristics were explained. Further, reinforcement learning and its elements were

discussed. And pseudo code for SARSA and Q-Learning were also established.

26

CHAPTER -3

APPLICATION OF REINFORCEMENT
LEARNING FOR STABILIZATION OF CART
POLE SYSTEM

3.1 ON-POLICY TEMPORAL DIFFERENCE CONTROL ALGORITHM (SARSA)

When used for control, the On-policy TD algorithm, also known as SARSA (representing
State-action, Reinforcement, next State-action), involves update of an action value function Q(S, A)
at every step.The SARSA update equation is given by:

Q(Su,Ar) «— QS A+ alRy + YQ(Ses1,Ars1) — Q(S Ap)] (3-1)

Here, R, + YQ(S:+1,A:4+1) IS the TD target and the expression in rectangular brackets is the TD
error. We consider each step in the algorithm to represent a State-action pair:
i. The current state, S, or the internal state of the Cart Pole dynamics represented in a
form that the RL agent can interpret.
ii. The action 4, to be taken from that state. Cart Pole balancing action might be either
a steady acceleration of the cart towards the LEFT or RIGHT side of the track.

The reinforcement signal, R, is the reward or punishment that the agent receives after the
time step t. As the Objective requires the Pole and the Cart to meet the restrictions, we punish the
agent with a Reinforcement of -1 if either the Pole or the Cart does not meet its restrictions. When

maintaining the restrictions, no reinforcement is rewarded to the agent.

To create a balance between Exploration and Exploitation, stochastic policies are usually
considered to select the action in the given state. But the actions defined by the MDP ensure that
the region of the state space corresponding to optimal policy is explored even when a greedy policy
is used.

Unlike Q-learning, SARSA — or State-Action-Reward-State-Action — is an on-policy method:

27

its update is done using the value of the next state and the action of the current policy. The agent

follows the current policy and estimates the state-action pairs accordingly, which is the on-policy

assumption.

3.1.1 IMPLEMENTATION OF SARSA ALGORITHM

SARSA can be used to solve the Cart Pole balancing problem with the following algorithm:

4
n
L

=}
ES
L

Position (m)

e
o

bl
o
L

0.025 4

0.000 A

—0.025 1

Angle (rad)

—0.100 +

—0.125 4

-0.150

o

Initialize all Q(S,A) V SES, AeA

For each episode:

For each step in an episode:

= Given current state S,, choose A, using A, = argmax,Q(S;, A)

Take the action A,

= Observe R, and S,,, from the environment

= Update the Action value function Q(S;, A;), towards the TD target using the
SARSA update equation

= Until the terminal state, where the state S, exceeds the limitations defined by the

ol
w
L

o
[N}
L

—0.050 +

—0.075 +

Observations per step
0.6 |
0.4
0.2
@
£ 004
z
‘c —0.2 4
°
@
~ -04
—0.6 1
_o.8
T T T T T T T T T T T T T T T T T
25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time steps Time steps
0.8
0.6 |
:_g 0.4
[
= 0.2
fund
8
3 0.0
T
£ 0.2
o
g
< 0.4
0.6 1
25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Time steps Time steps

" Figure 3.1 — SARSA method Cart-Pole state against time steps

28

3.1.2 SIMULATION RESULTS

As observed in Fig.3.1 the agent gets a high reward somewhat consistently except for the
random time it fails to keep it up. This happened during the testing episode 175 when the agent
struggled to keep the pendulum up straight. As a result, the SARSA algorithm only achieves the
limited performance. Regardless, the model is still staying within the positive reward domain so

all is not completely lost, and the cartpole is kept balanced.

3.2 OFF-POLICY TEMPORAL DIFFERENCE CONTROL ALGORITHM (Q-
LEARNING)

Q-Learning is an Off-Policy algorithm since two different policies are utilized by the agent.
The policy used to select actions using the state-action values is the greedy policy, given by
max,,Q(S¢+1,a’). The action-value estimations, on the other hand, are frequently generated using
an experimental policy. The Q-learning update equation is given by:

QS Ap) = Q(Sp Ap) + alR,y + Ymax,,Q(Sesq,a”) — Q(Sy, A,)] (3.2)

Here, R, + Ymax,,Q(S;41,a") is the Q-target and the expression in rectangular brackets is the Q-
error. The reinforcement given to the Q-learning agent is the same as the reinforcement given to
the SARSA agent.

The two policy algorithms used by Off-Policy Control are if greedy policies because the
state space of the Cart-Pole MDP is explored even with a greedy policy. This subset of the Off-

Policy method converges on an On-Policy approach as a result of this decision.

Through trials-and-errors, a Q-value for each state-action pair is found. The desirability of
an action in the current state is represented by this Q-value. If the environment remains static (i.e.
the physics or cause-and-effect relationships do not change), the Q-values will converge over time,

and the best policy for a given state will be the action with the highest Q-value.

To use Q-Learning, the continuous dimensions have to be discretized to a number of
buckets. In general, having fewer buckets and keeping the state-space as compact as feasible is
preferable. Training can be done rapidly because there are fewer perfect polices to find. However,
obfuscating essential information by discretizing the state-space too coarsely can stymie

Position (m)

Angle (rad)

convergence.

3.2.1

IMPLEMENTATION OF Q-LEARNING ALGORITHM

Q-learning can be used to solve the Cart Pole balancing problem with the following algorithm:

e Initialize all Q(S,A)V SES, AEA

e For each episode:

o For each step in an episode:

Given current state S,, choose A, using A, = argmax,Q(S;, A)

Take the action 4,

Observe R, and S, from the environment

Update the Action value function, Q(S;, A;) towards the Q-target

R; + Ymax,,Q(S;+1,a") using the update equation

Until the terminal state, where the state S, exceeds the limits set by the objective.

Observations per step

0.15 4

0.10

0.05 -

—0.05 +

—0.10

Velocity (m/s)

0.6 4

0.4+

0.2 4

0.0 +

—0.2 4

T T
75 100

T
125

-0.4

T
25

T
50

u
75

T T T T
100 125 150 175

Time steps Time steps
0.04 0.2 4
w
0.02 E
= 00+
Z
0.00 g
§ 0.2
4 g C
—0.02 e
(=
<
<
—-0.04 1 —04
—0.06 ~
T T T T T T T T T T T T T T T T
0o 25 50 75 100 125 150 175 200 [} 25 50 75 100 125 150 175 200
Time steps Time steps

Figure 3.2 — Q-Learning method Cart-Pole state against time steps

30

3.2.2 SIMULATION RESULTS

Q-Learning using 8, 8, x, and & is implemented with 3 buckets for 8, x, and &, and 6
buckets for 8. With this the Cart-Pole problem is solved within 1500 episodes. It was a still a bit
far from the best solution as observed in Fig.3.2. Upon observation the cart didn't go out of bounds
very often. For 200-time steps, the pole is balanced. It typically doesn’t drift very far while

balancing the pole.

3.3 Q-LEARNING WITH VALUE FUNCTION APPROXIMATION

The results obtained by using the above Reinforcement Learning methods on the Cart-
Pole problem have a major drawback. Their assumption of a discretized state space increases the
sensitivity of choosing the value of constant force to be applied by the Agent on the cart, and does
not accurately represent a real-world scenario of a Cart-Pole system. Also, in the discrete state
space, Constant force should be chosen in such a way that the system crosses one box and then
reaches another at the conclusion of each time step. In other words, the constant force should cause
P¢, = 0 and this increases the difficulty in selection of the constant force value. Thus, a Continuous
state space must be considered in order to overcome these drawbacks. The MDP must be updated
since the state representation in any Reinforcement Learning issue is determined by the Markov

Decision Process. This modified MDP is known as the Continuous State MDP.

Continuous State MDPs represent all the states in terms of a continuous set of values. Thus, values
that are assigned to states must be relative to some standard base value. These values relative to
the standard base are known as features. In fact, the continuous state of the cart-pole system can
be represented by four features. The same features have been used in Plant models, while
attempting to stabilize the Cart-Pole system using conventional controllers:
1. Distance of the cart from the center of the track (x):
As the cart is placed on a track system of finite length, and that the objective requires that
the cart be positioned within the limits of this track at all times during the experiment, the
distance of the cart must be measured and examined by the RL Agent.
2. Angle of the pole with respect to the upright position (8):

The pole angle must be measured at all times, as the RL Agent must ensure that the pole

31

remains upright and does not fall towards its stable equilibrium.
3. Velocity of the cart (x): Derivative of x
4. Angular velocity of the pole (8): Derivative of @
These features form the continuous state in the Continuous State MDP. This state value is then
said to have a domain of R*, which contains 4 real numbers. As a result, the continuous state x(s)

contains infinite number of states. x(s) can be written as:
X

x(s) = lz
0

e R*

3.3.1 Value Function Approximation
With continuous state MDP, it is not possible to update the value of every state individually, as
each state x(s) € R*. Also, storing a separate value to represent the quality of each state result in
very large MDP, which cannot be stored in the memory efficiently. These drawbacks call for a
new value function with the following features:
1. Generalizes values from states visited by the agent, towards states that:
a. Have not been visited by the agent
b. Belong to the neighborhood of the visited states
2. A set of parameters w € R*, which can represent the quality of all states without taking

up large memory space.

3.3.2 RBF neural network model

As shown in Figure 6.1, the RBF (Radial Basis Function) neural network is a three-layer forward
network. It’s three layers are the input, hidden, and output layers. The input layer is connected to
the hidden layer by a non-linear connection mapping, and the hidden layer is connected to the
output layer by a linear relationship mapping. As shown in Figure.2, X1, X2,, Xnare the input of
the input layer. h; is a hidden layer Gauss basis function. wi, wo,, w, are the weights from the

hidden layer to the output layer. yi is the actual output. The use of RBF is shown in Fig.6.2.

Angle (rad)

Position (m)

0.04 4

0.02

0.00 -

—0.02

—0.04

—0.06

32

Figure 3.3 - RBF neural network
3.3.3 IMPLEMENTATION OF Q-LEARNING WITH FUNCTION APPROXIMATION

Observations per step

0.4 4

0.2 A

0.0

Velocity (mys)

—0.2 4

—0.4

T
50

u
75

T T T T T T T T T T T T T T
100 125 150 175 200 0 25 50 75 100 125 150 175 200

Time steps Time steps
0.4
T 0.2
=l
£
ol
c 0.0
k=]
B
o]
2 -02
o
<
<
—0.4
u T T T T T T T —0.6 T T T T T T T T T
o 25 50 75 100 125 150 175 200 (4] 25 50 75 100 125 150 175 200
Time steps Time steps

Figure 3.4 — Value function approximation method Cart-Pole state against time steps

3.3.4 SIMULATION RESULTS

Q-Learning using RBF is implemented with 3 buckets for 8, x, and x, and 6 buckets for .

With this the Cart-Pole problem is solved within 1500 episodes. An optimal result is achieved and

the pole does not go beyond -3.43° to +2.29° and [-1.14°, 0°] after a stable state is achieved and

the cart doesn't go out of bounds very often as seen in Fig.3.4. For 200-time steps, the pole is

balanced. It typically doesn’t drift very far while balancing the pole.

33

CHAPTER -4

CONCLUSIONS
AND
FUTURE SCOPE OF WORK

4.0 Main Conclusions

A class of machine learning algorithms are implemented for balancing of cart pole system and a
comparative study based on the stability of the pole and the time required to Stabilize the
pole and maintain the obtained stability for longer duration is presented in this thesis. While the
result of SARSA(0) achieves optimal policy, a policy for which it achieves the Objective of the
Cart-Pole problem but it is unable to maintain the achieved stability for a longer duration of time.
The pole is almost dropped during the experiment and the pendulum angle also reaches the edge
of its restriction limits.

The pendulum angle oscillates between +1.4° but later shoots up to -8.02°. The cart position is
between +0.5m and +0.2m. This shows the effective performance of the algorithm, although, the
Cart still drifts slowly towards the right of the track, which can cause the Cart to reach the track
limit if the optimal policy is implemented for a prolonged period.

Due to the convergence of the Off-Policy approach towards the On-Policy SARSA(0)
approach, the results of Q-Learning applied to the Cart-Pole problem is similar to the results of the
SARSA(0) algorithm applied on the Cart-Pole problem but a superior policy is derived and hence
improved results are observed.

The pendulum angle varies from +2.29° to -3.43° in 200 steps. The cart position is between -0.1m
and +0.25m. It is again observed that the Cart still drifts slowly towards the right of the track,
which can cause the Cart to reach the track limit if the optimal policy obtained here is implemented

for a prolonged period.

Value Function Approximation applied on the Cart-Pole problem using Q-Learning, gives
near to accurate results. By using a fixed Force value of +10N or -10N, decided by a policy that

34

maximizes the approximate value function, the Agent achieves Optimal Control. This algorithm
ensures that all oscillations are suppressed to a minimum that are determined by the constant Force
values. In the implementation, the Pendulum angle varies from -3.43° to +2.29° and remains within
a small range of [-1.14°, 0°] during steady state. Along with this, the Cart position with respect to
the center of the track is in the range [-0.8, 0]m. Although there are a few large oscillations at the
beginning of the episode of Optimal control these oscillations still lie much within the limits
defined by the Cart Pole problem. Similarly, the Cart Position at the end of 200 steps is also within
the limits of the Cart-Pole problem. This represents the most optimal control among the three

algorithms used and is highly favorable over many conventional control approaches.

4.1 Future Scope of Work

The Cart-Pole Balancing problem is a fundamental problem in Non-linear control systems.
As Non-Linear Control has a large number of applications such as Process control, Robotics,
Defense and Transportation technology, the Reinforcement Learning algorithm should be further
improved to perform complex tasks in all Non-Linear Control applications optimally. To
approach complex Non-Linear controls from the Cart-Pole balancing problem, some changes
should be made.

From the perspective of the Reinforcement Learning algorithms explored so far, Tabular
methods have been the focus and have been compared with a Value function Approximation
method which considers a Linear Combination of features. The Value function approximation
method has resulted in an optimal policy that converges faster and minimizes the requirement of
the actions to be taken multiple times, based on the current states, which is a major disadvantage
of the Tabular Methods. With respect to the Cart-Pole balancing problem, the following changes
in the RL algorithm can be explored further:

i. Usage of complex Differentiable Function approximators such as Neural Networks on the

problem

ii. Replacement of the Cart-Pole MDP with complex application specific MDPs.

iii. Improvement of the RL algorithm in order to deal with Non-linear, Stochastic and Non-

stationary environments.

iv. Selection of hyper-parameters of the RL Agent in order to ensure Optimal policy is

reached.

=

REFERENCES

D. Upadhyay, N. Tarun and T. Nayak, "ANN based intelligent controller for
inverted pendulum system,” 2013 Students Conference on Engineering and
Systems (SCES), 2013, pp. 1-6, doi: 10.1109/SCES.2013.6547526.

Yuanheng Zhu, Dongbin Zhao and Haibo He, "An high-efficient online
reinforcement learning algorithm for continuous-state systems," Proceeding of the
11th World Congress on Intelligent Control and Automation, 2014, pp. 581-586,
doi: 10.1109/WCICA.2014.7052778.

R. Figueroa, A. Faust, P. Cruz, L. Tapia and R. Fierro, "Reinforcement learning
for balancing an inverted pendulum,” Proceeding of the 11th World Congress on
Intelligent Control and Automation, 2014, pp. 1787-1793, doi:
10.1109/WCICA.2014.7052991.

Q. Liu, X. Zhou, F. Zhu, Q. Fu and Y. Fu, "Experience replay for least-squares
policy iteration,” in IEEE/CAA Journal of Automatica Sinica, vol. 1, no. 3, pp.
274-281, July 2014, doi: 10.1109/JAS.2014.7004685.

R. Sharma, "Game theoretic Lyapunov fuzzy control for Inverted Pendulum,”
2015 4th International Conference on Reliability, Infocom Technologies and
Optimization (ICRITO) (Trends and Future Directions), 2015, pp. 1-6, doi:
10.1109/ICRIT0.2015.7359373.

Stamenkovi¢ Lidija J., Antanasijevi¢ Davor Z., Risti¢ Mirjana b. et al.. Modeling
of methane emissions using artificial neural network approach [J]. Journal of the
Serbian Chemical Society, 2015, 80(3).

S. D. Hanwate, A. Budhraja and Y. V. Hote, "Improved performance of cart
inverted pendulum system using LQR based PID controller and ANN," 2015 IEEE
UP Section Conference on Electrical Computer and Electronics (UPCON), 2015,
pp. 1-6, doi: 10.1109/UPCON.2015.7456752.

M. Hamaya, T. Matsubara, T. Noda, T. Teramae and J. Morimoto, "Learning

assistive strategies from a few user-robot interactions: Model-based reinforcement

35

10.

11.

12.

13.

14.

15.

learning approach,” 2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 3346-3351, doi: 10.1109/ICRA.2016.7487509.

R. Ozakar, G. T. Ozyer and B. Ozyer, "Balancing inverted pendulum using
reinforcement algorithms,” 2016 24th Signal Processing and Communication
Application Conference (SIV), 2016, pp. 1569-1572, doi:
10.1109/S1U.2016.7496053.

K. Michimoto, Y. Suzuki, K. Kiyono, Y. Kobayashi, P. Morasso and T. Nomura,
"Reinforcement learning for stabilizing an inverted pendulum naturally leads to
intermittent feedback control as in human quiet standing,” 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 2016, pp. 37-40, doi: 10.1109/EMBC.2016.7590634.

G. -f. Wang, Z. Fang, B. Li and P. Li, "Integrating symmetry of environment by
designing special basis functions for value function approximation in
reinforcement learning,” 2016 14th International Conference on Control,
Automation, Robotics and Vision (ICARCV), 2016, pp. 1-6, doi:
10.1109/ICARCV.2016.7838691.

S. Raj, "Reinforcement learning based controller for stabilization of Double
Inverted Pendulum,” 2016 IEEE 1st International Conference on Power
Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-5,
doi: 10.1109/ICPEICES.2016.7853147.

C. Xie, S. Patil, T. Moldovan, S. Levine and P. Abbeel, "Model-based
reinforcement learning with parametrized physical models and optimism-driven
exploration,” 2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 504-511, doi: 10.1109/ICRA.2016.7487172.

H. He and X. Zhong, "Learning Without External Reward [Research Frontier]," in
IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 48-54, Aug. 2018,
doi: 10.1109/MCI.2018.2840727.

S. Panyakaew, P. Inkeaw, J. Bootkrajang and J. Chaijaruwanich, "Least Square
Reinforcement Learning for Solving Inverted Pendulum Problem," 2018 3rd

International Conference on Computer and Communication Systems (ICCCYS),

36

16.

17.

18.

19.

20.

21.

22.

23

2018, pp. 16-20, doi: 10.1109/CCOMS.2018.8463234.

G. Puriel-Gil, W. Yu and H. Sossa, "Reinforcement Learning Compensation based
PD Control for Inverted Pendulum,” 2018 15th International Conference on
Electrical Engineering, Computing Science and Automatic Control (CCE), 2018,
pp. 1-6, doi: 10.1109/ICEEE.2018.8533946.

A. Sami and A. Y. Memon, "Robust Optimal Control of Continuous Time Linear
System using Reinforcement Learning,” 2018 Australian & New Zealand Control
Conference (ANZCC), 2018, pp. 154-159, doi: 10.1109/ANZCC.2018.8606607.

A. Notsu, K. Yasuda, S. Ubukata and K. Honda, "Optimization of Learning Cycles
in Online Reinforcement Learning Systems,” 2018 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), 2018, pp. 3530-3534, doi:
10.1109/SMC.2018.00597.

Y. Chao, L. Yongxin and W. Linglin, "Design of Reinforcement Learning
Algorathm for Single Inverted Pendulum Swing Control,” 2018 Chinese
Automation Congress (CAQC), 2018, pp. 1558-1562, doi:
10.1109/CAC.2018.8623253.

J. -B. Kim, H. -K. Lim, C. -M. Kim, M. -S. Kim, Y. -G. Hong and Y. -H. Han,
"Imitation Reinforcement Learning-Based Remote Rotary Inverted Pendulum
Control in OpenFlow Network," in IEEE Access, vol. 7, pp. 36682-36690, 2019,
doi: 10.1109/ACCESS.2019.2905621.

J. -B. Kim, D. -H. Kwon, Y. -G. Hong, H. -K. Lim, M. -S. Kim and Y. -H. Han,
"Deep Q-Network Based Rotary Inverted Pendulum System and Its Monitoring on
the EdgeX Platform,” 2019 International Conference on Artificial Intelligence in
Information and Communication (ICAIIC), 2019, pp. 034-039, doi:
10.1109/1CAIIC.2019.8668979.

J. Cervifio, J. A. Bazerque, M. Calvo-Fullana and A. Ribeiro, "Meta-Learning
through Coupled Optimization in Reproducing Kernel Hilbert Spaces,” 2019
American Control Conference (ACC), 2019, pp. 4840-4846, doi:
10.23919/ACC.2019.8814419.

. A.G. Lovatto, T. P. Bueno and L. N. de Barros, "Analyzing the Effect of Stochastic

37

24,

25.

26.

27.

28.

29.

30.

Transitions in Policy Gradients in Deep Reinforcement Learning,” 2019 8th
Brazilian Conference on Intelligent Systems (BRACIS), 2019, pp. 413-418, doi:
10.1109/BRACIS.2019.00079.

Y. Si, J. Pu and S. Zang, "Neural Q- Learning Based on Residual Gradient for
Nonlinear Control Systems,” 2019 International Conference on Control,
Automation and Information Sciences (ICCAIS), 2019, pp. 1-5, doi:
10.1109/ICCAIS46528.2019.9074647.

X. Li, H. Liu and X. Wang, "Solve the inverted pendulum problem base on DQN
algorithm,” 2019 Chinese Control And Decision Conference (CCDC), 2019, pp.
5115-5120, doi: 10.1109/CCDC.2019.8833168.

D. Livne and K. Cohen, "PoPS: Policy Pruning and Shrinking for Deep
Reinforcement Learning,” in IEEE Journal of Selected Topics in Signal
Processing, vol. 14, no. 4, pp. 789-801, May 2020, doi:
10.1109/JSTSP.2020.2967566.

L. Menglin, C. Jing, C. Shaofei and G. Wei, "A New Reinforcement Learning
Algorithm Based on Counterfactual Experience Replay,"” 2020 39th Chinese
Control Conference (CCO), 2020, pp. 1994-2001, doi:
10.23919/CCC50068.2020.9189606.

S.Jang and N. -S. Park, "Train Throughput Analysis of Distributed Reinforcement
Learning,” 2020 International Conference on Information and Communication
Technology Convergence (ICTC), 2020, pp. 1189-1192, doi:
10.1109/ICTC49870.2020.9289179.

M. A. S. Araujo, L. P. C. Alves, C. A. G. Madeira and M. M. N6brega, "URNALI:
A Multi-Game Toolkit for Experimenting Deep Reinforcement Learning
Algorithms," 2020 19th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames), 2020, pp. 178-187, doi:
10.1109/SBGames51465.2020.00032.

T. Y. Koffi, C. Tao, T. M. Epalle and B. Mensa-Bonsu, "A Novel Reinforcement
Learning Algorithm Based on Hierarchical Memory,” 2020 International

Conference on Internet of Things and Intelligent Applications (ITIA), 2020, pp. 1-

38

31.

32.

33.

34.

35.

36.

37.

38.

5, doi: 10.1109/1TIA50152.2020.9312239.
H. -K. Lim, J. -B. Kim, I. Ullah, J. -S. Heo and Y. -H. Han, "Federated

Reinforcement Learning Acceleration Method for Precise Control of Multiple
Devices,” in IEEE Access, vol. 9, pp. 76296-76306, 2021, doi:
10.1109/ACCESS.2021.3083087.

H. Watanabe, M. Tsukada and H. Matsutani, "An FPGA-Based On-Device
Reinforcement Learning Approach using Online Sequential Learning,” 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2021, pp. 96-103, doi: 10.1109/IPDPSW52791.2021.00022.

V. Abdelzad, J. Lee, S. Sedwards, S. Soltani and K. Czarnecki, "Non-divergent
Imitation for Verification of Complex Learned Controllers,” 2021 International
Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-8, doi:
10.1109/IJCNN52387.2021.9533410.

A. Tercan and C. W. Anderson, "Increased Reinforcement Learning Performance
through Transfer of Representation Learned by State Prediction Model,” 2021
International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-8, doi:
10.1109/1JCNN52387.2021.9533751.

Y. Chen, H. Kasaei, L. Schomaker and M. Wiering, "Reinforcement Learning with
Potential Functions Trained to Discriminate Good and Bad States,” 2021
International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-7, doi:
10.1109/1JCNN52387.2021.9533682.

M. Muller-Brockhausen, M. Preuss and A. Plaat, "Procedural Content Generation:
Better Benchmarks for Transfer Reinforcement Learning," 2021 IEEE Conference
on Games (CoG), 2021, pp. 01-08, doi: 10.1109/C0G52621.2021.9619000.

D. Kozlov, "Comparison of Reinforcement Learning Algorithms for Motion
Control of an Autonomous Robot in Gazebo Simulator,” 2021 International
Conference on Information Technology and Nanotechnology (ITNT), 2021, pp. 1-
5, doi: 10.1109/ITNT52450.2021.9649145.

W. Su, Z. Li, Z. Yang and J. Lu, "Deep Reinforcement Learning with Sparse

Regularized Pruning and Compressing,” 2021 China Automation Congress

39

(CAC), 2021, pp. 8041-8046, doi: 10.1109/CAC53003.2021.9727767.

39.B. Pang and Z. -P. Jiang, "Reinforcement Learning for Adaptive Optimal
Stationary Control of Linear Stochastic Systems,” in IEEE Transactions on
Automatic Control, doi: 10.1109/TAC.2022.3172250.

40. M. Shil and G. N. Pillai, "Inverted Pendulum Control using Twin Delayed Deep
Deterministic Policy Gradient with a Novel Reward Function,” 2022 IEEE Delhi
Section Conference (DELCON), 2022, pp. 1-6, doi:
10.1109/DELCON54057.2022.9752797.

40

APPENDIX I

Python Code for SARSA

import gym

import numpy as np

import math

import matplotlib.pyplot as plt

class CartPoleAgent():
def init (self, buckets=(3,3,3,6), num episodes=1500, min 1r=0.1, min_epsilon=0.1,
discount=0.98, decay=25):
self.buckets = buckets
self.num episodes = num episodes
self.min 1r = min 1r
self.min_epsilon = min_epsilon
self.discount = discount
self.decay = decay

self.env = gym.make ('CartPole-v0')

[position, locity, angle, angular velocity]
self.upper_bounds = [self.env.observation space.high[0], 0.5,
self.env.observation space.high[2],
math.radians (50) / 1.]
self.lower_bounds = [self.env.observation_space.low[0], -0.5,
self.env.observation space.low[2],
-math.radians (50) / 1.]

self.sarsa table = np.zeros(self.buckets + (self.env.action space.n,)
def discretize state(self, obs):

discretized = list()
for i in range(len(obs)):

scaling = (obs[i] + abs(self.lower bounds[i])) / (self.upper bounds[i] -
self.lower bounds[i])

new obs = int(round((self.buckets[i] - 1) * scaling))

new_obs = min(self.buckets[i] - 1, max (0, new_obs))

discretized.append (new obs)
return tuple (discretized)

def choose action(self, state):
if (np.random.random() < self.epsilon):
return self.env.action space.sample ()
else:
return np.argmax(self.sarsa table[state])

def update sarsa(self, state, action, reward, new state, new _action):
self.sarsa table[state] [action] += self.learning rate * (
reward + self.discount * (self.sarsa table[new state][new action]) -
self.sarsa_table[state] [
action])

def get epsilon(self, t):
return max (self.min epsilon, min(l., 1. - math.loglO((t + 1) / self.decay)))

def get learning rate(self, t):
return max(self.min lr, min(l., 1. - math.loglO((t + 1) / self.decay)))

def train(self):
for e in range(self.num episodes):

current state = self.discretize_state(self.env.reset())
self.learning rate = self.get learning rate(e)
self.epsilon = self.get _epsilon(e)

done = False

while not done:
action = self.choose_action(current_state)
obs, reward, done, _ = self.env.step(action)
new state = self.discretize state (obs)
new_action = self.choose_action (new_state)
self.update sarsa(current state, action, reward, new state, new _action)
current_state = new_state

print ('Finished training!')

def run(self):
for it in range (1500):
self.env.render ()
t=0
done = False
current_state = self.discretize_state(self.env.reset()

position list = []

velocity list =

angle list = []

angular_velocity list = []

steps = []

total_rounds = 0

round = 0

episode reward = 0

while not done:
self.env.render ()

t=t+1
action = self.choose_action(current_state)
obs, reward, done, _ = self.env.step(action)

new_state = self.discretize_state (obs)
current_state = new_state

round += 1

position_ list.append(obs[0]
velocity list.append(obs[1]

angle_ list.append(obs[2])
angular_velocity list.append(obs[3]
steps.append (round)

total_rounds += round

if done:
if round > 150:
print (£'Threshold reached after {round + 1} iterations.')
if round < 199:
position list = []
velocity list = []
angle list = []
angular velocity list = []
steps = []
else:
position = position_ list
velocity = velocity list
angle = angle_ list
angular_velocity = angular_velocity list
time = steps
plot = True
break

if plot:
fig, ax = plt.subplots (2,2, figsize=(15,8)
ax[0][0].plot(time, position)

ax[0][0] .set_xlabel('Time steps')
ax[0][0].set_ylabel ('Position (m)"')
ax[0][0].grid()

ax[0][1].plot(time, velocity, 'r')
ax[0][1] .set xlabel ('Time steps')

ax[0] [1].set_ylabel ('Velocity (m/s)")
ax[0][1].grid()

ax[1][0].plot(time, angle, 'g')
ax[1][0] .set xlabel ('Time steps')
ax[1][0].set_ylabel ('Angle (rad)')
ax[1]1[0].grid()

ax[1][1].plot(time, angular_ velocity, 'y')
ax[1][1] .set xlabel ('Time steps')
ax[1][1].set_ylabel ('Angular Velocity (rad/s)')
ax[1]1[1].grid()

plt.suptitle ('Observations per step')
plt.tight layout ()

42

plt.show ()
return t

Python Code for Q-Learning

import numpy as np

import math

import matplotlib.pyplot as plt
import gym

class Agent:
'''A class to define an agent learning to control the system'''’

def _ init (self, environment, buckets=(3,3,3,6), alpha=0.1, gamma=0.98):
if not (0 < gamma <= 1):
raise ValueError ("Must be 0 < y <= 1")
self.alpha = alpha
self.gamma = gamma
self.environment = environment
self.buckets = buckets

self.upper bounds = [self.environment.observation space.high[0], 0.5,
self.environment.observation_space.high[2], math.radians(50)]
self.lower bounds = [self.environment.observation space.low[0], -0.5,

self.environment.observation_space.low[2],
-math.radians (50)]
self.Q = np.zeros(self.buckets + (self.environment.action space.n,))
self.state = (0, 0, 0, 0)
self.total_reward = 0

def discretize(self, observations):

"'"'Dicretize obervations based on the buckets'''

discretized = []

for i in range(len (observations)):
scaling = ((observations[i] + np.abs(self.lower bounds[i])) / (self.upper bounds[i]

- self.lower_bounds[i]))

scaled observations = int(round((self.buckets[i] - 1) * scaling))
scaled observations = min(self.buckets[i] - 1, max(0, scaled observations))
discretized.append(scaled observations)

return tuple (discretized)

def get_reward(self, action, state, reward):
"!"'Update Q-value according to the state action pair'''
self.total_ reward += reward
self.Q[self.state] [action] = self.Q[self.state] [action] + self.alpha * (
reward + self.gamma * np.max(self.Q[state]) - self.Q[self.state][action])
self.state = state

def choice(self):
"' 'Randomly select among the two actions'''
random_action = self.environment.action_ space.sample ()
return random action

def greedy action(self):
'''Select action that has returned maximum reward'''
return np.argmax(self.Q[self.state])

def run_experiment (epsilon=1, rounds=500, episodes=1500):
"' 'Perform an experiment. Make the agent balance the pole'''’
env = gym.make('CartPole-v0"')
agent = Agent (env)
get environment
obs = env.reset()

43

plot = False
steps_per_round = []

for episode

in range (episodes) :

position list = []
velocity list = []
angle_list = []
angular_velocity list = []

steps =

[]

total rounds = 0

for round in range (rounds) :

env
p =

.render ()

np . random. random ()

if p < epsilon:

action = agent.choice()

else:

action = agent.greedy action()

apply action

obs, reward, done, _ = env.step(action)
state = agent.discretize (obs)

agent.get reward(action, state, reward)

position list.append(obs[0])
velocity list.append(obs[1])
angle_list.append(obs[2])
angular_velocity list.append(obs[3])
steps.append (round)

total rounds += round

if done:

epsilon

if round > 150:
print(f'Threshold reached after {round + 1} iterations.')
if round < 199:
position_ list = []
velocity list = []
angle list = []
angular velocity list = []
steps = []
else:
position = position_ list
velocity = velocity list
angle = angle list
angular_velocity = angular velocity list
time = steps
plot = True
break

= epsilon - 0.01

if epsilon < 0.01:
epsilon = 0.01

env.reset()

steps_per_ round.append (round)

env.close()

if plot:
fig, ax
ax[0][0]
ax[0][0]
ax[0] [0]
ax[0] [0]

ax[0][1]
ax[0][1]
ax[0][1]

= plt.subplots(2, 2, figsize=(15, 8))
.plot(time, position)

.set_xlabel ('Time steps')
.set_ylabel('Position (m)")

.grid()

.plot(time, velocity, 'r')
.set_xlabel('Time steps')
.set_ylabel('Velocity (m/s)")

44

ax[0][1].grid()

ax[1][0] .plot(time, angle, 'g')
ax[1][0] .set_xlabel('Time steps')
ax[1][0] .set_ylabel('Angle (rad)')
ax[1][0].grid()

ax[1][1] .plot(time, angular velocity, 'y')
ax[1][1].set xlabel('Time steps')
ax[1][1l].set_ylabel('Angular Velocity (rad/s)")
ax[1][1].grid()

plt.suptitle('Observations per step')
plt.tight layout()
plt.show()

fig, ax = plt.subplots(l, 1, figsize=(15, 8))
ax.plot(np.arange (0, episodes), steps_per round)
ax.set_xlabel ('Episodes')
ax.set_ylabel('Iterations')

plt.suptitle('Total iterations per episode')
plt.show()

print("After {} episodes the average cart steps before done was {}".format (episodes,
np.mean (steps_per_ round)))

Python Code for Q-Learning with Value Function Approximation

import gym

import numpy as np

import matplotlib.pyplot as plt

from sklearn.kernel approximation import RBFSampler

GAMMA = 0.99
ALPHA = 0.1

def epsilon_greedy(model, s, eps=0.1):
we'll use epsilon-soft to ensure all states are visited
what happens if you don't do this? i.e. eps=0
P = np.random.random()
if p < (1 - eps):
values = model.predict_all actions(s)
return np.argmax (values)
else:
return model.env.action_space.sample()

def gather_ samples(env, n_episodes=10000) :
samples = []
for _ in range(n_episodes) :
s = env.reset()
done = False
while not done:
a = env.action_space.sample ()
sa = np.concatenate((s, [a]))
samples.append (sa)

s, r, done, info = env.step(a)

return samples

class Model:
def _ init (self, env):

45

fit the featurizer to data
self.env = env

samples = gather_ samples (env)
self.featurizer = RBFSampler ()
self.featurizer.fit (samples)

dims = self.featurizer.n components

initialize linear model weights
self.w = np.zeros (dims)

def predict(self, s, a):
sa = np.concatenate((s, [a]))
x = self.featurizer.transform([sa]) [0]
return x @ self.w

def predict all actions(self, s):
return [self.predict(s, a) for a in range(self.env.action space.n)]

def grad(self, s, a):
sa = np.concatenate((s, [a]))
x = self.featurizer.transform([sa]) [0]
return x

def test_agent(model, env, n_episodes=20):
reward_per episode = np.zeros(n_episodes)
for it in range(n_episodes) :

position list = []
velocity list = []
angle_list = []
angular_velocity list = []
steps = []

total rounds = 0
round = 0

done = False
episode_reward = 0
s = env.reset()
while not done:

a = epsilon_greedy(model, s, eps=0)
s, r, done, info = env.step(a)

round += 1
position_list.append(s[0])
velocity list.append(s[1l])
angle_list.append(s[2])

angular velocity list.append(s[3])
steps.append (round)

total rounds += round

episode_reward += r

if done:

if round > 150:
print(f'Threshold reached after {round + 1} iterations.')

if round < 199:
position_list = []
velocity list = []
angle list = []
angular velocity list = []
steps = []

else:
position = position_list
velocity = velocity list

angle = angle list

angular_velocity = angular velocity list
time = steps

plot = True

break

reward_per episode[it] = episode_reward

if plot:

fig, ax = plt.subplots(2,2, figsize=(15,8))

ax[0][0]
ax[0] [0]
ax[0][0]
ax[0][0]

ax[0][1]
ax[0][1]
ax[0][1]
ax[0][1]

ax[1][0]
ax[1][0]
ax[1][0]
ax[1][0]

ax[1][1]
ax[1][1]
ax[1][1]
ax[1][1]

plt.supt
plt.tigh
plt.show

return np.me

.plot(time, position)
.set_xlabel ('Time steps')
.set_ylabel('Position (m)"')
.grid()

.plot(time, velocity, 'r')
.set_xlabel('Time steps')
.set_ylabel('Velocity (m/s)')
.grid()

.plot(time, angle, 'g')
.set_xlabel('Time steps')
.set_ylabel ('Angle (rad)"')
.grid()

.plot(time, angular velocity, 'vy')
.set_xlabel ('Time steps')

.set_ylabel ('Angular Velocity (rad/s)")
.grid()

itle('Observations per step')
t_layout()
0

an (reward per episode)

def watch agent(model, env, eps):

if

done = False
episode_rewa
s = env.rese

rd = 0
t()

while not done:

a = epsilon_greedy (model, s, eps=eps)
s, r, done, info = env.step(a)
env.render ()

episode_reward += r

print ("Episo

name == '
instantiat
env = gym.ma

model = Mode

de reward:", episode_reward)

_ main ':
e environment
ke ("CartPole-v0")

1 (env)

reward per episode = []
watch untrained agent
watch _agent(model, env, eps=0)

repeat unt
n_episodes =
for it in ra

s = env.

il convergence
1500

nge (n_episodes) :

reset()

episode_reward = 0

done = F
while no
a =

alse
t done:
epsilon_greedy (model, s)

47

s2, r, done, info = env.step(a)

get the target

if done:
target

else:
values = model.predict all actions(s2)
target = r + GAMMA * np.max(values)

update the model

g = model.grad(s, a)

err = target - model.predict(s, a)

model.w += ALPHA * err * g

accumulate reward

episode_reward += r

update state

[
L}

s = s2

if (it + 1) % 50 ==
print(f"Episode: {it + 1}, Reward: {episode_reward}")

early exit

if it > 20 and np.mean(reward per episode[-20:]) == 200:
print("Early exit")
break

reward_per_ episode.append (episode_reward)

test trained agent
test_reward = test_agent (model, env)
print(f"Average test reward: {test reward}")

plt.plot(reward per episode)
plt.title("Reward per episode'")
plt.show()

48

49

LIST OF PUBLICATIONS

Sr. Heading of the paper Publications
No
1. Approaches to EV Charging 3rd International

Structure Planning Using
Machine Learning: A Review

Conference on Climate
Change

faiz report

ORIGINALITY REPORT

14, s. 1% 3u

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

1

arxiv.org

Internet Source

Ao

Savinay Nagendra, Nikhil Podila, Rashmi
Ugarakhod, Koshy George. "Comparison of
reinforcement learning algorithms applied to
the cart-pole problem”, 2017 International
Conference on Advances in Computing,
Communications and Informatics (ICACCI),
2017

Publication

Submitted to Vrije Universiteit Brussel /
i Student Paper %
p
medium.com /
Internet Source %
Camilo Andrés Manrique Escobar, Carmine <-' %

Maria Pappalardo, Domenico Guida. "A
Parametric Study of a Deep Reinforcement
Learning Control System Applied to the
Swing-Up Problem of the Cart-Pole", Applied
Sciences, 2020

Publication

50

www.cl.cam.ac.uk

H Internet Source <1 %
KARR, Charles L., and Lakhmi C. JAIN. "Cases

7 I . <1
in geno-fuzzy control”, Advances in Fuzzy
Systems - Applications and Theory, 1997.
Publication
Submitted to University of Computer Studies

Student Paper y p <1 %

Sut_amitt_ed to Manchester Metropolitan <1 %
University
Student Paper

Py Wenyang He, Wenlong Zhao, Yuan Jiang. <1 %
"Application of Q-Learning and RBF Network
in Chinese Chess Game System", IOP
Conference Series: Materials Science and
Engineering, 2019
Publication

Submitted to Instituto Tecnologico de < 1 %
Aeronautica (Brazilian Aeronautical Comision)
Student Paper

N fugumt.com
In:e%etf:ource <1 %
Akira Notsu, Koji Yasuda, Seiki Ubukata, <1 %

Katsuhiro Honda. "Optimization of Learning
Cycles in Online Reinforcement Learning
Systems”, 2018 IEEE International Conference

51

on Systems, Man, and Cybernetics (SMQ),
2018

Publication

Manuel Lopez-Martin, Belen Carro, Antonio <1 %
Sanchez-Esguevillas. "Application of deep
reinforcement learning to intrusion detection
for supervised problems”, Expert Systems
with Applications, 2020
Publication

A Submitted to University of Surre -'

Student Paper }‘r }" < %

PLueb:iccEtLrne Notes in Computer Science, 2007/. < Y %

Submitted to Munich International School <’
Student Paper %

Zoltéﬁ Somogyi. ‘I'The Applicatiun ofAFFiﬂCial < o
Intelligence", Springer Science and Business
Media LLC, 2021
Publication

Mauro Montenegro, Roberto Lépez, Rolando <1 %

Menchaca-Méndez, Emanuel Becerra, Ricardo
Menchaca-Méndez. "Chapter 18 A Parallel
Rollout Algorithm for Wildfire Suppression”,
Springer Science and Business Media LLC,
2020

Publication

52

