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ABSTRACT 
 
The cart and pole system balancing is a classical benchmark problem in control theory which 

is also referred as inverted pendulum. It is a prototype laboratory model of an unstable 

mechanical system. It is mainly used to model the control problems of rockets and missiles in 

the initial stages of their launch. 

This system represents an unstable system because an external force is required to keep the 

pendulum in vertically upright position when cart moves on horizontal track. 

Designing optimal controllers for the Cart and pole system is a challenging and complex 

problem as it is an inherently nonlinear system. The principal advantage of reinforcement 

learning (RL) is its ability to learn from the interaction with the environment and provide an 

optimal control strategy. In this project, RL is explored in the context of control of the 

benchmark cart-pole dynamical system. RL algorithms such as Q-Learning, SARSA, and 

value-function approximation applied to Q-Learning are implemented in this context. By 

using a fixed Force value of +10N or -10N, decided by a policy that maximizes the 

approximate value function, the agent achieves optimal control of the system.  
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CHAPTER – 1 

 

INTRODUCTION 
 

1.0 INTRODUCTION 

 In the context of control system, the cart pole is a benchmark control problem. A cart pole 

system consists of a pole pivoting on a cart that may travel along a horizontal axis. The main 

challenge is to use bi-directional forces applied on the cart by an electromechanical system and 

balance the pole in an upright position.  

Fig 1.1 shows a schematic diagram of Cart-pole balancing which is a well-known control 

benchmark problem. It is designed mechanical system which is inherently unstable and 

underactuated. The dynamics of this system are used to better comprehend challenges like 

maintaining balance (e.g., a human walking), self-balancing systems and thruster control of 

rockets. 

 

 

Figure 1.1 – Cart-Pole System 
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 The Cart Poleibalancingiproblemihasibeeniusediasiaibenchmarkifor Reinforcement Learning 

algorithms for many decades. While the newer definitions of the Cart Pole balancing problem 

focus on achieving control in complex state and action spaces, the older definitions of the problem 

are fundamental and haveibeeniderivedifromianiAdaptiveiControl technique known as the 

BOXES and thus has been explored by both the Reinforcement Learning and Control research 

communities in the past. In addition to its prominence in these literatures, this problem is a 

challenge for the RL agent as it hasitoiselectianditake actions in a veryilimitediandidiscrete action 

space. 

The condition of the cartpole (if it's tilted to the left or right) is referred to as state. Any data that 

represents the cart-pole, which includes the cart's speed and position,itheipole'siangle, and pole 

speed on the tip, may be taken into consideration as states. For this work the cart's state is the four 

characteristics listed above. 

 

 

Figure 1.2 – Cart-Pole state based on action  

 

Depending at the motion taken, it may result in one-of-a-kind different states as shown in Fig.1.2. 

Suppose the pole is beginning straight, if the cart is going left, the pole is more often than not to 

head right, that's a brand-new state. Therefore, for the duration of every time-step, any movement 

taken will usually cause a one-of-a-kind state. 
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1.1 LITERATURE REVIEW 

 
1.1.1 AN OVERVIEW 

 
 With increasing demand for complex nonlinear control systems, design of optimal controllers 

through classical methods is challenging. The fact that Reinforcement Learning enables a system 

to learn through exploration, and adapt to a dynamic environment makes it optimal to be applied 

to control a nonlinear complex system. Cart Pole balancing problem is a non-linear control 

problem, with inherent instability and is often used as a benchmark for control techniques. Cart 

Pole balancing problem focuses on achieving control in complex state and action spaces.  

In literature various techniques areiused to balance the cartipoleisystemias well as various other 

systems. 

 

1.1.2 REFERRED LITERATURE 

  

 In [1] an artificial neural network is utilised toicontrolitheiangleiandipositioniof a non-linear 

inverted pendulum system as an artificial intelligence technology. In [2] a continuous-state system 

is considered and pursueiainear-optimalipolicyithrough online learning and new online RL 

algorithm—MSEC (Multi-Samples in Each Cell) is proposed. In [3] linear and nonlinear control 

approaches are used to solve the problem of balancing an inverted pendulum on an unmanned 

aerial vehicle (UAV). In [4] aniexperienceireplay is proposed for least-squares policy iteration 

(ERLSPI) for improving the utilization efficiency. The inverted pendulum system is then solved 

using the ERLSPI approach. A gameitheoreticiLyapunovifuzzyicontroller that is both safe and 

stable is utilised to improve a Markov games-based reinforcement learning controller that is 

additionally hybridised withiaiLyapunovitheory-basedicontrol in [5]. 

 

 In [7] a new approach is proposed for stabilization of a cart inverted pendulum system using 

PID controller based on Linear Quadratic Regulatori(LQR)iandiArtificialiNeuraliNetwork 

(ANN). In [8] a method is proposed to research the assistive techniques immediately from 

interactions among the person and the robotic and system of a learning hassle of assistive 

techniques as a coverage seek hassle to relieve heavy burdens to the person for information 

acquisition is executed with the aid of using exploiting a information-green model-primarily based 
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totally reinforcement learning framework. In [9] one-of-a-kind reinforcement algorithms are used, 

Q-learningiand Adaptive HeuristiciCritici(AHC)ialgorithm, on famous cart-poleibalancingihassle 

and their overall performanceiis examined. In [10] it’s miles proven that an intermittent controller 

may be installed obviously thru reinforcement learning. In [11] the symmetry definition is elevated 

from finite to countless state space after which a unique sort of symmetric foundation capabilities 

is proposed for fee characteristic approximation to combine the earlier expertise of symmetry 

approximately the surroundings for big or maybe countless state space.  

 In [12] Reinforcement Learning has been utilizeditoidevelopiaicontroller for stabilization 

ofiaiDoubleiInvertediPendulum. In [13] a robot version-primarilyibasedireinforcementilearning 

approach that mixes thoughtsifromiversioniidentityiand version predictive control is presented.  

 

 In [14] a self-learning methodiisievolvediwhichipermitsithe agent to adaptively expand an 

inner reward signal primarilyitotallyibasedion a given ultimate goal, without requiring a specific 

external reward signal from the environment. The problem of cart-pole balancing withinside the 

continuous state space setup with restrained track length is provided in [15]. 

In [16] a Control Algorithm by implementingitheiQ-Learningitechniquesiinithe PD control 

scheme is presented.  

 The challenge of stabilising an invertedipendulumisystemiwithiknown/unknowniinternal 

dynamics is described in [17] with simulations to show the advantages of the RL technique over 

the conventional approach. In the method proposed in [18] theilearningicycles of online 

reinforcementilearningisystems are adaptively changed to acquireiainecessary and sufficient set of 

states for them by using a growingiself-organizingimap to estimate the state for fast learning speed. 

To enhance the time of the single inverted pendulum swinging up, [19] uses an improved 

reinforcement learning algorithm that is modelled in a double-layeriBPineuralinetwork.  The 

MQTT protocoliisiusedionitheiEthernet connection as a deep reinforcement learning environment, 

and the agentiisilearneditoicontrolitheirealideviceilocatediremotelyifrom the controller, and the 

classical PID controlleriisialsoiuseditoiimplementiimitationireinforcementilearning and facilitate 

the learning process in [20].  A rotary inverted pendulum composediofiaicyberienvironment and 

physicalienvironmentibased on the OpenFlowinetwork,ianditheiMQTT protocol is used on the 

Ethernet connectioniasiaideepireinforcementilearningienvironment, and the agent is learned to 

control theirealideviceiAicyberiphysical system (CPS) is constructed in [21] to show that a deep 
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RL agenticanisuccessfully manage a rotary cartpole system. 

 In [23] stochastic variationsiofiaiclassicicartpoleibalancing task are implemented using three 

algorithms: VanillaiPolicyiGradient, NaturaliPolicyiGradient, andiTRPO. In [24] the control 

problem ofinonlinearisystemiundericontinuousistate space is solved using a neural Q-learning 

algorithm basedioniresidualigradientimethod. 

In [25] DQN based on VREP simulation environment, isiuseditoitryitoisolveiinverted pendulum 

problem. In [26], a successful solutionitoithe pruning performanceireductioniproblem in the DRL 

domain is presented, as well as a functional approach known as Policy Pruning and Shrinking 

(PoPS) for training high-performing DRL models while preserving a compact representation of 

the DNN. In [27] a brand new set of rules primarily based totally oniSARSAiis proposed to keep 

away from theioverestimation hassle in conventional reinforcementilearning. In [28] the train 

throughput evaluation is executed with RLlib and IMPALA on  CartPole and Pong and the results 

of diverse scalability metrics, clustering, and commentary dimensions on train throughput are 

analyzed. 

 In [30] RLHTMia brandinew learning technique of Reinforcementilearning is provided 

primarily based totally on brain-stimulated learning called HTM and the overall performance 

ofiHierarchical TemporaliMemory (HTM) in a reinforcement learning device is analyzed via way 

of means of changing the Q characteristic in RL with HTM. 

In [31] a federated reinforcementilearningibasedion multi agent environment is proposed. In [32] 

a lightweight on-deviceireinforcementilearningiapproachifor low-cost FPGA devices is proposed 

which exploitsiairecentlyiproposedion-deviceilearning approach based on neural networks that 

does not employ backpropagation but instead uses the OS-ELM (Online Sequential Extreme 

Learning Machine)itrainingialgorithm. In addition, for on-device reinforcement learning, a 

combination of L2 regularisation and spectral normalisation is proposed. State change predictions 

are employed as an unbiasediandinon-sparseisupplementifor TD-targets in [34], and transfer 

learningifromimodelidynamics prediction to Q value function approximation is allowed by 

training aiforwardimodel that shares the initial layers of a Q-network. In [35] learning a potential 

functioniconcurrentlyiwithitrainingianiagentiusingia reinforcement learning algorithm based on 

the potential-based reward shapingiframework,iwhichiguarantees policy invariance is proposed. 

The topic of transfer learningibetweeniareas with strong similarities is examined in [36]. 

 Various deep Q learning implementations for discrete action space systems are examined in 
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[37], and the efficiency of the solutions for the classic Cartpole problem transferred to the Gazebo 

environmentiisiinvestigated. A unique model compression framework for DRL models is 

described in [38], which uses a sparse regularised pruning method and policy shrinking technology 

to achieve a great balance between high sparsity and compression rate. 

[39] investigates the adaptiveioptimalistationaryicontrolioficontinuous-time linear stochastic 

systems with both additive and multiplicativeinoisesiusingireinforcementilearning techniques, and 

proposes a novel off-policy reinforcement learning algorithm basedionipolicyiiteration called 

optimisticileast-squares-basedipolicy iteration. 

In [40], a twinidelayedideepideterministicipolicy gradient (TD3) actor-critic algorithm is utilised 

to solve the Inverted Pendulum control issue, and a unique dynamiciandienhancedirewardifunction 

is proposed for the same goal. 

 

1.2 MOTIVATION FOR MACHINE LEARNING ALGORITHMS 

 The developmentioficomputationalipower is constantly on the rise and makes for new 

possibilities in a lot of areas. Two of the areasithatihasimadeigreatiprogress thanks to this 

developmentiareicontrolitheoryiand artificial intelligence. The mostieminentiareaiof artificial 

intelligence is machineilearning.iTheidifference between anienvironmenticontrollediby control 

theory andianienvironmenticontrollediby machine learningiisithatitheimachineilearningimodel 

will adapt in orderitoiachieveiaigoaliwhile the classicimodelineedsipresetiparameters. This 

supposedly makesitheimachineilearningimodel more optimaliforianienvironmentiwhich changes 

over time. This theoryiisitestediinithisiresearch work on a modeliofianiinvertedipendulum. Three 

different machineilearningialgorithmsiare implementedioniaicartipoleimodel. Changes are made 

to the model machine learning algorithms are tested. As a result, one of the algorithms were able 

to mimic the classic model but with different accuracy. 

 

1.3 OBJECTIVE OF PRESENT WORK 

 

 This dissertation mainlyifocusesioniapplications of machine learning algorithms for 

balancingioficartipole system. The following are main contributions in this project.  

i. To study the mathematical modelioficartipoleidynamicsiand identification of system. 

ii. Implement reinforcementilearningialgorithms (SARSA and Q-Learning) on a discretized 

cart pole system. 
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iii. Implement Q-Learningitechniqueiwithivalue function approximationionicartipole system.  

 
1.4 ORGAIZATION OF THESIS 

 

 This dissertation contains 4 chapters, Chapter – 1 includes a brief introduction of the present 

work. Chapter 2 explains, dynamics of cart pole system and Reinforcement learning algorithm.  

Chapter 3 shows the implementation and results of SARSA, Q-Learning and Q-Learning with 

value function approximation. In chapter 4 the outcomes of this work has been concluded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

CHAPTER – 2 

 

MATHEMATICAL MODELING OF CART POLE 

DYNAMICS AND APPLICATIONS OF 

REINFORCEMENT LEARNING ALGORITHMS 

 
2.0 OVERVIEW OF CART POLE DYNAMICS 

 

The inverted pendulum operates in an environment with the following parameters; A cart 

that has a mass M. External force F is added at the sides. The pendulum itself has a mass m and is 

connected to the cart through a rigid massless rod with a length l. The pendulum is rotated from 

the vertical line by a quantity θ in the counter clockwise direction. There’s also a friction force f 

that works in the opposite direction of the external force and a gravitation constant g. Figure 2.4 

describes the environment.  

 

Figure 2.1: Diagram of the pendulum environment with actuating forces 

The system state of the pendulum at any time is defined by four state variables: 

i. Angular Position θ 

ii. Angular Velocity 𝜽̇ 
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iii. Linear Positioniofitheicart 𝒙 

iv. Linear Velocity of the cart 𝒙̇ 

 

The system has the freedom to move in two different ways, the cart can move horizontal 

with the x-axis and the pendulum can rotate against its pivot point 360 degrees. 

 

Reinforcement Learningiinvolvesilearningihow to connect situations to behaviours in 

order to maximise a numericalirewardisignal. These problems are closed-loop because the 

learning system’s actions influence its later inputs. Furthermore, unlike manyiformsiofimachine 

learning, the learner is not directed specific actions to take, but instead must discover 

whichiactions yield the most reward by trying them out. In most complex problems, 

actionsimayiaffectinot only the immediateireward butialsoitheinextisituationiand, through 

that,iallisubsequentirewards. Thus, these are the threeimostiimportantidistinguishingifeatures of a 

reinforcement learning problem: 

i. Beingiclosed-loop 

ii. Not having commandsiasitoiwhatimovesitoitake, and the effects of those moves consisting 

of reward signals. 

iii. Operate for longer periods of time 

 

2.1 MATHEMATICAL MODELING OF CART POLE SYSTEM  

Figure 2.2: Forces acting on Cart Pole System 
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In section 2.0 it was stated that the pendulum has the freedom to move in two different ways and 

the forces acting on the pendulum are shown in Fig.2.2.  

This leads to two state variables:  

 xs = Displacement of cart on x-axis relative to starting position. 

 θs = Angular displacement for the pivot relative to upright position.  

To derive the equations of motions using Lagrange’s equations (2.1).  

  

                                                                               .                     (2.1) 

 

Where L is the difference between the kinetic energy (T) and the potential energy (V). 

                                                     L = T – V                                        (2.2)  

The potential energy of the system is going to be the potential energy of the pendulum since the 

cart will never have any stored energy.  

                                                                                                 .                              (2.3)  

Finding the kinetic energy is a little more complicated since it involves both the pendulum and the 

cart.  

  

 

 

 

 

 

                                    (2.4)  

 

By then combining formula 2.2, 2.3, and equation 2.4 can be solved for L. 

                                                                                                             .                      (2.5) 

 

Using Lagrange’s equations (2.1) and calculating the equations of motions for our state variables 

xs and θs we can get the equations of motions for the system. 

                (2.6)  

Where F is the external force applied to the state variable xs  



18 

 

 

 

 (2.7)  

Equation 2.7 is equal to 0 because there will be no external force actuating on state variable θs. 

2.2 REINFORCEMENT LEARNING 

Learning from a training set of labelled examples provided by an external supervisor is 

known as supervised learning. The objective of this kind of learning is for the system to extrapolate 

or generalizeiitsiresponsesiso that it acts correctlyiinisituationsinotipresent in the training set. 

Unsupervised learning deals with findingistructureihiddeniin collections of unlabeled data. 

Reinforcementilearning is therefore, a third machine learning paradigm that deals with a goal-

directediagentiinteracting with aniuncertainienvironment. 

One ofitheichallengesithatiariseiinireinforcement learning, and not in other kinds of 

learning, is theitrade-offibetweeniexploration andiexploitation. The agent must utilise what it 

alreadyiknows to maximise reward,ibutiit must also explore in order to make better action 

decisions in the future. Neither explorationinoriexploitationicanibeipursued exclusively without 

failing at the task. In case of a deterministic environment, the agent must explore by trying various 

actions in each state, and progressivelyilearnitoiselectitheibest action at each state. On the other 

hand, a stochastic environment requiresirepeateditrialsiofitheisameiaction at each state in order to 

obtain an estimate of the amount of reward expected from that state. This dilemma between 

exploration and exploitation is one of the key features of reinforcement learning. 

 

2.2.1 Elements of Reinforcement Learning 

 

i. Policy: A policy describes the learning agent's behaviour at a specific moment in time, i.e., 

A policy is the relation of environmental perceptions to steps to perform when such 

perceptions are realized. It corresponds to the stimulus - response rules of psychology. 

 

ii. Reward signal: In a reinforcement learning problem, the aim is described by means of a 

reward signal. Any Reinforcement Learning algorithm's sole aim isitoimaximizeithe full 

reward it gets over time. The reward signal as a result defines the agent's effective and 

terrible events. In a organic system, rewards are analogous to pleasure or pain experiences. 
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iii. Value function: A state's value function is the full quantity of reward an agent can assume 

to build up in the future, starting with that state. The RL algorithm estimates the value 

function as a feature of rewards. Unlike rewards, which decideitheiimmediate,iintrinsic 

desirabilityiofienvironmentalistates, values suggest the long-time period desirabilityiof 

states after accounting for the states which might be in all likelihood toifollowiandithe 

rewards to be had in those states. 

 

iv. Model: A model simulates the environment's behaviour or, to put it another way, allows 

conclusions about how the environment will behave. Models are employed in planning, 

which is a means of deciding on a course of action by anticipating future events. 

 

2.2.2 Finite Markov Decision Processes 

Markov Decision Processes (MDPs) are a mathematical framework for describing decision 

making structure in scenarios where the result is partially random and partially underitheidecision 

making agent's control. MDPs are used to tackle a variety of optimization and control problems, 

which are solved using different reinforcement learning techniques. 

 

2.2.3 The Agent – Environment Interface 

The reinforcement learning venture is a easy manner to border the hassle ofilearningifrom 

interaction so one can achieve a goal. The agent is each a learner and a choice maker. The 

environment refers back to the device with which it interacts, which incorporates the entirety 

outside of the agent. As visible in Fig.3.1, the agent chooses actions, and the environment responds 

by providing new conditions to the agent.iTheienvironment additionally produces rewards, which 

can be unique numericalivaluesithatitheiagentitries to maximize over time. A task is a kind of 

reinforcementilearningiproblem this is described with the aid of using an in-depth description of 

an environment, inclusive of how rewards are calculated. 

Figure 2.3:iTheiagent – environment interaction in reinforcement learning 
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The agent and environment interact at different time steps, t =i0,i1,i2,i3… At each and every time 

step t, theiagent receives a new environmentistate,iStiЄiS,iwhereiSiis the set ofipossibleistates, and 

depending on the state chooses an action,iAtiЄiA(𝑆𝑡)i,iwhereiA(𝑆𝑡) is the set of actions possible 

in state 𝑆𝑡 . After one time,itheiagentireceivesia numericalireward,iRt+1iЄ R and finds itself in a 

new state St+1 as a consequence of its action in the previous state. Figure 1 shows the agent – 

environmentiinteraction. 

 

At all time steps, the agent performs a mappingifromistatesitoiprobabilitiesiof performing 

each available action. This mapping oristate-actionipair is the agent’s policy denoted as πt, where 

πt(a|s)iisitheiprobabilityithat At = a if  𝑆𝑡 = s. The agent's policy changes as a result of its 

experience, as defined by reinforcement learning approaches. The agent's long-term goal is to 

maximise the total amount of compensation it receives. 

This framework is generic and adaptable, allowing it to be used to solve a wide range of 

issues. The same frame work of MDP has been implemented in the optimization and control 

problems that have been solved in the later stages of this report. 

 

2.2.4 Returns 

The agent’sigoaliisitoimaximizeithe cumulative reward it receivesiinitheilong run. If the sequence 

of rewards receivediafteritimeistepit is denoted as Rt+1 , Rt+2 , Rt+3 ,…, then in general, the expected 

return is maximized over time. If is defined as someispecificifunctioniofitheireward sequence, in 

the simplest case,itheireturniisitheisum of rewards: 

Gtii=iRt+1i+iRt+2i+iRt+3i+….i+iRT     (2.8) 

 

where Tiisiaifinalitimeistep. Each final time step marks the end of an episode, and each episode 

ends in a special state called the terminal state. The next episode begins from a standard pre-

defined starting state, or randomly. These are known as episodic tasks. On theiotherihand, in many 

cases the agent-environmentiinteractionidoesinotibreakinaturally into identifiableiepisodes, but 

goes on continuallyiwithoutilimit. These tasks are called continuing tasks. Various reinforcement 

learningialgorithmsihave been used to solve the control problem as an episodic task in this report, 

and their results have been compared. 
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The additional concept that we need is discounting. According to this method, the agent 

strives to choose activities that maximise the total of discounted benefits it receives in the future. 

In particular, it chooses At to maximize the expected discounted return: 

Gtii=iRt+1i+iϒRt+2i+iϒ2Rt+3i+i…i=ii∑ ϒ𝑘𝑅𝑡+𝑘+1
∞

𝑘=0
             (2.9) 

whereiϒiisiaiparameter,i0i ≤ iϒi≤ 1, called the discount rate. 

The discountirateideterminesitheipresentivalueiofifutureirewards: a reward received k time steps 

in the future is worthionlyiϒ𝑘−1itimesiwhat it would be worthiifiitiwereireceived immediately. 

 

2.2.5 The Markov Property 

In a reinforcementilearning task, a state signal that compactly summarises past feelings while yet 

retaining all relevant information is desired. Such a signalithatisucceedsiin retaining all relevant 

informationiisisaiditoibeiMarkov, or said to haveiMarkoviproperty. Consider how a general 

environment might respondiatitimeit+1itoitheiactionitakeniat time t. In the broadest sense, this 

response could be influenced by everything that has happened previously. In this case, the 

dynamicsicanibeidefined only byispecifying theicompleteijoint probability distribution: 

          Pr{ St+1i=is’i,iRt+1ii=irii|iS0i,iA0i,iR1ii,i…..i,iSti-1ii,iAti-1i,iRti,iSti,iAt }        (2.10) 

for alliri,is’i,iandiallipossibleivaluesiofitheipastievents: S0i,iA0i,iR1ii,i…i,iSti-1ii,iAti-1i,iRti,iSt , At . 

A state signal is considered to haveitheiMarkoviproperty if the nextistateiand reward earned by 

the agent from the environment dynamics received at time t+1 areisolelyidependention the 

system's state and the RL agent's behaviour at time t. The agent can maintain an estimate of the 

inherent environment dynamics through State Transition Probabilities, which canibeidefined by: 

               p( s’ , r  | si,iai)i=iPr{iSt+1 = s’ , Rt+1  = r  | St = s , At = a }             (2.11) 

For all r , s’ , s and a 

If an environmentihasitheiMarkov property, we may anticipate the nextistateiand predicted next 

reward based on the current state and action using one-step dynamics. By iteratingithisiequation, 

one may prove that knowing simply the current state allows one to forecast all future states and 

expectedirewards as well as knowing the entire history up to that point would allow. As a result, 

Markov states are the finest potential foundation for making decisions. Thatiis,itheibestipolicy for 

selecting actions based on a Markovistate is identical to the best policyiforiselectingiactions based 

on entire histories. 

 



22 

 

2.2.6 Value Functions 

Almostiallireinforcement learning methods include predicting value functions, which are 

functions of states or state-action pairs which assess how good it is for the agent to be in a 

particular state. The concept of 'how good' is defined in terms of anticipated future rewards, or 

expected return. The value of a state s underiaipolicyiπ, denoted as 𝜈𝜋(𝑠), is theiexpected 

returniwhenistartingiin s and following π  thereafter. 

                   𝜈𝜋(𝑠) = Eπi[iGti|Sti=is ] = Eπ [∑ ϒ𝑘𝑅𝑡+𝑘+1|
∞

𝑘=0
𝑆𝑡  =  s]                      (2.12) 

𝜈𝜋 is called the state-value for policy π . 

Similarly, 𝑞𝜋(𝑠, 𝑎) is definediasitheivalue of takingiactioniaiinistateis under aipolicy π . 

       𝑞𝜋(𝑠, 𝑎) =  𝐸𝜋 [ 𝐺𝑡i|𝑆𝑡i = i𝑠i, ii𝐴𝑡 = 𝑎 ]  =  𝐸𝜋 [∑ ϒ𝑘𝑅𝑡+𝑘+1|
∞

𝑘=0
𝑆𝑡  =  𝑠 ,  𝐴𝑡 = 𝑎]    (2.13) 

𝑞𝜋 is called the action-valueifunctioniforipolicy π 

 

2.2.7 Bellman Equation 

The fact that value functions satisfy specific recursive relationships is a crucial property of 

reinforcementilearningiandidynamiciprogramming. For any policy π and any state s, the following 

consistencyiconditioniholdsibetween the valueiofisianditheivalue of its possible successor states: 

  𝜈𝜋(𝑠) = Eπ [ Gti|Sti= s ] = 𝐸𝜋 [∑ ϒ𝑘𝑅𝑡+𝑘+1|
∞

𝑘=0
𝑆𝑡  =  s] 

     = 𝐸𝜋[𝑅𝑡+1 + ϒ ∑ ϒ𝑘𝑅𝑡+𝑘+2|
∞

𝑘=0
𝑆𝑡  =  𝑠] 

 = ∑ 𝜋(𝑎|𝑠) ∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, i𝑎)𝑟𝑠′𝑎 [𝑟 + ϒ𝐸𝜋 [∑ ϒ𝑘𝑅𝑡+𝑘+2|
∞

𝑘=0
𝑆𝑡+1  =  s′]] 

    

𝜈𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠) ∑ 𝑝(𝑠′, 𝑟|𝑠, i𝑎)𝑠′,𝑟𝑎 [𝑟 + ϒ𝜈𝜋(𝑠′)]        (2.14) 

Equation (2.14) is the Bellmaniequationifor 𝜈𝜋.It expressesiairelationshipibetweenitheivalue of a 

state anditheivaluesiofiitsisuccessoristates. The value function 𝜈𝜋 is the uniqueisolutionito its 

Bellman equation. Bellmaniequationiformsitheibasisiof a number of ways to compute, 

approximate,iandilearn 𝜈𝜋 using various reinforcement learning algorithms.  

 

2.3 CART POLE PLANT MODEL FOR REINFORCEMENT LEARNING  

When Reinforcement Learning is applied to the Cart-Pole problem, the dynamics of the 

Cart-Pole subsystem remain the same. However, a few changes are made in order to incorporate 

features of Reinforcement Learning and ensure that the Cart-Pole Plant can be completely 
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described by a Markov Decision Process. 

 

Reinforcement Learning requires that the Environment be in the form that can be 

describediasiaiMarkov Decision Process, where the Actionispaceimustibe finite. Thus, to limit the 

number of actions that can be taken on the pendulum, a simplified form is considered and the 

environment has constraints as given in Table 3.1. Here, a constant magnitude of Force F is 

considered. As a result, the RL agent can take either a +F or a –F action on the Environment. 

 

Index Observation            Min                   Max                 

0    CartiPositioniiiiiiiii -2.4 2.4 

1    CartiVelocity -Infii Infiiiiiiiiiiiiiiii 

2    PoleiAngle ~i-0.209iradi(-12°)ii ~i0.209iradi(12°)ii 

3    PoleiAngulariVelocity -Infiiiiiiiiiiiiiiiii Inf 

Table 2.1 – Constraints of the Cart-pole environment considered 

 

2.3.1 State Space Quantization 

An entire class of Reinforcement Learning algorithms are known as Tabular Lookup 

Methods. In Tabular Lookup Methods, unlike Continuous methods, the states of the Cart-Pole 

system are quantized, that is, the quantities pendulum angle, velocity, cart positioning, and 

velocity across their whole range have been divided into numerous bins. A box is defined here, as 

a tuple comprisingiofioneibinifrom each of theifouristate variables. 

 

These quantized states are the states with which the RL Agent builds a Value function, 

similar to that of Dynamic Programming. To investigateitheiinfluence of quantization on the 

algorithm's performance,itheiCart-Pole plant model was quantized using various quantization 

parameters.  

 

In the first type of State Space Quantization, the states of the Cart positioniandivelocityias well 

as the Pole angle andiangularivelocityihave been quantized into 15 bins, and permuted to 162 different 

boxes representing a tuple of 𝜽, 𝜽̇, 𝒙, and 𝒙̇ using the following rule:  

𝜽 : [-12, -6), [-6, -1). [-1, 0), [0, 1), [1, 6), [6, 12]   degrees 

𝜽̇ : (-inf, -50), [-50,50], [50, inf) degrees /second 

𝒙 : [-2.4, -0.8), [-0.8, 0.8], (0.8, 2.4]   meters 
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𝒙̇ : (-inf, -0.5) [-0.5, 0.5], (0.5, inf) meters/second 

2.4 Temporal Difference Learning: 

 

Temporal Difference Learning (TD) is a typeiofiReinforcementiLearningialgorithm that 

uses one-step value function updates and bootstrapping to estimate a state's quality. 

 

TD methods are step-by-step algorithms with online updates of value estimates. At every 

step of an episode, the qualityiofitheistateiisiupdated using the reward obtainediatithatistepiandithe 

oldiestimateiof the quality of the next state. In other words, a guess of the state’s quality is updated 

towards a better guess. 

The TD Learning update equation for: 

 

i. Prediction: 

  V(𝑆𝑡)i ⟵ iV(𝑆𝑡) + iii𝛼[𝑅𝑡 + ϒV(𝑆𝑡+1) − V(𝑆𝑡)]                                (2.15)  

Where 𝑆𝑡 correspondsitoitheicurrent state,  

𝑆𝑡+1 correspondsitoitheinextistate,  

V(𝑆𝑡) is the qualityiofitheiagentibeingiin state (𝑆𝑡) 

(𝑅𝑡) is the reward obtained by from state (𝑆𝑡) 

ii. Control:  

   Q(𝑆𝑡, 𝐴𝑡)  ⟵  Q(𝑆𝑡, 𝐴𝑡) +   𝛼[𝑅𝑡 + ϒQ(𝑆𝑡+1, 𝐴𝑡+1) − Q(𝑆𝑡, 𝐴𝑡)]           (2.16)  

Where (𝑆𝑡, 𝐴𝑡) correspondsitoitheicurrentistate and action,  

(𝑆𝑡+1, 𝐴𝑡+1)icorrespondsitoithe next stateiand action,  

Q(𝑆𝑡, 𝐴𝑡)iisithe quality ofitheiagentibeingiinistatei𝑆𝑡  and taking action 𝐴𝑡 

𝑅𝑡 is theirewardiobtained byitakingian action 𝐴𝑡 from state 𝑆𝑡 

 

When using Model Free Learning for Control, there are two ways to join Policyievaluation 

and Policyiimprovement into GeneralizediPolicyiIteration. Exploration of the environment is 

necessary to ensure that the agentiisinotitrappediinside the local maxima of expected return while 

selecting actions based on the quality of the state. This exploration can be performed in many 

ways, one being to choose actions randomly in the given state. On the other hand, Exploitation or 

choosing the action which results in the maximum reward is required to achieve the objective. 

This trade-off is handled by two methods of Model Free control: 
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i. On-Policy Control: 

            The single policy algorithm is utilized by the agent to choose actions from the action value 

estimates in addition to generating action value assessments. Example SARSA, etc. 

 

ii. Off-Policy Control: 

The agent selects actions from action value estimates using one policy algorithm, usually 

a greedy policy, and generates action value estimates using another policy method, usually 

an exploratory policy. Example Q-Learning. 

 

2.5 CONCLUSION  

 

 System dynamics is an important part of control process. In this chapter a cart pole system 

and its characteristics were explained. Further, reinforcement learning and its elements were 

discussed. And pseudo code for SARSA and Q-Learning were also established. 
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CHAPTER – 3 

 

APPLICATION OF REINFORCEMENT 

LEARNING FOR STABILIZATION OF CART 

POLE SYSTEM 

 
3.1 ON-POLICY TEMPORAL DIFFERENCE CONTROL ALGORITHM (SARSA) 

 

When used for control, the On-policy TD algorithm, also known as SARSA (representing 

State-action, Reinforcement, next State-action), involves update of an action value function Q(𝑆, 𝐴) 

at every step.The SARSA update equation is given by: 

                       Q(𝑆𝑡, 𝐴𝑡)  ⟵  Q(𝑆𝑡, 𝐴𝑡) +   𝛼[𝑅𝑡 + ϒQ(𝑆𝑡+1, 𝐴𝑡+1) − Q(𝑆𝑡, 𝐴𝑡)]          (3.1) 

 

Here, 𝑅𝑡 + ϒQ(𝑆𝑡+1, 𝐴𝑡+1) is the TD target and the expression in rectangular brackets is the TD 

error. We consider each step in the algorithm to represent a State-action pair: 

i. The current state, 𝑆𝑡 or the internal state of the Cart Pole dynamics represented in a 

form that the RL agent can interpret. 

ii. The action 𝐴𝑡 to be taken from that state. Cart Pole balancing action might be either 

a steady acceleration of the cart towards the LEFT or RIGHT side of the track. 

 

The reinforcement signal, 𝑅𝑡 isitheireward or punishment that the agent receivesiafterithe 

time step t. As the Objective requires the Pole and the Cart to meet the restrictions, we punish the 

agent with a Reinforcementiofi-1iifieither the Pole or the Cart does not meet its restrictions. When 

maintaining the restrictions, no reinforcement is rewarded to the agent. 

 

To createiaibalanceibetween Exploration and Exploitation, stochastic policies are usually 

considered to select the action in the given state. But the actions defined by the MDP ensure that 

the region of the state space corresponding to optimal policy is explored even when a greedy policy 

is used.  

Unlike Q-learning, SARSA — or State-Action-Reward-State-Action — is an on-policy method: 
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its update is done using the value of the next state and the action of the current policy. The agent 

follows the current policy and estimates the state-action pairs accordingly, which is the on-policy 

assumption.  

 

3.1.1 IMPLEMENTATION OF SARSA ALGORITHM 

SARSA canibeiuseditoisolveithe Cart Pole balancing problem with the following algorithm: 

• InitializeialliQ(𝑆, 𝐴)ii∀iiSi∈iS,  A ∈ A 

• For eachiepisode: 

o For eachistepiinian episode: 

▪ Given current statei𝑆𝑡,ichoosei𝐴𝑡iusingi𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑄(𝑆𝑡, 𝐴) 

▪  Take the action 𝐴𝑡 

▪ Observei𝑅𝑡iandi𝑆𝑡+1ifromitheienvironment 

▪ UpdateitheiActionivalueifunction 𝑄(𝑆𝑡, 𝐴𝑡), towards the TD target using the 

SARSA update equation 

▪ Until the terminal state, where the state 𝑆𝑡 exceeds the limitations defined by the 

Objective. 

▪ Figure 3.1 – SARSA method Cart-Pole state against time steps 
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3.1.2 SIMULATION RESULTS 

As observed in Fig.3.1 the agent gets a highirewardisomewhaticonsistentlyiexcept for the 

random time it failsitoikeepiit up. This happened during the testing episode 175 when the agent 

struggled to keep the pendulum up straight. As a result, theiSARSAialgorithmionlyiachieves the 

limited performance. Regardless, the model is still stayingiwithinitheipositiveireward domain so 

all is not completely lost,ianditheicartpoleiis kept balanced. 

 
3.2 OFF-POLICY TEMPORAL DIFFERENCE CONTROL ALGORITHM (Q-

LEARNING) 

 

Q-Learning is an Off-Policy algorithm since two different policies are utilized by the agent. 

The policyiuseditoiselectiactions using the state-actionivaluesiis the greedy policy, given by 

𝑚𝑎𝑥𝑎′𝑄(𝑆𝑡+1, 𝑎′). The action-value estimations, on the other hand, are frequently generated using 

an experimental policy. The Q-learning update equation is given by: 

                   Q(𝑆𝑡 , 𝐴𝑡) = iQ(𝑆𝑡, 𝐴𝑡) +   𝛼[𝑅𝑡 + ϒ𝑚𝑎𝑥𝑎′𝑄(𝑆𝑡+1, 𝑎′) − Q(𝑆𝑡, 𝐴𝑡)]                       (3.2) 

Here, 𝑅𝑡 + ϒ𝑚𝑎𝑥𝑎′𝑄(𝑆𝑡+1, 𝑎′) is the Q-target and the expression in rectangular brackets is the Q-

error. The reinforcement given to the Q-learning agent is the same as the reinforcement given to 

the SARSA agent. 

 

The twoipolicyialgorithmsiused by Off-PolicyiControliare if greedy policies because the 

state spaceiofitheiCart-PoleiMDP is explored even with a greedy policy. This subset of the Off-

Policy method converges on an On-Policy approach as a result of this decision. 

 

Through trials-and-errors, a Q-value for each state-action pair is found. The desirability of 

an action in the current state is represented by this Q-value. If the environment remains static (i.e. 

the physics or cause-and-effect relationships do not change), the Q-values will converge over time, 

and the best policy for a given state will be the action with the highest Q-value. 

 

To use Q-Learning, the continuous dimensions have to be discretized to a number of 

buckets. In general, having fewer buckets and keeping the state-space as compact as feasible is 

preferable. Training can be done rapidly because there are fewer perfect polices to find. However, 

obfuscating essential information by discretizing the state-space too coarsely can stymie 
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convergence. 

 

3.2.1  IMPLEMENTATION OF Q-LEARNING ALGORITHM 

Q-learning can be useditoisolveitheiCartiPoleibalancing problem with the followingialgorithm: 

• Initializeialli𝑄(𝑆, 𝐴) ∀  S ∈ S,  A ∈ A 

• For each episode: 

o For each step in an episode: 

▪ Given currentistatei𝑆𝑡,ichoosei𝐴𝑡 using 𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑄(𝑆𝑡, 𝐴) 

▪ Take theiaction 𝐴𝑡 

▪ Observe 𝑅𝑡iandi𝑆𝑡+1ifromithe environment 

▪ Update the Actionivalueifunction,i𝑄(𝑆𝑡, 𝐴𝑡) towards the Q-target  

 𝑅𝑡 + ϒ𝑚𝑎𝑥𝑎′𝑄(𝑆𝑡+1, 𝑎′) using the update equation 

▪ Until the terminal state, where the state 𝑆𝑡 exceeds the limits set by the objective. 

 

Figure 3.2 – Q-Learning method Cart-Pole state against time steps 
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3.2.2 SIMULATION RESULTS 

Q-Learning using 𝜽, 𝜽̇, 𝒙, and 𝒙̇  is implemented with 3 buckets for 𝜽̇, 𝒙, and 𝒙̇, and 6 

buckets for 𝜽. With this the Cart-Pole problem is solved within 1500 episodes. It was a still a bit 

far from the best solution as observed in Fig.3.2. Upon observation the cart didn't go out of bounds 

very often. For 200-time steps, the pole is balanced. It typically doesn’t drift very far while 

balancing the pole.  

 

3.3 Q-LEARNING WITH VALUE FUNCTION APPROXIMATION 

 

The results obtainedibyiusingitheiaboveiReinforcementiLearning methods on the Cart-

Pole problem have a major drawback. Their assumption of a discretized state space increases the 

sensitivity of choosingitheivalueioficonstantiforce to be applied by the Agent on the cart, and does 

not accurately represent a real-world scenario of a Cart-Pole system. Also, in the discrete state 

space, Constant force should be chosen in such a way that the system crosses one box and then 

reaches another at the conclusion of each time step. In other words, the constant force should cause 

𝑃𝑠𝑠
𝑎 = 0 and this increases the difficulty in selection of the constant force value. Thus, a Continuous 

state space must be considered in order to overcome these drawbacks. The MDP must be updated 

since the state representation in any Reinforcement Learning issue is determined by the Markov 

Decision Process. This modified MDP is known as the Continuous State MDP. 

 

Continuous State MDPs represent all the states in terms of a continuous set of values. Thus, values 

that are assigned to states must be relative to some standard base value. These values relative to 

the standard base are known as features. In fact, the continuous state of the cart-pole system can 

be represented by four features. The same features have been used in Plant models, while 

attempting to stabilize the Cart-Pole system using conventional controllers: 

1. Distance of the cart from the center of the track (𝒙): 

As the cart is placed on a track system of finite length, and that the objective requires that 

the cart be positioned within the limits of this track at all times during the experiment, the 

distance of the cart must be measured and examined by the RL Agent. 

2. Angle of the pole with respect to the upright position (𝜽):  

The pole angle must be measured at all times, as the RL Agent must ensure that the pole 
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remains upright and does not fall towards its stable equilibrium. 

      3. Velocity of the cart (𝒙̇): Derivative of 𝒙 

      4. Angular velocity of the pole (𝜽̇): Derivative of 𝜽 

These features form the continuous state in the Continuous State MDP. This state value is then 

said to have a domain of R4, which contains 4 real numbers. As a result, the continuous state 𝑥(𝑠) 

contains infinite number of states. 𝑥(𝑠) can be written as:  

     𝑥(𝑠) =  [

𝒙
𝒙̇
𝜽
𝜽̇

]  ∈  R4 

3.3.1 Value Function Approximation 

With continuousistateiMDP,iitiisinotipossible to update the value of every state individually, as 

each state 𝑥(𝑠) ∈ R4. Also, storing a separateivalueito represent the qualityiofieachistate result in 

very largeiMDP, which cannot be storediinitheimemory efficiently. These drawbacks call for a 

new value function with the following features: 

1. Generalizes values from states visited by the agent, towards states that: 

a. Have not been visited by the agent 

b. Belong to the neighborhood of the visited states 

2. A set of parameters 𝑤 ∈ R4, which can represent the quality of all states without taking  

up large memory space. 

 

3.3.2 RBF neural network model 

As shown in Figure 6.1, the RBF (Radial Basis Function) neuralinetworkiisia three-layer forward 

network. It’s three layersiareitheiinput, hidden, and outputilayers.iTheiinputilayer is connected to 

the hidden layer byiainon-lineariconnection mapping,ianditheihiddenilayeriisiconnected to the 

output layeribyiailinearirelationshipimapping. As showniiniFigure.2,ix1,ix2,i…., xn are the input of 

the input layer.ihjiisiaihiddenilayeriGauss basis function. w1,iw2, …., wn  are the weights from the 

hidden layeritoitheioutputilayer. y1 is the actual output. The use of RBF is shown in Fig.6.2. 
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Figure 3.3 - RBF neural network 

3.3.3 IMPLEMENTATION OF Q-LEARNING WITH FUNCTION APPROXIMATION 

   

     

Figure 3.4 – Value function approximation method Cart-Pole state against time steps 

 

3.3.4 SIMULATION RESULTS 

Q-Learning using RBF is implemented with 3 buckets for 𝜽̇, 𝒙, and 𝒙̇, and 6 buckets for 𝜽. 

With this the Cart-Pole problem is solved within 1500 episodes. An optimal result is achieved and 

the pole does not go beyond -3.43° to +2.29° and [-1.14°, 0°] after a stable state is achieved and 

the cart doesn't go out of bounds very often as seen in Fig.3.4. For 200-time steps, the pole is 

balanced. It typically doesn’t drift very far while balancing the pole. 
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CHAPTER – 4 

 

CONCLUSIONS  

AND  

FUTURE SCOPE OF WORK 

 
4.0 Main Conclusions 

A class of machine learning algorithms are implemented for balancing of cart pole system and a 

comparative study based on the stability of the pole and the time required to Stabilize the 

poleiandimaintainitheiobtainedistabilityiforilongeriduration is presented in this thesis. While the 

result of SARSA(0) achieves optimal policy, a policy for which it achieves the Objective of the 

Cart-Pole problem but it is unable to maintain the achieved stability for a longer duration of time. 

The poleiisialmostidroppediduringitheiexperiment anditheipendulumiangleialsoireachesithe edge 

ofiitsirestrictionilimits.  

The pendulum angle oscillates between ±1.4° but later shoots up to -8.02°. The cart position is 

between +0.5m and +0.2m. This shows the effective performance of the algorithm, although, the 

Cart still drifts slowly towards the right of the track, which can cause the Cart to reach the track 

limit if the optimal policy is implemented for a prolonged period. 

 

 Due to the convergence of the Off-Policy approach towards the On-Policy SARSA(0) 

approach, the results of Q-Learning applied to the Cart-Pole problem is similar to the results of the 

SARSA(0) algorithm applied on the Cart-Pole problem but a superior policy is derived and hence 

improved results are observed.  

The pendulum angle varies from +2.29° to -3.43° in 200 steps. The cart position is between -0.1m 

and +0.25m. It is again observed that the Cart still drifts slowly towards the right of the track, 

which can cause the Cart to reach the track limit if the optimal policy obtained here is implemented 

for a prolonged period. 

 

 Value Function Approximation applied on the Cart-Pole problem using Q-Learning, gives 

near to accurate results. By using a fixed Force value of +10N or -10N, decided by a policy that 
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maximizes the approximate value function, the Agent achieves Optimal Control. This algorithm 

ensures that all oscillations are suppressed to a minimum that are determined by the constant Force 

values. In the implementation, the Pendulum angle varies from -3.43° to +2.29° and remains within 

a small range of [-1.14°, 0°] during steady state. Along with this, the Cart position with respect to 

the center of the track is in the range [-0.8, 0]m. Although there are a few large oscillations at the 

beginning of the episode of Optimal control these oscillations still lie much within the limits 

defined by the Cart Pole problem. Similarly, the Cart Position at the end of 200 steps is also within 

the limits of the Cart-Pole problem. This represents the most optimal control among the three 

algorithms used and is highly favorable over many conventional control approaches. 

 

4.1 Future Scope of Work 

 The Cart-Pole Balancingiproblemiisiaifundamentaliproblem in Non-linear control systems. 

As Non-Linear Control hasiailargeinumberiof applications such as Process control, Robotics, 

Defense and Transportationitechnology,itheiReinforcementiLearning algorithm should be further 

improved to perform complexitasksiinialliNon-LineariControl applications optimally. To 

approach complex Non-Linear controls from the Cart-Pole balancing problem, some changes 

should be made. 

 From the perspectiveiofitheiReinforcementiLearningialgorithms explored so far, Tabular 

methods have beenitheifocusiandihaveibeenicomparediwith a Value function Approximation 

method which considers a Linear Combinationiofifeatures.iTheiValueifunction approximation 

method has resultediinianioptimalipolicyithaticonverges faster and minimizes the requirement of 

the actions to be taken multiple times, basedionitheicurrentistates,iwhichiisiaimajor disadvantage 

of the Tabular Methods. With respect to the Cart-Pole balancing problem, the following changes 

in the RL algorithm can be explored further:  

i. Usage of complex DifferentiableiFunctioniapproximatorsisuchias Neural Networks on the 

problem 

ii. Replacement ofitheiCart-PoleiMDPiwithicomplex application specific MDPs.  

iii. Improvement of the RLialgorithmiiniorderitoidealiwithiNon-linear, Stochastic and Non-

stationary environments. 

iv. Selection of hyper-parametersiofitheiRLiAgentiiniorderito ensure Optimal policy is 

reached. 
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APPENDIX I 

 
Python Code for SARSA 
importigym 

importinumpyiasinp 

importimath 

importimatplotlib.pyplotiasiplt 

 

classiCartPoleAgent(): 

iiiidefi__init__(self,ibuckets=(3,3,3,6),inum_episodes=1500,imin_lr=0.1,imin_epsilon=0.1,i  

 discount=0.98,idecay=25): 

iiiiiiiiself.bucketsi=ibuckets 

iiiiiiiiself.num_episodesi=inum_episodes 

iiiiiiiiself.min_lri=imin_lr 

iiiiiiiiself.min_epsiloni=imin_epsilon 

iiiiiiiiself.discounti=idiscount 

iiiiiiiiself.decayi=idecay 

 

iiiiiiiiself.envi=igym.make('CartPole-v0') 

 

iiiiiiii#i[position,ivelocity,iangle,iangularivelocity] 

iiiiiiiiself.upper_boundsi=i[self.env.observation_space.high[0],i0.5,i

 self.env.observation_space.high[2], 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiimath.radians(50)i/i1.] 

iiiiiiiiself.lower_boundsi=i[self.env.observation_space.low[0],i-0.5,i

 self.env.observation_space.low[2], 

iiiiiiiiiiiiiiiiiiiiiiiiiiiii-math.radians(50)i/i1.] 

 

iiiiiiiiself.sarsa_tablei=inp.zeros(self.bucketsi+i(self.env.action_space.n,)) 

 

iiiidefidiscretize_state(self,iobs): 

iiiiiiiidiscretizedi=ilist() 

iiiiiiiiforiiiinirange(len(obs)): 

iiiiiiiiiiiiscalingi=i(obs[i]i+iabs(self.lower_bounds[i]))i/i(self.upper_bounds[i]i-i 

 self.lower_bounds[i]) 

iiiiiiiiiiiinew_obsi=iint(round((self.buckets[i]i-i1)i*iscaling)) 

iiiiiiiiiiiinew_obsi=imin(self.buckets[i]i-i1,imax(0,inew_obs)) 

iiiiiiiiiiiidiscretized.append(new_obs) 

iiiiiiiireturnituple(discretized) 

 

iiiidefichoose_action(self,istate): 

iiiiiiiiifi(np.random.random()i<iself.epsilon): 

iiiiiiiiiiiireturniself.env.action_space.sample() 

iiiiiiiielse: 

iiiiiiiiiiiireturninp.argmax(self.sarsa_table[state]) 

 

iiiidefiupdate_sarsa(self,istate,iaction,ireward,inew_state,inew_action): 

iiiiiiiiself.sarsa_table[state][action]i+=iself.learning_ratei*i( 

iiiiiiiiiiiiiiiiiiiirewardi+iself.discounti*i(self.sarsa_table[new_state][new_action])i-i

 self.sarsa_table[state][ 

iiiiiiiiiiiiiiiiaction]) 

 

iiiidefiget_epsilon(self,it): 

iiiiiiiireturnimax(self.min_epsilon,imin(1.,i1.i-imath.log10((ti+i1)i/iself.decay))) 

 

iiiidefiget_learning_rate(self,it): 

iiiiiiiireturnimax(self.min_lr, min(1., 1. - math.log10((t + 1) / self.decay))) 

 

    def train(self): 

        for e in range(self.num_episodes): 

            current_state = self.discretize_state(self.env.reset()) 

 

            self.learning_rate = self.get_learning_rate(e) 

            self.epsilon = self.get_epsilon(e) 

            done = False 

 

            while not done: 

                action = self.choose_action(current_state) 

                obs, reward, done, _ = self.env.step(action) 

                new_state = self.discretize_state(obs) 

                new_action = self.choose_action(new_state) 

                self.update_sarsa(current_state, action, reward, new_state, new_action) 

                current_state = new_state 
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        print('Finished training!') 

 

    def run(self): 

        for it in range(1500): 

            self.env.render() 

            t = 0 

            done = False 

            current_state = self.discretize_state(self.env.reset()) 

 

            position_list = [] 

            velocity_list = [] 

            angle_list = [] 

            angular_velocity_list = [] 

            steps = [] 

            total_rounds = 0 

            round = 0 

            episode_reward = 0 

            while not done: 

                self.env.render() 

                t = t + 1 

                action = self.choose_action(current_state) 

                obs, reward, done, _ = self.env.step(action) 

                new_state = self.discretize_state(obs) 

                current_state = new_state 

 

                round += 1 

                position_list.append(obs[0]) 

                velocity_list.append(obs[1]) 

                angle_list.append(obs[2]) 

                angular_velocity_list.append(obs[3]) 

                steps.append(round) 

                total_rounds += round 

 

                if done: 

                    if round > 150: 

                        print(f'Threshold reached after {round + 1} iterations.') 

                    if round < 199: 

                        position_list = [] 

                        velocity_list = [] 

                        angle_list = [] 

                        angular_velocity_list = [] 

                        steps = [] 

                    else: 

                        position = position_list 

                        velocity = velocity_list 

                        angle = angle_list 

                        angular_velocity = angular_velocity_list 

                        time = steps 

                        plot = True 

                    break 

 

        if plot: 

            fig, ax = plt.subplots(2,2, figsize=(15,8)) 

            ax[0][0].plot(time, position) 

            ax[0][0].set_xlabel('Time steps') 

            ax[0][0].set_ylabel('Position (m)') 

            ax[0][0].grid() 

 

            ax[0][1].plot(time, velocity, 'r') 

            ax[0][1].set_xlabel('Time steps') 

            ax[0][1].set_ylabel('Velocity (m/s)') 

            ax[0][1].grid() 

 

            ax[1][0].plot(time, angle, 'g') 

            ax[1][0].set_xlabel('Time steps') 

            ax[1][0].set_ylabel('Angle (rad)') 

            ax[1][0].grid() 

 

            ax[1][1].plot(time, angular_velocity, 'y') 

            ax[1][1].set_xlabel('Time steps') 

            ax[1][1].set_ylabel('Angular Velocity (rad/s)') 

            ax[1][1].grid() 

 

            plt.suptitle('Observations per step') 

            plt.tight_layout() 
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            plt.show() 

        return t 

 

 

 

 

Python Code for Q-Learning 

import numpy as np 

import math 

import matplotlib.pyplot as plt 

import gym 

 

class Agent: 

    '''A class to define an agent learning to control the system''' 

 

    def __init__(self, environment, buckets=(3,3,3,6), alpha=0.1, gamma=0.98): 

        if not (0 < gamma <= 1): 

            raise ValueError("Must be 0 < γ <= 1") 

        self.alpha = alpha 

        self.gammai=igamma 

iiiiiiiiself.environmenti=ienvironment 

iiiiiiiiself.bucketsi=ibuckets 

iiiiiiiiself.upper_boundsi=i[self.environment.observation_space.high[0],i0.5, 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiself.environment.observation_space.high[2],imath.radians(50)] 

iiiiiiiiself.lower_boundsi=i[self.environment.observation_space.low[0],i-0.5,i  i

 iiiiiiiiiiiiiself.environment.observation_space.low[2], 

iiiiiiiiiiiiiiiiiiiiiiiiiiiii-math.radians(50)] 

iiiiiiiiself.Qi=inp.zeros(self.bucketsi+i(self.environment.action_space.n,)) 

iiiiiiiiself.statei=i(0,i0,i0,i0) 

iiiiiiiiself.total_rewardi=i0 

 

iiiidefidiscretize(self,iobservations): 

iiiiiiii'''Dicretizeiobervationsibasedionitheibuckets''' 

iiiiiiiidiscretizedi=i[] 

iiiiiiiiforiiiinirange(len(observations)): 

iiiiiiiiiiiiscalingi=i((observations[i]i+inp.abs(self.lower_bounds[i]))i/i(self.upper_bounds[i]

i iiiiiiiiiiiiii-iself.lower_bounds[i])) 

iiiiiiiiiiiiscaled_observationsi=iint(round((self.buckets[i]i-i1)i*iscaling)) 

iiiiiiiiiiiiscaled_observationsi=imin(self.buckets[i]i-i1,imax(0,iscaled_observations)) 

iiiiiiiiiiiidiscretized.append(scaled_observations) 

iiiiiiiireturnituple(discretized) 

 

iiiidefiget_reward(self,iaction,istate,ireward): 

iiiiiiii'''UpdateiQ-valueiaccordingitoitheistateiactionipair''' 

iiiiiiiiself.total_rewardi+=ireward 

iiiiiiiiself.Q[self.state][action]i=iself.Q[self.state][action]i+iself.alphai*i( 

iiiiiiiiiiiiiiiiiiiirewardi+iself.gammai*inp.max(self.Q[state])i-iself.Q[self.state][action]) 

iiiiiiiiself.statei=istate 

 

    def choice(self): 

        '''Randomly select among the two actions''' 

        random_action = self.environment.action_space.sample() 

        return random_action 

 

    def greedy_action(self): 

        '''Select action that has returned maximum reward''' 

        return np.argmax(self.Q[self.state]) 

 

 

def run_experiment(epsilon=1, rounds=500, episodes=1500): 

    '''Perform an experiment. Make the agent balance the pole''' 

    env = gym.make('CartPole-v0') 

    agent = Agent(env) 

    # get environment 

    obs = env.reset() 
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    plot = False 

    steps_per_round = [] 

    for episode in range(episodes): 

        position_list = [] 

        velocity_list = [] 

        angle_list = [] 

        angular_velocity_list = [] 

        steps = [] 

        total_rounds = 0 

        for round in range(rounds): 

            env.render() 

            p = np.random.random() 

            if p < epsilon: 

                action = agent.choice() 

            else: 

                action = agent.greedy_action() 

            # apply action 

            obs, reward, done, _ = env.step(action) 

            state = agent.discretize(obs) 

            agent.get_reward(action, state, reward) 

 

            position_list.append(obs[0]) 

            velocity_list.append(obs[1]) 

            angle_list.append(obs[2]) 

            angular_velocity_list.append(obs[3]) 

            steps.append(round) 

            total_rounds += round 

 

            if done: 

                if round > 150: 

                    print(f'Threshold reached after {round + 1} iterations.') 

                if round < 199: 

                    position_list = [] 

                    velocity_list = [] 

                    angle_list = [] 

                    angular_velocity_list = [] 

                    steps = [] 

                else: 

                    position = position_list 

                    velocity = velocity_list 

                    angle = angle_list 

                    angular_velocity = angular_velocity_list 

                    time = steps 

                    plot = True 

                break 

 

        epsilon = epsilon - 0.01 

        if epsilon < 0.01: 

            epsilon = 0.01 

 

        env.reset() 

 

        steps_per_round.append(round) 

 

    env.close() 

 

    if plot: 

        fig, ax = plt.subplots(2, 2, figsize=(15, 8)) 

        ax[0][0].plot(time, position) 

        ax[0][0].set_xlabel('Time steps') 

        ax[0][0].set_ylabel('Position (m)') 

        ax[0][0].grid() 

 

        ax[0][1].plot(time, velocity, 'r') 

        ax[0][1].set_xlabel('Time steps') 

        ax[0][1].set_ylabel('Velocity (m/s)') 
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        ax[0][1].grid() 

 

        ax[1][0].plot(time, angle, 'g') 

        ax[1][0].set_xlabel('Time steps') 

        ax[1][0].set_ylabel('Angle (rad)') 

        ax[1][0].grid() 

 

        ax[1][1].plot(time, angular_velocity, 'y') 

        ax[1][1].set_xlabel('Time steps') 

        ax[1][1].set_ylabel('Angular Velocity (rad/s)') 

        ax[1][1].grid() 

 

        plt.suptitle('Observations per step') 

        plt.tight_layout() 

        plt.show() 

 

        fig, ax = plt.subplots(1, 1, figsize=(15, 8)) 

        ax.plot(np.arange(0, episodes), steps_per_round) 

        ax.set_xlabel('Episodes') 

        ax.set_ylabel('Iterations') 

        plt.suptitle('Total iterations per episode') 

        plt.show() 

 

    print("After {} episodes the average cart steps before done was {}".format(episodes, 

np.mean(steps_per_round)))       

 

Python Code for Q-Learning with Value Function Approximation 

import gym 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.kernel_approximation import RBFSampler 

 

GAMMA = 0.99 

ALPHA = 0.1 

 

 

def epsilon_greedy(model,is,ieps=0.1): 

iiii#iwe'lliuseiepsilon-softitoiensureiallistatesiareivisited 

iiii#iwhatihappensiifiyouidon'tidoithis?ii.e.ieps=0 

iiiipi=inp.random.random() 

iiiiifipi<i(1i-ieps): 

iiiiiiiivaluesi=imodel.predict_all_actions(s) 

iiiiiiiireturninp.argmax(values) 

iiiielse: 

iiiiiiiireturnimodel.env.action_space.sample() 

 

 

defigather_samples(env,in_episodes=10000): 

iiiisamplesi=i[] 

iiiifori_iinirange(n_episodes): 

iiiiiiiisi=ienv.reset() 

iiiiiiiidonei=iFalse 

iiiiiiiiwhileinotidone: 

iiiiiiiiiiiiai=ienv.action_space.sample() 

iiiiiiiiiiiisai=inp.concatenate((s,i[a])) 

iiiiiiiiiiiisamples.append(sa) 

 

iiiiiiiiiiiis,ir,idone,iinfoi=ienv.step(a) 

iiiireturnisamples 

 

 

classiModel: 

iiiidefi__init__(self,ienv): 



46 

 

iiiiiiii#ifititheifeaturizeritoidata 

iiiiiiiiself.envi=ienv 

iiiiiiiisamplesi=igather_samples(env) 

iiiiiiiiself.featurizeri=iRBFSampler() 

iiiiiiiiself.featurizer.fit(samples) 

iiiiiiiidimsi=iself.featurizer.n_components 

 

iiiiiiii#iinitializeilinearimodeliweights 

iiiiiiiiself.wi=inp.zeros(dims) 

 

iiiidefipredict(self,is,ia): 

iiiiiiiisai=inp.concatenate((s,i[a])) 

iiiiiiiixi=iself.featurizer.transform([sa])[0] 

        return x @ self.w 

 

    def predict_all_actions(self, s): 

        return [self.predict(s, a) for a in range(self.env.action_space.n)] 

 

    def grad(self, s, a): 

        sa = np.concatenate((s, [a])) 

        x = self.featurizer.transform([sa])[0] 

        return x 

 

 

def test_agent(model, env, n_episodes=20): 

    reward_per_episode = np.zeros(n_episodes) 

    for it in range(n_episodes): 

 

        position_list = [] 

        velocity_list = [] 

        angle_list = [] 

        angular_velocity_list = [] 

        steps = [] 

        total_rounds = 0 

        round = 0 

        done = False 

        episode_reward = 0 

        s = env.reset() 

        while not done: 

 

            a = epsilon_greedy(model, s, eps=0) 

            s, r, done, info = env.step(a) 

 

            round += 1 

            position_list.append(s[0]) 

            velocity_list.append(s[1]) 

            angle_list.append(s[2]) 

            angular_velocity_list.append(s[3]) 

            steps.append(round) 

            total_rounds += round 

 

            episode_reward += r 

 

 

            if done: 

                if round > 150: 

                    print(f'Threshold reached after {round + 1} iterations.') 

                if round < 199: 

                    position_list = [] 

                    velocity_list = [] 

                    angle_list = [] 

                    angular_velocity_list = [] 

                    steps = [] 

                else: 

                    position = position_list 

                    velocity = velocity_list 
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                    angle = angle_list 

                    angular_velocity = angular_velocity_list 

                    time = steps 

                    plot = True 

                break 

 

 

        reward_per_episode[it] = episode_reward 

 

    if plot: 

        fig, ax = plt.subplots(2,2, figsize=(15,8)) 

        ax[0][0].plot(time, position) 

        ax[0][0].set_xlabel('Time steps') 

        ax[0][0].set_ylabel('Position (m)') 

        ax[0][0].grid() 

 

        ax[0][1].plot(time, velocity, 'r') 

        ax[0][1].set_xlabel('Time steps') 

        ax[0][1].set_ylabel('Velocity (m/s)') 

        ax[0][1].grid() 

 

        ax[1][0].plot(time, angle, 'g') 

        ax[1][0].set_xlabel('Time steps') 

        ax[1][0].set_ylabel('Angle (rad)') 

        ax[1][0].grid() 

 

        ax[1][1].plot(time, angular_velocity, 'y') 

        ax[1][1].set_xlabel('Time steps') 

        ax[1][1].set_ylabel('Angular Velocity (rad/s)') 

        ax[1][1].grid() 

 

        plt.suptitle('Observations per step') 

        plt.tight_layout() 

        plt.show() 

 

    return np.mean(reward_per_episode) 

 

 

def watch_agent(model, env, eps): 

    done = False 

    episode_reward = 0 

    s = env.reset() 

    while not done: 

        a = epsilon_greedy(model, s, eps=eps) 

        s, r, done, info = env.step(a) 

        env.render() 

        episode_reward += r 

    print("Episode reward:", episode_reward) 

 

 

if __name__ == '__main__': 

    # instantiate environment 

    env = gym.make("CartPole-v0") 

    model = Model(env) 

    reward_per_episode = [] 

    # watch untrained agent 

    watch_agent(model, env, eps=0) 

 

    # repeat until convergence 

    n_episodes = 1500 

    for it in range(n_episodes): 

        s = env.reset() 

        episode_reward = 0 

        done = False 

        while not done: 

            a = epsilon_greedy(model, s) 
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            s2, r, done, info = env.step(a) 

            # get the target 

            if done: 

                target = r 

            else: 

                values = model.predict_all_actions(s2) 

                target = r + GAMMA * np.max(values) 

            # update the model 

            g = model.grad(s, a) 

            err = target - model.predict(s, a) 

            model.w += ALPHA * err * g 

            # accumulate reward 

            episode_reward += r 

            # update state 

            s = s2 

 

        if (it + 1) % 50 == 0: 

            print(f"Episode: {it + 1}, Reward: {episode_reward}") 

 

        # early exit 

        if it > 20 and np.mean(reward_per_episode[-20:]) == 200: 

            print("Early exit") 

            break 

 

        reward_per_episode.append(episode_reward) 

 

    # test trained agent 

    test_reward = test_agent(model, env) 

    print(f"Average test reward: {test_reward}") 

 

    plt.plot(reward_per_episode) 

    plt.title("Reward per episode") 

    plt.show() 
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