
CART POLE SYSTEM ANALYSIS

AND CONTROL USING MACHINE

LEARNING ALGORITHMS

A DESSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE AWARD OF

THE DEGREE OF

 MASTER OF TECHNOLOGY
 IN

 CONTROL & INSTRUMENTATION
 Submitted by:

 FAIZ MOHAMMAD ALI

 Roll No. 2K20/C&I/01

 UNDER THE SUPERVISION OF

 PROF. MADHUSUDAN SINGH

 ELECTRICAL ENGINEERING DEPARTMENT
 DELHI TECHNOLOGICAL UNIVERSITY
 (Formerly Delhi College of Engineering)
 Bawana Road, Delhi-110042

 MAY 2022

II

ELECTRICAL ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

 CANDIDATE’S DECLARATION

I, Faiz Mohammad Ali, Roll No. 2K20/C&I/01, an M.Tech (Control &

Instrumentation) student, hereby declare that the MAJOR PROJECT titled "Cart pole

system analysis and control using Machine Learning algorithms" is submitted by me to

the Department of Electrical Engineering, Delhi Technological University, Delhi for the

partial fulfillment of the requirements for the award of the degree of Master of Technology,

and that this submission is original and not copied from any source without proper citation.

This work has never been used to give a degree, diploma associate ship, fellowship, or any

other equivalent title or recognition.

Place: Delhi

Date: May, 2022

FAIZ MOHAMMAD ALI

III

 ELECTRICAL ENGINEERING DEPARTMENT

 DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi-110042

 CERTIFICATE

I hereby certify that the MAJOR PROJECT titled " Cart pole system analysis and

control using Machine Learning algorithms" submitted by Faiz Mohammad Ali,

2K20/C&I/01, Electrical Engineering Department, Delhi Technological University, Delhi in

partial fulfillment of the requirement for the award of a Master of Technology degree is a

record of the project work completed by the student under my supervision. To the best of

my knowledge, this work has never been submitted in part or in whole for any degree or

diploma at this university or anywhere else.

Place: Delhi PROF. MADHUSUDAN SINGH

Date: May 2022 Electrical Engineering Department

 DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering Bawana Road, Delhi-110042)

IV

ACKNOWLEDGEMENT

I am really thankful to the Department of Electrical Engineering at Delhi Technological University

(DTU) for allowing me to work on this project.

I wish to express my sincere gratitude to my supervisor Prof. Madhusudan Singh of the

Department of Electrical Engineering at DTU, for his able guidance and support in completing this

project work, which has been extremely helpful in carrying out my current work.

Finally, I'd want to thank all of the academic members of DTU's Electrical Engineering

Department for their intellectual support throughout my M.Tech studies.

V

ABSTRACT

The cart and pole system balancing is a classical benchmark problem in control theory which

is also referred as inverted pendulum. It is a prototype laboratory model of an unstable

mechanical system. It is mainly used to model the control problems of rockets and missiles in

the initial stages of their launch.

This system represents an unstable system because an external force is required to keep the

pendulum in vertically upright position when cart moves on horizontal track.

Designing optimal controllers for the Cart and pole system is a challenging and complex

problem as it is an inherently nonlinear system. The principal advantage of reinforcement

learning (RL) is its ability to learn from the interaction with the environment and provide an

optimal control strategy. In this project, RL is explored in the context of control of the

benchmark cart-pole dynamical system. RL algorithms such as Q-Learning, SARSA, and

value-function approximation applied to Q-Learning are implemented in this context. By

using a fixed Force value of +10N or -10N, decided by a policy that maximizes the

approximate value function, the agent achieves optimal control of the system.

VI

TABLE OF CONTENTS

Acknowledgement .. IV
Abstract ... V
Chapter 1: Introdcution…….. 8

 1.0 Introduction……………………………………………………………………………….8

 1.1 Literature review…………………………………………………………………………10

 1.1.1 Introduction to literature review ………………………………………………………10

 1.1.2 Referred Literature ……………………………………………………………………10

 1.2 Motivation for machine learning algorithms…………………………………………….13

 1.3 Objective of present work……………………………………………………………….14

 1.4 Organization of thesis…………………………………………………………………. 14

Chapter 2: Mathematical modeling of Cart Pole dynamics and applications of Reinforcement Learning

algorithms…………………... 15

 2.0 Overview of cart pole dynamics and reinforcement learning ….................................... 15

 2.1 Cart Pole system ….. 16

 2.2 Reinforcement Learning ………………………….. 18

 2.2.1 Elements of Reinforcement Learning ………………... 18

 2.2.2 Finite Markov Decision Processes .. 19

 2.2.3 The Agent – Environment Interface ... 19

 2.2.4 Returns .. 20

 2.2.5 The Markov Property .. 21

 2.3 Cart Pole Model for Reinforcement Learning…... 22

 2.4 Temporal Difference Learning .. 24

 2.5 Conclusion ……………………... 26

Chapter 3: Application of Reinforcement Learning for stabilization of cart pole system................ 26

 3.1 On-policy Temporal Difference control algorithm (SARSA) 26

 3.2 Off-Policy Temporal Difference control algorithm (Q-learning).................................. 28

 3.3 Q-Learning with value function approximation... 30

Chapter 4: Conclusions and Future scope of work...33

References …………………………………………………………………………………….….....35

Appendix ……………………………………………………………………………………………41

VII

LIST OF TABLES AND FIGURES

List of tables

TABLE NO. LABEL

Table – 2.1 Constraints of the Cart-pole environment considered

List of figures

FIGURE NO. LABEL

Figure – 1.1 Cart-Pole System

Figure - 1.2 Cart-Pole state based on action

Figure – 2.1 Diagram of the pendulum environment with actuating forces

Figure – 2.2 Forces acting on Cart Pole System

Figure – 3.1 The agent – environment interaction in reinforcement learning

Figure – 3.1 SARSA method Cart-Pole state against time steps

Figure – 3.2 Q-Learning method Cart-Pole state against time steps

Figure – 3.3 RBF neural network

Figure – 3.4 Value function approximation method Cart-Pole state against time

steps

8

CHAPTER – 1

INTRODUCTION

1.0 INTRODUCTION

 In the context of control system, the cart pole is a benchmark control problem. A cart pole

system consists of a pole pivoting on a cart that may travel along a horizontal axis. The main

challenge is to use bi-directional forces applied on the cart by an electromechanical system and

balance the pole in an upright position.

Fig 1.1 shows a schematic diagram of Cart-pole balancing which is a well-known control

benchmark problem. It is designed mechanical system which is inherently unstable and

underactuated. The dynamics of this system are used to better comprehend challenges like

maintaining balance (e.g., a human walking), self-balancing systems and thruster control of

rockets.

Figure 1.1 – Cart-Pole System

9

 The Cart Poleibalancingiproblemihasibeeniusediasiaibenchmarkifor Reinforcement Learning

algorithms for many decades. While the newer definitions of the Cart Pole balancing problem

focus on achieving control in complex state and action spaces, the older definitions of the problem

are fundamental and haveibeeniderivedifromianiAdaptiveiControl technique known as the

BOXES and thus has been explored by both the Reinforcement Learning and Control research

communities in the past. In addition to its prominence in these literatures, this problem is a

challenge for the RL agent as it hasitoiselectianditake actions in a veryilimitediandidiscrete action

space.

The condition of the cartpole (if it's tilted to the left or right) is referred to as state. Any data that

represents the cart-pole, which includes the cart's speed and position,itheipole'siangle, and pole

speed on the tip, may be taken into consideration as states. For this work the cart's state is the four

characteristics listed above.

Figure 1.2 – Cart-Pole state based on action

Depending at the motion taken, it may result in one-of-a-kind different states as shown in Fig.1.2.

Suppose the pole is beginning straight, if the cart is going left, the pole is more often than not to

head right, that's a brand-new state. Therefore, for the duration of every time-step, any movement

taken will usually cause a one-of-a-kind state.

10

1.1 LITERATURE REVIEW

1.1.1 AN OVERVIEW

 With increasing demand for complex nonlinear control systems, design of optimal controllers

through classical methods is challenging. The fact that Reinforcement Learning enables a system

to learn through exploration, and adapt to a dynamic environment makes it optimal to be applied

to control a nonlinear complex system. Cart Pole balancing problem is a non-linear control

problem, with inherent instability and is often used as a benchmark for control techniques. Cart

Pole balancing problem focuses on achieving control in complex state and action spaces.

In literature various techniques areiused to balance the cartipoleisystemias well as various other

systems.

1.1.2 REFERRED LITERATURE

 In [1] an artificial neural network is utilised toicontrolitheiangleiandipositioniof a non-linear

inverted pendulum system as an artificial intelligence technology. In [2] a continuous-state system

is considered and pursueiainear-optimalipolicyithrough online learning and new online RL

algorithm—MSEC (Multi-Samples in Each Cell) is proposed. In [3] linear and nonlinear control

approaches are used to solve the problem of balancing an inverted pendulum on an unmanned

aerial vehicle (UAV). In [4] aniexperienceireplay is proposed for least-squares policy iteration

(ERLSPI) for improving the utilization efficiency. The inverted pendulum system is then solved

using the ERLSPI approach. A gameitheoreticiLyapunovifuzzyicontroller that is both safe and

stable is utilised to improve a Markov games-based reinforcement learning controller that is

additionally hybridised withiaiLyapunovitheory-basedicontrol in [5].

 In [7] a new approach is proposed for stabilization of a cart inverted pendulum system using

PID controller based on Linear Quadratic Regulatori(LQR)iandiArtificialiNeuraliNetwork

(ANN). In [8] a method is proposed to research the assistive techniques immediately from

interactions among the person and the robotic and system of a learning hassle of assistive

techniques as a coverage seek hassle to relieve heavy burdens to the person for information

acquisition is executed with the aid of using exploiting a information-green model-primarily based

11

totally reinforcement learning framework. In [9] one-of-a-kind reinforcement algorithms are used,

Q-learningiand Adaptive HeuristiciCritici(AHC)ialgorithm, on famous cart-poleibalancingihassle

and their overall performanceiis examined. In [10] it’s miles proven that an intermittent controller

may be installed obviously thru reinforcement learning. In [11] the symmetry definition is elevated

from finite to countless state space after which a unique sort of symmetric foundation capabilities

is proposed for fee characteristic approximation to combine the earlier expertise of symmetry

approximately the surroundings for big or maybe countless state space.

 In [12] Reinforcement Learning has been utilizeditoidevelopiaicontroller for stabilization

ofiaiDoubleiInvertediPendulum. In [13] a robot version-primarilyibasedireinforcementilearning

approach that mixes thoughtsifromiversioniidentityiand version predictive control is presented.

 In [14] a self-learning methodiisievolvediwhichipermitsithe agent to adaptively expand an

inner reward signal primarilyitotallyibasedion a given ultimate goal, without requiring a specific

external reward signal from the environment. The problem of cart-pole balancing withinside the

continuous state space setup with restrained track length is provided in [15].

In [16] a Control Algorithm by implementingitheiQ-Learningitechniquesiinithe PD control

scheme is presented.

 The challenge of stabilising an invertedipendulumisystemiwithiknown/unknowniinternal

dynamics is described in [17] with simulations to show the advantages of the RL technique over

the conventional approach. In the method proposed in [18] theilearningicycles of online

reinforcementilearningisystems are adaptively changed to acquireiainecessary and sufficient set of

states for them by using a growingiself-organizingimap to estimate the state for fast learning speed.

To enhance the time of the single inverted pendulum swinging up, [19] uses an improved

reinforcement learning algorithm that is modelled in a double-layeriBPineuralinetwork. The

MQTT protocoliisiusedionitheiEthernet connection as a deep reinforcement learning environment,

and the agentiisilearneditoicontrolitheirealideviceilocatediremotelyifrom the controller, and the

classical PID controlleriisialsoiuseditoiimplementiimitationireinforcementilearning and facilitate

the learning process in [20]. A rotary inverted pendulum composediofiaicyberienvironment and

physicalienvironmentibased on the OpenFlowinetwork,ianditheiMQTT protocol is used on the

Ethernet connectioniasiaideepireinforcementilearningienvironment, and the agent is learned to

control theirealideviceiAicyberiphysical system (CPS) is constructed in [21] to show that a deep

12

RL agenticanisuccessfully manage a rotary cartpole system.

 In [23] stochastic variationsiofiaiclassicicartpoleibalancing task are implemented using three

algorithms: VanillaiPolicyiGradient, NaturaliPolicyiGradient, andiTRPO. In [24] the control

problem ofinonlinearisystemiundericontinuousistate space is solved using a neural Q-learning

algorithm basedioniresidualigradientimethod.

In [25] DQN based on VREP simulation environment, isiuseditoitryitoisolveiinverted pendulum

problem. In [26], a successful solutionitoithe pruning performanceireductioniproblem in the DRL

domain is presented, as well as a functional approach known as Policy Pruning and Shrinking

(PoPS) for training high-performing DRL models while preserving a compact representation of

the DNN. In [27] a brand new set of rules primarily based totally oniSARSAiis proposed to keep

away from theioverestimation hassle in conventional reinforcementilearning. In [28] the train

throughput evaluation is executed with RLlib and IMPALA on CartPole and Pong and the results

of diverse scalability metrics, clustering, and commentary dimensions on train throughput are

analyzed.

 In [30] RLHTMia brandinew learning technique of Reinforcementilearning is provided

primarily based totally on brain-stimulated learning called HTM and the overall performance

ofiHierarchical TemporaliMemory (HTM) in a reinforcement learning device is analyzed via way

of means of changing the Q characteristic in RL with HTM.

In [31] a federated reinforcementilearningibasedion multi agent environment is proposed. In [32]

a lightweight on-deviceireinforcementilearningiapproachifor low-cost FPGA devices is proposed

which exploitsiairecentlyiproposedion-deviceilearning approach based on neural networks that

does not employ backpropagation but instead uses the OS-ELM (Online Sequential Extreme

Learning Machine)itrainingialgorithm. In addition, for on-device reinforcement learning, a

combination of L2 regularisation and spectral normalisation is proposed. State change predictions

are employed as an unbiasediandinon-sparseisupplementifor TD-targets in [34], and transfer

learningifromimodelidynamics prediction to Q value function approximation is allowed by

training aiforwardimodel that shares the initial layers of a Q-network. In [35] learning a potential

functioniconcurrentlyiwithitrainingianiagentiusingia reinforcement learning algorithm based on

the potential-based reward shapingiframework,iwhichiguarantees policy invariance is proposed.

The topic of transfer learningibetweeniareas with strong similarities is examined in [36].

 Various deep Q learning implementations for discrete action space systems are examined in

13

[37], and the efficiency of the solutions for the classic Cartpole problem transferred to the Gazebo

environmentiisiinvestigated. A unique model compression framework for DRL models is

described in [38], which uses a sparse regularised pruning method and policy shrinking technology

to achieve a great balance between high sparsity and compression rate.

[39] investigates the adaptiveioptimalistationaryicontrolioficontinuous-time linear stochastic

systems with both additive and multiplicativeinoisesiusingireinforcementilearning techniques, and

proposes a novel off-policy reinforcement learning algorithm basedionipolicyiiteration called

optimisticileast-squares-basedipolicy iteration.

In [40], a twinidelayedideepideterministicipolicy gradient (TD3) actor-critic algorithm is utilised

to solve the Inverted Pendulum control issue, and a unique dynamiciandienhancedirewardifunction

is proposed for the same goal.

1.2 MOTIVATION FOR MACHINE LEARNING ALGORITHMS

 The developmentioficomputationalipower is constantly on the rise and makes for new

possibilities in a lot of areas. Two of the areasithatihasimadeigreatiprogress thanks to this

developmentiareicontrolitheoryiand artificial intelligence. The mostieminentiareaiof artificial

intelligence is machineilearning.iTheidifference between anienvironmenticontrollediby control

theory andianienvironmenticontrollediby machine learningiisithatitheimachineilearningimodel

will adapt in orderitoiachieveiaigoaliwhile the classicimodelineedsipresetiparameters. This

supposedly makesitheimachineilearningimodel more optimaliforianienvironmentiwhich changes

over time. This theoryiisitestediinithisiresearch work on a modeliofianiinvertedipendulum. Three

different machineilearningialgorithmsiare implementedioniaicartipoleimodel. Changes are made

to the model machine learning algorithms are tested. As a result, one of the algorithms were able

to mimic the classic model but with different accuracy.

1.3 OBJECTIVE OF PRESENT WORK

 This dissertation mainlyifocusesioniapplications of machine learning algorithms for

balancingioficartipole system. The following are main contributions in this project.

i. To study the mathematical modelioficartipoleidynamicsiand identification of system.

ii. Implement reinforcementilearningialgorithms (SARSA and Q-Learning) on a discretized

cart pole system.

14

iii. Implement Q-Learningitechniqueiwithivalue function approximationionicartipole system.

1.4 ORGAIZATION OF THESIS

 This dissertation contains 4 chapters, Chapter – 1 includes a brief introduction of the present

work. Chapter 2 explains, dynamics of cart pole system and Reinforcement learning algorithm.

Chapter 3 shows the implementation and results of SARSA, Q-Learning and Q-Learning with

value function approximation. In chapter 4 the outcomes of this work has been concluded.

15

CHAPTER – 2

MATHEMATICAL MODELING OF CART POLE

DYNAMICS AND APPLICATIONS OF

REINFORCEMENT LEARNING ALGORITHMS

2.0 OVERVIEW OF CART POLE DYNAMICS

The inverted pendulum operates in an environment with the following parameters; A cart

that has a mass M. External force F is added at the sides. The pendulum itself has a mass m and is

connected to the cart through a rigid massless rod with a length l. The pendulum is rotated from

the vertical line by a quantity θ in the counter clockwise direction. There’s also a friction force f

that works in the opposite direction of the external force and a gravitation constant g. Figure 2.4

describes the environment.

Figure 2.1: Diagram of the pendulum environment with actuating forces

The system state of the pendulum at any time is defined by four state variables:

i. Angular Position θ

ii. Angular Velocity 𝜽̇

16

iii. Linear Positioniofitheicart 𝒙

iv. Linear Velocity of the cart 𝒙̇

The system has the freedom to move in two different ways, the cart can move horizontal

with the x-axis and the pendulum can rotate against its pivot point 360 degrees.

Reinforcement Learningiinvolvesilearningihow to connect situations to behaviours in

order to maximise a numericalirewardisignal. These problems are closed-loop because the

learning system’s actions influence its later inputs. Furthermore, unlike manyiformsiofimachine

learning, the learner is not directed specific actions to take, but instead must discover

whichiactions yield the most reward by trying them out. In most complex problems,

actionsimayiaffectinot only the immediateireward butialsoitheinextisituationiand, through

that,iallisubsequentirewards. Thus, these are the threeimostiimportantidistinguishingifeatures of a

reinforcement learning problem:

i. Beingiclosed-loop

ii. Not having commandsiasitoiwhatimovesitoitake, and the effects of those moves consisting

of reward signals.

iii. Operate for longer periods of time

2.1 MATHEMATICAL MODELING OF CART POLE SYSTEM

Figure 2.2: Forces acting on Cart Pole System

17

In section 2.0 it was stated that the pendulum has the freedom to move in two different ways and

the forces acting on the pendulum are shown in Fig.2.2.

This leads to two state variables:

 xs = Displacement of cart on x-axis relative to starting position.

 θs = Angular displacement for the pivot relative to upright position.

To derive the equations of motions using Lagrange’s equations (2.1).

 . (2.1)

Where L is the difference between the kinetic energy (T) and the potential energy (V).

 L = T – V (2.2)

The potential energy of the system is going to be the potential energy of the pendulum since the

cart will never have any stored energy.

 . (2.3)

Finding the kinetic energy is a little more complicated since it involves both the pendulum and the

cart.

 (2.4)

By then combining formula 2.2, 2.3, and equation 2.4 can be solved for L.

 . (2.5)

Using Lagrange’s equations (2.1) and calculating the equations of motions for our state variables

xs and θs we can get the equations of motions for the system.

 (2.6)

Where F is the external force applied to the state variable xs

18

 (2.7)

Equation 2.7 is equal to 0 because there will be no external force actuating on state variable θs.

2.2 REINFORCEMENT LEARNING

Learning from a training set of labelled examples provided by an external supervisor is

known as supervised learning. The objective of this kind of learning is for the system to extrapolate

or generalizeiitsiresponsesiso that it acts correctlyiinisituationsinotipresent in the training set.

Unsupervised learning deals with findingistructureihiddeniin collections of unlabeled data.

Reinforcementilearning is therefore, a third machine learning paradigm that deals with a goal-

directediagentiinteracting with aniuncertainienvironment.

One ofitheichallengesithatiariseiinireinforcement learning, and not in other kinds of

learning, is theitrade-offibetweeniexploration andiexploitation. The agent must utilise what it

alreadyiknows to maximise reward,ibutiit must also explore in order to make better action

decisions in the future. Neither explorationinoriexploitationicanibeipursued exclusively without

failing at the task. In case of a deterministic environment, the agent must explore by trying various

actions in each state, and progressivelyilearnitoiselectitheibest action at each state. On the other

hand, a stochastic environment requiresirepeateditrialsiofitheisameiaction at each state in order to

obtain an estimate of the amount of reward expected from that state. This dilemma between

exploration and exploitation is one of the key features of reinforcement learning.

2.2.1 Elements of Reinforcement Learning

i. Policy: A policy describes the learning agent's behaviour at a specific moment in time, i.e.,

A policy is the relation of environmental perceptions to steps to perform when such

perceptions are realized. It corresponds to the stimulus - response rules of psychology.

ii. Reward signal: In a reinforcement learning problem, the aim is described by means of a

reward signal. Any Reinforcement Learning algorithm's sole aim isitoimaximizeithe full

reward it gets over time. The reward signal as a result defines the agent's effective and

terrible events. In a organic system, rewards are analogous to pleasure or pain experiences.

19

iii. Value function: A state's value function is the full quantity of reward an agent can assume

to build up in the future, starting with that state. The RL algorithm estimates the value

function as a feature of rewards. Unlike rewards, which decideitheiimmediate,iintrinsic

desirabilityiofienvironmentalistates, values suggest the long-time period desirabilityiof

states after accounting for the states which might be in all likelihood toifollowiandithe

rewards to be had in those states.

iv. Model: A model simulates the environment's behaviour or, to put it another way, allows

conclusions about how the environment will behave. Models are employed in planning,

which is a means of deciding on a course of action by anticipating future events.

2.2.2 Finite Markov Decision Processes

Markov Decision Processes (MDPs) are a mathematical framework for describing decision

making structure in scenarios where the result is partially random and partially underitheidecision

making agent's control. MDPs are used to tackle a variety of optimization and control problems,

which are solved using different reinforcement learning techniques.

2.2.3 The Agent – Environment Interface

The reinforcement learning venture is a easy manner to border the hassle ofilearningifrom

interaction so one can achieve a goal. The agent is each a learner and a choice maker. The

environment refers back to the device with which it interacts, which incorporates the entirety

outside of the agent. As visible in Fig.3.1, the agent chooses actions, and the environment responds

by providing new conditions to the agent.iTheienvironment additionally produces rewards, which

can be unique numericalivaluesithatitheiagentitries to maximize over time. A task is a kind of

reinforcementilearningiproblem this is described with the aid of using an in-depth description of

an environment, inclusive of how rewards are calculated.

Figure 2.3:iTheiagent – environment interaction in reinforcement learning

20

The agent and environment interact at different time steps, t =i0,i1,i2,i3… At each and every time

step t, theiagent receives a new environmentistate,iStiЄiS,iwhereiSiis the set ofipossibleistates, and

depending on the state chooses an action,iAtiЄiA(𝑆𝑡)i,iwhereiA(𝑆𝑡) is the set of actions possible

in state 𝑆𝑡 . After one time,itheiagentireceivesia numericalireward,iRt+1iЄ R and finds itself in a

new state St+1 as a consequence of its action in the previous state. Figure 1 shows the agent –

environmentiinteraction.

At all time steps, the agent performs a mappingifromistatesitoiprobabilitiesiof performing

each available action. This mapping oristate-actionipair is the agent’s policy denoted as πt, where

πt(a|s)iisitheiprobabilityithat At = a if 𝑆𝑡 = s. The agent's policy changes as a result of its

experience, as defined by reinforcement learning approaches. The agent's long-term goal is to

maximise the total amount of compensation it receives.

This framework is generic and adaptable, allowing it to be used to solve a wide range of

issues. The same frame work of MDP has been implemented in the optimization and control

problems that have been solved in the later stages of this report.

2.2.4 Returns

The agent’sigoaliisitoimaximizeithe cumulative reward it receivesiinitheilong run. If the sequence

of rewards receivediafteritimeistepit is denoted as Rt+1 , Rt+2 , Rt+3 ,…, then in general, the expected

return is maximized over time. If is defined as someispecificifunctioniofitheireward sequence, in

the simplest case,itheireturniisitheisum of rewards:

Gtii=iRt+1i+iRt+2i+iRt+3i+….i+iRT (2.8)

where Tiisiaifinalitimeistep. Each final time step marks the end of an episode, and each episode

ends in a special state called the terminal state. The next episode begins from a standard pre-

defined starting state, or randomly. These are known as episodic tasks. On theiotherihand, in many

cases the agent-environmentiinteractionidoesinotibreakinaturally into identifiableiepisodes, but

goes on continuallyiwithoutilimit. These tasks are called continuing tasks. Various reinforcement

learningialgorithmsihave been used to solve the control problem as an episodic task in this report,

and their results have been compared.

21

The additional concept that we need is discounting. According to this method, the agent

strives to choose activities that maximise the total of discounted benefits it receives in the future.

In particular, it chooses At to maximize the expected discounted return:

Gtii=iRt+1i+iϒRt+2i+iϒ2Rt+3i+i…i=ii∑ ϒ𝑘𝑅𝑡+𝑘+1
∞

𝑘=0
 (2.9)

whereiϒiisiaiparameter,i0i ≤ iϒi≤ 1, called the discount rate.

The discountirateideterminesitheipresentivalueiofifutureirewards: a reward received k time steps

in the future is worthionlyiϒ𝑘−1itimesiwhat it would be worthiifiitiwereireceived immediately.

2.2.5 The Markov Property

In a reinforcementilearning task, a state signal that compactly summarises past feelings while yet

retaining all relevant information is desired. Such a signalithatisucceedsiin retaining all relevant

informationiisisaiditoibeiMarkov, or said to haveiMarkoviproperty. Consider how a general

environment might respondiatitimeit+1itoitheiactionitakeniat time t. In the broadest sense, this

response could be influenced by everything that has happened previously. In this case, the

dynamicsicanibeidefined only byispecifying theicompleteijoint probability distribution:

 Pr{ St+1i=is’i,iRt+1ii=irii|iS0i,iA0i,iR1ii,i…..i,iSti-1ii,iAti-1i,iRti,iSti,iAt } (2.10)

for alliri,is’i,iandiallipossibleivaluesiofitheipastievents: S0i,iA0i,iR1ii,i…i,iSti-1ii,iAti-1i,iRti,iSt , At .

A state signal is considered to haveitheiMarkoviproperty if the nextistateiand reward earned by

the agent from the environment dynamics received at time t+1 areisolelyidependention the

system's state and the RL agent's behaviour at time t. The agent can maintain an estimate of the

inherent environment dynamics through State Transition Probabilities, which canibeidefined by:

 p(s’ , r | si,iai)i=iPr{iSt+1 = s’ , Rt+1 = r | St = s , At = a } (2.11)

For all r , s’ , s and a

If an environmentihasitheiMarkov property, we may anticipate the nextistateiand predicted next

reward based on the current state and action using one-step dynamics. By iteratingithisiequation,

one may prove that knowing simply the current state allows one to forecast all future states and

expectedirewards as well as knowing the entire history up to that point would allow. As a result,

Markov states are the finest potential foundation for making decisions. Thatiis,itheibestipolicy for

selecting actions based on a Markovistate is identical to the best policyiforiselectingiactions based

on entire histories.

22

2.2.6 Value Functions

Almostiallireinforcement learning methods include predicting value functions, which are

functions of states or state-action pairs which assess how good it is for the agent to be in a

particular state. The concept of 'how good' is defined in terms of anticipated future rewards, or

expected return. The value of a state s underiaipolicyiπ, denoted as 𝜈𝜋(𝑠), is theiexpected

returniwhenistartingiin s and following π thereafter.

 𝜈𝜋(𝑠) = Eπi[iGti|Sti=is] = Eπ [∑ ϒ𝑘𝑅𝑡+𝑘+1|
∞

𝑘=0
𝑆𝑡 = s] (2.12)

𝜈𝜋 is called the state-value for policy π .

Similarly, 𝑞𝜋(𝑠, 𝑎) is definediasitheivalue of takingiactioniaiinistateis under aipolicy π .

 𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋 [𝐺𝑡i|𝑆𝑡i = i𝑠i, ii𝐴𝑡 = 𝑎] = 𝐸𝜋 [∑ ϒ𝑘𝑅𝑡+𝑘+1|
∞

𝑘=0
𝑆𝑡 = 𝑠 , 𝐴𝑡 = 𝑎] (2.13)

𝑞𝜋 is called the action-valueifunctioniforipolicy π

2.2.7 Bellman Equation

The fact that value functions satisfy specific recursive relationships is a crucial property of

reinforcementilearningiandidynamiciprogramming. For any policy π and any state s, the following

consistencyiconditioniholdsibetween the valueiofisianditheivalue of its possible successor states:

 𝜈𝜋(𝑠) = Eπ [Gti|Sti= s] = 𝐸𝜋 [∑ ϒ𝑘𝑅𝑡+𝑘+1|
∞

𝑘=0
𝑆𝑡 = s]

 = 𝐸𝜋[𝑅𝑡+1 + ϒ ∑ ϒ𝑘𝑅𝑡+𝑘+2|
∞

𝑘=0
𝑆𝑡 = 𝑠]

 = ∑ 𝜋(𝑎|𝑠) ∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, i𝑎)𝑟𝑠′𝑎 [𝑟 + ϒ𝐸𝜋 [∑ ϒ𝑘𝑅𝑡+𝑘+2|
∞

𝑘=0
𝑆𝑡+1 = s′]]

𝜈𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠) ∑ 𝑝(𝑠′, 𝑟|𝑠, i𝑎)𝑠′,𝑟𝑎 [𝑟 + ϒ𝜈𝜋(𝑠′)] (2.14)

Equation (2.14) is the Bellmaniequationifor 𝜈𝜋.It expressesiairelationshipibetweenitheivalue of a

state anditheivaluesiofiitsisuccessoristates. The value function 𝜈𝜋 is the uniqueisolutionito its

Bellman equation. Bellmaniequationiformsitheibasisiof a number of ways to compute,

approximate,iandilearn 𝜈𝜋 using various reinforcement learning algorithms.

2.3 CART POLE PLANT MODEL FOR REINFORCEMENT LEARNING

When Reinforcement Learning is applied to the Cart-Pole problem, the dynamics of the

Cart-Pole subsystem remain the same. However, a few changes are made in order to incorporate

features of Reinforcement Learning and ensure that the Cart-Pole Plant can be completely

23

described by a Markov Decision Process.

Reinforcement Learning requires that the Environment be in the form that can be

describediasiaiMarkov Decision Process, where the Actionispaceimustibe finite. Thus, to limit the

number of actions that can be taken on the pendulum, a simplified form is considered and the

environment has constraints as given in Table 3.1. Here, a constant magnitude of Force F is

considered. As a result, the RL agent can take either a +F or a –F action on the Environment.

Index Observation Min Max

0 CartiPositioniiiiiiiii -2.4 2.4

1 CartiVelocity -Infii Infiiiiiiiiiiiiiiii

2 PoleiAngle ~i-0.209iradi(-12°)ii ~i0.209iradi(12°)ii

3 PoleiAngulariVelocity -Infiiiiiiiiiiiiiiiii Inf

Table 2.1 – Constraints of the Cart-pole environment considered

2.3.1 State Space Quantization

An entire class of Reinforcement Learning algorithms are known as Tabular Lookup

Methods. In Tabular Lookup Methods, unlike Continuous methods, the states of the Cart-Pole

system are quantized, that is, the quantities pendulum angle, velocity, cart positioning, and

velocity across their whole range have been divided into numerous bins. A box is defined here, as

a tuple comprisingiofioneibinifrom each of theifouristate variables.

These quantized states are the states with which the RL Agent builds a Value function,

similar to that of Dynamic Programming. To investigateitheiinfluence of quantization on the

algorithm's performance,itheiCart-Pole plant model was quantized using various quantization

parameters.

In the first type of State Space Quantization, the states of the Cart positioniandivelocityias well

as the Pole angle andiangularivelocityihave been quantized into 15 bins, and permuted to 162 different

boxes representing a tuple of 𝜽, 𝜽̇, 𝒙, and 𝒙̇ using the following rule:

𝜽 : [-12, -6), [-6, -1). [-1, 0), [0, 1), [1, 6), [6, 12] degrees

𝜽̇ : (-inf, -50), [-50,50], [50, inf) degrees /second

𝒙 : [-2.4, -0.8), [-0.8, 0.8], (0.8, 2.4] meters

24

𝒙̇ : (-inf, -0.5) [-0.5, 0.5], (0.5, inf) meters/second

2.4 Temporal Difference Learning:

Temporal Difference Learning (TD) is a typeiofiReinforcementiLearningialgorithm that

uses one-step value function updates and bootstrapping to estimate a state's quality.

TD methods are step-by-step algorithms with online updates of value estimates. At every

step of an episode, the qualityiofitheistateiisiupdated using the reward obtainediatithatistepiandithe

oldiestimateiof the quality of the next state. In other words, a guess of the state’s quality is updated

towards a better guess.

The TD Learning update equation for:

i. Prediction:

 V(𝑆𝑡)i ⟵ iV(𝑆𝑡) + iii𝛼[𝑅𝑡 + ϒV(𝑆𝑡+1) − V(𝑆𝑡)] (2.15)

Where 𝑆𝑡 correspondsitoitheicurrent state,

𝑆𝑡+1 correspondsitoitheinextistate,

V(𝑆𝑡) is the qualityiofitheiagentibeingiin state (𝑆𝑡)

(𝑅𝑡) is the reward obtained by from state (𝑆𝑡)

ii. Control:

 Q(𝑆𝑡, 𝐴𝑡) ⟵ Q(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡 + ϒQ(𝑆𝑡+1, 𝐴𝑡+1) − Q(𝑆𝑡, 𝐴𝑡)] (2.16)

Where (𝑆𝑡, 𝐴𝑡) correspondsitoitheicurrentistate and action,

(𝑆𝑡+1, 𝐴𝑡+1)icorrespondsitoithe next stateiand action,

Q(𝑆𝑡, 𝐴𝑡)iisithe quality ofitheiagentibeingiinistatei𝑆𝑡 and taking action 𝐴𝑡

𝑅𝑡 is theirewardiobtained byitakingian action 𝐴𝑡 from state 𝑆𝑡

When using Model Free Learning for Control, there are two ways to join Policyievaluation

and Policyiimprovement into GeneralizediPolicyiIteration. Exploration of the environment is

necessary to ensure that the agentiisinotitrappediinside the local maxima of expected return while

selecting actions based on the quality of the state. This exploration can be performed in many

ways, one being to choose actions randomly in the given state. On the other hand, Exploitation or

choosing the action which results in the maximum reward is required to achieve the objective.

This trade-off is handled by two methods of Model Free control:

25

i. On-Policy Control:

 The single policy algorithm is utilized by the agent to choose actions from the action value

estimates in addition to generating action value assessments. Example SARSA, etc.

ii. Off-Policy Control:

The agent selects actions from action value estimates using one policy algorithm, usually

a greedy policy, and generates action value estimates using another policy method, usually

an exploratory policy. Example Q-Learning.

2.5 CONCLUSION

 System dynamics is an important part of control process. In this chapter a cart pole system

and its characteristics were explained. Further, reinforcement learning and its elements were

discussed. And pseudo code for SARSA and Q-Learning were also established.

26

CHAPTER – 3

APPLICATION OF REINFORCEMENT

LEARNING FOR STABILIZATION OF CART

POLE SYSTEM

3.1 ON-POLICY TEMPORAL DIFFERENCE CONTROL ALGORITHM (SARSA)

When used for control, the On-policy TD algorithm, also known as SARSA (representing

State-action, Reinforcement, next State-action), involves update of an action value function Q(𝑆, 𝐴)

at every step.The SARSA update equation is given by:

 Q(𝑆𝑡, 𝐴𝑡) ⟵ Q(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡 + ϒQ(𝑆𝑡+1, 𝐴𝑡+1) − Q(𝑆𝑡, 𝐴𝑡)] (3.1)

Here, 𝑅𝑡 + ϒQ(𝑆𝑡+1, 𝐴𝑡+1) is the TD target and the expression in rectangular brackets is the TD

error. We consider each step in the algorithm to represent a State-action pair:

i. The current state, 𝑆𝑡 or the internal state of the Cart Pole dynamics represented in a

form that the RL agent can interpret.

ii. The action 𝐴𝑡 to be taken from that state. Cart Pole balancing action might be either

a steady acceleration of the cart towards the LEFT or RIGHT side of the track.

The reinforcement signal, 𝑅𝑡 isitheireward or punishment that the agent receivesiafterithe

time step t. As the Objective requires the Pole and the Cart to meet the restrictions, we punish the

agent with a Reinforcementiofi-1iifieither the Pole or the Cart does not meet its restrictions. When

maintaining the restrictions, no reinforcement is rewarded to the agent.

To createiaibalanceibetween Exploration and Exploitation, stochastic policies are usually

considered to select the action in the given state. But the actions defined by the MDP ensure that

the region of the state space corresponding to optimal policy is explored even when a greedy policy

is used.

Unlike Q-learning, SARSA — or State-Action-Reward-State-Action — is an on-policy method:

27

its update is done using the value of the next state and the action of the current policy. The agent

follows the current policy and estimates the state-action pairs accordingly, which is the on-policy

assumption.

3.1.1 IMPLEMENTATION OF SARSA ALGORITHM

SARSA canibeiuseditoisolveithe Cart Pole balancing problem with the following algorithm:

• InitializeialliQ(𝑆, 𝐴)ii∀iiSi∈iS, A ∈ A

• For eachiepisode:

o For eachistepiinian episode:

▪ Given current statei𝑆𝑡,ichoosei𝐴𝑡iusingi𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑄(𝑆𝑡, 𝐴)

▪ Take the action 𝐴𝑡

▪ Observei𝑅𝑡iandi𝑆𝑡+1ifromitheienvironment

▪ UpdateitheiActionivalueifunction 𝑄(𝑆𝑡, 𝐴𝑡), towards the TD target using the

SARSA update equation

▪ Until the terminal state, where the state 𝑆𝑡 exceeds the limitations defined by the

Objective.

▪ Figure 3.1 – SARSA method Cart-Pole state against time steps

28

3.1.2 SIMULATION RESULTS

As observed in Fig.3.1 the agent gets a highirewardisomewhaticonsistentlyiexcept for the

random time it failsitoikeepiit up. This happened during the testing episode 175 when the agent

struggled to keep the pendulum up straight. As a result, theiSARSAialgorithmionlyiachieves the

limited performance. Regardless, the model is still stayingiwithinitheipositiveireward domain so

all is not completely lost,ianditheicartpoleiis kept balanced.

3.2 OFF-POLICY TEMPORAL DIFFERENCE CONTROL ALGORITHM (Q-

LEARNING)

Q-Learning is an Off-Policy algorithm since two different policies are utilized by the agent.

The policyiuseditoiselectiactions using the state-actionivaluesiis the greedy policy, given by

𝑚𝑎𝑥𝑎′𝑄(𝑆𝑡+1, 𝑎′). The action-value estimations, on the other hand, are frequently generated using

an experimental policy. The Q-learning update equation is given by:

 Q(𝑆𝑡 , 𝐴𝑡) = iQ(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡 + ϒ𝑚𝑎𝑥𝑎′𝑄(𝑆𝑡+1, 𝑎′) − Q(𝑆𝑡, 𝐴𝑡)] (3.2)

Here, 𝑅𝑡 + ϒ𝑚𝑎𝑥𝑎′𝑄(𝑆𝑡+1, 𝑎′) is the Q-target and the expression in rectangular brackets is the Q-

error. The reinforcement given to the Q-learning agent is the same as the reinforcement given to

the SARSA agent.

The twoipolicyialgorithmsiused by Off-PolicyiControliare if greedy policies because the

state spaceiofitheiCart-PoleiMDP is explored even with a greedy policy. This subset of the Off-

Policy method converges on an On-Policy approach as a result of this decision.

Through trials-and-errors, a Q-value for each state-action pair is found. The desirability of

an action in the current state is represented by this Q-value. If the environment remains static (i.e.

the physics or cause-and-effect relationships do not change), the Q-values will converge over time,

and the best policy for a given state will be the action with the highest Q-value.

To use Q-Learning, the continuous dimensions have to be discretized to a number of

buckets. In general, having fewer buckets and keeping the state-space as compact as feasible is

preferable. Training can be done rapidly because there are fewer perfect polices to find. However,

obfuscating essential information by discretizing the state-space too coarsely can stymie

29

convergence.

3.2.1 IMPLEMENTATION OF Q-LEARNING ALGORITHM

Q-learning can be useditoisolveitheiCartiPoleibalancing problem with the followingialgorithm:

• Initializeialli𝑄(𝑆, 𝐴) ∀ S ∈ S, A ∈ A

• For each episode:

o For each step in an episode:

▪ Given currentistatei𝑆𝑡,ichoosei𝐴𝑡 using 𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑄(𝑆𝑡, 𝐴)

▪ Take theiaction 𝐴𝑡

▪ Observe 𝑅𝑡iandi𝑆𝑡+1ifromithe environment

▪ Update the Actionivalueifunction,i𝑄(𝑆𝑡, 𝐴𝑡) towards the Q-target

 𝑅𝑡 + ϒ𝑚𝑎𝑥𝑎′𝑄(𝑆𝑡+1, 𝑎′) using the update equation

▪ Until the terminal state, where the state 𝑆𝑡 exceeds the limits set by the objective.

Figure 3.2 – Q-Learning method Cart-Pole state against time steps

30

3.2.2 SIMULATION RESULTS

Q-Learning using 𝜽, 𝜽̇, 𝒙, and 𝒙̇ is implemented with 3 buckets for 𝜽̇, 𝒙, and 𝒙̇, and 6

buckets for 𝜽. With this the Cart-Pole problem is solved within 1500 episodes. It was a still a bit

far from the best solution as observed in Fig.3.2. Upon observation the cart didn't go out of bounds

very often. For 200-time steps, the pole is balanced. It typically doesn’t drift very far while

balancing the pole.

3.3 Q-LEARNING WITH VALUE FUNCTION APPROXIMATION

The results obtainedibyiusingitheiaboveiReinforcementiLearning methods on the Cart-

Pole problem have a major drawback. Their assumption of a discretized state space increases the

sensitivity of choosingitheivalueioficonstantiforce to be applied by the Agent on the cart, and does

not accurately represent a real-world scenario of a Cart-Pole system. Also, in the discrete state

space, Constant force should be chosen in such a way that the system crosses one box and then

reaches another at the conclusion of each time step. In other words, the constant force should cause

𝑃𝑠𝑠
𝑎 = 0 and this increases the difficulty in selection of the constant force value. Thus, a Continuous

state space must be considered in order to overcome these drawbacks. The MDP must be updated

since the state representation in any Reinforcement Learning issue is determined by the Markov

Decision Process. This modified MDP is known as the Continuous State MDP.

Continuous State MDPs represent all the states in terms of a continuous set of values. Thus, values

that are assigned to states must be relative to some standard base value. These values relative to

the standard base are known as features. In fact, the continuous state of the cart-pole system can

be represented by four features. The same features have been used in Plant models, while

attempting to stabilize the Cart-Pole system using conventional controllers:

1. Distance of the cart from the center of the track (𝒙):

As the cart is placed on a track system of finite length, and that the objective requires that

the cart be positioned within the limits of this track at all times during the experiment, the

distance of the cart must be measured and examined by the RL Agent.

2. Angle of the pole with respect to the upright position (𝜽):

The pole angle must be measured at all times, as the RL Agent must ensure that the pole

31

remains upright and does not fall towards its stable equilibrium.

 3. Velocity of the cart (𝒙̇): Derivative of 𝒙

 4. Angular velocity of the pole (𝜽̇): Derivative of 𝜽

These features form the continuous state in the Continuous State MDP. This state value is then

said to have a domain of R4, which contains 4 real numbers. As a result, the continuous state 𝑥(𝑠)

contains infinite number of states. 𝑥(𝑠) can be written as:

 𝑥(𝑠) = [

𝒙
𝒙̇
𝜽
𝜽̇

] ∈ R4

3.3.1 Value Function Approximation

With continuousistateiMDP,iitiisinotipossible to update the value of every state individually, as

each state 𝑥(𝑠) ∈ R4. Also, storing a separateivalueito represent the qualityiofieachistate result in

very largeiMDP, which cannot be storediinitheimemory efficiently. These drawbacks call for a

new value function with the following features:

1. Generalizes values from states visited by the agent, towards states that:

a. Have not been visited by the agent

b. Belong to the neighborhood of the visited states

2. A set of parameters 𝑤 ∈ R4, which can represent the quality of all states without taking

up large memory space.

3.3.2 RBF neural network model

As shown in Figure 6.1, the RBF (Radial Basis Function) neuralinetworkiisia three-layer forward

network. It’s three layersiareitheiinput, hidden, and outputilayers.iTheiinputilayer is connected to

the hidden layer byiainon-lineariconnection mapping,ianditheihiddenilayeriisiconnected to the

output layeribyiailinearirelationshipimapping. As showniiniFigure.2,ix1,ix2,i…., xn are the input of

the input layer.ihjiisiaihiddenilayeriGauss basis function. w1,iw2, …., wn are the weights from the

hidden layeritoitheioutputilayer. y1 is the actual output. The use of RBF is shown in Fig.6.2.

32

Figure 3.3 - RBF neural network

3.3.3 IMPLEMENTATION OF Q-LEARNING WITH FUNCTION APPROXIMATION

Figure 3.4 – Value function approximation method Cart-Pole state against time steps

3.3.4 SIMULATION RESULTS

Q-Learning using RBF is implemented with 3 buckets for 𝜽̇, 𝒙, and 𝒙̇, and 6 buckets for 𝜽.

With this the Cart-Pole problem is solved within 1500 episodes. An optimal result is achieved and

the pole does not go beyond -3.43° to +2.29° and [-1.14°, 0°] after a stable state is achieved and

the cart doesn't go out of bounds very often as seen in Fig.3.4. For 200-time steps, the pole is

balanced. It typically doesn’t drift very far while balancing the pole.

33

CHAPTER – 4

CONCLUSIONS

AND

FUTURE SCOPE OF WORK

4.0 Main Conclusions

A class of machine learning algorithms are implemented for balancing of cart pole system and a

comparative study based on the stability of the pole and the time required to Stabilize the

poleiandimaintainitheiobtainedistabilityiforilongeriduration is presented in this thesis. While the

result of SARSA(0) achieves optimal policy, a policy for which it achieves the Objective of the

Cart-Pole problem but it is unable to maintain the achieved stability for a longer duration of time.

The poleiisialmostidroppediduringitheiexperiment anditheipendulumiangleialsoireachesithe edge

ofiitsirestrictionilimits.

The pendulum angle oscillates between ±1.4° but later shoots up to -8.02°. The cart position is

between +0.5m and +0.2m. This shows the effective performance of the algorithm, although, the

Cart still drifts slowly towards the right of the track, which can cause the Cart to reach the track

limit if the optimal policy is implemented for a prolonged period.

 Due to the convergence of the Off-Policy approach towards the On-Policy SARSA(0)

approach, the results of Q-Learning applied to the Cart-Pole problem is similar to the results of the

SARSA(0) algorithm applied on the Cart-Pole problem but a superior policy is derived and hence

improved results are observed.

The pendulum angle varies from +2.29° to -3.43° in 200 steps. The cart position is between -0.1m

and +0.25m. It is again observed that the Cart still drifts slowly towards the right of the track,

which can cause the Cart to reach the track limit if the optimal policy obtained here is implemented

for a prolonged period.

 Value Function Approximation applied on the Cart-Pole problem using Q-Learning, gives

near to accurate results. By using a fixed Force value of +10N or -10N, decided by a policy that

34

maximizes the approximate value function, the Agent achieves Optimal Control. This algorithm

ensures that all oscillations are suppressed to a minimum that are determined by the constant Force

values. In the implementation, the Pendulum angle varies from -3.43° to +2.29° and remains within

a small range of [-1.14°, 0°] during steady state. Along with this, the Cart position with respect to

the center of the track is in the range [-0.8, 0]m. Although there are a few large oscillations at the

beginning of the episode of Optimal control these oscillations still lie much within the limits

defined by the Cart Pole problem. Similarly, the Cart Position at the end of 200 steps is also within

the limits of the Cart-Pole problem. This represents the most optimal control among the three

algorithms used and is highly favorable over many conventional control approaches.

4.1 Future Scope of Work

 The Cart-Pole Balancingiproblemiisiaifundamentaliproblem in Non-linear control systems.

As Non-Linear Control hasiailargeinumberiof applications such as Process control, Robotics,

Defense and Transportationitechnology,itheiReinforcementiLearning algorithm should be further

improved to perform complexitasksiinialliNon-LineariControl applications optimally. To

approach complex Non-Linear controls from the Cart-Pole balancing problem, some changes

should be made.

 From the perspectiveiofitheiReinforcementiLearningialgorithms explored so far, Tabular

methods have beenitheifocusiandihaveibeenicomparediwith a Value function Approximation

method which considers a Linear Combinationiofifeatures.iTheiValueifunction approximation

method has resultediinianioptimalipolicyithaticonverges faster and minimizes the requirement of

the actions to be taken multiple times, basedionitheicurrentistates,iwhichiisiaimajor disadvantage

of the Tabular Methods. With respect to the Cart-Pole balancing problem, the following changes

in the RL algorithm can be explored further:

i. Usage of complex DifferentiableiFunctioniapproximatorsisuchias Neural Networks on the

problem

ii. Replacement ofitheiCart-PoleiMDPiwithicomplex application specific MDPs.

iii. Improvement of the RLialgorithmiiniorderitoidealiwithiNon-linear, Stochastic and Non-

stationary environments.

iv. Selection of hyper-parametersiofitheiRLiAgentiiniorderito ensure Optimal policy is

reached.

35

REFERENCES

1. D. Upadhyay, N. Tarun and T. Nayak, "ANN based intelligent controller for

inverted pendulum system," 2013 Students Conference on Engineering and

Systems (SCES), 2013, pp. 1-6, doi: 10.1109/SCES.2013.6547526.

2. Yuanheng Zhu, Dongbin Zhao and Haibo He, "An high-efficient online

reinforcement learning algorithm for continuous-state systems," Proceeding of the

11th World Congress on Intelligent Control and Automation, 2014, pp. 581-586,

doi: 10.1109/WCICA.2014.7052778.

3. R. Figueroa, A. Faust, P. Cruz, L. Tapia and R. Fierro, "Reinforcement learning

for balancing an inverted pendulum," Proceeding of the 11th World Congress on

Intelligent Control and Automation, 2014, pp. 1787-1793, doi:

10.1109/WCICA.2014.7052991.

4. Q. Liu, X. Zhou, F. Zhu, Q. Fu and Y. Fu, "Experience replay for least-squares

policy iteration," in IEEE/CAA Journal of Automatica Sinica, vol. 1, no. 3, pp.

274-281, July 2014, doi: 10.1109/JAS.2014.7004685.

5. R. Sharma, "Game theoretic Lyapunov fuzzy control for Inverted Pendulum,"

2015 4th International Conference on Reliability, Infocom Technologies and

Optimization (ICRITO) (Trends and Future Directions), 2015, pp. 1-6, doi:

10.1109/ICRITO.2015.7359373.

6. Stamenković Lidija J., Antanasijević Davor Z., Ristić Mirjana Đ. et al.. Modeling

of methane emissions using artificial neural network approach [J]. Journal of the

Serbian Chemical Society, 2015, 80(3).

7. S. D. Hanwate, A. Budhraja and Y. V. Hote, "Improved performance of cart

inverted pendulum system using LQR based PID controller and ANN," 2015 IEEE

UP Section Conference on Electrical Computer and Electronics (UPCON), 2015,

pp. 1-6, doi: 10.1109/UPCON.2015.7456752.

8. M. Hamaya, T. Matsubara, T. Noda, T. Teramae and J. Morimoto, "Learning

assistive strategies from a few user-robot interactions: Model-based reinforcement

36

learning approach," 2016 IEEE International Conference on Robotics and

Automation (ICRA), 2016, pp. 3346-3351, doi: 10.1109/ICRA.2016.7487509.

9. R. Özakar, G. T. Özyer and B. Özyer, "Balancing inverted pendulum using

reinforcement algorithms," 2016 24th Signal Processing and Communication

Application Conference (SIU), 2016, pp. 1569-1572, doi:

10.1109/SIU.2016.7496053.

10. K. Michimoto, Y. Suzuki, K. Kiyono, Y. Kobayashi, P. Morasso and T. Nomura,

"Reinforcement learning for stabilizing an inverted pendulum naturally leads to

intermittent feedback control as in human quiet standing," 2016 38th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), 2016, pp. 37-40, doi: 10.1109/EMBC.2016.7590634.

11. G. -f. Wang, Z. Fang, B. Li and P. Li, "Integrating symmetry of environment by

designing special basis functions for value function approximation in

reinforcement learning," 2016 14th International Conference on Control,

Automation, Robotics and Vision (ICARCV), 2016, pp. 1-6, doi:

10.1109/ICARCV.2016.7838691.

12. S. Raj, "Reinforcement learning based controller for stabilization of Double

Inverted Pendulum," 2016 IEEE 1st International Conference on Power

Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-5,

doi: 10.1109/ICPEICES.2016.7853147.

13. C. Xie, S. Patil, T. Moldovan, S. Levine and P. Abbeel, "Model-based

reinforcement learning with parametrized physical models and optimism-driven

exploration," 2016 IEEE International Conference on Robotics and Automation

(ICRA), 2016, pp. 504-511, doi: 10.1109/ICRA.2016.7487172.

14. H. He and X. Zhong, "Learning Without External Reward [Research Frontier]," in

IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 48-54, Aug. 2018,

doi: 10.1109/MCI.2018.2840727.

15. S. Panyakaew, P. Inkeaw, J. Bootkrajang and J. Chaijaruwanich, "Least Square

Reinforcement Learning for Solving Inverted Pendulum Problem," 2018 3rd

International Conference on Computer and Communication Systems (ICCCS),

37

2018, pp. 16-20, doi: 10.1109/CCOMS.2018.8463234.

16. G. Puriel-Gil, W. Yu and H. Sossa, "Reinforcement Learning Compensation based

PD Control for Inverted Pendulum," 2018 15th International Conference on

Electrical Engineering, Computing Science and Automatic Control (CCE), 2018,

pp. 1-6, doi: 10.1109/ICEEE.2018.8533946.

17. A. Sami and A. Y. Memon, "Robust Optimal Control of Continuous Time Linear

System using Reinforcement Learning," 2018 Australian & New Zealand Control

Conference (ANZCC), 2018, pp. 154-159, doi: 10.1109/ANZCC.2018.8606607.

18. A. Notsu, K. Yasuda, S. Ubukata and K. Honda, "Optimization of Learning Cycles

in Online Reinforcement Learning Systems," 2018 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), 2018, pp. 3530-3534, doi:

10.1109/SMC.2018.00597.

19. Y. Chao, L. Yongxin and W. Linglin, "Design of Reinforcement Learning

Algorathm for Single Inverted Pendulum Swing Control," 2018 Chinese

Automation Congress (CAC), 2018, pp. 1558-1562, doi:

10.1109/CAC.2018.8623253.

20. J. -B. Kim, H. -K. Lim, C. -M. Kim, M. -S. Kim, Y. -G. Hong and Y. -H. Han,

"Imitation Reinforcement Learning-Based Remote Rotary Inverted Pendulum

Control in OpenFlow Network," in IEEE Access, vol. 7, pp. 36682-36690, 2019,

doi: 10.1109/ACCESS.2019.2905621.

21. J. -B. Kim, D. -H. Kwon, Y. -G. Hong, H. -K. Lim, M. -S. Kim and Y. -H. Han,

"Deep Q-Network Based Rotary Inverted Pendulum System and Its Monitoring on

the EdgeX Platform," 2019 International Conference on Artificial Intelligence in

Information and Communication (ICAIIC), 2019, pp. 034-039, doi:

10.1109/ICAIIC.2019.8668979.

22. J. Cerviño, J. A. Bazerque, M. Calvo-Fullana and A. Ribeiro, "Meta-Learning

through Coupled Optimization in Reproducing Kernel Hilbert Spaces," 2019

American Control Conference (ACC), 2019, pp. 4840-4846, doi:

10.23919/ACC.2019.8814419.

23. Â. G. Lovatto, T. P. Bueno and L. N. de Barros, "Analyzing the Effect of Stochastic

38

Transitions in Policy Gradients in Deep Reinforcement Learning," 2019 8th

Brazilian Conference on Intelligent Systems (BRACIS), 2019, pp. 413-418, doi:

10.1109/BRACIS.2019.00079.

24. Y. Si, J. Pu and S. Zang, "Neural Q- Learning Based on Residual Gradient for

Nonlinear Control Systems," 2019 International Conference on Control,

Automation and Information Sciences (ICCAIS), 2019, pp. 1-5, doi:

10.1109/ICCAIS46528.2019.9074647.

25. X. Li, H. Liu and X. Wang, "Solve the inverted pendulum problem base on DQN

algorithm," 2019 Chinese Control And Decision Conference (CCDC), 2019, pp.

5115-5120, doi: 10.1109/CCDC.2019.8833168.

26. D. Livne and K. Cohen, "PoPS: Policy Pruning and Shrinking for Deep

Reinforcement Learning," in IEEE Journal of Selected Topics in Signal

Processing, vol. 14, no. 4, pp. 789-801, May 2020, doi:

10.1109/JSTSP.2020.2967566.

27. L. Menglin, C. Jing, C. Shaofei and G. Wei, "A New Reinforcement Learning

Algorithm Based on Counterfactual Experience Replay," 2020 39th Chinese

Control Conference (CCC), 2020, pp. 1994-2001, doi:

10.23919/CCC50068.2020.9189606.

28. S. Jang and N. -S. Park, "Train Throughput Analysis of Distributed Reinforcement

Learning," 2020 International Conference on Information and Communication

Technology Convergence (ICTC), 2020, pp. 1189-1192, doi:

10.1109/ICTC49870.2020.9289179.

29. M. A. S. Araùjo, L. P. C. Alves, C. A. G. Madeira and M. M. Nóbrega, "URNAI:

A Multi-Game Toolkit for Experimenting Deep Reinforcement Learning

Algorithms," 2020 19th Brazilian Symposium on Computer Games and Digital

Entertainment (SBGames), 2020, pp. 178-187, doi:

10.1109/SBGames51465.2020.00032.

30. T. Y. Koffi, C. Tao, T. M. Epalle and B. Mensa-Bonsu, "A Novel Reinforcement

Learning Algorithm Based on Hierarchical Memory," 2020 International

Conference on Internet of Things and Intelligent Applications (ITIA), 2020, pp. 1-

39

5, doi: 10.1109/ITIA50152.2020.9312239.

31. H. -K. Lim, J. -B. Kim, I. Ullah, J. -S. Heo and Y. -H. Han, "Federated

Reinforcement Learning Acceleration Method for Precise Control of Multiple

Devices," in IEEE Access, vol. 9, pp. 76296-76306, 2021, doi:

10.1109/ACCESS.2021.3083087.

32. H. Watanabe, M. Tsukada and H. Matsutani, "An FPGA-Based On-Device

Reinforcement Learning Approach using Online Sequential Learning," 2021 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 2021, pp. 96-103, doi: 10.1109/IPDPSW52791.2021.00022.

33. V. Abdelzad, J. Lee, S. Sedwards, S. Soltani and K. Czarnecki, "Non-divergent

Imitation for Verification of Complex Learned Controllers," 2021 International

Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-8, doi:

10.1109/IJCNN52387.2021.9533410.

34. A. Tercan and C. W. Anderson, "Increased Reinforcement Learning Performance

through Transfer of Representation Learned by State Prediction Model," 2021

International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-8, doi:

10.1109/IJCNN52387.2021.9533751.

35. Y. Chen, H. Kasaei, L. Schomaker and M. Wiering, "Reinforcement Learning with

Potential Functions Trained to Discriminate Good and Bad States," 2021

International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-7, doi:

10.1109/IJCNN52387.2021.9533682.

36. M. Muller-Brockhausen, M. Preuss and A. Plaat, "Procedural Content Generation:

Better Benchmarks for Transfer Reinforcement Learning," 2021 IEEE Conference

on Games (CoG), 2021, pp. 01-08, doi: 10.1109/CoG52621.2021.9619000.

37. D. Kozlov, "Comparison of Reinforcement Learning Algorithms for Motion

Control of an Autonomous Robot in Gazebo Simulator," 2021 International

Conference on Information Technology and Nanotechnology (ITNT), 2021, pp. 1-

5, doi: 10.1109/ITNT52450.2021.9649145.

38. W. Su, Z. Li, Z. Yang and J. Lu, "Deep Reinforcement Learning with Sparse

Regularized Pruning and Compressing," 2021 China Automation Congress

40

(CAC), 2021, pp. 8041-8046, doi: 10.1109/CAC53003.2021.9727767.

39. B. Pang and Z. -P. Jiang, "Reinforcement Learning for Adaptive Optimal

Stationary Control of Linear Stochastic Systems," in IEEE Transactions on

Automatic Control, doi: 10.1109/TAC.2022.3172250.

40. M. Shil and G. N. Pillai, "Inverted Pendulum Control using Twin Delayed Deep

Deterministic Policy Gradient with a Novel Reward Function," 2022 IEEE Delhi

Section Conference (DELCON), 2022, pp. 1-6, doi:

10.1109/DELCON54057.2022.9752797.

41

APPENDIX I

Python Code for SARSA
importigym

importinumpyiasinp

importimath

importimatplotlib.pyplotiasiplt

classiCartPoleAgent():

iiiidefi__init__(self,ibuckets=(3,3,3,6),inum_episodes=1500,imin_lr=0.1,imin_epsilon=0.1,i

 discount=0.98,idecay=25):

iiiiiiiiself.bucketsi=ibuckets

iiiiiiiiself.num_episodesi=inum_episodes

iiiiiiiiself.min_lri=imin_lr

iiiiiiiiself.min_epsiloni=imin_epsilon

iiiiiiiiself.discounti=idiscount

iiiiiiiiself.decayi=idecay

iiiiiiiiself.envi=igym.make('CartPole-v0')

iiiiiiii#i[position,ivelocity,iangle,iangularivelocity]

iiiiiiiiself.upper_boundsi=i[self.env.observation_space.high[0],i0.5,i

 self.env.observation_space.high[2],

iiiiiiiiiiiiiiiiiiiiiiiiiiiiimath.radians(50)i/i1.]

iiiiiiiiself.lower_boundsi=i[self.env.observation_space.low[0],i-0.5,i

 self.env.observation_space.low[2],

iiiiiiiiiiiiiiiiiiiiiiiiiiiii-math.radians(50)i/i1.]

iiiiiiiiself.sarsa_tablei=inp.zeros(self.bucketsi+i(self.env.action_space.n,))

iiiidefidiscretize_state(self,iobs):

iiiiiiiidiscretizedi=ilist()

iiiiiiiiforiiiinirange(len(obs)):

iiiiiiiiiiiiscalingi=i(obs[i]i+iabs(self.lower_bounds[i]))i/i(self.upper_bounds[i]i-i

 self.lower_bounds[i])

iiiiiiiiiiiinew_obsi=iint(round((self.buckets[i]i-i1)i*iscaling))

iiiiiiiiiiiinew_obsi=imin(self.buckets[i]i-i1,imax(0,inew_obs))

iiiiiiiiiiiidiscretized.append(new_obs)

iiiiiiiireturnituple(discretized)

iiiidefichoose_action(self,istate):

iiiiiiiiifi(np.random.random()i<iself.epsilon):

iiiiiiiiiiiireturniself.env.action_space.sample()

iiiiiiiielse:

iiiiiiiiiiiireturninp.argmax(self.sarsa_table[state])

iiiidefiupdate_sarsa(self,istate,iaction,ireward,inew_state,inew_action):

iiiiiiiiself.sarsa_table[state][action]i+=iself.learning_ratei*i(

iiiiiiiiiiiiiiiiiiiirewardi+iself.discounti*i(self.sarsa_table[new_state][new_action])i-i

 self.sarsa_table[state][

iiiiiiiiiiiiiiiiaction])

iiiidefiget_epsilon(self,it):

iiiiiiiireturnimax(self.min_epsilon,imin(1.,i1.i-imath.log10((ti+i1)i/iself.decay)))

iiiidefiget_learning_rate(self,it):

iiiiiiiireturnimax(self.min_lr, min(1., 1. - math.log10((t + 1) / self.decay)))

 def train(self):

 for e in range(self.num_episodes):

 current_state = self.discretize_state(self.env.reset())

 self.learning_rate = self.get_learning_rate(e)

 self.epsilon = self.get_epsilon(e)

 done = False

 while not done:

 action = self.choose_action(current_state)

 obs, reward, done, _ = self.env.step(action)

 new_state = self.discretize_state(obs)

 new_action = self.choose_action(new_state)

 self.update_sarsa(current_state, action, reward, new_state, new_action)

 current_state = new_state

42

 print('Finished training!')

 def run(self):

 for it in range(1500):

 self.env.render()

 t = 0

 done = False

 current_state = self.discretize_state(self.env.reset())

 position_list = []

 velocity_list = []

 angle_list = []

 angular_velocity_list = []

 steps = []

 total_rounds = 0

 round = 0

 episode_reward = 0

 while not done:

 self.env.render()

 t = t + 1

 action = self.choose_action(current_state)

 obs, reward, done, _ = self.env.step(action)

 new_state = self.discretize_state(obs)

 current_state = new_state

 round += 1

 position_list.append(obs[0])

 velocity_list.append(obs[1])

 angle_list.append(obs[2])

 angular_velocity_list.append(obs[3])

 steps.append(round)

 total_rounds += round

 if done:

 if round > 150:

 print(f'Threshold reached after {round + 1} iterations.')

 if round < 199:

 position_list = []

 velocity_list = []

 angle_list = []

 angular_velocity_list = []

 steps = []

 else:

 position = position_list

 velocity = velocity_list

 angle = angle_list

 angular_velocity = angular_velocity_list

 time = steps

 plot = True

 break

 if plot:

 fig, ax = plt.subplots(2,2, figsize=(15,8))

 ax[0][0].plot(time, position)

 ax[0][0].set_xlabel('Time steps')

 ax[0][0].set_ylabel('Position (m)')

 ax[0][0].grid()

 ax[0][1].plot(time, velocity, 'r')

 ax[0][1].set_xlabel('Time steps')

 ax[0][1].set_ylabel('Velocity (m/s)')

 ax[0][1].grid()

 ax[1][0].plot(time, angle, 'g')

 ax[1][0].set_xlabel('Time steps')

 ax[1][0].set_ylabel('Angle (rad)')

 ax[1][0].grid()

 ax[1][1].plot(time, angular_velocity, 'y')

 ax[1][1].set_xlabel('Time steps')

 ax[1][1].set_ylabel('Angular Velocity (rad/s)')

 ax[1][1].grid()

 plt.suptitle('Observations per step')

 plt.tight_layout()

43

 plt.show()

 return t

Python Code for Q-Learning

import numpy as np

import math

import matplotlib.pyplot as plt

import gym

class Agent:

 '''A class to define an agent learning to control the system'''

 def __init__(self, environment, buckets=(3,3,3,6), alpha=0.1, gamma=0.98):

 if not (0 < gamma <= 1):

 raise ValueError("Must be 0 < γ <= 1")

 self.alpha = alpha

 self.gammai=igamma

iiiiiiiiself.environmenti=ienvironment

iiiiiiiiself.bucketsi=ibuckets

iiiiiiiiself.upper_boundsi=i[self.environment.observation_space.high[0],i0.5,

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiself.environment.observation_space.high[2],imath.radians(50)]

iiiiiiiiself.lower_boundsi=i[self.environment.observation_space.low[0],i-0.5,i i

 iiiiiiiiiiiiiself.environment.observation_space.low[2],

iiiiiiiiiiiiiiiiiiiiiiiiiiiii-math.radians(50)]

iiiiiiiiself.Qi=inp.zeros(self.bucketsi+i(self.environment.action_space.n,))

iiiiiiiiself.statei=i(0,i0,i0,i0)

iiiiiiiiself.total_rewardi=i0

iiiidefidiscretize(self,iobservations):

iiiiiiii'''Dicretizeiobervationsibasedionitheibuckets'''

iiiiiiiidiscretizedi=i[]

iiiiiiiiforiiiinirange(len(observations)):

iiiiiiiiiiiiscalingi=i((observations[i]i+inp.abs(self.lower_bounds[i]))i/i(self.upper_bounds[i]

i iiiiiiiiiiiiii-iself.lower_bounds[i]))

iiiiiiiiiiiiscaled_observationsi=iint(round((self.buckets[i]i-i1)i*iscaling))

iiiiiiiiiiiiscaled_observationsi=imin(self.buckets[i]i-i1,imax(0,iscaled_observations))

iiiiiiiiiiiidiscretized.append(scaled_observations)

iiiiiiiireturnituple(discretized)

iiiidefiget_reward(self,iaction,istate,ireward):

iiiiiiii'''UpdateiQ-valueiaccordingitoitheistateiactionipair'''

iiiiiiiiself.total_rewardi+=ireward

iiiiiiiiself.Q[self.state][action]i=iself.Q[self.state][action]i+iself.alphai*i(

iiiiiiiiiiiiiiiiiiiirewardi+iself.gammai*inp.max(self.Q[state])i-iself.Q[self.state][action])

iiiiiiiiself.statei=istate

 def choice(self):

 '''Randomly select among the two actions'''

 random_action = self.environment.action_space.sample()

 return random_action

 def greedy_action(self):

 '''Select action that has returned maximum reward'''

 return np.argmax(self.Q[self.state])

def run_experiment(epsilon=1, rounds=500, episodes=1500):

 '''Perform an experiment. Make the agent balance the pole'''

 env = gym.make('CartPole-v0')

 agent = Agent(env)

 # get environment

 obs = env.reset()

44

 plot = False

 steps_per_round = []

 for episode in range(episodes):

 position_list = []

 velocity_list = []

 angle_list = []

 angular_velocity_list = []

 steps = []

 total_rounds = 0

 for round in range(rounds):

 env.render()

 p = np.random.random()

 if p < epsilon:

 action = agent.choice()

 else:

 action = agent.greedy_action()

 # apply action

 obs, reward, done, _ = env.step(action)

 state = agent.discretize(obs)

 agent.get_reward(action, state, reward)

 position_list.append(obs[0])

 velocity_list.append(obs[1])

 angle_list.append(obs[2])

 angular_velocity_list.append(obs[3])

 steps.append(round)

 total_rounds += round

 if done:

 if round > 150:

 print(f'Threshold reached after {round + 1} iterations.')

 if round < 199:

 position_list = []

 velocity_list = []

 angle_list = []

 angular_velocity_list = []

 steps = []

 else:

 position = position_list

 velocity = velocity_list

 angle = angle_list

 angular_velocity = angular_velocity_list

 time = steps

 plot = True

 break

 epsilon = epsilon - 0.01

 if epsilon < 0.01:

 epsilon = 0.01

 env.reset()

 steps_per_round.append(round)

 env.close()

 if plot:

 fig, ax = plt.subplots(2, 2, figsize=(15, 8))

 ax[0][0].plot(time, position)

 ax[0][0].set_xlabel('Time steps')

 ax[0][0].set_ylabel('Position (m)')

 ax[0][0].grid()

 ax[0][1].plot(time, velocity, 'r')

 ax[0][1].set_xlabel('Time steps')

 ax[0][1].set_ylabel('Velocity (m/s)')

45

 ax[0][1].grid()

 ax[1][0].plot(time, angle, 'g')

 ax[1][0].set_xlabel('Time steps')

 ax[1][0].set_ylabel('Angle (rad)')

 ax[1][0].grid()

 ax[1][1].plot(time, angular_velocity, 'y')

 ax[1][1].set_xlabel('Time steps')

 ax[1][1].set_ylabel('Angular Velocity (rad/s)')

 ax[1][1].grid()

 plt.suptitle('Observations per step')

 plt.tight_layout()

 plt.show()

 fig, ax = plt.subplots(1, 1, figsize=(15, 8))

 ax.plot(np.arange(0, episodes), steps_per_round)

 ax.set_xlabel('Episodes')

 ax.set_ylabel('Iterations')

 plt.suptitle('Total iterations per episode')

 plt.show()

 print("After {} episodes the average cart steps before done was {}".format(episodes,

np.mean(steps_per_round)))

Python Code for Q-Learning with Value Function Approximation

import gym

import numpy as np

import matplotlib.pyplot as plt

from sklearn.kernel_approximation import RBFSampler

GAMMA = 0.99

ALPHA = 0.1

def epsilon_greedy(model,is,ieps=0.1):

iiii#iwe'lliuseiepsilon-softitoiensureiallistatesiareivisited

iiii#iwhatihappensiifiyouidon'tidoithis?ii.e.ieps=0

iiiipi=inp.random.random()

iiiiifipi<i(1i-ieps):

iiiiiiiivaluesi=imodel.predict_all_actions(s)

iiiiiiiireturninp.argmax(values)

iiiielse:

iiiiiiiireturnimodel.env.action_space.sample()

defigather_samples(env,in_episodes=10000):

iiiisamplesi=i[]

iiiifori_iinirange(n_episodes):

iiiiiiiisi=ienv.reset()

iiiiiiiidonei=iFalse

iiiiiiiiwhileinotidone:

iiiiiiiiiiiiai=ienv.action_space.sample()

iiiiiiiiiiiisai=inp.concatenate((s,i[a]))

iiiiiiiiiiiisamples.append(sa)

iiiiiiiiiiiis,ir,idone,iinfoi=ienv.step(a)

iiiireturnisamples

classiModel:

iiiidefi__init__(self,ienv):

46

iiiiiiii#ifititheifeaturizeritoidata

iiiiiiiiself.envi=ienv

iiiiiiiisamplesi=igather_samples(env)

iiiiiiiiself.featurizeri=iRBFSampler()

iiiiiiiiself.featurizer.fit(samples)

iiiiiiiidimsi=iself.featurizer.n_components

iiiiiiii#iinitializeilinearimodeliweights

iiiiiiiiself.wi=inp.zeros(dims)

iiiidefipredict(self,is,ia):

iiiiiiiisai=inp.concatenate((s,i[a]))

iiiiiiiixi=iself.featurizer.transform([sa])[0]

 return x @ self.w

 def predict_all_actions(self, s):

 return [self.predict(s, a) for a in range(self.env.action_space.n)]

 def grad(self, s, a):

 sa = np.concatenate((s, [a]))

 x = self.featurizer.transform([sa])[0]

 return x

def test_agent(model, env, n_episodes=20):

 reward_per_episode = np.zeros(n_episodes)

 for it in range(n_episodes):

 position_list = []

 velocity_list = []

 angle_list = []

 angular_velocity_list = []

 steps = []

 total_rounds = 0

 round = 0

 done = False

 episode_reward = 0

 s = env.reset()

 while not done:

 a = epsilon_greedy(model, s, eps=0)

 s, r, done, info = env.step(a)

 round += 1

 position_list.append(s[0])

 velocity_list.append(s[1])

 angle_list.append(s[2])

 angular_velocity_list.append(s[3])

 steps.append(round)

 total_rounds += round

 episode_reward += r

 if done:

 if round > 150:

 print(f'Threshold reached after {round + 1} iterations.')

 if round < 199:

 position_list = []

 velocity_list = []

 angle_list = []

 angular_velocity_list = []

 steps = []

 else:

 position = position_list

 velocity = velocity_list

47

 angle = angle_list

 angular_velocity = angular_velocity_list

 time = steps

 plot = True

 break

 reward_per_episode[it] = episode_reward

 if plot:

 fig, ax = plt.subplots(2,2, figsize=(15,8))

 ax[0][0].plot(time, position)

 ax[0][0].set_xlabel('Time steps')

 ax[0][0].set_ylabel('Position (m)')

 ax[0][0].grid()

 ax[0][1].plot(time, velocity, 'r')

 ax[0][1].set_xlabel('Time steps')

 ax[0][1].set_ylabel('Velocity (m/s)')

 ax[0][1].grid()

 ax[1][0].plot(time, angle, 'g')

 ax[1][0].set_xlabel('Time steps')

 ax[1][0].set_ylabel('Angle (rad)')

 ax[1][0].grid()

 ax[1][1].plot(time, angular_velocity, 'y')

 ax[1][1].set_xlabel('Time steps')

 ax[1][1].set_ylabel('Angular Velocity (rad/s)')

 ax[1][1].grid()

 plt.suptitle('Observations per step')

 plt.tight_layout()

 plt.show()

 return np.mean(reward_per_episode)

def watch_agent(model, env, eps):

 done = False

 episode_reward = 0

 s = env.reset()

 while not done:

 a = epsilon_greedy(model, s, eps=eps)

 s, r, done, info = env.step(a)

 env.render()

 episode_reward += r

 print("Episode reward:", episode_reward)

if __name__ == '__main__':

 # instantiate environment

 env = gym.make("CartPole-v0")

 model = Model(env)

 reward_per_episode = []

 # watch untrained agent

 watch_agent(model, env, eps=0)

 # repeat until convergence

 n_episodes = 1500

 for it in range(n_episodes):

 s = env.reset()

 episode_reward = 0

 done = False

 while not done:

 a = epsilon_greedy(model, s)

48

 s2, r, done, info = env.step(a)

 # get the target

 if done:

 target = r

 else:

 values = model.predict_all_actions(s2)

 target = r + GAMMA * np.max(values)

 # update the model

 g = model.grad(s, a)

 err = target - model.predict(s, a)

 model.w += ALPHA * err * g

 # accumulate reward

 episode_reward += r

 # update state

 s = s2

 if (it + 1) % 50 == 0:

 print(f"Episode: {it + 1}, Reward: {episode_reward}")

 # early exit

 if it > 20 and np.mean(reward_per_episode[-20:]) == 200:

 print("Early exit")

 break

 reward_per_episode.append(episode_reward)

 # test trained agent

 test_reward = test_agent(model, env)

 print(f"Average test reward: {test_reward}")

 plt.plot(reward_per_episode)

 plt.title("Reward per episode")

 plt.show()

49

 LIST OF PUBLICATIONS

Sr.

No

Heading of the paper Publications

1. Approaches to EV Charging

Structure Planning Using

Machine Learning: A Review

3rd International

Conference on Climate

Change

50

51

52

