
- 1 - | P a g e

Efficient 16x16 Vedic Multiplier using various Adders
A

Dissertation

Submitted in the fulfilment of the requirements

For the award of degree

Of

MASTER OF TECHNOLOGY

In

VLSI Design and Embedded System

By

YATHAM

 NAGA SAI

HARSHEESWAR

REDDY

(2K20/VLS/24)

Under the Guidance of

Dr. N.S. RAGHAVA

ELECTRONICS AND COMMUNICATION DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

SESSION 2020-2022

i | P a g e

ELECTRONICS AND COMMUNICATION DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

SESSION 2020-2022

CANDIDATE'S DECLARATION

I hereby declare that the work being presented in this dissertation entitled “Efficient 16*16

Vedic Multiplier using various Adders” submitted towards the fulfilment of the Major

project requirements for the award of degree, Master of Technology in VLSI Design and

Embedded System to the Electronics and Communication Dept., Delhi Technological

University, is an authentic record of my work carried out from January 2022 to June 2022,

under the guidance of Dr. N.S. RAGHAVA, Electronics and Communication Dept., Delhi

Technological University, Delhi.

I have not submitted the matter embodied in the dissertation for the award of any other

degree.

 YATHAM NAGA SAI HARSHEESWAR REDDY

2K20/VLS/24

Electronics and Communication Department

Date: 17th May, 2022

ii | P a g e

ELECTRONICS AND COMMUNICATION DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

SESSION 2020-2022

CERTIFICATE

This is to certify that the dissertation entitled “Efficient 16*16 Vedic Multiplier using

various Adders” is the authentic record of work done by Yatham Naga Sai Harsheeswar

Reddy under my guidance and supervision. This dissertation is being submitted to the Delhi

Technological University, Delhi towards the fulfilment of the requirements for the award of

degree of Master of Technology in VLSI Design and Embedded System.

Date: 17th May, 2022
 Dr. N.S. Raghava

 SUPERVISOR

 PROFESSOR

 HEAD OF DEPARTMENT

iii | P a g e

 ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to all the people who have helped

and supported me in the process of dissertation. Without their help and support, 1 would not

have been able to reach this level of satisfaction with what 1 have learnt and accomplished

during my Master's dissertation. First and foremost, I would like to express my deep sense of

respect and gratitude towards my supervisor Dr. N.S. Raghava, Professor, Head of

Department, Electronics and Communication Dept., DTU, for giving me opportunity to do

my Major project of master's dissertation under her guidance. I am very thankful for her for

giving me the opportunity to choose such an interesting topic by my own. I would also like to

thanks the NPTEL Lectures for their valuable thoughts and knowledge, which motivated me

to do better. Finally, none of this would have been possible without incredible support of my

friends. They were always supporting me and encouraging me with their best wishes.

YATHAM NAGA SAI HARSHEESWAR REDDY

Roll No. 2K20/VLS/24

Electronics and Communication Dept.

iv | P a g e

ABSTRACT

We live in an era of artificial intelligence which leads to lots of automation for the betterment

of life and society. Semiconductor industries, makes the way for bigger solution for people

and which brings the technology to audience ranging from common people to stalwarts in the

means of smallest components as sensors, mobiles, laptop to bigger components as data

centers. As technology is evolving and increasing demand of the technologies and the

evolution of the products and the giants of semiconductor industries like Intel, Texas,

Samsung, Qualcomm and Western Digital are finding their way in a best possible way to

design the product which is user friendly.

There are various constraints which are implemented, which are imposed by these industries

like functionality of the electronic device, power dissipation by the product, area occupied

and also the reliability of the product. All these constraints, require some special attention

and the measurements, which needs to be fulfilled by the design engineers, so that the

reputation of the industry, and the competition in the products will be sustained.

The electronic devices process the digital signals and process here is nothing but the

Addition, Subtraction and Multiplication which are some Arithmetic operations. To make

devices faster either we can go for better technology in terms of MOS that is having lesser

feature size or make the Arithmetic operations more efficient. Here in this thesis we focus on

the latter part. In this thesis we look into both Multipliers and Adders, in multipliers we focus

on three techniques. While in Adders we look into both logical and circuit design styles of

adder and know the best possible combination of the adder we can use.

v | P a g e

 TABLE OF CONTENTS

Declaration i

Certificate ii

Acknowledgement Iii

Abstract iv

List of Figures 6

List of Tables 9

List of Abbreviations 10

CHAPTER 1

Introduction

 11-15

 1.1 Vedic Mathematics 11

 1.2 Vedic Multiplier 13

CHAPTER 2

17-20

 Types of Adders 16

 2.1 Ripple Carry Adder 18

 2.2 Carry Look Ahead 19

 2.3 Carry Select Adder 20

CHAPTER 3 21-23

CIRCUIT DESIGN STYLES OF ADDER

3.1 Static CMOS Full Adder 21

3.2 DCVSL based Full Adder 22

3.3 NORA based Full Adder 23

CHAPTER 4 24-69

RESULTS AND DISCUSSION

CHAPTER 5 70

CONCLUSION AND FUTURE SCOPE

REFERENCES

vi | P a g e

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

1.1 Decimal Multiplication Using Urdhva Triyagbhyam 13

1.2 Decimal Multiplication of Nikhilam Navatashcaramam

Dashatah
14

2.1 32-Bit Ripple Carry Adder 18

2.2 4-Bit Carry Look Ahead Adder 19

2.3 4-Bit Carry Select Adder 20

3.1 1-Bit Static CMOS Full Adder 21

3.2 1-Bit Differential Cascode Switch logic based Full Adder 22

3.3 1-Bit Dynamic CMOS logic Full Adder 23

4.1 Simulation of 2*2 Vedic Multiplier 24

4.2 Netlist of 2*2 Vedic Multiplier 24

4.3 Simulation of 4*4 Vedic Multiplier 25

4.4 Netlist of 4*4 Vedic Multiplier 25

4.5 Simulation of 8*8 Vedic Multiplier 26

4.6 Netlist of 8*8 Vedic Multiplier 26

4.7 Simulation of 16*16 Vedic Multiplier 27

4.8 Netlist of 16*16 Vedic Multiplier 27

4.9 Simulation of 4-Bit Carry Select Adder 28

vii | P a g e

4.10 Netlist of 4-Bit Carry Select Adder 28

4.11 Simulation of 8-Bit Carry Select Adder 29

4.12 Netlist of 8-Bit Carry Select Adder 29

4.13 Simulation of 12-Bit Carry Select Adder 30

4.14 Netlist of 12-Bit Carry Select Adder 30

4.15 Simulation of 16-Bit Carry Select Adder 31

4.16 Netlist of 16-Bit Carry Select Adder 31

4.17 Simulation of 24-Bit Carry Select Adder 32

4.18 Netlist of 24-Bit Carry Select Adder 32

4.19 Schematic of 1-Bit full Adder using Static CMOS 34

4.20 Inputs and Output of 1-Bit Full Adder using Static CMOS

logic
35

4.21 Schematic of 4-Bit Ripple Carry Adder using Static

CMOS
36

4.22 Inputs and Output of 4-Bit Ripple Carry Adder using

Static CMOS logic
37

4.23 Schematic of 8-Bit Ripple Carry Adder using Static

CMOS logic
38

4.24 Inputs and Output of 8-Bit Ripple Carry Adder using

Static CMOS logic
39

4.25 Schematic of 16-Bit Ripple Carry Adder using Static

CMOS logic
40

4.26 Inputs and Output of 16-Bit Ripple Carry Adder using

Static CMOS logic
41

4.27 Inputs and Output of 16-Bit Ripple Carry Adder using

Static CMOS logic
42

4.28 Schematic of 1-Bit full Adder using Differential Cascode

Logic
43

4.29 Inputs and Output of 1-Bit Full Adder using Differential

Cascode logic
44

4.30 Schematic of 4-Bit full Adder using Differential Cascode

Logic
45

 4.31 Inputs and Output of 4-Bit Full Adder using Differential

Cascode logic
46

viii | P a g
e

4.32 Schematic of 8-Bit full Adder using Differential Cascode

Logic
47

4.33 Inputs and Output of 8-Bit Full Adder using Differential

Cascode logic
48

4.34 Schematic of 16-Bit full Adder using Differential Cascode

Logic
49

4.35 Inputs and Output of 16-Bit Full Adder using Differential

Cascode logic
50

4.36 Inputs and Output of 16-Bit Full Adder using Differential

Cascode logic
51

4.37 Schematic of 1-Bit full Adder using NORA (NO Race

Around) Logic
52

4.38 Inputs and Output of 1-Bit Full Adder using NORA logic 53

4.39 Schematic of 4-Bit full Adder using NORA (NO Race

Around) Logic
54

4.40 Inputs and Output of 4-Bit Full Adder using NORA logic 55

4.41 Schematic of 8-Bit full Adder using NORA (NO Race

Around) Logic
56

4.42 Inputs and Output of 8-Bit Full Adder using NORA logic 57

4.43 Schematic of 16-Bit full Adder using NORA (NO Race

Around) Logic
58

4.44 Inputs and Output of 16-Bit Full Adder using NORA

logic
59

4.45 Inputs and Output of 16-Bit Full Adder using NORA

logic
60

4.46 Verilog Code of Half Adder 61

4.47 Verilog Code of 2-Bit Multiplier 61

4.48 Verilog Code of 4-Bit Multiplier 62

4.49 Verilog Code of 8-Bit Multiplier 63

4.50 Verilog Code of 16-Bit Multiplier 64

4.51 Verilog Code of Full Adder 65

4.52 Verilog Code of 2*1 Multiplexer 66

4.53 Verilog Code of 4-Bit Carry Select Adder 67

ix | P a g e

4.54 Verilog Code of 6-Bit Carry Select Adder 68

4.55 Verilog Code of 8-Bit Carry Select Adder 69

4.56 Verilog Code of 12-Bit Carry Select Adder 70

4.57 Verilog Code of 16-Bit Carry Select Adder 71

 LIST OF TABLES
 TABLE TABLE NAME PAGE NO

Table 5.1 Delays of 16-bit RCA 52

x | P a g e

LIST OF ABBREVIATIONS

RTL Register transfer level

VLSI Vert Large Scale Integration

GDSII Graphic design system

ASIC Application specific integrated circuit

UT Urdhva Triyagbhyam

SOC System on chip

FPGA Field programmable gate array

HDL Hardware description language

GPDK Generic process Design Kit

DCVSL Differential Cascode Voltage Switch

Logic

NORA No Race Around

11 | P a g e

Chapter 1

INTRODUCTION

1.1 VEDIC MATHEMATICS

Multipliers play an important role in building processors Multipliers play an important role in

most of the digital devices and prominently in digital communications and many other

applications as well. Multipliers are used to perform multiplication and various kinds of

multipliers are present in today’s world and used according to requirement. Multiplying the

numbers is very expensive and it takes more memory, time and space. Depending upon

multipliers it takes different memory, different delay.

Vedic Mathematics is an ancient method which deals in unique way in performing

mathematical operations. There are 16 Sutras where Vedic mathematics revolve around. The

application of vedic mathematics is used in number of ways and core reason of it is solve the

numerical problems faster than the modern calculations. Few benefits of using Vedic sutras

are listed below.

1. Calculations become short and easy.

2. Simplifications takes very less time.

3. Complex calculations can be done in efficient manner.

4. Almost every arithmetic operation can be done using just 16 sutras.

12 | P a g e

 All vedic 16 sutras are listed below

1. Chalana-Kalanabyham – The Differences and similarities.

2. Shunyamanyat – If one is in ratio and the other is zero.

3. Ekanyunena Purvena – By one less than the previous one.

4. Ekadhikena Purvena – By one more than the previous one.

5. Gunakasamuchyah – The factors of the sum is equals to the sum of factors.

6. Gunitasamuchyah – The product of the sum is equal to the sum of product.

7. Paraavartya Yojayet -Transpose and Adjust.

8. Puranapuranabyham – By the completion or noncompletion.

9. Sankalana – vyavakalanabhyam – By addition and by subtraction.

10. Shesanyankena Charamena – The remainders by the last digit.

11. Shunyam Saamyasamuccaye –When the sum is the same that the sum is zero

12. Sopaantyadvayamantyam – The ultimate and twice the penultimate.

13. Nikhilam Navatashcaramam Dashatah – All from 9 and last from 10.

14. Urdhva-Triyagbhyam – Vertically and Crosswise.

15. Vyashtisamanstih – Part and Whole.

16. Yaavadunam – Whatever the extent of its deficiency.

These 16 sutras are used for basic to advance arithmetic operations fast and most efficient

way possible and can be verified using formal methods. In these sutras only few qould be

picked up for vedic Multiplier.

13 | P a g e

1.2 VEDIC MULTIPLIER

Multiplication in Vedic Mathematics are divided in the sutras as shown below.

1. Urdhva Triyagbhyam (UT)

2. Nikhilam Sutra

3. Ekadhikena Purvena

1. Urdhva Triyagbhyam

This is one of the easy method of multiplication in vedic mathematics. This technique

provide easy method to multiply two numbers. It’s method is described with an example.

 Fig.1.1 Decimal Multiplication Using Urdhva Triyagbhyam

14 | P a g e

2. Nikhilam Navatashcaramam Dashatah

Nikhilam Navatashcaramam Dashatah is one of the 16 sutras in vedic mathematics. The

speciality of this method is to break down the large number multiplication into small

digit multiplication by efficiently using Addition and Subtraction and Shift operation.

This is one of the fastest multiplication method used in vedic mathematics. Three cases

would be discussed here:

1. Numbers nearest and greater than the powers of 10. Example: 101*102, 1003*1001,

10005*10006.

2. Numbers nearest and lesser than the powers of 10. Example: 96*98, 998*999,

9992*9999

3. Numbers nearest and be either sides of power of 10. Example: 96*101, 998*1004,

10002*9997.

 Fig.1.2 Decimal Multiplication of Nikhilam Navatashcaramam Dashatah

15 | P a g e

3. Ekadhikena Purvena

Ekadhikena Purvena is one of the 16 sutras in vedic mathematics. The name Ekadhikena

Purveena in Sanskrit mean, add one to the previous one to get next number. This

technique is generally used to get fast multiplication when digits of two number are in

this fashion i.e AD and AE. Here certain conditions has to be followed to implement

Ekadhikena Purvena

• First digits should be of same number (Here A=A).

• Adding both second digits should be 10. (Here D+E=10).

1. With an example of multiply two numbers 57 and 53.

2. Above two conditions are followed, first digit is 5 and adding both second digit results

in 10.

3. By applying Ekadhikena Purvena sutra to above example, i.e. increment it by one

which becomes 6.

4. Having the product of 6*5 results in 30. This 30 is the first two digits of the final

result.

5. Having the product of other two digits is 7*3 is 21. So final result will be 3021.

16 | P a g e

 THESIS ORGANIZATION

 The Thesis is organized in 3 chapters which are as follows:

• Chapter 1 introduces the aspect of Vedic Mathematics which gives the coverage of

all 16 sutras and insights of Vedic Multiplier and particular sutras which supports for

multiplication. And the objective of the thesis which is showing the motivation while

taking this title.

• Chapter 2 helps in understanding the Adders in detail, which includes the various

types of Adders and different logic styles of Adders.

• Chapter 3 includes includes Circuit Design Styles of Adder in detail, which adder

would be good in terms of delay.

• Chapter 4 includes Results and the discussion of the codes and explanation is

presented in the chapter.

• Chapter 5 includes Conclusion and Future Scope what can be done and further

improvements of the design.

17 | P a g e

CHAPTER 2

ADDERS

Adders play an important role in Arithmetic operations. In almost every digital

component there would be operations as Addition and Subtraction and even Subtraction

operations are done by using Adders. So optimization of Adders is useful as it widely

used. The choice of adders are done by following particular requisite:

• Lesser Area

• Lower Power Consumption

• Lower Power Dissipation

• High Speed

Depending upon the above nececssities adders would be chosen. As a particular adder

cannot achieve all the above characterisics, the requirement demands which adder need

to be used. Few Adders which gonna be discussed in this paper are:

1. Ripple Carry Adder

2. Carry Look Ahead Adder

3. Carry Select Adder

 In Multiplying two numbers require addition after generating partial products. There are

various kinds of adders such as Ripple Carry Adder, Carry Look–Ahead Adder, Carry

Save Adder, Carry Select Adder. Each and every adder has its own advantages and

disadvantages as in Ripple carry adder gives the most compact design at the same time

computation time is high.

18 | P a g e

 Types of Adders

2.1 Ripple Carry Adder

 Ripple Carry adders is a basic adder. Here the word itself says the ‘Ripple’ mean the output

of previous is transferred to the current cell. Ripple Carry Adder contains the series of Adders

output of one Adder is connected to input of next adder serially. Here Carry of previous adder

is connected to another input to the next respective adder cells. Here the time taken to

complete the addition gets high until and unless carry gets generated from previous cell it the

current adder cell cannot proceed which is one of the major disadvantage of this adder. The

Architecture of 32- bit Full Adder can be seen below. Here in Ripple Carry Adder the Area

consumption is less the propagation delay here is very high .

 Sum = A XOR B XOR C

 Carry = AB + BCin + ACin

 Fig.2.1.1 32-bit Ripple Carry Adder

\

19 | P a g e

2.2 Carry Look Ahead Adder

 Carry Look Ahead Adder is better than RCA in obtaining the result. The carry gets

calculated in the intermediate stages using Carry generate and Carry propagate whatever

would be the input carry. That is how the name Carry Look Ahead name is given. Here two

terms are predominantly important are i.e Carry Generate and Carry Propagate. Carry

Propagate will be propagated to further stages of Adder. Carry generate work is to prior

generation of carry whatever the input carry would be.

Equations of Carry Look Ahead Adder are:

 P(i) = A(i) xor B(i)

 G(i) = A(i) and B(i)

 S(i) = P(i) xor C(i)

 Here i can be the values of i= 1,2,3,4…. Depending upon the number of bit of Carry Look

Ahead Adder. For a 4-bit Carry Look Ahead Adder i would be the value of 3, i.e for N-bit

Carry Look Ahead Adder the value of i would be taken as N-1.

 Fig.2.1.2 4-Bit Carry Look Ahead Adder

20 | P a g e

2.3 Carry Select Adder

 Carry Select Adder is the application of Ripple Carry Adder as it comprises of two RCA and

a multiplexer. Carry Select adder gives the output for possible values of carry input which

mean output for Cin = 0, Cin = 1 both values. Carry Propagate will be propagated to further

stages of Adder. Carry generate work is to prior generation of carry whatever the input carry

would be.

 Fig.2.1.3 4-bit Carry Select Adder

21 | P a g e

 CHAPTER 3

 CIRCUIT DESIGN STYLES OF ADDER

The Full Adders is the basis for almost every Arithmetic units. There will be a numerous

CMOS circuit design styles which includes both static and dynamic in nature. Here we

discuss about few circuit design styles of Adders which are given below:

The physical design steps comprise of:

1) Static CMOS

2) Differential Cascode Voltage Switch Logic

3) NoRa Logic

 3.1 Static CMOS Full Adder

A Full Adder designed using Static CMOS logic which employs both P-type and N-type

logic. The Upper half of circuit allows the output to be charged high upto VDD and lower

half of circuit allows the output to be discharged to ground.

 Fig.3.1 1-Bit Static CMOS Full Adder

22 | P a g e

3.2 Diffential Cascode Switch Logic Full Adder

A cross coupled P-type transistor in Cascode Voltage Switch Logic with a cross coupled pair

of P-transistors results in static version of that logic is known as Differential Cascode Switch

logic (DCVSL). The cross coupled P-transistors acts as differential pair. Here when an output

of one side gets low the opposite P-transistor gets on and high.

 Fig.3.2 1-Bit Differential Cascode Switch Logic (DCVSL) based Full Adder

23 | P a g e

3.3 NO – RACE(NORA) Dynamic CMOS Full Adder

A Full Adder made using No Race Dynamic Logic (NORA) has an alternating stages of P

and N-type logic trees to get Sum and Carry outputs. The P-type stage that forms the carry

output is dynamically charged high and while the N-type transistor that evaluates the Sum

output is dynamically pre-charged to low. Here is the logic we require two phase clocking

named as phi and phi’.

 Fig.3.3 1-Bit No-Race Dynamic CMOS Logic Full Adder

24 | P a g e

CHAPTER 4

RESULTS AND DISCUSSIONS

Fig.4.1 Simulation of 2*2 Vedic Multiplier

 Fig.4.2 Netlist of 2*2 Vedic Multiplier

25 | P a g e

 Fig.4.3 Simulation 4*4 Vedic Multiplier

 Fig.4.4 Netlist of 4*4 Vedic Multiplier

26 | P a g e

 Fig.4.5 Simulation of 8*8 Vedic Multiplier

 Fig.4.6 Netlist of 8*8 Vedic Multiplier

27 | P a g e

 Fig.4.7 Simulation of 16*16 Vedic Multiplier

 Fig.4.8 Netlist of 16*16 Vedic Multiplier

28 | P a g e

 Fig.4.9 Simulation of 4-Bit Carry Select Adder

 Fig.4.10 Netlist of 4-Bit Carry Select Adder

29 | P a g e

 Fig.4.11 Simulation of 8-Bit Carry Select Adder

 Fig.4.12 Netlist of 8-Bit Carry Select Adder

30 | P a g e

 Fig.4.13 Simulation of 12-Bit Carry Select Adder

 Fig.4.14 Netlist of 12-Bit Carry Select Adder

31 | P a g e

 Fig.4.15 Simulation of 16-Bit Carry Select Adder

 Fig.4.16 Netlist of 16-Bit Carry Select Adder

32 | P a g e

 Fig.4.17 Simulation of 24-Bit Carry Select Adder

 Fig.4.18 Netlist of 24-Bit Carry Select Adder

33 | P a g e

Fig.4.19 Schematic of 1-Bit full Adder using Static CMOS.

34 | P a g e

Fig.4.20 Inputs and Output of 1-Bit Full Adder using Static CMOS logic

35 | P a g e

 Fig.4.21 Schematic of 4-Bit Ripple Carry Adder using Static CMOS

36 | P a g e

Fig.4.22 Inputs and Output of 4-Bit Ripple Carry Adder using Static CMOS logic

37 | P a g e

Fig.4.23 Schematic of 8-Bit Ripple Carry Adder using Static CMOS logic

38 | P a g e

Fig.4.24 Inputs and Output of 8-Bit Ripple Carry Adder using Static CMOS logic

39 | P a g e

Fig.4.25 Schematic of 16-Bit Ripple Carry Adder using Static CMOS logic

40 | P a g e

Fig.4.26 Inputs and Outputs of 16-Bit Full Adder

41 | P a g e

Fig.4.27 Inputs and Outputs of 16-Bit Full Adder

42 | P a g e

Fig.4.28 Schematic of 1-Bit full Adder using Differential Cascode Logic.

43 | P a g e

Fig.4.29 Inputs and Output of 1-Bit Full Adder using Differential Cascode logic

44 | P a g e

Fig.4.30 Schematic of 4-Bit full Adder using Differential Cascode Logic

45 | P a g e

Fig.4.31 Inputs and Output of 4-Bit Full Adder using Differential Cascode logic

46 | P a g e

Fig.4.32 Schematic of 8-Bit full Adder using Differential Cascode Logic

47 | P a g e

Fig.4.33 Inputs and Output of 8-Bit Full Adder using Differential Cascode logic

48 | P a g e

Fig.4.34 Schematic of 16-Bit full Adder using Differential Cascode Logic

49 | P a g e

Fig.4.35 Inputs of 16-Bit Full Adder using Differential Cascode logic

50 | P a g e

Fig.4.36 Outputs of 16-Bit Full Adder using Differential Cascode logic

51 | P a g e

Fig.4.37 Schematic of 1-Bit full Adder using NORA (NO Race Around) Logic

52 | P a g e

Fig.4.38 Inputs and Output of 1-Bit Full Adder using NORA logic

53 | P a g e

Fig.4.39 Schematic of 4-Bit full Adder using NORA (NO Race Around) Logic

54 | P a g e

Fig.4.40 Inputs and Output of 4-Bit Full Adder using NORA logic

55 | P a g e

Fig.4.41 Schematic of 8-Bit full Adder using NORA (NO Race Around) Logic

56 | P a g e

Fig.4.42 Inputs and Output of 8-Bit Full Adder using NORA logic

57 | P a g e

Fig.4.43 Schematic of 16-Bit full Adder using NORA (NO Race Around) Logic

58 | P a g e

Fig.4.44 Inputs and Output of 16-Bit Full Adder using NORA logic

59 | P a g e

Fig.4.45 Inputs and Output of 16-Bit Full Adder using NORA logic

60 | P a g e

 Table 1. Delays of 16bit- Ripple Carry Adder using various Logic Styles

 S.No

 Logic Style

 Delay

 1.

 Static CMOS

 78.69ps

 2.

 DCVSL

 87.4ps

 3.

 NORA

 53.68ps

 Fig.4.46 Half Adder

Fig.4.47 2-Bit Multiplier

61 | P a g e

In the above code (Figure 4.47), the design function is to implement the 2*2 Bit Vedic

Multiplier which have the inputs are A, B and Output as Q. To implement the 2-Bit Vedic

Multiplier we require two half Adders as well which are directly initialized in this module

and are have the code in the another module. In Multiplier when the inputs are of N-Bit and

outputs should be of 2N capacity i.e why we declare output should have the capacity of four

while the max capacity of input here is two. Here in the (Figure 4.1), we can see the

simulation along with some test cases and in (Figure 4.2) we can see the Netlist generated for

above 2-Bit Multiplier.

 Fig.4.48 4-Bit Multiplier

In the above code (Figure 4.48), the design function is to implement the 4*4 Bit Vedic

Multiplier which have the inputs are A, B and Output as S. Along with inputs and outputs we

require some internal wire which drives the signals we have taken the help of wire. To

implement 4-Bit Vedic Multiplier we initiated four 2-Bit Vedic Multiplier which shown in

the above fig and along with as every Multipliers we require adders here we used Carry

Select Adder. As internally shifting of bits is required in Multipliers we used 4-Bit and 6-Bit

Carry Select Adders. Here in the (Figure 4.3), we can see the simulation along with some test

cases and in (Figure 4.4) we can see the Netlist generated for above 4-Bit Multiplier.

62 | P a g e

 Fig.4.49 8-Bit Multiplier

In the above code (Figure 4.49), the design function is to implement the 8*8 Bit Vedic

Multiplier which have the inputs are A, B and Output as C. Along with inputs and outputs we

require some internal wire which drives the signals we have taken the help of wire. Here as

input is of 4-bit and in multipliers the output capacity would be double of maximum of input

capacity i.e why we declared output as of 8-Bit. To implement 8-Bit Vedic Multiplier we

initiated four 4-Bit Vedic Multiplier which shown in the above fig and along with as every

Multipliers we require adders here we used Carry Select Adder. As internally shifting of bits

is required in Multipliers we used 8-Bit and 12-Bit Carry Select Adders. Here in the (Figure

4.5), we can see the simulation along with some test cases and in (Figure 4.6) we can see the

Netlist generated for above 8-Bit Multiplier.

63 | P a g e

 Fig.4.50 16-Bit Multiplier

In the above code (Figure 4.50), the design function is to implement the 16*16 Bit Vedic

Multiplier which have the inputs are A, B and Output as C. Along with inputs and outputs we

require some internal wire which drives the signals we have taken the help of wire. Here as

input is of 16-bit and in multipliers the output capacity would be double of maximum of input

capacity i.e why we declared output as of 32-Bit. To implement 8-Bit Vedic Multiplier we

initiated four 8-Bit Vedic Multiplier which shown in the above fig and along with as every

Multipliers we require adders here we used Carry Select Adder. As internally shifting of bits

is required in Multipliers we used 16-Bit and 24-Bit Carry Select Adders. Here in the (Figure

4.7), we can see the simulation along with some test cases and in (Figure 4.8) we can see the

Netlist generated for above 16-Bit Multiplier.

64 | P a g e

 Fig.4.51 Full Adder

 Fig.4.52 2*1 Multiplexer

The above two modules which are shown in the Figure(4.51) Full Adder and Figure (4.52)

2*1 Multiplexer are used inside the modules of Carry select Adder.

65 | P a g e

 Fig.4.53 4-Bit Carry Select Adder

In the above code (Figure 4.53), the design function is to implement the 4-Bit Carry Select

Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and

Carryout as cout. Along with inputs and outputs we require some internal wire which drives

the signals we have taken the help of wire. As in this method we use total of Eight Full

Adders in which Four Adders are used when cin=0 and other four Adders when cin=1, and

calculations are done parallelly and finally we need multilplexers to choose final Sum by

choosing appropriate select lines. Here total five Multiplexers are used in which four are

being involved in sum and the remaining one mux is used to choose the carryout.

66 | P a g e

 Fig 4.54 6-Bit Carry Select Adder

In the above code (Figure 4.54), the design function is to implement the 6-Bit Carry Select

Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and

Carryout as cout. Along with inputs and outputs we require some internal wire which drives

the signals we have taken the help of wire. As in this method we use total of twelve Full

Adders in which Six Adders are used when cin=0 and other Six Adders when cin=1, and

calculations are done parallelly and finally we need multilplexers to choose final Sum by

choosing appropriate select lines. Here total Seven Multiplexers are used in which Six are

being involved in sum and the remaining one mux is used to choose the carryout.

67 | P a g e

 Fig 4.55 8-Bit Carry Select Adder

In the above code (Figure 4.55), the design function is to implement the 8-Bit Carry Select

Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and

Carryout as cout. Along with inputs and outputs we require some internal wire which drives

the signals we have taken the help of wire. As in this method we use total of Sixteen Full

Adders in which eight Adders are used when cin=0 and other eight Adders when cin=1, and

calculations are done parallelly and finally we need multilplexers to choose final Sum by

choosing appropriate select lines. Here total Nine Multiplexers are used in which Eight are

being involved in sum and the remaining one mux is used to choose the carryout.

68 | P a g e

 Fig 4.56 12-Bit Carry Select Adder

In the above code (Figure 4.56), the design function is to implement the 12-Bit Carry Select

Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and

Carryout as cout. Along with inputs and outputs we require some internal wire which drives

the signals we have taken the help of wire. As in this method we use total of Twenty Four

Full Adders in which twelve Adders are used when cin=0 and other twelve Adders when

cin=1, and calculations are done parallelly and finally we need multilplexers to choose final

Sum by choosing appropriate select lines. Here total Thirteen Multiplexers are used in which

Twelve are being involved in sum and the remaining one mux is used to choose the carryout.

69 | P a g e

 Fig 4.57 16-Bit Carry Select Adder

In the above code (Figure 4.57), the design function is to implement the 16-Bit Carry Select

Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and

Carryout as cout. Along with inputs and outputs we require some internal wire which drives

the signals we have taken the help of wire. As in this method we use total of Thirty two Full

Adders in which Sixteen Adders are used when cin=0 and other Sixteen Adders when cin=1,

and calculations are done parallelly and finally we need multilplexers to choose final Sum by

choosing appropriate select lines. Here total Seventeen Multiplexers are used in which

Sixteen are being involved in sum and the remaining one mux is used to choose the carryout.

70 | P a g e

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

With the tremendous growth in VLSI, the products are manufacturing in great extent.

This leads to the increase in demand of electronic products like Memory components,

Processors, and other functional blocks. There is a need to proper flow from the algorithm

level specification till transistor level. The first part of the work deals with Multipliers.

As there are various types of Multipliers and here in the thesis Vedic Multiplier is covered

using the technique of Urdhva Triyagbhyam method. After understanding the topics which

have been covered in this thesis, one can easily get the idea about how the UT method is

good enough to get multiplication providing two levels of Adders at all stage of time i.e

2,4,8-Bit Vedic Multiplier. There is a possibility by varying the levels of Adders from two to

one which increase the size of adders.

The Second half deals with the Adders as an efficient Multiplier is only possible with proper

Adder selection. Here in the thesis we can see the Ripple Carry Adder, Carry Select Adder

and Carry Look Ahead adder. And also at transistor level implementation of Ripple carry

Adder upto 16-bit and each 16-bit Adders are implemented using various circuit design styles

like Static CMOS, DCVSL, NORA based Adders and by knowing the delays and number of

transistor we can choose appropriately choose the Adder depending on budget as there is a lot

of possibilities coming from Number of levels of Adders, type of Adder, Ciruit design style

of adder and size of Adders at a circuit level a minimum of 21 transistors to 28 transistors of a

1-bit Adder Full Adder is required.

These Vedic Multipliers can be efficiently used in Fast Fourier Transform and in Digital

Signal Processing Applications as well as including the processors where basic Arithmetic

operations are used.

71 | P a g e

REFERENCES

[1] Sameer Palitkar, “Verilog HDL A guide to Digital Design and Synthesis” SunSoft Press,

1996.

[2] Ankita Jain, “Design , Implementation & Comparission of Vedic Multipliers with

 Conventional Multipliers”, Springer.

 [3] Pushpalata Verme, “ Design of 4*4 bit Vedic Multiplier using EDA Tool ”, International

 Journal of Computer Applications (0975 888)Volume 48 No. 20 June 2012.

 [4] Anirudha Kanhe, Shishir Kumar Dasand Ankit Kumar Singh, “ Design and implementation

 of low Power Multiplier using Vedic Multiplication Technique ”, International Journal of

 Computer Applications, Vol. 3, No.1, June 2012,pp. 131-132.

 [5] Kavita, Umesh Goyal, “Performance Analysis of Various Vedic Techniques For

 Multiplication” International Journal of Engineering Trends and Technology- Volume4

 Issue3-2013.

 [6] Sung-Mo Kang, Yusuf Leblebici. (199).Mc Graw Hill Higher Education : CMOS Digital

 Integrated Circuits

 [7] Rabaey, Pedram. (1996). Kluwer Academic Publisher: Low Power Design Methodoloy.

