Efficient 16x16 Vedic Multiplier using various Adders
A
Dissertation
Submitted in the fulfilment of the requirements
For the award of degree

Of

MASTER OF TECHNOLOGY
In
VLSI Design and Embedded System

By
YATHAM
NAGA SAI

HARSHEESWAR
REDDY
(2K20/VLS/24)

Under the Guidance of

Dr.N.S. RAGHAVA

vvvvvvvvvv

.....

Q2
vOLOGICR

ELECTRONICS AND COMMUNICATION DEPARTMENT
DELHI TECHNOLOGICAL UNIVERSITY
DELHI-110042
SESSION 2020-2022

-1-|Page

ELECTRONICS AND COMMUNICATION DEPARTMENT
DELHI TECHNOLOGICAL UNIVERSITY
DELHI-110042
SESSION 2020-2022

CANDIDATE'S DECLARATION

| hereby declare that the work being presented in this dissertation entitled “Efficient 16*16
Vedic Multiplier using various Adders” submitted towards the fulfilment of the Major
project requirements for the award of degree, Master of Technology in VLSI Design and
Embedded System to the Electronics and Communication Dept., Delhi Technological
University, is an authentic record of my work carried out from January 2022 to June 2022,
under the guidance of Dr. N.S. RAGHAVA, Electronics and Communication Dept., Delhi

Technological University, Delhi.

| have not submitted the matter embodied in the dissertation for the awardof any other

degree.

YN Hrsheson \\hicﬁj/

YATHAM NAGA SAlI HARSHEESWAR REDDY
2K20/VLS/24
Electronics and Communication Department

Date: 17" May, 2022
i|Page

\‘3[“6“ Usﬂay-qkr
(E}'é

ELECTRONICS AND COMMUNICATION DEPARTMENT
DELHI TECHNOLOGICAL UNIVERSITY
DELHI-110042
SESSION 2020-2022

CERTIFICATE

This is to certify that the dissertation entitled “Efficient 16*16 Vedic Multiplier using
various Adders” is the authentic record of work done by Yatham Naga Sai Harsheeswar
Reddy under my guidance and supervision. This dissertation is being submitted to the Delhi
Technological University, Delhi towards the fulfilment of the requirements for the award of

degree of Master of Technology in VLSI Design and Embedded System.

Date: 17" May, 2022
Dr. N.S. Raghava

SUPERVISOR
PROFESSOR

HEAD OF DEPARTMENT

ii|]Page

ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to all the people whohave helped
and supported me in the process of dissertation. Without their help and support, 1 would not
have been able to reach this level of satisfaction with what 1 have learnt and accomplished
during my Master's dissertation. First and foremost, | would like to express my deep sense of
respect and gratitude towards my supervisor Dr. N.S. Raghava, Professor, Head of
Department, Electronics and Communication Dept., DTU, for giving me opportunity to do
my Major project of master's dissertation under her guidance. |1 am very thankful for her for
givingme the opportunity to choose such an interesting topic by my own. | would also like to
thanks the NPTEL Lectures for their valuable thoughts and knowledge, which motivated me
to do better. Finally, none of this would have been possiblewithout incredible support of my

friends. They were always supporting me and encouraging me with their best wishes.

YN <H@O\\U LV \{L: A‘Lj/ g
YATHAM NAGA SAlI HARSHEESWAR REDDY

Roll No. 2K20/VVLS/24

Electronics and Communication Dept.

iii|]Page

ABSTRACT

We live in an era of artificial intelligence which leads to lots of automation for the betterment
of life and society. Semiconductor industries, makes the way for bigger solution for people
and which brings the technology to audience ranging from common people to stalwarts in the
means of smallest components as sensors, mobiles, laptop to bigger components as data
centers. As technology is evolving and increasing demand of the technologies and the
evolution of the products and the giants of semiconductor industries like Intel, Texas,
Samsung, Qualcomm and Western Digital are finding their way in a best possible way to

design the product which is user friendly.

There are various constraints which are implemented, which are imposed by these industries
like functionality of the electronic device, power dissipation by the product, area occupied
and also the reliability of the product. All these constraints, require some special attention
and the measurements, which needsto be fulfilled by the design engineers, so that the

reputation of the industry, andthe competition in the products will be sustained.

The electronic devices process the digital signals and process here is nothing but the
Addition, Subtraction and Multiplication which are some Arithmetic operations. To make
devices faster either we can go for better technology in terms of MOS that is having lesser
feature size or make the Arithmetic operations more efficient. Here in this thesis we focus on
the latter part. In this thesis we look into both Multipliers and Adders, in multipliers we focus
on three techniques. While in Adders we look into both logical and circuit design styles of

adder and know the best possible combination of the adder we can use.

iv|Page

TABLE OF CONTENTS
Declaration
Certificate
Acknowledgement
Abstract
List of Figures
List of Tables

List of Abbreviations

CHAPTER 1

Introduction
1.1 Vedic Mathematics

1.2 Vedic Multiplier

CHAPTER 2
Types of Adders

2.1 Ripple Carry Adder
2.2 Carry Look Ahead
2.3 Carry Select Adder

CHAPTER 3

CIRCUIT DESIGN STYLES OF ADDER

3.1 Static CMOS Full Adder
3.2 DCVSL based Full Adder
3.3 NORA based Full Adder

CHAPTER 4
RESULTS AND DISCUSSION

CHAPTER 5
CONCLUSION AND FUTURE SCOPE

REFERENCES

v|iPage

11-15

11
13
17-20
16
18
19
20

21-23

21
22
23

24-69

70

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.
1.1 Decimal Multiplication Using Urdhva Triyagbhyam 13
1.2 Decimal Multiplication of Nikhilam Navatashcaramam 14

Dashatah
21 32-Bit Ripple Carry Adder 18
22 4-Bit Carry Look Ahead Adder 19
2.3 4-Bit Carry Select Adder 20
3.1 1-Bit Static CMOS Full Adder 21
3.2 1-Bit Differential Cascode Switch logic based Full Adder 22
3.3 1-Bit Dynamic CMOS logic Full Adder 23
4.1 Simulation of 2*2 Vedic Multiplier 24
4.2 Netlist of 2*2 Vedic Multiplier 24
4.3 Simulation of 4*4 Vedic Multiplier 25
4.4 Netlist of 4*4 Vedic Multiplier 25
4.5 Simulation of 8*8 Vedic Multiplier 26
4.6 Netlist of 8*8 Vedic Multiplier 26
4.7 Simulation of 16*16 Vedic Multiplier 27
4.8 Netlist of 16*16 Vedic Multiplier 27
4.9 Simulation of 4-Bit Carry Select Adder 28

vi|Page

4.10 Netlist of 4-Bit Carry Select Adder 28
411 Simulation of 8-Bit Carry Select Adder 29
412 Netlist of 8-Bit Carry Select Adder 29
4.13 Simulation of 12-Bit Carry Select Adder 30
414 Netlist of 12-Bit Carry Select Adder 30
4.15 Simulation of 16-Bit Carry Select Adder 31
4.16 Netlist of 16-Bit Carry Select Adder 31
4.17 Simulation of 24-Bit Carry Select Adder 32
4.18 Netlist of 24-Bit Carry Select Adder 32
419 Schematic of 1-Bit full Adder using Static CMOS 34
4.20 Inputs and Output of 1-Bit Full Adder using Static CMOS 35
logic
421 Schematic of 4-Bit Ripple Carry Adder using Static 36
CMOS
4.22 Inputs and Output of 4-Bit Ripple Carry Adder using 37
Static CMOS logic
4.23 Schematic of 8-Bit Ripple Carry Adder using Static 38
CMOS logic
4.24 Inputs and Output of 8-Bit Ripple Carry Adder using 39
Static CMOS logic
4.25 Schematic of 16-Bit Ripple Carry Adder using Static 40
CMOS logic
4.26 Inputs and Output of 16-Bit Ripple Carry Adder using 41
Static CMOS logic
4.27 Inputs and Output of 16-Bit Ripple Carry Adder using 42
Static CMOS logic
4.28 Schematic of 1-Bit full Adder using Differential Cascode 43
Logic
4.29 Inputs and Output of 1-Bit Full Adder using Differential 44
Cascode logic
4.30 Schematic of 4-Bit full Adder using Differential Cascode 45
Logic
4.31 Inputs and Output of 4-Bit Full Adder using Differential 46

Cascode logic

vii|Page

4.32 Schematic of 8-Bit full Adder using Differential Cascode 47
Logic
4.33 Inputs and Output of 8-Bit Full Adder using Differential 48
Cascode logic
4.34 Schematic of 16-Bit full Adder using Differential Cascode 49
Logic
4.35 Inputs and Output of 16-Bit Full Adder using Differential 50
Cascode logic
4.36 Inputs and Output of 16-Bit Full Adder using Differential 51
Cascode logic
4.37 Schematic of 1-Bit full Adder using NORA (NO Race 52
Around) Logic
4.38 Inputs and Output of 1-Bit Full Adder using NORA logic 53
4.39 Schematic of 4-Bit full Adder using NORA (NO Race 54
Around) Logic
4.40 Inputs and Output of 4-Bit Full Adder using NORA logic 55
4.41 Schematic of 8-Bit full Adder using NORA (NO Race 56
Around) Logic
4.42 Inputs and Output of 8-Bit Full Adder using NORA logic 57
4.43 Schematic of 16-Bit full Adder using NORA (NO Race 58
Around) Logic
4.44 Inputs and Output of 16-Bit Full Adder using NORA 59
logic
4.45 Inputs and Output of 16-Bit Full Adder using NORA 60
logic
4.46 Verilog Code of Half Adder 61
4.47 Verilog Code of 2-Bit Multiplier 61
4.48 Verilog Code of 4-Bit Multiplier 62
4.49 Verilog Code of 8-Bit Multiplier 63
450 Verilog Code of 16-Bit Multiplier 64
451 Verilog Code of Full Adder 65
452 Verilog Code of 2*1 Multiplexer 66
453 Verilog Code of 4-Bit Carry Select Adder 67

viii |Pag

4.54 Verilog Code of 6-Bit Carry Select Adder 68

4.55 Verilog Code of 8-Bit Carry Select Adder 69
4.56 Verilog Code of 12-Bit Carry Select Adder 70
457 Verilog Code of 16-Bit Carry Select Adder 71

LIST OF TABLES
TABLE TABLE NAME PAGE NO

Table 5.1 Delays of 16-bit RCA 52

ix|Page

LIST OF ABBREVIATIONS

RTL Register transfer level

VLSI Vert Large Scale Integration

GDSIlI Graphic design system

ASIC Application specific integrated circuit

uT Urdhva Triyagbhyam

SOC System on chip

FPGA Field programmable gate array

HDL Hardware description language

GPDK Generic process Design Kit

DCVSL Differential Cascode Voltage Switch
Logic

NORA No Race Around

x|Page

Chapter 1

INTRODUCTION

1.1 VEDIC MATHEMATICS

Multipliers play an important role in building processors Multipliers play an important role in
most of the digital devices and prominently in digital communications and many other
applications as well. Multipliers are used to perform multiplication and various kinds of
multipliers are present in today’s world and used according to requirement. Multiplying the
numbers is very expensive and it takes more memory, time and space. Depending upon

multipliers it takes different memory, different delay.

Vedic Mathematics is an ancient method which deals in unique way in performing
mathematical operations. There are 16 Sutras where Vedic mathematics revolve around. The
application of vedic mathematics is used in number of ways and core reason of it is solve the
numerical problems faster than the modern calculations. Few benefits of using Vedic sutras

are listed below.

1. Calculations become short and easy.

2. Simplifications takes very less time.

3. Complex calculations can be done in efficient manner.

4. Almost every arithmetic operation can be done using just 16 sutras.

11|Page

All vedic 16 sutras are listed below

10.

11.

12.

13.

14.

15.

Chalana-Kalanabyham — The Differences and similarities.

Shunyamanyat — If one is in ratio and the other is zero.

Ekanyunena Purvena — By one less than the previous one.

Ekadhikena Purvena — By one more than the previous one.
Gunakasamuchyah — The factors of the sum is equals to the sum of factors.
Gunitasamuchyah — The product of the sum is equal to the sum of product.
Paraavartya Yojayet -Transpose and Adjust.

Puranapuranabyham — By the completion or noncompletion.

Sankalana — vyavakalanabhyam — By addition and by subtraction.
Shesanyankena Charamena — The remainders by the last digit.

Shunyam Saamyasamuccaye —When the sum is the same that the sum is zero
Sopaantyadvayamantyam — The ultimate and twice the penultimate.
Nikhilam Navatashcaramam Dashatah — All from 9 and last from 10.
Urdhva-Triyagbhyam — Vertically and Crosswise.

Vyashtisamanstih — Part and Whole.

16. Yaavadunam — Whatever the extent of its deficiency.

These 16 sutras are used for basic to advance arithmetic operations fast and most efficient

way possible and can be verified using formal methods. In these sutras only few qould be

picked up for vedic Multiplier.

12| Page

1.2 VEDIC MULTIPLIER

Multiplication in Vedic Mathematics are divided in the sutras as shown below.
1. Urdhva Triyagbhyam (UT)
2. Nikhilam Sutra

3. Ekadhikena Purvena

1. Urdhva Triyagbhyam

This is one of the easy method of multiplication in vedic mathematics. This technique

provide easy method to multiply two numbers. It’s method is described with an example.

Step 1 Step 2 Step 3
325 Result=40 325 Result=3 1 3ﬁ<5 Result=6 5
738 Pre Carry= 0 738 PreCarry= 4 73 8 Pre Carry= 3
9 35 _—
o—rof o 3 . s o s
Carry =4 Carry=3 [l _'j\
Carry=6
Step 4 Step 5
33 5 Result= 2 3 325 Result=2 1 325%738 = 239850
7 3 8 PreCarry= [73 8 PreCarry= 2
3850 2 239850
T T 1T
I
Carry=2

Fig.1.1 Decimal Multiplication Using Urdhva Triyagbhyam

13| Page

2. Nikhilam Navatashcaramam Dashatah

Nikhilam Navatashcaramam Dashatah is one of the 16 sutras in vedic mathematics. The
speciality of this method is to break down the large number multiplication into small
digit multiplication by efficiently using Addition and Subtraction and Shift operation.
This is one of the fastest multiplication method used in vedic mathematics. Three cases

would be discussed here:

1. Numbers nearest and greater than the powers of 10. Example: 101*102, 1003*1001,
10005*10006.

2. Numbers nearest and lesser than the powers of 10. Example: 96*98, 998*999,
9992*9999

3. Numbers nearest and be either sides of power of 10. Example: 96*101, 998*1004,
10002*9997.

96 *93

Nearest base = 100

96 (100-96)
93 (100-93)
Column1 Column2
>
93 7
Common 89 28 Multiplication
Difference Result

Result =96 * 93 = 8928

Fig.1.2 Decimal Multiplication of Nikhilam Navatashcaramam Dashatah

14| Page

3. Ekadhikena Purvena

Ekadhikena Purvena is one of the 16 sutras in vedic mathematics. The name Ekadhikena

Purveena in Sanskrit mean, add one to the previous one to get next number. This

technique is generally used to get fast multiplication when digits of two number are in

this fashion i.e AD and AE. Here certain conditions has to be followed to implement

Ekadhikena Purvena

First digits should be of same number (Here A=A).
Adding both second digits should be 10. (Here D+E=10).
With an example of multiply two numbers 57 and 53.

Above two conditions are followed, first digit is 5 and adding both second digit results
in 10.

By applying Ekadhikena Purvena sutra to above example, i.e. increment it by one

which becomes 6.

Having the product of 6*5 results in 30. This 30 is the first two digits of the final

result.

Having the product of other two digits is 7*3 is 21. So final result will be 3021.

15| Page

THESIS ORGANIZATION

The Thesis is organized in 3 chapters which are as follows:

e Chapter 1 introduces the aspect of Vedic Mathematics which gives the coverage of
all 16 sutras and insights of VVedic Multiplier and particular sutras which supports for
multiplication. And the objective of the thesis which is showing the motivation while
taking this title.

e Chapter 2 helps in understanding the Adders in detail, which includes the various

types of Adders and different logic styles of Adders.

e Chapter 3 includes includes Circuit Design Styles of Adder in detail, which adder

would be good in terms of delay.

e Chapter 4 includes Results and the discussion of the codes and explanation is

presented in the chapter.

e Chapter 5 includes Conclusion and Future Scope what can be done and further

improvements of the design.

16| Page

CHAPTER 2

ADDERS

Adders play an important role in Arithmetic operations. In almost every digital
component there would be operations as Addition and Subtraction and even Subtraction
operations are done by using Adders. So optimization of Adders is useful as it widely
used. The choice of adders are done by following particular requisite:

e Lesser Area

e Lower Power Consumption
e Lower Power Dissipation

e High Speed

Depending upon the above nececssities adders would be chosen. As a particular adder
cannot achieve all the above characterisics, the requirement demands which adder need

to be used. Few Adders which gonna be discussed in this paper are:
1. Ripple Carry Adder
2. Carry Look Ahead Adder

3. Carry Select Adder

In Multiplying two numbers require addition after generating partial products. There are
various kinds of adders such as Ripple Carry Adder, Carry Look—Ahead Adder, Carry
Save Adder, Carry Select Adder. Each and every adder has its own advantages and
disadvantages as in Ripple carry adder gives the most compact design at the same time

computation time is high.

17 |Page

Types of Adders
2.1 Ripple Carry Adder

Ripple Carry adders is a basic adder. Here the word itself says the ‘Ripple’ mean the output
of previous is transferred to the current cell. Ripple Carry Adder contains the series of Adders
output of one Adder is connected to input of next adder serially. Here Carry of previous adder
is connected to another input to the next respective adder cells. Here the time taken to
complete the addition gets high until and unless carry gets generated from previous cell it the
current adder cell cannot proceed which is one of the major disadvantage of this adder. The
Architecture of 32- bit Full Adder can be seen below. Here in Ripple Carry Adder the Area

consumption is less the propagation delay here is very high .

Sum=A XORB XOR C
Carry = AB + BCin + ACin

a0 b0
a3l b3t

R, b {

FULL
(30 1 (o FULL
Cout¢ ADDER ¢ —_— _¢ FULL c ADDER G Cin
ADDER

Sum31
Suml Sum0

Fig.2.1.1 32-bit Ripple Carry Adder

18| Page

2.2 Carry Look Ahead Adder

Carry Look Ahead Adder is Dbetter than RCA in obtaining the result. The carry gets
calculated in the intermediate stages using Carry generate and Carry propagate whatever
would be the input carry. That is how the name Carry Look Ahead name is given. Here two
terms are predominantly important are i.e Carry Generate and Carry Propagate. Carry
Propagate will be propagated to further stages of Adder. Carry generate work is to prior

generation of carry whatever the input carry would be.

Equations of Carry Look Ahead Adder are:

P(i) = A(i) xor B(i)
G(i) = A(i) and B(i)
S(i) = P(i) xor C(i)
Here i can be the values of i= 1,2,3,4.... Depending upon the number of bit of Carry Look

Ahead Adder. For a 4-bit Carry Look Ahead Adder i would be the value of 3, i.e for N-bit
Carry Look Ahead Adder the value of i would be taken as N-1.

@3 @3 B2 A2 B1 Al BO A0
FA3 FA3 FA2 FA1 <0
g © s1 50 o
P3 63 P2 G2 PL Gl PO GO
= : 4-Bit Carry Look Ahead Adder <=
c4

Fig.2.1.2 4-Bit Carry Look Ahead Adder

19| Page

2.3 Carry Select Adder

Carry Select Adder is the application of Ripple Carry Adder as it comprises of two RCA and
a multiplexer. Carry Select adder gives the output for possible values of carry input which
mean output for Cin = 0, Cin = 1 both values. Carry Propagate will be propagated to further

stages of Adder. Carry generate work is to prior generation of carry whatever the input carry

would be.
x&[a] \ba] i_[;] ‘@’-] X1 YL X[o) Y[O)
R
FA4 FA3 IH FA2 FAL =
M
T X3 Y[X2 Y2l X1 v X[0] Y[0]
X
Cout 4 G G ﬂ
/ !
_ FAd FA3 FA2 FAL <=

S[0]

§(3] 502 S[1]

Fig.2.1.3 4-bit Carry Select Adder

20|Page

CHAPTER 3

CIRCUIT DESIGN STYLES OF ADDER

The Full Adders is the basis for almost every Arithmetic units. There will be a numerous
CMOS circuit design styles which includes both static and dynamic in nature. Here we

discuss about few circuit design styles of Adders which are given below:

The physical design steps comprise of:
1) Static CMOS
2) Differential Cascode Voltage Switch Logic

3) NoRa Logic

3.1 Static CMOS Full Adder

A Full Adder designed using Static CMOS logic which employs both P-type and N-type
logic. The Upper half of circuit allows the output to be charged high upto VDD and lower

half of circuit allows the output to be discharged to ground.

Voo

—«uJL—ﬁ Tp—s a—{t o—dL c—«i% o

e—dC Tp—a —4E‘ b—a r%ég -m
. = I_"i

k—n# oL c—ﬂ e

Fig.3.1 1-Bit Static CMOS Full Adder

21| Page

3.2 Diffential Cascode Switch Logic Full Adder

A cross coupled P-type transistor in Cascode Voltage Switch Logic with a cross coupled pair
of P-transistors results in static version of that logic is known as Differential Cascode Switch
logic (DCVSL). The cross coupled P-transistors acts as differential pair. Here when an output
of one side gets low the opposite P-transistor gets on and high.

Fig.3.2 1-Bit Differential Cascode Switch Logic (DCVSL) based Full Adder

22| Page

3.3 NO - RACE(NORA) Dynamic CMOS Full Adder

A Full Adder made using No Race Dynamic Logic (NORA) has an alternating stages of P
and N-type logic trees to get Sum and Carry outputs. The P-type stage that forms the carry
output is dynamically charged high and while the N-type transistor that evaluates the Sum
output is dynamically pre-charged to low. Here is the logic we require two phase clocking

named as phi and phi’.

Fig.3.3 1-Bit No-Race Dynamic CMOS Logic Full Adder

23| Page

CHAPTER 4

RESULTS AND DISCUSSIONS

Cursor 1 329 ps

1001

Fig.4.1 Simulation of 2*2 Vedic Multiplier

carry

sum

HalfAdder:h1 HalfAdder:h2
o 1 temp~0 car o
1.]D] N a 5] ay 2 jry
bi1.0] / b }ﬁ b)
o femp~1
I sum sum
1 } ;)? : sum ;:)? :
1 temp-2 0 q
- Y
Y

1 _/ r

Fig.4.2 Netlist of 2*2 Vedic Multiplier

q[3.0]

24|Page

B4 Muipierd_tb/a
B Muipier4_th/b
B4 Muipierd_th/s

Cursor 1

10000010

11100001

Fig.4.3 Simulation 4*4 Vedic Multiplier

Multiplierz:M2

- F "y d7.0]

=T HalfAdderh1 HalfAdderh2
a0 10 al1.0] g el
y gl ol | 2 cany any alz-0]
b[z.01 > I
b b
o ftemp-1 | = =L 1Thocn Add1
’L’:Df B sco@@ ourso
q temp-2 BI5-0) S
1 J al -
»
Multiplierz:M4
1hocn Addo 1Thocw Add2
HalfAdderh1 HalfAdderh2 AB.0] OUT[E.0] Al5.0] OUT[E.0)
=2 ap.o] g Culs F ZU = T : i =
3 Bl3.0] ¢ als.0l
3 b1l o D—‘ = cany - cany gls.l & __HX/
b eum [[& aum - -
temp~1 [.
0
s Sle-aat
- , temp-2
1 q
S —
»
Multiplierz:M1
- HalfAdderh1 HalfAdderh2
10 al1.0] g s
1 b1.0] o D—‘ = camy - cany ol3.0]
b sum L[e sum
temp~1 [.
0
s ot
- ., temp-2
1 q
s |
»
Multiplierz:M2
HalfAdderh1 HalfAdderh2
32 a1.0] 0 EE
1o b10] o D—‘ £ cny - cany glz.0]
b sum | b sum
temp~1 [.
0
i
, temp-2
1 q
s [
»

Fig.4.4

Netlist of 4*4 Vedic Multiplier

25|Page

500 ps
Cursor 1 57ps

011 ! 00001010

101101111 0 11111111

(L LY _FTY

f001100001001. ..

(Lo Lol

11111111
11111111
111111100000..

Fig.4.5 Simulation of 8*8 Vedic Multiplier

Multiplier8:m8_1

Fig.4.6 Netlist of 8*8 Vedic Multiplier

E Multiplier:m4_2 Carry_sel_8bit:m8_1 Carry_sel_12bitm12_2
a[7.0] 7:4 a[3.0] 5[7.0] Al7.0] 5[7.0] A11.0]
b[7.0] 3 b[3.0] 7:4 B[7.0] cout R [B[11.0] 5[11..0]
1h0 cin| cin
Multiplier&:m4 _3 L
= | s
3.0 a[3.0] s[7.0] o}
74 bE.0ol Carry_sel_12bitm12_1 "
Multiplier:m4_1 A0 SIIE0}
B[11.0] cout
3:0 a[3.0] 5[7.0] 1'h0 cin|
3 b[3.0]
Multiplierd:m4_4
7:4 a[3.0] s[7.0]
7:4 bl3.0]

26|Page

B4 Mtiper16_thla
8- Mtipiert6_th
B4 Mtiper16_thlc

Cursor 1

428ps

A[15.0]0

Fig.4.7 Simulation of 16*16 Vedic Multiplier

2

E Multiplier&m4_2

724 a3 0] st7.c]

Carry_sel_8bitms_1

Atzo) st7.0)

b[15.0] [—p

Multiplier&m4_3

Carry_sel_12bEm12_1

Blr_o]

S aal

Carry_sel_

L

3 ‘[Thocn]

12bitm12_2

str1.0)

Bl11-0]

=]

Apreo Spre o
Bi11.0) o

cout
3 l Thocn

Multiplerg:me_1

= Multiplier&m4_2

724 213 0 si.0]

Carry_sel_Bbitm8_1

=]

Carry_sel_12bitm12_2

Ar1.0)

a4 biaol|

Multiplier&m4_3

Arr0) str0)
Bl7.0) o

|

Bl11.0]

st

cou
F ‘[ThO cn

Carry_sel_16bitz5

£ Az

Carry_sel_28bitm24_2

Carry_sel_24bitm24_1

Blza.0]

—> <B1.0]

stzz o]

aps o] siz3 0]

Carry_sel_12bEm12_1

Alt10] st11.0]

Bl11 0]

oo
3 ‘[Thean |

€ ‘[ThO an

Fig.4.8 Netlist of 16*16 Vedic Multiplier

27|Page

Fig.4.9 Simulation of 4-Bit Carry Select Adder

multplererzm sum

oot

tulladderfao0 fulladderfa0t

O

multplerrzmo sumo

g S R

bitout

fulladderta0z \

fulladderfa0z

L

multplererzmo sum3

bitout

2

o

multglererzm sum2

bitout

I
o

fulladderfa1

nifpeznGn o

Fig.4.10 Netlist of 4-Bit Carry Select Adder

28|Page

B4 [Carry sel_8hit th/A
B4 [Carry sel 8bit thyB
4

B4 [Carry sel_bit th/s
& [Carry sel Shit /.., |3

Now 500 ps

Fig.4.11 Simulation of 8-Bit Carry Select Adder

fullagderfats

] multiplexerzmu_sum1
dertand U
n o i
| E T

Thoch)
multpleserzmio_sum2

hlackirts
4 8, e
fllackrfad O |
Ty sin
0 am cay an n |
9 L sum | — =
Thian|

- H

H

multpleserzmio_sums

fulladgertaos

B

fullaggertaor fulladderfaos

fulladderfate

&

|

fulaggerfats fulladderfaos multipleserzmin_sums

4 EE cay
goEl N

| —
fulladderfatg

= G o
H el anj hl bour
o . T’ ==

-

fulladderfa020

mutpleserzmi_sum

i
g
H

—

fulladdertaizo multpleserzmu_smT

Fig.4.12 Netlist of 8-Bit Carry Select Adder

29|Page

B4 [Cary_sel_12bit thys |111111111110
4 [carry sel_12bit ... [Stt

Fig.4.13 Simulation of 12-Bit Carry Select Adder

b

il

b

=

Fig.4.14 Netlist of 12-Bit Carry Select Adder

30|Page

B4 [Carry sel_tebit thyA

B4 [Cary sel_16bit B
& [Cary sl 16bit ... |0

B4 [Carry sel_tebit s

& [Cary sel_1ebit ... [S

Fig.4.15 Simulation of 16-Bit Carry Select Adder

%
g

i
—l |

o
B
ot s e o e

Hﬁ
r_:
T
| Hﬁ%

Fig.4.16 Netlist of 16-Bit Carry Select Adder

31|Page

001111... 000001001001.,. 1000010010011110101011111
1001111011.., 000000001010... J000010011110110100100111

00010011001010... | : 000000000001, J00000D011104.., [000001010014... 1000100110010101010000110

M Bl

500 ps

a/é Crsort | 0ps]

Fig.4.17 Simulation of 24-Bit Carry Select Adder

L

w = H
Tttt g
| :i

g g

Hirr e

%‘4 B =

S o

%ﬁf% -

Tjeay™ ia g

R A H

H}Ju d

o5

= Lﬁ

==Ly & |

: Ft e
iy

B

Fig.4.18 Netlist of 24-Bit Carry Select Adder

[

32|Page

0
g

040 nmosty

Co e

Fig.4.19 Schematic of 1-Bit full Adder using Static CMOS.

33|

B/

[Cary

100 125
time ()

Fig.4.20 Inputs and Output of 1-Bit Full Adder using Static CMOS logic

34|Page

Fig.4.21 Schematic of 4-Bit Ripple Carry Adder using Static CMOS

35|Page

Fig.4.22 Inputs and Output of 4-Bit Ripple Carry Adder using Static CMOS logic

36|Page

il {1l kb R e

Fig.4.23 Schematic of 8-Bit Ripple Carry Adder using Static CMOS logic

Fig.4.24 Inputs and Output of 8-Bit Ripple Carry Adder using Static CMOS logic

38|Page

Ery At LT LEL
%
”& oo

x [“ u u u u H

L i LI U ot U

Fig.4.25 Schematic of 16-Bit Ripple Carry Adder using Static CMOS logic

==

R R WD W W

Fig.4.26 Inputs and Outputs of 16-Bit Full Adder

Fig.4.27 Inputs and Outputs of 16-Bit Full Adder

41|Page

B TEE
EE ;L |

"“m%wmmwm mq‘ww&wgﬂ g PR Ry

}
| ey)

ﬁrﬁ 4:53..];::::::::::::

i '

e

Fig.4.28 Schematic of 1-Bit full Adder using Differential Cascode Logic.

)

e)

Fig.4.29 Inputs and Output of 1-Bit Full Adder using Differential Cascode logic

43|Page

Fig.4.30 Schematic of 4-Bit full Adder using Differential Cascode Logic

Fig.4.31 Inputs and Output of 4-Bit Full Adder using Differential Cascode logic

45|Page

Fig.4.32 Schematic of 8-Bit full Adder using Differential Cascode Logic

46|Page

tme]

Fig.4.33 Inputs and Output of 8-Bit Full Adder using Differential Cascode logic

47|Page

FEEETA PR bttt bbb bttt et

HQHW‘H‘WHHHWHHHH HHHHHYHHH“H HWHH

i m

J #
IR &

N HHHXHHHOHHHH

| 1]

FEEETA PR bttt bbb bttt et

Fig.4.34 Schematic of 16-Bit full Adder using Differential Cascode Logic

Fig.4.35 Inputs of 16-Bit Full Adder using Differential Cascode logic

49|Page

Fig.4.36 Outputs of 16-Bit Full Adder using Differential Cascode logic

AL N - e e o e R S R N L N R N R N e N e e o e o e o e R S L e N R e N R . . N e o e o e e L e R e
=

Fig.4.37 Schematic of 1-Bit full Adder using NORA (NO Race Around) Logic

ICany

| Jallld

|' u

_\l j_j

100 150
time (ps]

Fig.4.38 Inputs and Output of 1-Bit Full Adder using NORA logic

52|Page

Fig.4.39 Schematic of 4-Bit full Adder using NORA (NO Race Around) Logic

Fig.4.40 Inputs and Output of 4-Bit Full Adder using NORA logic

Fig.4.41 Schematic of 8-Bit full Adder using NORA (NO Race Around) Logic

o
FEETETT]

L

o
=

=

-

o
=

Ea

o

=

-

<o
==

==

o

o
=

=

-

o
=

Ea

o

o
=

=

o

=

-

Ea Es

o

o
=

=

o

<o
Ea

=

-

<o
Ea

=

L

=

o

<o
=

=

o

<o
Ea

=

-

<o
==

==

o

o
=

:
:
a
:
4
:
’
4
!
!
:
’
!
’
!
:
4
J:
!
g
;
;
;
;
;
;
;
;
g
;
;
;
;
;

=

Fig.4.42 Inputs and Output of 8-Bit Full Adder using NORA logic

Fig.4.43 Schematic of 16-Bit full Adder using NORA (NO Race Aroun

Fig.4.44 Inputs and Output of 16-Bit Full Adder using NORA logic

: [

i =3 == =3 = =3 == =3 =3 =3 = = == = =3 = =3 == =3 =3 =3 == = == = =3 == =3 == =3 =3 =3 ==
..\\JFJ.- e e e T e T T e e D e T ot T et e s e T T e et D e T Ot T et G e Gt T Ot e et T e et D e T O T et T G O G T s e et
= = = = = =n = o= = = o= =

Fig.4.45 Inputs and Output of 16-Bit Full Adder using NORA logic

Table 1. Delays of 16bit- Ripple Carry Adder using various Logic Styles

S.No Logic Style Delay
1. Static CMOS 78.69ps
2. DCVSL 87.4ps
3. NORA 53.68ps

modale HA{(a, b, sum, carry) :

input a,b:s
OouTpuUtT Sum, Carrys;

assign sum = a“~b;
assign carry = asb;

rendmoduaulse

Fig.4.46 Half Adder

1 [module Multiplier2(a,b,q):

3 input [l:0]a,b;

4 output [3:0]q;

5 wire [3:0]temp;

o

7 assign q[0]=a[0]&b([0]:

g assign temp[0]=a[l]leb[0];

g assign temp[l]=a[0]eb[l];

10 assign temp[2]=a[l]ls&b[l];

11

12

13 HA hl (ctemp([0],cemp[l],q[l],cemp[3]);
14 HA h2 (temp[2],temp([3],q[2],q([3]):
5 - endmodule

16

Fig.4.47 2-Bit Multiplier

60|Page

In the above code (Figure 4.47), the design function is to implement the 2*2 Bit Vedic
Multiplier which have the inputs are A, B and Output as Q. To implement the 2-Bit Vedic
Multiplier we require two half Adders as well which are directly initialized in this module
and are have the code in the another module. In Multiplier when the inputs are of N-Bit and
outputs should be of 2N capacity i.e why we declare output should have the capacity of four
while the max capacity of input here is two. Here in the (Figure 4.1), we can see the
simulation along with some test cases and in (Figure 4.2) we can see the Netlist generated for

above 2-Bit Multiplier.

module Maltiplierd{a.b,a):

inpuc [FrxO]ar
inpurc [2:0]k:

14a
0]l
1g=
1=
: 1=z
3:0] templd
S:0] cemp2;
S:0] cemp3r
S5:0] camp
=:0]lqg4s
Sr0]gss
™0] gE
ixe ocd,o06,C
S Fouz 2x3 lciplliers
MulTtipliera2 Zld{.adfafl:0]) Bk i Yo - FIGgR[J1¥) 5
Hultipliers S {.a{alI3iZ]), BIBLLiO] Y, «c F{GFL[IzO] D5
MaltiplierZ =3{.a{all:0] (L 1Y scplag2 [10D 7
HaltiplierZ =d4{-.a{af[3:2]), -B{=[¥ g (g3 [IzD] 5

{
B Terpl {20, gQOo[3=2]) 2+

Carzy sel dbiec =S { . R{gl{3:9]1,.B(mempl),.=Lia{0] .. .5 (g4}, . coue{=d)]:

Fig.4.48 4-Bit Multiplier

In the above code (Figure 4.48), the design function is to implement the 4*4 Bit Vedic
Multiplier which have the inputs are A, B and Output as S. Along with inputs and outputs we
require some internal wire which drives the signals we have taken the help of wire. To
implement 4-Bit Vedic Multiplier we initiated four 2-Bit Vedic Multiplier which shown in
the above fig and along with as every Multipliers we require adders here we used Carry
Select Adder. As internally shifting of bits is required in Multipliers we used 4-Bit and 6-Bit
Carry Select Adders. Here in the (Figure 4.3), we can see the simulation along with some test

cases and in (Figure 4.4) we can see the Netlist generated for above 4-Bit Multiplier.

6l|Page

lmodule Maltiplier2{a,k,c) s

inpuat ([Vivlas
input [T:-0]b;
cutput [LS:0]cs

wire [1S:=:0]qgO:r
wires [15:0]qgl:
wire [135:07qZ;?
wicre [1S5:0]1a35
wWire [1S5=z0

wire [7:0]templ;
wire [11:=:0]tempn2:>
Wire [l1l:0]Temp3r
wWire [l1l:0o]lTcempd?r
wire [T:0]g<e;
wire [1ll:0]1a5;
wire [1l1l:=:0]g€-
wire cd, oS o/

I

Mulciplierd

Maltiplicr4

Maltiplicr4d

Multipliard

assign templ ={4"c0, g0

Carry sel Ebit mB_l({.A[gl[7:0]), .B(templ), .cin{(0), .5(gd), .cout{cd))
assign temp2 ={4"'00,g2[7z20]1};

assign tempd ={g3[T:0],4"k0}:

Carry sel 12bit ml2 1({.A(temp2), .B(temp3), .cin(0), .5(g5), -cout {c5))
assign teppd=[3"'bl,cd, gl [(T:z0]}z2

Carry_sel_12bit ml2 2(.A(cempd), .B(a5),.cin(e5),.5(g96), .cout (c6))
assign c[3:0]=g0[5:0]~

aszign c[lS:4]=gé&[l1l:=0]:

endmodule

Fig.4.49 8-Bit Multiplier

In the above code (Figure 4.49), the design function is to implement the 8*8 Bit Vedic
Multiplier which have the inputs are A, B and Output as C. Along with inputs and outputs we
require some internal wire which drives the signals we have taken the help of wire. Here as
input is of 4-bit and in multipliers the output capacity would be double of maximum of input
capacity i.e why we declared output as of 8-Bit. To implement 8-Bit Vedic Multiplier we
initiated four 4-Bit Vedic Multiplier which shown in the above fig and along with as every
Multipliers we require adders here we used Carry Select Adder. As internally shifting of bits
is required in Multipliers we used 8-Bit and 12-Bit Carry Select Adders. Here in the (Figure
4.5), we can see the simulation along with some test cases and in (Figure 4.6) we can see the

Netlist generated for above 8-Bit Multiplier.

62|Page

| module Mulrtiplierlé(a,b,c):
i t [15:0]a;
nput [15:0]b;
ocutput [31:0]c;

& [15:0]g0:;
ire [15:0]9l:

[15:0]1g92;
[15:0]1g3;

e [31:0]c;
[15:0]tcempl;
[23:0] tamp2:

HoHE
HHHHHL
i

i

[D]l cemp3:
wire [23:0]cempd:
wire [1S5:0]qg4r
wire [23:0]g5;
wire [23:0]g6;
wir= c4,cS,cé&r

Mulripliers mé8_l(.a(a[7:0]), .b{(B[7:0]), .c{gO[15:0])):
Maltiplier8 mé8 2(.a(a[l5:8]),.b(b[7:0]1), .c(gl[15:0]))~

Multiplier® m&8 32({.a(a[7:0]), .b(b[15:8]), .c{(g2[15:0]))~
Multiplier8 m8 4(.a{a[l5:8]),-b(b[15:28]),-c{g3[15:z0])):

assign templ =[{2'b0,q0[15:8]]):
Carrv sel_leébit =5(.A(ql[15:0]1), .B(cempl),.cin{(0), .5{q4), .couni{cd));

assign templ =[3'b0,g2[15:0]]):
assign temp3 ={[{g3[l15:0],8'k0};

Carry_ss]l 24bit m24_1(.A(temp2), .B{cempd),.cin{0), .S5{g5), .couc{cs5));

agsign tempd={7"b0,cd4,g4é[15:0]}:

Carry_sel_2Zdbit m24_2(.A(vempd), .B{(g5),.cin(c5),.5(qgf),.cout(cé))r

assign c[7:0]mgl[7:0]
assign e[31:8]=g6[23:0]:
endmodule

Fig.4.50 16-Bit Multiplier

In the above code (Figure 4.50), the design function is to implement the 16*16 Bit Vedic
Multiplier which have the inputs are A, B and Output as C. Along with inputs and outputs we
require some internal wire which drives the signals we have taken the help of wire. Here as
input is of 16-bit and in multipliers the output capacity would be double of maximum of input
capacity i.e why we declared output as of 32-Bit. To implement 8-Bit Vedic Multiplier we
initiated four 8-Bit Vedic Multiplier which shown in the above fig and along with as every
Multipliers we require adders here we used Carry Select Adder. As internally shifting of bits
is required in Multipliers we used 16-Bit and 24-Bit Carry Select Adders. Here in the (Figure
4.7), we can see the simulation along with some test cases and in (Figure 4.8) we can see the
Netlist generated for above 16-Bit Multiplier.

63|Page

| module fulladder (input a,b,cin, output sum,carry):

assign sum = a ~ b ~ cin;
assign carry = (a &« b) | (cin & b) | (a & cin);

endmodule

Fig.4.51 Full Adder

module multiplexer2 (input i0,il,sel, output reg bitout):

ways@(i0,il,sel)

begin
if(sel == 0)

bitout = i0;
else

bitout = il;
end
endmodule

Fig.4.52 2*1 Multiplexer

The above two modules which are shown in the Figure(4.51) Full Adder and Figure (4.52)
2*1 Multiplexer are used inside the modules of Carry select Adder.

64|Page

module Carry sel 4bit (input [3:0] A,B, input cin, output [3:0] S, output cout);

wire [3:0] tempO,templ,carryl,carryl;

//for carry

fulladder -aHH(A[H]
fulladder faOl(A[l],
1.
1,

0],1'b0,temp0[0],carry0[0]);

1] ,carry0[0],tempO[l],carry0([l]);
fulladder fal02(A[2 2], 2
fulladder faO3(A[3

carry0[l],temp0([2],carry0[2]);

B
B
B
B carry0[2],temp0([3],carry0[3]);

(
(
(
[\)

E - carry

-ulladd:r -alD(A[H]

B(0],1'kl,templ[0],carryl[0]);
fulladder fall(A[l],B[l],carryl[0],templ([l],carryl([l])
fulladder fal2(A[2],B([2],carryl[l],templ[2],carryl([2])
fulladder fal3(A[3],B[3],carryl[2],templ[3],carryl([3]);

multiplexer2 mux carry(carry0[3],carryl[3],cin,cout);

/mux's for sum

multiplexer2 mux_sum0 (tempO [0
multiplexer2 mux_suml (tempO[1l
multiplexer2 mux_sum2 (templ[2
multiplexer2 mux_sum3 (temp0[3

endmodule

Fig.4.53 4-Bit Carry Select Adder

In the above code (Figure 4.53), the design function is to implement the 4-Bit Carry Select
Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and
Carryout as cout. Along with inputs and outputs we require some internal wire which drives
the signals we have taken the help of wire. As in this method we use total of Eight Full
Adders in which Four Adders are used when cin=0 and other four Adders when cin=1, and
calculations are done parallelly and finally we need multilplexers to choose final Sum by
choosing appropriate select lines. Here total five Multiplexers are used in which four are

being involved in sum and the remaining one mux is used to choose the carryout.

65 |Page

module Carry sel é€bit(input

wlre

fulladder
fulladder
fulladder
fulladder
fulladder
fulladder

[S:0]temp0, templ,carry0,carryl;

[5:0] A,B, input cin,

output [5:0]S, output cout);

faO4(A[0],B[0],1'b0,temp0([0],carry0([0]);
faOS(A[l],B[1l],carry0([0],tempO([l],carry0([l]);
ytemp0([2],carry0([2]);

faO6(A[2],B[2],carry0[1l
fa07(A[3],B[3],carry0([2
faOS8(A[4],B[4],carry0([3
fa09(A[5],B[5],carry0[4

St el G d

Cemp0[3
, tempO[4
,temp0[5

1.
1
1

carry0[3]):
carry0[4]);
carry0[5]):

fulladder
fulladder
fulladder
fulladder
fulladder
fulladder

fal4(A[0],B[0],1'bl,templ[0],carryl[0]):

falS(A[l],B[1l],carryl[0],templ[l],carryl[l]):
falé(A[2],B[2],carryl([l],templ[2],carryl[2]);
fal7(A[3],B[3],carryl[2],templ([3],carryl([3]);
fal8(A[4],B[4],carryl[3],templ[4],carryl[4]);
fal9(A[5],B[5],carryl[4],templ[5],carryl[5]):

multiplexer2 mux carry(carry0([5],carryl[5],cin,cout);

multiplexer2 :
multiplexer2
multiplexer2
multiplexer2
multiplexer2
multiplexer2

mux_sum0 (temp0[0],templ[0],cin,S[0
mux_suml (tempO[l],templ[l],cin,S[
mux_sum2 (temp0[2],templ[2],cin, S|
mux_sum3 (temp0([3],templ[3],cin, S|
mux_sum4 (tempO([4],templ[4],cin,S[
mux_sumS (temp0([S],templ [S],cin, S|

.
’

1)
1)
1
1):
1):
1)

1
B
S]):

endmodule

Fig 4.54 6-Bit Carry Select Adder

In the above code (Figure 4.54), the design function is to implement the 6-Bit Carry Select
Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and
Carryout as cout. Along with inputs and outputs we require some internal wire which drives
the signals we have taken the help of wire. As in this method we use total of twelve Full
Adders in which Six Adders are used when cin=0 and other Six Adders when cin=1, and
calculations are done parallelly and finally we need multilplexers to choose final Sum by
choosing appropriate select lines. Here total Seven Multiplexers are used in which Six are

being involved in sum and the remaining one mux is used to choose the carryout.

66 |Page

1 module Carry sel 8bit(input [7

67 |Page

wire [7:0]temp0,templ,carryl,carryl;

fulladder
fulladder
fulladder
fulladder
fulladder
fulladder
fulladder

:0] A,B, input cin,

output

fal4 (A[0],B[0]1,1'b0, temp0[0],carry0[0]);

fa0S(A[l],B[1l],carry0([0],tempO[l]
fale(A[2],B[2],carry0[1l], tempO[2]
fa07 (A[3],B[3],carry0([2],temp0[3]
falO8 (A[4],B[4],carry0[3],tempO[4]

,carry0[1l]):
rcarry0[2]):
,carry0([3]);
ccarry0([4]):
fa09(A[5],B[5],carry0[4],temp0[5],

carry0[5]):

fa0%0 (A[¢e],B[€],carry0[5S],temp0[&],carry0[€]);

[7:0]5, output cout);

fulladder fa091(A[7],B[7],carry0[c],temp0[7],carey0[7]);

fulladder
fulladder
fulladder
fulladder
fulladder

fal4 (A[0O],B[0]
falS(A[1l],B[1]

L1'bl,templ([0],careryl([0]);
Jcarryl[0],templ[l],carryl[l]):

fale(A[2],B[2],carryl[l],templ[2],
,carryl[2],templ[3],
,carryl([4]):

fal7(A[3],B[3]
falS(A[4],B[4],carryl[3],templ[4]

carryl[2]);
carryl[3]):

fulladder
fulladder
fulladder

fal9(A[5],B[5],carryl[4],templ[5],carryl[5]):
falS%0(A[c],B[c],carryl[5],templ[c],carryl[c]);
fal91(A[7],B[7],carryl([6],templ[7],carryl[7]):
multiplexer2 mux_carry(carry0([€],carryl[&],cin,cout);
multiplexer2
maltiplexer2
multiplexer2
maltiplexer2
multiplexer2
maltiplexer2

multiplexer2
maltiplexer2

mux_suml (temp0[0], templ [0
mux_suml (tempO[1l], templ [
mux_sum2 (temp0[2], templ [2
mux_sum3 (temp0[3], templ [3
mux_sumd (temp0[4], templ [¢
mux_sumS (temp0[S], templ [
mux_sumé (templ[6], templ [€
mux_sum? (templ[7], templ 7

endmodule

Fig 4.55 8-Bit Carry Select Adder

In the above code (Figure 4.55), the design function is to implement the 8-Bit Carry Select
Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and
Carryout as cout. Along with inputs and outputs we require some internal wire which drives
the signals we have taken the help of wire. As in this method we use total of Sixteen Full
Adders in which eight Adders are used when cin=0 and other eight Adders when cin=1, and
calculations are done parallelly and finally we need multilplexers to choose final Sum by
choosing appropriate select lines. Here total Nine Multiplexers are used in which Eight are
being involved in sum and the remaining one mux is used to choose the carryout.

b8 |Page

| module Carry sel 12bic(snpur [11:0] A,B, inpur cin, ocutpur [(11:0]S, ouzputr couc);
wire [11:0]Cempl,templ,carryd, carryl:

fulladder Lal20(A[0),B{0]),.1"'b0,cexpl0[0] ,carxy0[0])

fulladder fal2l(A[1],B{1],carry0[0],cempO[l],carry0{1])?

fulladder fal22(A[2],B(2),carry0[l],cempl[2) ., carTy0(3])+

fulledder
fulladder
fulladder
fulladder
fulladder

fullaedde:s
fulladdex

fal23(A[3)

fal24 (A[4),B

Lal2S (A[5]
fall3&(A([E
Lal2T(AL7)
’-1~§ (;\r'
Lal25(A[9]

B(3 1. tempd(3)

0[3],Te=pa[4)

¢+B[5],cazxx

rB(7],carzy0 (€], vempd (7]
Bl(8).cCa yO[7]) . ve=pd([2
« B[S].ua--;O[_

yO[d],cexpO([5],
:,B{{],ccz:yolaj.L-z&3[’,

cc;;D[: .

rCazrsy0 {3
cCarxy0f4
carry0{

e CarryO{
Lurt?r ?

fulladder fal30(A[10],B{l0],carry0(9],CenpO] 0
fulliadder .cl}le[.-] D 11 Cutty L‘.] L-mpu'l‘:..axtlo'lll)
/fulladder fallay 1.BI2].cazsy 1. cere 1.casxvO[8)):

fuliladgder
fullacsder
fulladderx
fulladder
fulladder
fulladder
fulladder
fulladder
fulladder

faldi{Aalc

+DIO

i9]l.cazzxy

A(91)s

Lals (Alh 3[-‘
falE{Aajiz).B(2
Lal7{Al2].B[3
:ch(Ald‘,-[d
LALS{AIS].O[=

scarryl

zalvucalc;,s:cl,caz: X

TalSL(A[7]).,

arryljl].,
scarryll

JTexplllil,
TempliZ],
Templ 3],

cazzylliailys:
carzyliz])y:
carrylf3]):
J]j.texmpl|d)],caxrxyl(d]):
[Sl.semplS].carryl(a]) s
4,:e=cx|c;,:a=:yL;c|):
E].cempl([7]) ,carryi[7]);:

falS2(A[R]

n;f

’.t*rrl[“,

fulliaader
ful lacder
fulladder

La193(A[9],
fal%a(A(10],
fal15S(A[11],

malTiplexer2 mux_carry(carryo[1l]

H\c) rnrr,.[l.cempl(®
j.carryl(
"l' carryl(

'l sompl
1,temp‘

Jecarryi[ll}

carryli=2l);
,-nrryx;ujy:
10}, rnrryl[aji:
[11),carryl(1]l

jrcin,cout) s

malciplexer
Al LA Rl
=alciplexes
malciplexesl
mulciplexerd
ERATApAORNeES
maleileoves
salcipleger2
ﬁ'l‘?‘rll‘vﬁ':‘
mulsiplexer?
malniplexer2
mlciplexer2

2 max_sumo { cempo

' [0] ,cempl[O],
e suanl (LempO [1] , Le=oygoifl1],
max__sum (tempd [2) , templ(2],
musx sum3{templO (3], cempl[2],
max_oumd (cempO [4] .cemplif4],
aAX_eumS (SempQ [S) . compil(S].
mas sumeé (cempl (€] . camplle],
muax_sum7 (tempO (V] ,.cempl([7],
waa _mumB (tewmpdl (2], rempi (2],
mrax_sum9{(tempO (“) . Cempl (9] . c1n, S(%))
max__sumli(serpOfi0] . corpl [10] 840, S7107)
max _sumll (texpOfll]l .texplfll]l,.cin,S[117);

cin,S[0])
<L,
<in,
iz,
<cin,
<in,
ein,
cin,
"aInL, s8]

- vl

dule

Fig 4.56 12-Bit Carry Select Adder

In the above code (Figure 4.56), the design function is to implement the 12-Bit Carry Select
Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and
Carryout as cout. Along with inputs and outputs we require some internal wire which drives
the signals we have taken the help of wire. As in this method we use total of Twenty Four
Full Adders in which twelve Adders are used when cin=0 and other twelve Adders when
cin=1, and calculations are done parallelly and finally we need multilplexers to choose final
Sum by choosing appropriate select lines. Here total Thirteen Multiplexers are used in which

Twelve are being involved in sum and the remaining one mux is used to choose the carryout.

module Carry sel lébit(input [15:0] A,B, input cin, output [15:0]S, output cout):’
wire [15:0]templ0,templ,carry0,carryl;

fulladder £fal20(A[0],B[0],1'b0,temp0[0],carry0[0]);
fulladder fal2l1 (A[l],B[l],carry0[0],tempO[l],carry0[1l])
fulladder fal22(A[2],B[2],carry0[l],tempO0([2],carry0([2])
fulladder fal23(A[3],B[3],carry0[2],temp0[3],carry0[3])
fulladder fal24(A[4],B[4],carry0[3],temp0([4],carry0[4]):
fulladder fal25(A[5],B[5],carry0[4],tempO0([5],carry0[5])
fulladder fal2&6(A[¢€],B[€],carry0[5],temp0([&],carry0[&])
fulladder fal27(A[7],B[7],carry0[€],temp0[7],carry0[7])
fulladder fal28(A[2],B[8],carry0[7],temp0([28],carry0([2])
fulladder fal29(A[9],B[9],carry0[28],temp0[9],carry0[9]):
fulladder fal30(A[10],B[1l0],carry0([9],tempO0[10],carry0[10]):
fulladder fal31(A[1l1l],B[ll],carry0[l0],tempO[ll],carry0O([11]);
fulladder fal32(A[l12],B[l12],carry0[ll],tempO0[l2],carry0([12])~
fulladder fal33(A[13],B[l1l3],carry0[l12],temp0([13],carry0[13]);

SN N N N M v

fulladder fal34(A[l14],B[l14],carry0[1l3],temp0[l4],carry0[14])
fulladder fal35(A[15],B[15],carry0[l14],temp0[15],carry0[15])

fulladder fal4(A[0],B[0],1'bl,templ[0],carryl([0]);

fulladder falS(A[l],B[l],carryl([0],templ[l],carryl[l
fulladder falé(A[2],B[2],carryl[l],templ[2],carryl([2
fulladder fal7(A[3],B[3],carryl[2],templ[3],carryl(3
fulladder falS8(A[4],B[4],carryl([3],templ[4],carryl[4
fulladder fal9(A[S5],B[S],carryl([4],templ[S5S],carryl[5S
fulladder fal90(A[€],B[€],carryl[5],templ[&],carryl[
fulladder fal91(A[7],B[7],carryl([€],templ([7],carryl([7
fulladder falS2(A[2],B[8],carryl[7],templ[8],carryl([S
fulladder fal93(A[%],B[%9],carryl([8],templ([9],carryl|[
fulladder fal94(A[10],B[l1l0],carryl([9],templ[10],carryl[10]);
fulladder falS9S5(A[l1ll1l],B[ll],carryl[l0],templ(ll],carryl[1l1l]);
fulladder fal96(A[l2],B[l2],carryl[ll],templ[l2],carryl([12]);

0

fulladder fa197(A[lg] B[lﬂl,carryl[l”],templ[l],carryl[lﬁl):
fulladder fal9S8(A[14],B[l14],carryl[l13],templ[l4],carryl[14]):
fulladder falSS(A[l5],B[l5],carryl[l4],templ[15],carryl([15])~

multiplexer2 mux carry(carry0[l5],carryl[15],cin,cout)

multiplexer2 mux_ sumO (tempO([0],templ[0],cin,S[0])
multiplexer2 mux_ suml (tempO[l],templ[l],cin,S[1])
multiplexer2 mux sum2 (tempO[2],templ[2],cin,S[2])
multiplexer2 mux sum3 (tempO[3],templ[3],cin,S[3])
multiplexer2 mux_sumd (tempO[4],templ[4],cin,S[4])
mualtiplexer2 mux_ sumS (tempO[5],templ[5],cin,S[5])
multiplexer2 mux_ sumé (tempO([€],templ[€],cin,S[€])
multiplexer2 mux_sum7 (temp0O[7],templ[7],cin,S[7])
multiplexer2 mux sumsS (tempO[S],templ[8],cin,S[2])
multiplexer2 mux sumd (temp0[%],templ([9],cin,S[9]):
multiplexer2 mux_sumlO(tempO[10],templ[10],cin,S[10]):
multiplexer2 mux_sumll (tempO[ll],templ[ll],cin,S[11]):
multiplexer2 mux suml2 (tempO[l2],templ[l2],cin,S[12])>
multiplexer2 mux suml3 (tempO[l1l3],templ[13],cin,S[13])~
multiplexer2 mux_suml4d4 (tempO[l4],templ([l4],cin,S[14]):
multiplexer2 mux_ sumlS (tempO[l1l5],templ[15],cin,S[15])~

AT TR TR TR TR TRE TR TR

endmodule

Fig 4.57 16-Bit Carry Select Adder

In the above code (Figure 4.57), the design function is to implement the 16-Bit Carry Select
Adder which have the inputs are A, B and Cin and Outputs are Sum is denoted by S and
Carryout as cout. Along with inputs and outputs we require some internal wire which drives
the signals we have taken the help of wire. As in this method we use total of Thirty two Full
Adders in which Sixteen Adders are used when cin=0 and other Sixteen Adders when cin=1,
and calculations are done parallelly and finally we need multilplexers to choose final Sum by
choosing appropriate select lines. Here total Seventeen Multiplexers are used in which

Sixteen are being involved in sum and the remaining one mux is used to choose the carryout.

b9 |Page

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

With the tremendous growth in VLSI, the products are manufacturing ingreat extent.
This leads to the increase in demand of electronic products like Memory components,
Processors, and other functional blocks. There is a need to proper flow from the algorithm
level specification till transistor level. The first part of the work deals with Multipliers.

As there are various types of Multipliers and here in the thesis Vedic Multiplier is covered
using the technique of Urdhva Triyagbhyam method. After understanding the topics which
have been covered in this thesis, one can easily get the idea about how the UT method is
good enough to get multiplication providing two levels of Adders at all stage of time i.e
2,4,8-Bit Vedic Multiplier. There is a possibility by varying the levels of Adders from two to

one which increase the size of adders.

The Second half deals with the Adders as an efficient Multiplier is only possible with proper
Adder selection. Here in the thesis we can see the Ripple Carry Adder, Carry Select Adder
and Carry Look Ahead adder. And also at transistor level implementation of Ripple carry
Adder upto 16-bit and each 16-bit Adders are implemented using various circuit design styles
like Static CMOS, DCVSL, NORA based Adders and by knowing the delays and number of
transistor we can choose appropriately choose the Adder depending on budget as there is a lot
of possibilities coming from Number of levels of Adders, type of Adder, Ciruit design style
of adder and size of Adders at a circuit level a minimum of 21 transistors to 28 transistors of a
1-bit Adder Full Adder is required.

These Vedic Multipliers can be efficiently used in Fast Fourier Transform and in Digital
Signal Processing Applications as well as including the processors where basic Arithmetic

operations are used.

REFERENCES
[1] Sameer Palitkar, “Verilog HDL A guide to Digital Design and Synthesis” SunSoft Press,
1996.

[2] Ankita Jain, “Design , Implementation & Comparission of Vedic Multipliers with

Conventional Multipliers”, Springer.

[3] Pushpalata Verme, ““ Design of 4*4 bit Vedic Multiplier using EDA Tool ”, International
Journal of Computer Applications (0975 888)Volume 48 No. 20 June 2012.

[4] Anirudha Kanhe, Shishir Kumar Dasand Ankit Kumar Singh, “ Design and implementation
of low Power Multiplier using Vedic Multiplication Technique ”, International Journal of

Computer Applications, Vol. 3, No.1, June 2012,pp. 131-132.

[5] Kavita, Umesh Goyal, “Performance Analysis of Various Vedic Techniques For
Multiplication” International Journal of Engineering Trends and Technology- Volume4
Issue3-2013.

[6] Sung-Mo Kang, Yusuf Leblebici. (199).Mc Graw Hill Higher Education : CMOS Digital

Integrated Circuits

[7] Rabaey, Pedram. (1996). Kluwer Academic Publisher: Low Power Design Methodoloy.

r1|Page

