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Abstract

Android malware classification and assigning the appropriate an-
droid malware family is challenging. Traditional static analysis meth-
ods can easily be misguided by malware, and dynamic analysis con-
sumes more space and time. This research proposed a fuzzy-based
android malware family classification using multiple aspects of the
DEX file. The considered aspects are Permissions of Android applica-
tion, Image obtained from DEX file sectional features, Dalvik Opcode,
and Bytecode of corresponding DEX file. The feature vectors acquired
from these multiple aspects are fuzzified using a triangular fuzzifier.
The obtained fuzzy sets are classified using an FPT classifier and clus-
tered using Fuzzy C-means. FPT and FCM are combined according
to the views, and a Decision Tree model is obtained for classifying the
Android malware family. The final model produces an accuracy up to
95.75%.
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1 INTRODUCTION

The android operating system evolved based on the Linux open-source kernel.
Most of the smartphone and IoT devices are based on the android operat-
ing system. The extensive usage of the android operating system prepares
a market for android application development and distribution. These an-
droid applications are distributed with the help of android application stores
such as Google Play, Amazon App store, Xiaomi marketplace, etc. These are
the official marketplace, but there are unofficial marketplaces for accessing
and installing the android application. Some applications are also distributed
directly. Official marketplace provides security tools for scanning and analyz-
ing the maliciousness of published applications on their platforms like Google
play store offers “Google Play Protect.” Applications installed directly from
a third-party store, or direct source may act as malicious applications and
harm the user. If the authenticity of the application is not confirmed, then
the publisher of the fake application may also steal revenue that is entitled
to the original developer. For the quick check of maliciousness of application,
the user can apply to the platform like [30], and [15].

According to AV-TEST android malware statistics, as of March 2020,
10.5 million android malware get detected in 2019, and new Android malware
samples are growing at the rate of 482,579 per month. This data shows that
the android operating system is one of the most attractive targets for android
malware developers. This malware consists of various variants of the same
android family. Android malware is produced via the piggybacking of the
legitimate application with the repackaging of the malicious code. Hence,
classifying the android malware based on their family is essential.

In the present scenario, the classification of android malware is based on
static, dynamic, or hybrid methods. Android application package (APK)
static features like permissions, registered receivers, execution code [24],
etc., are used to classify the android malware in traditional static meth-
ods. “DroidMoss” proposed in [34] calculates the fuzzy hash of bytecode
after decomposing the DEX file of APK. Based on the calculated fuzzy hash,
it is determined that the application is repackaged or not, android applica-
tion maliciousness gets detected. In this API, calls are mainly considered for
improving the efficacy of the system. [13] taken the API as a feature set for
classifying the samples using machine learning. [17] enhanced the android
malware detection by adding frequency and characteristics based sequence
of API calls. These methods have great accuracy for determining the ma-
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liciousness of android applications but are highly affected by confusion and
reinforcement. Techniques in [33, 29, 18] consider android permission as a
feature for detecting maliciousness. These are not affected by confusion and
reinforcement, but accuracy is not achieved due to minor variations in per-
missions for the android application. [19] used multiple static features to
improve accuracy. [23] combined control flow diagram and [36] added sen-
sitive API with permission feature. In general, static features may classify
android malware but have limitations in order to achieve accuracy.

For overcoming the limitation of static analysis, dynamic analysis meth-
ods are proposed. [6] uses the system runtime API calls as a feature vector
for classifying android malware. [27] proposed android malware classifica-
tion framework “Andromaly.” This framework monitor runtime features and
events and uses machine learning algorithms for classification. For effectively
detecting android malware, this framework needs sufficient time to collect
events and runtime features. In [28, 9, 8] API call graph and frequent sub-
graph are extracted and used as features for classification of android malware.
[4] proposed a hybrid method by integrating the static and dynamic charac-
teristics of android malware—the proposed method, “SAMADroid”, consists
of a three-layer detection model. The hybrid method effectively introduces
the shortcoming of static and dynamic methods like a waste of space and
time.

In recent years, image processing methodologies are being widely applied
to detect and classify Android malware. Android application is converted
in the form of images, and images are used to classify the android malware
samples. File visualization technique for visualization of features is used
because Android application is a packaged file, and all the logical data is
stored in DEX file (classes.dex). This technique does not need to reverse
engineer the DEX file for code analysis concerning other visualization tech-
niques. The code analysis includes the knowledge about classes, variables,
functions, API calls, etc. This method also can efficiently handle the large
volume of Android malware samples.

The majority of the ML-based solutions are biased towards specific fea-
tures (static, dynamic, and hybrid). The chances of failure increase when
android malware mutates itself according to components involved in the tar-
get defense system. Therefore AI system based on multiple aspects is an
optimal alternative for the android malware classification. The proposed
method benefits the features generated on numerous aspects like permis-
sion, Dalvik opcode, Bytecode, and transformed images. These views are
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then used to create corresponding fuzzy (loosely defined) views. These fuzzy
views are ensemble using the supervised Fuzzy Pattern tree (FPT) classifier
and unsupervised Fuzzy C-means Clustering with Decision Tree Classifier.
The proposed work achieves the accuracy of 95.7% for the classification of
the Android malware family. The significant contribution in this research
are:

• Multiple Views generations that are Permission View, Image View,
Dalvik Opcode Frequency View, Dalvik Opcode TF-IDF View, Byte-
code View, Bytecode TF-IDF View, from the Android APK file.

• Android DEX executable transformation into images based on its sec-
tional structure.

• Transformation of crisp views to fuzzy views and train the FPT and
FCM based models.

• Ensemble the FPT and FCM output dataset and training a Decision
Tree for Android Malware Classification

The dissertation is organized as follows. First, provides the background
android malware classification problem in Section 2 and reviews the related
work in Section 3. Then, in Section 4, the proposed methodology is discussed
with all of its internals, including View Generation, Fuzzification of views,
FPT classifier, FCM clustering of views, Ensemble both FPT and FCM, and
Decision Tree Classifier. Next, in section 5, obtained results are analyzed to
present a systematic comparison between single-view and multi-view-based
android malware classifiers with a discussion on the proposed approach. Fi-
nally, In Section 6, this paper concludes and illustrates the path for future
research in android malware classification.
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2 BACKGROUND

2.1 Overview of Android OS

Android is the open source software based on Linux. Figure 1 depicts the
android software stack and each component assumes that the underlying com-
ponents are properly secured. Android Platform is having following major
components:

Figure 1: Overview of Android OS

(A) System Applications

The system applications are sets of android APK that comes inbuilt
into Android devices. These apps are made for some basic operations
such as calendars, email, contacts, internet browsing, SMS messaging,
and several added functions. These Apps have special permissions that
a user can not change, similar to the user application have access to
add or remove permissions. These system applications provide the
functionality for a typical user and developers to incorporate or access
their features.
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(B) Java API Framework

As the name it is, the java application programming interfaces are the
building blocks that we necessitate to build Android applications by
utilizing the reuse of core, modular system components and services
that are:

• View System, which is rich and extensible, helps make app’s UI
that uses lists, grids, text boxes, and an embeddable web browser.

• Resource Manager To access resources such as a string with the
localized feature, layout files, and graphics

• Notification Manager To provide users a custom message provided
by the Android applications.

• Activity Manager manages the app’s lifecycle and produces a com-
mon navigation back stack.

• Content Providers provide apps access data in another app like
Contacts or share its own data. The Developer has complete ac-
cess to the corresponding framework APIs that are being used by
Android system applications.

(C) Native C/C++ Libraries

ART and HAL component of the Android system are developed using
native code C and C++. Even Java framework APIs are using some
of the functionality in apps. The native android platform libraries are
accessed through Android NDK directly from your native code. To
make an application using Native Libraries, we need to use Android
NDK.

(D) Android Runtime

Android has developed Android Runtime, commonly named ART, writ-
ten to manage various virtual machines on low memory devices by ex-
ecuting Dalvik Executable format (DEX) file. The primary features of
ART are following:

• Just-in-time (JIT) compilation

• Ahead-of-time (AOT)

• Optimized garbage collection (GC)
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• From Android 9 (API level 28) Android provides transformation
of DEX files to more compact machine code commonly known as
dex loader.

• Debugging support which including a dedicated sampling profiler,
detailed exceptions, and the ability to set Toggle points.

(E) Hardware Abstraction layer (HAL)

Android device hardware capabilities are exposed to the JAVA API
framework via interfaces that are implemented in Hardware Abstrac-
tion Layer (HAL). The various library modules of HAL implements
the interface for particular hardware like Bluetooth and Camera. To
access hardware components, Java API calls are performed for loading
the library module of a hardware component.

(F) The Linux Kernel

The heart of the Android operating system is the Linux kernel. Android-
based intelligent devices would not be capable of working without Linux
Kernel. It provides an interface between user-space applications and
physical hardware components. It emphasizes the isolation between
processes and governs to manage privileges of a particular process. The
kernel is monolithic. Android developers made numerous modifications
and implemented new Linux kernel modules: Binder,wake-locks, ash-
mem, RAM CONSOLE, pmem, yaffs2, logger, timed output/gpio, oom
modifications, Alarm Timers, and Paranoid Networking.

2.2 Android APK File Structure

Android applications are compressed into APK files which are used for dis-
tribution. APK files are primarily ZIP files such as JAR files which use Java
libraries. Android APK file comprises executable data in the form of DEX
executables, resources, native libraries, assets, etc. A digitally signed APK
is necessary with a certificate of publisher for publishing it on any android
marketplace. An APK comprises with following directories and files:

• Assets: It contains the assets of the Android APK.

• res: This folder contains all resource files that are not compiled into
the resource.arsc. All XML files contain res/values from all the APK
components.
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Figure 2: Android APK Structure

• lib: This folder has multiple directories according to CPU architec-
ture. Each separate directory contains the natively compiled libraries
accordingly.

• META-INF: This folder contains the signature and metadata of the
Android Application.

• AndroidManifest.xml: Manifest file is the main index of Android APK
file and contains the application metadata, for example, permissions,
name, version, etc. The manifest is present in binary XML format.

• classes.dex: It is the main executable in the Android APK bundle. If
APK uses multiple DEX files, then it contains classes2.dex, Classes3.dex,..,ClassesN.dex.

• resources.arsc: These are precompiled resources that contain colors,
strings, and styles.
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2.3 Compilation of Android Application

Android applications are majorly developed in Java and Kotlin program-
ming languages. Java and Kotlin compiled class files are get executed in
JVM (Java Virtual Machine Environment) but android doesn’t provide a
JVM environment. Android uses DVM (Dalvik Virtual Machine) and ART
(Android Runtime). These virtual environments use DEX byte code for the
execution and hence a DEX compiler is introduced for compiling the class
file to DEX file.

Steps involved in for compiling Java code to Class file is as:
Step 1: javac compiler compiles the Sample.java and generates Sample.class
file (java byte-code).
Step 2: Java byte-code is executable in a JVM environment.
Step 3: JVM uses JIT (Just-In-time) compiler to convert the byte code into
machine code.
Step 4: Resulted machine code is fed into memory and gets executed on the
target machine.
Similarly, Kotlin code also generates a byte code compatible with to JVM
environment. By default, it generates byte code compatible with Java 6 and
configurable for the higher versions.

The complete mechanism of android application compilation and packag-
ing in the form of the “.apk” file is depicted in figure 3. After the compilation
of Java/Kotlin source code into the java byte code is fed into the DEX com-
piler. Dex compilers generate the “classes.dex” file which gets executed in a
DVM and ART environment. The major components of the android appli-
cation packaged file are:

• DEX executable (Classes.dex): This is the main executable that gets
executed in the target environment.

• Encoded XML files: There are the layouts of the android application
which get encoded with the help of the “aapt” tool. “aapt” is the tool
in Android SDK used for this purpose.

• Encoded Manifest: Manifest file is an XML file that is the main con-
figuration file used for executing the application.

• Signature Files: The package contains the signature of the Developer.
Applications are signed with the “JarSigner” tool.
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Figure 3: APK Compilation and Packaging

2.4 Android APK attack Vectors

The seriousness of the user towards security and privacy is very less. The
users are more concerned about the ease of usage and getting the service free
of cost. Most of the android applications generate their revenue based on the
advertisement or the services provided by the original developer. Due to the
enormous growth of technology a gap generates for understanding the risk
related to that technology. Currently, the smartphone is the major source
that contains the highly sensitive data of the user and has become the reason
to bait cybercriminals. Cybercriminals always try to find an optimal way to
target smartphones. According to Zhou and Jiang [35], the most common
attack vectors for delivering malware are drive-by download, update, and
repackaging.

• A drive-by download is the most common attack vector in a desktop
environment. Internet users become a victim while surfing the internet.
Users unknowingly download and execute malicious programs. A simi-
lar phenomenon is achieved on the Android platform by cybercriminals.
In [21] a compromised website is embedded with a hidden iframe tag.
When the compromised website is opened in an Android device which is
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identified based on the user-agent string, then the hidden iframe serves
the malicious Android payload. This malicious payload was triggered
due to some vulnerabilities or social engineering tricks.

• Update attack in android is served via the official app stores. The
concerned benign application is published on Google play store or any
other official market place. Application is installed by the user and
at the first time of installation, no attack is launched. The developer
of the android application pushes an update on the store with the
malicious payload. Baskaran and Ralescu [5] states that this malicious
application is get detected by analyzing the diff of both the published
version.

• Repackaging is the most common attack vector used by cybercriminals
in the Android ecosystem. This attack vector abuses the legitimate
android application and the selection of applications is based on their
popularity. For achieving the repackaged application with a malicious
payload, legitimate applications are disassembled and malicious code
is placed within a legitimate application. Now, this get compiled and
signed for redistribution.

2.5 Android Malware

Any software intentionally designed to jeopardize the IT infrastructure is
termed Malware. As in the rise of Android devices, malwares are designed
to prey on these mobile devices. The success of android malware relies
on the exploitable vulnerabilities present in the Android ecosystem. An-
droid malware implantation in the victim environment is achieved based on
three primary methodologies of social engineering: 1) Drive-by download,
2) update-attack, and 3) repackaging. The traditional attack methodology
drive-by download is the technique that gets transferred from a general at-
tack in the cyber domain to the mobile space domain. Although attackers
do not exploit any vulnerabilities of mobile browsers directly, they typically
entice users to download attractive or enrich featured android applications.
In an update-attack scenario, rather than embedding the malicious portion
of the application completely, mainly the updated and malicious component
involved retrieving or downloading the malicious application as a patch of the
already present application dynamically. The updated application contains
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the malicious code, not the initially installed original application. Hence it is
more clandestine than the malware implantation methods that directly insert
the complete malicious code initially. The third methodology, repackaging,
is the most common methodology malware developers employ to piggyback
malicious code into Android applications. In order to achieve this, malware
developers take an Android application(bundled APK file), dismantle them
via reverse engineering, malicious code implant inside them, rebuild it, and
yield the new mutant of Android malicious application for getting published
to an official or alternative Android application market. Victims of these
applications get fascinated to download and install these repackaged appli-
cations.

These malwares are employed with various tactics for stealing the private
and confidential information, using the paid service like SMS bombarding
from compromised device, performing banking frauds and etc. Now a days,
mobile devices are of higher computing configuration, this attracts the perpe-
trators for crypto currency mining. Figure 4 depicts various type of malwares
that are present in android ecosystem. These types are described as:

Figure 4: Types of Android Malware

(A) Trojans

Android malware disguised as a legitimate application and having the
capabilities to spy on our activity, collect our sensitive data, gain ac-
cess to our device, delete files, download secondary payload, and many
more are classified as Trojan. Android applications are distributed via
various stores; among them, the Google play store is the most trusted
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and secured one. These Trojan android malwares are distributed via
these stores.

Stagefright is a media library in the Android framework that is widely
exploited for sending text messages employed with malicious payload to
any number. Trojans are also distributed via SMS or MMS. SMS Tro-
jans racked up users’ phone bills and wreak financial havoc by sending
SMS messages to premium-rate numbers worldwide. The reason be-
hind the popularity of this vulnerability is users get exploited even
though if they didn’t open or acknowledge the text message, the mal-
ware receives deployed, and attackers may get root access to the victim
android device. The vulnerability gets patched very quickly but still
proves the text message-based exploitation.

(B) Keyloggers

Android malwares which are capable of recording keystrokes or the
information typed on mobile devices are categorized as Keyloggers.
These are quickly obtainable to the common public and listed in the
search engines is moderately surprising and annoying. Some developers
are notoriously strengthening the surveillance of our colleagues and
partners, while some are masquerading these apps as parental control
solutions.

(C) Ransomware

Ransomware is popular among malwares designed for PCs. They en-
crypt the user information like photos, videos, documents and demand
payment to be paid to the perpetrator of the attack. This ransom
amount is usually paid via virtual currency like Bitcoin. Such mal-
wares are also infecting the android device by encrypting files, locking
the device screen also. A message gets promoted demanding payment
in recompense for decrypting our Android device.

(D) Spyware

Spyware is the most generous malware found on mobile devices. The
malware empowers attackers to obtain all the data on our phone, in-
cluding calls, texts, contacts, and other delicate information, including
a hijack of our camera and microphone. They also monitor our activ-
ity, records location, and lifts critical information, like usernames and
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passwords for e-commerce sites or email accounts. They are packaged
with other apparently benign applications and unostentatiously collect
information in the background.

(E) Adware

Annoying advertisement pop-ups and user interest data collection is
done through a malicious android application called Adware. In an
adware-infected device, vexatious advertisements are displayed frequently.
These advertisements come upon the devices’ entire screen even though
users are not using internet browsers or add-enabled applications. Ad-
ware developers generate revenue based on the add click frequency.
Some clicks force the user to download and install another malicious
application, leading to complete compromise, including root access.

(F) Grayware

Grayware occupies the vague middle ground between benign and mali-
cious behavior. These applications harvest data from Android devices
with the objective of marketing. They intend not to harm users but
annoy them. However, grayware may not execute activities that can
be defined as entirely illegal or malicious, but its actions may still
negatively impact the user regarding user efficiency, performance, and
privacy.

2.6 Android Malware Analysis

Android malware analysis is the mechanism used by an analyst for flagging
an android application as benign or malicious. Android malware analysis can
be generalized into three main categories: Static Analysis, Dynamic Analy-
sis, and Hybrid Analysis. Android suspicious applications are transformed in
the form of Java bytecode, which can be obtained by disassembling an appli-
cation during static analysis. Index of android application is maintained the
manifest file that is also a significant aspect that needs to be considered for
static analysis. Static analysis is obscured towards analyzing the portion of
the code which gets downloaded and executed at runtime and is regarded as
the more concerning disadvantage of static analysis that leads to failing the
results during analysis. Dynamic analysis is advantageous in judging suspi-
cious application code that is really performed by an application. An analyst
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uses typically Emulated environments for dynamic analysis. Hybrid Analy-
sis is the unification of both dynamic and static methodology. For flagging
benign or malicious with high accuracy, most of the analysts follow a hybrid
approach.

3 RELATED WORK

[16] implemented the two stage fuzzy strategy to classify android malware
family which have polymorphic variants. They used the regular expressions
for identifying the callbacks to determine the behavior of Android malware.
For classification 1-NN classifier and distance between the regular expression
is considered. [2] classified the android malwares by an adaptive neuro-fuzzy
inference system (ANFIS) with FCM. They generate the optimal number of
clusters using FCM which is used to develop ANFIS classifier. The maxi-
mum achieved accuracy was 91% with considering their permission as feature
vector.

[10] transformed the DEX file into images based on their sectional struc-
ture and extract the texture, color moment and string based features for pre-
dicting android malware family. Authors utilized the multiple kernel learning
SVM algorithm for classification. [3] transformed the executables of various
platforms to a grayscale image rather than extracting and analyzing the tex-
ture features. Various hash values Average Hash (AHash), Perception Hash
(PHash), and Difference Hash (DHash) of the image were deliberated in the
form of features. Neural networks are applied for classification malware. This
method was good for dealing with high volume of malware but suffers with a
poor accuracy due to loss of information in grayscale image. [11] transformed
PE files into RGB images according to the structural architecture of PE files.
Texture features via the GLCM algorithm and color features are extracted
from the converted image. Among various classification algorithms Random
forest (RF) exhibits the most effective classification accuracy of 97.4%. Al-
though, the PE file structure and the APK file structure are quite different
from each other and hence this method cannot be implemented directly for
classifying the Android malware family.

[12] proposed the fuzzy consensus clustering based model for attributing
the Advanced Persistent Threat (APT). They generate the multiple views
based on the static and dynamic features which is further merged and used to
train a decision tree model. The achieved accuracy for attributing APT group
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is 95.2%. [7] utilized the fuzzy pattern tree classifier for the classification of
IOT malware. They utilized the opcodes as the feature vector to classify the
android malware.

[8] methodology Faldroid is based on constructing a frequent subgraph
based on the dalvik opcode sequence which represents the common behavior
of android malware. The implemented method is experimented with 8407
malwares with 36 families and 94.2% is the maximum achieved accuracy.

[20] presents an android malware classification based on fuzzy classifica-
tion algorithms. Authors classified the 5000 android malware samples taken
from Drebin dataset in the classes as: Botnet, Rootkit, SMS Trojan, Spyware,
Installer and Ransomware. The considered fuzzy classification algorithms
are: NN, OWANN, VQNN, FURIA, FuzzyRoughNN, FuzzyOwnershipNN,
DiscernibilityClassifier, MultiObjectiveEvolutionaryClassifier.

4 METHODOLOGY

In the previous work, the authors did their research to find malicious behavior
of android applications based on permissions, Dalvik opcodes, transformed
images, DEX file’s hashes, their Dalvik code flow graph and even used Fuzzy
logic for classification.

The proposed methodology considers the multiple aspects of Android
malware samples to generate feature vectors. These aspects are termed as
views and are used to train FPT and FCM models individually. The de-
veloped fuzzy classifier model and clustering models are ensembles, and a
novel feature vector is generated, which is further used to train the Decision
Tree classifier to classify the android malware family. Figure 5 depicts the
overall methodology in which firstly DEX file is extracted from the provided
android APK, which is fed into the view generation module. The view gener-
ation module generates the six views based on multiple aspects: permission,
transformed image, Dalvik opcode (frequency and tf-idf), and bytecode (fre-
quency and tf-idf). Each view is used to train an FPT classifier and Clustered
using the FCM model, and their results are combined and used as a feature
vector to train the Decision Tree Classifier to classify the android malware
family.
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Figure 5: Overall Methodology for Classifying Android Malware Family

4.1 View Generation

4.1.1 Permission View

Android permission-based framework is developed to restrict unwanted appli-
cations to access critical information like SMS, call logs, and other vital and
sensitive data stored on the device. Android malware gets these permissions
by tricking a user into incorporating attack vectors. A dictionary of permis-
sions is created for generating permission view, which contains the unique
permission set within all android malware datasets used in this research.
Each android malware is transformed to a vector-based on its permission list
present in its manifest file. Dimension of the permission view vector is equal
to the length of the dictionary and generated using equation 1.

Permapk = {xi = 1ifDper[i] ∈ SampleAPKper} (1)

4.1.2 Image View

Android applications are compressed into APK files which are used for dis-
tribution. APK files are ZIP files such as JAR files which use Java libraries.
APK file contains app code in the form of DEX file format, native libraries,
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resource files, configuration files, digital signatures, etc. Header, Index, and
Data portion are the three portions of the DEX file. Figure 6 depicts snap
of 010 Editor (hex editor) for representing the sections of DEX file. Basic
information of the DEX file is present in the header section with the Index
and offset values of other sections. The index portion of the DEX file con-
sists size and offset of string index, proto Index, type index, method index,
and field Index sections. The data portion consists size and offset of class
definition sections and data sections. Therefore, in combining all these three
portions, the DEX file is divided into eight sections.

Figure 6: DEX file sections

For the transformation of the DEX file to RGB image size, entropy, byte-
code, and proportions of sections are mapped to the size, red color channel,
green color channel, and blue color channel of RGB image. Transformation
and visualization are divided into five steps: Parsing of DEX file, Matrix
Creation, Computation, Merging and Conversion.

DEX file Parsing: All eight sections of DEX file is parsed according to
the DEX header as shown in Figure 6.

Matrix Creation: Each section of the DEX file is read byte and trans-
formed into a byte matrix corresponding to each section. For deciding the
width of matrix [10] proposed determining criteria according to DEX file size.

Computation: Calculation of the entropy matrix and the proportion
matrix is done with the help of the bytecode matrix. Every section has a
single value of entropy and proportion; hence these values remain the same
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for every section. Entropy computation: The entropy represents the stability
of the byte sequence. Therefore, the entropy of each section is calculated by
using the equation 2.

Entropy =
255∑
i=0

[p(ci) log2 p(ci)] (2)

Where ci = frequency of byte i, p(ci) =probability of frequency of byte i,
The value of p(ci) log2 p(ci) is defined as 0 if the number of bytes is 0. Since
range of entropy lie between [0, 8] and pixel value lie between [0, 255] hence
entropy value was extended non-linearly. Value of R channel is calculated as
shown in equation 3.

R = (Entropy2 mod 8)× 255/8 (3)

Proportion Computation: Every section of the DEX file has a different size
because every section has many methods, variables, and classes. Therefore
the proportion of each section may vary. The Blue channel of RGB im-
ages is mapped with the proportion of each section. Equation 4 depicts the
calculation formula for the proportion.

Proportion = (SectionSize)/(FileSize) (4)

The range of proportion is [0, 1]; hence it gets mapped with a range of pixel
[0, 255] according to the equation 5.

B = Proportion× 255 (5)

Merging and Conversion: After computation of R channel as entropy,
G channel as byte code matrix, and B channel as proportion matrix is merged
and RGB tuple matrix is obtained. This RGB tuple matrix is finally con-
verted into the RGB image. Figure 7 illustrates the overall steps of transfor-
mation, and the GIST algorithm for feature extraction is applied as:

Step 1: Gabor filter bank shown in expression 6 is utilized to filter the
grayscale Image. A Gaussian envelope modulates a sinusoidal plane with
fixed direction and frequency in Gabor function with 2-D mode. Gabor
filters are selective in terms of direction and frequency. Multiple groups of
Gabor filters can be constructed by modifying the direction and frequency
parameter.
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Figure 7: DEX to RGB transformation

gpq(x, y) = a(−p)g(x
′
, y

′
)(a > 1)

x
′
= a(−p)(x cos θ + y sin θ)

y
′
= a(−p)(−x cos θ + y sin θ)

θ = qπ/(q + 1)

(6)

where θ = direction of filter a(−p) = scaling factor of wavelet expansion,
a = (Uh/Ul)

(1/(p−1)) Uh and Ul are the lower and upper value of interest of
frequencies. Gabor filter bank shown in expression 6 is used for generating
the f number of Gabor filters by modifying the value of p and q. So the
number of the filter is f = p ∗ q. During this research, p=4 and q=6 are
considered, and a total of 32 Gabor kernels are generated for filtering the
obtained grayscale image.

Step 2: A Gabor filter bank with f filter channels is used to convolute
the gray image f(x, y) to obtain the f number of the filtered image. A grid
of size nb × nb is obtained from the filtered image. The mean value of grids
is considered as a feature vector. Hence a vector of length f × nb × nb is
obtained as a feature vector. During this research, the considered size of the
grid is 4 × 4, and a total of the 512-dimensional feature vector as image view
is generated.
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4.1.3 Dalvik Opcode frequency View

Android APK file consists of a DEX file executable in Android Runtime
Environment (ART). Dalvik opcodes are the intermediate opcodes that get
executed in ART. These opcodes are responsible for achieving the objective
of the Android Application. To consider it as a feature vector, firstly, a
dictionary of Dalvik opcode is created. The dictionary is the unique Dalvik
opcodes that are present in the complete dataset. The resulted dictionary is
used as feature columns in the Dalvik opcode view.

Frequency view is the vector representation of the count of each opcode
that is present in the dictionary in the respective Android Malware Sample.
The vectorization of this view is done according to equation 7.

Opcodefrequencyapk = {xi = (Opcodecountapk[i]/|SampleAPKop|)} (7)

4.1.4 Dalvik Opcode TF-IDF View

TF-IDF value of a Dalvik opcode represents its relevance among all the
datasets. Every DEX file is vectorized according to equation 8 to generate
this view. Again the length of the resulted feature vector is equal to the
length of the Dalvik opcode dictionary.

OpcodeTFIDF = tf × idf
tf = Opcodefrequencyapk

idf = log [|TotalSampleAPK|/|SampleAPKop ∈ SampleAPK|]
(8)

4.1.5 Bytecode frequency and TF-IDF View

Since all the DEX is the sequence of bytecode hence the frequency and tf-idf
views are generated similar to Dalvik opcode views. For this view, all possible
Bytecode values are considered a dictionary of bytecode (Dict ByteCode =
0,1,2 . . . . . . , 255). Hence the length of each vector is 256 in Bytecode view.

4.2 Fuzzification

Crisp Set: Crisp represent the collection of items having identical properties
like finiteness and countability. A crisp set is based on Boolean logic which

20



means the item is the member of set or not. A crisp set ‘S’ is defined over
the universal set ‘U’ as per the given equation .

S = {x : x ∈ U and x have the identical properties P} (9)

Union, intersection, compliment and difference are the most common op-
eration performed of crisp sets. The properties which remains hold on the
crisp set are associativity, distributivity, commutativity, idempotency, iden-
tity, involution and transitivity. Crisp logic is the traditional way of knowl-
edge representation which does not deal with the methodology of interpreting
non-categorical and imprecise data.

Fuzzy Set:Fuzzy logic represent the partial logic of truth or vagueness
of reasoning. It takes the knowledge or data in a very similar way that
our brain takes in. The transformation crisp values for the fuzzy inference
engine (fuzzy set) is called fuzzification. Fuzzification is the assignment of
membership function, which can represent the linguistic notion of a crisp set.

All the generated views represent the crisp value which must be fuzzified
before implementing any fuzzy logic algorithm for classification and clus-
tering. [1] proposed triangular and trapezoidal membership function µ(x)
for fuzzifying the dataset. Some other membership functions are Gaussian,
Generalized bell, and Sigmoid membership function.

In this research triangular fuzzifier is used to generate the fuzzy member-
ship value µ(x).The definition of µ(x) is shown in equation 10 and depicted
in Figure 8. In equation 10, a is the lower limit, b is the upper limit and c is
the actual value. The considered value of a is min(F )–[max(F )–min(F )]2 ,
b is min(F ) and c is max(F ) where F refers the corresponding Fuzzy Set.

µ(x) =


0 if x ≤ a

[(x− a)/(b− a)] if a ≤ x ≤ b

[(c− x)/(c− b)] if b ≤ x ≤ c

0 if x ≥ c

(10)

4.3 Fuzzy Pattern Tree Classifier

FPT [26] is a fuzzy-based classification algorithm introduced recently. This
research considers the bottom-up approach for learning. It is a hierarchal
tree-like structure whose inner nodes are associated with fuzzy-based logi-
cal and arithmetic operators. The most commonly used fuzzy operators in
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Figure 8: Degree of Membership

constructions of FPT are t-norms, t-conorms, weighted average (WA), and
ordered weighted average (OWA) [14, 25, 32]. Input to the tree is provided at
the leaf node. An instance of an FPT model is depicted in Figure 9. An FPT
model is the collection of pattern trees, and each pattern tree is associated
with a specific class. For classification, test data is given to the FPT model,
and the highest score resulting pattern tree represents the predicted class.

Figure 9: An instance of FPT model

Dataset X(x1, x2, x3 . . . ., xi) corresponding to each view is the input for
algorithm 1. Initially, three sets of basic partition tree PT , C0 candidate
tree, and M∗ FPT model are initialized. PT is the collection of primitive
fuzzy pattern trees Fij where i represents the feature vector, and j refers to
the corresponding class. A candidate pattern tree C0 is initialized based on
the root mean square error(RMSE) as a loss function. C0 is the collection
of N best trees among the PT , i.e., C0 is a subset of PT . M∗ contains the
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N best trees of C0 as the initial FPT model, which get tuned and improved
as the final FPT model. Now iteratively, each pattern tree from M* is taken
and optimized with fuzzy operator and trees from PT as mentioned in algo-
rithm 1. This research considers the maximum iteration as five, and in every
iteration loss function, RMSE is used to optimize M∗. Finally, the M∗ model
is used to predict the confidence value corresponding to each class.

Algorithm 1 Fuzzy Pattern Tree Classifier

1: PT = {Fi,j|∀i ∈ inputfeatures, and∀j ∈ classes}
2: S = PT
3: C0 = argminNB

F∈PT

[∑
(x,y)∈T RMSE(y, F (x))

]
4: M∗ = argmin [error(C0)]
5: tmax = 5
6: t = 0
7: MaximumDepth = 10
8: while t ≤ tmax do
9: t = t+ 1

10: Ct = Ct+1

11: for all L ∈ leafs(M∗) do
12: if Depth(L) ≤MaximumDepth then
13: for all ψ ∈ FuzzyOperators do
14: for all p ∈ PT do
15: Ct = Ct−1 ∪ replaceleaf(M∗, L, ψ, p)
16: end for
17: end for
18: end if
19: end for
20: M∗ = argminn

F∈Ct

[∑
(x,y)∈T RMSE(y, F (x))

]
21: end while
22: return M∗

4.4 Fuzzy C-means Clustering

There are mainly two types of clustering: Hard Clustering (Figure 10) and
Soft Clustering(Figure 11). In hard clustering, each data point belongs to
a particular fixed cluster number. In soft clustering, instead of defining a
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specific cluster number, a probability is defined for each data point regarding
each cluster number.

Figure 10: Hard Clustering

Figure 11: Soft Clustering

To generate fuzzy clusters, this research implements the Fuzzy C-means
Clustering [22]. The technique is mentioned in algorithm 2. In FCM, C refers
to the maximum cluster number, which is taken 200, and fuzziness parameter
m is taken 1.75. The training set of each view is clustered, and a trained
partition matrix U is returned corresponding to each view. Since each row
refers to the probability distribution of data points, the sum of each row of
the partition matrix should always be one.

4.5 Ensemble FPT and FCM vectors with Decision
Tree

The trained models of FPT and FCM are used to generate a new dataset on
each view. The dataset of each view is fitted on FPT and FCM models for
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Algorithm 2 Fuzzy C Means Clustering

1: C = 200 /* No of Clusters */
2: m = 1.75 /*Fuzziness Parameter */
3: U∗ = [uij]matrix, U

0 /*Initialize Partition Matrix */
4: k = 0
5: repeat

6: C(k) =
[∑N

i=1 u
m
ijxi/

∑N
i=1 u

m
ij

]
7: U (k+1) =

[∑c
k=1(xi − cj/xi − ck)2/m−1

]−1
8: until |U (k+1)| − |U (k)| ≤ StoppingCriteria
9: return U

producing the new dataset as mentioned in algorithm 3. Now the aggregated
dataset X is combined with the corresponding class Y. Here Y represents the
actual class of the android malware family.

This module of the proposed methodology is the final decision maker on
the aggregated dataset of FPT and FCM models. [X, Y ] the new aggregated
dataset is used to train a decision tree model that decides the Android mal-
ware family class. The optimal depth of the decision tree is considered ten
during the research, which is obtained by the GridCVSearch method.

Algorithm 3 Ensemble FPT and FCM Models

1: XFPT = FPTview(Xview)
2: XFCM = FCMview(Xview)
3: X = [XFPT , XFCM ]
4: return X

5 RESULTS AND DISCUSSION

5.1 Dataset

The samples utilized in this research are based on the RmvDroid Android
malware dataset. [31] collects the android applications of Google play in 4
years and then uses Virus Total to label the application. They also observe
the removal of the application from the play store to label the application.
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This dataset contains 9,133 android malware samples that belong to 56
families. These samples are randomly chosen from the dataset and used to
generate the respective views. After analyzing the dataset, it may confer
that it contains the imbalance number of malware samples in their families.
Hence for getting the effective results, 11 families and 150 samples per family
are taken as shown in Table 1.

S No. Family name Sample Count
1. AIRPUSH 2872
2. MECOR 993
3. PLANKTON 8022
4. ADWO 690
5. YOUMI 597
6. GAPPUSIN 441
7. MOBIDASH 344
8. VISER 291
9. DOWGIN 279
10. LEADBOLT 179
11. KUGUO 168

Table 1: Android Malware Family Dataset

5.2 Performance Evaluation

The discussed methodology is used to classify the Android malware families.
The dataset of RmvDroid is fed into the framework, and the following six
different feature vector is generated based the multiple views. These views
are based on permission, image, Dalvik opcode, and DEX bytecode. Every
single view is firstly used to train, and Fuzzy based FPT classifier. There
are six different FPT classifiers based on each view. Similarly, these views
are clustered based on the soft clustering technique Fuzzy C-means. The
clustering algorithm considers the number of clusters c=200 and fuzziness
parameter m=1.75. A partition matrix based on each view is generated as a
result. These FPT and FCM models are aggregated and fed into a Decision
Tree with its actual class, which yields a trained model with an accuracy of
95.75%.
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The performance of machine learning algorithms is evaluated based on
four core metrics True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). Based on these metrics, precision, recall, and
F1 Score is calculated to assess the proposed methodology. The confusion
matrix visualizes the performance of any machine learning algorithm. The
predicted class is represented by the row of the confusion matrix and the
actual class by column. The accuracy of the trained model for each Android
malware family is depicted through diagonal cells.

View F1 Score Accuracy Precision Recall
Permission View 0.748592 0.690205 0.690205 0.921700

Image View 0.443169 0.492027 0.492027 0.445675
Count Opcode View 0.602364 0.665148 0.665148 0.628156

TF-IDF Opcode View 0.708458 0.724374 0.724374 0.737401
Count Bytecode View 0.429397 0.448747 0.448747 0.508666

TF-IDF Bytecode View 0.517084 0.517084 0.4779082 0.51708
Combined View 0.957495 0.957554 0.957764 0.957554

Table 2: Performance Metrics

The performance metrics of every single view are represented in Table
2 and compared with the performance metrics of the combined view. The
results obtained based on a single view need a significant improvement to
classify the android malware family. In order to achieve this improvement,
when these views are aggregated, then the performance metrics improved
significantly. Combined view F1 Score is achieved up to 95.74%. Figure 12
represents the confusion matrix of the integrated view. Finally, it can be
justified that classifying the android malware family based on multiple views
and combining fuzzy logic algorithms for decision trees yield classification
accuracy up to 95.74%. The consideration of multiple aspects ensures that
any single view cannot perform, balanced by the other views.

5.3 Discussion

This section discusses the methodology adopted in this paper with similar
work done for the Android malware family classification. [10] methodology
is based on computer vision domain. The authors transformed the DEX file
into images and applied an SVM multi-kernel for the classification of Android
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Figure 12: Confusion Matrix on Combined View
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malware classes. [12] mechanism is based on multiple views for attributing
the Advanced persistent threat payloads and achieved accuracy is 95.2% on
five APT groups. [7] utilizes FPT for classifying IoT malware as 0/1 classifi-
cation. [20] done android malware classification based on fuzzy classification
algorithms into the following classes: Botnet, Rootkit, SMS Trojan, Spyware,
Installer, and Ransomware. The proposed methodology uses the concept of
ensemble learning and implements it on Android Malware Family classifica-
tion. The methodology in this research is based on multiple views of Android
applications, which includes permission, image, Dalvik Opcode, and Byte-
code. These views adopt ensemble learning of fuzzy-based classification and
clustering algorithms to generate the input for the Decision Tree.

6 CONCLUSION AND FUTURE WORK

Android malware family classification is one of the most demanding tasks in
the android malware threat domain. This research is done based on multi-
ple aspects of an Android application which is termed as view. The views
considered for attaining the classification problems are permission, image
representation of DEX file, underlying Dalvik opcodes, and bytecode of the
DEX file. These multiple views are vectorized and fuzzified using triangular
fuzzification. The fuzzified vectors are used to train the FPT classifier and
soft-clustered using the FCM algorithm. Finally, the FPT and FCM vectors
are combined, and a decision tree model is used to final classification of an-
droid malware families. From the future point, the views considered during
this research are based on static analysis, but also these views may be based
on dynamic analysis.
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Appendices

A Raw Feature Extraction

from androguard . misc import AnalyzeAPK
from c o l l e c t i o n s import d e f a u l t d i c t
from operator import i t emge t t e r
import ha sh l i b
import os
import j son
basepath = ’/home/ rax /Desktop/rmvdroid ’
outputpath = ’/home/ rax /Desktop/ rmvdroid output ’
r e s u l t = {}
f o r root , d i r s , f i l e s in os . walk ( basepath ) :

f o r f i l in f i l e s :
f i l e p a t h = os . path . j o i n ( root , f i l )
d i rpath = outputpath
i f not os . path . e x i s t s ( d i rpath ) :

os . makedirs ( d i rpath )
f i l e p a t h l i s t = f i l e p a t h . s p l i t ( ’ / ’ )
f i l ename = f i l e p a t h l i s t [ −1]
familyname = f i l e p a t h l i s t [ −2]
d i rpath = os . path . j o i n ( dirpath , familyname )
i f not os . path . e x i s t s ( d i rpath ) :

os . makedirs ( d i rpath )
p r i n t ( f i l e p a t h , d i rpath )
t ry :

a , d , dx = AnalyzeAPK( f i l e p a t h )
pe rmi s s i ons = a . g e t p e r m i s s i o n s ( )
a c t i v i t i e s = a . g e t a c t i v i t i e s ( )
s e r v i c e s = a . g e t s e r v i c e s ( )
r e c i e v r e s = a . g e t r e c e i v e r s ( )
package = a . get package ( )
apkname = a . get app name ( )
andr ver code = a . g e t a n d r o i d v e r s i o n c o d e ( )
and ver name = a . get andro idver s ion name ( )
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min sdk = a . g e t m in sdk ve r s i on ( )
max sdk = a . ge t max sdk ver s i on ( )
t a r g e t s d k = a . g e t t a r g e t s d k v e r s i o n ( )
e f f t a r g e t s d k = a . g e t e f f e c t i v e t a r g e t s d k v e r s i o n ( )
r e s u l t . update ( f i l e p a t h=f i l e p a t h , f i l ename=f i l ename ,
familyname=familyname , apkname=apkname ,
package=package , andr ver code=andr ver code ,
min sdk=min sdk , max sdk=max sdk ,
e f f t a r g e t s d k=e f f t a r g e t s d k ,
permis s ion=permiss ions ,
a c t i v i t i e s=a c t i v i t i e s , s e r v i c e s=s e r v i c e s )
dexcount = 0
dexnames = [ ]
dexpathnames = [ ]
dexpath = dirpath
i f not os . path . e x i s t s ( dexpath ) :

os . makedirs ( dexpath )
f o r x in a . get dex names ( ) :

dexnames . append ( x )
dexf i l ename = f i l ename + ’ ’+ x
dexpath = os . path . j o i n ( dexpath , dexf i l ename )
dexpathnames . append ( dexpath )
’ ’ ’ f = open ( dexpath , ’ wb ’ )
f . wr i t e ( a . g e t f i l e ( x ) )
f . c l o s e ( ) ’ ’ ’

dexcount = len ( dexnames )
i f dexcount>1:

mult idex = 1
e l s e :

mult idex = 0
opcode va lue = [ ]
opcode mnemonics = [ ]
f o r method in dx . get methods ( ) :

i f method . i s e x t e r n a l ( ) :
cont inue

m = method . get method ( )
i f m. ge t code ( ) :

byte code = m. ge t code ( )
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i f byte code != None :
byte code = byte code . ge t bc ( )
idx = 0
f o r i in byte code . g e t i n s t r u c t i o n s ( ) :

opcode va lue . append ( i . g e t op va lu e ( ) )
opcode mnemonics . append ( i . get name ( ) )
#pr in t ( i . g e t op va lu e ( ) , i . get name ( ) )
idx += i . g e t l e n g t h ( )

r e s u l t . update ( opcode va lue=opcode value ,
opcode mnemonics=opcode mnemonics ,
mult idex=multidex ,
dexpaths=dexpathnames )
o u t p u t f i l e = os . path . j o i n ( dirpath , f i l ename

+’ ’+ ’ r e s u l t . j son ’ )
with open ( o u t p u t f i l e , ”w”) as o u t f i l e :

j s on . dump( r e s u l t , o u t f i l e )
except :

pass

B Permission and Opcode View Generation

from c o l l e c t i o n s import d e f a u l t d i c t
from operator import i t emge t t e r
import ha sh l i b
import os
import j son
import g lob
from c o l l e c t i o n s import Counter
import csv
import time
basepath = ’/home/ rax /Desktop/ rmvdroid output ’
andr ma l c l a s s = [ ” a i rpush ” ,” mecor ” ,” plankton ” ,”adwo” ,
”youmi ” ,” gappusin ” ,” kuguo ” ,” mobidash ” ,” v i s e r ” ,” dowgin ” ,
” l e a d b o l t ” ,” smsreg ” ,”admogo” ,”domob” ,” secapk ” ,” kyview ” ]

de f c l e a n d i c t ( f i l e p a t h , typ ) :
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opcode d i c t = open ( f i l e p a t h , ” r ” ) . read ( )
opcode d i c t = opcode d i c t . s p l i t ( ’ , ’ )
opcode d i c t [ 0 ] = opcode d i c t [ 0 ] . r e p l a c e ( ’{ ’ , ’ ’ )
opcode d i c t [ −1] = opcode d i c t [ −1 ] . r e p l a c e ( ’} ’ , ’ ’ )
o p c o d e d i c t c l e a n = [ ]
f o r op in opcode d i c t :

o p c o d e d i c t c l e a n . append ( op . s t r i p ( ’\ ’ ’ ) )
i f typ==’op ’ :

o p d i c t = {}
f o r i in o p c o d e d i c t c l e a n :

#pr in t ( i )
o p d i c t . update ({ i : 0} )

r e turn o p d i c t
e l i f typ==’per ’ :

p e r c l e a n = {}
f o r p in o p c o d e d i c t c l e a n :

p = p . s p l i t ( ’ . ’ ) [ − 1 ]
p e r c l e a n . update ({p : 0} )

r e turn p e r c l e a n

opmen dict = c l e a n d i c t ( ’ opcode menomonics dict . txt ’ , ’ op ’ )
p e r d i c t = c l e a n d i c t ( ’ p e r m i s s i o n d i c t . txt ’ , ’ per ’ )

de f c r ea t edata ( f i l e p a t h ) :
with open ( f i l e p a t h ) as f :

data = j son . load ( f )
perm = data [ ’ permiss ion ’ ]
perm1 = [ ]
f o r p in perm :

p = p . s p l i t ( ’ . ’ ) [ − 1 ]
perm1 . append (p)

opcode = data [ ’ opcode value ’ ]
opcode mnemonics = data [ ’ opcode mnemonics ’ ]
opcount = d i c t ( Counter ( opcode mnemonics ) )
percount = d i c t ( Counter ( perm1 ) )
f opmen dic t = opmen dict
f p e r d i c t = p e r d i c t
f opmen dic t . update ( opcount )
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f p e r d i c t . update ( percount )
re turn f opmen dict , f p e r d i c t

de f c r e a t e c s v ( o p l i s t , p e r l i s t ) :
csv column1 = opmen dict . keys ( )
csv column2 = p e r d i c t . keys ( )
c s v f i l e 1 = ”opcode . csv ”
c s v f i l e 2 = ” per . csv ”
try :

with open ( c s v f i l e 1 , ’w’ ) as c s v f i l e 1 :
wr i t e r 1 = csv . DictWriter ( c s v f i l e 1 , f i e ldnames=csv column1 )
wr i t e r 1 . wr i t eheader ( )
f o r data in o p l i s t :

wr i t e r 1 . writerow ( data )
with open ( c s v f i l e 2 , ’w’ ) as c s v f i l e 2 :

wr i t e r 2 = csv . DictWriter ( c s v f i l e 2 , f i e ldnames=csv column2 )
wr i t e r 2 . wr i t eheader ( )
f o r data1 in p e r l i s t :

wr i t e r 2 . writerow ( data1 )
except IOError :

p r i n t (” I /O e r r o r ”)

o p l i s t = [ ]
p e r l i s t = [ ]
f o r c l in andr ma l c l a s s :

d i rpath = os . path . j o i n ( basepath , c l )
#pr in t ( d i rpath )
f i l e l i s t = os . l i s t d i r ( d i rpath )
f o r f i in f i l e l i s t :

f i l e p a t h = os . path . j o i n ( dirpath , f i )
i f ’ . j son ’ in f i l e p a t h :

op data = 0
per data = 0
op data , per data = crea t edata ( f i l e p a t h )
op data . update ( c l a s=c l )
per data . update ( c l a s=c l )
o p l i s t . append ( op data . copy ( ) )
p e r l i s t . append ( per data . copy ( ) )
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c r e a t e c s v ( o p l i s t , p e r l i s t )

C Image View Generation

import numpy as np
from cv2 import cv2
import os
from decimal import ∗
de f ca l co lor moment ( img ) :

img h , img w = img . shape
img mean = np . sum( img )/( img h∗ img w )
img dev ia t i on = ( img−img mean )∗∗2
img var i ance t = (np . sum( img dev ia t i on ) ) / ( img h∗ img w )
img var iance = np . s q r t ( img var i ance t )
img dev ia t i on = ( img−img mean )∗∗3
img skewness t = (np . sum( img dev ia t i on ) ) / ( img h∗ img w )
img skewness = np . cbr t ( img skewness t )
img mean = format ( img mean , ’ . 5 f ’ )
img var iance = format ( img var iance , ’ . 5 f ’ )
img skewness = format ( img skewness , ’ . 5 f ’ )
r e turn img mean , img var iance , img skewness

de f b u i l d f i l t e r s ( ) :
f i l t e r s = [ ]
k s i z e = 21
f o r theta in np . arange (0 , np . pi , np . p i / 8 ) :

params = { ’ k s i z e ’ : ( k s i z e , k s i z e ) ,
’ sigma ’ : 8 . 0 , ’ theta ’ : theta , ’ lambd ’ : 1 0 . 0 ,
’gamma ’ : 0 . 5 , ’ ps i ’ : 0 , ’ ktype ’ : cv2 . CV 32F}
kern = cv2 . getGaborKernel (∗∗ params )
f o r i in range ( 1 , 5 ) :

kern ∗= i
#f i l t e r s . append ( ( kern , params ) )

f i l t e r s . append ( kern )
re turn f i l t e r s

tp = [ ” droidkungfu ” ,” f a k e i n s t a ” ,” dowgin ” ,
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”youmi ” , ”bankbot ” , ” a i rpush ” , ”minimob ” ,
” l o t o o r ” ,” kuguo ” ,” boqx ” ,” j i s u t ” ]
f o r t t in tp :

t a rg e t pa th = ” . . / pyDexparser/”+ t t+” g a b o r s i g /”
sample d i r path = ” . . / pyDexparser/”+ t t+” images /”
i f not os . path . e x i s t s ( t a rg e t pa th ) :

os . makedirs ( t a rg e t pa th )
p r i n t ( t a rg e t pa th )

f o r root , d i r , f i l e s in os . walk ( sample d i r path ) :
f o r f i l ename in f i l e s :

h index = f i l ename . f i n d (” ”)
i f ( h index ) != −1:

f i l e h a s h = f i l ename [ 0 : h index ]
s a m p l e f i l e s p a t h = os . path . j o i n ( sample d i r path , f i l ename )

i f ” gray ” in s a m p l e f i l e s p a t h :
#pr in t ( f i l ename , f i l e h a s h )
img = cv2 . imread ( s a m p l e f i l e s p a t h )
img = cv2 . cvtColor ( img , cv2 .COLOR BGR2GRAY)
#pr in t img . shape
#pr in t l en ( img )
f i l t e r s = b u i l d f i l t e r s ( )

#pr in t ( l en ( f i l t e r s ) )
#meand o f the g r id image (4∗4)
t e x t u r e f e a t u r e = [ ]
f o r f i l t e r in f i l t e r s :

f i l t e r e d i m g =
cv2 . f i l t e r 2 D ( img , cv2 . CV 8UC3 , f i l t e r )
s i z e x = f i l t e r e d i m g . shape [ 1 ]
s i z e y = f i l t e r e d i m g . shape [ 0 ]
f o r i in range (0 , 4 ) :

f o r j in range ( 0 , 4 ) :
r o i = f i l t e r e d i m g [ i n t ( i ∗ s i z e y / 4 ) :
i n t ( i ∗ s i z e y /4 + s i z e y /4) ,
i n t ( j ∗ s i z e x / 4 ) : i n t ( j ∗ s i z e x /4+ s i z e x / 4 ) ]
t e x t u r e f e a t u r e . append (
format (np . mean( r o i ) , ’ . 5 f ’ ) )

t a r g e t f i l e n a m e = targe t pa th + ” tex ture /”
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i f not os . path . e x i s t s ( t a r g e t f i l e n a m e ) :
os . makedirs ( t a r g e t f i l e n a m e )

t a r g e t f i l e n a m e = os . path . j o i n
( t a r g e t f i l e n a m e , f i l e h a s h )
with open ( t a r g e t f i l e n a m e , ”w”) as o u t f i l e :

o u t f i l e . wr i t e (” ,”
. j o i n ( s t r ( v ) f o r v in t e x t u r e f e a t u r e ) )

p r i n t ( t e x t u r e f e a t u r e )

D FPT, FCM and Decision tree Models

import numpy as np
import pandas as pd
import sys
import matp lo t l i b . pyplot as p l t
import argparse
import p i c k l e
from fuzzycmaster . fcmeans . fcm import FCM
import pandas as pd
from sk l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t
from sk l e a rn . met r i c s import a c cu ra cy s co r e
from f y l e a r n . f p t import FuzzyPatternTreeTopDownClassi f ier
import matp lo t l i b . pyplot as p l t
from f y l e a r n . f p t import FuzzyPat t e rnTreeC la s s i f i e r
from sk l e a rn . p r ep r o c e s s i ng import LabelEncoder
from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t
from sk l e a rn . met r i c s import s i l h o u e t t e s c o r e
from sk l e a rn . t r e e import D e c i s i o n T r e e C l a s s i f i e r
from sk l e a rn . met r i c s import f 1 s c o r e , a c cu ra cy s co r e
from sk l e a rn . met r i c s import p r e c i s i o n s c o r e , r e c a l l s c o r e
from sk l e a rn . met r i c s import p l o t c o n f u s i o n m a t r i x
import seaborn as sns
from sk l e a rn . met r i c s import con fu s i on mat r ix
###Reads the f i l e and r e tu rn s the l a b e l and data
de f read ( f i l e ) :

d f = pd . r ead c sv ( f i l e )
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#df1 = df . head (10)
x = df . i l o c [ : , : − 1 ]
x = x . apply ( lambda x : x . f i l l n a ( x . mean ( ) ) , a x i s = 0)
y = df . i l o c [ : , −1 ]
k = df . columns [ −1]
z = l i s t ( df [ k ] . unique ( ) )
re turn x , y , z

## Creates f p t Model and re tu rn s c l a s s i f i c a t i o n r epo r t
de f c r e a t e f p t m o d e l (x , y , f i l e , un ique va l s ) :

l e = LabelEncoder ( )
p r i n t ( y )
z = y . unique ( )
l e . f i t ( y )
y = l e . trans form ( y )
x t ra in , x t e s t , y t ra in , y t e s t=
t r a i n t e s t s p l i t (x , y , t e s t s i z e =0.2)
mod = FuzzyPat t e rnTreeC la s s i f i e r ( max depth=10)
mod . f i t ( x t ra in , y t r a i n )
#z = f i l e . s p l i t ( ’ . ’ )
k = f i l e . s p l i t ( ’ / ’ )
z=k [ −1 ] . s p l i t ( ’ . ’ ) [ 0 ]

with open ( z+’ fpt ’ , ’ wb ’ ) as f :
p i c k l e . dump(mod, f )

, y pred = mod . p r e d i c t ( x t e s t )
f p t r , = mod . p r e d i c t ( x t r a i n )

with open ( z+’ preds fp t ’ , ’ wb ’ ) as f :
p i c k l e . dump( f p t r , f )

cm = con fus i on mat r ix ( y t e s t , y pred )
p r i n t (cm)
s n s p l t = sns . heatmap (cm/np . sum(cm) ,
x t i c k l a b e l s =unique va l s ,
y t i c k l a b e l s=unique va l s ,
annot = True , fmt = ’ .2% ’ ,
cmap = ’ Blues ’ )
p l t . s a v e f i g ( ’ fpt ’+z+’ con fu s i on mat r ix . png ’ )
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#graph = p l o t c o n f u s i o n m a t r i x (mod , x t e s t , y t e s t )
#p l t . s a v e f i g ( ’ output . png ’+z )
p r i n t ( x t e s t )
p r i n t ( y t e s t )

p r i n t ( f 1 s c o r e ( y t e s t , y pred , average = ’ micro ’ ) )
p r i n t ( a c cu ra cy s co r e ( y t e s t , y pred ) )
p r i n t ( r e c a l l s c o r e ( y t e s t , y pred , average = ’ micro ’ ) )
r e turn f 1 s c o r e ( y t e s t , y pred , average = ’ weighted ’ ) ,
a c cu ra cy s co r e ( y t e s t , y pred ) ,
r e c a l l s c o r e ( y t e s t , y pred , average = ’ weighted ’ ) ,
p r e c i s i o n s c o r e ( y t e s t , y pred , average = ’ weighted ’ )

##c r e a t e s fcm model and r e tu rn s s i l l o h t e c o e f f i c i e n t
de f c reate fcm mode l (x , y , f i l e ) :

x = np . array ( x )
x t ra in , x t e s t , y t ra in , y t e s t =
t r a i n t e s t s p l i t (x , y , t e s t s i z e =0.2)
fcm = FCM( n c l u s t e r s =200)
fcm . f i t ( x t r a i n )
p r i n t ( x t r a i n . shape )
#pr in t ( f i l e [ 0 ] )
k = f i l e . s p l i t ( ’ / ’ )
z=k [ −1 ] . s p l i t ( ’ . ’ ) [ 0 ]
with open ( z+’fcm ’ , ’ wb ’ ) as f :

p i c k l e . dump( fcm , f )
with open ( z+’fcm ’ , ’ rb ’ ) as f :

fcm = p i c k l e . load ( f )
preds=fcm . p r e d i c t ( x t r a i n )
with open ( z+’preds fcm ’ , ’ wb ’ ) as f :

p i c k l e . dump( preds , f )
### gene ra t e s csv and c r e a t e s a dataframe
de f c r ea te data f rame (y , f i l e ) :

k = f i l e . s p l i t ( ’ / ’ )
p=k [ −1 ] . s p l i t ( ’ . ’ ) [ 0 ]
with open (p+’ preds fp t ’ , ’ rb ’ ) as f :

f p t = p i c k l e . load ( f )
with open (p+’preds fcm ’ , ’ rb ’ ) as f :
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fcm = p i c k l e . load ( f )
r e s = [ ]
f o r i in range ( l en ( fp t ) ) :

x1 = fp t [ i ]
y1 = fcm [ i ]
z = np . concatenate ( [ x1 , y1 ] )
r e s . append ( z )

df = pd . DataFrame ( r e s )
df [ ’ output ’ ] = y
df . t o c s v (p+’data ’ , header = False , index = False )
re turn df

####c r e a t e s Dec i s i on Tree and gene ra t e s c l a s s i f i c a t i o n r epo r t
de f c r e a t e d e c i s i o n ( df ) :

c l f = D e c i s i o n T r e e C l a s s i f i e r ( )
x = df . i l o c [ : , : − 1 ]
y = df . i l o c [ : , −1 ]
p r i n t ( x )
x t ra in , x t e s t , y t ra in , y t e s t =
t r a i n t e s t s p l i t (x , y , t e s t s i z e =0.2)
c l f . f i t ( x t ra in , y t r a i n )
with open ( ’ dt new ’ , ’ wb ’ ) as f :

p i c k l e . dump( c l f , f )
y pred = c l f . p r e d i c t ( x t e s t )
p r i n t ( x t e s t )
p r i n t ( y t e s t )
p r i n t ( y pred )
cm = con fus i on mat r ix ( y t e s t , y pred )
s n s p l t = sns . heatmap
(cm/np . sum(cm) ,
annot = True , fmt = ’ .2% ’ ,
cmap = ’ Blues ’ )
p l t . s a v e f i g ( ’ f i n a l ’+ ’ con fu s i on mat r ix . png ’ )
r e turn ac cu racy s co r e ( y t e s t , y pred ) ,
f 1 s c o r e ( y t e s t , y pred , average =’weighted ’ ) ,
r e c a l l s c o r e ( y t e s t , y pred , average = ’ weighted ’ ) ,
p r e c i s i o n s c o r e ( y t e s t , y pred , average =’weighted ’ )
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de f c r e a t e ( f i l e ) :
x , y , z = read ( f i l e )
f1 , acc , r e c a l l , p r e c i s i o n =c r e a t e f p t m o d e l (x , y , f i l e , z )
c reate fcm mode l (x , y , f i l e )
df = crea te data f rame (y , f i l e )
r e turn df , f1 , acc , r e c a l l , p r e c i s i o n , z

de f s a v e f i g ( df , name= ’ ’ ) :
f i g = p l t . f i g u r e ( f i g s i z e =(15 ,8))
ax = f i g . add axes ( [ 0 , 0 , 1 , 1 ] )
df . p l o t . bar ( ro t =0, ax=ax )
p l t . s a v e f i g (” comparison o f performance
metr ic”+name ,
bbox inches = ” t i g h t ” ,
f a c e c o l o r = ” white ”)

i f name ==’ main ’ :
d f = pd . DataFrame ( )
d f o l d = pd . DataFrame ( )
n = len ( sys . argv )
p r i n t (n)
f l a g = 0
l i s = [ ]
k = [ ]
k . append ( ’ f i n a l ’ )
f 1 = [ ]
acc = [ ]
p r e c i s i o n = [ ]
r e c a l l = [ ]
r e s d f = pd . DataFrame ( )
d f f i n a l = pd . DataFrame ( )
f o r i in range (1 , n ) :

f i l e = sys . argv [ i ]
p r i n t ( f i l e )
k = f i l e . r f i n d ( ’ / ’ )
i f ( k == −1):

z = f i l e . r f i n d ( ’ . ’ )

41



l i s . append ( f i l e [ : z ] )
e l s e :

z = f i l e . r f i n d ( ’ . ’ )
l i s . append ( f i l e [ k+1: z ] )

df , a , b , c , d , un ique va l s = c r e a t e ( f i l e )
p r i n t ( a )
p r i n t (b)
#r e s d i c
f 1 . append ( a )
acc . append (b)
p r e c i s i o n . append ( c )
r e c a l l . append (d)
i f ( f l a g == 1 ) :

d f o l d = pd . concat ( [ df , d f o l d ] )
f l a g = 2

e l i f ( f l a g ==0):
f l a g = 1
d f o l d = df

e l i f ( f l a g ==2):
d f o l d = pd . concat ( [ df , d f o l d ] )

p r i n t ( d f o l d . i n f o ( ) )
r e s d f [ ’ f 1 s c o r e ’ ] = f1
r e s d f [ ’ accuracy ’ ] = acc
r e s d f [ ’ p r e c i s i o n ’ ] = p r e c i s i o n
r e s d f [ ’ r e c a l l ’ ] = r e c a l l
r e s d f . index = l i s
s a v e f i g ( r e s d f )
p r i n t ( r e s d f . head ( ) )
p r i n t ( d f o l d )
d f o l d . f i l l n a ( va lue = 0 , i n p l a c e = True )
acc , f1 , r e c a l l , p r e c i s i o n = c r e a t e d e c i s i o n ( d f o l d )
d f f i n a l = pd . DataFrame ( [ [ acc , f1 , r e c a l l , p r e c i s i o n ] ] ,
columns = [ ’ accuracy ’ , ’ f 1 s c o r e ’ , ’ r e c a l l ’ , ’ p r e c i s i o n ’ ] )
p r i n t ( d f f i n a l )
s a v e f i g ( d f f i n a l , ’ f i n a l o u t p u t ’ )
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