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Abstract 

Coronavirus-2 (SARS-CoV-2) is responsible for the symptoms of COVID-19. Almost every 

nation has been infected by SARS-CoV-2. The COVID-19 pandemic has prompted researchers to 

concentrate on the development of a vaccine and treatment techniques by becoming intimately 

familiar with the infection's biology. In order to minimize COVID-19 mortality and provide global 

immunity, a highly efficacious SARS-CoV-2 vaccine is imperative. The lengthy and costly process 

of developing vaccines could be sped up with immunoinformatics techniques. There have been 

advances in immunoinformatics tools used for reverse vaccinology to develop a SARS-CoV-2 

vaccine, including Vaxijen, IEDB, NetCTL 1.2, PEP-FOLD, and studies of the development of 

MHC-I and II binding epitopes, among others. A drug repurposing strategy would reduce time and 

cost compared to drug discovery from scratch. It is an effective strategy for leveraging existing 

medications. Immunoinformatics may help identify T cell and B cell epitopes with more 

confidence, leading to fewer experiments and higher dependability for identifying vaccine 

candidates. 
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Chapter 1 

1.1  INTRODUCTION 

A virus called SARS-COV-2 causes COVID-19, a viral illness that originated in China's Wuhan 

province and has since spread to 228 other nations, prompting a Pandemic [1][2]. Most commonly, 

the virus causes lungs to be damaged, resulting in flu-like symptoms, congestion, and, in more 

serious cases, pneumonia [3]. Deaths among older adults and people with chronic diseases are 

higher than normal according to statistical data. High-risk individuals may be struck by ARDS, 

respiratory failure, and inflammatory processes in addition to acute heart failure, heart damage, 

and multi-organ failure while infected with SARS-COV-2 [4]. Approximately 228 countries 

around the world have been affected by SARS-COV-2, which has been designated a pandemic. As 

of April 27, 2022, 510,887,255 Infected individuals . Approximately 6,241,104 have died. The 

number of people in serious need of breathing help has decreased from almost 464,142,621 to 

42,203. The United States of America, India, Brazil, France and Germany are all top 5 impacted 

countries. It has been estimated that there have been 1,019,008 fatalities and nearly 82.789 million 

cases. The United States has the most cases (nearly 82.789 million) and the highest fatality rate. It 

has been estimated that there have been 1,019,008 fatalities and nearly 82.789 million cases.  As 

the number of cases of COVID-19 continues to increase, the WHO has correctly designated it a 

worldwide medical crisis and pandemic [5]. SSRNA-encoded viruses, family of enclosed viruses 

with a deadly genome [6]. COVID-19, in contrast to SARS-CoV and MERS coronavirus , is 

triggered by SARS-CoV-2, a more virulent variant (MERS-CoV, 2013). To understand the 

pathophysiology of this virus and create successful therapies, comprehensive research is 

critical.  [7]. 
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There are 4 genera in which Coronaviruses are classified [8]: α Coronaviridae, β Coronaviridae, 

ϒ Coronaviridae, and δ Coronaviridae coronaviruses [9]. Approximately 2.6 is the reproduction 

number (R0) for each individual dissemination of SARS-CoV-2, indicating a rapid proliferation 

of infected cases [10]. 

The most abundant RNA viruses have genomes between 26 and 32 kb in size, called Coronavirus 

genomes [11]. Severe acute respiratory and MERS-CoV share approximately 82 percent sequence 

similarity, and key enzymes and matrix proteins share > 90 percent similarity. Detection and 

treatment of a common infection was made possible due to the greater extent of the gene. A SARS-

CoV-2 structural protein has four structural proteins: spikes (S), envelopes (E), membranes (M), 

and nucleocapsids (N). There is a greater degree of sequence similarity between these proteins and 

the MERS-CoV and acute respiratory syndrome genes. 

Coronaviruses attach their spike proteins to host cells' surface receptors upon entering the host 

cell. In order to interact with the ACE 2 receptor, the Spike protein subunits fuse to the cell surface. 

This is mediated by the S1 binding domain. 

In order to develop SARS-CoV-2 successfully produced antiviral drugs, similar enzymes, 

including major 3CLpro, PLpro , non-structural protein 12, & RdRP, might be addressed [14]. In 

order to better identify the genetic basis of disease, a comparing generation sequencing approach 

may be used to determine COVID-19-specific therapeutic approaches. 
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Fig. 1. Mechanism of attachment of spike protein with ACE-2 human receptor 

The  following 7 infectious CoVs that result in modest clinical symptoms include HCVNL63, 

HCV-229E, HCV-OC43, and HCV-HKU1. A person who is infected by SARS-CoV, MERS-CoV, 

or SARS-CoV2 can suffer from severe respiratory illness and even die. As a result of adaptive 

variations in the virus' genome, the covid-19  virus has become extremely dangerous and difficult 

to treat and vaccine [15].  
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1.2  Pathogenic mechanisms based on molecular mechanisms 

Those who have contracted covid-19 have serious lung infections, like those with SARS  & MERS. 

The symptoms induced by some cov phenotypes are very modest [16], such as HKU1, NL63, 

OC43, and 229E. ACE2 receptors attach to capsule particles and allow them to enter the human 

body. 

This leads to the synthesis of massive polypeptides, which are then digested by proteases located 

in the rough endoplasmic reticulum of the host [13,17]. Protein cleavage, controlled by 3CLpro 

and PLpro [18,19], forms nascent virions by folding and assembling large polyprotein structures. 

A proteolytic enzyme found in the SARS-primary, vital role is played by Covid-19 in transcription 

and replication of the virus [20]. The replication of viral genomes requires another intriguing 

enzyme called RdRp [21]. 

Proteolytic proteins are important for the survival, reproduction, and propagation of viruses, which 

makes them a potential target in pharmacological drugs. It might be possible to develop more 

effective medicines if we can determine where sequence similarities and differences occur. 

It is particularly important to develop and design small-molecule inhibitors for putative drug 

metabolizing enzymes. Molecular analyses revealed that these pocket regions of enzymes are 

evolutionarily conserved, and they align with their respective CoVs to a high degree. It is thought 

that the therapeutic compounds used to treat SARS-CoV and MERS-CoV could equally be used 

to treat COVID-19. As a result, there is a possibility that these pharmaceutical compounds could 

also be used to treat COVID-19. In contrast, SARS-CoV-2 exhibits significant structural 

differences from SARS-CoV spike RBD, specifically in two areas where it interacts with ACE2; 

as a result, previously licensed antibodies and therapy peptides targeting SARS-CoV did not 
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perform well for covid-19, requiring the growth of new structure upon  drugs that address these 

structural changes. [24]. 

It has been suggested that CoVs have cytocidal effects and are also able to induce innate immunity 

in host cells [25]. The cytopathological effects of CoV infection such as cell lysis and apoptosis 

have been well documented. Synyctia are formed as a result of cellular fusion caused by the virus. 

The destruction of the Golgi complexes during virus assembly, the mobilisation of vesicles for 

replication, and the mobilization of vesicles for replication cause the above events in cells. It can 

cause cytotoxic effects in hepatocytes and syncytia development in lungs, in comparison with other 

coronavirus  such as SARS-CoV & MERS-CoV. 

 

The innate and adaptive immune systems play a role in the pathophysiology of SARS-CoV-2 [26]. 

Throughout the illness, T lymphocytes and signaling molecules such as cytokines exert an 

important influence on the course of the illness. Researchers have discovered that innate pattern 

recognition receptors (PRRs) substantially influence immune system reactions to covid-19 illness 

by identifying chemicals released by pathogens and secreted by injured cells 

1.3  The genome of the SARS-COV-2 virus 

ssRNA (+) is the only part of the covid-19 genome [27]. NCBI's database (NC 045512.2) contains 

the SARS-CoV-2 genome sequence, which has a size of 29.9 kilobytes [11]. The genetic 

composition of covid-19 consists of 13-15 ORFs, including 12 functional ORFs. There are Genes 

coding for 12 proteins and 11 expressed proteins in the genome, with 38% GC content. In terms 

of genomic arrangements, SARS & MERS share similarities 28 & 29. They are classified as 

replication and protease genes (1a-1b), and also include important proteins including S, E, M, and 
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N, in 5′3′ order of occurrence, which are regarded as vaccine targets. The genetic variations that 

underlie Fusion and entry of viruses, & persistence in the human  are crucial [23]. 

 

Covid-19 is genetically identical to certain other Coronavirus to the tune of 89 percent. From 

GenBank, authors obtained the translational sequence for covid-19 polypeptide. A 7096-residue 

fusion protein accompanied by a number of structural and nonstructural proteins (NSPs) is found 

in the genomic structure of the entire SARS virus. Polyprotein pp1ab is translated by ORF 1-a via 

ribosomal frameshift under gene 1b, whereas pp1aa is encoded by ORF-1b via ribosomal 

frameshift underneath gene 1b. Virological genome proteinases break down these polyproteins 

even further, producing 16 proteins that are common to all the viruses in the same family. 

Its genome contains 30119 nucleotides, which is much bigger than the genome of SARS-CoV-2. 

There are a few different kinds of genetic elements found in MERS, including 5′ components that 

support, poly(A) tails at the 3′ end, and 16 NSP genes from the 5′ end that are called nsp 1-nsp 16. 

An auxiliary component (ORF1, ORF2, ORF5, ORF8) is found at  3′ genome’s end. Covid-19’s 

genome consists of 4 structural genes (S, M, N, and E) & 5 AMG genes (ORF8, ORF5, ORF4b, 

ORF4a, ORF3). Covid-19 is significantly more contagious than SARSCoV and MERS-CoV 

because of its different epidemiological characteristics. It is likely that other vertebrates served as 

a "transition" or "exacerbating" host, with subsequent geographical isolation explaining the 

evolution of some or all of the changes essential for exposure to humans [30]. 
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Fig 1.2  a poly-A tail at the 3′ end, and 5′ and 3′ UTRs make up the portrayal of 5′ covered mRNA. 

There are strong similarities between the BAT-CoV genome and the Severe acute respiratory 

genome, suggesting a mammal source near Wuhan, China. It has been suggested, however, that 

bats are reservoirs naturally for Viruses, such as CoV-2 [32-34]. SARS-CoV2 may also have a 

Pangolin origin, establish on the strong identity of a specific gene [35]. The mechanism by which 

bat CoVs are transmitted to humans is still not known. Another study has found that dogs could 

be infected with SARS-CoV-2. 

There are many sequence similarities between human ACE 2 and dog ACE 2 (13 of 18), which 

suggests that their interaction with SARS-CoV-2 spikes RBD is relatively similar, suggesting 

homologous transmission [36]. 

1.4  proteins for non structural function in sars-cov-2 

In particular, a structural protein involved in capsid formation are NSPs present in the viral 

genome that play a variety of roles in viral assembly and dissemination [37]. Viral pathogenesis 

is controlled by these proteins by regulating early transcription, helicase activity, immune 

responses, gene expression, and antiviral defenses [38–40]. 

1.5 Spike Glycoprotein (S) 
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As a result, the spike glycoprotein plays a vital role in pathogenicity via its RBD binding to the 

human host [58]. The S protein attaches the virion to the host, starting the invasion process. Each 

subunit performs a specific function such as adhesion to the ACE 2 receptor. In effect, S1 helps 

viral particles adhere to cellular membranes by connecting with humans' ACE2 [17]. During the 

normal endocytosis process of the host, S protein undergoes structural changes [24]. A vaccine's 

development is critical to identifying structural changes within the target molecule that may alter 

immune function. Changing the structure of the protein, as well as its immunogenicity, might result 

from variations in the S protein. Despite the fact that the binding affinity area of SARS-S1 CoV-2 

has changed multiple times, its ability to link with ACE2 remains unchanged in humans, pigs, 

civets, & bats, mouse ACE2 excepted [60–62]. 

Another components of the Spike  protein, such as S2, function as heterodimers which help virus 

particles adhere to human cells. Three structural forms of the S2 protein can be seen during the 

fusion process: 1) the native state at pre-fusion, 2) transition state at prehairpin and 3) hairpin state 

at post-fusion. The topic is of great interest in determining how these structural variations affect 

viral entry into a cell's membrane, as they may lead to the design of more efficient therapies [59]. 

Fusion proteins are produced by residual cleaved S2' components of S proteins [63]. It was 

discovered that the stalk of SARS-spike CoV-2 is 99 percent identical to bat SARS-like and human 

Severe acute respiratory viruses, indicating that antiviral drugs targeting S2 regions of these 

viruses may be helpful in treating COVID-19SARS-COV-2. [15,64].  

S2, other S proteins component, functions as a heterodimer that aids in virus particles fusing with 

the human cell surface. The S2 protein occurs in three primary structural forms throughout the 

fusion process: 1) pre-fusion native state, 2) prehairpin transitional assert, and 3) post-fusion 

hairpin condition. Understanding how well these variable structural states manage viral entrance 
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into the cellular membrane is intriguing because it could lead to the creation of efficient treatments 

[59]. The S protein's residual S2' cleaved component serves as a fusion protein [63]. As far as the 

stalk S2 nucleotide is concerned, SARS-spike CoV-2 is 99 percent identical to both bats and 

humans Severe acute respiratory, revealing a broad spectrum of antiviral drugs targeted against 

these viruses' S2 region, which may be effective in COVID-19 treatment [15,64]. 

Among the segments of SARS-CoV2 that can change the most is the RBD of spike protein. 

MARS-CoV has a distinct RBD composition compared to the originally recognized virus strains, 

based on an MSA analysis of the RBD of the S protein.  

Virus attachment to human receptors occurs mainly through RBD's 90-amino-acid binding affinity 

domain, implying that many mechanisms are involved in disease. Disorder of covid-19  which  has 

six residues that support adhesion to ACE 2, five of which diverge from Severe acute respiratory, 

a characteristic that should be taken into account in drug planning and administration. [16]. 

1.6 Envelope protein (E) 

A subset of virus particles known as envelope membrane proteins aids in the synthesis and 

expulsion of the virus [65]. 

A possible therapeutic target for the SARS-CoV-2 protein is the E protein. Viral RNA assembly 

and development are controlled by the E protein [66]. Ionic conductance within cells is supported 

by nutrient pores generated by the E-protein which function as viroporins.  

1.7 Membrane protein (M) 

Protein complexes made up of M proteins has vital  integral role in the packing of ssRNA, working 

in conjunction with N, S, and E proteins . These proteins share a common amino acid structure 
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due to their consistent lengths. A virus' characteristic form is determined by the  proteins associated 

with membrane, which are the most prevalent  proteins in Coronavirus. There are three envelope 

proteins in M proteins. 

1.8 Nucleoprotein (N) 

The nucleocapsid proteins (N) assist in the folding of viral RNA into ribonucleocapsids [68]. 

Coronaviruses with sequences 90% similar to SARS-CoV-2 share the peptide of SARS- CoV. 

Viral replication and transcription are aided by this protein by binding to viral genomes and M 

proteins. N proteins might therefore prove useful for therapy. Their RNA-binding sequence 

consists of 140 amino acids, found at their core, enables them to attach to viral RNA in a "bead on 

a string" fashion [65]. These three viruses exhibit substantial repetitions in their N protein MSA 

profiles. Because the Severe acute respiratory staphylococcus co-variant and SARS-CoV-2 N 

proteins have such a close sequence similarity, antibodies that detect SARS-CoV-2 N proteins are 

likely to detect SARS-CoV-2. There have been patches of minor sequence differences that indicate 

a separation in the evolution of the MERS-CoV strain. 

1.9 Replicase polyprotein 

It is also important to understand that replicase polyprotein has an impact on in improving  

degradation of host RNA &viral replication [21]. A majority of the viral genome's nucleotide 

content can be found in the non-structural ORFs 1a and 1b. Polypeptide repeat repeats, also known 

as replicase polyproteins, contribute to disease pathogenesis in a variety of ways [70]. Proteins like 

these contribute primarily to viral replication and transcription by assisting in the replication of 

viral RNA. There are a number of NSPs and proteases such as PLpro and 3CLpro, and each is 
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classified as either a NSP, a NSP2, a NSP3, or a NSP4. Virus RNA replication and transcription 

are fundamentally dependent on the RdRp domain in ORF1ab. 

 

There are three domains that make up the replicase polyprotein: macro, papain-like, and major 

protease motifs. Furthermore, MSA of replicase polyprotein 1a reveals variable domains between 

all three domains on top of the minimal sequence comparison noted in the major protease. In all 

the major proteases of the SARS-CoV and SARSCoV-2 viruses, the sequence identity is higher 

(96%), suggesting they may have evolved together.. In addition to acting as an RNA-binding 

protein complex, it also plays a role in regulating gene expression, replicate proteolytic processing 

1ab includes macro, papain-like, and major proteases. All four CoV strains are more conserved by 

MSA of replicase proteolytic processing 1ab. 
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CHAPTER 2 

2.1 A description of the clinical features of COVID-19 

Patients with covid-19 who are infected with COVID-19 are classified as mild, moderate, or 

severe. As disease severity increases, CD4+, CD8+, and B cells decrease in both relative and 

absolute numbers. Clinically, plasma proteins can contain activation of the proinflammatory 

cytokines while dendrite cell activation and B cell metabolism are suppressed. [71]. 

SARS CoV-2 disease often presents with lympopenia. A lymphocyte may migrate from circulation 

to lungs due to immunogenic activation, resulting in a lymphocyte shortage in peripheral 

blood.   After a chronic & severe inflammatory response, the lymphocytes eventually apoptose 

and anergize. As a result, in different stages of disease, Lymphocyte Activity will vary 

dramatically [72]. 

A 20 percent percentage of COVID-19 patients present with severe problems resulting from an 

uncontrollable systemically hyperinflammatory immune reaction to severe acute respiratory 

infections, the so-called "cytokine storm." This illness is a result of a blood serum level of IL-6 

that is too high. Anti-inflammatory and immuno-modulating treatments might be able to suppress 

this inflammation immune response in COVID-19. 

A computer simulation (in silico test) reveals that the degree of COVID-19 clinical manifestations, 

as well as the ability of the body to react to SARS-CoV-2 infection, may vary with genetic 

variances. Liver tissue infected with a coronavirus is attacked by antiviral signals. A connection is 

made between these signals and the activation of leukocytes, particularly cytotoxic T cells, to 

destroy the invading organism. 
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2.2 How the immune system responds to COVID-19 

The HLA gene variants are known to influence a person's vulnerability to viral illness. It is possible 

that genetic diversity in the key HLA genes is responsible for COVID-19 prevalence. I believe that 

addressing this heterogeneity will help improve the chances of diagnosing those who are at high 

risk for developing the condition. SARS-CoV-2 screening and HLA typing can be combined in 

the normal community to increase risk assessment. A vaccine against SARS-CoV-2 should 

prioritize those with high-risk HLA alleles. 

If HLA antigens bind to a virus or segment of a virus, they create a physical manifestation on the 

cell membrane, which indicates the cells are contaminated and encourages certain immune cells 

to remove them. HLA systems are able to detect a greater amount of virus peptides the stronger 

the inflammatory system is. Using computer modeling, it was found that certain HLA alleles bind 

to a large number of peptides found in SARS-CoV-2, while the others do not. Consequently, it 

was established that HLA variations should be considered important biologically, i.e., they reflect 

a degree of disease lethality disparities. Changes in HLA loci do not seem to be the only factor 

affecting COVID-19 prevalence. Several HLA haplotypes have been associated with varying 

vulnerability to diseases, because T cell receptors can recognize the antigen-binding domains on 

HLA molecules. Thus, the result of the immune response is to produce HLA proteins that attach 

better to SARV peptide on the membranes of APCs. [73]. 

Once the virus has invaded the target tissue (CTL), cytotoxic T cells recognize the antigens 

expressed by Hla alleles on viral proteins. 

2.3 Vaccines to combat Covid-19 infection 
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They used reverse vaccination and immunoinformatics in their research to develop epitope-based 

subunit vaccines for covid-19. A bioinformatics approach is useful in reverse vaccine development 

for examining the pathogen's genome and proteome, as well as identifying and investigating its 

neoantigens. A vaccine can be created using this technique by targeting specific viral antigenic 

regions, in a process that is more effective, simple, efficient, and cost-effective than traditional 

vaccine development processes. 

As a result of viral infection, virus particles degrade into tiny fragments inside the proteasomes of 

infected cells. According to previous information, viral peptides are delivered to T lymphocytes 

by HLA atoms and molecules of infected cells. A structural or nonstructural protein may contain 

epitopes that T lymphocytes recognize. 

It is highly recommended to develop vaccines against extremely antigenic regions. SARS-CoV-2 

variants may elicit Antigen-stimulated CD4+ T Helper cells that stimulate B cells to produce a 

large number of specific antibodies, but there is currently little evidence that has been shown.. As 

a result, vaccine creation is now using this method, as it saves both time and money over traditional 

"test and error" approaches like "wet" lab experiments (unlike dry labs, which involve in silico 

experiments using computers). Immune responses against Covid-19 can be initiated in the normal 

community by T cell epitopes that trigger a robust immune response. On the other hand, molecular 

biology laboratories must investigate and verify the ability of such epitopes to function as vaccine 

candidates. Therefore, the majority of in silico analyses used to select epitopes for traditional 

("wet") lab testing only considered epitopes that were capable of influencing CD4+ and CD8+ T 

cell responses in longitudinal fashion [74]. 

2.4 Case studies for vaccine development  
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Epitopes on proteins such as S, E, N, M, and ORFs have been identified by immunoinformatics 

on the covid-19 reference sample by Kiyotani et al. [75]. Researchers identified alleles of HLA-

A, HLA-B, and HLA-C that appeared in a Japanese population at a prevalence of over 5. 

Afterward, we sought peptide epitopes to be given by HLA I & II both proteins that would be 

highly specific for the SARS-CoV-2 proteins. ORF1ab2168-2176 and ORF1ab4089-4098, which 

were anticipated to be highly affine to HLA-A*24:02, HLA-A*02:01, and HLA-A*02:06 in T 

cells, with a size of 83.8 percent, have now been shown to be highly affine to the Japanese 

population. HLA compounds containing these peptides can be used to track CTLs effects in 

individual & people who are affected but not symptomatic. The above epitopes have not been 

altered during sequencing. They believe that these potential epitopes could aid in creating 

functionalized vaccines to protect against covid-19  [76]. 

Based on a detailed analysis using inside silico computer simulations of ligand binding between 

both the substances class I for the 145 HLA-A, -B, and -C genotypes and the whole SARS-CoV-

2 structure, HLA-B*46:01 antigen actually works by binding a relatively small number of the 

expected SARS-CoV-2 proteins, according to the analysis of pass immunity from the four widely 

distributed coronaviruses. Based on this finding, those possessing this type of gene more exposed  

to SARS-COV-2 infection, as has been demonstrated repeatedly with SARS-CoV, and it is 

consistent with clinical evidence that this variant is linked to serious disease. SARS-CoV-2 peptide 

sequences that are evolutionarily conserved have been reported for the HLA-B*15:03 allele [77]. 

Different HLA genotypes may modulate T cell responses, altering disease outcome and 

transmission. These peptides are predicted to transit the proteasome system. It is not dependent on 

the prevalence of HLA alleles in the community that SARS-CoV-2 peptides provide antigenic 

information. The demographic evolution of SARS-CoV-2 might impact the viral epitope repertoire 
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displayed or affect HLA-independent epitopes. Several different viruses can be tested using this 

method [78].In order to construct an epitope-based vaccination for SARS-CoV-2 using 

immunoinformatic methods to analyze viral proteomes, Joshi et al. found in interactions with 

HLA-allegic groups, peptides have been identified that are antigenic, nontoxic, and nonallergenic. 

This epitope is a major contender as an anti-SARS-CoV-2 vaccine candidate due to its improved 

binding indices in HLA epitope compounds and comparatively good stability, lethality, and 

population coverage  [79].Human cells have been used most frequently to determine which 

immunegenic epitopes are most suitable for ACE2 receptors by using spike proteins (S proteins). 

Consequently, it is thought that the S protein could be a candidate for vaccine. Bhattacharya et al. 

[80] have identified the antigenic epitopes were transformed into a unique vaccine ingredient by 

using  linker peptide which enhanced the resiliency and durable construction of the modelled and 

verified vaccine component. Because TLR5 appears to dock with the vaccine component, the 

response element is more likely to trigger immune pathways that kill specific antigens by 

serendipitous means. In other words, the antigenic covid-19 epitopes selected are promising 

candidates for developing an immunomodulatory multi-epitope peptide vaccine. Researchers V. 

Baruah and S. Bose identified important epitopes in Covid-19's S protein using the same 

immunoinformatics technique.  The anti-SARS-CoV-2 vaccine may contain some of these 

epitopes. An immunogen that produces long-lasting humoral immunity should also stimulate 

CTLs. These investigations have detected three of these epitopes specific to covid-19 [81].D. 

Santoni et al. [82] conducted analyses using immunoinformatic method that examines viral 

peptides evolved from humans that are much farther apart than three mutational steps, in the 

hypothesis if evolution increases the evolutionary distance from the patient, the likelihood of 

adhering to HLA antigens increases. In order to find viral peptides that are not found in humans 
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(nullomeres), the scientists looked for peptides derived from viruses. To reduce the danger of 

autoimmunity, it is essential to identify the most distant peptides from humans. All reported SARS-

CoV-2 strains had 25 of the 27 nullomeres in common. Researchers found nine peptides as a result 

of experimental research. The immune system sites identified in silico by covid-19 peptides need 

to be tested clinically to determine whether they are immunogenic. It is possible to engage 11 and 

10 distinct HLA molecules with the YVMHANYIF peptide, according to in silico analysis, and 

the YYHKNNKSW peptide may interact with 8 HLA alleles, according to in silico analysis.An 

epitope-based vaccine is distinguished from a homogenous vaccine by the combination of both - 

and T cell-specific epitopes to generate an immunogen that is capable of drawn a good  immune 

reaction. For vaccine development, peptides and epitopes are advantageous due to their simplified 

production technologies, chemical inertness, and incapacity to transmit disease. Molecular 

dynamics analysis revealed that the NOM–TLR4 & NOM–HLA-A*11:01 binding models showed 

essentially the same behavior [83]. This is because the composite itself contains both - and T cell 

epitopes.A complete list of immunostimulating peptides from the SARS-CoV-2 virus has been 

compiled via a computer program. Sarkar et al. [84] generated projection and clustering algorithms 

to identify HLA alleles that might interact with the SARS-CoV-2 epitope. They determined how 

well these antigenic, non-allergenic, and harmless epitopes attached to HLA molecules by 

estimating their 3D structures. TSNFRVQPTESI peptide from spike protein was most effective in 

binding HLA class I epitopes, while GVLTESNKK peptide from S-protein was most effective in 

binding HLA class II epitopes.The epitopes CV-1, CV-2, and CV-3 used as templates for docking 

were evaluated as effective models for anti-SARS-CoV-2 vaccines. CV-1 was found to be the best 

docking model based on molecular docking parameters. CV-2 had the best binding efficiency 

when HLA-DRB3*02:02 and HLA-DRB1*03:01 were present. It is possible that SARS-CoV-2 
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immunization may be possible if these verification experiments show impressive outcomes. 

Computer simulations have confirmed that the vaccine is nonallergenic, stable, and capable of 

eliciting humoral and cell-mediated immunity. The sequence of the defensin (TLR3 agonist) serves 

as an adjuvant for binding, improving immunogenicity. The vaccine is still being manufactured 

and undergoing clinical assessment to determine how immunogenic it is. A vaccine of this type 

may one day be developed for use in population health [85].A RNA-based vaccine can be created 

by using the self-amplifying RNA in covid-19's cytoplasm. The RNA sequence of the recombinant 

target molecule is used instead of the sequence of the specific antibody. The immunostimulatory 

protein is transcribed from vaccine mRNA once it is transported through lipid nanoparticles to the 

cytosol. When an antigen-presenting cell releases the protein, APCs immediately gather it. mWith 

the ability to express chimeric viral genes in the cytosol, cytosolic expression of chimeric viral 

mRNA may improve the safety, efficacy, ease of production, and viability of protein-based 

vaccines, as well as prevent virus chromosomal integration. There is no better approach to vaccine 

development than RNA-based vaccines, since they are capable of producing a huge quantity and 

are more timely in terms of pandemic response. A vaccine RNA injection may result in immune 

cells digesting and converting the RNA into a specific protein, which then stimulates other immune 

cells and leads to antibody production [86].By using mRNA-1273 encapsulated in lipid 

nanoparticles (LNP) and RNA nanoparticles (LNPs), Moderna's Ltd (USA) developed a vaccine 

that encodes the SARS-CoV-2 S-protein. When sufficient antibodies titers form against S-protein, 

a two-fold therapeutic benefit can occur, i.e., the body's immune system could remove the antigen-

antibody combination, boosting viral elimination and reducing contagion [87] [88].It is efficient 

to use prefusion-stabilized protein immunogens that contain suppressant epitopes to prevent 

enveloped viruses. The discovery of alterations caused by stable Betacoronaviruses has led to 
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research into their structure and how they boost glycoprotein production and sensitivity through 

prefusion state spikes. inPhase III research is now evaluating the effectiveness of mRNA-

1273.Two proline substitutions (2Ps) in the S protein at locations 986 and 987 have been 

discovered and proved to stabilize the pre-fusion configuration of the S protein by K.S. Corbett et 

al. [89]. Researchers created in silico serological assays without doing any additional experimental 

evaluation [90]. S proteins and beta coronaviruses suffer similar effects from the 2P alteration, 

making it possible to develop general vaccines by using antigens for S proteins. For pandemic 

preparedness, generalization is essential [91].The SARs-CoV-2 (mRNA-1273) S-protein (2P) 

synthesis began simultaneously with the preclinical assessment. A pathogen-based vaccine 

development programme can be improved and sped up by applying emerging technologies, such 

as synthetic vaccines. The mechanism by which proteins are placed and function is called 

glycosylation. Posttranslational modifications involve glycosylation. A high glycosylation degree 

on Covid-19 has significant genetic implications and has hindered vaccine development. 

Glycosylation of structural proteins in viruses impacts viral proliferation and penetration of cells, 

allowing them to evade immune responses. The development of specific antibodies targeting S-

protein, however, may be enabled by mRNA-based vaccination technologies irrespective of its 

glycosylation state. Because mRNA-based vaccines do not incorporate DNA, do not induce 

autoantibodies, are easy to manufacture in mass quantities, and exhibit high purity, they are a 

feasible option for combating SARS-COV-2 [91]. 
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CHAPTER 3 

3.1 The Imunoinformatics Toolbox 

Human and other genomes sequenced model organisms has provided a vast number of data that 

has proven useful in immunology research. Currently, multiple types of scholarly journals and 

clinical records contain vast data amounts from clinical and epidemiological studies. Researchers 

seeking mechanisms of immunity and disease development have a gold mine of information at 

their fingertips. Immunoinformatics emerged from the need to manage an immunological resource 

that continues to expand. 

The intersection of computational immunology and experimental immunology is indeed 

immunoinformatics, often referred to as immunoinformatics. Comprehend immunological data 

using computational methods and technologies. Data mining is not only useful for managing large 

amounts of information, but also for developing new theories about immune function. 

A vertebrate has both an innate and an adaptive immune system, according to immunology's basic 

paradigm. Its evolutionarily more conserved conservation makes it faster, older, and more evolved 

than adaptive immunity. Adaptive immunity evolves from it. An immune system's innate 

components are less specific than its adaptive counterparts, and serve as a first line of defense [92]. 

As defined above, a protective barrier is made up of 4 kinds: applications (ehin five to six days 

after early exposure to a pathogen, vertebrates develop inflammatory responses. The process is 

orchestrated by specialised cells, using chemical interactions and intercellular communication 

chemicals like cytokines and chemokines on the surface of the cells. Because memory is retained, 

a response is higher and more precise with repeated exposure to the same pathogen [93]. Two 

essential elements of the adaptive immune system are cellular immunity and humoral immunity . 
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The matching receptor on B or T cells recognizes a small region of an antigen known as an epitope. 

B cell epitopes contain amino acids that are straight and interrupted. These are short, linear 

peptides that act as T cell epitopes. In general, T cells tend to belong to either of two clusters. 

There are two different glycoproteins on the surface of T cells, labelled as CD8 and  Among the 

features of the immune system that contribute to its complexity are its hierarchical structure and 

the way it combines. In the process, huge amounts of data are being gathered on immune systems. 

It is imperative that immunological research address this complexity. Immunologists have long 

employed high-throughput experimental approaches, which have generated massive amounts of 

data detailing immunity, therapeutics, and epidemiology. In order to facilitate the storage and 

analysis of this data, computer-assisted methods must be used. This led to the creation of the field 

of immunoinformatics. [94]. 

 

. It may lead to the discovery of new vaccines by examining binding sites. There is a procedure 

called reverse vaccination [95]. Traditionally, pathogens must be cultivated and then antigenic 

proteins are extracted. A member of the immunoome is any gene or protein involved in 

immunological response, excluding any gene or protein expressed by cell types other than 

lymphocytes [96]. A study of immune responses is called immunomics [97]. Immunome responses 

arise as a result of interactions between allergens and hosts. A novel field in biology and genetics, 

immunomics studies immune system mechanisms by making use of high-throughput approaches. 

Molecular manufacturing and gene cloning can be used to manufacture proteins, or to clone their 

genes into an expression system. It is cheaper and non-infectious to use engineered molecules 

compared to viruses or bacteria. Etiophores play an important role in understanding disease 

mechanisms, determining host-pathogen interactions, discovering antibiotic targets, and 
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developing new vaccines. MHC molecules and antigenic peptides can be used to predict epitopes 

via their binding affinity. Studies have shown that experimental procedures can be lengthy and 

complex.  

 

Fig 3.1 Work flow of immunoinformatics 

3.2 Tool and algorithm for immunoinformatics 

3.2.1Epitope prediction for B cells 

 The antigenic factors are referred to as B cell epitopes (BCRs) since they are found on the surfaces of 

diseases. 6 hypervariable loops  varied lengths and aa content are found within the hydrophobic BCR 

binding site. Two types of epitopes are found on B cells: conformational epitopes and 
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continuous/linear/sequential epitopes. A typical epitope, on the other hand, is discontinuous, with residues 

at distant locations brought closer together by folding of the folded 3D protein structure. In most cases, 

linear epitopes are used. For discontinuous B cell epitopes, there is a prediction method available both for 

sequence-based and framework epitopes. 

3.2.2 Epitopes as continuous B cells: Prediction of Methodology 

Several approaches are used to predict continuous B cell epitopes, including sequence, amino acid affinity 

scaling , and machine-learning approaches. 

3.2.3 Algorithms based on sequences 

Sequence-based methods are often used to identify epitope region that reachable to antibodies. These 

methods can only predict continuous epitopes. Based on the identification of 2 protection epitopes in the 

HA1 [98], series approaches have been used to identify them. In rabbits, the 91–108 epitope 

(SKAFSNCYPYDVPDYASL) can evoke antibodies that improve flu-strain infection rates, which have 

been referred to as a defensive epitope [99]. A/Achi/2/68 (H3N2), protective against mice by the 

WTGVTQN epitope (127-133), is the second continuous antigen found in WTGVTQN. 

3.2.4 Using a scale-based approach to analyze amino acids 

In traditional approaches to detecting probable linear B cell epitopes from antigenic sequences, amino acid 

propensity scales are an important tool for detecting likely linear B cell epitopes. Protein sequences can be 

scored according to amino acid scales. Based on the i(n 1)/2 surrounding residues on either side of residue 

i, the score for protein I is computed. n proteins of the frame are scored according to the mean of scale 

values for residue i. The propensity scale approach of Pellequer [100] was tested on a database of 14 

epitope-annotated peptides. Compared to other scales he evaluated [101], Parker et al. [102], Chou and 

Fasman [103], Levitt [104] and Emini [105] performed Improved. Two datasets were used to test the Na*ve 

Bayes classifier by El-Manzalawy et al. [106]: a probability dataset and a BCI-Pep dataset. Based on 

estimated protein turns, the Bepitope software tool [107] creates continuous epitopes. Using over 30 



33 
 

propensity scale variables, this version of PREDITOP [108] updates PREDITOP. The antibondy-antige 

interactions of proteins, which are predicted by both linear and conformational epitopes, are studied. To 

accommodate this, the AgAbDb [109] database that are  created, Structures of antigen-antibody cocrystals 

are based on this mechanism. 

3.2.5 Methodologies for machine learning 

Machine-learning technologies and methods are used to recover epitope features. Following is a 

brief description of some of these methods. Using feed-forward and recurrent neural networks, 

Saha and Raghava [110] predicted Epitopes continuously expressed by B cells using ABCpred 

.Using COBEpro [111], biomarkers can be predicted for B cells using continuous B cells. During 

the first stage of COBEpro, fragment epitope propensity scores are assigned to protein sequence 

segments. It produces an epitopic propensity score in the second SVM scores of fragments are 

used to determine phase in the antigenic sequence[112][113].  Several propensity scale algorithms 

were examined on the Pellequer dataset [114], but in the end Levitt [115] came out as the 

best. They then evaluated these HMMs on the Pellequer database in order to identify the best 

parameters based on their predictions of linear B cell epitope positions. HMM was paired with 

Parker [116] and Levitt [117] as the two best approaches to propensity score estimation. Machine 

learning combined with amino acid scales can now predict continuous epitopes with an accuracy 

of 60–66%. It is possible to accurately track B cell epitopes by improving the quality of the current 

databases. 

3.2.6 Developing a predictive method for discontinuous B cell epitopes 

To portray and anticipate B cell epitopes accurately, The design of the protein in 3D should be 

known; accordingly, the forecast task is more difficult than for T cell epitopes. Changes in epitope 

number are related with changes in protein collapsing [118]. The most reliable technique for 
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deciding the epitope of B cells is X-beam crystallography. Andersen et al. introduced DiscoTope, 

which consolidates amino corrosive information, geological data, and surface openness data [119]. 

Roughly 15.5 percent of deposits found in intermittent epitopes are perceived, with 95% 

explicitness. This is the primary technique that is professed to perform better compared to 

strategies dependent just upon grouping information for anticipating irregular B cell epitopes. By 

joining the qualities got from amino corrosive and half-circle openness numbers [120], PEPITO 

predicts conformational epitopes in light of side chain directions and dissolvable availability of 

amino corrosive buildups. Also, the authors assert that it is more accurate than DiscoTope.For 

mapping structural B cell epitopes, Bublil and colleagues developed Mapitope [121]. Initially, 

Mapitope proposed that even the simplest of epitope segments was an AAP formed by folding the 

residues inside an epitope. A collection of fondness peptides was obtained after screening phage 

polypeptide libraries for antibodies. Following this collection, the algorithm returned one to three 

epitope options on the surfaces of the crystalline nuclei of the antigens.Using a computer 

technique, Solner et al. [122] told the best way to consequently choose and rank peptides that 

initiate in any case practically modified antibodies. Combining B cell epitope predictions with 

antigen variability and pattern conservancy was done for predicting posttranslational modifications 

(PTMs). Based on their findings, they saw that strong antigenicity, low variation, and a low 

probability of PTM were important characteristics for identifying biorelevant locations. This web 

interface predicts conformational and sequential epitopes as well as antigenic determinants [123]). 

The PDB was examined to acquire non-excess datasets of numerous three-layered designs of 

antigens and antigen-immune response buildings, recently gathered by Ponomarenko 

[124].Because protein antigens are not 3D primarily demonstrated, the server's worth is restricted. 

As of late, the arbitrary woodland calculation (RF) was applied to anticipate conformational B cell 
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epitopes, underlining because of inner buildups, various commitments from adjoining deposits, 

and an imbalanced informational collection, remembering an increment for nonepitope buildups 

contrasted and epitope buildups. 

 3.2.7 Methodology based on mimotopes 

For protein–protein interaction research (e.g., antigen–antibody interactions), for identifying 

protein functions, and for therapeutic and vaccine research, phage display libraries are typically 

used [74]. Using a phage display library of randomized peptides, Pizzi et al. [125] show how to 

map B cell epitopes by searching for mimotopes that adhere to a target antibody strongly.This 

panel of mimotopes is thought to mimic the physicochemical characteristics and spatial structure 

of real epitopes [126, 127, and 128]. Both mimotopes and antigens are perceived by a similar 

counter acting agent paratope. The mimicked component of the epitope is the mimotope. There is 

a chance mimotope has any knowledge about epitope. The mimotope may, however, bear no 

similarity to the natural epitope of the antigen. Physiochemically and spatially, these organisms 

mimic one another [129]. The aforementioned MIMOP tool [130] was used to anticipate an epitope 

using mimotope pools. A degenerated alignment analysis is used for MimAlign, while a consensus 

identifier is used for MimCons. It maps a solitary mimotope or a gathering of mimotopes to an 

antigen design similarly as MIMOX [131] . It then looks for bunches of buildups that could frame 

the local epitope. Mapitope [132] (a high level server for mimotope-based epitope forecast 

techniques) and Pepitope [133] (a high level assistance for mimotope-based epitope expectation) 

contain Pepitope [133]'s high level help on mimotope-based epitope forecast strategies. These 

attributes are mapped onto each mimotope's surface. Pepitope's process is different from 

MIMOX's as a mimotope must be aligned first. Mimotopes rather than 3D structural information 

is identified at the alignment stage as opposed to the 3D structure being examined right away. The 
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mimotope's replicated surface area can be identified using it.These mimotopes were selected from 

the same phage display peptide libraries that had been screened with appropriate antibodies. They 

were sometimes mistaken for conformational epitopes. A software program developed by Scriber 

and colleagues [134] allows peptide sequences to be identified inside 3D protein complexes 

utilizing 3DEX. The method takes into account both the surface exposure of amino acids and the 

physiochemical proximity of C- or C- atoms. According to the authors, the authors found 

mimotopes within the 3D structure of Gp120 in HIV-positive plasma. 

3.2.8 Ensemble prediction using Hybrid (Ensemble) 

Gathering approaches frequently outflank and frequently surpass single indicators in biomolecular 

sequencing and underlying order examinations [135]. Presently, there are three different ways of 

joining various indicators, S, into a solitary agreement or meta-indicator: (1) larger part casting a 

ballot, (2) weighted straight, and (3) meta-learning. A few closest neighbor and choice tree-based 

classifiers are prepared by using various arrangements of preparing information attributes for 

developing a group of straight B cell epitope classifiers. 

3.2.9 Epitopes that are specific to T cells 

The current challenge is to accurately predict interactions between molecules in immunological 

forecasting software. Various MHC molecules have been used to estimate binding affinity for the 

most widely used approaches. To be perceived by cytotoxic T cells, antigenic peptides should be 

bound to MHC. To precisely foresee T cell epitopes, recognizing MHC-restricting peptides is of 

fundamental significance. Different strategies are used to find MHC-restricting peptides, including 

lattices, stowed away Markov models, fake brain organizations, support vector machines, and 

peptide structure.In request to precisely anticipate T cell epitopes, recognizing MHC-restricting 
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peptides is of vital significance. Different techniques are used to find MHC-restricting peptides, 

including grids, stowed away Markov models, fake brain organizations, support vector machines, 

and peptide structure. 

3.2.10 Methods based on matrices 

Involving BLOSUM and amino corrosive based vectors for direct T cell epitope forecast, Huang 

and Dai analyzed a clever peptide coding system for epitope expectation.Specifically, it substituted 

the diagonal columns of the BLOSUM matrix with the values in each nonzero element in the amino 

acid indication vector. MMBPred [136] predicts MHC binding peptides with very high affinities. 

Matrix data is used to predict the conformation of polypeptides, rather than polypeptide 

conformation. MHC alleles' matrix data is used to predict polypeptide conformation.It is crucial 

for preparing and presenting MHC I antigens that use transfer-associated protein (TAP). TAP 

transporters are capable of transporting amino acid peptides between 8 and 40 amino acids into 

the endoplasmic reticulum (ER). With PREDTAP [137], it is possible to predict the binding of 

peptides to hTAP. An activation function based on sigmoid function and a three-layer back 

propagation network was used. As inputs, nonamer peptides were represented by binary strings. 

Second-order HMMs were also employed. Hidden Markov Model-Based Method produces 

sensitive as well as specific results. 

3.2.11 Automated Neural Networks Based Method 

With ANNs, the relationship between neighbouring amino acid residues can be detected in a 

putative epitope. Based on associated input sequences and outputs, such as the MHC molecule's 

ability to bind that specific sequence, an ANN is trained for that particular molecule [138]. In 

theory, a trained artificial neural network (ANN) can predict binding affinity for new epitopes. By 
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combining neural networks and prior knowledge, Neilson et al. [139] have improved the predictive 

ability of T cell class I epitopes. 

An HMM-based input was used along with scant encoding and BLOSUM coding. Buus et al. [140] 

determined the binding affinity of 528 amino acid peptides to HLA I molecule A*0204 by using 

the Buus et al. method. NetCTL [141] (http://www.cbs.dtu.dk/services/NetCTL/) can predict TAP 

transport efficiency and peptide MHC class I binding. NetMHC 3.0 [142] uses ANNs and weight 

matrices (http://www.cbs.dtu.dk/ services/NetMHC/). 67 HLA allele position-specific score 

matrices (PSSMs) and 55 MHC proteins (43 human and 12 nonhuman) were used to train the 

model. 

Many elements add to the trouble of foreseeing MHC class II restricting peptides, including the 

length of announced peptides, the unclear center region for every peptide, and the quantity of 

amino acids utilized as anchors. Brusic and associates created PERUN [143], a crossover strategy 

to anticipate MHC class II restricting peptides. This approach uses both existing trial information 

and skill in restricting themes, developmental strategies, and counterfeit brain organizations 

(ANNs). PlaNet adaptation 5.6 [144] was utilized to plan and prepare a three-layered full-

connected feed-forward ANN. A coordinated model for displaying the comprehensive corruption 

cycle of MHC class I ligands and their show, EpiJen [145] (http://www.ddg-

pharmfac.net/epijen/EpiJen/EpiJen.htm), has been created. 

3.2.12 Methods other than machine learning 

 A subterranean insect province search framework, or ACS, has been demonstrated to be valuable 

in the arrangement of intricate streamlining issues, as well as in the distinguishing proof of 

different alignments.The point of an ACS [146] is to observe the best arrangement involving a 
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quest strategy for some random arrangement of peptides. The TAPPRED study [147] 

(http://www.imtech.res.in/raghava/tappred/) concentrated on nine amino corrosive qualities to 

distinguish a connection between amino corrosive restricting liking and physiochemical attributes. 

Cascade SVM has been shown to be more reliable than SVM for predicting peptide TAP binding 

affinity. Compared to other existing methods, cascade SVM is more effective. Based on data 

described using SVM and support vectors (SV), Nanni [148] demonstrated how T cell epitope can 

be predicted. In experiments, it has been shown that immunoproteasomes are involved in the 

production of MHC class I ligands. A tool called Pcleavage [149] developed for anticipate exactly 

how protein antigens will cleave to meet this purpose. Weka (Waikato Environment for 

Knowledge Analysis) (101), PEBLS (Parallel Exemplar Based Learning) [150], and SVMs [151] 

are employed in this system. 

3.2.13 Predicting structure using structure-based methods 

For foreseeing T cell epitope, latest methodologies depend on the peptide's partiality to tie to MHC. 

To concentrate on the hidden course of resistant acknowledgment, to foster fruitful peptide-based 

antibodies, and to plan immunotherapies, exactly recognizing peptides that tight spot to MHC 

atoms is basic [152]. The problem of peptide-MHC binding was solved with CoMSIA, an 

advanced 3D QSAR method. A set of aligned three-dimensional peptide structures is utilized to 

characterize binding. A T cell epitope [153] is predicted in silico by TEPITOPE [154]. TEPITOPE 

compares pocket profiles with HLA II for a particular peptide, finding similar HLA II with 

different binding capacities for that peptide.The only HLA-DR molecules of approximately 700 

that are known can be used with it. The TEPITOPE skillet program, a web instrument to quantify 

peptide buildup similarity with the limiting pockets of HLA-DR particles, extrapolates from the 

known restricting locales of HLA-DR atoms. FudT Epitope Designer [155], a web application for 
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catching explicit peptide buildup secures, utilized virtual restricting pockets to work out peptide 

buildup similarity with restricting pockets. Zhao et al. [156] used 29 MHCp crystal structures to 

develop a model based. It offers a cumulative evaluation of how each peptide residue interacts 

with the virtual pocket-forming residue in the MHC molecule. The ElliPro [157] tool is an online 

tool capable of predicting antibody epitopes and plotting protein sequences and structures. Three 

approaches are used here: the ellipsoid-like shape is approximated, the residue protrusion index 

(PI) is calculated, and the residues that are nearby are clustered based on their PI values. It utilizes 

the 2D QSAR strategy for expectation of peptide-MHC allele particularity and works with both 

class I and class II MHC alleles. It is accepted that peptides that tight spot to the MHC on cancer 

cells can incite a safe reaction against the growth. By consolidating PeSSI (peptide-MHC 

restricting primary expectation through solvated interfaces), Schiewe et al. [158] fostered a 

mechanized technique for anticipating the adaptation of peptides to MHC atoms. Antigens from 

disease testicles called KU-CT-1 were used, which bound to HLA-A2.Using a known three-

layered development of few MHC-peptide edifices, MHC class I groupings, known restricting 

energies for MHC-peptide buildings, as well as a bigger paired dataset with data about solid folios 

and non-fasteners, Jojic and teammates [159] fostered a viable design put together model based 

with respect to the information from past work. A twofold stringing strategy was utilized, in which 

the stringing model's boundaries could be learned and MHC and peptide groupings can be strung 

onto the construction of different alleles. Using a technique developed by Furman et al. [160], they 

analyzed a large number of MHC class I alleles. Candidate peptides are threaded in this procedure, 

and their binding compatibility is assessed using pairwise statistics. To analyze pairwise potential, 

Miyazawa and Jernigan used Miyazawa and Jernigan's table.Peptide vaccines targeting T cells are 

being developed using immunodominant peptides. [161] Altuvia et al. zeroed in on the antigenic 
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peptides recognized by cytotoxic T lymphocytes. To observe the peptide arrangements that fit into 

the MHC groove best, the it was utilized to string technique Pred observes MHC class II restricting 

destinations in antigenic protein successions utilizing a graphical internet based application. For 

51 HLA-DR alleles, they used Sturniolo et al.'s pocket profile database . A wide variety of MHC 

class I and II ligand prediction algorithms as well as methods for predicting minor 

histocompatibility antigens can be found on the EpiToolKit. In addition, mutations can affect 

epitopes on T cells. 
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CHAPTER 4 

 

4.1 Molecular Docking  

Molecules dock in three dimensions when they are positioned together. In molecular docking, the 

relationship between molecules is explored by exploring the way they interact. Molecular docking 

is taken to refer to the interactions between proteins. Molecular docking has several forms when it 

comes to protein interactions. 

When proteins interact with one another, they are called protein-protein interactions. Similarly, 

proteins bind to DNA in a protein-DNA interaction. Interactions between proteins and their ligands 

are called protein-ligand interactions. 

The interaction of two proteins with similar sines is called Protein-Protein Docking. A thorough 

understanding of the structure of protein-protein complexes in three dimensions (3D) is required 

to understand how molecular systems work. A great many proteins are oriented towards their 

interactions with one or more partners. Protein-protein complexes participate in a variety of 

cellular processes, and the chemistry and biology of their constituents pose significant scientific 

challenges. The docking of protein-protein complexes formed by two or more proteins without 

experimental measurements of their molecular structure. Protein-protein interactions are normally 

more rigid, although the interfaces can be altered to improve binding and ease movement. As a 

result, the interface between the two molecules tends to be flatter and smoother than those involved 

in protein-ligand interactions. There are steric constraints that limit the ability of the body to 

modify and these are said to be rigid. 
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Known as protein-protein docking, protein-protein interaction happens when two proteins have 

comparable sines. Knowing the three-dimensional (3D) structure of protein-protein complexes is 

crucial to understanding molecular systems. It is common for microbes to be grouped based on 

how they interact with one or more partners. In addition to their involvement in cellular processes, 

protein-protein complexes play significant roles in regulating various biochemical and biological 

processes. While there does not yet exist a general recognition code, the DNA's global 

conformation can determine how the eventual interaction surface will be modulated. DNA-Protein 

complexes can be predicted using a silico approach through protein-ligand docking, a process that 

checks the structure, position, and orientation of proteins. 

A protein motif binds tightly to its ligand, and is referred to as a lock and key mechanism when it 

interacts with small molecules like ligands. Specifically, this work deals with computer-aided drug 

design problems, which arise from issues associated with the design of bioactive compounds. This 

module further divides Protein-Ligand Docking into five segments for convenience to the user, in 

order to predict and rank the structures that will occur as a result of the association of a given 

ligand with a given target protein. 

 Ligand Preparation 

 Preparation of receptors 

 An analysis of the binding site 

 Analysis of docks 

AUTODOCK is used for docking. Spike protein is the receptor molecule in all variants and 

PUBCHEM molecules. We report the molecules with a higher binding energy than the natural 

duck molecule for further investigation. 
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It is costly and time-consuming to develop new therapeutics. Most of the time, new therapeutics 

do not become available for several years after they are developed. It is possible to find new uses 

for pre-existing medicines that have been tested in a variety of therapeutic contexts or with a 

variety of defined molecules, even if they were unsuccessful treatments at the time [161]. It is 

essential that existing medications be used for COVID-19 treatment since it has spread rapidly 

around the globe. 

 

The average time to develop a new drug is 10 to 15 years. The majority of compounds examined 

did not advance to advanced stages. Among 22 phase 1 trials since 1995, 10% of compounds made 

it to the clinical stage. In order to detect and reject targets at any stage of the drug development 

process, computational tools like molten docking are now being used. This lengthy process can be 

greatly simplified using computers. 

Accelerating the process can be achieved by repositioning medications. Repositioning of 

medication or repositioning of drugs (Rudrapal, Khairnar et al. 2020) is also known as medication 

repositioning. It is intended to uncover new applications for existing treatments that have not been 

documented in the medical record through repurposing pharmaceuticals. This leads to shorter time 

to market, a more established distribution network, a cheaper price, and significant improvement 

in clinical data due to the reduction in pipeline. In preclinical and clinical testing, scientific data 

are very important since they enable a faster process. As 45 percent of drug leads fail due to toxicity 

and safety, this technique would also increase chances of success. 

There are, however, challenges associated with relocating medications. Many medications are only 

licensed to be used for certain illnesses. An expanded clinical study of a repurposed pharmaceutical 
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is necessary, as well as determining the appropriate dosage. Delivery systems are also of concern. 

The targeting technique of a particular chemical may need to be altered in order to reach a certain 

tissue, which would require several pipeline stages. Drug repurposing requires looking at how a 

drug interacts with other drugs used with the new drug as well. Although repurposing poses 

difficulties, it can expedite the development of a drug and save lives. 

Computer technologies are the most efficient way to increase the possibility of repurposing drugs. 

This can be accomplished through many different computational methods. Medicines with known 

interactions with specific disease proteins can be found using virtual screening. Medicine 

molecules may be compared to all crystal structures in the database to see if they react with any 

crystal structure. By searching molecular libraries, one can identify likely, less effective, or free 

analogues to treatment targets. Utilising networks allows us to link illnesses with biological 

processes, and we may understand the efficacy of drugs in one context by using them in another. 

A molecular docking technique is often employed in such circumstances. 

4.2 Methods and Procedure  

4.2.1 Docking protocol 

Step 1. Preparing target protein 

Input proteins must contain polar hydrogens and have all water molecules removed before they 

can be docked . We will get errors if this is not the case. 

 ref.pdb file is opened in ADT 

File > Read Molecule 

 The polar hydrogens are added to the objective structureFile>Save>Write PDB 

>ref1.pdbStep 1.* Merge the nonpolar hydrogens 
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 Edit>Hydrogens>merge  

 Nonpolar* Kollman charges are added to the peptideEdge>Charges>Add 

Kollman Charge* The construction is savedFile>Save>Write PDB >ref1.pdb 

  *Introducing the docking tool. 

ligand>Input->;Open... 

change the file type to '.pdb', pick Cefuroxime saved in '.pdb' format> Open 

ADT establishes the docking record and adds gasteigercharges to the ligand 

structure. In the case of peptide ligands, Kollman charges would have been 

added. 

 Predict the root of the ligand from its Torsion Tree. 

 Ligand>Torsion Tree>Detect Root... 

View rotatable bonds; Select number of twists  

 The Ligand is saved in PDBQT record design as 'Ligand.pdbqt'. 

Ligand>Output>Save as PDBQT  

Step 2. Grid map preparation 

Grid is placed on the objective dynamic site and should contain everything a ligand 

is likely to interact with. ADT opens the document dialogue to save the initialized 

target protein in '.pdbqt' format as soon as the record opens. * A target protein is 

selected where the ligand will dock.  

Grid>Macromolecule>Choose..(ref1) 

Select the protein target prepared in sync 1. Immediately after the document opens 

ADT opens the document save dialogue to save the initialized target protein in 
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'.pdbqt' format. This construction is saved in thedirectory in which we will run 

AutoDock. 

 Setting the Maptypes that will be utilized for the grid. 

Grid>Set Map Types>Choose Ligand.(Ligand)·  

 Selecting thebinding site residues. 

Select>Select From String Enter the accompanying subtleties in the 'Select 

FromString' 

discoursebox:Molecule>ref1Chain>AResidue>ASN331,ILE332,THR333,AS

N334,LEU335,ALA520,PRO521,ALA522THR523,VAL524 

Atoms>;*>Add·  

Setting the GridBox position and size. 

Grid Box...Setting every one of the elements of the lattice box to 60points. 

Using the (181.568 186.477 192.798) x, y, z coordinatesfor the focal point of 

the crate and dispersing 0.402.·  

 Saving the currentgrid positioning 

File>Close Saving Current· Saving Grid fileGrid>Output>Save grid.gpf 

 In the document save exchange expressly type "grid.gpf" tosave the framework 

boundary file.·  

Running AutoGridRun>Run AutoGrid.. 

Step 3. Arrangement mooring boundary file· Setting theprotein focus to be docked 

Docking>Macromolecule>Set filename>ref1.pdbqt·  

 Ligand is selectedwhich is to be docked 

Docking>Ligand>Choose > Cefuroxime.pdbqtA  
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ligand boundaries window opens and all boundaries at the default values are selected.· 

Setting search parameters  

Docking>Search Parameters>Genetic Algorithm... 

 Following changes are made to the parameters: 

 Number of runs - >; 20Population size - > 150 

Rest of the boundaries left at the default values· Docking parametersare set to 

default· Setting theDocking yield boundary file 

Docking>Output>Lamarckian GA. 

 Save the record as "Dock.dpf".· 

  Running AutoDockRun>Run AutoDock.Step 4. View Docked compliance 

energies· Open the dock.dlgfile·  

 Check theCLUSTERING HISTOGRAM and RMSD TABLE·  

 Choose the 1 stconformation - note down the limiting energy· After the 

AutoDockcompleted its run, the outcome is seen in ADT. 

 Analyze >Dockings->;Open>Dock.dlg· Macromolecule isloaded into 

viewAnalyze>Macromolecule>Choose..(ref)·  

  Selecting the macromolecule  

Select>Direct Select>Molecule List·  

 Viewing the conformations   

 Analyze>Conformations>Play, positioned by energy… 

Select the &amp; symbol 

Select > build H-bonds 
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Select > Show info 

Select >Build Current 

 Goto edit > Delete Molecule >select all >except the conformation lastly saved 

>delete 

 File > Save > Write PDB > ligand_conf3.pdb 

4.3 Result and Discussion 

Several of the drugs evaluated have the potential to bind variant spike protein at the RBD, 

according to an in silico binding study. In humans, through the ACE-2 receptor, spike protein 

interacts with the receptor. In addition to ASN331, ILE332, THR333, ASN334, LEU335, 

ALA520, PRO521, ALA522, THR523, VAL524 are sites that are examined [162]. Docking 

research indicates that ampicillin and cefuroxime bind strongly to RBDs. In Table 1, we list the 

RBD residues involved in the hydrogen bonding, Hydrophobic interaction, binding affinity and 

salt bridge. 

Infections are spreading so rapidly, drug repurposing is critical to developing new treatments as 

soon as possible. To determine if any of these medications might be utilized to treat variant, this 

study analyzed medications for potential use. We have demonstrated that drug repurposing is an 

effective technique for identifying lead compounds for future exploration of the Spike glycoprotein 

of variant using this overview of how to repurpose drugs. 

Compounds repurposed in this study have been identified as potential targets for Variant's S 

protein. Computational docking studies have found Umifenovir and Ampicillin to be highly 

affinity for the variant spike protein RBD. Medications such as these may be able to prevent spike 

protein from attaching to the human receptor (ACE-2 ) , which could prevent infection. The result 
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may be that these drugs prevent viral replication by inhibiting viral enzymes' proteases. A further 

in vitro validation of the medicines' binding potential to the target proteins is required since the 

study relies on in vitro methodologies. 

Table 2. Experimental Molecule Structures and Interactions of Wuhan_HU 

Ligand Binding 

energy 

Hydrogen 

bonding 

Hydrophobic 

Interaction 

Salt 

bridge 

CEFUROXIME -5.57 
 

ASN331 
ASN331 
ALA522 
ALA522 
ASN544 
GLN564 

ASN331 
 

- 

UMIFENOVIR -4.66 ASN331 
ASN331 
ASN331 

 

PRO330 
ASN331 
ILE332 
PRO521 

THR53 
GLN54 
LEU582 

 

- 

CEFOTAXIME -5.78 
 

ASN331 
ASN360 
ALA522 
ALA522 
ASN544 
GLN564 
PRO579 

 

PRO521 
GLN54 

 

 

CEFTRIAXON
E 

-6.45 
 

PRO330 
ASP364 
SER366 
ASN388 
PRO527 
LYS529 
SER530 

 

 ASP364 
ASP364 

 

AMPICILLIN -6.60 
 

LYS537 
CYS538 
PRO589 
HIS625 

 

LYS537 
VAL622 
ALA623 

 

- 

 

TABLE 3.  Experimental Molecule Structures and Interactions of Alpha variant 

Ligand Binding 

energy 

Hydrogen 

bonding 

Hydrophobic 

Interaction 

Salt bridge 
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CEFUROXIME -6.63 ASP361 

SER527 

PHE326 

PHE326 

VAL359 

LYS529 
 

ASP361 

UMIFENOVIR -6.78 LEU332 

PH335 

GLY336 

GLU337 
 

LEU332 

LEU332 

PHE335 

- 

CEFOTAXIME -4.24 THR330 

CYS522 

CYS522 

SER527 
SER527 

PRO327 

ILE29 

- 

CEFTRIAXONE -5.56 PRO327 

ILE329 

CYS358 

LYS525 

LYS525 
SER527 

PRO524 - 

AMPICILLIN -7.74 ILE329 

CY522 

LYS525 

SER527 

PRO327 

PR327 

ASN328 

ILE329 

ILE329 

VAL359 
 

- 

 

TABLE 4.  Experimental Molecule Structures and Interactions of Delta variant 

Ligand Binding 

energy 

Hydrogen 

bonding 

Hydrophobic 

Interaction 

Salt 

bridge 

CEFUROXIME -7.89 ALA520 

LYS526 

\LYS526 

ILE330 

ILE330 
LYS526 

- 

UMIFENOVIR -6.36 ASN358 

THR521 

ILE330 

VA360 

VAL360 
 

- 

CEFOTAXIME -7.38 PRO328 

ALA520 

CYS523 

LYS526 

LYS526 

VAL360 

THR521 

- 

CEFTRIAXONE -7.24 PRO328 

THR331 

ASN358 

THR521 

CYS523 

GLY524 

LYS526 

- - 
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AMPICILLIN -6.12 ALA520 

CYS523 

GLY524 
LYS526 

PRO328 

ASN332 

LYS526 

- 

 

 

 

 

TABLE 5.  Experimental Molecule Structures and Interactions of omicron variant 

Ligand Binding 

energy 

Hydrogen 

bonding 

Hydrophobic 

Interaction 

Salt bridge 

CEFUROXIME -6.23 LYS525 

SE527 

PHE326 

VAL359 

ASP361 

UMIFENOVIR -7.48 LEU332 

PH335 

ASP36 

GL337 

LEU332 

PH335 

PHE335 

ASP336 

LEU365 

ASP336 

ASP336 

CEFOTAXIME -6.68 ILE329 

CY358 

CYS358 

CYS522 

GLY523 

LYS525 

SER527 

ASN328 

LYS526 

- 

CEFTRIAXONE -6.78 LEU332 

ASP336 

GLU337 

LYS553 

SER556 

SER556 

- GLU337 

AMPICILLIN -7.90 PRO327 

GLY523 

LYS525 

SER527 

PHE326 

PRO327 

ASN328 

ILE329 

VAL359 

LYS526 

- 

 

4.3.2 Ligand-Protein Visualization through Pymol :   
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Fig 4.1 Molecular Interactions between Cefotaxime and Reference 

 

Fig 4.2 Molecular Interactions between  Cefotaxime and Alpha 
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Fig 4.3 Molecular Interactions between Cefotaxime-Delta 

 

Fig 4.4 Molecular Interactions between Cefotaxime-Omicron 
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Fig 4.5 Molecular Interactions between Ampicilin-Reference 

 

Fig 4.6 Molecular Interactions between Ampicilin-Alpha 
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Fig 4.7 Molecular Interactions between Ampicilin-Delta 

 

 

Fig 4.8 Molecular Interactions between Ampicilin-Omicron 
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Fig 4.9 Molecular Interactions between Ceftriaxone- Reference 

 

Fig 4.10 Molecular Interactions between Ceftriaxone- Alpha 
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Fig 4.11 Molecular Interactions between ceftriaxone  - Delta 

 

Fig 4.12 Molecular Interactions between ceftriaxone - Omicron 
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Fig 4.13 Molecular Interactions between umifenovir - Reference 

 

Fig 4.14 Molecular Interactions between umifenovir - Alpha 
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Fig 4.15 Molecular Interactions between umifenovir - Delta 

 

Fig 4.16 Molecular Interactions between umifenovir - Omicron 
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Fig 4.17 Molecular Interactions between cefuroxime -Reference 

 

Fig 4.18 Molecular Interactions between cefuroxime - Alpha 
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Fig 4.19 Molecular Interactions between cefuroxime - Delta 

 

Fig 4.20 Molecular Interactions between cefuroxime – Omicron 
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Conclusion 

From the above, we concluded the ease of binding (highest to lowest) Spike Protein of variants 

with drugs ( Cefuroxime,Umifenovir, Cefotaxime, Ceftriaxone and  Ampicillin)  

 

1. reference - Ampicillin>Ceftriaxone>Cefotaxime>Cefuroxime>Umifenovir 

2. Alpha - Ampicillin>Umifenovir>cefuroxime>ceftriaxone>cefotaxime 

3. Delta - cefuroxime>cefotaxime>ceftriaxone>umifenovir>Ampicillin 

4. Omicron - Ampicillin > umifenovir>ceftriaxone>cefotaxime>cefuroxime 

 

Thus, we say that Ampicillin may be a good candidate as a drug for acting on spike protein for 3 

out of 4 variants except for Delta one. 
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CONCLUSION 

SARS-COV-2 is responsible for COVID-19, a viral illness that has spread to 228 countries across 

the globe since it began in China's Wuhan region. There is a growing number of cases of COVID-

19, which has been categorized by the WHO as a global clinical emergency. Rapid development 

of a convincing and safe antibody is essential for reducing global mortality. Currently, there are 

no effective or authorised treatments, and routine vaccines can take years to develop. A more 

precise vaccination regimen can be created in silico through the use of bioinformatics, 

vaccinogenomics, immunoinformatics, atomic simulations, and underpinning science. 

Immunoinformatics techniques were employed to predict antigenic epitopes against SARS-CoV-

2 in order to develop the Covid vaccine. 
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Abstract - The first evidences of SARS Covid 19 virus were 

reported from Labs in Wuhan, China's Hubei Province, at 

the end of 2019. It spread very quickly throughout China, 

leading in an epidemic and a global pandemic. A large 

population was affected and died due to the pandemic in 

2019. It shares genetic similarities with SARS-CoV-2 and 

MERS-COV. The development of an effective SARS-CoV-

2 vaccine is important for reducing COVID-19 deaths and 

giving immunological protection to the worldwide 

community. The lengthy and expensive process of vaccine 

production can be shortened by using immunoinformatics 

approaches. immunoinformatics tools such as Vaxijen, 

IEDB,NetCTL 1.2, PEP-FOLD etc  have previously been 

used in reverse vaccinology for SARS-CoV-2 vaccine 

development in areas such as antigen selection, toxicity, 

predicting vaccine targets ,allergenicity prediction and 

selection of MHC-I and II binding epitopes etc. In this 

review, we summarize some of the most useful 

immunoinformatics tools like vexijen, Bepipred 

2.0,SVMTrip, FNepitope etc and  their role in the 

development of covid 19 vaccines. The characteristics of 

such tools have been thoroughly reviewed, and which may 

provide experimental biologists with prediction insights 

that may enhance active research attempts to identify 

therapies for the infectious COVID-19 illness. 

Keywords:- Immunoinformatics, SARS-CoV-2, Vaccine, 

IEDB,VaxiJen,IFNepitope,NetCTLpan1.1,C-Immsim 

I. INTRODUCTION

After multiple deaths in Wuhan, China, an unexpected 

pneumonia illness epidemic was reported in late 

December 2019 [1]. On March 11, 2020, the World 

Health Organization proclaimed the COVID-19 disease 

to be a pandemic. The epidemic spread quickly through 

Wuhan to numerous nations, including India,  
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with thousands of people affected and most of them 

dying within months of its first dissemination[1][2] . 

There are about  263,842,124 cases and over 

5,244,379  confirmed deaths as of December 02, 2021, 

impacting 224 nations (Data is obtained from 

https://www.worldometers.info/coronavirus/).  The 

coronavirus(COVID-19) is a positive-sense single 

stranded  RNA virus that belongs phylogenetically to the 

Coronaviridae family , order Nidovirales, Subgenus 

Sarbecovirus and the genus  Betacoronavirus[3]. Severe 

acute respiratory syndrome coronavirus(SARS-CoV) 

[4][5][6] and Middle East respiratory disorder 

coronavirus (MERS-COV) [7][8] both share highly 

genetic similarity and designated as β-coronavirus. The 

COVID-19 disease virus has a unique protein structure 

on cleavage site that separates it from other corona 

viruses such as SARS or MERS. SARS-CoV-2 genomic 

RNA consist of the gene of RdRp (RNA dependent 

RNA polymerase), structural protein like nucleocapsid 

(N)(N), membrane (M), envelope(E), spike (S) as well 

as non suctrutural replicase polyproteins (nsp1-nsp16). 

S glycoprotein of virion can get attached to ACE 2 ( 

angiotensin-converting enzyme 2 )  receptor [9]which is 

mostly expressed on the epithelia of the lung and small 

intestine though which SARS-CoV-2 enter into the host 

cell[10]. There are also other organs that show a high 

level of ACE 2 protein expression like the Brain, testis, 

gastrointestinal system, Heart, and adipose tissue [11]. 

In SARS-CoV-2, S-protein is made up of two functional 

components i.e S1 and S2. Receptor binding domain is 

found in S1, and it interacts directly to the cell  receptor 

ACE-2 while conserved non-RBD regions in  S2 is 

responsible for stable binding of S1 protein to the host’s 

cell membrane. After the attachment process of S1 and 

S2 protein, Furin protease cleaves the multibasic site of 

S1/S2 which is essential for viral entry [12]. In the host 

cells infected by SARS-CoV-2,ACE-2 expression is 

significantly suppressed. Other than facilitating entry of 
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SARS-CoV-2 into cell,Ace 2 receptor has role in 

lowering blood pressure and metabolism of angiotensin 

2 in heart.  

As the situation worsened, the necessity for an 

appropriate peptide vaccine component against SARS-

CoV-2 became more important. To successfully respond 

to novel SARS-CoV-2, technology that can swiftly 

generate efficient, cheaper, safer vaccines must be 

refined and established.  Reverse vaccinology is a 

revolutionized methodology of vaccine development  

which is based upon genomic information of bacteria, 

virus, parasites, cancer cells, or allergens derived from 

in silico analysis ( genomics, proteomics, 

bioinformatics)[13] .

 

 

Fig. 1. Structural biology of SARS-CoV-2 

Immunoinformatics play a vital role in vaccine 

development by identifying a multiepitope, targeting 

virion particles, appropiate linker etc [14]. However, 

despite the fact that immunology research is both 

expensive and time-consuming, massive volumes of 

data are frequently created. Immunoinformatics tools 

are the only way to examine such data with great speed 

and accuracy. In comparison to traditional vaccine 

development, Genome sequencing and in vitro B-cell 

validation is  completed in a relatively short time rather 

than years as with traditional vaccine development [15]. 

With the help of  Immunoinformatics tool, examining 

the peptide sequence of viral protein vaccine target epitopes 

can be discovered.  

II. STEPS INVOLVED IN VACCINE 

DEVELOPMENT THROUGH 

IMMUNOINFORMATICS 

Chukwudozie et al. have been developed several platforms 

to design peptide vaccines as well as numerous techniques’ 

for verifying them using in silico approaches in simplified 

and detailed manner [16]. Figure 2 shows a flow chart that 

summarises the protocols for Vaccine development using 

immunoinformatics tool. 
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Fig. 2. Flow chart summarizing Protocol for vaccine development (epitope based) using Immunoinformatics approaches (Starting from Blue to 

brown circle).

III. IMMUNOINFORMATICS TOOLS USED IN 

COVID-19 VACCINE DEVELOPMENT 

The immune system is classified into cellular or 

humoral and either cellular or humoral immune 

response can be produced based on disease. For 

example- For knowledge of cellular response or 

reaction triggered by a vaccine, researcher can use 

software for T Cell identification like Tepredict, 

Rankpep,Ctlpred,Propred,IEDB and if study of 

humoral response is required,software for 

identification of B cell antigen like  Bepipred , Igpred, 

Bcipep, Mimox, Pepsurf, ellipro, BEST,EPCES etc 

can be used. 

1) IEDB ( https://www.iedb.org/ ): - IEDB ( Immune 

Epitope Database ) Consists  set of Tools which  

allows us to retrieve different information about 

epitopes, MHC I binding predictions, funded by 

NIAID (National Institute of Allergy and Infectious 

Diseases). Over 22,536 references have been collected 

as of December 05, 2021, with over 1,184,242 

epitopes (both Peptidic and non 

peptidic) ,  1,165,695 B cell, 424,795 T cell, 

3,318,008 MHC binding, and MHC ligand elution 

experiments in the database . 

A. Case Studies using IEDB tool 

Bhattacharya et al. designed COVID-19 Vaccine by 

targeting spike protein of HCOV and   B-Cell epitopes 

of COVID-19 which was done through IEDB server 

[17]. He used BepiPred 2.0 prediction module from 

IEDB server for identifying the linear B-cell epitopes 

of SARS-CoV-2. Their results revealed that within 

spike protein of COVID-19, there are almost 34 

successive linear B-Cell epitopes of varied length 

which include 13 HLA 1  epitopes as well as 3 HLA II  

epitopes that might be employed as vaccine 

candidates. As part of the study, these authors included 

immunoinformatics modelling utilizing PROCHECK 

for prediction of vaccine component structure. Despite 

this, researchers also  used the short peptide linker 

adapter (EAAAK)  to combine the highly antigenic 

epitopes into a single epitope vaccine component.As a 

result, they identified the T cell epitope, which was 

determined to be 64.29 % conserved and had identical 

conservation with other 5 potential T cell epitopes . 

The KSSTGFVYF epitope had the most interactions 

with HLA alleles, although possessing the same 

conservancy as the other 5 epitopes. 
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IEDB methods have been utlilized in several studies to 

identify B and T cell epitopes for SARS-CoV-2 

vaccine development (Dong et al.[18]; Bhatt et al [19]; 

jhakr et al.[20]; Shehata et al.[21] ) 

2) Vaxijen (https://www.ddg-

pharmfac.net/vaxijen/VaxiJen/VaxiJen.html)  : - 

Vaxijen is  a first alignment free approach  to predict 

antigenicity  of Bacterial, viral and tumour proteins 

based upon Auto Cross Covariance (ACC) 

transformation method. ACC is a method to measure 

the relationship between two features of a protein and 

transforms different length of protein sequences into 

uniform length vector. Vaxigen server consists of of 

protein characteristics simulations that have been 

developed from pre pre-processing  ACC. 

A. Case Studies using vaxijen tool 

Anand et al. utilized Vaxijen 2.0 to predict antigenic 

epitope of T cell SARS-CoV-2. As a result, authors 

selected 38 epitopes, by maintaining critical threshold 

of antigenicity, they  picked up only that showing 

prediction accuracy >0.4 were thought to be potent 

immunogens . These authors found vaxijen score or 

antigenicity score for selected 3   epitope are – for 

ORF3a "HVTFFIYNK" score is 0.9862, for M protein 

“LTWICLLQF" score is 1.1393, for nucleocapsid 

protein  “KTFPPTEPK”score is 0.7571 [22]. Highest 

antigenicity score was observed in case of Orf 6 

protein is 0.6131,whereas surface glycoprotein had the 

lowest score 0.4646 . 

Chukwudozie et al. also utilized Vaxijen 2.0 tool to 

design multimeric epitope conjugate  based SARS-

CoV-2 vaccine by targeting spike protein of virus. For 

antigenicity test the selected T cell epitopes were 

tested at a suggested threshold of 0.7. The conjugated 

vaccine was significantly antigenic just before 

administration of the Outer membrane protein A as a 

adjuvant, which showed the score of 0.85 on the 

Vaxijen website, indicating that the  vaccine is capable 

of generating both cellular as well as  humoral immune 

responses despite the use of an adjuvant. As a result,on 

the basis of Maximum no. of epitopes binding to the  

HLA-I molecule, antigenicity and  allergenicity test 

,16 epitopes were found. All 3 cytokines, namely IFN-

, IL-4, and IL-10, could only be stimulated by the 

peptide GYFKIYSKHTPINLV which was taken 

further into consideration for development of vaccine 

[16]. 

In design of multiepitope based 10 peptide vaccine 

from E protein of HCOV Abdelmageed et al. [23] who 

have used the vaxijen 2.0 server to predict the 

antigenicity of mutated protein (N, S, E, M) at 

threshold of 0.4. At the end, he concluded that out of 

4 proteins, the best immunogenic target was reported 

to be the envelope (E) protein with antigenicity index 

of 0.6025. From the obtained results,researchers found 

out the antigenicity score of the proteins to be as 

follow- for Protein E is 0.6025, Protein M (0.5102), 

Protein S(0.4646),Protein N (0.5059). 

ul Qamar et al. [24] design Multi-epitope vaccines 

(MEV), against SARS-CoV-2 utilising Vaxijen v2.0, 

have a great predicting  potential of antigenicity, 

tumour antigens and subunit vaccines . He was used 

vaxijen 2.0 tool server to test the antigenicity of B cell 

& T cell epitopes with threshold of 0.5 .  Only highly 

antigenic epitopes that had been screened were chosen 

for further research. ORF10 was determined to be the 

most antigenic protein, followed by E (0.6502) , M ( 

0.6441 ), ORF6 ( 0.6131), ORF7a ( 0.6025) , ORF8 ( 

0.5102 ), and  N ( 0.5059 ) proteins with their 

antigenicity score . Because the antigenic values  of 

ORF1, S, and ORF3 proteins were less than 0.5, they 

were removed from any  further investigation. 

3) NetCTLpan 1.1 

(https://services.healthtech.dtu.dk/service.php?NetCT

Lpan-1.1  ) :- NetCTLpan 1.1 is a platform that allows 

users to anticipate CTL epitopes based on any MHC 

molecule with a predefined  sequence of a protein ( 

only for  8-11mer peptides) and also performs the  

predcition of  proteasomal cleavage , Ligand 

combined score &  Transport efficiency of TAP 

(transporter associated with antigen processing).  

Since the beginning of the year 2020, numerous 

laboratories have been developing multi-epitope based 

vaccines against spike protein  of SARS-CoV-2. 

NetCTLpan 1.1  is believed to beat all existing epitope 

predicting tools for Cytotoxic T lymphocytes (CTLs). 

A. Case studies using NetCTLpan 1.1 

Ayyagari et al.[25] utilized NetCTLpan 1.1 platform 

for predicting  end to-end cytotoxic T cell (CTL) 

epitope. For MHC class-I epitope detection threshold 

value is  1.0 set by researchers . Peptides with a 

percentage  Rank of < 1.0 were deemed acceptable for 

further investigation. NetCTLpan detected  total  37 

peptides with high binding affinity for selected HLA-

I by method of  precentage score analysis. The ultimate 

vaccine consists of 223 amino acids   with six HLA-1 

molecules. 
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For designing multiepitope SARS-CoV-2 vaccine 

some authors like safavi et al.[26] utlizing NetCTLpan 

1.1  tool for  determining  the most immunodominant 

epitope with the threshold of greater than 0.75. At the 

result, they found that the immunogenicity of Spike 

protein portion that is interacting with ACE2 receptor 

is good for multiepitope vaccine designing. these 

regions  contained several  number of epitopes with a 

greater potential for binding to numerous HLA-I and 

HLA-II alleles. Multiple CTL and CD4 + epitopes 

were also found in these locations . Both CTL and 

helper T cells can be activated by the overlapping 

epitopes. In the end researchers conclude,S protein's 

immunogenic region was chosen for potential vaccine 

development as several CTL and CD4+ epitopes were 

found in this region and activation of CTL and helper 

T cells can be achieved by the overlap epitopes. 

NetCTLpan1.1 was shown to be more accurate than 

NetMHCpan 4.1, DeepLigand, PickPocket1.1, and 

MHCflurry2.0.and is seen applied in mishra et al. [27], 

Quiros-Fernandez [28] and Bukhari et al. [29]. 

4) IFNepitope 

(https://webs.iiitd.edu.in/raghava/ifnepitope/devel

oper.php): -  IFNepitope is a web-based prediction 

tool that allow users to  predict, identify  and design  

the Peptides that induce IFN-ϒ (gamma) cytokine. By 

stimulating macrophages and natural killer cells, IFN-

ϒ cytokine stimulates both native and targeted type 

of  immune responses. It consists of three 

main modules:- 

● Predict – The IFN-ϒ triggering peptide from 

the collection of peptides (submitted by 

users) can be predicted using this module . 

● Design – This server helps users to find out 

minimum mutated epitope that has a greater 

potency from an enlisted epitope. 

● Scan - It allows users to find out which parts 

of protein are capable of inducing IFN-ϒ.  

A. Case study using IFNepitope tool 

Dong et al. [18], in their study, attempted to design a 

multiepitope subunit vaccine against SARS-CoV-2 

using IFNepitope server for the prediction of IFN- 

gamma epitopes. The IFN-epitope server was used to 

enter HTL epitopes with poor scores). positive IFN 

epitope can be predicted by using SVM (support 

vector machine) technique. IFN-induction and MHC 

Class II binding, both of which promote T-helper cell 

activation, were used to select the final HTL epitopes. 

At the result based on their binding potential, IC50 < 

500 nm and IFN- ϒ induction, researchers selected 14 

HTL epitope for further analysis. 

Shehata et al. [21]Used IFNepitope for epitope-based 

candidate vaccine production as it predicted IFN-

gamma inducing epitopes.On the basis of Results 

obtained by the authors,negative scores showing 

negative predictions were eliminated .Six peptides 

were selected as possible linear neutralising epitopes 

for vaccine design as they scored significantly higher 

than the average score of >0.2 that indicates their 

potential to induce an IFN- response.These peptide 

epitopes are expected to induce IFN and cross react 

with B cells to mediate a humoral immune response. 

5) C-ImmSim (https://kraken.iac.rm.cnr.it/C-

IMMSIM/ ): - One of the most essential tools for 

immunoinformatics is cimmsim. C-ImmSim is a set of 

model relying on the Celada-Seiden model made by 

P.E Seiden and F.Celada to facilitate in silico 

prediction of immune stimulation (cell-mediated, 

humoral, or both) of peptides. C-ImmSim enables 

users  to model deterministic system(DIfferential 

equation,integration etc) while it eliminates the 

mathematical assumptions and accounts for spatial 

patterns impact. 

 

A. Case study using C-ImmSim Tool 

C-Immsim tool was applied by Dong et al [18] for 

prediction of immunological stimulation of the final 

developed vaccine to assess the immune response 

profile for developing the multi-epitope vaccine. 

According to the data,3 doses were given at one-month 

periods and the vaccinations were given four weeks 

apart. The simulation volume was kept to 1,000, 

simulation steps 1000 were used, the random seed 

was adjusted at 12,345, and lipopolysaccharide was 

eliminated from vaccine injection. IgG1 + IgG2 and 

IgM, as well as the lowering antigen content IgG + 

IgM, were used for identification of the development 

of the secondary and tertiary immune responses. The 

immune simulation result   confirmed the activation of 

immune response immunization. After vaccination, 

the B cell population was greatly increased. 

Additionally, there was an increase in number 

of CD8+ T cells and CD4 + T cells which indicated 

the emergence of secondary and tertiary immune 

responses
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TABLE I : Overview of reviewed immunoinformatics Tools used in SARS-CoV-2 vaccine development studies. 

S.no Author Conformational 

& linear B cell 

epitopes 

MHC I & II 

binding 

prediction 

Toxic

ity 

Population 

coverage 

analysis 

Antigenicit

ya 

Allergencit

y 

1. Joshi et 

al.[30] 

- NETMHC 4.0 & 

NETMHC II 

PRED 3.2 

Toxin

Pred 

IEDB VaxiJen 

(thresholdb 

of > 1.0) 

AllergenFP 

1.0 

2. Yashvard

hini et al. 

[31] 

Linear - Bepipred 

2.0 

Tepitool - IEDB Vaxijen 

v2.0 

AllerTOP 

3. Dar et al 

.[32] 

Discontinous - 

Ellipro 

NetCTL 1.2 & 

NetMHCPan 

-  ANTIGEN

Pro 

AllergenFP 

1.0 

4. Khairkha

h et al. 

[33] 

Linear - 

BepiPred-2.0, 

Discontinous - 
ElliPro 

NetMHCpan4.1& 

NetMHCIIpan 4.0 

- IEDB - PA3P 

5. Mitra et 

al.[34] 

Linear- ABCPred MHCPred), 

SYFPEITHI 

,NetMHCIIpan 

3.2, NetMHC 4.0 

Toxin

Pred 

- VaxiJen 

v2.0 

AllerTop 

 

a. Antigenicity Score (In the process of vaccine development, antigenicity score is a score for identification of the most probable antigenic protein which indicates its capacity to induce an immune 

response.) 

b. Threshold parameter (Those parameters that indicate a higher likelihood of eliciting an immune response are designated as threshold parameters for the experiment. The threshold parameter 

varies from experiment to experiment. )

IV. IMMUNOINFORMATICS LIMITATION IN 

VACCINE DEVELOPMENT 

Though immunoinformatic tools are excellent sources 

for vaccine development , there are some limitations 

associated with them in vaccine development and design  

are as follows :-  

1. To generate raw data for the vaccine 

development, immunoinformatics relies on wet 

lab research work. 

2. The predictions obtained by 

Immunoinformatics approach do not proof the 

concepts formally and thus cannot replace the 

traditional experimental research methods 

which involve the actual test of hypotheses. 

3. In vaccine designing, the accuracy of output 

data varies from the complexity of the 

immunoinformatics tool utilized. subsequent 

findings of the analysis will be incorrect as well 

[35]. 

4. Proteins, linear and discontinuous epitopes, but 

not other biomolecules such as polysaccharide, 

can be employed for vaccine production in an 

immunoinformatic approach for  vaccine 

development. 
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5. Antigen residues have been shown to form 

epitopes under certain situations, affecting 

prediction algorithms [36]. Improved 

prediction methods should be require in 

immunoinformatic tool. 

 

V. CONCLUSION 

A prophylactic vaccine is required since SARS-CoV-2 

is characterised by high infectivity and transmission 

speed. Immunoinformatics has helped to overcome 

some of the constraints of traditional vaccine design 

methodologies, resulting in a better knowledge of 

diagnostics, immune system response, and Reverse 

vaccinology [37]. An essential role in vaccine design is 

played by different tools applied for protein scaffolding 

and epitope prediction as this approach is of advantage 

since it is achieved by analysis of entire genome of 

pathogen as well as identification of proteins that can act 

as potential antigens.It has an advantage of flexible 

analysis over the traditional methods performed. This 

review highlights the immense work performed in 

identification and analysis of COVID-19 Viral epitopes 

and vaccine construct. The 28 research articles that we 

reviewed,used various immunoinformatics 

methodologies. 

The objective of this review was to summarise the 

approaches that have been used in COVID-19 vaccine 

designing  and here we  also a draw a comparison 

between Different tools used in different studies by the 

researchers which gives an insight into the performance 

of the various tools. In general, the information gathered 

from the intense use of immunoinformatics tools for 

SARS-CoV-2 will pave the way for future investigations 

aiming at epitope discovery and vaccine development 

for a various other related viruses such as Bat COV 

RaTG13, pangolin coronavirus,mers-cov,H1N1 virus, 

and so on[38]. Finally, we report the important 

immunoinformatics tools required in vaccine 

development that pave the ultimate path towards 

overcoming the emerging COVID-19 Pandemic. On the 

basis of review of this study, future developments may 

focus on clinical trials of SARS-CoV-2 vaccine 

Development

. 

REFERENCES 

[1] Young, B. E., Ong, S. W. X., Kalimuddin, S., 

Low, J. G., Tan, S. Y., Loh, J., ... & Singapore 

2019 Novel Coronavirus Outbreak Research 

Team. (2020). Epidemiologic features and 

clinical course of patients infected with SARS-

CoV-2 in Singapore. Jama, 323(15), 1488-1494. 

[2] Hui, D. S., Azhar, E. I., Madani, T. A., Ntoumi, 

F., Kock, R., Dar, O., ... & Petersen, E. (2020). 

The continuing 2019-nCoV epidemic threat of 

novel coronaviruses to global health—The latest 

2019 novel coronavirus outbreak in Wuhan, 

China. International journal of infectious 

diseases, 91, 264-266. 

[3] CoV2020, GISAID EpifluDB. Archived from the 

original on 12 January 2020, 2020 

[4] Drosten, C., Günther, S., Preiser, W., Van Der 

Werf, S., Brodt, H. R., Becker, S., ... & Doerr, H. 

W. (2003). Identification of a novel coronavirus 

in patients with severe acute respiratory 

syndrome. New England journal of medicine, 

348(20), 1967-1976. 

[5] Ksiazek, T. G., Erdman, D., Goldsmith, C. S., 

Zaki, S. R., Peret, T., Emery, S., ... & SARS 

Working Group. (2003). A novel coronavirus 

associated with severe acute respiratory 

syndrome. New England journal of medicine, 

348(20), 1953-1966. 

[6] Kuiken, T., Fouchier, R. A., Schutten, M., 

Rimmelzwaan, G. F., Van Amerongen, G., Van 

Riel, D., ... & Osterhaus, A. D. (2003). Newly 

discovered coronavirus as the primary cause of 

severe acute respiratory syndrome. The Lancet, 

362(9380), 263-270. 

[7] De Groot, R. J., Baker, S. C., Baric, R. S., Brown, 

C. S., Drosten, C., Enjuanes, L., ... & Ziebuhr, J. 

(2013). Commentary: Middle east respiratory 

syndrome coronavirus (mers-cov): announcement 

of the coronavirus study group. Journal of 

virology, 87(14), 7790-7792. 

[8] Zaki, A. M., Van Boheemen, S., Bestebroer, T. 

M., Osterhaus, A. D., & Fouchier, R. A. (2012). 

Isolation of a novel coronavirus from a man with 

pneumonia in Saudi Arabia. New England Journal 

of Medicine, 367(19), 1814-1820. 

[9] Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, 

A., McGuire, A. T., & Veesler, D. (2020). 

Structure, function, and antigenicity of the SARS-

CoV-2 spike glycoprotein. Cell, 181(2), 281-292. 

[10] Hamming, I., Timens, W., Bulthuis, M. L. C., 

Lely, A. T., Navis, G. V., & van Goor, H. (2004). 

Authorized licensed use limited to: DELHI TECHNICAL UNIV. Downloaded on May 04,2022 at 08:51:09 UTC from IEEE Xplore.  Restrictions apply. 



8 

 

 

Tissue distribution of ACE2 protein, the 

functional receptor for SARS coronavirus. A first 

step in understanding SARS pathogenesis. The 

Journal of Pathology: A Journal of the 

Pathological Society of Great Britain and Ireland, 

203(2), 631-637. 

[11] Li, M. Y., Li, L., Zhang, Y., & Wang, X. S. 

(2020). Expression of the SARS-CoV-2 cell 

receptor gene ACE2 in a wide variety of human 

tissues. Infectious diseases of poverty, 9(1), 1-7. 

[12] Hoffmann, M., Kleine-Weber, H., & Pöhlmann, 

S. (2020). A multibasic cleavage site in the spike 

protein of SARS-CoV-2 is essential for infection 

of human lung cells. Molecular cell, 78(4), 779-

784. 

[13] Seib, K. L., Zhao, X., & Rappuoli, R. (2012). 

Developing vaccines in the era of genomics: a 

decade of reverse vaccinology. Clinical 

Microbiology and Infection, 18, 109-116. 

[14] Arya, H., & Bhatt, T. K. (2021). Role of 

Bioinformatics in Subunit Vaccine Design. In 

Molecular Docking for Computer-Aided Drug 

Design (pp. 425-439). Academic Press. 

[15] Peng, M., Mo, Y., Wang, Y., Wu, P., Zhang, Y., 

Xiong, F., ... & Zeng, Z. (2019). Neoantigen 

vaccine: an emerging tumor immunotherapy. 

Molecular cancer, 18(1), 1-14. 

[16] Chukwudozie, O. S., Gray, C. M., Fagbayi, T. A., 

Chukwuanukwu, R. C., Oyebanji, V. O., Bankole, 

T. T., ... & Daniel, E. M. (2021). Immuno-

informatics design of a multimeric epitope 

peptide based vaccine targeting SARS-CoV-2 

spike glycoprotein. Plos one, 16(3), e0248061. 

[17] Bhattacharya, M., Sharma, A. R., Patra, P., 

Ghosh, P., Sharma, G., Patra, B. C., ... & 

Chakraborty, C. (2020). Development of epitope‐

based peptide vaccine against novel coronavirus 

2019 (SARS‐COV‐2): Immunoinformatics 

approach. Journal of medical virology, 92(6), 

618-631. 

[18] Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). 

Contriving multi-epitope subunit of vaccine for 

COVID-19: immunoinformatics approaches. 

Frontiers in immunology, 11, 1784. 

[19] Bhatt, P., Sharma, M., & Sharma, S. (2021). 

Prediction and identification of T cell epitopes of 

COVID-19 with balanced cytokine response for 

the development of peptide based vaccines. In 

silico pharmacology, 9(1), 1-17. 

[20] Jakhar, R., & Gakhar, S. K. (2020). An 

immunoinformatics study to predict epitopes in 

the envelope protein of SARS-CoV-2. Canadian 

Journal of Infectious Diseases and Medical 

Microbiology, 2020. 

[21] Shehata, M. M., Mahmoud, S. H., Tarek, M., Al-

Karmalawy, A. A., Mahmoud, A., Mostafa, A., ... 

& Ali, M. A. (2021). In Silico and In Vivo 

Evaluation of SARS-CoV-2 Predicted Epitopes-

Based Candidate Vaccine. Molecules, 26(20), 

6182. 

[22] Anand, R., Biswal, S., Bhatt, R., & Tiwary, B. N. 

(2020). Computational perspectives revealed 

prospective vaccine candidates from five 

structural proteins of novel SARS corona virus 

2019 (SARS-CoV-2). PeerJ, 8, e9855. 

[23] Abdelmageed, M. I., Abdelmoneim, A. H., 

Mustafa, M. I., Elfadol, N. M., Murshed, N. S., 

Shantier, S. W., & Makhawi, A. M. (2020). 

Design of a multiepitope-based peptide vaccine 

against the E protein of human COVID-19: an 

immunoinformatics approach. BioMed research 

international, 2020. 

[24] Tahir ul Qamar, M., Rehman, A., Tusleem, K., 

Ashfaq, U. A., Qasim, M., Zhu, X., ... & Chen, L. 

L. (2020). Designing of a next generation 

multiepitope based vaccine (MEV) against 

SARS-COV-2: Immunoinformatics and in silico 

approaches. PloS one, 15(12), e0244176. 

[25] Ayyagari, V. S., TC, V., & Srirama, K. (2020). 

Design of a multi-epitope-based vaccine targeting 

M-protein of SARS-COV-2: an 

immunoinformatics approach. Journal of 

Biomolecular Structure and Dynamics, 1-15. 

[26] Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., 

& Ghahremani, F. (2020). Exploring the out of 

sight antigens of SARS-CoV-2 to design a 

candidate multi-epitope vaccine by utilizing 

immunoinformatics approaches. Vaccine, 38(48), 

7612-7628. 

[27] Mishra, S. (2020). T cell epitope-based vaccine 

design for pandemic novel coronavirus 2019-

nCoV. 

[28] Quiros-Fernandez, I., Poorebrahim, M., Fakhr, E., 

& Cid-Arregui, A. (2021). Immunogenic T cell 

epitopes of SARS-CoV-2 are recognized by 

circulating memory and naïve CD8 T cells of 

unexposed individuals. EBioMedicine, 72, 

103610. 

[29] Bukhari, S. N. H., Jain, A., Haq, E., Mehbodniya, 

A., & Webber, J. (2021). Ensemble Machine 

Learning Model to Predict SARS-CoV-2 T-Cell 

Epitopes as Potential Vaccine Targets. 

Diagnostics, 11(11), 1990. 

Authorized licensed use limited to: DELHI TECHNICAL UNIV. Downloaded on May 04,2022 at 08:51:09 UTC from IEEE Xplore.  Restrictions apply. 



9 

 

 

[30] Joshi, A., Joshi, B. C., Mannan, M. A. U., & 

Kaushik, V. (2020). Epitope based vaccine 

prediction for SARS-COV-2 by deploying 

immuno-informatics approach. Informatics in 

medicine unlocked, 19, 100338. 

[31] Yashvardhini, N., Kumar, A., & Jha, D. K. 

(2021). Immunoinformatics Identification of B-

and T-Cell Epitopes in the RNA-Dependent RNA 

Polymerase of SARS-CoV-2. Canadian Journal of 

Infectious Diseases and Medical Microbiology, 

2021. 

[32] Dar, H. A., Waheed, Y., Najmi, M. H., Ismail, S., 

Hetta, H. F., Ali, A., & Muhammad, K. (2020). 

Multiepitope subunit vaccine design against 

covid-19 based on the spike protein of sars-cov-2: 

An in silico analysis. Journal of immunology 

research, 2020. 

[33] Khairkhah, N., Aghasadeghi, M. R., Namvar, A., 

& Bolhassani, A. (2020). Design of novel 

multiepitope constructs-based peptide vaccine 

against the structural S, N and M proteins of 

human COVID-19 using immunoinformatics 

analysis. Plos one, 15(10), e0240577.Mitra, D., 

Pandey, J., Jain, A., & Swaroop, S. (2020). In 

silico design of multi-epitope-based peptide 

vaccine against SARS-CoV-2 using its spike 

protein. Journal of Biomolecular Structure and 

Dynamics, 1-14. 

[34] Mitra, D., Pandey, J., Jain, A., & Swaroop, S. 

(2020). In silico design of multi-epitope-based 

peptide vaccine against SARS-CoV-2 using its 

spike protein. Journal of Biomolecular Structure 

and Dynamics, 1-14. 

[35] Bahrami, A. A., Payandeh, Z., Khalili, S., Zakeri, 

A., & Bandehpour, M. (2019). 

Immunoinformatics: in Silico approaches and 

computational design of a multi-epitope, 

immunogenic protein. International reviews of 

immunology, 38(6), 307-322. 

[36] Dhama, K., Sharun, K., Tiwari, R., Dadar, M., 

Malik, Y. S., Singh, K. P., & Chaicumpa, W. 

(2020). COVID-19, an emerging coronavirus 

infection: advances and prospects in designing 

and developing vaccines, immunotherapeutics, 

and therapeutics. Human vaccines & 

immunotherapeutics, 16(6), 1232-1238. 

[37] Sunita, Sajid, A., Singh, Y., & Shukla, P. (2020). 

Computational tools for modern vaccine 

development. Human vaccines & 

immunotherapeutics, 16(3), 723-735. 

[38] Abdelrahman, Z., Li, M., & Wang, X. (2020). 

Comparative review of SARS-CoV-2, SARS-

CoV, MERS-CoV, and influenza a respiratory 

viruses. Frontiers in immunology, 11, 2309. 

Authorized licensed use limited to: DELHI TECHNICAL UNIV. Downloaded on May 04,2022 at 08:51:09 UTC from IEEE Xplore.  Restrictions apply. 



oid:27535:16454529Similarity Report ID: 

PAPER NAME

n turnitin.pdf

WORD COUNT

10714 Words
CHARACTER COUNT

61413 Characters

PAGE COUNT

53 Pages
FILE SIZE

879.6KB

SUBMISSION DATE

May 2, 2022 12:51 PM GMT+5:30
REPORT DATE

May 2, 2022 12:52 PM GMT+5:30

5% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

3% Internet database 3% Publications database

Crossref database Crossref Posted Content database

2% Submitted Works database

Excluded from Similarity Report

Bibliographic material

Summary



oid:27535:16454529Similarity Report ID: 

5% Overall Similarity
Top sources found in the following databases:

3% Internet database 3% Publications database

Crossref database Crossref Posted Content database

2% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be
displayed.

1
link.springer.com 1%
Internet

2
cttjournal.com <1%
Internet

3
"Immunoinformatics", Springer Science and Business Media LLC, 2014 <1%
Crossref

4
Rochester Institute of Technology on 2007-04-09 <1%
Submitted works

5
Namrata Tomar. "Immunoinformatics: an integrated scenario : Immun... <1%
Crossref

6
ncbi.nlm.nih.gov <1%
Internet

7
"Coronavirus Disease - COVID-19", Springer Science and Business Med... <1%
Crossref

8
Bulbuli Khanikor. "Comparative mode of action of some terpene comp... <1%
Crossref

Sources overview



oid:27535:16454529Similarity Report ID: 

9
Sunway Education Group on 2020-07-24 <1%
Submitted works

10
CSU, Los Angeles on 2022-02-21 <1%
Submitted works

11
Central Queensland University on 2020-04-20 <1%
Submitted works

12
University of Keele on 2021-09-28 <1%
Submitted works

13
WWW.medicalnewstoday.com <1%
Internet

14
coek.info <1%
Internet

15
hdl.handle.net <1%
Internet

16
National University of Ireland, Galway on 2020-12-10 <1%
Submitted works

17
www2.oakland.edu <1%
Internet

18
Gabb, H.A.. "Modelling protein docking using shape complementarity, ... <1%
Crossref

19
Jun Zhang, Weichun Tang, Hailong Gao, Christy L. Lavine et al. "Structu... <1%
Crossref posted content

20
University of Northumbria at Newcastle on 2022-04-23 <1%
Submitted works

Sources overview



oid:27535:16454529Similarity Report ID: 

21
repub.eur.nl <1%
Internet

22
hindawi.com <1%
Internet

23
"Immunoinformatics", Springer Science and Business Media LLC, 2020 <1%
Crossref

24
"Systems Medicine", Springer Science and Business Media LLC, 2016 <1%
Crossref

25
Mahzad Akbarpour, Laleh Sharifi, Amir Reza Safdarian, Pooya Farhang... <1%
Crossref

26
Stephen N. Crooke, Inna G. Ovsyannikova, Richard B. Kennedy, Gregory... <1%
Crossref posted content

27
Tuoyu Zhou. "SARS-CoV-2 triggered excessive inflammation and abnor... <1%
Crossref posted content

28
Yeungnam University on 2019-08-20 <1%
Submitted works

29
journals.plos.org <1%
Internet

30
neurosciencenews.com <1%
Internet

31
Ain Shams University on 2020-07-15 <1%
Submitted works

32
CSU, Los Angeles on 2017-05-30 <1%
Submitted works

Sources overview



oid:27535:16454529Similarity Report ID: 

33
Namrata Tomar, Rajat K. De. "Chapter 3 Immunoinformatics: A Brief Re... <1%
Crossref

34
National University of Singapore on 2011-04-06 <1%
Submitted works

Sources overview








