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ABSTRACT 

Dementia is one of leading cause of the most common neuronal disorders Alzheimer’s Disease 

(AD) that remains untreated even after decades of research. Post-translational modification 

(PTMs) plays many roles in protein turnover rate accumulation of aggregate and can also help in 

the degradation of disease-causing toxic metabolites. In this study we tried to understand the 

involvement of Crotonylation and acetylation in AD by using computational tools and database 

and finally identify a possible drug for treatment using Drug Repositioning tools. Through 

extensive literature analysis we found that P300 and CBP are the common enzymes associated 

with protein crotonylation and acetylation in Alzheimer’s Disease (AD) proving the association 

between these two PTMs. Using step by step computational analysis we found hub genes 

associated with the PTMs and AD. With the help of a comprehensive visual drug network gene 

analysis tool, we identified Arsenic Trioxide as potential drug which interacted with the MAPK1, 

JUN and MAPK3 genes associated with AD. And finally using DrugNet website tool for drug-

disease association and PhospNet tool for disease-gene association studies developed by group of 

researchers from university of Granada, Spain we validated the results and concluded that Arsenic 

Trioxide is associated with different form of Dementia including Frontotemporal dementia, 

vascular Dementia and Dementia associated with lewy bodies. 

  



6 
 

CONTENT 

CANDIDATE’S DECLARATION 2 

CERTIFICATE 3 

ACKNOWLEDGEMENT 4 

ABSTRACT 5 

CONTENTS 6 

LIST OF FIGURES 7 

LIST OF TABLES 7 

LIST OF ABBREVIATIONS 8 

1. INTRODUCTION 9 

2. LITERATURE REVIEW 10-20 

2.1 Alzheimer’s disease: An Overview 10 

2.2 ER stress and UPR response 10 

2.3 Predicting Bioactive Agents and Monitoring of Drug Release 11 

2.4 Prediction of Protein Folding and Protein-Protein Interactions 13 

2.5 Implementation of Artificial Intelligence in De Novo Drug 

Designing 

14 

2.6 Post Translational Modification Enzymes as Drug Targets in 

Pathogenesis of NDDs 

16 

3. METHODOLOGY 20-22 

3.1 Data Extraction 20 

3.2 Identification of common proteins 20 

3.3 Protein-protein interactions 23 

3.4 Bioinformatics tools for of hub genes identification 23 

3.5 Network analysis 23 

4. RESULTS 22-27 

4.1 Protein-protein interactions between identified common proteins 22 

4.2 Identification of hub genes 24 

4.3 Identifying drug-gene interactions 25 

4.4 Result validation 26 



7 
 

5. CONCLUSION  27 

6. REFERENCES 27 

 

LIST OF FIGURES 

S.NO. NAME PAGE 

Figure1 Therapeutics targets for NDD 19 

Figure2 Venn diagram for identified protein 21 

Figure3 Molecular interaction between common proteins  23 

Figure4 Network obtained using cytoscape 23 

Figure5 Cluster network 24 

Figure6 Identified Hub genes 25 

Figure7 Drug-gene interactions 26 

 

LIST OF TABLES 

S.NO. NAME PAGE 

TABLE1 Identified common protein 21 

TABLE2 Rank for identified hub genes 24 

TABLE3 Node table 26 

 

LIST OF ABBREVIATIONS 

AD ALZHEIMER’S DISEASE 

PTM POST-TRANSLATIONAL 

MODIFICATIONS  

NDD NEURODEGENERATIVE 

DISORDERS 

FOXO3 FORKHEAD BOX PROTEIN O3 

EP300 HISTONE ACETYLE 

TRANSFERASE P300 

MAPK3 MITOGEN ACTIVATION PROTEIN 

KINASE 3 



8 
 

CREBBP cAMP RESPONSE ELEMENT 

BINDING -BRINDING PROTEIN 

HDAC1 HISTONE DEACETYLASE 1 

MAPK1 MITOGEN ACTIVATION PROTEIN 

KINASE 1 

ESR1 ESTROGEN RECEPTOR1 

APP AMYLOID BETA PRECURSOR 

PROTEIN 

BACE1 BETA SECRETASE 1 

Aβ AMYLOID BETA 

 

 



9 
 

1.  INTRODUCTION:  

Most neurodegenerative diseases (NDDs) are caused by the accumulation, aggregation, and 

modification of normal host proteins, as well as the effects of viral infections, decreased blood 

flow, changes in tissue homeostasis, and immunological damask. There have been no studies done 

to explain the exact mechanism of protein aggregation and its pathogenicity in NDDs. 

Furthermore, a number of drugs have been tested for NDDs, but their effectiveness has been 

limited, highlighting the gaps in our understanding of their pathogenic mechanism. There has not 

been a full-proof medicine to stop the disease from spreading, until now [1]. Drug designing and 

development is an important area of research for pharmaceutical companies and chemical 

scientists. However, low efficacy, off-target delivery, time consumption, and high-cost impose a 

hurdle and challenges that impact drug design and discovery. Further, complex and big data from 

genomics, proteomics, microarray data, and clinical trials also imposes an obstacle in drug 

discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in 

drug discovery and development. In other words, artificial neural networks and deep learning 

algorithms modernised the area. Machine learning and deep learning algorithms have been 

implemented in several drug discovery processes such as peptide synthesis, structure-based virtual 

screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, and 

pharmacophore modelling, quantitative structure-activity relationship, drug repositioning, 

polypharmacology, and physiochemical activity. In this project we In this study we tried to 

understand the involvement of Crotonylation and acetylation in AD by using computational tools 

and database and finally identify a possible drug for treatment using Drug Repositioning tools. 

Through extensive literature analysis we found that P300 and CBP are the common enzymes 

associated with protein crotonylation and acetylation in Alzheimer’s Disease (AD) proving the 

association between these two PTMs. Using step by step computational analysis we found hub 

genes associated with the PTMs and AD. With the help of a comprehensive visual drug network 

gene analysis tool, we identified Arsenic Trioxide as potential drug which interacted with the 

MAPK1, JUN and MAPK3 genes associated with AD. And finally using DrugNet website tool for 

drug-disease association and PhospNet tool for disease-gene association studies developed by 

group of researchers from university of Granada, Spain we validated the results and concluded that 

Arsenic Trioxide is associated with different form of Dementia including Frontotemporal 

dementia, vascular Dementia and Dementia associated with lewy bodies. 
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2. REVIEW OF LITERATURE: 

2.1 Alzheimer’s Disease and Dementia: 

Most neurodegenerative diseases (NDDs) are caused by the accumulation, aggregation, and 

modification of normal host proteins, as well as the effects of viral infections, decreased blood 

flow, changes in tissue homeostasis, and immunological damask. There have been no studies done 

to explain the exact mechanism of protein aggregation and its pathogenicity in NDDs. 

Furthermore, a number of drugs have been tested for NDDs, but their effectiveness has been 

limited, highlighting the gaps in our understanding of their pathogenic mechanism. There has not 

been a full-proof medicine to stop the disease from spreading, until now [1]. Dementia is one of 

leading cause of the most common neuronal disorders Alzheimer’s Disease (AD) that remains 

untreated even after decades of research. Post-translational modification (PTMs) plays many roles 

in protein turnover rate accumulation of aggregate and can also help in the degradation of disease-

causing toxic metabolites. However, not much is known about the crosstalk between crotonylation 

and acetylation in AD. mutations in protein-coding genes can also promote abnormal protein 

aggregation, such as mutations in the presenilin-2 (PSEN2) gene accelerate Aβ aggregation in AD 

by enhancing the activity of γ-secretase. Similarly, a mutation in the SNCA gene is responsible for 

causing aggregation of α-synuclein in PD and mutations in the interesting transcript 15 (IT15) gene 

increases huntingtin aggregation in HD [2]. 

2.2 ER stress and UPR response:  

In eukaryotes, the endoplasmic reticulum (ER) governs the protein translation, production and 

translocation in secretory pathways and extracellular space to the target locations [3]. Mutations 

in the secretory proteins result in conformation disorders initiating from metabolic disease to 

neurological and developmental disorders. Any modification/abnormality in ER functioning due 

to protein and calcium accumulation results in a perturbed state known as ER stress. The ER stress 

activates the unfolded protein response (UPR) signaling pathway, which counters the perturbed 

activity by upregulated expression of molecular chaperons and foldase [4,5]. PTMs are considered 

as one of the significant factors for protein aggregation, which causes an alteration in three primary 

UPR sensors- inositol-requiring enzyme 1 α (IRE1α), protein kinase R like endoplasmic reticulum 

kinase (PERK), activating transcription factor 6 α (ATF6α), and thus, leads to proteostasis 

dysfunction and elevated ER stress [6]. The UPR response helps in regulating the proteostasis by 
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modulating the misfolded protein by unfolding and refolding mechanism, but prolonged activation 

of UPR results in cell death [7]. In normal conditions, PERK, IRE1α and ATF6 elevates protein 

folding signaling cascades to re-establish protein homeostasis and reduce ER stress, whereas, 

under chronic ER stress conditions, PERK and IRE1α promote cellular dysfunction and cell death 

[8]. Further, ATF4 mediated regulation of PERK has been reported in the death receptor 5 (DR5) 

gene responsible for controlling cell fate via mitochondrial signaling [9]. Under normal conditions, 

PERK phosphorylation results in eukaryotic initiation factor 2 (elF2α) phosphorylation, eventually 

leading to ATF4 expression. IRE1α activity recruits X-box binding protein 1 (XBP1), apoptosis 

signal-regulating kinase 1/ c-Jun N-terminal kinases (ASK1-JNK) and TNF receptor-associated 

factor 2 (TRAF2) that regulates the PTM gene expression. Finally, ATF6 is released from the 

Golgi body and undergoes specificity protein 1 (SP1) and specificity protein 2 (SP2) mediated 

degradation releasing its cytosolic domain. Under perturbed state, decreased UPR signaling has 

been observed due to the competition between the protein accumulate to ligate to GRP78 receptor 

that releases the UPR protein [10,11]. 

ER lumen acetylation is regulated by multiple enzymes, including AT1, ATase1 and 

ATase2. ER lumen protein acetylation has been associated with the processing of Aβ precursor 

protein cleaving enzyme BACE1. Any modification results in amassment of juvenile proteins 

inside the lumen, initiating mild stress, which codes for the autophagic process. Similar results 

have been reported in ALS and HD, where cross-talk between ER acetylation and neuroprotection 

has been observed by activation of UPR mediated autophagy that maintains the protein 

homeostasis [12]. 

2.3 Predicting Bioactive Agents and Monitoring of Drug Release 

Designing and monitoring of drug-likeness is a tedious and time-consuming process. Lately, 

multiple online tools have been developed to analyze drug release and check accountability of 

selected bioactive compounds as a carrier. Benchmark datasets are later used to validate the 

computational analysis. For such evaluation’s pharmacophore based on the chemical feature suits 

the best. These models construct large 3D datasets developed via in silico experiments or in-house 

compound collection [13]. To study ligand-based chemical features, various successful 

experiments have been established using the CATALYST program (www.accelrys.com), and a 

http://www.accelrys.com/
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group of researchers was successful in predicting 11β-hydroxysteroid dehydrogenase type 1 

inhibitors using the VS experiments [14].  

Determining bioactive ligands is a crucial step for selecting a potent drug for a specific target. 

Now, researchers are taking advantage of artificial intelligence in determining bioactive 

compounds that can be used for specific targets associated with a disease. For instance, Wu et al., 

2018 integrated DL and RF methods to devise WDL-RF 

(https://zhanglab.ccmb.med.umich.edu/WDL-RF/), for determining bioactivity of G protein-

coupled receptors (GPCRs) targeting ligands [15]. Likewise, Cichonska et al., 2018 developed 

pairwiseMKL (https://github.com/aalto-ics-kepaco), a multiple kernel learning-based method, for 

determining the bioactivity of compounds [16]. To test the efficiency of their model, they used to 

model to predict the anti-cancerous potency of compounds. Further, Mustapha et al., 2016 

developed an Xgboost model to determine bioactive chemical molecules [17]. In addition, Merget 

et al., 2017 created machine learning models like DNN, RF to determine the bioactivity of more 

than 280 different kinases[18]. Furthermore, Arshadi et al., 2020 have devised DeepMalaria, a DL-

based model for identifying compounds having Plasmodium falciparum inhibitory activity [19]. 

In addition, Sugaya et al., 2014 created a ligand-efficiency-driven support vector regression model 

to ascertain the biological activity of various chemical compounds [20].  Moreover, Afolabi et al., 

2018 used data from the MLD drug data report (MDDR) repository and applied it to a combination 

of boosting algorithms in order to identify novel bioactive compounds [21]. Additionally, Petinrin 

et al., 2018 used the majority voting technique with an ensemble of different machine learning 

models in order to determine biologically active molecules [22].  

Furthermore, adverse drug reactions (ADRs) are unexpected, pernicious, fatal side effects 

caused by drug administration. ADRs are a major challenge in drug development, and it has 

become very necessary to identify possible ADRs during the nascent stage of drug development 

in order to make the drug development process more robust and efficacious. Lately, researchers 

have taken the help of artificial intelligence to determine possible ADRs associated with different 

drugs before they are launched in the market for public use. For instance, Dey et al., 2018 used DL 

based model, which can predict ADRs associated with a drug and even identify chemical 

substructures responsible for those ADRs [23]. In addition, Liu et al., 2012 integrated chemical, 

biological, phenotypic properties of drugs to predict ADR associated with it via machine learning 

https://zhanglab.ccmb.med.umich.edu/WDL-RF/
https://github.com/aalto-ics-kepaco
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analysis [24]. Similarly, Jamal et al., 2017 combined biological, chemical and phenotypic 

properties to predict nervous system ADRs linked with drugs through machine learning analysis 

[25]. The authors also used their model to find out ADRs associated with current Alzheimer's 

drugs. Furthermore, Xue et al., 2020 integrated biomedical network topology with a DL algorithm 

in order to predict Drug-ADR correlation [26]. Moreover, Raja et al., 2017 used machine learning 

analysis in order to predict ADRs, which are a result of drug-drug interactions [27]. They further 

used their model to predict ADR related to cutaneous disease drugs. Besides screening for an 

effective bioactive agent, another key area to work with is drug likeliness and its interaction post-

release. Recently, a freely accessible, user-friendly graphical interface SwissADME 

(http://www.swissadme.ch) was developed to evaluate the compatibility of the drug and its 

pharmacokinetic actions [28]. Mathematical models such as Higuchi, Hixson–Crowell, Ritger–

Peppas–Kormeyers, Brazel–Peppas, Baker–Lonsdale, Hopfenberg, Weibull and Peppas–Sahlin 

has also been applied in drug discovery, one of the most common practice has been the calculation 

of drug loading capacity of the selected or screened bioactive molecule.  

2.4 Prediction of Protein Folding and Protein-Protein Interactions 

Analyzing protein-protein interactions (PPIs) is crucial for effective drug development and 

discovery. Most of the protein annotation methods use sequence homology that has limited scope. 

High-throughput protein-protein interaction data, with ever-increasing volume, are becoming the 

foundation for new biological discoveries. A great challenge to bioinformatics is to manage, 

analyze, and model these data. Hence, computational models were developed that predicts multiple 

inputs at one place simultaneously [29]. Computational methods are implied to study both PPIs as 

well as protein-protein non-interactions (PPNIs), although PPIs are considered more informative 

than PPNIs. PPIs prediction can be identified as direct PPI, direct PPI with indirect functional 

associations and PPIs for signal transduction in pathways [30]. Machine and statical learning 

approaches like K-Nearest Neighbor, Naïve Bayesian, SVM, ANN, DT, and RF are used to predict 

the hindrance in PPIs. Use of Bayesian network was applied to predict PPIs essentially using gene 

co-expression, gene ontology (GO) biological process similarity. Dataset integration using BN 

produces precise and accurate PPI networks illustrating comprehensive yeast interactome [31].  

Another group also used BN to combine datasets for the yeast to study PPIs [32].  A novel 

hierarchical model PCA-ensemble extreme learning machine (PCA-EELM) to predict protein-

protein interactions only using the information of protein sequences has appeared as a powerful 

http://www.swissadme.ch/
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tool that gives output with accuracy and less duration [33]. Furthermore, DNNs PPIs prediction 

efficiency was improved by a novel method known as DNN for Protein-Protein Interactions 

prediction (DeepPPI) (http://ailab.ahu.edu.cn:8087/DeepPPI/index.html) [34].  In mammalian 

cells, signal transduction is mostly controlled by PPIs between unstructured motifs and globular 

proteins binding domains (PBDs). To predict these PBDs across multiple protein families bespoke 

ML tool was developed, known as hierarchical statistical mechanical modelling (HSMM) [35]. 

Prediction of protein-protein interactions based on ML, domain-domain affinities and frequency 

tables, a novel tool referred to as PPI-SVM was developed in 2011, which is freely accessible at 

(http://code.google.com/p/cmater-bioinfo/) [36]. Due to the increased number of solved complex 

structures, a multimeric threading approach, PROSPECTOR, has been developed. In this method, 

proteins with known template structures are rethreaded, and their interaction with other proteins, 

their interfacial energy and Z-score are established [37]. Structure-based threading logistic 

regression tool Struct2Net (http://struct2net.csail.mit.edu) to evaluate the probability of interaction 

and is the first structure-based PPI predictor apart from homology modelling [38]. Gene cluster-

based methods calculate the co-occurrence probability of orthologs of query proteins encoded from 

the same gene clusters. This method is also named domain/gene co-occurrence. If two proteins’ 

genes are not close by in the genome, then this method cannot reliably predict an interaction 

between these two genes [39] [40]. 

2.5 Implementation of Artificial Intelligence in De Novo Drug Designing  

The iterative process to design 3D structures of receptors to generate a novel molecule is termed 

as de-novo drug designing, which was intending to produce new dynamics. However, de-novo 

drug designing has not seen a boundless use in medication disclosure. Further, The field has seen 

some recovery recently because of advancements in the field of AI [41,42]. VS has emerged as a 

huge tool in the drug improvement measure, as it conducts profitable in silico look in excess of an 

enormous number of blends, at last, extending yields of potential medicine leads. As a subset of 

AI, ML is a technique for coordinating VS for drug leads, which generally incorporates gathering 

a filtered planning set of blends, contained known actives and inactives [43,44]. In the wake of 

setting up the model, it is tested and, if accurate enough, used on previously unknown database. In 

this section, we discussed how AI has proved to be a boon for drug designing using the de-novo 

technique. 

http://ailab.ahu.edu.cn:8087/DeepPPI/index.html
http://code.google.com/p/cmater-bioinfo/
http://struct2net.csail.mit.edu/
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In one study, the researchers utilized the indolent space portrayal to prepare a model dependent 

on the quantitative estimate of drug-likeness (QED) drug-similarity score and the manufactured 

availability score synthetic accessibility score (SAS) [45]. In another distribution, the presentation 

of such a variational autoencoder was contrasted with an antagonistic autoencoder [46]. The ill-

disposed autoencoder comprises of a generative model delivering novel compound structures. A 

second discriminative antagonistic model is prepared to differentiate genuine particles from 

produced ones, while the generative model attempts to trick the discriminative one [47]. The 

antagonistic autoencoder created more substantial structures than the variational autoencoder in 

generation mode essentially. In mix with an in-silico model, novel structures anticipated to be 

dynamic against the dopamine receptor type, 2 could be gotten. Researches utilized a generative 

ill-disposed organization (GAN) to propose mixes with putative anticancer properties [48].  RNN 

has likewise been effectively utilized for de-novo drug design. Since SMILES strings encode 

substance structures in a grouping of letters, RNNs have been utilized to generate compound 

structures. It was observed that RNNs have the potential to utilize SMILES strings for drug 

designing [49]. A similar methodology was likewise effectively utilized for the development of 

novel peptide structures [50]. Neural network learning was effectively applied to inclination the 

created mixes towards wanted properties [51]. Similarly, transfer learning was utilized as another 

system to create novel synthetic structures with an ideal natural action. In the subsequent steps, 

the organization is prepared to get familiar with the SMILES syntax with a huge preparing set 

[52,53]. In the subsequent advance, the preparation is proceeded with mixes having the ideal 

movement. Moreover, additional epochs of training were adequate to reach the stage of novel 

combinations into a compound space involved by dynamic atoms. In light of such a methodology, 

five atoms were combined, and the plan action could be affirmed for four particles against atomic, 

chemical receptors [54]. A few distinct designs have been proposed, which have been equipped 

for creating legitimate, important novel structures. The novel synthesis has been investigated by 

these strategies, with the property dissemination of the created molecules or atoms being similar 

to the large training set used. The forthcoming primary application for this strategy was effective, 

with 4 out of 5 atoms indicating the ideal action [55]. Optimization of AI and multi-objective has 

been proved to be a promising solution to bridge the chemical and biological phase. Novel pair of 

multi-objectives based on RNN for the automated de-novo design based on SMILES were 

developed to find the best possible match between physicochemical properties and their 
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constrained biological targets. The results indicated that AI and multi-objective optimization 

allows capturing the latent links joining chemical and biological aspects, thus providing easy-to-

use options for customizable design strategies, which proved especially effective for both lead 

generation and lead optimization [56].  

ML models like SVM, RF, DNNs, and many others have been used for drug discovery for 

analyzing the pharmaceuticals applications from docking to VS [57]. Recently, drug repurposing 

has emerged as an innovative approach to minimize drug development duration that usually 

involves data mining and AI [58]. A group proposed a question-answer artificial system (QAAI) 

that had the capability to repurpose drugs that used google semantic AI universal encoder to 

compute the sentence embedding in the red brain JSON database. The study validated prediction 

for the lipoxygenase inhibitor drug zileuton as a modulator of the NRF2 pathway in-vitro, with 

potential applications to reduce macrophage M1 phenotype and reactive oxygen species 

production. This novel approach has been proved to effective for reposition in NDDs [59]. With 

the rapid development of systems-based pharmacology and poly-pharmacology, method 

development for the rational design of multi-target drugs has to become urgent. The first de-novo 

multi-target drug configuration program known as LigBuilder V3 

(http://www.pkumdl.cn/ligbuilder3/) has been devised to design ligands for different receptors, 

numerous coupling locales of one receptor, or different configurations of one receptor. LigBuilder 

V3 is for the most part relevant in again multi-target drug plan and enhancement, particularly for 

the plan of compact ligands for protein proteins with varying ligand binding sites [60]. De-

novo drug design actively seeks to use sets of chemical rules for the fast and efficient identification 

of structurally new chemotypes with the desired set of biological properties. Moreover, fragment-

based de novo design tools have been successfully applied in the discovery of noncovalent 

inhibitors. Herein a new protocol, called Cov_FB3D, which involves the in silico assembly of 

potential novel covalent inhibitors by identifying the active fragments in the covalently binding 

site of the target protein [61]. 

2.6 Post Translational Modification Enzymes as Drug Targets in Pathogenesis of NDDs  

Emerging evidence suggests the mechanistic involvement of aberrant PTMs in the pathogenesis 

of NDDs such as AD, PD, ALS, HD, multiple sclerosis, and frontotemporal dementia. Alteration 

in PTMs causes misfolded protein aggregates, which increases neurotoxicity through disrupted 

http://www.pkumdl.cn/ligbuilder3/
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cell signaling cascades. These impeding cells signaling pathways hamper the biological process 

such as autophagy and mitophagy, inflammatory response, cell-cycle regulation, and 

mitochondrial function, which are the major causes of neuronal cell death. Recent studies 

demonstrated the implications of drug molecules and natural biomolecules targeting different PTM 

enzymes in the NDDs therapeutics. Drug molecules or natural biomolecules act as either inhibitors 

or activators of particular PTM enzymes. For example, In AD, Tau's hyperphosphorylation at S396 

residue by GSK-3 results in the formation of neural fibrils accumulate, leading to tau aggregation. 

SAR502250 [62], curcumin [63], 6-hydroxydopamine [64] have been reported to downregulate 

GSK3 activity, thus reducing tau aggregation. Similarly, BACE1 is an exciting target for AD 

therapeutics, which phosphorylates Aβ with the help of enzymes such as γ-secretase and β-

secretase that cleaves APP, and thus, results in the aggregation and formation of Aβ plaques. 

Verubecestat, Lanabacestat, and Elenbacestat (E-2609) are considered as BACE1 inhibitors, but 

their phase-III trial was discontinued due to their respective inefficacy [65,66]. Likewise, 

palmitoylation of APP leads to enhanced APP cleavage by BACE1, leading to amyloidogenesis. 

However, inhibition of Sterol O-acyltransferase (ACAT) with CP-113818 reduces the APP 

palmitoylation level and can be used in AD therapeutics [67,68]. (Figure1) 

Moreover, TDP-43 deacetylation by histone deacetylase (HDAC) at K154 and K192 leads 

to hyperphosphorylation of TDP-43, which causes the formation of peptide aggregates that 

promote ALS pathogenesis [69].  In the SOD1-G93A mouse model, sodium butyrate and 

trichostatin inhibit HDAC activity promoting neuroprotection [69]. In embryonic mouse model 

31B12A, scFv was observed to prompt HSP70 mediated chaperone autophagy activation resulted 

in TDP-43 aggregates inhibition [70]. Similarly, in a study, it was demonstrated that α-synuclein 

glycation potentiated aggregation via magnesium oxide-induced oligomerization in mice and 

Drosophila [71]. Further, glycation hampers the ubiquitination of α-synuclein, thereby reducing 

its degradation, which could be reversed with magnesium oxide inhibitors like aminoguanidine 

[72]. Furthermore, In AD, it has been reported that AGEs elevate oxygen radicles, thereby 

increases APP activity [73]. However, increased reactive oxygen species (ROS) activity was 

suppressed by resveratrol via β-secretase downregulation [73]. Furthermore, Aβ nitration at Y10 

is a bit contradictory.  An early study reported that Y10 nitration by peroxynitrite enhances 

aggregate formation, which was found in amyloid plaque core in the AD mice model [74]. 

However, a recent experiment showed that Y10 nitration notably curbed amyloid aggregation. The 
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aggregates formed in the former study, when treated with L-NIL, accounted for reduced 3NTyr10-

Aβ in APP/PS1 mice [75]. Similarly, in AD, BACE1 SUMOylation at K501 residue escalated its 

stability, thereby altering the APP that later generates Aβ plaque [76]. BACE1 inhibitors are 

reported to retard its activity and suppress APP cleavage. SOD-1 SUMOylation enhances protein 

misfolding that results in the formation of an inclusion body. MIF is observed to reduce inclusion 

body formation here by curbing aggregate formation [77]. Similarly, ubiquitin sequestering in 

inclusion bodies retards the proteasomal activity and result in the progression of NDDs.  
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FIGURE 1: THERAPEUTICS TARGET FOR VARIOUS NDDS 
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Ubiquitination of α-synuclein at K10, K23 downregulates the protein clearance resulting in 

inclusion bodies in AD. Furthermore, neural precursor cell expressed developmentally down-

regulated protein 4 (Nedd4) enhances the α-synuclein clearance as it is reported to interact directly 

with it by promoting ubiquitination at K63 [78]. α-synuclein SUMOylation at K96 and K102 

mediated by phytochrome-interacting ankyrin-repeat protein 2 (PIA2) suppresses the proteasomal 

degradation and elevated protein aggregate that promote PD, SiRNA can knock out the PIA2 UPS 

suppression and can enhance monoubiquitination of α-synuclein [79]. Likewise, the succinylation 

of APP at K687 residue hampers its degradation and escalates Aβ aggregation. It was observed 

that the succinylated APP, along with Aβ agglomerates, was present in the hippocampus of a 

transgenic mouse for AD due to diminished brain glucose regulation [80]. In one experiment, 

inhibition of agglomerates by donepezil was observed in BCCAO rats, and donepezil escalated 

sorting Nexin 33 (SNX33) level in cortical neurons resulting in reduced agglomerates [81]. 

Moreover, one carbon methylation can perturb normal DNA; this one carbon manipulation results 

in AD by generating Aβ agglomerates.  DNMTs, ten-eleven translocation methylcytosine 

dioxygenase 1 (TET-1), were associated with AD onset. The use of EGCG DNMT inhibitors has 

been shown to curb agglomerate growth [82] 

3. METHODOLOGY: 

3.1 DATA EXTRACTION  

Herein, through extensive literature review we found that CBP and P300 were common enzymes 

associated with acetylation and crotonylation in AD (REF). A readily accessible database 

Comparative toxicogenomic database (CTD) http://ctdbase.org/ that contains the information 

about genes and its activity associated with particular disease has been used for data extraction to 

retrieve information of genes-interactions of AD, P300 and CBP (REF). 

3.2 IDENTIFICATION OF COMMON PROTEINS (VENNY2.0) 

Venny 2.0 ( https://bioinfogp.cnb.csic.es/tools/venny/) is an online bioinformatics tool that helps 

frame a Venn diagram. The information retrieved from CTD were then visually interpreted to 

identify common protein residues between AD, P300 and CBP using Venny 2.0 (Figure).  

http://ctdbase.org/
https://bioinfogp.cnb.csic.es/tools/venny/
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Figure2: Venn diagram for identified common protein 

Table1: list of identified common protein 

 

AFP 

AKT1 

ANAPC2 

ANAPC7 

APC 

AR 

ATF2 

ATF3 

ATF4 

ATG12 

ATXN3 

BMI1 

BRCA1 

BRD4 

C3ORF62 

CARM1 

CCAR2 

CCN2 

CCNA2 

CCND3 

CDC16 

CDC20 

CDC27 

CDH1 

CDH2 

CDK2 

CEBPB 

CEBPD 

 

CENPJ 

CHUK 

CITED2 

CITED4 

CLOCK 

CNTN2 

COPS2 

CPSF4 

CREB1 

CREBBP 

CSK 

CTBP1 

CTNNB1 

DAXX 

DDIT3 

DDX17 

DDX5 

DUX4 

DYRK1A 

DYRK1B 

E2F1 

E2F3 

EBF1 

EGLN3 

EID1 

EIF4ENIF1 

ELAVL1 

EP300 

 

EPAS1 

ESR1 

ESR2 

ETS1 

ETS2 

EWSR1 

FBXL19 

FGFR1 

FHL1 

FOS 

FOXM1 

FOXO1 

FOXO3 

FOXO4 

GATA3 

GCM1 

GLI3 

GPBP1 

GRIP1 

GTF2B 

H3C1 

HBP1 

HCK 

HDAC1 

HDAC2 

HDAC3 

HES1 

HIF1A 

HIPK2 

HLF 

HNF1A 

HNF1B 

HNF4A 

HNRNPL 

HOXA10 

HOXB6 

HOXB7 

HSF1 

HSPA8 

HSPB1 

HTT 

IFNAR2 

IKBKB 

IKBKG 

ING1 

IRF3 

IRF5 

IRF7 

JUN 

KAT2B 

KAT6A 

KDM3B 

KHDRBS1 

KLF1 

KLF13 

KLF4 

 

KLF5 

KMT2A 

KMT2D 

LAMP2 

LDB2 

LIG4 

LYN 

MAF 

MAML1 

MAP3K5 

MAPK1 

MAPK10 

MAPK3 

MDC1 

MED21 

MED23 

MED25 

MEIS1 

MGA 

MIER1 

MITF 

MKNK1 

MSX1 

MTDH 

MTF1 

MUS81 

MYB 

MYBL2 

 

MYC 

MYOD1 

N4BP2 

NCOA1 

NCOA2 

NCOA3 

NCOA6 

NCOR1 

NCOR2 

NEUROG1 

NFATC1 

NFE2 

NFE2L2 

NFYA 

NKX2-1 

NLK 

NPAS2 

NR3C1 

NR3C2 

NR5A1 

NUP98 

PARP1 

PCMT1 

PELP1 

PHOX2B 

PLAGL1 

PML 

PNKP 

 

POLR1E 

POLR2A 

POT1 

POU1F1 

PPARG 

PPARGC1A 

PPP1CA 

PPP1CC 

PPP1R13L 

PRLR 

PTMA 

PTMS 

PTTG1 

PYCR1 

PYGO2 

RAD23A 

RARA 

RB1 

RBBP4 

RBCK1 

REL 

RELA 

RPS6KA3 

RPS6KA5 

RUNX1 

RUNX2 

RUVBL1 

SERTAD1 

 

SERTAD2 

SERTAD3 

SETD1A 

SH3GL1 

SIRT1 

SMAD2 

SMAD3 

SMAD4 

SMARCA2 

SMARCA4 

SMG7 

SNAI1 

SNIP1 

SOWAHA 

SP1 

SPI1 

SPIB 

SRC 

SRCAP 

SREBF1 

SREBF2 

SRF 

SS18L1 

STAT1 

STAT2 

STAT6 

TBP 

TBX21 

 

 

TCF12 

TCF3 

TDG 

TEAD1 

TFAP2B 

TFDP1 

TGS1 

TP53 

TP53BP1 

TRIM24 

TRIM25 

TRIM28 

TRIP4 

TRP53 

TSPYL2 

TXNDC11 

UBE2I 

UBE2S 

USP14 

USP7 

VDR 

VIRMA 

WRN 

WT1 

XRCC6 

YY1 

 



22 
 

3.3 PROTEIN-PROTEIN INTERACTIONS 

To understand the protein- protein interactions between the identified common a functional protein 

network association biological database STRING (https://string-db.org/) has been been used. The 

node table and the network are retrieved in cytoscape readable form.  

3.4 IDENTIFICATION OF HUB GENES  

Once the PPI has been developed the retrieved data is then uploaded on cytoscape and nested 

network of the common protein is obtained. Thereafter, using MCODE application present in 

cytoscape clusters of subnetworks were developed. In total seven clusters were obtained based on 

the association of genes out of which cluster 1 has been considered for our studies. Later using 

another application present in cytoscape cytohubba hub genes were identified.  

3.5 NETWORK ANALYSIS  

To analyze the gene-drug interaction online tool network analyst has been used in which gene IDs 

are uploaded and a comprehensive network is developed. To validate the drug-gene association 

determined by network analysis an online drug repurposing tool DrugNet & disease-gene 

prioritization tool ProphNet developed by university of Granada, Spain 

(http://genome.ugr.es:9000/) has been used. These tools use algorithms on the provided input that 

can be disease network, protein domain and/or gene network and performs network-based 

information predictions that aid in drug repurposing. 

4. RESULTS AND DISCUSSION 

4.1 PROTEIN-PROTEIN INTERACTIONS BETWEEN IDENTIFIES COMMON 

PROTEINS 

PPI network enables to understand the relation between two or more interacting proteins within 

same or different class. The list common proteins were fed into the database and molecular 

interactions were visualized. This list was retrieved and uploaded into Cystoscape tool that be 

downloaded from (https://cytoscape.org/download.html),  

https://string-db.org/
http://genome.ugr.es:9000/
https://cytoscape.org/download.html
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Figure3: Molecular Interaction between common proteins using STRING 

 

Figure4: Network obtained using Cytoscape 
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4.2 IDENTIFICATION OF HUB GENES 

Using MCODE tool in Cytoscape different set of clutsers were identified. Overall, seven clusters 

were obtained of which cluster1 was selected due to higher score 28.467, number of nodes and 

edges 32 and 445 respectively. This cluster contains total 32 genes namely HNF4, CEBPB, EP300, 

MAPK1, NR3C1, SIRT1, CDK2, CTNNB1, CDH1, SMAD3, SMAD4, SRC, AR, SP1, CREBBP, 

SNAI1, HDAC1, RELA, NCOR1, SMAD2, FOXO3, HIF1A, CREB1, ESR1, MYC, RUNX2, 

FOXO1, JUN, AKT1, PARP1, MAPK3 and FOS (see figure). Thereafter, cytohubba another tool 

available on cytoscape was used to identify the hub genes in the selected cluster.  Cytohubba use 

multiple algorithms to identify the essential nodes that may be a potential drug-targets. We 

identified 10 HUB genes namely FOXO3, EP300, MAPK3, CREBBP, AR, HDAC1, MAPK1, 

MYC, JUN, ESR1. 

 

 

 

                Figure5: cluster network                                   Table 2: Rank and Score of Hub genes 

 

Top 10 in network 1: Cluster 1 (Score: 

28.467) ranked by MCC method 

Rank Name Score 

1 FOXO3 2.31E+21 

1 EP300 2.31E+21 

1 MAPK3 2.31E+21 

1 CREBBP 2.31E+21 

1 AR 2.31E+21 

1 HDAC1 2.31E+21 

1 MAPK1 2.31E+21 

1 MYC 2.31E+21 

1 JUN 2.31E+21 

1 ESR1 2.31E+21 
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Figure6: Identified HUB genes in cluster 

4.3 IDENTIFICATION OF DRUG-GENE INTERACTIONS 

After identification of hub genes, network analysis has been performed to identify the drug-gene 

interaction. The network obtained for a minimum of 3 nodes has been selected which has MAPK1, 

JUN and MAPK3 as main target nodes. Through visual analysis of the network, we see that 

MAPK1 has degree of 14 which means it interacts with 14 drugs, JUN has degree of 5 and MAPK3 

has 4. Interestingly, MAPK1 and MAPK3 share a common drug purvalanol (DB02733) and all the 

three main nodes of the genes that includes MAPK1, JUN and MAPK3 share a common drug 

Arsenic trioxide (DB01169) with highest betweenness among the interacting drugs of 104.5. 
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Figure7: Drug- gene interactions 

ID Label Degree Betweenness 

5594 MAPK1 14 189 

3725 JUN 5 78 

5595 MAPK3 4 44 

DB01169 Arsenic trioxide 3 104.5 

DB02733 Purvalanol 2 19.5 

DB00570 Vinblastine 1 0 

DB00605 Sulindac 1 0 

DB00852 Pseudoephedrine 1 0 

DB01029 Irbesartan 1 0 

DB01064 Isoprenaline 1 0 

DB02116 Olomoucine 1 0 

DB02482 Phosphonothreonine 1 0 

DB04338 SB220025 1 0 

DB04604 5-iodotubercidin 1 0 

DB05785 LGD-1550 1 0 

Table 3: Node Table 

4.4 VALIDATION OF THE RESULTS 

To validate the drug-gene association determined by network analysis an online drug repurposing 

tool DrugNet & disease-gene prioritization tool ProphNet developed by university of Granada, 

Spain (http://genome.ugr.es:9000/) has been used. These tools use algorithms on the provided 

input that can be disease network, protein domain and/or gene network and performs network-

based information predictions that aid in drug repurposing. The identified hub genes were first 

http://genome.ugr.es:9000/
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uploaded in prophnet tool it has been observed that out of the identified genes ESR1 is involved 

with Dementia one of the leading causes for AD and Frontotemporal Dementia (FTD). Similar 

results were observed for drug- gene association Arsenic trioxide has shown to be associated with 

Dementia and FTD. These results show that Arsenic trioxide has potential to be used as repurposed 

drug for AD treatment.   

5. CONCLUSION 

AD is one of the most common prominent neurodegenerative disorders that has no cure. Here in 

this project, we carried out in silico experiments to establish and understand the correlation 

between the protein involved in acetylation and crotonylation of proteins in AD. We found that 

p300 and CBP are involved in both the PTMs. Further investigations shows that there are 254 

common proteins associated with genes interacting with AD, P300 and CBP. With the help of 

these identified common proteins their visual networks have been studied and found that 10 HUB 

genes namely FOXO3, EP300, MAPK3, CREBBP, AR, HDAC1, MAPK1, MYC, JUN, ESR1 

actively interact with the drugs. Further using drug repurposing tools readily available online we 

found that arsenic trioxide interacts actively with MAPK1 JUN and MAPK3 with highest 

betweenness of 104.5 finally through validation we concluded that arsenic trioxide is a potential 

drug for the treatment. 
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