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ABSTRACT  

 

Humans all across the globe migrate to cities/urban areas in search of better 

livelihood. In India alone, the migrant population moving to cities is likely to rise to 

40% by 2030. Urbanization takes a heavy toll of the scarce resources. Besides, there 

are many adverse environmental effects of rapid urbanization. Urban planners, 

therefore, have to continuously control and monitor the urban expansion, plan 

amenities, make judicious allocation of lands for industries, residences and agriculture, 

ensure low environmental pollution and simultaneously also address several other 

challenges of urban planning.  

Remote sensing in general has been a very important supporting tool in the 

hands of urban planners in assessment of existing urban growth particularly in 

extraction of different levels of urban engineered surfaces such as roads and roofs etc. 

and its interpolation to assess future urban growth. The development in the field of 

remote sensing has therefore always been of interest to urban planners. The 

development of Hyperspectral Remote Sensing has further enabled urban planners in 

better assessment of urban expanse. However, though hyperspectral data is significantly 

more useful to the urban planners, it comes with its own set of challenges such as 

spectral variability, mixed pixel problems, accuracy requirements, requirement of 

recovery shape for correct identification of urban engineered surfaces (roads and roofs), 

selection of an appropriate approach such as target detection/classification/machine 

learning approach for information extraction providing better accuracy etc.  

 The present Thesis explores one of the relevant problems useful for urban 

planners i.e development of spectral-spatial strategies for detection of engineered 

objects using hyperspectral data. This problem has been explored under three 
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objectives. The first objective deals with an exhaustive comparative assessment of 

standard spectral target detection algorithms for engineered objects using hyperspectral 

data, under four categories. Various algorithms reported in literature have been 

considered for comparison. The second objective involves, development of different 

strategies for detection of engineered objects. It has been performed under two sub-

objectives. In the first part, spectral - spatial urban target detection using Artificial 

Neural Network (ANN) has been explored. The second part explores, detection of the 

engineered surfaces (roads and roofs) using deep learning approach. The last objective 

expounds mixed pixel analysis and shape identification of engineered objects using 

hyperspectral data. This is also done in two parts, the first part deals with extraction of 

urban targets using fusion of spectral and shape features, and the second part deals with 

urban target detection using super-resolution mapping approach by recovery of shape.  

The data for the research is Airborne Visible and Infrared Imaging Spectrometer 

– Next Generation (AVIRIS-NG) hyperspectral data collected during a joint ISRO-

NASA campaign held during 2016-2017. For the present study, urban hyperspectral 

data for Udaipur, Rajasthan captured during February 2016 has been used. 

 For comparative assessment, different categories of target detection algorithms 

have been considered for extraction of roads and roofs. This has been implemented 

using reference spectra using both the in-scene (derived from image) and in-field 

(collected while ground data campaign) spectra. One of the findings of the results 

suggests that, Mahanalobis angle measure may be one of the robust angle measures for 

detection of roads and roofs. Besides in general, it is found that machine learning based 

methods such as ANN and ELM perform better amongst all the measures.  

Associating spatial information such as morphological attribute profiles along 

with spectral signatures of labelled pixels of targets have yielded higher accuracy as 



v 
 

compared to standard target detection methods. The approach seems to perform better 

when targets of interests are composed of similar materials. For instance, roads and 

roofs are often made up of concrete, asphalt etc. and therefore purely spectra-based 

delineation of these two surfaces is challenging. Further, CNN based measures appear 

to provide higher accuracy in automated feature extraction of complex urban targets 

with minimal human intervention. 

Spectral similarity of urban targets and coarse resolution of the sensor poses 

multiple challenges in their detection. Extraction of shape of urban engineered surfaces 

is an important part in urban planning. Therefore, two shape based features, exploiting 

the spatial aspect of hyperspectral data are proposed. Additionally, the shape of urban 

engineered surfaces (roads and roofs) is enhanced using unmixing based super 

resolution approach by taking the neighbouring pixels into account.  

The study, however, restricts itself in terms of extraction of different levels of 

roads and roofs. Besides, the study does not link up with extraction of road and roof 

surfaces with different urban applications such as determination of road and roof 

conditions and aging. These and several other relevant issues may be explored in future.  
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Chapter 1  

Introduction  
 

The urban population is growing due to expansion of cities and migration of 

people in search of better opportunities (Storper and Scott 2009). According to a survey 

of Ministry of Housing and Urban Affairs, Government of India; the percentage of 

urban population to total population stands at 31.6 with a continuous increase in its 

proportion since the previous decade (Chandramouli 2011). This population living in 

urban areas, in India, is further estimated to increase approximately to 40% by 2030 

(United Nations 2015). The major reasons attributed for increase in urban trends are 

industrialization, commercial opportunities, socio-economic benefits, occupational 

prospects and modernization (Ershad 2020). Numerous challenges associated with 

urbanization include, increasing population density and its impact on urban architecture 

(housing, roads, hospitals, schools etc.). The direct consequences of urbanization are 

changes in land quality, pollution, degraded water quality, atmospheric and climatic 

changes etc. In emerging economies, urbanization is one of the major parameters in 

assessment of multiple socio-economic issues. Growth in urban population plays a 

havoc on urban necessities like water, housing, transport, health and many more. 

 For sustainable development, preparation of strategic city plans are necessary 

which involve delineation of probable growth areas followed by delineation of city-

level infrastructure (roads, roofs, drainage etc.). Alteration in vegetative cover, water 

and air quality, surface temperature is induced by urban expansion, which in turn 

influence the microclimate of the human habitat and degrades the environment (Shafri, 

et al. 2012). All these issues necessitate automated, time and cost-efficient techniques 

for urban planning and management.  Social activist and urban writer Jane Jacobs once 
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quoted, “Cities have the capability of providing something for everybody, only because, 

and only when, they are created by everybody. (Jacobs 2016)” 

 With the development in space-borne and air-borne technologies, mapping the 

urban areas has become easier, less time and effort consuming, giving a bird’s eye view 

of larger area at the same time. However, due to miscellaneous material composition 

and levels of classification (Anderson and James 1976) of urban features, multitudes of 

challenges are encountered in extraction of urban information such as, small size/width 

of urban targets, for example, street roads and pavements, heterogeneity, higher within 

class variability and lower intra class variability (Chen, et al. 2018) etc. Certain urban 

built-up surfaces such as asphalt roofs and roads may also be confused with bare soil 

surfaces due to their spectral similarity (Herold, et al. 2004).  

 Therefore, in addition to standard statistical classification techniques, several 

new AI based techniques are being explored for mapping of urban targets consisting of 

different material composition and land cover types. Satellite remote sensing has also 

dramatically improved Earth observation and our capability to understand different land 

cover types and atmosphere. Most of the space borne sensors, so far, have been 

multispectral with a few wavebands tailored for specific observational requirements. It 

is now well established that information derived from multiple narrow contiguous 

bands known as hyperspectral may be far more suitable than a few discrete 

multispectral wavebands (S. B. Li 2009) (Pandey and Tiwari 2020) (Hegde, et al. 

2014). 

Hyperspectral Remote Sensing enables the study of the properties of in-scene 

materials remotely for the purpose of detection, identification, and composition analysis 

of objects present in the environment. It is expansively used for urban forestry 
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monitoring (Zhang, Song and Yu 2011) , agriculture (Teng and Gao 2009) , marine 

research (Lou, et al. 2008) , mineralogy (Pei and Fu. 2007)  and many more.  

  Hyperspectral data is extensively used for multiple land use and land cover 

classification (Hegde, et al. 2014) and target detection applications (Li, et al. 2009) in 

urban areas. Urban land covers are complex in nature comprising of impervious 

surfaces which further consist of roads, roofs, parking lots and other infrastructure 

(Schueler, Fraley-McNeal and Cappiella 2009).  The reflecting characteristics of roof 

materials modify the incident energy absorbed by them and has a direct impact on local 

climate (Oke and Cleugh 1987). The aging of roads also affects the trafficability, 

imposition of safety rules and regulations with an added cost of construction or 

maintenance. Improvement in mapping of roads and roofs has a capability of reframing 

current scenario of urban planning and development (Herold 2003). Susceptibility 

towards disaster, climatic changes is also mounting with rapid urban growth; 

influencing classification and target detection studies via remote sensing technology 

(Mourshed, Bucchiarone and Khandokar 2016).   

With the availability of high spatial satellite and airborne data, per-pixel based 

algorithms are often considered for extraction of useful information from the data 

(Peña-Barragán, et al. 2011). As urban areas are an amalgamation of various 

heterogeneous surfaces such as roads, roofs, parking lots etc.; their spectral complexity 

may result in various challenges while using per-pixel analysis (Herold, et al. 2004). 

One of the significant challenges is that, substantial amount of signal captured at the 

sensor apparently comes from the pixel background (Townshend, et al. 2000). 

Therefore, the algorithms that incorporate both spectral and spatial aspect of the remote 

sensing data are useful for better classification. The spatial features may include 
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individual areas with a definite shape and spectral homogeneity, also referred as image 

objects (Blaschke, et al. 2014).   

Target detection is a binary hypothesis to check whether a ‘rare’ object of 

known spectra is present or not in the area of interest. The ‘rare object’ often termed as 

target is relatively present in a small number in contrast with the total number of pixels 

in a hyperspectral image. As the number of pixels considered to be a target is 

comparatively low, therefore estimation of statistical properties of target class is 

difficult. Also, the targets may not be resolved clearly due to sensor spatial properties. 

The targets appearing in few pixels are termed as pure-pixel or full-pixel targets or else 

if they exist as part of a single pixel, they are called subpixel targets. Thus, key to target 

detection problem lies in making target present or target absent decision for every pixel 

in hyperspectral image (Manolakis, Lockwood and Cooley 2016). The target detection 

approach is therefore significantly different from conventional classification approach. 

Many urban surfaces may lend themselves to better extraction using target detection 

approach rather than through classification approach. However, there is lack of 

literature exploring the utility of target detection approach in extraction of urban 

surfaces.  

Recent field campaign of Airborne Very High-Resolution Imaging 

Spectrometer -Next Generation, (AVIRIS-NG) conducted by ISRO and NASA during 

2016-2017 has provided an opportunity to explore the potential applications of 

hyperspectral data in various thematic areas. Considering the potential of this emerging 

technology, the Interdisciplinary Cyber Physical Systems, Division of Department of 

Science & Technology, Government of India evolved a cluster based multidisciplinary 

Networked project on “Imaging Spectroscopy and Applications (NISA)” to promote 
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research in this area. This data provides an opportunity to explore hyperspectral data 

for various urban related studies. 

 The work presented in this thesis undertakes development of spectral-spatial 

strategies for detection of engineered objects using hyperspectral data collected during 

this campaign.   

1.1. Problem Statement 

Extraction of meaningful information from remote sensing data is a highly 

challenging task. Engineered objects or urban built-up surfaces are considered as 

anthropogenic features by which water cannot penetrate (Weng 2012). An engineered 

object can be regarded as a surface which is created artificially with less thickness. It 

can be composed of either single component or multiple components preferably three-

dimension in nature. Furthermore, it has a well- defined boundary which is visible or 

tangible surface of object. Roads, rooftops, parking lots, sports infrastructure are 

examples of engineered objects or surfaces.  

Detection and identification of engineered objects become complicated due to 

their different atomic structures, variant response to different parts of electromagnetic 

spectrum and molecular interaction between particles. Objects are complicated because 

of different base material used, variety of coatings/paintings on the surfaces or the series 

of steps involved in its development. Besides extraction of urban information may 

involve extraction at different levels. One such classification scheme is suggested by 

Anderson et al (Anderson and James 1976). It may not be possible to extract all types 

of engineered surfaces present in urban land covers at different levels; therefore, it is 

proposed to study and detect only two major target classes belonging to Roads and 

Roofs only up to first few levels. Figure 1.1. shows some examples of engineered 

objects collected during ground data collection. 
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Figure 1.1. Types of Roads and Roofs as engineered objects 

 

The unplanned increase in construction of engineered surfaces might lead to 

increase in volume, duration and intensity of urban runoff (Weng 2012). The urban 

stretch could experience a decrease in groundwater recharge with increased risk to 

stormflow and flood (Brun and Band 2000). Also, it has a direct impact on water quality 

and air quality. Till now, many researchers have explored detection and analysis related 

to natural targets such as vegetation (Farooq, Jia and Zhou 2019), forests (Kumar 2013), 

waterbodies (Igamberdiev 2011), and soil (Peng 2013), but applications within the 

urban domain have to explore newer challenges and complexities.  

Spectral signatures of built-up materials in urban areas show similarities in 

terms of material composition, like asphalt and concrete are used for making roads and 

roofs, which make it difficult to spectrally discriminate these materials. Depending 

upon the spectral and spatial resolution, which are based on sensor characteristics, a lot 

of within-class-variability is also observed. Furthermore, due to heterogeneous and 

complex attributes of urban built-up mixed pixel pattern is also pragmatic. The signal 

reaching the sensor is a combination of multiple other features, in the background.  

No standard approach for mapping road surfaces and identifying the condition 

of road is available. Though some researchers have emphasized extraction of road 
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centreline, but still, it is difficult to differentiate dark new roads and dark tile roofs (K. 

U. Segl 2003), (Mohammadi 2012).  

Segl et al extended the reflective hyperspectral data till thermal bands to 

improve the detection of buildings to increase the reliability of differentiation between 

buildings and open spaces leading to more accurate results. Researchers have also tried 

to classify different roof materials using hyperspectral data by creating spectral library 

of various materials used for urban roofs followed by their detection using multiple 

supervised approaches (Chisense 2012). However, there is yet no standard approach for 

extraction of urban roads and roofs.  

The issue of spectral similarity between roads and roofs has been addressed by 

associating spatial information with spectral features by researchers (Dalla Mura, et al. 

2010), (Gu, Zhang and Zhang 2008) (Khodadadzadeh, et al. 2014).  The spatial aspect 

from hyperspectral data often aids in correct detection of targets having similar 

composition, therefore spatial features such as morphological attributes, shape and 

unmixing based super-resolution may be used to delineate the urban engineered 

surfaces.   

Huge volumes of real-time data processing pose a computational burden and 

increases the time complexity. With the introduction of machine and deep learning 

approaches the target detection can be done for larger areas with less human 

intervention and prediction capabilities of these algorithms can be exploited for 

unknown data (Bhangale, et al. 2016) (Dora, Francisco and Pablo 2014) (Chi, et al. 

2009) (Kuo, et al. 2013).  

1.2. Research Gaps 

After extensive literature survey, following research gaps with respect to urban 

applications have been observed: 
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i. Though a lot of work has been directed towards mapping of various urban 

surfaces and lot of studies have been carried out to understand the effects of 

urbanisation (Maktav, Erbek and Jürgens 2005) (Patino and Duque 2013) 

(Nada, Mourshed and Bray 2016), (Gamba, Dell’Acqua and Dasarathy 2005) 

limited work appears to have been directed towards extraction of different levels 

of engineered surfaces such as, roads, roofs etc., particularly using hyperspectral 

data. 

ii. Though the multispectral data has been well explored in various types of urban 

studies (Guo, et al. 2011), (Dengsheng and Qihao 2005), (Lynch, Leonhard and 

Ellen 2020), (Shackelford and Davis 2003) the different aspects of 

hyperspectral data such as, spectral properties of urban materials, effect of 

spectral variability, study of urban spectral characteristics, quantitative 

assessment of spectral separability etc. appear to not have been explored well. 

iii. Airborne and space-borne observations contain higher within class variability 

that is dependent upon sensor characteristics (observed area, object geometry, 

illumination effects, atmospheric interactions, spectral resolution as well as 

spectral mixing effects) (Tiwari, et al. 2013). Most of the spectral studies have 

not considered the scale of analysis (Stefanou and Kerekes 2009). Laboratory 

spectra commonly consist of single material illuminated under specific 

conditions and is therefore significantly different from field spectra. A 

comparative investigation in extraction of urban engineered surfaces using both 

lab and field spectra may therefore be useful.  

iv. Target detection technique in comparison to conventional classification 

techniques has not been explored much with respect to urban surface extraction 

which needs to be examined.  
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v. The current unsupervised, semi-supervised and active learning algorithms may 

not be able to handle huge volume of data, so there is a necessity of development 

of algorithms that can utilize unlabelled images. Further, most target detection 

algorithms for full pixel and subpixel targets have been obtained by describing 

spectral variability using multivariate normal distribution or subspace model. 

Machine and deep learning-based algorithms are being investigated in different 

types of urban applications (Kuras, et al. 2021), (Li, et al. 2020), (Senchuri 

2021), (Tamilarasi and Prabu 2021), (Zhao and Du 2016) however, these need 

further investigations in extraction of urban engineered surfaces.  

vi. Most of the research with hyperspectral data in urban studies appear to be 

focused on utilisation of material spectra only (Zhao and Shihong 2016), 

(Bubner, Kempinger and Shettigara 2001), (Carvalho, Abilio and Meneses 

2000), (Homayouni and Roux 2004), (Maryam 2019). This may be a limiting 

factor in extraction of some of the urban engineered surfaces such as roads and 

roofs etc. it is therefore important to explore the benefits of incorporating 

spatial-contextual information. 

vii. Multiple endmember extraction methods suffer from spectral confusion and 

computational complexity induced by numerous endmember combinations 

(Plaza, et al. 2004), (Zhang, Gao, et al. 2013), (Du, et al. 2008), (Plaza and 

Chang 2006). Incorporation of spatial information in the selection of 

endmember combination can reduce spectral confusion and improve 

computational efficiency. Identification of shape of urban targets using various 

methods may aid extraction process, therefore morphological operators, 

attribute profiles and spectral unmixing based super resolution methods need 

further investigations. 
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1.3. Research Objectives 

The cumulative objectives derived from above mentioned research gaps are: 

i. Comparative assessment of spectral target detection algorithms for engineered 

objects using hyperspectral data. 

ii. Development of strategies for detection of engineered objects.  

a. Spectral - Spatial Urban Target Detection for Hyperspectral Remote 

Sensing Data using Artificial Neural Network 

b. Detection of engineered surfaces using deep learning approach 

iii. Mixed pixel analysis and shape identification of engineered objects using 

hyperspectral data. 

a. Extraction of urban targets using fusion of spectral and shape features 

by Support Vector Machine 

b. Shape enhancement using super-resolution mapping 

1.4. Thesis Overview 

The Thesis contains nine descriptive chapters, aligned in accordance with the 

objectives. 

Chapter 1 gives Introduction to the area of research. Beginning from the 

motivation behind the work, the problem formulation has been discussed in detail. This 

chapter also discusses significance of the study along with research gaps and objectives. 

Chapter 2 involves detailed study of the concepts required for understanding 

the work done with supporting literature including different approaches for urban 

information extraction, such as classification and target detection approaches. This 

chapter presents a comparative assessment between the traditional approaches used for 

detection of urban targets in recent scenarios.  
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Chapter 3 explains about the data and software used. It includes the AVIRIS-

NG airborne data collection campaign in two phases along with its detailed 

specifications. The particulars about simultaneous ground data collection are also 

mentioned. 

Chapter 4 to 8 involves individual discussions about each objective and their sub 

objectives. Each chapter includes, a brief discussion about the work, associated 

literature, the problem statement, the dataset used, results and discussion section 

followed by a summary. 

Chapter 4 describes the work done under Objective 1, that is, comparative 

assessment of existing spectral target detection algorithms used for detection of 

engineered objects. This chapter examines the ground and image-based reference 

spectral signatures using various algorithms.  

Chapter 5 is about the part of work done for Objective 2: development of 

spectral-spatial strategies for detection of urban targets, in which the morphological 

attributes derived from hyperspectral data are combined with the spectral knowledge 

for better detection.  

Chapter 6 is an extension of work done in Objective 2 which focuses on deep 

learning approach that appears to be effective in this domain. Roads and roofs are 

extracted using automated features for the area under consideration. 

Chapter 7 explains methodology, implementation details and result analysis for 

shape identification of engineered objects in order to determine their fine edges and 

boundaries, as one of the subtasks of Objective 3. 

Chapter 8 addresses the problem of mixed pixel analysis in urban land covers 

using super-resolution approach by further fine tuning the coarse resolution of the 

sensor. This work is done to optimise the shape detected for urban engineered surfaces 
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as remaining part of Objective 3. The proposed approach is validated on synthetic 

dataset followed by analysis on hyperspectral data. 

Chapter 9 provides the Conclusions derived from the study done and also enlists 

the set of contributions made. This section also discusses the future scope which may 

be considered for future exploration.  

The flow chart for the Thesis orientation is illustrated in Figure 1.2. 

 

Figure 1.2. Flow chart of Thesis organisation 
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Chapter 2 

Theoretical Background  
 

This chapter deals with the theoretical background of the various remote sensing 

methods used in this work. The subsections traverse through the basic concepts that 

have been further explored in this research work.   

2.1. Hyperspectral remote sensing 

Hyperspectral remote sensing emphasizes extraction of useful information from 

Earth’s surface by radiance values acquired by means of airborne or space borne sensors 

(Manolakis, Lockwood and Cooley 2016). Interaction of electromagnetic radiation with 

earth’s surface causes fraction of energy to reflect, absorb and/or transmit. These 

fractions are dependent upon the type and condition of the target material. These 

variations describe the behavior of the different materials which is exploited by 

hyperspectral imaging.  

The source of radiation is required to illuminate the target of interest. Multiple 

energy interactions take place while the radiations are travelling from source to target, 

which in turn are captured by the sensor. The energy makes its way through the 

intervening atmosphere and interacts with the target based upon its characteristics. The 

radiation may be transmitted (passes through the target), absorbed (results in target 

heating), emitted (based on temperature), scattered (in multiple directions) and 

reflected. For sensing the amount of energy released, several sensors are required to be 

mounted on various platforms, such as, ground based (spectroradiometer), airborne 

(AVIRIS-NG by NASA and ISRO) and space borne. Figure 2.1 shows components of 

a remote sensing system with energy interactions.  
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Figure 2.1 Components of Remote Sensing System 

(Source: (Manolakis, Lockwood and Cooley 2016)) 

 

Hyperspectral imaging spans throughout ultraviolet (UV), visible and infrared 

(IR) regions of electromagnetic spectrum producing co-aligned images in hundreds of 

narrow bands. Hyperspectral data encapsulates rich spatial and spectral content 

formulated into a three-dimensional structure known as hypercube. The spatial aspect 

corresponds to the arrangement of pixels giving the geolocation whereas the spectral 

aspect deals with the radiation received by the sensor corresponding to different bands. 

Therefore, a pixel corresponds to a high-resolution spectral signature that uniquely 

identifies the target material. For a particular spatial sample, the radiance or reflectance 

measurement at different wavelengths are arranged in form of a vector (Refer Figure 

2.2). 

 
Figure 2.2 Principle of Hyperspectral remote sensing 

 (Source: (Manolakis, Lockwood and Cooley 2016)) 

 

 Due to high spatial and spectral information condensed in hyperspectral data, 

its analysis entails use of sophisticated image processing software. As the raw radiance 
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data needs to be calibrated to scaled reflectance before interpretation. The calibration 

of the data, for an imaging spectrometer with a linear response, is the simple ratio of 

the value from a known radiometric source in the appropriate units, averaged over each 

spectral band, divided by the dark-subtracted raw signal in digital numbers (Manolakis, 

Lockwood and Cooley 2016). Further, the image is processed for removal of 

atmospheric hindrances, topographic effects (with respect to slope, altitude, roll, pitch 

and yaw) and any sensor related correction. Figure 2.3. shows the various steps 

involved in hyperspectral data pre-processing.  

 

Figure 2.3. Pre-processing steps for hyperspectral data exploitation 

 

Hyperspectral data have taken a leap over multispectral data, paving way for 

multiple applications such as soil mapping (Hively, et al. 2011), wildlife and forest 

mitigation (Hycza, et al. 2018), water body management (Pu, et al. 2017), disaster 

prediction (Bhangale, et al. 2016), mineral exploration (Arindam 2020), urban land-use 

classification (Fen, et al. 2018) and many more. 
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2.2. Dimensionality Reduction 

The process deals with the computationally intensive image datasets to reduce 

its complexity, thereby capturing only the required significant details. Enormous 

amount of data is stored by the sensors, demanding dimensionality reduction to reduce 

the ambiguity in data. Dimensionality reduction techniques enable us to transform 

hyperspectral data to a lower dimension and are applicable for data visualization. Being 

lossy in nature, these operations may affect detection and classification accuracy, 

wherein hyperspectral data imbibe a significant amount of spectral redundancy so some 

amount of dimensional reduction is appropriate. Spectral transformation models enable 

the representation of vector data without any significant loss of information. 

Large dimensionality of hyperspectral data has two implications: (i) Huge 

volume of data requires tremendous storage and processing resources; (ii) A large 

increase in amount of data required for statistically oriented detection (Manolakis, 

Lockwood and Cooley 2016). The most popular spectral transformation models include 

principal component analysis (PCA) (Farrell and Mersereau 2005), vertex component 

analysis (VCA) (Nidamanuri and Zbell 2010), independent component analysis (ICA) 

(Wang and Chang 2006)  and linear discriminate analysis (LDA). Researchers have 

also tried sparse (Shao and Zhang. 2014) and locality preserving dimensionality 

reduction (Li, et al. 2011) for hyperspectral image analysis followed by the detection 

process.  

Initially, an increase in dimensionality of remote sensing images favours the 

classification accuracy but it declines when number of training samples are less. This 

problem is referred to as Hughes phenomenon or Bellman’s curse of dimensionality 

(Hughes 1968). Dimensionality reduction (DR) is mentioned as part of pre-

processing/the general approach for carrying out target detection. Since high-
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dimensional spaces have a huge volume, data tend to occupy a very small subspace; in 

essence, high-dimensional spaces are mostly empty. As a consequence, high-

dimensional data can be projected to a lower dimensional subspace without losing 

significant information. For target detection applications, dimensionality reduction 

must be avoided or has to be used with extreme care (Manolakis, Lockwood and Cooley 

2016). 

2.2.1. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is the most common technique used for 

dimensionality reduction and feature extraction for hyperspectral data (Huang, et al. 

2019), (Farrell and Mersereau 2005). A probable group of correlated features are 

projected to a new space based upon the eigen values and the new generated vectors 

are known as Principal Components (PCs), arranged in descending order of variance. 

If x is vector of d random variables, 𝐶𝑥 is the covariance matrix then PCA constructs 

an orthogonal transformation 𝑦 = 𝐴𝑥, where 𝐴 = [𝑢1
𝑇; … . . ; 𝑢𝑑

𝑇], where 𝑢𝑘
′ 𝑠 with 

𝑘𝜖[1, 𝑑] are the unit orthogonal eigenvectors of matrix 𝐶𝑥 satisfying equation (2.1) 

                                              𝐶𝑥𝑢𝑘 = 𝜆𝑘𝑢𝑘         (2.1) 

Where 𝜆𝑘
′ 𝑠 are the eigen values of matrix 𝐶𝑥, satisfying 𝜆1 ≥,… ,≥ 𝜆𝑑. It can be 

shown that 𝑢𝑘
′ 𝑠 can maximally explain the variance 𝑉𝑎𝑟(𝑢𝑘

𝑇𝑥) = 𝑢𝑘
𝑇𝐶𝑥𝑢𝑘 with maxima 

𝜆𝑘 (Su, et al. 2017). 

2.3. Image Classification 

Classification algorithms can be broadly grouped as parametric or non-

parametric; supervised or unsupervised; hard or soft; per-pixel or object-based 

classification logic and hybrid approaches (Jensen 1996). Figure 2.4 shows types of 

classification algorithms. 
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Figure 2.4 Types of Classification Approaches 

Classification methods that follow normally distributed remotely sensed data of 

underlying class density functions fall under parametric methods. For example: 

maximum likelihood classifier and clustering methods (Buddenbaum, Schlerf and Hill 

2005). When the data do not hold normal distribution then non-parametric methods 

such as fuzzy classifiers (Lemp and Weidner 2005), nearest neighbor (Thanh Noi and 

Kappas 2018) and artificial neural networks (Gakhar and Tiwari 2021) can be applied.  

In case of supervised classification, a priori knowledge about the classes is 

already known through combination of training data, field analysis, visual image 

interpretation and previous experience. This kind of classification generally involves 

an analyst with prudent knowledge in the domain. In order to implement supervised 

approaches, a rich feature set derived from multivariate statistical parameters 

(correlation, covariance, mean etc.) is required to train the classifier. Each and every 

pixel of the unknown data or test data is assigned the class based on maximum 

similarity. Minimum distance, Mahalanobis distance, Support Vector machine are 

examples of supervised approaches (Huqqani and Khurshid 2014).  

Unsupervised classification algorithms (or Clustering) are used when no 

labelled data is available and the data is grouped based on similar features. This 

approach requires minimal input from the analyst, as the process involves numerical 

operations which works on natural grouping of spectral features. Unlike supervised 

classification, here a posteriori knowledge is used to transform the input data into 
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classified thematic map. K-means (Ranjan, et al. 2017) and Iso-data (Duran and Petrou 

2005) are the most commonly used clustering algorithms for initial analysis of remotely 

sensed data.  

Hard or Crisp classification strictly considers the pixel to be part of an 

individual class whereas, Soft or Fuzzy classification assigns more than one class to a 

particular pixel (Figure 2.5). Hard classifiers are more suitable for homogeneous areas 

such as vegetation covers or water bodies but for complex heterogeneous areas like 

urban land covers, fuzzy approach may be considered. Fuzzy classifiers determine the 

membership grades for each class and generates classification certainty. Fuzzy learning 

vector quantization (FLVQ) approach (Koltunov and Ben‐ Dor 2001), fuzzy-clustering 

algorithms (Bilgin, Erturk and Yildirim 2008), Gaussian fuzzy self-organizing map 

(GFSOM) approach (Zhang and Qiu 2012) are some of the developments mentioned in 

the literature. 

 

Figure 2.5. Relationship between a traditional single-stage hard (crisp) classification using supervised 

or unsupervised classification logic and a classification based on the use of soft (fuzzy) logic (Jensen 

1996).  

2.4. Target Detection 

Target detection problem is also regarded as a problem of binary classification 

in which targets that lie within the circumference of region of interest are extracted from 
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the background (non-target class). Data and the detection algorithms are the two 

important aspects of target detection. As data apprehends the variations, while the 

algorithms provide suitable method for extraction of appropriate information. These 

algorithms can be categorized into two types, algorithms that are based upon utilisation 

of spectra in some form and the other which are independent of spectra. Spectral-

matching and anomaly detection are examples of the first type which are dependent 

upon the availability of labelled data (Burgers, et al. 2009). Independent Component 

Analysis (ICA) is an example of the second type (Tiwari, et al. 2013). Techniques for 

which, the spectral signature along with additional details are already known from 

standard spectral libraries, ground truth, in-situ analysis or from the image itself, comes 

under the group of spectral matching. These include algorithms like Spectral Angle 

Mapper (SAM) (James and Richard 2005), Spectral Correlation Measure (SCM) 

(Robila 2005) etc. In anomaly detection, no a priori knowledge about the target is 

available, therefore incongruities are detected assuming their exceptional behaviour 

with respect to the background. Orthogonal Subspace Projection (OSP), Reed-Xiaoli 

(RX) are some algorithms belonging to this category (Tiwari, et al. 2013).  

 Depending upon the complexities of urban targets, only spectral component is 

not sufficient to extract them, because spatial neighbours always affect the measured 

signal (Da and Jianxun 2018). Either contextual, textural or morphological information 

is often required for detection of urban built-up surfaces. Thus, a detailed review of the 

approaches mentioned in the literature is carried out and target detection approaches 

are grouped addressing, (i) spectral target detection methods; (ii) spectral-spatial 

target detection methods; (iii) Mixed Pixel Analysis and (iv) Shape based target 

detection. 
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2.4.1. Spectral target detection algorithms 

Target detection distinguishes objects of interest with background features. Its 

objective is to assign logical labels to every particular pixel vector in hyperspectral 

image based on prior knowledge of reference spectra, where value 1 signifies the 

presence of target and 0 represents non-target or background. The targets of interest 

usually dwell in a few pixels and the mentioned algorithms determine a high possibility 

to effectively characterize them by high-order statistics.  

Spectral matching algorithms, ranging from the traditional clustering techniques 

to the advanced automated matching models, have evolved, recently. These algorithms 

include search-and-match strategy which use spectral libraries of materials to be 

detected. Automation of spectral matching algorithms perform well due to search of 

specific and spectrally defined targets (D. Manolakis, et al. 2009). In order to utilise the 

information derived from a priori knowledge and spectral libraries, various basic 

algorithms were evolved using deterministic approach, such as SAM and its variants 

(Kruse, et al. 1993) (Zhang and L. 2014) (Carvalho, Abilio and Meneses 2000). 

Spectral matching algorithms are often influenced by certain factors such as availability 

or creation of spectral libraries, illumination factors, setting of threshold values, mixed 

pixels, environmental factors (Shanmugam and SrinivasaPerumal. 2014). These 

parameters not only pose difficulty in the matching process but also tend to decrease 

the detection accuracy of the targets.  

2.4.2. Spectral-spatial target detection strategies  

Recent studies have shown the importance of exploitation of spatial information 

for classification and target detection applications (L. I. Da 2018) (Fauvel, et al. 2012). 

When two targets have similarities in their spectral properties then spatial component 

accommodating shape, texture, contextual information helps in detecting the target of 
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interest. For instance, roads and roofs both contain concrete, they both may behave 

spectrally similar but can be distinguished on spatial grounds. Unlike spectral 

approaches which are evaluated pixel-wise, spatial approaches involve transformation 

of image data using details of neighbouring pixels.  

 Spectral-spatial target detection algorithms involve local image descriptors 

which works on every pixel spatially in each spectral band (Shi, et al. 2013). The spatial 

and spectral components can be combined together by concatenation or other 

transformation and later fed to a target detection algorithm such as Artificial Neural 

Network (ANN). Texture features are widely used for target detection and provide 

appropriate information about degree of smoothness or roughness of surface including 

its granularity. Li et al. considered textural features to enhance the detection capabilities 

of hyperspectral data using deep belief network (Li, et al. 2018). In other work, multiple 

spatial features like Local Binary Patterns (LBP), Gabor features along with spectral 

features are used on the basis of weighted residual fusion using Support Vector Machine 

(SVM) (Peng, et al. 2015). 

2.4.3. Mixed Pixel Analysis 

Extraction of mixed pixels is relevant for delineating the targets from the 

background pixels in case of hyperspectral imagery. Mixed pixels constitute more than 

one distinct substance which persist due to coarse spatial resolution of the sensor or 

when endmembers combine to form a homogeneous mixture, for instance, a road is 

constructed with materials like asphalt, coal tar, bitumen, and cement (Keshava and 

Mustard 2002). To resolve this, spectral mixture analysis (SMA) is a commonly used 

method which partially overcomes the drawbacks of full pixel approaches by estimating 

the fractional abundances of endmembers within a mixed pixel. But deriving of 

abundance maps prefaced by endmember extraction along with their abundance values 
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is tedious task. However, hyperspectral data acquired from a high-altitude sensor 

unavoidably shows the occurrence of mixed pixels.  

Endmembers can be extracted by multiple methods mentioned in the literature, 

such as pixel purity index (PPI) (Boardman, Kruse and Green 1995) which includes 

minimum noise fraction (MNF) as a dimensionality reduction process which further 

continues for calculation of a purity score for each pixel labeling them as pure 

depending upon threshold value. N-FINDR is another technique used for endmember 

extraction, which define a simplex that inscribes the set of pixels within the dataset 

having maximum volume (Winter 1999). Both PPI and N-FINDR consider only 

spectral attributes thereby ignoring the spatial properties imbibed in the hyperspectral 

data cube.   

2.4.4. Shape Identification 

Shape features are part of the spatial component in hyperspectral imagery, 

which further includes texture, size, morphological operators calculated with respect to 

the neighboring pixels. Han et al. proposed shape-size index (SSI) which combines 

homogeneous areas between one central pixel and its neighboring pixels using spectral 

similarity for multispectral images (Han, et al. 2012). Grey level co-occurrence matrix 

(GLCM) (Haralick, Shanmugam and Dinstein. 1973) is one of the common spatial 

texture extraction approaches which transforms the grey scale value of an image by 

various statistical measures like homogeneity, energy, entropy and contrast. Another 

technique mentioned in literature for performing shape-based analysis is Histogram of 

Oriented Gradient (HoG) (Dalal and Triggs 2005). Farooq et al. used HOG features for 

automatic grass weed detection and classification in hyperspectral data (Farooq, Jia and 

Zhou 2019).   
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 Fauvel et al. proposed a method based on fusion of morphological information 

and original hyperspectral data by concatenating the two vectors into single feature 

vector followed by classification of urban data using SVM (Mathieu, et al. 2008). 

Fusing spectral and spatial aspect of hyperspectral data is not only limited to 

classification but mixed pixel characterization is also addressed in the literature 

(Khodadadzadeh, et al. 2014). Recently deep learning approaches have also been 

presented for better classification accuracies as they automatically learn high level 

features from the image itself (Zhao and Du 2016).  

2.5. Classification vs Target detection: A comparison 

Classification of remotely sensed data enables to identify the features and 

associated information present on earth’s surface. The classification algorithms used 

for multispectral data are widely explored and experimentally implemented on 

hyperspectral data for improvement in terms of accuracy and performance (Q, et al. 

2014) (Lu and Qihao 2007). In hyperspectral remote sensing, classification criteria 

forms groups based on similar properties by comparing the spectra with one another. 

The analyst choses a reference spectrum from a single pixel or group of pixels and the 

classification algorithm finds the alike pixels by associating the similarity function and 

class (Manolakis, Lockwood and Cooley 2016) . The classifiers are capable of 

interpreting a scene and are evaluated based on probabilistic approach of assigning 

pixels to a particular class.  

The other category is Target detection, where ‘rare objects’ are termed as targets 

and are identified using known spectral signature. These objects are moderately 

distributed in the scene as compared to the background or non-target pixels. This 

approach is used when, (i) labelled data is less and to derive statistical properties of 

targets and (ii) targets are not resolved due to spatial resolution of the sensor used. 
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Therefore, the target detection algorithms use statistical decision theory in which the 

probability of error is minimised by classifying every pixel as non-target (D. Manolakis, 

R. Lockwood, et al. 2009). When viewed in spectral subspace, different targets can be 

represented in form of a spectral vectors which may occupy different or overlapping 

spectral subspace depending upon their spectral variability.  

Classifiers are highly dependent upon the number of classes which are assumed 

to be known by the analyst in case of supervised or unsupervised methods. In 

classification approach, increasing the number of features or classes cannot keep up 

with available observations for statistical estimation, therefore not necessarily leading 

to better performance (Svensén and Bishop 2007). For classification, each component 

is modelled using a normal distribution whereas in target detection approach, 

multivariate t-distribution is used to apprehend the behaviour of natural hyperspectral 

backgrounds (Landgrebe 2003). The performance of the classification algorithms is 

highly dependent on factors like, data, class distributions, labelling of training and 

testing data. However, detection assumes probabilistic modelling for solving decision 

problem and detection of targets. In most applications each target is characterized by 

its spectral signature and detection algorithms make decisions using the target signature 

and the data cube of the imaged scene. Table 2.1 shows a contrast between target 

detection and classification approach.  

Table 2.1. Difference between Target detection and Classification approach 

Features Target Detection Classification 

Objective Provide target detection map Provide classification map 

Theory Binary hypothesis testing M-ary hypothesis testing 

Performance  ROC Curves Confusion matrix 

Application Search for rare targets Generate thematic maps for 

ground cover classes 

Prerequisite Target signature Training data for each class 
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2.6. Approaches to Target Detection and Enhancement 

The spectral signature along with additional details are already known by means 

of standard spectral libraries, ground truth, and laboratory analysis or from the image 

itself. Detection and identification of targets involve gathering of spectral signatures, 

which can uniquely determine the surface properties of the target or object under 

consideration. The spectra of a particular pixel is influenced by certain parameters such 

as illumination effects, height and background material, colour, material composition, 

surface geometry of object (slope, orientation and texture), age of material as well as 

atmospheric interactions. Table 2.2. shows a brief introduction of factors that influence 

the profile of spectral signature of a material. 

Table 2.2: Data collection parameters for target detection 

 

Literature involves a collection of supervised, semi-supervised and 

unsupervised detection approaches to detect targets. In context of supervised approach, 

S No. Factors Description of Factors Parameters 

1. Sensor 

Related 

Factors 

Sensors record the amount of light reflected from the 
surface of target corresponding to numerous 

wavelength intervals. The efficacy of the response 

depends upon following the necessary protocols of 
Field Spectroscopy. These factors can be taken care at 

the time of pre-processing, as few instruments allow to 

configure them according to the requirement.  

Aperture size, focal length, focal plane array 
size, spatial resolution, spectral resolution, 

signal-to-noise ratio, radiometric resolution, 

calibration, Height and altitude of the 
instrument, calibration (Kerekes and 

Goldberg 2013). 

 

 2. Scene 

Related 

Factors 

Targets confined to very small number of pixels in a 
scene, therefore content of the spectra is under 

influence of certain background features. 

Material Composition, Color, scene 
complexity, (number of distinct surface 

classes) (Kerekes and Goldberg 2013) Target 

Condition (open/ hidden/ camouflaged/ 
buried) (Tiwari, et al. 2013) 

 3. Atmospher

e Related 

Factors 

The behaviour of electromagnetic radiation falling on 

a target is altered by absorption and scattering 
mechanisms of atmosphere, simultaneous corrections 

are required for correcting the distortions caused by 

atmospheric interactions.  

Illumination, presence of haze, fog or clouds, 

Temperature, Moisture content (Kerekes and 
Goldberg 2013) 

 4. Spatial 

Factors 

The spectral signature of a surface is highly dependent 
upon spatial features such as location and size of the 

target. 

Target Location involves Surface, subsurface 
or Air whereas Target size includes Single 

pixel, a group of pixels or subpixel (Tiwari, et 

al. 2013) 

 5. Morpholog

ical 

Factors 

Morphological features give a glimpse about the 

shape, boundaries, convex hull of a specific target.  

Point, linear (line), Area (polygon). 

 6. Processing 

Factors 

These factors encompass their domain over the 

selectable attributes which can be varied in order to 
increase the accuracy of unmixing, detection, 

identification and classification of objects. 

Threshold values, number of iterations, 

number of bands (Kerekes and Goldberg 
2013) 
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various distance, angle, information and machine learning measures are defined in the 

following subsections.  

2.6.1. Spectral Target detection algorithms 

2.6.1.1. Distance Measures 

The idea of spectral distance originates the need of many hyperspectral 

applications to use measures for assessing the similarity (or distance) between spectra, 

or between a spectrum and a group of spectra. Distance measures are frequently used 

in classification as well as in target detection (S. A. Robila 2005). Distance measures 

are widely used to measure similarity of shapes of two spectral signatures. Nirmal used 

distance matrices for band selection in hyperspectral processing for material 

identification (Nirmal 2004). In this work, the band selection approach was applied to 

data for two spectrally similar classes, and, minimum distance method succeeded in 

correctly discriminating pixels that were misclassified by other techniques such as 

Euclidian minimum distance and least square projection. Mahalanobis metric is 

considered to be superior to Euclidian distance and is capable of exploiting correlation 

between hyperspectral data.  It has recently been used by Maryam (Imani 2019) as a 

difference-based target detection technique where output is generated by calculating 

the difference between the distance of testing pixel with background and distance of 

testing pixel with target. Normalization of image values is necessary, especially when 

distance classifiers are used. These methods aim at normalizing each feature of the 

image in multiple ranges, thereby assigning equal weights to different features and 

reducing computational load (Naeini, Babadi and Homayouni 2017). The distance 

values computed for the entire dataset are normalized between 0 and 1 by using the 

mentioned formula in Equation 2.2, where l is lower bound, u is upper bound, 𝑥𝑖  is 
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vector at particular pixel, 𝑖 accounts to total number of pixels and 𝑥𝑛𝑖  is normalized 

matrix ranging from 0 to 1.  

𝑥𝑛𝑖 = 
𝑥𝑖−𝑙

𝑢−𝑙
                                                            (2.2) 

2.6.1.2. Angle Measures 

Robila in 2005 investigated the efficiency of various angular measures namely, 

spectral angle (SA), spectral correlation angle (SCA) and spectral gradient angle (SGA) 

when used with spectral screening of hyperspectral data (S. Robila 2005). Concluding 

that, implemented algorithms provided results that matched closely the processing on 

full data and may be considered as a substitute for the spectral angle. Angle measures 

have been used for target detection, spectral angle mapper (SAM) being the simplest 

one. The algorithm determines the spectral similarity between two spectra by 

calculating the angle between them, treating them as vectors in a space with 

dimensionality equal to the number of bands (Kruse, et al. 1993). Most recently, Imani 

proposed two difference-based target detection methods in contrast with standard 

detection algorithms. The first approach used the Mahalanobis distance whereas the 

second used the kernel-based spectral angle mapper (SAM) utilizing the diff erence 

between target and background computed distances (Imani 2019).  

2.6.1.3. Information Measures 

Work done by Adam Cisz et al. evaluated performance of hyperspectral target 

detection algorithms in altitude varying scenes (Cisz and Schott 2005). Hyperspectral 

data were examined at three different altitudes (5000, 10000 and 20000 feet) for 

multiple targets and backgrounds particularly using CEM and ACE. Forest Radiance I 

data was collected with the HYDICE sensor, detecting grass, tree and road as targets. 

With the increase in availability of high-resolution data, it is important to have reliable 
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and robust mechanisms to predict the performance of target detection systems for real-

time applications. For this purpose, performance prediction model for the widely used 

matched filter (MF) and adaptive cosine estimator (ACE) detectors is presented using 

signal modelling (Truslow 2013). Apart from these measures, spectral information 

divergence (SID) has equivalently been used for spectral characterization (Chang 

2000). Generally, statistical models use estimated parameter values which are optimum 

for observed data, hence, maximum likelihood parameter estimation sets up a base for 

most of the target detection algorithms such as MF, CEM and ACE (Dimitris, David 

and Gary 2003).  

2.6.1.4. Machine Learning Measures 

More recently machine learning algorithms have shown remarkable results in 

the very same field having exceptional capabilities to automatically learn the 

relationship between the data (here, spectra captured) and predict accordingly. These 

methods help in extracting useful information from raw data by generalizing the 

unknown facts. There are numerous algorithms that exploit the concepts of machine 

learning for analysis of hyperspectral data. Plaza et al. used neural network-based 

models for hyperspectral image spectra separation (Plaza, et al. 2009). The focus of the 

work is on selecting small training sets as input to the network for characterization of 

mixed pixels. Recently a new learning technique with single layer feed-forward 

network has been developed by Huang et al. known as extreme learning machine 

(ELM) (Huang, Zhu and Siew 2006). Heras considered two ELM-based techniques 

integrating spectral and spatial information of the image (Heras, Argüello and Quesada-

Barriuso 2014). The first is a scheme used a majority vote approach in order to combine 

the results of a pixel-wise spectral classification by while the second introduced spatial 
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information from a small spatial neighbourhood after the classification by ELM. Table 

2.3 gives descriptive assessment of target detection algorithms. 

Table 2.3. Descriptive Assessment of Target Detection algorithms 

S No. Algorithm Approach Advantages Limitations Dataset Used 

Distance Measures 

1.  Euclidean Distance 

(S. A. Robila 2005) 

Distance metric provides a 

quantitative measure of the 
distance between the 

reference and unknown test 

spectra. 

- Computationally 

simple 
- Time efficient 

- Suitable for a smaller 

number of bands 

- Values are positively 

defined and are not 
within a set interval  

- Distance increases with 

increase in number of 
bands 

- HYDICE Data, 

- Hyperion Data,  
- AVIRIS Data 

 

2.  Dot Product (Stein 

and Scott 1994) 

It provides the cosine angle 

between the target and test 

spectra 

- Treats difference in 

peak intensities of 

reference and target 
spectra continuously to 

determine identical 

spectra 

- More computational 

time for evaluation 

- Relative intensities of 
neighboring peaks are 

not considered 

- NIST mass 

spectral database 

3.  Z-Score (Parshakov, 

Coburn and Staenz 

2014) 

A distance measure that 

calculates the number of 

standard deviations a 
spectral signature is away 

from population or sample 

mean (spectral class) 

- Takes into account the 

variation of pixel spectra 

within classes 
- Uses both mean and 

standard deviation as 

compared to other 
spectral matching 

algorithms that use only 

mean. 

- Generate lower 

accuracy if not used with 

land cover types having 
lower intra and higher 

inter class spectral 

variability 

- Landsat 5 TM 

image of an 

agricultural area 

4.  Mahalanobis 

Distance (Maryam 

2019) 

It is based on correlation 

which takes mean and 

covariance of reference and 
test sample into account. 

- Efficient for 

unprocessed data 

- Scene variability 

introduces substantial 

error in estimating the 
parameters that describe 

heavy-tailed distributions 

- Making decisions by 
comparing the 

Mahalanobis distance 

which is lower or higher 
than the fixed threshold is 

insufficient.  

- AVIRIS Data  

 Angle measures 

5.  Spectral angle 
mapper (SAM) 

(Falcone and Gomez 

2005) 

Supervised classification 
technique based on the 

computation of spectral 

angle similarity between a 
reference source and the 

target spectra 

- Advantageous in 
situations where target 

materials have different 

spectra. 

- Measures the angular 
direction of data points 

and not their magnitude 

-Relatively insensitive to 
illumination and albedo 

effects. 

- Cannot distinguish 
negative and positive 

correlations because only 

the absolute value is 

considered 

- NASA EO-1 
Hyperion, Level 1 

Radiance 

6.  Spectral correlation 

angle (SCA) (S. 
Robila 2005) 

The angle between 

correlation vector of 
reference spectra and test 

spectra. 

-Allows detection of 

targets with negative 
correlation 

-Eliminates shading 

effect 

- Evaluate the match 

based on the spectral 
shape while ignoring the 

amplitude of the spectra 

AVIRIS Data set, 

Indian Pines test 
site   

7.  
 

Spectral gradient 
angle (SGA) 

(Angelopoulou, Lee 

and Bajcsy 1999) 

The angle between the 
absolute values of gradient 

vectors of test and reference 

spectra. 

-Invariant to surface 
geometry, viewpoint and 

illumination effects 

-Suitable for depicting 
shape of spectral curve 

-Unable to handle noise 
in data 

- 

8.  Mahalanobis Angle 

(Manolakis, 
Lockwood and 

Cooley 2016) 

The angle between the test 

and the reference vector 
after applying the 

whitening transformation. 

-Invariant under all non-

singular transformations 

-Inverse of the 

correlation matrix can’t 
be calculated if the 

variables are highly 

correlated  

- 

 

 Information Measures 

9.  Constrained Energy 

minimization (CEM) 

(Dimitris, David and 
Gary 2003) 

It constrains the energy of 

desired spectral signature 

of the target by minimizing 

-Performs better with a 

greater number of bands 

-Energy of the desired 

target level is lower than 

the energy of undesired 
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2.6.2. Spectral-spatial target detection strategies 

One of the methods incorporating the spatial information with the spectral 

details involves Morphological operators to enhance the desired response from the 

target by suppressing the intervening background. Mathematical morphological 

operators use certain reference shapes, referred as Structuring Element (SE) to locally 

compare the known structures present in the scene.  Some of the primary operators used 

for morphological analysis are dilation, erosion, opening and closing. The major 

advantage of morphology is to preserve the shape of the targets of interest. Also, they 

take neighbouring pixels into account unlike spectral matching algorithms that work at 

pixel level.  

the output energy from 

background. 

pixels, resulting into false 

alarms 

10.  Matched filter (MF) 
(West, et al. 2005) 

A weighted inner product 
between the test pixel’s 

spectrum and the target 

spectrum 

-Not requires knowledge 
of all the end-members in 

the scene 

-Higher false alarms HYDICE data 
cubes from the 

Forest Radiance I 

& Desert Radiance 
II 

11.  Adaptive cosine 

estimator (ACE) 
(Truslow 2013) 

A measure of the cosine of 

the angle between the 
normalized test and target 

vector 

-Invariant to scaling of 

input data 
-Constant False alarm 

rate.  

-Nonlinear in nature 

which complicates 
statistical analysis. 

Real time dataset 

containing urban 
features 

12.  Spectral Information 

Divergence (SID) 
(Chang 2000) 

A measure of divergence, if 

smaller the target spectra 
belong to the reference 

class. 

-Efficient in preserving 

spectral properties as 
compared to angular 

measures 

-Pixels greater than 

threshold value remains 
unclassified 

AVIRIS and 

HYDICE data 

13.  Maximum likelihood 
algorithm 

Calculates the probability 
of a pixel belonging to a 

specific class 

-Gives good results 
when number of bands 

are less 

-A band with no variance 
at all, leads to singularity 

problem 

-Assumes the statistics 
for each class in each 

band are normally 

distributed 

 

 Machine Learning Measures 

14.  Artificial neural 

network (ANN) 

(Peña, Crespo and 
Duro 2009) 

Approach which uses 

standard back-propagation 

algorithm applied to set of 
input, hidden and output 

layers 

-Predict the results for 

unknown datasets 

-Requires labeled data 

for training process. 

-Training of the network 
takes time. 

Indian Pines data  

15.  Extreme learning 
machine (ELM) 

(Heras, Argüello and 

Quesada-Barriuso 
2014) 

Learning algorithm for 
single layered feed-forward 

neural network 

-Higher accuracy as 
compared to SVM and 

neural networks 

-Fast learning 
-Computationally 

scalable 

-Independent of tuning 
process 

-Evaluation speed is low 
-Require astronomically 

high hidden layer 

neurons 
-Cannot encode more 

than one layer of 

abstraction 

-University of 
Pavia image 

(Rosis 2013) 

-Indian Pines 
image (AVIRIS 

2013) 
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2.6.2.1. Dilation 

Replace every pixel by the maximum value computed over the neighbourhood 

defined by the structuring element. Features that are brighter than their immediate 

surroundings are enlarged. Features that are darker than their immediate surroundings 

are suppressed. 

𝛿𝐸(𝑋) =  {𝑥 ∈  𝑅
𝐷 | 𝐸𝑥  ∩  𝑋 ≠  ∅}                               (2.3) 

Where, 𝛿𝐸 is Dilation with respect to Structuring Element E, 𝑋 is the Image on which 

dilation is performed and 𝑥 Origin where the locus of points is taken.  

2.6.2.2. Erosion 

Replace every pixel by the minimum value computed over the neighbourhood 

defined by the structuring element. Features that are darker than their immediate 

surroundings are enlarged. Features that are brighter than their immediate surroundings 

are suppressed. 

𝜀𝐸(𝑋) =  {𝑥 ∈  𝑅
𝐷 | 𝐸𝑥  ⊆  𝑋}                                 (2.4) 

Where, 𝜀𝐸 – Erosion with respect to Structuring Element E, 𝑋 – Image on which erosion 

is performed and 𝑥 – Origin where the locus of points is taken. 

2.6.2.3. Opening 

Erosion followed by dilation with the symmetrical structuring element. Features 

that are brighter than their immediate surroundings and smaller than the SE disappear. 

Other features (dark, or bright and large) remain unchanged. 

𝑌𝐸(𝑋) =  𝛿𝐸̃[𝜀𝐸  (𝑋)]                                        (2.5) 

Where, 𝑌𝐸 – Opening with respect to Structuring Element E, 𝑋 – Image on which 

opening is performed; 𝛿𝐸 – Dilation and 𝜀𝐸 – Erosion 
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2.6.2.4. Closing 

Dilation followed by an erosion with the symmetrical structuring element. 

Features that are darker than their immediate surroundings and smaller than the SE 

disappear. Other features (bright, or dark and large) remain unchanged. 

𝜑𝐸(𝑋) =  𝜀𝐸̃[𝛿𝐸  (𝑋)]                                     (2.6) 

Where, 𝜑𝐸 – Closing with respect to Structuring Element E, 𝑋 – Image on which 

dilation is performed, 𝛿𝐸 – Dilation and 𝜀𝐸 – Erosion.  

2.6.3. Machine Learning Approaches 

Machine learning algorithms have exceptional capabilities to automatically 

learn the relationship between the data and predict accordingly (Mas and Flores 2008). 

There are numerous algorithms that exploit the concepts of machine learning for 

analysis of hyperspectral data like Laplacian methods, graph-based methods (Gómez-

Chova, et al. 2008), active learning methods (Jun and Ghosh 2008). Hyperspectral 

images encompass unique specifications such as, geographic content, spatial 

information and spectral correlation of the area under investigation. Therefore, in order 

to establish synergies between high dimensional data and machine learning methods, it 

is necessary to discover alternative approach. Recent research work in this field have 

contributed in recognition of specific non-intuitive properties of hyperspectral data. 

Machine learning and pattern recognition algorithms have been successfully 

used for learning the relationships between captured spectra and the information 

derived from hyperspectral images. Gaussian models, being extensively used in target 

and anomaly detection are the foundation for many standard algorithms such as 

Mahalanobis distance (Zhang, et al. 2015), spectral matching filter (Homayouni and 

Roux 2004), and adaptive cosine detector (Huqqani and Khurshid 2014) also assume 

Gaussian distribution. Ensemble learning is a supervised learning technique of merging 
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the results from multiple base predictors to produce a more accurate result (Su, et al. 

2020). Three type of ensemble learning approaches: bagging, boosting and random 

forest has been applied for hyperspectral imaging applications and attracted the interest 

of many researchers (Chi, et al. 2009). AdaBoost technique with association with SVMs 

has been used for band selection process (Kawaguchi and Nishii 2007). Random forest 

classifier applied to identify anomaly from synthetic dataset by training a binary 

classifier and using training dataset for anomaly and non-anomaly class (Cheung-Wai 

and Paelinckx 2008). 

Apart from this, other classifiers such as Extreme learning machine (ELM) 

(Dora, Francisco and Pablo 2014), that is, a feed forward neural network (FNN) (Lulla 

2010) like learning system whose connections with output neurons are adjustable, while 

the connections with and within hidden neurons are randomly fixed; has also being 

explored for classification of various features. Various directed and undirected 

graphical models are primarily implemented for hyperspectral unmixing, where each 

node represents a variable and edges signify interdependency among the nodes. 

However, three machine learning methods are selected from the literature, to be used 

for the analysis and are explained in detail, in following subsection. 

2.6.3.1. Artificial Neural Networks (ANN) 

Machine-learning algorithms are generally able to model complex class 

signatures, can accept a variety of input predictor data, and do not make assumptions 

about the data distribution (J. Plaza, et al. 2009).  The technique has already been used 

successfully with the fusion of spectral and edge information also with spectral and 

textural information (Ko 1996). A wide range of studies has generally found that these 

methods tend to produce higher accuracy compared to traditional parametric classifiers, 

especially for complex data with a high-dimensional feature space (Maxwell, Warner 
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and Fang 2018).Artificial Neural Network is designed to mimic human brain containing 

neurons as their fundamental and functional unit. These architectures contain a fully 

connected network of input, hidden and output layers with weight on the intermediate 

connections and a non-linear activation function for input to output mapping. 

 Neurons or ‘computing elements’, communicate with each other through a 

complex network. They have an ability to derive useful information, extract patterns, 

predict trends from the imprecise data. A single fundamental unit is called a neuron. 

The input neurons in the input layer receives raw information as inputs. Then the data 

traverses between the hidden unit which transforms the data into a usable form to 

generate the output.  The basic architecture of the neural network is shown in Figure 

2.6.  

 
Figure 2.6: Artificial Neural Network Architecture 

 

The data is passed through feed-forward technique through the perceptron which is 

replicated at every neuron. The steps involved are given below and the detailed process 

is shown in Figure 2.7.  

 For every input 𝑥𝑖 the corresponding weight value 𝑤𝑖 is multiplied. The weights 

indicate the strength of the connection between the input layer’s neuron and the 

hidden layer’s neuron. The one with higher influence on the output value is 

triggered.  

∑ = (𝑥1 × 𝑤1) + (𝑥2 ×𝑤2) + ⋯(𝑥𝑛 × 𝑤𝑛)        (2.7) 
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Where, 𝑥 = [𝑥1, 𝑥2, 𝑥3… 𝑥𝑛] and 𝑤 = [𝑤1, 𝑤2, 𝑤3… 𝑤𝑛] are the row vectors 

belonging to input and the corresponding weights. Therefore, the dot product is 

given by: 

𝑥 ∙ 𝑤 = (𝑥1 × 𝑤1) + (𝑥2 × 𝑤2) + ⋯ (𝑥𝑛 × 𝑤𝑛)              (2.8) 

Which turns out to be,  

∑ =  𝑥 ∙ 𝑤    (2.9) 

 Bias plays a major role in balancing the complete architecture, it often acts as 

an offset to move the activation function and produce the output value. 

𝑧 = 𝑥 ∙ 𝑤 + 𝑏    (2.10) 

 This intermediate value generated is passed to an activation function which is 

non-linear in nature which influence the learning speed of the network. There is 

multiple activation function used, depending upon the application. One of the 

simplest one is sigmoid activation function, ŷ  gives the predicted value and 𝜎 

is the activation function, and it is computed as,  

ŷ = σ(z) =
1

1+𝑒−𝑧
    (2.11) 

 The training mechanism includes backpropagating the error by computing the 

gradient values with respect to the weight. The mean square error is calculated 

by the difference between the actual values (𝑦𝑖) and the predicted values (ŷ𝑖) of 

error, 

𝑀𝑆𝐼𝑖 = (𝑦𝑖 − ŷ𝑖)
2    (2.12) 

The cumulative error for entire training set is termed as loss function, which is 

calculated as, 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1              (2.13) 

Later, the weights can be optimised and hyper-parameters such as the minimum 

error, number of epochs, learning rates can be fixed.  
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Figure 2.7: Single layer perceptron  

2.6.3.2. Extreme Learning Machine (ELM) 

ELM is a kind of feedforward neural network (FNN) whose connections with the 

output neurons are adjustable while with and within hidden neurons are randomly fixed. 

Unlike ANN, the output is determined using norm least-square solution and Moore-

Penrose inverse of general linear system. It utilizes any non-linear activation function 

such as sigmoid, sine, tan, gaussian etc. for hidden layer and a linear activation function 

for output layer. G.B Huang in 1994 coined ELM that a single hidden layer can 

overcome some major bottlenecks of traditional gradient methods, such as ANN 

(Guang-Bin, Qin-Yu and Chee-Kheong 2006). The drawbacks are, slow learning 

process and all parameters are tuned iteratively whereas ELM has the following 

characteristics: 

 The learning speed of ELM is extremely fast with an advantage of less training 

time (Bazi, et al. 2013). 

 ELM has better generalization performance than the gradient-based learning 

such as back propagation in most cases (Chen, et al. 2014). 

 The traditional classic gradient-based learning algorithms may face several 

issues like local minima, improper learning rate and over fitting, etc. The ELM 
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tends to reach the solutions straightforward without such trivial issues (Pal 

2009). 

 Gradient-based learning algorithms which only work for differentiable 

activation functions, ELM learning algorithm could be used to train Single 

Layer Feedforward Networks with many non-differentiable activation functions 

(Jiaojiao, et al. 2015). 

Figure 2.8. shows the architecture of single layer feedforward network, often 

termed as ELM.  

 

Figure 2.8: Architecture of Extreme Learning Machine (Source: (Guang-Bin, Qin-Yu and Chee-

Kheong 2006)) 

 

The output function is given by Equation 2.14 followed by the hidden layer output 

function in Equation 2.15, 

𝑓𝐿(𝑥) = ∑ 𝛽𝑖
𝐿
𝑖=1 𝐺(𝑎𝑖, 𝑏𝑖 , 𝑥)    (2.14) 

ℎ(𝑥) = [𝐺(𝑎1, 𝑏1, 𝑥), … , 𝐺(𝑎𝐿, 𝑏𝐿 , 𝑥)]          (2.15) 

The training of the ELM happens by, 

𝑓𝐿(𝑥) = ∑ 𝛽𝑖
𝐿
𝑖=1 𝐺(𝑎𝑖, 𝑏𝑖 , 𝑥) = 𝐻𝛽   (2.16) 

Where H is a column vector given by, 
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𝐻 = [
h(𝑥1)
⋮

h(𝑥𝑁)
] = [

ℎ1(𝑥1) ⋯ ℎ𝐿(𝑥1)
⋮ ⋮ ⋮

ℎ1(𝑥𝑁) ⋯ ℎ𝐿(𝑥𝑁)
] 

Here, the training set is {(𝑥𝑖, 𝑡𝑖)|𝑥𝑖 ∈ 𝑅
𝑑 , 𝑡𝑖 ∈ 𝑅

𝑚, 𝑖 = 1,… ,𝑁}, hidden node output 

function 𝐺(𝑎, 𝑏, 𝑥), and the number of hidden nodes L. The value of 𝛽 is computed as, 

β = HTT       (2.17) 

H = (wi, . . , wN, bi, … , bN, xi, … , xN) 

= [
g(wi. xi + bi) ⋯ g(wN. xi + bN)

⋮ ⋮ ⋮
g(wi. xN + bi) ⋯ g(wN. xN + bN)

] 

β = [
β1
T

⋮
βN
T
]  T = [

t1
T

⋮
tN
T
] 

Many researchers have tried to exploit the advantage of fast learning process 

and higher training accuracy with low error percentage. As hyperspectral dataset is 

voluminous in nature, the traditional gradient based methods take an additional 

computation effort for performing classification or target detection problem (Mahesh, 

Aaron and Timothy 2013) (Faxian, et al. 2019) (Ramón, et al. 2014). 

2.6.3.3. Support Vector Machines (SVM) 

Support Vector Machine (SVM) by Vapnik (Corinna and Vapnik 1995) is an 

extensively used method for hyperspectral data analysis. The method works on the 

concept of maximizing the margins and generating a decision boundary with maximum 

separation between the data points of these classes. The decision boundary may be 

linear or non-linear depending upon the separability analysis of the data used. SVMs 

perform better and yield higher classification accuracies in contrast to other pattern 

recognition techniques such as, maximum likelihood and multilayer neural networks. 
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SVMs may prove helpful when multiple heterogeneous classes are available with few 

training samples in a scene (Farid and Bruzzone 2004).  

 In case of SVM, if the data is linearly separable then a hyperplane can be used 

to separate the considered classes, otherwise the algorithm maximizes the margin 

adjusting few misclassifications (Kuo, et al. 2013). SVM deals with two classes at a 

time, therefore real-time problems are transformed to series of binary ones. It is a 

machine learning algorithm that utilizes labelled data, trains the associated model and 

predicts for unlabelled data. Figure 2.9. illustrates the basics of SVM. The key 

advantage that SVM has over other machine learning algorithms is that the features can 

be transfigured using multiple kernel functions. The kernel enables to data to be mapped 

(dot product of two vectors) in preferably higher dimension where it is assumed that, 

the features may be separated by a linear boundary. This technique enhances the 

capability of SVM and makes it feasible for multi-class problems also.  

 

Figure 2.9: Concept of SVM 

 

The mathematical formulation of SVM includes, formulas of line in two-

dimension and hyperplane in multi-dimension, represented by, 

𝑦 = 𝑚𝑥 + 𝑏     (2.18) 

𝑤⃗⃗ ∙ 𝑥 + 𝑏 = 0     (2.19) 
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Where, 𝑥 is sample dataset, for which SVM finds weights 𝑤 such that, the data 

points in the dataset are separated used the most optimum hyperplane. Assuming a two-

class problem, decision rules are established to generate a margin that is as wide as 

possible. Therefore, the width is calculated by taking the dot product of distance vector 

and perpendicular vector w, then dividing by the magnitude of w. 

𝑤𝑖𝑑𝑡ℎ =
1

2
∙
𝑤2

||𝑤||
    (2.20) 

Since the width needs to be maximised, LaGrange multipliers are used (Shirish, 

et al. 2000). Further 𝐿 is differentiated with respect to 𝑤, 

𝐿 =
1

2
∙
𝑤2

||𝑤||
− ∑ [𝑦𝑖(𝑤⃗⃗ ∙ 𝑥 𝑖 + 1) − 1]

𝑛
𝑖    (2.21) 

𝑤⃗⃗ = ∑ 𝑎𝑖 ∙ 𝑦𝑖
𝑛
𝑖 ∙ 𝑥 𝑖    (2.22) 

And differentiating 𝐿 with respect to 𝑏 gives, 

𝑏 = ∑ 𝑎𝑖 ∙ 𝑦𝑖 = 0
𝑛
𝑖     (2.23) 

Substituting value of 𝑤 from Equation 2.22 in Equation 2.21, then 

𝐿 =
1

2
(∑ 𝑎𝑖 ∙ 𝑦𝑖

𝑛
𝑖 ∙ 𝑥 𝑖)(∑ 𝑎𝑗 ∙ 𝑦𝑗

𝑛
𝑗 ∙ 𝑥 𝑗) − (∑ 𝑎𝑖 ∙ 𝑦𝑖

𝑛
𝑖 ∙ 𝑥 𝑖)(∑ 𝑎𝑗 ∙ 𝑗

𝑛
𝑗 ∙ 𝑥 𝑗) −

𝑏(∑ 𝑎𝑖 ∙ 𝑦𝑖
𝑛
𝑖 ) + ∑ 𝑎𝑖

𝑛
𝑖        (2.24) 

Which further reduces to Equation 2.25, 

𝐿 = ∑ 𝑎𝑖
𝑛
𝑖 −

1

2
∑ ∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑖⃗⃗  ⃗

𝑛
𝑗

𝑛
𝑖 ∙ 𝑥𝑗⃗⃗  ⃗   (2.25) 

Since, the above derivation deals with linearly separable data points, but the 

practical problems involve non-linear boundaries to establish separation, therefore 

kernel trick is required, and the general equation is, 

𝑘(𝑥, 𝑦) = 𝑥𝑇𝑦 + 𝑐    (2.26) 

SVM has already proved its efficacy for hyperspectral data, which is evident 

from the literature also. Pal in year 2006 did an extensive case study for the use of SVM 

for landcover classification (M. Pal 2006). Dealing with the problem of limited training 
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set, Junshi et al. examined rotation based SVM for hyperspectral classification (Junshi, 

et al. 2015). Some of the other studies which explore SVM include (Anita, Raczko and 

Zagajewski 2020), (Zhilei and Yan 2016), (Peijun, Tan and Xing 2012).  

2.6.4. Deep Learning Methods 

The theoretical idea of deep learning transformed into implementation in 2006 

by Hinton (Geoffrey and Salakhutdinov 2006). Derived from machine learning, the 

deep learning models try to learn features in a hierarchical fashion, beginning from low 

level to high level. The idea involves derivation of features in an unsupervised manner 

followed by supervised approach to reach the output (Yushi, et al. 2014). Therefore, 

the initial layers are assigned for automated feature extraction, which acts as an input 

for further layers, and at last pattern recognition is performed by supervised means. The 

lower-level features involve points etc, mid-level may include lines and higher-level 

features learn about contours and more complex shapes. These features are associated 

to generate better approximation to non-linear activation functions, unlike machine 

learning models (Nicolas and Bengio 2010).  

 Some of the standard deep learning architectures involve, CNN (Khan, et al. 

2017), deep belief networks (DBN) (Xiaoai, et al. 2020), Auto-encoders (Yanzi, et al. 

2019), Restricted Boltzmann machine (RBM) (Roux and Yoshua 2008). The mentioned 

deep learning methods are successfully implemented for hyperspectral data in multiple 

application areas. The most common one is CNN, explained in the following 

subsection.  

Deep learning works on automated extraction of features needed for mining 

useful information from raw data. High dimensionality of hyperspectral data affects 

supervised methods in terms of accurate derivation of statistical parameters leading to 

overfitting of network, in case of supervised approach (Paoletti, et al. 2019). Large 
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number of calculations resulting from deep architectures involve high computational 

load in terms of time and storage for parallel computing (Cheng, et al. 2017). Learning 

rate, number of epochs, activation function are some of the additional parameters to be 

tuned for an optimized network and better detection rate, thereby adding dispensable 

trial runs for training the deep architecture. The “black-box” conduct of deep learning 

models may hinder to visualize the parameters, optimise the model and make it hard to 

interpret the training procedure (Shwartz-Ziv and Tishby 2017).  

2.6.4.1. Convolution Neural Network (CNN) 

In recent years, various deep learning architectures have been proposed by 

researchers and CNN being employed as feature extractor and classifier for spectral, 

spatial and spectral-spatial configurations. In spectral models, the data is exploited pixel 

wise by extracting spectra of individual pixels or a particular class in the scene, 

therefore a priori information is necessary to identify the pixels belonging to target of 

interest (W. Y. Hu 2015). Spatial features may also be derived from the complete 

spectral data by applying dimensionality reduction or cropping spatial patches of a 

particular window size (Zhao 2015), (Haut 2019). In the third approach, the complete 

three-dimensional data is utilized for extraction of sub-volumes in terms of spectral and 

spatial knowledge because of flexible architecture of CNN (Mei 2017).  

CNN is a multi-layer architecture to process different features where each layer 

has decisive impact on the model. Apart from input and output layer, the most common 

layers comprised in CNN are convolution layer, activation layer, down sampling layer 

and a fully connected layer.  

 Convolution Layer: This layer contains a set of neurons acting as linear kernels 

to analyse the statistical characteristics of a hypercube (𝑙𝑖𝑛𝑒𝑠 × 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ×

𝑏𝑎𝑛𝑑𝑠) in which data features are equally distributed with respect to spatial 
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positions. Therefore, the features learned for a particular target can be applied 

to other regions to locate the same target. Fix sized filters are convolved by 

sliding-window mechanism overlapping the input data at certain interval called 

stride.  For computation dot product of weights and input layer is performed 

with an added bias (Equation 2.27) 

𝑋(𝑙) = (𝑊(𝑙) × 𝑋(𝑙−1) + 𝑏(𝑙))𝐾(𝑙)×𝑘(𝑙)×𝑘(𝑙)×𝑞(𝑙)  (2.27) 

Output volume X(l) is generated when 𝑙𝑡ℎ convolution layer applies 𝐾(𝑙) linear 

3D kernels over the input layer X(l−1) which performs a dot product between 

weights 𝑊(𝑙) and biases 𝑏(𝑙) respectively, and small fragments of input data. 

The general feature calculation is done using Equation 2.28 (Paoletti, et al. 

2019).  

𝑥
𝑖,𝑗,𝑡

𝑙(𝑧) = ∑ ∑ ∑ (𝑤𝑖,𝑗,𝑡
(𝑙)𝑞(𝑙)−1

𝑡=0
𝑘(𝑙)−1
𝑗=0

𝑘(𝑙)−1
𝑖=0 ∙ 𝑥

(𝑖∙𝑠𝑙+𝑖),(𝑗∙𝑠𝑙+𝑗),(𝑡∙𝑠𝑙+𝑡)

(𝑙−1)
) + 𝑏(𝑙)  (2.28) 

 Activation Layer: Activation functions are mathematical equations which are 

the decisive to fire an input neuron relevant for model prediction. 

Computational efficiency of an activation function is equally important because 

it is calculated for a lot of neurons iteratively. They are linear (behaves like 

simple linear regression model) or non-linear (for complex data and mapping 

between input and output layer with stack of hidden layers) in nature. The result 

of this layer constitutes of output volume containing the activation values from 

the previous layer, as shown in Equation 2.29.  

𝑋(𝑙) = 𝑓(𝑋(𝑙−1))    (2.29)         

𝑓(∙) can be varied as linear or non-linear manner. The common activation 

functions are linear, sigmoid, tanh and ReLU. Depending upon the application, 

the activation functions may be chosen wisely.  
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 Down Sampling Layer: Time and space complexity for implementation of deep 

neural networks is quite high, therefore to reduce the size of feature maps 

generated by the previous layers down-sampling is used. Down-sampling can 

be attained by varying the stride of convolution or by pooling layer. In all cases, 

pooling helps to make the representation become approximately invariant to 

small translations of the input. Invariance to translation means that if we 

translate the input by a small amount, the values of most of the pooled outputs 

do not change (Goodfellow 2016). The objective of the pooling is to, (i) reduce 

the spatial dimensions and volume, (ii) contribute the data with certain 

invariance to small transformations, (iii) reduce computation time and space 

(Paoletti, et al. 2019). 

 Fully Connected Layer: In this layer, each node of a layer is connected to all 

the nodes in the following layer which is required for end-to-end training. The 

architecture of CNN is shown with respect to hyperspectral image processing in 

Figure 2.10.  

 

Figure 2.10: General Architecture of Convolution Neural Network 

2.6.5. Spectral Unmixing 

Urban targets may be confined to multiple pixels (full pixel) or are part of 

fraction of pixel (subpixel), which result in a mixed signal to the sensor. Mixed pixel 

detection is a challenging task for delineating the targets from the background class. 
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Mixed Pixel analysis techniques can be linear or non-linear in nature. In former, pure 

spectral constituents (endmembers) are assumed to have a constant reflectance across 

the scene followed by calculation of their abundance values by solving constrained 

linear equations, while in latter multiple scattering between components within 

instantaneous field of view are considered with respect to photon’s interaction (Fan, et 

al. 2009). Apart from these, coarse spatial resolution is also one of the major challenges 

faced while extraction of urban built-up surfaces using remote sensing methods.  

 Traditional approaches for determination of endmembers were predominantly 

based on manual efforts (Ann and Curtiss 1996). But modern techniques of endmember 

extraction are based on automated methods, catalysing the process. Due to within-class 

variability, multiple endmembers belong to one class, leading to spectral variation 

(Philip and Roberts 2003). In such cases, pure spectra is representative of all spectral 

signatures in modelled pure class. But assuming that hyperspectral data acquired 

remotely contain pure observations for every material present in the scene eases the 

process of validation with ground data (Jin, et al. 2009), for instance, N-FINDR. 

Incorporation of other methods such as, spatial information (Shaohui, et al. 2011) , 

(Huali and Zhang 2011) sparse regression (Castrodad, et al. 2011), (Charles, Olshausen 

and Rozell 2011) deep learning (Boyu and Wang 2018) have enhanced the results 

obtained by spectral unmixing. Linear spectral unmixing and Vertex Component 

Analysis (VCA), being the simplest one, are explained in the upcoming subsection.  

2.6.5.1. Linear Spectral Unmixing 

After extraction of pure endmembers, spectral unmixing is performed to 

determine the abundance values associated with each pixel and corresponding 

abundance maps are generated. Linear mixture model (LMM) is extensively used for 

modeling the spectral signature of a pixel as linear combination of its individual 
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constituents and its abundance fractions. The algorithm is based on two assumptions, 

(i) the sum of abundance of each member is equal to one (additive constraint) (ii) the 

abundance value of each endmember cannot be less than zero (non-negativity 

constraint) (Manolakis, Siracusa and Shaw 2001). The mathematical formulation of 

linear mixture model is shown in Equation 2.30. Considering 𝐿 spectral bands, the 

spectral signature of every endmember can be represented by 𝐿 −

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟, then the general formulation of LMM is illustrated as:  

𝓍 =  ∑ 𝑎𝑘𝑠𝑘 +  𝓌 ≜ 𝑆𝑎 +  𝓌
𝑀
𝑘=1                                                    (2.30) 

𝑆 ≜ [𝑠1 𝑠2⋯ 𝑠𝑀] 

𝒶 ≜ [𝑎1𝑎2⋯𝑎𝑀]𝑇 

Where, 𝑥 is the spectrum of the mixed pixel, 𝑠𝑘 is spectrum of the considered 

endmembers, 𝑎𝑘 are their respective abundance values, 𝑀 is the number of endmembers 

and 𝑊 accomodates the L-dimensional error vector accounting for noise. 

2.6.5.2. Vertex Component Analysis  

VCA is used to derive ground reference data for the proposed study, as it 

exploits two facts: the endmembers are the vertices of a simplex (can be broken down 

into constituent n-dimensional elements) and the affine transformation of simplex is 

also simplex. (MP and Dias 2005). The mathematical interpretation of VCA involves 

observed spectral vector, given by Equation 2.31. 

𝑟 = 𝑥 + 𝑛 = 𝑀 𝛾𝛼 + 𝑛    (2.31) 

Where 𝑟 is an L-vector (L is the number of bands), 𝑀 ≡ [𝑚1,𝑚2, ……… 𝑚𝑝] 

is the mixing matrix (𝑚𝑖 denotes the 𝑖𝑡ℎ endmember signature and 𝑝 is the number of 

endmembers present in the covered area), 𝑆 ≡  𝛾𝛼 ( 𝛾 is the scale factor modelling 

illumination variability due to surface topography), 𝛼 = [𝛼1, 𝛼2, ………𝛼𝑝]
𝑇 is the 
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abundance vector containing the fractions of each endmember. Here (. )𝑇 stands for 

transpose and 𝑛 is the additive noise. The abundance fraction always satisfies the 

physical constraints of non-negativity (𝛼 ≥ 0)and the positivity constraint 1𝑇𝛼 = 1, 

where 1 is a 𝑝 × 1 vector of ones.  

The spectral signatures of the endmembers may be chosen from the standard 

digital spectral libraries, (such as USGS), captured from the field, processed in 

laboratory or derived from the imagery. The abundance fractions are generated using 

Dirichlet distribution (Nascimento and Bioucas-Dias 2011), given by Equation 2.32: 

𝑝(𝛼1, 𝛼2, … , 𝛼𝑝 = 
𝜏(𝜇1+𝜇2+⋯+𝜇3)

𝜏(𝜇1)𝜏(𝜇2)… 𝜏(𝜇𝑝)
 ×  𝛼1

𝜇1−1𝛼2
𝜇2−1… 𝛼𝑝

𝜇1−1          (2.32) 

Where 0 ≤ 𝛼𝑖 ≤ 1, ∑ 𝛼𝑖 = 1
𝑝
𝑖=1 , 𝐸[𝛼𝑖] = 𝜇𝑖 ∑ 𝜇𝑘

𝑝
𝑘=1⁄  is the expected value of 

the 𝑖𝑡ℎ endmember fraction, and 𝜏(. ) denotes the gamma function. Parameter 𝛾 is Beta 

(𝛽1, 𝛽2) distributed, constructing Equation 2.33, 

𝑝(𝛾) = (
𝜏(𝛽1+𝛽2)

𝜏(𝛽1)𝜏(𝛽2)
) 𝛾𝛽1−1(𝛾 − 1)𝛽2 − 1         (2.33) 

2.6.6. Super resolution techniques  

Researchers are continuously working to improve spatial resolutions using 

super resolution techniques which make use of estimated abundance fractions in 

different pixels or any other such similar parameter/value. Use of abundance fractions 

leads to consideration of subpixel components of a class and helps in development of 

maps with higher accuracy. Elbakary and Alam proposed a method to produce high 

resolution bands from low resolution imagery based on local correlation values using 

super resolution reconstruction (Elbakary and Alam 2007). Models that enable to 

represent hyperspectral data as linear combination of small image planes to reconstruct 

spectrum of observed scene is also another approach mentioned in literature (Akgun, 

Altunbasak and Mersereau 2005). 
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When the targets are embedded within a pixel, target detection approach deals 

with pixel-wise comparison neglecting the partial target details in the surrounding 

pixels (mixed pixels). Spectral unmixing mentioned in the previous section is one of 

the solution to accommodate the complete abundance information about the target, 

however it lacks spatial distribution of subpixel of target with respect to surrounding 

pixels (Muad and Foody 2012) . Bridging this gap, super-resolution is capable of 

optimising the spatial distribution of subpixels within a pixel on the basis of available 

abundance fractions (Gu, Zhang and Zhang 2008).  

Scale factor governs the number of subpixels into which a mixed pixel is 

supposed to be sub-divided. Literature is still restricted in terms of urban target 

detection using super-resolution mapping techniques, though applications primarily 

emphasising on wetland inundation (Li, et al. 2015), lakes (Qin, et al. 2020), land use 

and land cover map generation (Kasetkasem, Arora and Varshney 2005) (Ma, Hong 

and Song 2020) have extensively applied this concept. Super resolution based methods 

can be broadly grouped in three categories, (i) interpolation, (ii) learning and (iii) 

reconstruction wherein, the first approach uses interpolation to determine the high 

resolution image through low resolution image assumming the high correlation between 

the neighboring pixels. Learning based methods require training the network with 

known information followed by its validation and testing it over uknown dataset. In 

third technique, the original image is downscaled as a priliminary step and then further 

analysis is carried out in terms of super-resolution (Dixit and Agarwal 2020) .  

Extracting full pixels of targets along with its fractions or endmember 

abundance values using the concept of spectral unmixing is often followed by super-

resolution techniques in order to locate correct spatial distribution . Therefore this 

category of target detection lies unexplored as most of the approaches reported here, 
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use random allocation of location to subpixels of different endmembers. This recursive 

procedure not only increases the computational complexity but adds on to CPU time as 

well, for instance, Pixel Swap Algorithm. Algorithms like Inverse Euclidean Distance 

Approach are based on a non-random, non-recursive assignment of subpixels to binary 

end members. Both of these approches are explained in upcoming section.  

2.6.6.1. Pixel Swap 

This algorithm alters the spatial arrangement of subpixels to maximise the 

correlation between the neighboring pixels (P. M. Atkinson 2005). At first iteration, the 

spatial arrangement of subpixels is done randomly subsequently their correct allocation 

is done by finding the maximum spatial correlation value. Since the algorithm is 

capable of working on a two-class problem, therefore the results from spectral unmixing 

are required as input. After setting the scale factor, the number of sub-pixels in a pixel 

remains fixed throughout the implementation and each subpixel is assigned to single 

landcover class maintaining the original class fractions in coarse resolution image. For 

every subpixel in pixel 𝑖, attractiveness 𝐴𝑖 is calculated corresponding to every 

neighboring pixel (𝑞 = 1,2,3……𝑞) within a window as a distance weighted function, 

given in Equation 2.34, 

𝐴𝑖 = ∑ 𝜆𝑖𝑞
𝑞
𝑞=1 𝑧(𝑦𝑞)                                                    (2.34) 

Where, 𝑧(𝑦𝑞) is the binary target/class of the 𝑞𝑡ℎ pixel at location 𝑦𝑞 and 𝜆𝑖𝑞 is 

given by Equation 2.35, 

              𝜆𝑖𝑞 = exp (
−ℎ𝑖𝑞

𝑎
)                                                       (2.35) 

ℎ𝑖𝑞 denotes the distance between the location 𝑦𝑖 of pixel 𝑖 and location of 𝑦𝑞 of 

neighboring pixel 𝑞, and 𝑎 is a non-linear parameter. Later, minimum (𝐴𝑖) and 

maximum (𝐴𝑞)  attractiveness is calculated for all subpixels currently allocated to 1 
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and 0 respectively. If 𝐴𝑖 < 𝐴𝑞, then pixel swapping takes place and continues till the 

threshold value is achieved and no more swaps are possible.  

2.6.6.2. Inverse Euclidian Distance 

Pixel-swap algorithm is based on random allocation and an iterative mechanism 

making it computationally intensive. As the technique is dependent upon a non-linear 

parameter  𝑎 given in Equation 2.35 which adds uncertaininty in terms of achieving 

convergence at a given threshold. Therefore, Euclidean distance algorithm is a non-

random and non-iteartive method for assignment of subpixels to the binary 

endmembers (Arora and Tiwari 2013). The algorithm is explained here in brief. 

Consider an image array of size 𝑚 × 𝑛 (Figure 2.11a) and an pixel of size 3 × 3 is 

extracted for super resolution (Figure 2.11b). Let super resolution is performed at a 

scale factor of 5, giving 25 subpixels to be predicted using inverse Euclidean distance 

(Figure 2.11c). The neighborhood of the central pixel P5 shown is denoted from P1 to 

P9. The abundance fractions of these subpixels is identified from the soft classification 

or unmixing methods, so the corresponding abundances are denoted from a1 to a9, 

required for each binary class calculation (Figure 2.12). If the abundance value of the 

central pixel is 0.6 then 0.6 × 25 = 15 subpixels out of 25 belong to this class and rest 

of the 10 pixels are allocated to the other class.  

           

Figure 2.11: (a) 𝑚 × 𝑛 array to super resolve (b) 3 × 3 window size and 8 neighbours (c) Super resolution 

mapping of all 8 neighbours (Source: (Arora and Tiwari 2013)) 
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Figure 2.12: Abundance fractions layout in 3 × 3 pixel array (Source: (Arora and Tiwari 2013)) 

 

The attractiveness for the neighborhood subpixels with respect to the central pixel is 

calculated as a function of inverse Euclidean distance and is given by Equation 2.36.  

𝐴𝑖𝑗 = 
1

𝑑𝑖𝑗
                                                                                      (2.36)                                                                       

 𝑑𝑖𝑗 = √(𝑖 − 𝑥𝑐)2 + (𝑗 − 𝑦𝑐)2            

Where 𝑖 𝑎𝑛𝑑 𝑗 are row and column coordinate of the central subpixel, 𝑥𝑐 and 𝑦𝑐 are the 

centers of subpixels within the super-resolved pixel and 𝑑𝑖𝑗 is Euclidean distance. The 

super resolution is initiated with the very first pixel in the image, later the highest 

abundance fraction is obtained in the corresponding neighbourhood, known as 

endmember centre. Attractiveness ranked in decreasing order is determined 

immediately after this step, assigning logical 1 value to the endmember subpixel and 

rest are assigned as 0. The same process continues till all the pixels are super-resolved.  
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Chapter 3 

Data and Software 
 

The data for this research work has been provided under the Airborne Visible 

InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG) mission. The 

campaign is part of “Big Data Initiatives” by Department of Science and Technology 

(DST), Government of India, which was initiated in 2015. This ISRO-NASA joint 

airborne hyperspectral campaign is a development towards exploring the future 

potential of hyperspectral remote sensing in earth observation.  

3.1. Data 

3.1.1. Airborne Data Collection 

The broad objectives of the campaign include (Bimal, et al. 2019):  

i. To harness the benefits of unique and advanced remote sensing measurements 

for society by bringing together important talents and expertise in 

instrumentation, science and applications of both ISRO and NASA. 

ii. To jointly develop advanced science understanding, models, algorithms and 

techniques through knowledge sharing and to open up new avenues of 

collaboration. 

iii. To provide the required precursor ground truth data and science and application 

research demonstrations for present and future ISRO space imaging 

spectrometer missions. 

The data introduces about 430 narrow spectral bands concatenated together in Very 

Near Infrared (VNIR) and Short-Wave Infrared (SWIR) regions ranging from 380 nm 

to 2500 nm. The spectral interval is 5 nm with an accuracy of 95% having Field of View 

(FOV) of 34° and Instantaneous FOV of 1 mrad. The Ground Sampling Distance (GSD) 
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varies between 4 to 8 m. The major themes for the campaign include, Agriculture and 

Ecosystem; Geology; Ocean and coastal areas; Rivers and water quality; Urban; Snow 

-ice and atmosphere. Table 3.1. gives the broad science themes along with the sub-

themes. Figure 3.1 shows the photographs of the airborne campaign.  

Table 3.1: Science themes and study sites for airborne data collection 

S. No. Broad Science Themes Sub-themes Number of 

Study sites 

1. Agriculture and Ecosystem Crop Soil, Mangrove, Wetland 21 

2. Geology - 11 

3. Ocean & coastal Coastal zone, biological 

oceanography, coral reef 

11 

4. Rivers and water quality - 5 

5. Urban  2 

6. Snow and ice  2 

7. Atmosphere Air quality, cloud microphysics 3 

 

 

 
Figure 3.1: Airborne campaign team and science field campaign team with B200 aircraft and 

AVIRIS-NG instrument 

 

The specifications of the AVIRIS-NG sensor/data are summarised in Table 3.2. 

Table 3.2: Specifications of the AVIRIS-NG Sensor/Data 

S. No. Parameter Value 

1. Wavelength 380 nm to 2510 nm 

2. Spectral Resolution (FWHM, 

minimum) 

5nm ± 0.5 nm 

3. Field of View 36 ± 2 degrees with 600 resolved elements 

4. Instantaneous Field of View 1.0 1.4 mrad ± mrad 

5. Spatial Sampling (maximum 

observed at resolved elements) 

1.0 mrad ± 0.1 mrad 

6. Spectral Distortion (smile) Uniformity > 97% 

7. Spectral Distortion (keystone) Unformity >97% 

8. Frame Rate 10 - 100 frames per second 

9. Pixel Size 27 microns x 27 microns 

10. Calibration On-board calibrator 

11. Data Resolution 14 bits 

12. Data Rate Up to 74 MB/s of throughput 

13. Data Volume Up to 1.0 TB of raw data before disk swap 

14. Physical Volume 83 cm (H) x 57 cm (Dia.) plus electronics boxes  

15. Mass 465kg 

16. Vacuum Requirement 10-4 torr 

17. Ambient Operating Temperature -40 to +50C 
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18. Maximum Altitude 18 km 

19. Cool-Down Time < 48 hours 

20. Operational Time / Mission 14 days 

21. FPA 480 (spectral direction) X 640 (cross track) 

 

Exceptional volumes of high-quality data were collected for multiple themes. 

Imaging spectroscopy data sets acquired by AVIRIS-NG gives a three-dimensional 

hypercube which can be viewed in two-dimension in form of True Colour Composite 

(TCC) or False Colour Composite (FCC). The three-dimensional image of some of the 

themes are shown in Figure 3.2. 

    
      (a)                                      (b)                                     (c)                                  (d) 

Figure 3.2: Three-dimensional image of (a) Forestry (b) Geology (c) Coastal Oceans (d) Snow/Ice 

 

Three levels of products, that is, L0, L1 and L2 have been derived from 

AVIRIS-NG data. The L0 and L1 data represent raw data, calibrated and ortho-rectified 

top-of-radiance (TOA), respectively which were generated on-board the aircraft. The 

L2 data represent surface reflectance products in all the bands after atmospheric 

correction. Two types of prototype models viz. point-based and pixel-based, have been 

developed. The former is useful for a sub-scene where atmosphere is assumed spatially 

invariant and point-measured aerosol optical depth and water vapour can be used for 

generating surface reflectance. Pixel-based approach first derives atmospheric water 

vapour and aerosol optical depth at pixel-level from TOA radiance itself, which serve 

as input to atmospheric correction models. The product levels are given in Table 3.3. 
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Table 3.3: Level details of the airborne data collected 

Product 

Type 

Product Definition Data Content 

Level-0 Raw Raw data captured by the sensor 

Level-1 Calibrated Radiance Radiance image cube 

Level-2 Atmospherically corrected surface reflectance Reflectance Image Cube 

 

The social benefit areas are, food security, mineral exploration, water and air 

quality assessment, mapping forest tree species with medical benefits, urban 

development and planning, climatic changes and many more.  

3.1.1.1. AVIRIS-NG Phase 1  

About 230 AVIRIS-NG scenes collected over 57 sites in the first phase of 

campaign have been archived in VEDAS portal. In addition to that, ground-truth data 

and field campaign reports are also archived in VEDAS. Data are being disseminated 

to interested researchers of different Indian Academia based on certain guidelines. The 

flight paths of phase 1 are shown in Figure 3.3. 

 
Figure 3.3: Multiple scan lines captured during the Airborne data campaign Phase-1 
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3.1.1.2. AVIRIS-NG Phase 2 

A total of 100 sites distributed over India have been covered in Phase – 2 

airborne hyperspectral campaign with AVIRIS-NG. Phase – 2 is divided into two parts, 

Phase – 2A and Phase – 2B. The Phase – 2A covered 50 sites during 21 February – 30 

April 2018 from seven airbases (Figure 3.4) in India covering the themes shown in 

Table 3.4 

Table 3.4: Science themes and study sites for airborne data collection Phase 2 

S. No. Broad Science Themes Sub-themes Number of 

Study sites 

1. Agriculture and Ecosystem Crop Soil, Mangrove, Wetland 10 

2. Geology - 10 

3. Ocean & coastal Coastal zone, biological 

oceanography, coral reef 

5 

4. Rivers and water quality - 7 

5. Urban  3 

6. Forest/Mangrooves  10 

7. Atmosphere Air quality, cloud microphysics 3 

 

 
Figure 3.4: Multiple scan lines captured during the Airborne data campaign Phase-2A 

3.1.2. Ground Data Collection 

The pre-campaign meeting held at Space Application Centre (SAC), 

Ahmedabad, India in September 2015. Parameters like, sampling plans, points, time 
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and other field data equipment were decided. Other protocols such as biochemical, 

geochemical analysis, laboratory analysis was also planned and the detailed Performa 

is placed in Annexure I. Teams of researchers from multiple institutions were formed 

to carry out simultaneous process of field data acquisition. The radiometric calibration 

was carried out at SAC before the Phase 1 of the airborne campaign which started on 

19th December 2015 and continued till 8th March 2016. The campaign was organised 

from nine airport bases mentioned in Table 3.5. Approximately 200 people were part 

of the complete program who managed on-site permissions, air traffic control, weather 

conditions and flight planning. The corresponding flight paths are shown in Figure 3.5 

along which the simultaneous ground data collection was done.  

Table 3.5: AVIRIS-NG Airborne hyperspectral Phase-1 Flight Planning 

S. 

No. 

Airports (As per 

flight schedule) 

Duration Number 

of Sites 

Area 

(km2) 

1.  Begumpet 16 to 21 December 2015 

25 to 29 January 2016 

12 2650 

2. Bhubaneswar  22 to 28 December 2015 6 3780 

3. Mangalore 29 December 2015 to 2 January 2016 5 3491 

4. Coimbatore 3 to 8 January 2016 5 1416 

Phase Inspection of aircraft 

5. Udaipur 31 January to 5 February 2016 8 3697 

6. Ahmedabad 6 to 16 February 2016  

6 to 9 March 2016 

10 2788 

7. Chandigarh 17 to 21 February 2016 4 835 

8. Patna 22 to 24 February 2016 3 396 

9. Kolkata 24 February to 6 March 2016 4 3787 

Total Number of Days = 84                                 Total area imaged = 22840 km2 over 57 sites  

 

 
Figure 3.5: Flight paths of airborne campaign for field data collection 
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Multiple engineered objects listed in Table 3.6. were acquired as part of the 

campaign covering the spectral range over the interval of 350 – 2500 nm with 2151 

channels. The field spectroscopy data was captured during high exposure and minimum 

cloud coverage. The spectroradiometer used for the study spanned over visible to short 

infrared region with a spectral resolution of 1.5 nm at 350 – 1000 nm, 3.0 nm at 1500 

nm and 3.8 nm at 2100 nm, respectively. Over 1000 spectral signatures under multiple 

categories such as roads, roofs, sports infrastructure, vehicles etc were collected and 

some of them are shown in Figure 3.6.  

Table 3.6: Spectral signatures collected for engineered objects 

1. Bitumen 9. Railway tracks 17. Pebble Road 

2. Concrete roof 10. Floor tiles 18. Unmetalled road 

3. PCC roof 11. Polished marble 19. Tennis court 

4. Sandstone roof 12. Concrete Road 20. Mica sheet 

5. Iron 13. Cement Roof 21. CGI Sheet 

6. Red Brick 14. PVC Pipe 22. Granite 

7. Rubble Road 15. Tiled roof 23. Basketball pitch 

8. Asbestos 16. Walkway tile 24. Asphalt Road 

 

            
                                        (a)                                                                            (b) 

               
                                          (c)                                                                         (d) 

  

Figure 3.6: (a) Spectral signatures of concrete road (b) Railway tracks (Iron) (c) Tennis court (d) Bitumen roof 
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3.2. Software 

For the implementation of the approaches developed for identification and 

detection of desired targets, different software tools have been used are detailed here.  

3.2.1. Environment for Visualizing Images (ENVI) 

ENVI software version 4.8, developed by ITT Visual Information Solutions, has been 

used for visualizing, processing and analyzing remotely sensed data. Some of these 

used in the present research work include,  

 Pre-processing of hyperspectral data, such as removal of bad bands, spectral and 

spatial sampling. 

 Viewing hyperspectral data 

 Dynamic image display, histogram and spectral library building 

 Automatic and manual contrast stretching  

 Spectra extraction using Region of interest (ROI) generation 

 Interactive scatter plot generation  

 Classification, Target detection etc. 

3.2.2. Matrix Laboratory (MATLAB) 

 MATLAB version R2018b is a fourth-generation programming language which 

provides efficient environment for numerical computing. It allows plotting of data, 

matrix operations, creation of user interfaces etc. it has numerous libraries for 

supporting wide range of applications such as control systems, image processing, neural 

networks, fuzzy logic, statistics etc. in this study, MATLAB has been used for,  

 Implementation of various algorithms in the study 

 Plotting of data for computing the algorithms 

 Statistics computation (mean, standard deviation, correlation etc.) 
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 Neural network for analyzing target spectral behavior 

 Visualizing the images 

 Matrix computation for performing operations on images 

 Morphological analysis 

3.2.3. Jupyter Notebook using Python 

The Jupyter Notebook is an open-source web application that helps to create 

and share live codes, equations, visualizations, and narrative text. It includes data 

cleaning and transformation, numerical simulation, statistical modeling, data 

visualization, machine learning, and much more. It is a web-based interactive 

computational environment for creating codes. In this work, Python is used for, 

 Training the deep neural network using libraries 

 Implementation of CNN 

 Finding out accuracy assessment parameters 

 Plotting curves  
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Chapter 4 

Comparative Assessment of detection algorithms for 

engineered objects 
 

 

Hyperspectral data facilitates exploration of treasure of spectral information that 

lie within multitudes of its spectral bands. Hyperspectral data is being analysed to 

explore levels of urbanization due to its competence to address spectral variability in 

urban environment. Literature reports use of a variety of algorithms for extraction of 

urban information from any given data with varying accuracies.  

4.1. Introduction 

This work aims to explore target detection approach, a binary classifier, to 

extract certain features.  Roads and roofs are the most common features present in any 

urban scene and have been considered as targets. These experiments have been 

conducted on a subset of AVIRIS-NG hyperspectral data set of Udaipur region (India) 

with roads and roofs as targets. This section also presents a brief taxonomy of 

algorithms selected for the work, explores methods like Mahalanobis angle, which has 

been reported in the literature as being effective in extraction of urban targets, 

implementation of machine learning algorithms for increasing the accuracy. The work 

is likely to aid in city planning, sustainable development and various other 

governmental and non-governmental works related with urbanisation.  

The objective of this work is to study an alternative approach for extraction of 

urban targets and treat it as a binary hypothesis and make use of various target detection 

algorithms for their extraction. The novelty of the work lies in the idea of dealing the 

problem of detecting urban targets by target detection approach rather than 

classification. Classification deals with multiple land cover classes at a time and 
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generates the corresponding thematic map, while target detection searches for some 

specific objects producing a binary image. Therefore, the process is well suited for 

detection of roads and roofs in urban areas.  

A summary of various available target detection algorithms is abridged in Table 

4.1 along with its mathematical details. The work being done sums up certain standard 

spectral matching algorithms and performs an extensive comparative assessment for 

detection of urban targets (particularly road and roof). For this, all the spectral matching 

algorithms listed in Table 4.1 have been implemented followed by accuracy assessment. 

Also, the work done provides a review about conventional and modern target detection 

techniques adopted in hyperspectral remote sensing in past years.  

In Distance measures, Euclidean distance is calculated as square root of sum of 

squared distances between the reference spectral signature 𝑦𝑖 and the test spectral 

signature 𝑥𝑖 . Dot product gives the scalar product of magnitude of 𝑦𝑖 and 𝑥𝑖. Z-score 

is derived by the number of standard deviations between 𝑦𝑖 and 𝑥𝑖. Lastly, Mahalanobis 

distance uses covariance matrix and mean of class with respect to the test spectrum 𝑥𝑖. 

For angle measures, SAM directly compares the angle between 𝑦𝑖 and 𝑥𝑖 

determining the similarity between them. SCM method is a derivative of Pearsonian 

Correlation Coefficient and calculated in similar manner like SAM. SGA is a 

descriptive measure to analyse the trend between two adjacent bands. Mahalanobis 

angle makes use of covariance matrix and then calculates the angle between 𝑦𝑖 and 𝑥𝑖 .  

In Information measures, CEM is designed with perspective, when signature of 

endmember to be extracted is only available as compared to other measures. MF 

assumes that the target and background classes follow multivariate normal distributions 

with the same covariance matrix and then find the mutual information. ACE performs 

detection solely on the basis of spectral shape on the other hand SID works on 
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divergence to match pixels with 𝑦𝑖. Maximum likelihood algorithm calculates 

discriminant functions for each 𝑥𝑖 using probabilistic approach.  

Using machine learning technique, ANN and ELM are implemented that work 

on handcrafted features, extracted from the image and ground data. ELM tends to 

perform by giving extremely fast training speed as compared to ANN. ANN uses 

gradient descent method that takes longer than matrix invert used by ELM. 

Detailed theoretical background in respect of the algorithms discussed above 

has been provided in Section 2.4.1. 

Table 4.1: Mathematical Formulas for Target Detection Algorithms 

S No. Algorithm Formula Description 

Distance Measures 

1.  Euclidean 

Distance  
𝑒 (𝑥, 𝑦) =  √∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

𝑒 (𝑥, 𝑦) – Euclidean 

distance 

𝑥𝑖 – Test spectra 

𝑦𝑖 – Reference spectra 

n – Total number of 

pixels 

2.  Dot Product 
𝑥. 𝑦 =∑𝑥𝑖𝑦𝑖 = 𝑥1𝑦1 +

𝑛

𝑖=1

𝑥2𝑦2…… .+𝑥𝑛𝑦𝑛 
𝑥. 𝑦 – Dot product 

𝑥𝑖 – Test spectra 

𝑦𝑖 – Reference spectra 

n – Total number of 

pixels 

3.  Z-Score 

𝑍𝑆𝐷 =  √∑(𝑟𝑏 − 𝑡𝑏)

𝑛

𝑏=1

/𝜎𝑡𝑏)
2 

 

𝑍𝑆𝐷 – Z-Score Distance 

𝑟𝑏 – Reflectance 

amplitude of n band 

resampled reference 

spectrum at band b 

𝑡𝑏 – Mean reference of n 

band class spectrum at 

band b 

𝜎𝑡𝑏 – Class standard 

deviation at band b 

4.  Mahalanobis 

Distance (𝑆𝑖 , 𝑆𝑗) =  √(𝑠𝑖 − 𝑠𝑗)
𝑇
𝑄−1(𝑆𝑖 , 𝑆𝑗) 

 

𝑄 = 
1

𝑛 − 1
 ∑(𝑠𝑥 − 𝑠̅)(𝑠𝑥 − 𝑠̃)

𝑇 ,

𝑛

𝑥=1

𝑠̅ =
1

𝑛
∑𝑆𝑥

𝑛

𝑥=1

 

 

𝑀𝐷 – Mahalanobis 

Distance 

𝑆𝑖 , 𝑆𝑗 – Spectral vectors 

𝑄 – Estimated covariance 

matrix computed with n 

data training samples 

Angle Measures 

5.  Spectral 

angle 

mapper 

(SAM) 

𝑆𝐴𝑀(𝑠𝑖 , 𝑠𝑗) = cos
−1

(

 
 ∑ 𝑠𝑖𝑙

𝑁
𝑙=1

√∑ 𝑠𝑖𝑙2
𝑁
𝑙=1 √∑ 𝑠𝑗𝑙2

𝑁
𝑙=1

)

 
 

 

𝑆𝑖 , 𝑆𝑗 – Spectral vectors 

 

6.  Spectral 

correlation 

angle (SCA) 

𝑐(𝑥, 𝑦) =  
< 𝑥 − 𝑥̅, 𝑦 − 𝑦̅ >

‖𝑥 − 𝑥̅‖2‖𝑦 − 𝑦̅‖2
 

 

𝑆𝐶𝐴 (𝑥, 𝑦) = 𝑎𝑟𝑐 cos (
𝑐 (𝑥, 𝑦) + 1

2
) 

𝑥, 𝑦 – n dimensional 

vectors 

𝑥̅, 𝑦̅ – Expected values of 

vectors 
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7.  Spectral 

gradient 

angle (SGA) 

𝑆𝐺(𝑥) = (𝑥2 − 𝑥1, 𝑥3−𝑥2, 𝑥4 − 𝑥3…… . . 𝑥𝑛 − 𝑥𝑛−1) 
 

𝑆𝐺𝐴 (𝑥, 𝑦) = 𝑆𝐴(𝑎𝑏𝑠(𝑆𝐺(𝑥)), 𝑎𝑏𝑠(𝑆𝐺(𝑦)) 
 

𝑆𝐺 – Spectral Gradient 

𝑥, 𝑦 – n dimensional 

vectors 

𝑎𝑏𝑠(𝑥) – Vectors whose 

components are absolute 

values of components of 

x. 

8.  Mahalanobis 

Angle 
𝑐𝑜𝑠𝜃𝑖𝑗

=
(𝑥𝑖 −𝑚)

𝑇𝐶−1(𝑥𝑗 −𝑚)

[(𝑥𝑖 −𝑚)
𝑇𝐶−1(𝑥𝑖 −𝑚)]

1
2⁄ [(𝑥𝑗 −𝑚)

𝑇
𝐶−1(𝑥𝑗 −𝑚)]

1
2⁄
 

𝑥𝑖 , 𝑥𝑗 – Spectral vectors 

𝐶 – Covariance matrix 

𝑚 – Mean spectra of class 

Information Measures 

9.  Constrained 

Energy 

minimization 

(CEM) 

𝑦𝑖 = 𝑤
𝑡𝑟𝑗 

 

𝑡𝑡𝑤 = 1 
 

𝑤 = 
𝑅−1𝑡

𝑡𝑡𝑅−1𝑡
 

𝑡 – Known target spectra 

𝑅 – Auto correlation 

matrix 

𝑤 – Coefficient vector 

10.  Matched 

filter (MF) 
𝑥 = 𝑥𝑜 −𝑚𝑏 

𝑠 = 𝑠𝑜 −𝑚𝑏 

 

𝑀𝐹 =  
𝑥𝑇𝐶𝑏

−1𝑠

√𝑠𝑇𝐶𝑏
−1𝑠

 

𝑥, 𝑠 – Spectral vectors 

𝑚𝑏 – Background mean 

vector 

𝑐𝑏 – Covariance matrix 

 

 

 

11.  Adaptive 

cosine 

estimator 

(ACE)  

𝐴𝐶𝐸: 
𝑥𝑇𝐶𝑏

−1𝑠

√𝑠𝑇𝐶𝑏
−1𝑠 √𝑥𝑇𝐶𝑏

−1𝑥

 
𝑥, 𝑠 – Spectral vectors 

𝑚𝑏 – Background mean 

vector 

𝑐𝑏 – Covariance matrix 

12.  Spectral 

Information 

Divergence 

(SID) 

𝑆𝐼𝐷 (𝑟1, 𝑟2) = 𝐷(𝑟1‖𝑟2) + 𝐷(𝑟2‖𝑟1) 
 

𝐼𝑖(𝑟1) = log(𝑝𝑖) 𝑎𝑛𝑑 𝐼𝑖(𝑟2) =  − log(𝑞𝑖) 
 

 

𝑟1, 𝑟2 – Pixels with 

spectral signatures 

𝑠1 𝑎𝑛𝑑 𝑠2 

 𝑝, 𝑞 – Probability 

functions generated by 

spectra 𝑠1 𝑎𝑛𝑑 𝑠2. 

 

13.  Maximum 

likelihood 

algorithm 

𝑔𝑖(𝑥) = 𝑙𝑛𝑝(𝑤𝑖) −
1
2⁄ 𝑙𝑛|𝜖𝑖|

− 1 2⁄ (𝑥 −𝑚𝑖)
𝑇∑(𝑥 −𝑚𝑖)

−1

𝑖

 

 

𝑥 – n dimensional data 

𝑖 – class 

𝑝(𝑤𝑖) – probability of 

class 𝑤𝑖, assumed to be 

same for every class 
∑ 𝑖 – Covariance matrix 

 

Machine learning Measures 

14.  Artificial 

neural 

network 

(ANN) 

𝑦𝑖 = 𝑔𝑖 = 𝑔(∑𝑤𝑗𝑖

𝐾

𝑗=1

𝑥𝑗 + 𝜃𝑖) 

 

𝐸 =
1

2
∑(𝑦𝑗 − 𝑡𝑗)

𝑘

𝐽=1

 

𝑦 – output  

𝑥- input  

𝑔- activation function 

𝑤- weight  

𝜃- bias  

𝐸- error 

𝑡- ground truth for 

instance 

15.  Extreme 

learning 

machine 

(ELM) 

∑𝛽𝐼

𝐿

𝑖=1

𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥), 𝑥 ∈ 𝑅
𝑑, 𝛽𝐼 ∈ 𝑅

𝑚 

 

𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥) = 𝑔(𝑎𝑖 . 𝑥 +  𝑏𝑖), 𝑎𝑖 ∈ 𝑅
𝑑, 

𝑏𝑖 ∈ 𝑅 
 

∑||𝑓𝐿(𝑥𝑗) − 𝑡𝑗

𝑁

𝑗=1

|| = 0 

∑𝛽𝐼

𝐿

𝑖=1

𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥) =  𝑡𝑗 , 𝑗 = 1,2……𝑁 

 

𝐻𝛽 = 𝑇 

L – Hidden nodes 

𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥) – Output 

function at 𝑖𝑡ℎ hidden 

node 

𝑎𝑖 , 𝑏𝑖 – hidden node 

parameters 

𝛽𝑖  – weight vector 

𝑔 – activation function 

H – hidden layer output 

matrix 
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4.2. Problem Statement 

In the present work, it is proposed to explore target detection algorithms for 

extraction of urban targets. The two specific urban targets selected for this study are 

road and roof surfaces. The literature provides a large number of different types of 

algorithms for target detection as discussed briefly in Section 2.4 and in detail in 

Chapter 2. 

There are however, very little literature available to support such kinds of 

studies where target detection methods have been used for extraction of urban targets 

(road and roof surfaces).  Since a lot of variation in performance of different algorithms 

for extraction of urban targets can be expected, in the first stage, it has been considered 

to carry out a comparative assessment of different types of target detection algorithms 

for detection of urban targets using hyperspectral data. Therefore, a set of target 

detection algorithms in four categories have been identified from literature survey viz 

distance measures, angle-based measures, information measures and machine learning 

measures. Target detection is followed by performance evaluation. Due to constraints 

such as, unavailability of ground reference data, locational variability etc. researchers 

have also used image derived spectral signatures for analysis (Zhang, et al. 2012) (Ren, 

et al. 2006). Hence, in this work also, reference spectra derived from the field as well 

as from the image have been considered. Further the results from the field and the image 

spectra have been used for a comparative assessment of various algorithms for detection 

of urban targets (roads and roofs). 

4.3. Study Area and Data 

The Hyperspectral data for the purpose of analysis is acquired as part of 

Airborne Visible and Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) 

data collection campaign held in February 2016 (Refer Section 3.1 for details). The area 
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being considered for investigation is Udaipur, Rajasthan, India scene having 1295×388 

pixels with 425 bands in the range of 376 nm to 2500 nm, with 5 nm spectral resolution 

and 8.1 m spatial resolution. Level 2 (derived geospatial variables at same resolution 

and location as Level 1 source data) spatial subset of 394 lines and 385 samples, which 

constitutes maximum urban area has been selected manually for conducting the set of 

experiments.  

 The spectroradiometer used for ground spectra collection for the very same 

region spans its range over 2151 channels with 1nm spectral sampling. Figure 4.1, 

shows the RGB (R=54, G=36, B=18) representation of subset of size 394×385 of the 

complete Udaipur image. The rectangle in the top middle represents the target roof, 

which is easily distinguishable from the background. The second rectangle in the 

bottom left is an enlargement of highway road whereas the third rectangle at the bottom 

right depicts another type of roof. Table 4.2 provides a brief introduction about the 

image and ground data collection parameters considered for the study.         

 
Figure 4.1: Airborne hyperspectral Data Experimental Site  

                      

Table 4.2: Description of Image and Ground Data Collection 

S No. Parameters Image Data Description Ground Data Description 

1. Location Udaipur, Rajasthan, India 

2. Date of Data 

acquisition 

02/02/2016 16/07/2017 – 21/07/2017 
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3. Spatial Resolution 8.1 meter - 

4. Spectral Resolution 5 nm 3nm(700nm),8nm(1500nm) 

6nm(2100nm) 

5. Channels 425 2151 

6. Level of data Level 1 and Level 2  

7.  Main features in the 

images 

Urban features such as roads, bridges, different types of roofs 

(Concrete, bitumen, sandstone, CGI sheet), vehicles, railway tracks 

etc. 

8. Targets in image High road made of concrete and asphalt, concrete roofs 

4.4. Methodology and Implementation 

Pre-processing: As part of pre-processing, Level 2 (derived geospatial variables at 

same resolution and location as Level 1 source data) AVIRIS-NG data having 425 

bands is processed and bands severely affected by atmospheric gases and water vapours 

are removed.  After removal of bad bands, the implementation is carried out on 387 

bands.  

Target Detection: The reference spectra for implemented algorithms is derived in two 

ways: (i) from ground data collection and (ii) from the image itself. In first method, 

resampling of ground spectra (2151 channels) with respect to the image subset by 

reducing them to 387 bands has been done. As part of field data collection campaign 

multiple spectral signatures of urban targets were collected, such as, road (bitumen, 

concrete), roof (concrete, bitumen, CGI sheets, and sandstone), vehicles, railway tracks 

etc. Out of these spectral signatures, spectra of concrete road and concrete roof were 

selected as reference in order to distinguish between them on spectral grounds. Mean 

spectra of 9 road samples and 6 roof samples respectively are considered as per the 

availability for evaluation. Whereas in second method, mean spectra of both targets are 

computed by considering hundred pixels each from hyperspectral image which serves 

as reference spectra in each algorithm. The geographic locations of the targets are also 

validated using Google Earth imagery and ground spectral data collected. Various 

target detection algorithms are implemented and the results corresponding to them are 
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generated in Section 4.5, Results and Discussion. Each algorithm produces a pair of 

output comprising of extracted road and roof pixels.  

Thresholding: Multi-thresholding technique as an extension to Otsu’s method 

(Nobuyuki 1979) is used for applying threshold to the resultant image based on 

minimizing the within class variance in all implemented methods.  The resultant image 

prior to thresholding can be represented in L levels ranging from 0 to 1. The number of 

pixels at level 𝑖  is denoted by , then total number of pixels sums to
 
 𝑁 =

𝑓0+𝑓1…… . 𝑓𝐿−1. For the resultant image, the occurrence of probability of threshold 𝑖  

is given by:  

       𝑝𝑖 = 
𝑓𝑖

𝑁
   𝑝𝑖 ≥ 0    ∑ 𝑝𝑖

𝐿
𝑖=1 = 1                                     (4.1) 

If an image is segmented in K clusters ( 𝐶0, 𝐶1, ……𝐶𝐾−1), 𝐾 − 1 thresholds 

(𝑡0, 𝑡1, …… 𝑡𝐾−2) must be selected. The cumulative probability 𝑤𝑘 and mean grey level 

𝜇𝑘 for each cluster 𝐶𝑘 are respectively given by: 

𝑤𝑘 = ∑ 𝑝𝑖𝑖∈𝐶𝑘   And 𝑢𝑘 = ∑ 𝑖. 𝑝𝑖 𝑤𝑘⁄𝑖∈𝐶𝑘        𝑘 ∈ {0,1…… . 𝐾 − 1}         (4.2) 

Therefore, mean intensity of whole image  and between-class variance  

are respectively determined by: 

           𝜇𝑇 = ∑ 𝑖. 𝑝𝑖
𝐿−1
𝑖=0 = ∑ 𝜇𝑘𝜔𝑘

𝐾−1
𝑘=0                                             (4.3)               

𝜎2𝐵 = ∑ 𝜔𝑘
𝐾−1
𝑘=0 (𝜇𝑘 − 𝜇𝑇) 

2 = ∑ 𝜔𝑘𝜇𝑘
2𝐾−1

𝑘=0 − 𝜇𝑇
2                         (4.4) 

Performance Evaluation: A window size of 60×60 has been selected containing road 

and roof as targets as shown in Figure 4.2. Two binary images have been created having 

1 as target and 0 as background, for ground truth image of road and roof. The spatial 

locations have been validated by the field data taken and Google Earth coordinates. The 

known set of road pixels calculated are 33 with 42 pixels of roof as ground truth data. 

The same region as of the reference window was extracted from the output subset of 
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size 394×385 after applying thresholding. Based on these values detection rate is 

evaluated according to the following equation 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  (𝑃𝑖𝑥𝑒𝑙𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝑃𝐼𝑥𝑒𝑙𝑠)⁄ ∗ 100        (4.5) 

 

                   Figure 4.2: Square window of size 60×60 considered for accuracy assessment 

 

Comparative Assessment: A detailed comparative study has been carried out to explore 

the suitable algorithm for urban target detection. The contrast has been made at two 

levels, (i) Comparison between accuracies computed by ground-based and image-based 

reference spectra; (ii) Comparison among the various measures of target detection 

(distance, angle, information and machine learning). A comprehensive bar graph 

comparing these measures is plotted to depict a peculiarity between them. Also, a line 

diagram illustrating the threshold value range used for extraction of roads and roofs by 

considering ground-based and image-based reference spectra is made.   

Implementation: For implementation, various spectral matching algorithms are used 

for detection and identification of urban targets considered, that is, road and roof. The 

software used to carry out the analysis are MATLAB 2018b and ENVI 5.0. The flow 

chart of the implementation is shown in Figure 4.3. 
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Figure 4.3: Flowchart of methodology  

4.5. Results and Discussion 

This work presents an alternative approach of target detection for extraction of urban 

targets rather than conventional classification method. For this, a series of target 

detection algorithms specified in Table 4.1 have been implemented and a comparative 

assessment has also been carried out.  

 The dataset used for this study is already discussed in Section 4.3. A set of 

experiments have been conducted based on the measures used for their evaluation, 

namely (i) Distance measures (Euclidean distance, Dot Product, Z-Score, Mahalanobis 

distance) (ii) Angle measures (SAM, SGA, SCA, Mahalanobis angle) (iii) Information 

measures (CEM, MF, ACE, SID, Maximum likelihood estimation) and (iv) Machine 

learning measures (ANN, ELM), in order to detect the road and roof as targets.  



72 
 

4.5.1. Target detection using ground reference spectra 

4.5.1.1. Distance Measures 

The results obtained after implementation of various distance measures are shown 

in Figure 4.4 (i-viii) and Table 4.3. Distance between the spectra to be classified is 

calculated corresponding to all the representatives of the class and the one with 

minimum distance based upon the threshold value is selected as the member of the 

class. The analysis with respect to the reference spectra taken for experiments is shown 

as follows: 

i. Euclidean Distance: The accuracies for detection of road and roof are listed in 

Table 4.3 give satisfactory accuracies for roads and roofs, in case of Euclidean 

distance. An accuracy of 51.51% and 52.38% is achieved for roads and roofs 

respectively. However, a visual analysis of the corresponding resultant images 

shown in Figure 4.4 (i-ii) do not highlight road/roofs. A major limitation is that 

the values between reference and test spectral signatures are positively defined 

and indeterminately distributed. Higher values of spectral bands lead to a large 

value for Euclidean distance, and the threshold becomes hard to set (Wenzheng, 

et al. 2019). 

ii. Dot Product: Dot product being square root of Euclidian distance shows similar 

results for road and roof detection. The images in Figure 4.4 (iii-iv) depict 

scarcely detected road and roof surfaces with comparatively lesser accuracies 

for both surfaces (Table 4.3).  

iii. Z-Score: This measure is generally used for spectral library creation, but here 

it has been used to extract the considered urban targets. A visual examination 

of the resultant images produced using Z-Score appears to be incapable of 
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separating roads and roofs (Figure 4.4 (v-vi)). But as compared to Euclidean 

distance and dot product, it performs slightly better, refer Table 4.3.  

iv. Mahalanobis Distance: Unlike Euclidean distance, Mahalanobis distance 

accounts for how correlated the variables are to one another. This method uses 

the Mahalanobis distance and benefits the valuable information contained in the 

statistics of targets and background. The algorithm has attained maximum 

detection in distance measures for extraction of roads and roofs, refer Figure 

4.4 (vii-viii) and Table 4.3.  

The observations listed above indicate relatively poor performance of various 

distance measures. All these distance measures are based upon a simple linear 

modelling of the spectra which however is non-linear in nature. This appears to be the 

reason for poor performance of distance measures. Besides, a reference spectrum 

obtained in field is often influenced by factors such as sensor related parameters, 

atmospheric intervention etc. 

S No. Algorithm Detection of Roads Detection of Roofs 

Distance Measures 

1.  Euclidean Distance 

 
(i) 

 
(ii) 

2.  Dot Product 

 
(iii) 

 
(iv) 
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3.  Z-Score 

 
(v) 

 
(vi) 

4.  Mahalanobis 

Distance 

 
(vii) 

 
(viii) 

Figure 4.4: Detection of roads and roofs using Distance Measures considering ground reference spectra 

 

Table 4.3: Accuracy assessment for Distance measures using ground reference spectra 

TARGETS Road Roof 

ALGORITHMS Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Distance Measures 

1. Euclidean Distance 33 17 51.51 % 42 22 52.38 % 

2. Dot Product 33 18 54.54 % 42 18 42.86 % 

3. Z-Score 33 19 57.57 % 42 22 52.38 % 

4.Mahalanobis Distance 33 23 69.69 % 42 30 71.43 % 

4.5.1.2. Angle Measures 

In comparison to the distance algorithms, angular measures have performed well and 

the corresponding results are shown in Figure 4.5 (i-viii) and Table 4.4. Pixel vectors 

of class making small angles with the reference spectra often belong to the same class. 

i. SAM: It has shown consistent performance but have confused few pixels of 

roads and roofs at certain positions as illustrated in Figure 4.5 (i-ii). SAM has 

satisfactory ability to delineate different materials, but it often yields 

unsatisfactory results for detecting target with similar composition and material 

type (Wenzheng, et al. 2019). Moreover, there is no optimality properties 
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associated with the SAM algorithm, even for multivariate normally distributed 

classes (F. A. Kruse, A. B. Lefkoff, et al. 1993).  As perceived from Table 4.4, 

SAM gives an accuracy of 72.73% for roads and 73.8% for roofs.   

ii. SCA: On visual examination, SCA appears to detect patches of soil along with 

extraction of roads and roofs on the top-right side of Figure 4.5 (iii-iv). Though 

SCA considers negative correlation as well, presenting wide variation in data 

leading to less detection rate of 66.67% and 57.14% for roads and roofs 

respectively.  

iii. SGA: On the other hand, SGA has shown no results contributing to extraction 

of roads and roofs (Figure 4.5 (v – vi)). The detection rate has dropped at a high 

scale, making it least effective in detection process with 66.67% for roads and 

57.14% in roofs, refer Table 4.4. 

iv. Mahalanobis angle: Mahalanobis angle outperformed with an accuracy of 

81.82% for road detection and 83.33% for roof detection (Figure 4.5 (vii – viii) 

and Table 4.4). This measure has not been considered yet for extraction of 

targets using hyperspectral data, but has yielded promising results after 

implementation. 

The comments stated above show the efficiency of angular measures, as the 

detection rate is higher as compared to distance measures implemented. On 

experimentation, these measures took more computation time with complex 

calculations. Loosely derived from distance measures, angle measures are combination 

of dot products, difference etc. leading to a better detection of targets. SAM has given 

a steady performance as compared to SCM. Loss of spectral property while calculation 

of gradient might be a reason for degraded performance of SGA. Mahalanobis angle 

has outdid due to consideration covariance between neighbouring bands.   
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S No. Algorithm Detection of Roads Detection of Roofs 

Angle Measures 

1.  Spectral angle 

mapper 

(SAM) 

 
(i) 

 
(ii) 

2.  Spectral 

correlation 

angle(SCA) 

 
(iii) 

 
(iv) 

3.  Spectral 

gradient angle 

(SGA) 

 
(v) 

 
(vi) 

4.  Mahalanobis 

Angle 

   
(vii) 

 
(viii) 

Figure 4.5: Detection of roads and roofs using Angle Measures considering ground reference spectra 

 

Table 4.4: Accuracy assessment for Angle measures using ground reference spectra 

TARGETS  Road Roof 

ALGORITHMS Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Angle Measures 

1. SAM 33 24 72.73 % 42 31 73.81 % 

2. SCA 33 22 66.67 % 42 24 57.14 % 
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3. SGA 33 16 48.48 % 42 22 52.38 % 

4. Mahalanobis Angle 33 27 81.82 % 42 35 83.33% 
 

4.5.1.3. Information Measures 

In the next group information measures namely, CEM, MF, ACE, SID and maximum 

likelihood algorithms have been analysed for target detection. All the mentioned 

algorithms are implemented with an intention to examine the influence of image dataset 

as input on the different techniques used for processing the data. Covariance matrix of 

background is required for implementation of these algorithms and is calculated using 

the entire image, assuming the target occupies a very small fraction of the complete 

image (Manolakis, Siracusa, et al. 2001). Considering the V-I-S (Vegetation, 

impervious surface, soil) model, vegetation and soil are considered as background 

whereas road and roofs are considered as targets (Merrill 1995). Figure 4.6 (i-x) and 

Table 4.5 show the consequent images and accuracy assessment table respectively.  

i. CEM: CEM is not able to detect any traces of road and roof pixels, on visual 

analysis and thus fails as target detector (Figure 4.6 (i-ii)). In road detection, it 

gives highly confused results with soil whereas for roof detection it generates 

unclear resultant image. The performance of CEM is highly dependent on the 

information used to describe the desired target signature, also it is very sensitive 

towards noise (Ren, Du and Chang, et al. 2003). 

ii. MF: MF is also highly jumbled with pixels of bare soil and is unable to produce 

satisfactory results by viewing the output images (Figure 4.6 (iii-iv)). MF takes 

only magnitude and direction of the considered target spectral signature. It is 

then possible for a pixel that is very far from any mixture of mean of target and 

background to still receive a high matched filter response which is a potential 

cause for high false alarms (DiPietro, et al. 2010). 
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iii. ACE: Visually, this algorithm has shown results in this category but in detection 

of roofs, pixels of road are wrongly detected as part of roof (Figure 4.6 (v-vi)). 

Though the algorithm performs better as compared to other angle measures with 

an accuracy of 78.79% for roads and 73.81% for roofs. The major challenge in 

case of adaptive detection is that the number of pixels in the target class is very 

small, making the estimation of target density parameters extremely difficult, 

unlike classification (Manolakis, Marden and Shaw, Hyperspectral image 

processing for automatic target detection applications 2003). 

iv. SID: The results of SID are average and are not able to separate between roads 

and roofs, also shown in Figure 4.6 (vii-viii) and Table 4.5. SID is self-

information, discrimination measure which models the spectral signature as a 

probability distribution, to capture spectral variations among various bands in a 

stochastic manner (Du, et al. 2004).  

v. Maximum Likelihood Algorithm: On implementation, this algorithm is able to 

detect roof but has not performed well for extraction of road surfaces, as also 

evident from Figure 4.6 (ix-x) and Table 4.5 giving the lowest detection 

percentage. Based on pixel-by-pixel approach, it individual pixels are assigned 

as targets; maximising the likelihood function of the dataset. 

S No. Algorithm Detection of Roads Detection of Roofs 

Information Measures 

1.  Constrained Energy 

minimization (CEM) 

 
(i) 

 
(ii) 
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2.  Matched filter (MF) 

 
(iii) 

 
(iv) 

3.  Adaptive cosine 

estimator (ACE)  

 

 
(v) 

 

 
(vi) 

4.  Spectral Information 

Divergence (SID) 

 
(vii) 

 
(viii) 

5.  Maximum likelihood 

algorithm 

 
(ix) 

 
(x) 

Figure 4.6: Detection of roads and roofs using Information Measures considering ground reference 

spectra 

Table 4.5: Accuracy assessment for Information measures using ground reference spectra 

TARGETS  Road Roof 

ALGORITHMS Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Information Measures 

1. CEM 33 20 60.61 % 42 27 64.28 % 

2. MF 33 21 63.64 % 42 28 66.67 % 
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3. ACE 33 26 78.79 % 42 31 73.81 % 

4. SID 33 19 57.57 % 42 30 71.43 % 

5. Maximum Likelihood 33 17 51.51 % 42 26 61.90% 

 

The information measures work on an assumption of considering vegetation, 

impervious surface and soil for computation of covariance matrix, but the scene may 

constitute of other urban features as well. Since the material used for construction of 

roads and roofs may be same, most of the algorithms appear to be confused in between 

road and bare soil also road and roof.   

4.5.1.4. Machine Learning Measures 

A good generalization potential of detecting the urban targets is observed by using 

machine learning approaches. Machine learning algorithms have exceptional 

capabilities to automatically learn the relationship between the data and predict the 

desired results. In this work, ANN and ELM are exploited for analysis of hyperspectral 

data. A training file of size 2000 samples derived from ground data and image is 

employed for making the two networks to learn. Wherein, 500 spectra each constitute 

the reflectance values of road, roof, vegetation and soil respectively. While 

implementing the algorithm for a particular target (road or roof), all pixels belonging 

to other category are treated as background or non-target. Training function using is 

backpropagation method for ANN and positive hard limit transfer function for ELM. 

The hidden neurons have been varied from the range of 20 to 50 for ANN and 950 to 

1000. Training parameters like performance error, epochs, momentum, learning rate, 

etc. have been tuned by trial and error in order to improve accuracy of the network. The 

images are shown in Figure 4.7 (i-iv) with corresponding detection percentage in Table 

4.6. 

i. ANN: ANN having competence over learning from given data has produced 

good results with an accuracy of 84.84 % for roads and 88.09 % for roofs 
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(Figure 4.7 (i – ii)). ANN being a non-parametric method aids unique detection 

of the target with its capability to learn from nonlinear relationship of the data 

appears to be a promising approach. 

ii. ELM: Similarly for ELM, detection of road and roof is prominent, as illustrated 

in Figure 4.7 (iii - iv) and Table 4.6. A well-defined boundary of road and roof 

can be visualized in the output images highlighting the urban targets.  

Despite of data complexity of hyperspectral imagery, machine learning 

measures gave best results out of all measures. With an added advantage of prediction 

on unknown dataset, these algorithms produce higher detection rate.  

S No. Algorithm Detection of Roads Detection of Roofs 

Machine learning Measures 

1.  Artificial neural 

network (ANN) 

 
(i) 

 
(ii) 

2.  Extreme learning 

machine (ELM) 

 
(iii) 

 
(iv) 

Figure 4.7: Detection of roads and roofs using Machine Learning Measures considering ground 

reference spectra 

 

Table 4.6: Accuracy assessment for Machine learning measures using ground reference spectra 

TARGETS 

IDENTIFIED 

Road Roof 

ALGORITHMS Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Machine Learning Measures 

1. ANN 33 28 84.84 % 42 37 88.09 % 

2. ELM  33 29 87.87 % 42 36 85.71 % 
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The algorithms have been implemented by considering ground reflectance 

spectra as reference. Due to lack of knowledge about composition of material, sufficient 

target data is not available on ground. The reference spectra obtained in the field has 

been taken under different atmospheric conditions and is highly influenced by 

background. Also, the test spectra to be compared for target detection process are 

derived from hyperspectral imagery. Despite of resampling the target spectra with 

respect to the image test spectra mismatch between the two persists. As already 

discussed, distance, angle, information and machine learning measures have been 

implemented using ground-based reference signature and the results has been shown 

above. In distance measures particularly Mahalanobis distance has performed well. 

Similarly in angle measures, Mahalanobis angle performs well for delineating road and 

roof surfaces. While for information measures, ACE algorithm has given promising 

results. Out of four categories, machine learning algorithms, namely ANN and ELM 

have shown remarkable detection rate. Overcoming the drawback of extensive training 

time in ANN, ELM has performed well for this hyperspectral data.  

4.5.2. Target detection using image reference spectra 

4.5.2.1. Distance Measures 

The resultant output images of road and roof are shown in Figure 4.8 (i-viii) and their 

detection accuracies are listed in Table 4.7.  

i. Euclidean distance: It has detected road and roof surfaces with an accuracy of 

63.64 % and 69.05% respectively, refer Table 4.7. While extraction of roof, it 

has highlighted the bare soil area on the right bottom part of the image, as shown 

in Figure 4.8 (i-ii).  
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ii. Dot Product: Dot product is not able to produce significant results neither for 

road nor roof extraction. In both the cases it is producing similar result on 

visually examining the output images in Figure 4.8 (iii-iv).   

iii. Z-Score: This measure appears to detect road with an accuracy of 66.67% but 

has not proved to be equally efficient for roof detection as can be seen from 

Figure 4.8(v-vi) and the detection percentage with respect to this measure is 

listed in Table 4.7.  

iv. Mahalanobis Distance:  Mahalanobis distance excels in determination of roof 

surfaces, even a small target is also detected as projected from Figure 4.8 (viii) 

but in case of road detection the algorithm detects surfaces covered with bare 

soil also Figure 4.8 (vii).  

The reason for this may be attributed to confusion between the similar materials 

used for construction of roads and roof such as concrete, bitumen etc. leading to false 

alarms. Apart from this, an additional step of data normalization added up to the 

computation time as the computed values did not fall within a set interval. 

Consequently, the distance values increase with an increase in number of bands (Nirmal 

2004). 

S 

No. 

Algorithm Detection of Roads Detection of Roofs 

Distance Measures 

1.  Euclidean 

Distance 

 
(i) 

 
(ii) 
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2.  Dot Product 

 
(iii) 

 
(iv) 

3.  Z-Score 

 
(v) 

 
(vi) 

4.  Mahalanobis 

Distance 

 
(vii) 

 
(viii) 

Figure 4.8: Detection of roads and roofs using Distance Measures considering image reference spectra 

 

Table 4.7: Accuracy assessment for Distance measures using image reference spectra 

TARGETS Road Roof 

ALGORITHMS Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Distance Measures 

1. Euclidean Distance 33 21 63.64 % 42 29 69.05 % 

2. Dot Product 33 23 69.70 % 42 27 64.28 % 

3. Z-Score 33 22 66.67 % 42 26 61.90 % 

4.Mahalanobis Distance 33 25 75.76 % 42 33 78.57 % 

 

4.5.2.2. Angle measures 

Figure 4.9 and Table 4.8 illustrate the experimentation results of SAM, SCA, SGA and 

Mahalanobis Angle. Following are the observations documented after careful 

examination of results obtained.  
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i. SAM: On visual examination, SAM is able to highlight difference between road 

and roof surfaces precisely, refer Figure 4.9 (i-ii) with detection rate of 75.76% 

for roads and 73.81% for roofs.  

ii. SCA: The algorithm partly recognizes the considered targets as shown in Figure 

4.9 (iii – iv) making it least efficient for detection of urban surfaces, in angle 

measure category. 

iii. SGA: Implementation of SGA did not show good results even after 

contemplation of slope changes within a vector (Figure 4.9 (v – vi)).  

iv. Mahalanobis angle: This measure is explored for detection of roads and roofs, 

which generated effective detection accuracy, so far it has not been productively 

used for hyperspectral target detection applications (Figure 4.9 (vii-viii) and 

Table 4.8). 

Despite having an added advantage of being insensitive to illumination changes, 

SAM is unable to perceive difference in intensities of spectral reflectance of broadly 

similar materials and yields alike spectral angles for road and roof detection. SCA 

performs well when number of similar spectra are less but considers negative 

correlations (Nidamanuri and Zbell 2010). SGA is not able to distinguish between road 

and roof and the reason may be highly redundant band information. Mahalanobis angle 

has achieved highest detection and is successful in extraction of urban targets 

considered. In terms of detection rate, for distance measures the maximum accuracy 

obtained is 75.76% for roads and 78.57% for roofs whereas taking a leap, angle 

measures give a maximum accuracy of 87.88% for roads and 85.71% for roofs.  
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S No. Algorithm Detection of Roads Detection of Roofs 

Angle Measures 

1.  Spectral angle 

mapper (SAM) 

 
(i) 

 
(ii) 

2.  Spectral 

correlation 

angle (SCA) 

 
(iii) 

 
(iv) 

3.  Spectral 

gradient angle 

(SGA) 

 
(v) 

 
(vi) 

4.  Mahalanobis 

Angle 

 
(vii) 

 
(viii) 

Figure 4.9: Detection of roads and roofs using Angle Measures considering image reference spectra 

 

Table 4.8: Accuracy assessment for Angle measures using image reference spectra 

TARGETS  Road Roof 

ALGORITHMS Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Angle Measures 

1. SAM 33 25 75.76 % 42 31 73.81 % 
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2. SCA 33 19 57.57 % 42 20 47.62 % 

3. SGA 33 20 60.61 % 42 27 64.28 % 

4. Mahalanobis Angle 33 29 87.88 % 42 36 85.71 % 

4.5.2.3. Information Measures 

The result images are shown in Figure 4.10 (i – x) and the corresponding accuracies are 

listed in Table 4.9.  

i. CEM: It detects pixels of roof while de2tection of road, leading to very less 

accuracy as shown in (Figure 4.10 (i – ii)) and Table 4.9.  

ii. ACE: ACE performed equally well for both roads and roofs, giving an accuracy 

of 81.82% for roads and 83.33% for roofs (Figure 4.10 (v-vi) and Table 4.9).  

iii. SID: It has shown remarkable results for detection of roofs with an accuracy of 

78.57 %, thereby preserving the spectral characteristics of a class (Figure 4.10 

(vii-viii), Table 4.9).  

iv. MF and maximum likelihood algorithm: These algorithms were successful in 

partially detecting the roads and roofs. Some part of soil was also detected as 

target by these algorithms (Figure 4.10 (iii-iv and ix-x)).  

On visual examination, information measures have produced satisfactory results 

and are able to extract road and roof as urban targets. ACE has surpassed the detection 

accuracies of other algorithms in this category whereas maximum likelihood algorithm 

has been able to detect traces of targets.  

S No. Algorithm Detection of Roads Detection of Roofs 

Information Measures 

1.  Constrained 

Energy 

minimization 

(CEM) 

 
(i) 

 
(ii) 
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2.  Matched filter 

(MF) 

 
(iii) 

 
(iv) 

3.  Adaptive cosine 

estimator (ACE)  

 
(v) 

 
(vi) 

4.  Spectral 

Information 

Divergence 

(SID) 

 
(vii) 

 
(viii) 

5.  Maximum 

likelihood 

algorithm 

 
(ix) 

 
(x) 

Figure 4.10: Detection of roads and roofs using Information Measures considering image reference 

spectra 

 

Table 4.9: Accuracy assessment for Information measures using image reference spectra 

TARGETS Road Roof 

ALGORITHMS Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Information Measures 

1. CEM 33 24 72.73 % 42 29 69.05 % 

2. ACE 33 27 81.82 % 42 35 83.33 % 
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3. SID 33 24 72.73 % 42 33 78.57 % 

4. MF 33 23 69.70 % 42 23 54.76 % 

5. Maximum Likelihood  33 15 45.45 % 42 29 69.05 % 

4.5.2.4. Machine Learning Measures 

The results for both the algorithms are described in Figure 4.11 (i – iv) and Table 4.10. 

i. ANN: ANN has given a remarkable accuracy of 87.87% for roads and 90.48% 

for roofs.  

ii. ELM: It has been recently explored for hyperspectral data with ease of 

implementation, less training time, preferred for large datasets, minimal human 

intervention generates high accuracy.  

Large amount of data leads to better accuracy for machine learning methods. The 

only challenge is availability of labelled data. With known data, both the algorithms 

considered under this category perform well and are able to detect the targets. The range 

of values considered for feature vectors of roads and roofs overlap due to which 

derivation of discriminative features is difficult to attain.  

S No. Name of 

Algorithm 

Detection of Roads Detection of Roofs 

Machine learning Measures 

1.  Artificial neural 

network (ANN) 

 
(i) 

 
(ii) 
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2.  Extreme learning 

machine (ELM) 

 
(iii) 

 
(iv) 

Figure 4.11: Detection of roads and roofs using Machine Learning Measures considering image 

reference spectra 

 

Table 4.10: Accuracy assessment for Machine Learning measures using image reference spectra 

TARGETS Road Roof 

ALGORITHMS Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Total 

Pixels 

Pixels 

Detected 

Detection 

Percentage 

Machine Learning Measures 

1. ANN 33 29 87.87 % 42 38 90.48 % 

2. ELM 33 30 90.9 % 42 35 83.33 % 

 

 

The measures in this stage make use of reference signature derived from the scene 

and then comparing it to the test spectra from the image itself. The detection percentage 

is higher as compared to the algorithms which took field reference spectra in account. 

As reference signature in this case is exceedingly related to the imagery and variability 

encountered is only in terms of spectral range of values of a particular class. Also, no 

such problem of insufficient spectral signatures arises in this case. Therefore, a large 

set of spectra combines to give an optimal reference spectrum. The common 

observation in both the scenarios mentioned is the high performance of machine 

learning algorithms which are considered more suitable for this data.  

4.5.3. Analysis of threshold for different algorithms 

The results produced are binary images after thresholding process, black pixels 

referring to 0 as absence of target and 1 indicating target detected. Once the detections 

were made using all fifteen target detection algorithms mentioned, detected pixels per 

image were compared to the ground truth images. Two ground truth images were 
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generated for road and roof respectively, mapping with the locations of ground spectra 

collection and validating the same with Google Earth coordinates.  

A set of variable thresholds has been generated by Otsu’s method while the minimum 

value was used and the area of the false-alarm and target histograms to the right of the 

threshold was measured. The result map has been thresholded to distinguish likely 

targets and backgrounds creating a binary image which was compared to the ground 

truth image to evaluate the performance of the target detector. Table 4.11 lists the 

threshold values used for detecting roads and roofs using ground and in scene reference 

spectra respectively. Figure 4.12 and Figure 4.13 depicts a line chart corresponding 

these values.   

 

Figure 4.12: Threshold values for detection of Road and Roof targets using Ground Reference Spectra                 

 

      
 

Figure 4.13: Threshold values for detection of Road and Roof targets using Image Reference Spectra                 
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Table 4.11: Threshold values considered for detection of road and roof targets 

S No. Algorithms Ground Reference 

Spectra 

Image Reference 

Spectra 

Road Roof Road Roof 

Distance Measures 

1.  Euclidean Distance 0.1686 0.0902 0.1176 0.4 

2.  Dot Product 0.1843 0.1569 0.2392 0.2275 

3.  Z-Score 0.1882 0.1411 0.0471 0.0784 

4.  Mahalanobis Distance 0.2353 0.1725 0.0471 0.1804 

Angle Measures 

5.  Spectral Angle mapper (SAM) 0.1757 0.1608 0.0901 0.0478 

6.  Spectral Correlation Mapper (SCA) 0.2666 0.1568 0.3137 0.3216 

7.  Spectral Gradient Angle (SGA) 0.149 0.1294 0.3172 0.4246 

8.  Mahalanobis Angle 0.1372 0.1448 0.1213 0.1683 

Information Measures 

9.  Constrained Energy Minimization 

(CEM) 

0.2039 0.1965 0.2135 0.0941 

10.  Adaptive Cosine Estimator (ACE) 0.1255 0.0915 0.0818 0.0743 

11.  Spectral Information Divergence (SID) 0.09411 0.1019 0.0471 0.1608 

12.  Matched Filter (MF) 0.2392 0.1921 0.149 0.0471 

13.  Maximum likelihood Algorithm 0.1451 0.1243 0.0392 0.0431 

Machine Learning Measures 

14.  1. Artificial Neural Network (ANN) 0.999 0.998 0.999 0.8 

15.  2. Extreme Learning Machine (ELM) - - - - 

4.5.4. Performance Analysis 

The results obtained after applying the target detection algorithms have been analysed 

in a histogram. Figure 4.14 and 4.15 evidently discerns the effectiveness of machine 

learning algorithms which perform well for AVIRIS- NG hyperspectral data. The other 

observation is that, when reference spectra is field based, the accuracies of all the 

algorithms decline by certain amount whereas if the reference spectra is derived from 

the scene itself the resultant accuracies increase significantly. The reason enunciated 

for this may be the influence of parameters like background, moisture content, 

temperature and many more while capturing the spectra in field. Also, distance 

measures have performed consistent as they are based on simple statistical 

computations followed by angle measures which takes minimum angles in account, to 

assign test pixel to target class giving reasonable detection rate. Information measures 

extract the mutual information between test and the target spectral signature, making 

them less effective in case of spectrally similar targets. Lastly, Machine learning 
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methods have considered that spectrally similar targets may have analogous statistical 

measurements, hence making them difficult to be discriminated parametrically. A non-

parametric approach such as ANN and ELM have helped to extract the considered 

targets by learning from nonlinear relationship of the data. 

 

Figure 4.14: Road detection accuracy using ground reference spectra and image reference spectra 

 

 

Figure 4.15: Roof detection accuracy using ground reference spectra and image reference spectra 
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4.6. Summary 

The problem of extraction of urban targets i.e roads and roofs has been successfully 

dealt as a target detection problem and studied in detail. A comprehensive taxonomy of 

target detection methods using hyperspectral remote sensing data has also been 

presented. Several algorithms which though reported in the literature but not 

implemented such as Mahalanobis angle for target detection have also been used in this 

study. In this work, several target detection algorithms have been implemented using 

recently acquired hyperspectral AVIRIS- NG data of Udaipur region in India.  

The algorithms have been compared under four categories, namely, (i) Distance 

measures: Euclidean distance, dot product, Z-score, Mahalanobis distance; (ii) Angle 

measures: SAM, SCA, SGA, Mahalanobis angle; (iii) Information measures: CEM, 

MF, ACE, SID, maximum likelihood and (iv) Machine learning measures: ANN and 

ELM. Road and roofs have been treated as urban targets.   

The work has been implemented in different stages, primarily, using reference spectra 

acquired from field in Stage -1 and spectra drawn from the scene itself in Stage-2. The 

experiments conducted for target detection show that roads and roofs can be effectively 

extracted from the hyperspectral data using both the field reference spectra as well as 

the scene drawn spectra. However, in all the target detection implementations, it is seen 

that the reference signature drawn from the image produces higher detection rate, 

thereby increasing the accuracy of the algorithm used whereas the field reference 

spectra due to prevailing effects of background, illumination and resolution yields low 

detection. The reason for this difference could be the fact that down-sampling of ground 

data with respect to image data degrades the performance of the target detector. Besides, 

the spatial resolution of data used in these experiments is 8.1 meters and this might be 

insufficient for detection of urban targets as their scale is much smaller. A sharp 
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delineating boundary between roads and roofs is therefore not seen/detected in the 

resultant mages.  

Machine learning methods appear to be more attractive and show their tremendous 

potential in detecting targets with less execution time and high accuracy rate. Their 

learning capability from known data and prediction for unknown data make them 

outperform among all the algorithms. Distance measures are less effective and 

insensitive to spectral properties of roads and roofs with less accuracy. Information 

measures lead to partial detection of roads and roofs as all the techniques depend upon 

calculation of background covariance matrix. Mahalanobis angle target detection 

performed well in comparison to other angle measures and distance measures but did 

not outperform machine learning methods. Overall, machine learning algorithms 

appear to perform high uniformly, various target detection algorithms in other 

categories produce mixed results, and some perform well for roads while others perform 

well for roofs. 

Target detection exceedingly depends upon the threshold value. Here, Otsu’s method 

for generating multiple thresholds was explored for generating binary output maps 

containing target and background values. The threshold values vary with the material 

composition, image dataset and algorithm used. Another important observation is that 

class distributions of the hyperspectral imagery are non-Gaussian, thus a class may not 

be defined by a single component. Because of this it is difficult to map urban targets 

using ground or image reference signature. Apart from this, material used for 

construction of roads and roofs is also similar, such as concrete, asphalt, bitumen which 

could be regarded as another reason for lesser detection rate.  

 In summary, target detection approach appears to yield effective results in 

extraction of roads and roofs using hyperspectral data. Further the success of target 
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detection approach also suggests that this approach can be further extended for next 

level of detection/delineation of roads and roof surfaces into its various types. For 

example, roads can be further detected/delineated into concrete roads, coal tar roads 

etc. and roofs can be detected/delineated into metallic, concrete roof etc. 
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Chapter 5 

Development of spectral-spatial strategies for 

detection of engineered objects 
 

The results of the comparative assessment carried out in previous chapter indicate 

that while target detection approach in extraction of urban targets (roads and roofs) 

performs satisfactorily, however, there are two observations, (i) image/scene-based 

reference spectra give higher accuracy than the field/ground reference spectra (ii) the 

spectral based detection appears to have an upper limit of performance which may be 

improved by including certain spatial component/feature.  

In the present work, therefore, extraction of urban objects that is, roads and roofs is 

proposed to be extracted using a hybrid approach of the spectral and spatial components 

of hyperspectral data. It utilizes morphological operators namely, Dilation, Erosion, 

Opening and Closing with fused spectral signatures of urban targets considered. 

Artificial neural network (ANN) has been used as a machine learning measure due to 

its high prediction capability and its effectiveness over other conventional target 

detection approaches, as determined from the previous chapter. This approach can be 

implemented either by supervised extraction of spectral-spatial features or by 

automated extraction. In this chapter the focus will be on supervised extraction of 

spectral-spatial features and in the next chapter, using automated extraction.  

5.1. Introduction 

Detection of roads and roofs hold an utmost importance for mapping the 

urbanisation trends. Road network acts as a major parameter for applications in city 

planning, transportation, traffic management, GPS Navigation (Shi, Miao and Debayle 

2013) etc. Also, detection of roofs aids in population prediction, temperature 
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distribution, and reconstruction of a particular area (Bannehr, et al. 2011). High 

resolution remotely sensed images such as IKONOS, MODIS etc. have been already 

explored in different applications involving spectral-spatial fusion by various 

researchers. It is therefore considered to extend similar spectral-spatial fusion approach 

to AVIRIS-NG hyperspectral data. 

  In order to increase the detection accuracy, the work emphasizes on exploiting the 

spatial and spectral component of the data by fusing them together. Surfaces like roads 

and roofs may be constructed out of the similar materials, then extracting them spatially 

increases the probability of the detection process.  

5.2. Problem Statement 

In previous objective, a comparative assessment of large number of different target 

detection algorithms such as distance, angle, information and machine learning based 

approaches have been carried out.  Several limitations in extraction of urban targets 

(roads and roof surfaces) using hyperspectral data have been observed. These limitation 

include, inability to separate spectrally similar engineered objects, inability to detect 

sharp boundaries of urban targets. Though, literature provides a remarkable insight into 

the spectral properties of built-up materials but a comprehensive analysis of separability 

of different spectrally similar urban targets is yet to be addressed. Since the acquired 

signal is composed of multiple land surface targets; it is difficult to distinguish them 

based on spectral properties alone. It is therefore considered to explore and develop 

spectral-spatial strategies to improve the detection of urban targets (roads and roof 

surfaces). 
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5.3. Study Area and Data 

The study area considered is same as mentioned in Chapter 4, Section 4.3. The 

spatial subset of 394 lines and 385 samples, covered maximum with urban landcover is 

selected manually for experimentation.  

5.4. Methodology and Implementation 

Pre-processing: In the pre-processing phase, available reflectance airborne data 

containing 425 spectral bands is reduced to 387 in number, thereby removing 

the bad bands affected by atmospheric hindrances.  

Selection of Structuring Element: Depending upon the variability encountered 

in terms of different roads (linear structures) and roofs (clusters), three 

structuring elements are chosen, namely line, disc and rectangle for analysis. 

Structuring element is a matrix which recognises the pixel and defines the 

neighbourhood used in its processing in the input image. Generally, it is chosen 

depending upon the shape and size of the targets to be detected.  The three types 

of structuring elements are explained as under:  

Line: It creates a two-dimensional, linear structuring element, of a given length, 

and degree which specifies the angle of the line, as measured in a counter 

clockwise direction from the horizontal axis. Length is measured as the distance 

between the centres of the structuring element members at opposite ends of the 

line. For instance, Figure 5.1(a) shows line structuring element of length 5 at 

an angle of 45° in a neighbourhood of 5×5. 

Rectangle: It creates a rectangle-shaped structuring element, which takes rows 

and columns as input, together they form the size of it. Rows and columns must 

be non-negative to create a flat rectangle structuring element. Figure 5.1(b) 

shows a rectangle structuring element of size m = 3 and n = 5. 
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Disc: It forms a disk-shaped structuring element, with a specific non-negative 

radius value. It is approximated by a sequence of N periodic-line structuring 

elements. Figure 5.1(c shows a disk structuring element of radius 3.  

 

Figure 5.1(a): Line structuring element of length 5 angle 45° and neighbourhood 5×5 

 

 

Figure 5.1(b): Rectangle structuring element of size 3×5 and neighbourhood 5×5 

 

 

Figure 5.1(c): Disk structuring element of radius 3 and neighbourhood 7×7 

 

Morphological Operators: As already stated that, urban features are 

heterogeneous in nature and detecting them based on spectral characteristics 
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may lead to confusion between spectrally similar materials. Consequently, there 

is an increased interest in developing advanced image-processing algorithms to 

incorporate spatial information for reliable detection process (Liao 2017). Four 

morphological operators, Dilation, Erosion, Opening and Closing are chosen for 

carrying out the work.  

Generation of Training File: The labelled data is required for training of the 

network, so 2000 known samples of roads, roofs, vegetation and soil are 

considered. Where 500 samples belong to every feature individually. One vs 

Many approaches is chosen, for instance, to extract the pixels of road, pixels 

other than road, that is, roofs, vegetation and soil are masked. Other urban 

features like water, bare land is already masked out by physical field 

examination, visual image interpretation and deriving geo-locations from 

Google Earth. This gives a feature vector of size 1×387 constituted by average 

of spectral signature and corresponding morphological operator. So, in total four 

training files are generated as input to the ANN architecture.  

Implementation of ANN: The training files are passed through ANN and output 

image is generated as a binary image highlighting the presence of the considered 

target. The learning algorithm used for implementing the model is 

backpropagation with random sets of training: validation: testing as 70:15:15. 

Backpropagation ensures the error minimisation with every iteration. The 

number of neurons has been varied from the range of 20-50. Other hyper-

parameters like performance error, epochs, momentum, learning rate etc. are 

tuned by trial and error to improve the accuracy of the network. After 

completion of the learning process, training, validation and testing accuracies 

are computed followed by generation of optimized weight file, which is further 
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used for labelling the unknown data. Mathematical framework of ANN is 

already explained in Chapter 2, Subsection 2.6.3.1.  

Performance Evaluation: Set of experiments are conducted in order to analyse 

the results from multiple combinations of different types of structuring elements 

(disc, line, rectangle) with morphological operators (Dilation, Erosion, Opening 

and Closing). A detailed comparative study has been carried out to explore the 

suitable spatial-spectral algorithm for urban target detection. The number of 

pixels detected in respect to the total pixels gives the detection accuracy which 

is calculated by Equation 5.1. 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑃𝑖𝑥𝑒𝑙𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
× 100   (5.1) 

The flow chart of the implementation steps is given in Figure 5.2. 

 

Figure 5.2: Flowchart of the proposed approach  
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5.5. Results and Discussion 

A series of experiments are conducted after combining the spectral and spatial 

features derived from the hyperspectral data considered, also comparative assessment 

is carried out. After atmospheric corrections and bad band removal, the data was made 

ready for extraction of urban targets. Acquisition of field data was also synchronized 

with AVIRIS-NG airborne data collection. The four morphological operators 

implemented for detection of roads and roofs along with their accuracy table and 

resultant imagery are shown in this section. The resultant images are binary in nature, 

where bright or white pixels indicate the presence of target whereas the dark or black 

pixels marks the background region.  

5.5.1. Detection using Dilation Operator 

In case of Dilation, holes smaller than the structuring element are filled and 

close shapes are connected. The shapes aligning with the structuring element are 

expanded as the operation behaves like local maximum filter. Pixels are added at inner 

and outer side of the edges. The value of output calculated is the maximum amongst 

the considered neighbourhood pixels. Figure 5.3 and Figure 5.4 show results of 

detection of roads and roofs respectively with the disk, line, rectangle as structuring 

element. Table 5.1 and Table 5.2 shows the accuracy assessment of the same when 

computed with dilation. 

5.5.1.1. Road Detection 

By visually interpreting the morphology of roads, they appear to be linear in 

nature, therefore their extraction is done using three structuring elements. The 

advantage of using line instead over other structuring elements is reduced 

computational complexity. Also, morphological operations such as, dilation or erosion 
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by a line under an arbitrary angle takes only three comparisons per pixel, irrespective 

of the length of the line, using a recursive algorithm (Hendriks, Luengo and Vliet 2003). 

A simple structuring element line is selected, but due to curves, variation in height and 

other parameters, road is not detected with high percentage. The maximum accuracy 

attained by rectangle of size 2×3 (Refer Figure 5c). It is recommended, to use square 

or rectangle structuring element to extract shapes from geographic aerial images of a 

city, which aids in extraction of angular features from the image.  Several different 

elements or different rotations of a singular element in order to extract the desired 

shapes from the image may be considered. For instance, in order to extract the 

rectangular roads from remotely sensed data, the rectangular structuring element may 

be rotated in multiple orientations of the roads within the image (Gumley 2001). The 

shape and size of the structuring element is defined by the targets to be detected. 

Further, disk structuring element is readily used to eliminate noise from the image 

(Maher, et al. 2015). Disk as structuring element gave promising results but detection 

of part of bare soil in the upper right side of Figure 5.3(a) is prominent.  Line is not 

able to detect the cross-section of road properly as compared to other two structuring 

elements, as shown in Figure 5.3(b). 

       
(a)                                                 (b)                                                    (c) 

Figure 5.3: Road Detection using Dilation (a) disk (b) line and (c) rectangle 
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Table 5.1: Accuracy assessment of Roads using Dilation 

 

 

Comparing the overall accuracy of detection of roads with reference to disc, line 

and rectangle structuring elements, the range varies from 84.27% to 90.40%. Rectangle 

yields the maximum accuracy as it appears to fit the most with linear roads in the 

considered dataset. Whereas disc and line, gave better training accuracy but the overall 

accuracy is 88.63% and 84.27% respectively.  

5.5.1.2. Roof Detection 

Roofs may be of different shapes and sizes, making it difficult to detect. As they 

are man-made urban surfaces therefore, they have a well-defined boundary which can 

be extracted using dilation operator which works well with the edges. Here, due to the 

coarse spatial resolution of the sensor, the roofs appear to be mingled together in Figure 

5.4. Disk structuring element is able to detect large roofs whereas leaving the smaller 

ones (Figure 5.4a). But in contrast, line structuring element not only is able to differ in 

between the roof boundaries but is detecting small sized roofs also, as clearly visible in 

Figure 5.4(b). Rectangle as a reference structure is able to extract the least roof area as 

compared to other two, as shown in Figure 5.4(c). 

       
(a)                                                (b)                                                    (c)  

Figure 5.4: Roof Detection using Dilation (a) disk (b) line and (c) rectangle 

 

Target Spatial Operation DILATION 

Structuring Element Training Validation Testing Overall 

Road Disk 89.20% 85.70% 91.00% 88.63% 

Line 92.80% 70.60% 89.40% 84.27% 

Rectangle 86.90% 94.40% 89.90% 90.40% 
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Table 5.2: Accuracy assessment of Roofs using Dilation 

 

 

 

Table 5.1. and 5.2 evaluates the performance of dilation morphological operator 

when used with spectral features. The training file formed by their fusion is supplied to 

ANN to generate the detection accuracy. In case of roads, the maximum detection is 

given by rectangle operator. The reason may be, the size of this structuring element is 

taken as 2×3, which detects the cross-section of roads along with its linear construction. 

For detection of roofs, the maximum accuracy of 84.63% is given by line. Also, disk 

and rectangle perform almost similar with an overall accuracy of 79.13% and 80.27% 

respectively. 

5.5.2. Detection of Erosion Operator 

Erosion operation is opposite to dilation. Unlike dilation, erosion is used to 

reduce the size of target objects probed by the selected structuring element. It behaves 

like a local minimum filter, by shrinking the pixels on the inner and outer boundaries 

of the target. It enlarges the holes and eliminates connected components smaller than 

the structuring element. Figure 5.5 and Figure 5.6 illustrate detection of roads and roofs 

respectively with the disk, line, rectangle as structuring element. Table 5.3 and Table 

5.4 gives the accuracy assessment chart for erosion operator. 

5.5.2.1. Road Detection 

The maximum extraction of roads is achieved when disk is used as a structuring 

element. As seen from Figure 5.5(a), disc can detect street roads as well apart from the 

highway road which is appearing prominently. Line and rectangle SE’s have performed 

equally well but are not able to highlight the road boundaries in the lower and upper 

Target Spatial Operation DILATION 

Structuring Element Training Validation Testing Overall 

Roof Disk 77.30% 84.20% 75.90% 79.13% 

Line 85.20% 83.30% 85.40% 84.63% 

Rectangle 80.20% 81.80% 78.80% 80.27% 
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part of Figure 5.5(b and c) respectively. Line structuring element is confusing the part 

of road with bare soil and is not able to detect roads with smaller width. Since erosion 

shrinks the target to be detected, therefore a structuring element like disk has performed 

well in contrast with the other two.  

         
(a)                                                (b)                                                    (c)  

Figure 5.5: Road Detection using Erosion (a) disk (b) line and (c) rectangle 

 

Table 5.3: Accuracy assessment of Roads using erosion 

 

5.5.2.2. Roof Detection 

A portion of small roofs is detected by every structuring element, as they are 

able to fit with the varying shape and sizes of the roofs present in the scene. By visual 

examination, disk seems to delineate defined boundaries of roofs but line and rectangle 

structuring elements are unable to do so, as in Figure 5.6(a, b, c). Erosion operation 

removes the boundary of the target objects, assigning the minimum value to the central 

pixel out of all neighbouring pixels. In case of roofs, disk structuring element appears 

to be suitable to detect them, due to the irregular shape and features.  

Target Spatial Operation EROSION 

Structuring Element Training Validation Testing Overall 

Road Disk 92.70% 83.30% 87.60% 87.87% 

Line 87.00% 87.50% 85.10% 86.53% 

Rectangle 87.40% 81.50% 90.70% 86.53% 
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(a)                                                (b)                                                    (c)  

Figure 5.6: Roof Detection using Erosion (a) disk (b) line and (c) rectangle 

 

Table 5.4: Accuracy assessment of Roads and Roofs using erosion 

 

 

 

 

The training, validation and testing accuracy for road and roof detection is well 

distributed and balanced. In case of road the maximum accuracy reaches to 87.87% and 

for roofs the maximum overall accuracy is 93.43% using disk structuring element. Line 

and rectangle structuring element ranges between 84.27% to 88.40%. Erosion appears 

to give better accuracy as compared to dilation operator as it removes the small 

anomalies. It helps in isolation of individual targets and joining disparate targets in an 

aerial image. 

5.5.3. Detection using Opening operator 

Opening is a compound morphological operation in which targets smaller than the 

structuring element disappear and rest remain unchanged. It combines erosion and 

dilation in same order, so narrow connections between connected components are 

removed. This parameter preserves the shape of the target to be detected, therefore 

useful for detecting the urban targets. This operator erodes an image and then dilates 

the eroded image using the same structuring element. That is, all foreground image 

structures that do not contain the structuring element are removed by the opening 

Target Spatial Operation EROSION 

Structuring Element Training Validation Testing Overall 

Roof Disk 94.40% 94.70% 91.20% 93.43% 

Line 85.60% 85.70% 81.50% 84.27% 

Rectangle 86.50% 91.70% 87.00% 88.40% 
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morphological operator. The response for a particular target depends upon its 

interaction with the size of the structuring element. As the size of the considered targets 

for detection is not exactly known, it is advised to use a multiscale approach based on 

a range of different sizes of structuring elements instead of using a single size. It helps 

in building a morphological profile to explore spatial features (Dalla Mura, et al. 2010). 

Figure 5.7 and 5.8 demonstrates the output of opening operator on roads and roofs 

separately, followed by the accuracy assessment in Table 5.5 and 5.6. 

5.5.3.1. Road Detection 

Opening operator is known for preserving the shape of the object to be detected. 

In case of road, a linear structure is extracted in top, but roads with less girth are not 

highlighted in Figure 5.7. Though this operator is successful in not sensing bare soil, as 

viewed from the previous results. Disk structuring element offers maximum accuracy 

and a fine centreline of highway in top-most part of Figure 5.7(a). In Figure 5.7(b,c) 

breaks in detection of roads are visible, so narrow roads are not highlighted. Therefore, 

this operstor may be useful in detecting the centreline of roads and not the complete 

pixels, thereby keeping the shape of the object intact.  

        
(a)                                                (b)                                                    (c)  

Figure 5.7: Road Detection using Opening (a) disk (b) line and (c) rectangle 

 

Table 5.5: Accuracy assessment of Roads using Opening 

Target Spatial Operation OPENING 

Structuring Element Training Validation Testing Overall 

Road Disk 92.80% 83.30% 92.20% 89.43% 

Line 83.60% 86.70% 88.50% 86.27% 
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In Table 5.5, the overall accuracy using disc structuring element is computed to 

be maximum, in case of opening. As disc operator fits well for the roads structures for 

recovering the eroded image and hence yields better accuracy than line and rectangle.  

5.5.3.2. Roof Detection 

Fusion of spectral signatures with opening morphological operator detected 

major portions of roof areas in the considered scene. Three variants of structuring 

elements used, namely disk, line and rectangle gave sufficient accuracy with less false 

alarms. The first observation is that roofs smaller than the considered structuring 

elements are not detected. This behaviour is observed due to filtering properties of the 

opening operator in which the targets are selectively filtered out depending on the 

selection of the shape and size of structuring element used. Again, disk is able to 

determine the maximum of roof surfaces with a clear distinction of its boundaries as in 

Figure 5.8(a). Line and rectangle give reasonable accuracy for roofs (Figure 5.8a and 

Figure 5.8b). 

       
(a)                                                (b)                                                    (c)  

Figure 5.8: Roof Detection using Opening (a) disk (b) line and (c) rectangle 

 

Table 5.6: Accuracy assessment of Roofs using Opening 

 

 

Rectangle 90.10% 73.30% 91.80% 85.07% 

Target Spatial Operation OPENING 

Structuring Element Training Validation Testing Overall 

Roof Disk 86.10% 100% 91.30% 92.47% 

Line 83.70% 91.70% 83.70% 86.37% 

Rectangle 85% 100% 87.40% 90.80% 
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On evaluating the performance of opening morphological operator, roads and 

roofs give an accuracy range of 86.27% to 92.47%. In both cases, disk structuring 

element gives the maximum accuracy for the extraction process. This reference shape 

is able to detect the shape of roads and roofs present in the scene in a precise manner. 

5.5.4. Detection using Closing Operator 

Here dilation operation is followed by erosion. The operation fills the holes in 

the regions while keeping the initial region sizes. Figure 5.9 and Figure 5.10 show 

detection of roads and roofs respectively with the disk, line, rectangle as structuring 

element. Table 5.7 and 5.8 gives road and rood detection accuracies when different 

combinations of morphological operators and structuring elements are applied. 

5.5.4.1. Road Detection 

Bare soil is detected using disk and rectangle structuring elements on the top 

right corner of Figure 5.9(a and c). as part of road. But on contrary, line structuring 

element is able to distinguish road and soil but complete cross-section of road on the 

left side of the image is not extracted as shown in Figure 5.8 (b). Street roads with 

narrower boundaries are also detected using disk and rectangle but line structuring 

element is able to work with this part. 

       
(a)                                                (b)                                                    (c)  

Figure 5.9: Road Detection using Closing (a) disk (b) line and (c) rectangle 
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Table 5.7: Accuracy assessment of Roads using Closing 

 

 

 

 

 

Referring Table 5.7, disk structuring element performs well for road detection 

using closing operation with 92.77% overall accuracy, whereas line is equally 

performing well with an accuracy of 92.43%. The reason might be the construction of 

roads in the considered image dataset are well fitted with disk in case of opening.  Also, 

it appears that, implementing rectangle operator is having some missing parts of roads 

within its cross-section.   

5.5.4.2 Roof Detection 

Rectangle is not able to perform with closing operator, leading to a lot of false 

alarms and detecting surfaces other than roofs as in Figure 5.9(c). Line outdoes as 

compared to other structuring elements (Refer Figure 5.9(b)). Disk also gives a 

reasonable accuracy as determined visually from Figure 5.9(a). Line is computationally 

simpler but still it offers better detection than disk and rectangle.  

       
(a)                                                (b)                                                    (c)  

Figure 5.10: Roof Detection using Closing (a) disk (b) line and (c) rectangle 

 

Table 5.8: Accuracy assessment of Roofs using Closing 

 

 

 

 

 

 

Target Spatial Operation CLOSING 

Structuring Element Training Validation Testing Overall 

Road Disk 90.10% 100% 88.20% 92.77% 

Line 93% 94.10% 90.20% 92.43% 

Rectangle 87.80% 95.50% 85.70% 89.67% 

Target Spatial Operation CLOSING 

Structuring Element Training Validation Testing Overall 

Roof Disk 87.20% 81.80% 85.50% 84.83% 

Line 86.40% 95% 84.60% 88.67% 

Rectangle 85.20% 78.90% 80.50% 81.53% 
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Table 5.8. very well identifies the detection mechanism by using opening 

morphological operator associated with spectral features. The maximum accuracy is 

offered by disk in case of roads, whereas line seems to be most suitable for roofs. The 

other reference shapes generate optimum accuracy but with a confused detection of 

similar materials.  

5.6. Summary 

A hybrid approach using spectral and spatial properties of hyperspectral data is 

successfully explored for urban target detection. Roads and roofs are considered as 

selected targets for study. The work focuses on morphological operations, particularly, 

Dilation, Erosion, Opening and Closing with three structuring elements disk, line and 

rectangle for extraction of roads and roofs. Training file containing an average of 

spectral signatures and considered morphological operator is fed into ANN followed 

by its implementation for entire hyperspectral data-cube. The approach makes use of 

neighbouring pixel information and detects the structure of road and roof surfaces. 

Opening and Closing operations performed well for AVIRIS-NG Udaipur region, with 

disk as structuring element. The reason for this may be the shape of roads and roofs 

which fits in the considered disk size. Hyperspectral remote sensing faces a challenge 

of uniquely identifying targets on spectral grounds but spatial knowledge is an added 

advantage.  

Overall, the spectral-spatial fusion approach when implemented using machine 

learning for extraction of roads and roofs appears to show better performance.  

  



114 
 

Chapter 6 

Deep learning strategy for detection of engineered 

objects 
 

Deep learning-based methods are also evolving for target detection due to their 

exceptional capabilities to learn from voluminous data, extract useful information and 

predict for the unknown dataset. In the previous chapter, the analysis involved 

combination of spectral and spatial attributes of hyperspectral data for which 

handcrafted features have been fed into machine learning network architecture. The 

results are promising but it involves human intervention for feature selection and 

extraction. Also, high dimensionality of the data increases the training time, which may 

be addressed by using suitable dimensionality reduction measures. Deep learning 

algorithms are having dense architectures catering the automated feature extraction 

followed by a fully connected classification/detection layer.  

6.1. Introduction  

Hyperspectral remote sensing is opening new gateways for extraction of urban 

objects which has gained prominence during the past decade for maintaining a pace 

with increasing urbanization. Fernando et al implemented Gaussian Synapse artificial 

neural network (ANN) for detection and unmixing of endmembers within hyperspectral 

images (López, Crespo and Duro 2009). Kernel based target detection techniques have 

been very popular in extraction of sparse targets, as they can address the issues like 

curse of dimensionality, less labelled information, atmospheric noise etc. Wang and 

Duan have addressed these research issues by developing an SVM based approach 

jointly employing spatial, spectral and hierarchical structure information and integrated 

into the classifier with multiple kernels, on standard datasets (Yi and Duan 2018). 
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Autoencoders (Windrim, et al. 2019), Recurrent Neural Networks (RNN) (Hang, et al. 

2019) (Mou, Ghamisi and Zhu 2017) , Convolution Neural Networks (CNN) (Hu, et al. 

2015), Generative Adversarial Networks (GAN) (Shi, Liu and Li. 2017), as part of deep 

learning approaches have also been exploited in near past for hyperspectral remote 

sensing. 

This part of work presents an alternate method for detection of roads and roofs 

as engineered surfaces, also referred as urban targets, using convolution neural network 

in hyperspectral data. The work highlights a brief taxonomy about vertex component 

analysis which has been used as ground truth image generator instead of spectral 

unmixing of mixed pixel targets. Convolution neural network has been used as a deep 

learning measure due to its high prediction capability and its effectiveness over 

conventional target detection approaches. Principal component Analysis (PCA) is also 

used for dimensionality reduction because of its simplicity and reduction of 

implementation time. The work is likely to assist in city planning, sustainable 

development and various other governmental and non-governmental works related to 

urban growth. 

6.2. Problem Statement 

With the advent of high-end equipment and advanced techniques, a lot of data 

may be captured, with supporting storage capabilities and processing features (Kruse, 

et al. 2000). Multitude of methods use machine learning as foundation, which is 

continuously evolving field in itself, instigating deep learning approach which works 

on automated feature extraction, making use of in-depth architectures and capability to 

deliver end-to-end detection from image to target. However, urban target detection 

using deep learning approaches in hyperspectral remote sensing, suffers from multiple 

challenges, mentioned in Table 6.1.  
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Table 6.1: Challenges and research gaps 

S No. Domain Challenges and Research Gaps 

1.  Urban Target 

Detection 

1.1.  Major research is focused on natural targets such as vegetation, 

soil, minerals.  

1.2. Small size of urban targets such as roofs, pavements etc. 

1.3. Higher within class variability and less inter class variability 

1.4. Heterogeneity within urban environment 

2.  Hyperspectral 

remote sensing 

2.1. Curse of dimensionality 

2.2. Non-availability of corresponding ground truth 

2.3. Interference of multiple factors (sensor, scene related and 

atmospheric factors) 

2.4. Spectral variability 

2.5. Unavailability of standard datasets 

3.  Deep learning 

approach  

3.1. Complex and time-consuming training process 

3.2. High computation complexity 

3.3. Overfitting of developed model 

3.4. Selection of hyper-parameters for high performance 

3.5. Blackbox nature of training procedure 

3.6. Lack of labelled or known samples 

 

In this chapter, it is proposed to address a subset of aforementioned gaps, such 

as, (i) heterogeneity in urban cover which makes it difficult to select the exhaustive 

training dataset to make the network learn; (ii) High number of spectral bands with 

redundant information; (iii) spectral variability due to locational changes, as the 

features are selected irrespective of the geographical details; (iv) lack of labelled data 

to make the architecture learn complex features. Therefore, the novelty of the work lies 

in the idea of generating the ground reference for an AVIRIS-NG image dataset in first 

stage followed by dimensionality reduction as second stage and later on extraction of 

urban surfaces particularly roads and roofs as last stage. The approach used for the 

study appears to be well suited for urban target detection using hyperspectral data.  

6.3. Study Area and Data 

The Hyperspectral data analysis is acquired as part of Airborne Visible and 

Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) data collection 

campaign held in February 2016. Level 2 (derived geospatial variables at same 

resolution and location as Level 1 source data) spatial subset of 400 lines and 400 
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samples, which constitutes maximum urban area has been selected manually for 

conducting the set of experiments. For more details, Chapter 4, Subsection 4.3 can be 

referred.  

6.4. Methodology and Implementation 

Removal of bad bands: As part of pre-processing, Level 2 (derived geospatial 

variables at same resolution and location as Level 1 source data) AVIRIS-NG 

data having 425 bands is processed and bands severely affected by atmospheric 

gases and water vapours are removed. A total of 53 bands ranging from 1348-

1433 nm in near infrared (NIR) region and 1778-1954 nm in short wave infrared 

(SWIR) region are not considered for further analysis of hyperspectral imagery. 

After removal of bad bands, the implementation is carried out on 372 bands. 

Selection of endmembers: According to National Geographic Society, urban 

areas are very developed, meaning there is a density of human structures such 

as houses, commercial buildings, roads, bridges, and railways. Therefore, a 

subset of existing infrastructure, that is roads and roofs are chosen as engineered 

surface targets to be detected. The pure endmembers are selected, considering 

the V-I-S (Vegetation- impervious surface- soil) model, vegetation and soil are 

taken as background while road and roofs as targets, therefore other details are 

masked out leaving only built-up area (Ridd 1995), (Phinn, et al. 2002).  

Creation of Training File: A training file of size 1600 samples derived from 

ground data and image is employed for making the network to learn. Wherein, 

400 spectra each constitute the reflectance values of roof, road, vegetation and 

soil respectively. The Training and Testing sets are categorised as 75% and 25% 

of the total samples individually, where Training set constitutes 1200 and testing 

set contains 400 known samples. While implementing the algorithm for a 
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particular target (road or roof), all pixels belonging to other category are treated 

as background or non-target. 

Abundance fractions: The spectral signatures of the endmembers may be 

chosen from the standard digital spectral libraries, (such as USGS), captured 

from the field, processed in laboratory or derived from the imagery. The 

abundance fractions are generated using Dirichlet distribution (Nascimento and 

Bioucas-Dias 2011), given by Equation 6.1: 

𝑝(𝛼1, 𝛼2, … , 𝛼𝑝 = 
𝜏(𝜇1+𝜇2+⋯+𝜇3)

𝜏(𝜇1)𝜏(𝜇2)… 𝜏(𝜇𝑝)
 ×  𝛼1

𝜇1−1𝛼2
𝜇2−1… 𝛼𝑝

𝜇1−1   (6.1) 

Where 0 ≤ 𝛼𝑖 ≤ 1, ∑ 𝛼𝑖 = 1
𝑝
𝑖=1 , 𝐸[𝛼𝑖] = 𝜇𝑖 ∑ 𝜇𝑘

𝑝
𝑘=1⁄  is the expected value of 

the 𝑖𝑡ℎ endmember fraction, and 𝜏(. ) denotes the gamma function. Parameter 𝛾 

is Beta (𝛽1, 𝛽2) distributed, constructing equation 6.2: 

𝑝(𝛾) = (
𝜏(𝛽1+𝛽2)

𝜏(𝛽1)𝜏(𝛽2)
) 𝛾𝛽1−1(𝛾 − 1)𝛽2 − 1      (6.2) 

Ground Reference Generation: The mean spectral signature is generated for 

each feature and assumed as pure endmember for generation of ground 

reference image of the scene under investigation, as shown in Figure 6.1(a). 

The five-class ground reference displays roads (red), roofs (yellow), vegetation 

(green), soil (brown) and water (masked in black). The abundance values of the 

considered endmembers are generated using Dirichlet distribution followed by 

VCA (mentioned in Chapter 2, Subsection 2.6.5.2.) for assigning the label to 

particular classes. As engineered surfaces, particularly roads and roofs are to be 

extracted, therefore ground reference with only built-up area is generated for 

implementation of CNN (refer Figure 6.1(b)). Also, ground reference image is 

georeferenced and overlayed on Google Earth imagery, validated against 59 and 
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75 locations belonging to roads and roofs respectively (collected during field 

data acquisition). 

         
(a)                                                                (b) 

Figure 6.1: (a) Ground Reference generated using VCA for road, roof, vegetation and soil (b) Ground 

Reference for engineered surfaces (roads and roofs) 

 

Dimensionality reduction using PCA: Higher dimensionality of hyperspectral 

satellite imagery may lead to computation burden in terms of time and space 

complexity. PCA transforms the data and reduces it to components contributing 

maximum for the detection accuracy. Also, neighbouring bands of 

hyperspectral imagery are highly correlated and often redundant, so optimum 

combination of bands accounting for variation in terms of target detection are 

identified. For the proposed work, the number of components is confined to 30, 

40 and 50 as the information content is indirectly proportional to the number of 

principal components because most of the information is comprised in initial 

bands (Rodarmel and Shan 2002).  

Architecture of CNN: For extraction of roads and roofs, supervised CNN is 

implemented that utilizes spectral data generated from AVIRIS-NG 

hyperspectral imagery. The complete stage constitutes a convolution layer, non-

linear activation operation and a drop-out layer, which is replicated again to 

formulate a deep network, followed by fully connected layer. The user defined 
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filter is convolved over a fragment of input data, for identifying features from 

the previous layers to yield the detected targets. The network is made to learn 

these features with the supporting non-linear operation, here Rectified Linear 

Unit (ReLU) trailed by drop-out layer which summarises the output of multiple 

neurons. Drop-out layer is active during training process while inactive during 

evaluation acting as a regularization technique. It reduces, (i) overfitting of the 

network, (ii) superfluous feature dependencies and (iii) spatial size of the output 

generated. The dropout value is varied with respect to the regularization 

required, for the initial stage it is set as 0.25 and 0.5 for the later stage. 

In order to ensure parallel processing, the image data is alienated into 

three-dimensional patches of size ‘n’ (where n = 5,7 and 9) which are clustered 

together in form of small batches, acting as initial input to CNN. The layer 

contains filters of size ‘d’ (where d = 3), stride ‘s’ set as 1 and padding ‘p’ of 

size 2, with ReLu function to be performed. After another replication, the output 

generated is flattened and sent to the fully connected layer. For the current work, 

two fully connected layers are taken generating the output with a dropout layer 

of rate 0.25 and 0.5 respectively. 

The labelled spectral data is split in ratio 75:25, where 75% of the 

complete data constitutes the training file and 25% is the testing ratio. Other 

hyper parameters encompassing, learning rate is set as 0.0001, momentum as 

0.9, epoch as 15. Training parameters like performance error, epochs, 

momentum, learning rate, etc. have been tuned by trial and error in order to 

improve accuracy of the network. The architecture is explained in Figure 6.2.  
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Figure 6.2: CNN Architecture for the proposed approach 

 

Performance Analysis: The performance evaluation metrics used to evaluate 

the approach are precision, recall and F1 along with binary output images, 

where bright pixels represent the presence of target (road or roof) and dark 

pixels depict the non-target or background region. True positive (TP) and true 

negatives (TN) are the observations that are correctly predicted to minimize 

false positives (FP) and false negatives (FN). Precision is the ratio of correctly 

predicted positive targets to the total predicted positive observations. Recall is 

the ratio of correctly predicted positive observations to the all observations in 

actual class. F1 Score is the weighted average of Precision and Recall as it helps 

in balancing the both parameters. The equations supporting them as given from 

Equation numbers 6.3 to 6.5 (Davis and Goadrich 2006). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        (6.3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                          (6.4)  

     𝐹1 = 2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) ∕ (𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)                             (6.5) 

Implementation: The software used to carry out VCA for generation of ground 

reference image is MATLAB 2018b (the code is from (MP and Dias 2005)- is 

reproduced) and Python is used for implementation of CNN using keras library 

(the code from (Makantasis 2015) is amended for the area of interest). The 

architecture is implemented using Intel® Core ™ i7-8550U CPU with 16 GB 
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RAM, NVIDIA GeForce MX130. The block diagram of the implementation is 

shown in Figure 6.3.  

 

Figure 6.3: Block Diagram of Methodology 

6.5. Results and Discussion 

The common inferences that may be drawn from the literature is that, challenges 

like spectral similarity, spectral variability still affect hyperspectral data. In reference 

to road extraction, deep learning approaches are yet to be explored, for advantages such 

as, automatic learning from the data. The analysis and approach for detection of roads 

and roofs is presented in this section along with the accuracy table and the resultant 

imagery. The white pixels appearing in different images correspond to the presence of 

targets whereas the black pixels represent non-target or background. 
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6.5.1. Detection of Roads 

The images in Figure 6.4 in different window sizes show the results obtained in 

different window size (5,7 and 9) with varying PCA components (30,40 and 50) and 

the prediction of each pixel has been performed by assigning values as 1 for target and 

0 for non-target class.  

6.5.1.1. Window Size 5×5  

The overall accuracy for considering the widow size as 5, results into a balance 

between precision and recall (Table 6.2), the street roads along with major roads are 

detected in the area considered, whereas some traces of bare soil are also detected. Still, 

CNN is widely used for image recognition because it is invariant to small rotation and 

shifts (Hinton 2012).  Varying the PCA components from 30, 40 and then to 50 does 

not bring any noticeable change in the illustrated results in Figure 6.4 (a, b, c) and also 

in accuracy assessment. The F1-score is 0.92 for 30 and 50 components, it reduces to 

0.91 for 40 components under the influence of precision and recall value. PCA is linear 

transformation technique which effectively computes variance from multiple channels 

to a new set of uncorrelated bands with maximized data variance, therefore a suitable 

number of PC bands should be determined for an efficient dimensionality reduction of 

hyperspectral imagery (Sun, Liu and Fu 2017). Since, the variance beyond 30 bands is 

varying but still remains above 0.90, hence we may opt for minimum number of bands. 

6.5.1.2.   Window Size 7×7 

For detection of roads, window size of 7×7 with 50 components seems to give 

the maximum value for performance evaluation parameters (Refer Table 6.2 and Figure 

6.4 (d, e, f)). The reason articulated for this is that roads belong to linear features and 

due to spatial resolution of the AVIRIS-NG sensor the roads are best detected in 7×7 

window size, whereas there is very less perceptible decrease in accuracy corresponding 
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to 5×5 and 9×9 window. The complex variations in urban materials make pixel by pixel 

analysis difficult, therefore such robust and invariant features are required. Unlike 

Zhang et al who took a window size of 3×3 with lowest root mean square error (RMSE) 

for urban dataset (https://rslab.ut.ac.ir/data) using their approach to apply pixel based 

and cube-based CNN (Zhang, et al. 2018).  

6.5.1.3.   Window Size 9×9  

The visual examination of the resultant images indicate that the spectra based 

detection of roads leads to detection of several additional features having similar spectra 

(Figure 6.4 (g, h, i)) and this significantly affects detection of road pixels. PCA is 

introduced to abridge the whole image which reduces the data dimension to an 

acceptable scale (here, 30, 40 and 50 components). The analysis of the number of PCA 

components gives another observation that the increase in components do not lead to 

any improvement in the accuracy primarily because most of the relevant variance is 

captured in the first few bands itself.  

S 

No 

Window 

Size 

PCA Components = 30 PCA Components = 40 PCA Components = 50 

1 5×5 

 

 
(a) 

 
(b) 

 
(c) 

2 7×7 

 
(d) 

 
(e) 

 
(f) 

https://rslab.ut.ac.ir/data


125 
 

3 9×9 

 
(g) 

 
(h) 

 
(i) 

Figure 6.4: Detection of Roads using proposed approach 

 

Table 6.2: Accuracy assessment for road detection using proposed approach 

S No Window Size PCA 

Components 

Road 

Precision Recall F1 

1 5×5 

 

30 0.93 0.90 0.92 

40 0.94 0.89 0.91 

50 0.92 0.91 0.92 

2 7×7 

 

30 0.92 0.89 0.90 

40 0.92 0.91 0.92 

50 0.94 0.89 0.92 

3 9×9 30 0.90       0.88       0.89 

40 0.90       0.90       0.90 

50 0.34       1.00       0.51 

 

On visual examination, less variation is observed in the resultant images while 

changing the window size. The proposed CNN based approach has consistent 

performance but has few pixels of roads confused with soil pixels at certain locations. 

It detects patches of soil along with extraction of roads on top right side of the images 

(Figure 6.4). Since the material used for construction of roads may include soil, 

therefore it is detected at some parts. One of the major challenges in target detection for 

hyperspectral imagery include presence of targets in different sizes, different 

orientations and at very close positions (Khan, et al. 2017). Also, CNN exploits the 

advantage of large data samples, which require more computational resources to extract 

features for better data fitting and higher detection performance (Zhang, et al. 2020). 

Therefore, at the time of implementation, though the training time is compromised but 

the method effectively improves the detection rate.  
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6.5.2. Detection of Roofs 

The visual analysis of the images illustrated in Figure 6.5 represents detection 

of roofs as clusters in urban areas, using CNN and Table 6.3 shows the corresponding 

performance evaluation metrics.  

6.5.2.1. Window size 5×5  

Window size of 5 with 30 components appears to be the most suitable for 

extraction of roofs for the current dataset used for the study (Figure 6.5 (a, b, c) and 

Table 6.3). Roofs appear in the form of clusters; therefore, smaller size window is able 

to detect most of them. Also, the computation time for smaller window and a smaller 

number of components is comparatively low in contrast with other experiments 

considered. Sun et al. have proposed to extract impervious surfaces with 3D – CNN 

using WorldView-2 and airborne LiDAR data with a Producer’s Accuracy (PA) 

maximum of 91% for combined of impervious surfaces (Sun, et al. 2019). In contrast, 

the maximum F1 value generated for roof detection for this approach and dataset is 

estimated as 0.93. 

6.5.2.2. Window size 7×7  

The window size of 7 also shows similar results for detecting roof surfaces on 

visual examination, as given in Figure 6.5 (d, e, f). Roof being high albedo reflects 

maximum energy falling on them, creating a confusion with other features such as 

barren lands, which might get detected additionally in big window sizes.  

6.5.2.3. Window size 9×9  

The window of size 9 appears to be large for detecting the small roofs when 

number of components are increased to 50 as demonstrated in Figure 6.5 (i). PCA 

components 30 and 40 shows marginal difference in detection (Table 6.3). 
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S 

No 

Window 

Size 

PCA Components = 30 PCA Components = 40 PCA Components = 50 

1 5×5 

 

 
(a) 

 
(b) 

 
(c) 

2 7×7 

 
(d) 

 
(e) 

 
(f) 

3 9×9 

 
(g) 

 
(h) 

 
(i) 

Figure 6.5: Detection of roof using proposed approach 

 

Table 6.3: Accuracy Assessment of roof detection using proposed approach 

S No Window Size PCA 

Components 

Roof 

Precision Recall F1 

1 5×5 30 0.93       0.94       0.93 

40 0.91       0.95       0.93 

50 0.93       0.93 0.93 

2 7×7 

             

30 0.91 0.92 0.92 

40 0.93       0.93       0.93 

50 0.91       0.96       0.93 

3 9×9 30 0.91 0.91 0.91 

40 0.92       0.91       0.92 

50 0.89      0.84       0.82 

 

In this work, a CNN network has been evolved for detection of road and roof 

pixels which is easy to implement, can be used for large datasets with minimal human 

intervention, can generate high accuracy and can be used for different datasets without 

much additional training. However, it may be noted that with increase in window size, 

computation burden in terms of time complexity also intensifies.  
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6.6. Summary 

This work presents an approach for extraction of engineered surfaces using 

hyperspectral data. The problem of extraction of roads and roofs has been successfully 

dealt using deep learning approach. VCA algorithm which is used for spectral unmixing 

as reported in literature, is used for generating the ground reference which is further 

supplied to CNN as input. In this work, CNN has been implemented using recently 

acquired hyperspectral AVIRIS- NG data of Udaipur region in India.  

The algorithm has been compared under three categories of window sizes, (i) 

5×5 (ii) 7×7 (iii) 9×9 where roads and roofs have been treated as targets. It is observed 

that increase in the window size (5, 7, 9) often degrades the performance of the target 

detector. Also varying the number of components from 30, 40 to 50 further decreases 

the precision and recall value. By visual examination of the results, the highway roads, 

street roads made up of asphalt, bitumen are mostly detected, whereas unmetalled or 

soil dominated roads are confused with bare soil. Besides, the spatial resolution of data 

used in these experiments is 8.1 meters and this might be insufficient for detection of 

engineered surfaces as their scale is much smaller. A sharp delineating boundary 

between roads and roofs is therefore not seen/detected in the resultant mages.  

Deep learning methods appear to be more attractive and show their tremendous 

potential in detecting targets with less execution time and high accuracy rate. Their 

learning ability from labelled data and prediction for unlabelled data make them 

outperform. Overall, experimentation appears to perform uniformly, for detection of 

roads and roofs. Apart from this, material used for construction of roads and roofs is 

also similar, such as concrete, asphalt, bitumen which could be regarded as another 

reason for lesser detection rate in some cases. Removal of redundant bands is needed 

to realize a better target detection system. Dimensionality reduction methods, other than 
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PCA can also be explored for decreasing the computation time for implementation. 

Also, in traditional spectral matching and machine learning methods, which work on 

supervised approach with a priori knowledge of spectral signatures and derived features 

which include high amount of involvement of analyst, unlike deep learning techniques 

that automate the complete process followed by fully connected classification or 

detection layer.  

It is observed that consideration of only spectral aspect leads to confusion in 

classes made up of similar materials, therefore spatial attributes which exhibit strong 

dependencies in hyperspectral data should also be considered for enhanced detection. 

The study is also bounded till detection of roads and roofs only, further their condition 

with respect to aging can also be determined. The proposed approach assumes targets 

as full pixel; however, mixed pixels are also encountered during aerial data collection 

due to sensor configuration. In recent times, many feature selection and extraction 

techniques have been developed which can be used in association of deep learning 

measures for real-time processing of data.  
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Chapter 7 

Shape Identification of engineered objects using 

spectral and shape-based features 
 

Hyperspectral imagery holds spectral and spatial (locational details) attributes 

making it a rich source of information for applications like target detection, forestry, 

agriculture, urban areas and many more. As the last chapter focuses on automatic 

extraction of features to delineate road and roof surfaces, there lies a need to extract 

defined shapes and boundaries of the considered targets. Associating spatial aspect, 

such as inclusion of morphological, textural features along with spectral details, often 

helps in increasing the detection rate. The study provides an insight of extraction of 

shape-based features fused with the spectral characteristics for detection of urban 

targets particularly roads and roofs.  

7.1. Introduction 

The present work focusses on exploitation of shape-based features, based on 

standard deviation and range of the neighboring pixels for detection of urban targets 

(roads and roofs). These methods can accommodate spatial information in terms of 

shape of the target and enhance the desired response by overpowering the background. 

The analysis is three-fold, at first only spectral features are trained and investigated by 

variants (Linear, Quadratic, Cubic and Gaussian) of SVM, followed by shape features 

and lastly, both of them are fused together to increase the detection accuracy. These 

features are described in succeeding paragraphs:  

Spectral Features: A spectral pixel vector 𝑥𝑖 constitutes all the pixel values in third 

domain, 𝑥1𝑖, 𝑥1𝑖, ………𝑥1𝑁 at every corresponding spatial location of hyperspectral 

data cube, where 𝑁 is the total number of pixels. For a hyperspectral image having 𝑟 
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rows and 𝑐 columns, then the number of image vectors present would be 𝑁 = 𝑟 × 𝑐. 

Equation 7.1 represents the hyperspectral data in higher dimension, 

{𝑥𝑖}𝑖=1
𝑁 , 𝑥𝑖 ∈  ℜ

𝑑
                                                      (7.1) 

 

Where, 𝑑 is the number of spectral bands. This implies that the dimension of 

every spectral feature is 1 × 𝑑, as shown in Figure 7.1.  

 

Figure 7.1: Three-dimensional hyperspectral data cube depicting pixel vector 

 

Here, 𝑥𝑖 denotes a spectral signature of a particular pixel 𝑖, which holds the 

reflectance value at every wavelength yielding a spectral plot. The techniques that use 

spectral details derived from pixels are known as spectral or pixel-based methods.  

SAM is one such approach which computes spectral angle similarity between the 

reference and the target spectra (Zhang and L. 2014) and other similar techniques are 

discussed in Chapter 2, Subsection 2.6.1.2. These techniques are computationally 

simple and provide an easy way for extraction of information through spectral 

component of hyperspectral data.  
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Shape Features: Shape features are part of the spatial component in hyperspectral 

imagery, which further includes texture, size, morphological operators calculated with 

respect to the neighbouring pixels. Han et al. proposed shape-size index (SSI) which 

combines homogeneous areas between one central pixel and its neighbouring pixels 

using spectral similarity for multispectral images (Youkyung, et al. 2012). Grey level 

co-occurrence matrix (GLCM) (Robert, Shanmugam and Dinstein 1973) is one of the 

common spatial texture extraction approaches which transforms the grey scale value of 

an image by various statistical measures like homogeneity, energy, entropy and 

contrast. Another technique mentioned in literature for performing shape-based 

analysis is Histogram of Oriented Gradient (HoG) (Navneet and Triggs 2005). Farooq 

et al. used HoG features for automatic grass weed detection and classification in 

hyperspectral data (Adnan, Jia and Zhou 2019). The methods proposed for the study to 

extract shape are based on standard deviation and range of the central pixel with the 

neighboring pixels instead of other geometric shapes which are unable to fit the 

asymmetric urban targets (roads and roofs). Table 7.1 gives a brief description about 

these features, each of them considers a window of a size 𝑠, where 𝑠 = 3, 5, 7 and so 

on. 

Table 7.1: Shape extraction features used  

S No. Shape Extraction 
Feature 

Description Formula 

 

1.  Standard 
deviation 

 The value of output pixel is the 
standard deviation of 
neighborhood window of size 𝑠 ×
𝑠 around the corresponding input 
pixel. 

 Brighter pixels in the output image 
corresponds to the higher standard 
deviation thus extracting the shape 
of the target. 

 The central element of the 
neighborhood is computed as 
𝑓𝑙𝑜𝑜𝑟((𝑠𝑖𝑧𝑒(𝑠) + 1)/2 

√
∑(𝑥𝑖 − 𝑥)

2

𝑠 ∗ 𝑠 − 1
 

Where, 𝑥𝑖  is the individual pixel 
value of input; 𝑥 is the mean 
value of pixels; 𝑠 is the 
neighborhood size.  

2.  Range  The value of output pixel is the 
range (maximum – minimum) of 
neighborhood window of size 𝑠 ×

𝛿𝐸(𝑋) =  {𝑥 ∈  𝑅
𝐷 | 𝐸𝑥  ∩  𝑋 
≠  ∅} 

𝜀𝐸(𝑋) =  {𝑥 ∈  𝑅
𝐷 | 𝐸𝑥  ⊆  𝑋} 

𝑅𝑎𝑛𝑔𝑒 =  𝛿𝐸 − 𝜀𝐸 
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𝑠 around the corresponding input 
pixel. 

 Pixels having greater values of 
difference belongs to other feature 
class, discriminating the target 
from the background. 

 Range is calculated by dilation and 
erosion morphological attributes. 

Where,  
𝛿𝐸 – Dilation with respect to 
Structuring Element E 

𝜀𝐸 – Erosion with respect to 
Structuring Element E 

𝑋 – Image on which dilation is 
performed 

𝑥 – Origin where the locus of 
points is taken 

 

Fusion of spectral and shape-based features: Using either spectral or spatial 

component of hyperspectral data does not completely exploit the rich information it 

stores. Particularly for urban areas, integrating spectral and spatial information is 

necessary, as spectral component helps in classification of heterogeneous materials and 

spatial component delineates the shape of roads and roofs. Fauvel et al. proposed a 

method based on fusion of morphological information and original hyperspectral data 

by concatenating the two vectors into single feature vector followed by classification 

of urban data using SVM (Mathieu, et al. 2008). Fusing spectral and spatial aspect of 

hyperspectral data is not only limited to classification but mixed pixel characterization 

is also addressed in the literature (Mahdi, et al. 2014). Recently deep learning 

approaches have also been presented for better classification accuracies as they 

automatically learn high level features from the image itself (Wenzhi and Du 2016).  

SVM and its variants: These can be used to analyse spectral, shape and fused features. 

The key advantage that SVM has over other machine learning algorithms is that the 

features can be transfigured using multiple kernel functions (Farid and Bruzzone 2004). 

The kernel enables the data to be mapped (dot product of two vectors) in preferably 

higher dimension where it is assumed that, the features may be separated by a linear 

boundary. This technique enhances the capability of SVM and makes it feasible for 

multi-class problems also. The computational complexity increases in case of the kernel 

functions, where the samples are transformed into higher dimensions, and it also 
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dependent on the number of samples (Savas and Dovis 2019). Each kernel function 

must be tuned to obtain the best result performance (Zhang and Wu 2012).  

By setting different values of degrees for polynomial kernels different number 

of feature combinations can be considered unlike linear kernel. If degree of the 

polynomial kernel is set as 1 then this method behaves like linear kernel approach. In 

data, where it is not possible to have a decision surface defined by the linear equations, 

then the technique may be extended to allow for non-linear decision surfaces. Further 

to optimize it, the kernel function is computed to move the training data into a higher-

dimensional feature space to find a larger margin for data separation. Numerous kernels 

are explored in the literature, but it is difficult to choose the one with best generalisation. 

The selected kernel method and the parameters chosen for the implementation of SVM 

affects the accuracy rate. 

Pal has used five categories of kernel methods (linear, polynomial, Radial Basis 

Function (RBF), linear spline and sigmoid kernel) to investigate their effect on 

classification accuracy using remotely sensed data (Mahesh, Factors influencing the 

accuracy of remote sensing classifications a comparative study 2002). Later, Camps-

Valls et al. proposed new kernels addressing spatial and spectral characteristics of 

remotely sensed data for generating the land cover thematic maps (Camps-Valls, et al. 

2006). Researchers have also used a modified kernel approach that considers the 

spectral similarity (spectral angle) between support vectors for hyperspectral data 

(Mercier 2003) (F. a. Melgani 2004).  

The linear kernel is used when the samples considered are linearly separable. 

To consider nonlinear relationship between the features, polynomial kernel may be used 

as degree controls the flexibility of the classifier/target detector. The Gaussian kernel 

can be fine, medium and coarse depending upon the distinctions within the classes 
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depending upon the kernel scale set. The kernel functions used for the current work are 

tabulated in Table 7.2 with their description. 

Table 7.2: SVM and its variants with kernel functions 

S No. Type of SVM Variants  Details Kernel Functions 

1.  Linear 

(Melgani and 

Bruzzone 

2004) 

- A single hyperplane 

holds the efficiency to 

classify the two classes, 

but the optimal decision 

boundary is required to 

maximize the margin 

between them.  

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇 ∙ 𝑥𝑗 

𝑥𝑖 = feature vector 1 

𝑥𝑖 = feature vector 2 

𝑥𝑇= transpose 

2.  Polynomial 

(M. J. Fauvel 

2009) 

Quadratic Kernel trick refers to 

calculating the dot 

product of feature 

vectors. Here the degree 

is 2. 

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇 ∙ 𝑥𝑗 + 1)

𝑑 

Cubic Here the power is 

increased as 3. 

Value of 𝑑 is 3 

3.  Gaussian (M. 

J. Fauvel 2008) 

 The value depends upon 

the distance of any data 

point to the margin.  

Highly effective when no 

knowledge of data is 

there 

𝐾(𝑥𝑖 , 𝑥𝑗)

= exp (−
||𝑥𝑖 − 𝑥𝑗||

2

2𝜎2
) 

𝜎 = width of kernel 

7.2. Problem Statement 

Researchers have tried to classify different roof materials using hyperspectral 

data by creating spectral library of various materials used for urban roofs followed by 

their detection using multiple supervised approaches, which lacks shape aspect. The 

shape features used are rectangular or quadratic for smaller buildings which cannot be 

generalised for complete area under consideration. No standard approach for mapping 

road surfaces is available. Though some researchers have emphasized extraction of road 

centreline, but still, it is difficult to differentiate them on spectral grounds. Therefore, 

in this work, two shape based features are proposed which are based on standard 

deviation and range of the surrounding pixels to extract roads and roofs along with the 

spectral features.  



136 
 

7.3. Study area and data 

The Hyperspectral data is acquired as part of Airborne Visible and Infrared 

Imaging Spectrometer – Next Generation (AVIRIS-NG) data collection campaign held 

in February 2016. This is a joint mission between Jet Propulsion Laboratory (JBL), 

NASA and Indian Space Research Organization (ISRO) collecting data in 27 regions 

of India over different types of terrain (forests, agricultural land, urban, waterbodies, 

snow and glaciers). More details can be found in Chapter 3 and Chapter 4, Subsection 

4.3. 

7.4. Methodology and Implementation 

The steps involved in implementing the proposed approach are mentioned in this 

section. 

Pre-processing: In this phase, the atmospherically corrected Level 2 AVIRIS-

NG data comprising of 425 spectral bands is processed to get a transformed 

hypercube having 387 bands. Here, the bands affected by water vapors, 

atmospheric gases and noise are removed and then the implementation is carried 

out.  

Spectral based features: In order to preserve the of hyperspectral data, no 

dimensionality reduction methods are applied for the analysis of hyperspectral 

data. Spectral signature belonging to every class is extracted at pixel level, 

yielding a feature vector of size 1 × 𝑑, where d is the number of bands.  

Shape based features: Standard deviation and range are chosen as spatial 

features for detection of considered urban targets, roads and roofs. Both the 

features work locally on small window sizes exploiting the spatial attribute of 

hyperspectral data. These features are computed band-wise for detecting the 
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shapes of prominent targets, later the computation is done at pixel level. Figure 

7.2. gives a brief idea about the shape feature extraction process. 

 

Figure 7.2: Fusion of spectral and spatial features 

 

Training file generation: There are three different training files used for the 

study comprising of spectral, shape and fused feature vectors belonging to each 

class considering Vegetation, Impervious surfaces and Soil (VIS Model). Each 

training file contains 2000 labelled samples of vegetation, imperious surfaces 

(roads and roofs) and soil surface, where every individual category has 500 

observations. The first training file contains only the spectral information, the 

second training file comprises of the shape attributes and the third one has the 

average of spectral and shape-based feature considered for a particular pixel. 

Other pixels encompassing water, bare lands are already masked out by visually 

interpreting the image data, field examination and validating the geo-locations 

from Google Earth software.  

SVM Implementation: The previously generated training files are set as an 

input for SVM model for its learning step followed by applying the result to the 

complete image for detecting the presence of urban targets. Cross-validation is 

set to avoid overfitting by partitioning the training dataset into k-folds, and value 

of k is kept as 5.  
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Performance Evaluation: The experiments are designed to evaluate the results 

using the spectral, shape and fused features to evaluate the accuracy by taking 

into account the variants of SVM (Linear, polynomial and gaussian). An 

exhaustive comparative assessment has been performed between different 

kernel methods with respect to spectral, spatial and combined features; to 

extract the urban targets and explore the suitable approach for the same. The 

flow chart of the approach and the detailed steps are shown in Figure 7.3.   

 

Figure 7.3: Flow chart of the proposed Approach 

7.5. Results and Discussion 

The approach mentioned above is implemented successfully and the results are 

presented in this section. The work is an improvement in detection of urban targets 

using spectral and spatial components of hyperspectral data. This study is an attempt to 

analyse AVIRIS-NG data collected during the joint campaign and unfurl the treasure 

the information stored in it.  As mentioned, with advent of new materials being used 

for built-up surfaces paves way for other challenges to be addressed, therefore this work 
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has been carried out to exploit AVIRIS-NG hyperspectral dataset for urban analysis. 

This part deals with three set of experiments based on the training files created, that is, 

Spectral Features, Shape Features and Fused features (spectral and spatial both). Shape 

features are again computed using two local windowing methods, standard deviation 

and range. All three training files are then fed into kernel variants of SVM (Linear, 

polynomial with degree 2 and 3, Gaussian) to generate road and roof extraction results. 

In the images shown in this section, the white pixels correspond to the presence of 

targets whereas the black pixels represent background pixels. The software used in this 

work are ENVI 4.8 and MATLAB 2018b along with a system configuration of 16GB 

RAM, with Intel i7 processor.  

7.5.1. Urban target detection using spectral features 

The spectral signatures at multiple confirmed locations belonging to roads and 

roofs are extracted from the image itself to create the training file. Ground data spectral 

collection was synchronized with the hyperspectral airborne campaign; therefore, the 

labelled data is created, taking the geo-locations of urban targets as reference. The 

resultant images are shown in Figure 7.4 and the corresponding accuracies are shown 

in Table 7.3.  

Table 7.3: Accuracy Assessment using spectral features 

Linear SVM Polynomial SVM Gaussian SVM 

 

89.1% 
Quadratic Cubic Fine Medium Coarse 

89.6% 89.8% 88.2% 88.4% 87.9% 

 

When the spectral signatures are given as input, the variation in accuracies by 

using different kernel methods for SVM vary in the range of 87.9% to 89.8% (Table 

7.3). Wherever the difference in the spectra of roads and roofs is prominent in the 

captured training samples, the detection of road and roof pixels are also distinctly 

accurate. However, wherever there is confusion between the spectra of road and roof, 
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the detection of road and roof pixels is also poor (Refer Figure 7.4(c). Linear SVM 

performs well as compared to Gaussian kernel with an accuracy of 89.1%. While 

increasing the degree of polynomial kernel from 2 to 3, increases the accuracy from 

89.6% to 89.8%.  Though the differences in the accuracy of the implemented kernel 

methods seem not to be at a considerable level, the method that provides higher 

accuracy gains importance. All the models perform equally consistent and later the 

trained model with maximum accuracy (here, cubic – Refer Table 7.3) is used for 

extraction of roads and roofs from the hyperspectral subset of Udaipur region.  

 

Figure 7.4: Spectral Approach (a) Detection of Roads (b) Detection of Roofs (c) Scatter plot for both 

urban targets 

 

The immediate observation that can be made by visually interpretation of Figure 

7.4(a) is that road surfaces are highly similar to bare soil (top-right region of the image), 

therefore extracting the roads using only spectral features is difficult. In next result, 

Figure 7.4(b) major roof areas are detected but the edges and boundaries are not 

prominent due to consideration of spectral features only. Certain geo-locations where 

roads and roofs are composed of similar materials, it is difficult to identify them leading 

to false alarms. Also, Figure 7.4(c) shows the scatter plot of roads and roofs in which 

a major portion appears to be overlapping, indicating the spectral similarity at material 

composition level. 
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7.5.2. Urban target detection using shape features 

Multiple spatial features are used depending upon the characteristics of the 

targets to be detected. Simple mathematical operators such as, standard deviation and 

range can also be productive and reduce the computational burden while training 

process. Here the neighbourhood value is chosen to be 3, making a window size of 3×3, 

giving 8 neighbours for the central pixel to be detected, where cell padding is also 

accommodated for the boundary pixels.  Simultaneously standard deviation and range 

are computed for every band and feature vectors are derived from exactly same geo-

locations considered for spectral attributes. The results for the same are shown below: 

Table 7.4: Accuracy Assessment using shape features 

Shape Features Linear 

SVM 

Polynomial SVM Gaussian SVM 

Quadratic Cubic Fine Medium Coarse 

Standard Deviation 39.1% 41.3% 37.4% 38.2% 37.5% 34.3% 

Range 38.8% 40.4% 36.9% 39.1% 38.4% 34.6% 

 

Figure 7.5: Standard Deviation (a) Detection of Roads (b) Detection of Roofs (c) Scatter plot for both 

urban targets 

 

Figure 7.6: Range (a) Detection of Roads (b) Detection of Roofs (c) Scatter plot for both urban targets 
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The accuracy of shape features is expected to be less, which is also evident from 

Table 7.4. Polynomial kernel SVM gives a marginal detection percentage for both 

standard deviation and range-based analysis. Also, standard deviation appears to 

perform slightly better than the range as it is computed on the basis of filter applied on 

neighbouring pixels. In Figure 7.5 (a) (b) and Figure 7.6 (a) (b) neither the road nor 

roof appears to be detected, a very faint boundary is visible for both. Also, the data 

points for most of the samples are having very high overlap, unable to distinguish them 

using shape features. In Figure 7.5(c) and Figure 7.6(c) which display the scatterplot 

using standard deviation and range respectively depicts the overlapping nature of roads 

and roof targets. The relationship between the data points appears to be strong, positive 

and highly correlated. By identifying the patterns in the data, it is clear that shape 

features are unable to differentiate between the considered targets.  

7.5.3. Urban Target detection using fusion of spectral and shape 

features 

Combining the spectral and spatial components to extract the urban targets 

appears to give good results as compared to spectral or spatial attributes considered 

individually. The very same inference can be drawn from the literature also, but varying 

the process and methods to extract spectral or spatial features differs. Spectral features 

may be transformed using Principal Component Analysis (PCA) (Bakken 2019), 

Minimum Noise Fraction (MNF) (Luo 2016) etc. whereas, spatial features include 

multiple morphological operations (Benediktsson 2005), texture-based analysis (Seifi 

Majdar 2017), shape extraction etc. Here in this study, in order to preserve the spectral 

shape of spectral signature no dimensionality reduction method is used. Therefore, the 

spectral signatures are combined with shape-based features to enhance the detection 



143 
 

percentage. Simply, averaging both the attributes has yielded better results which are 

shown in Figure 7.7 and 7.8 and the corresponding results are mapped in Table 7.5  

Table 7.5: Accuracy assessment using spectral and shape features  

Spectral and Shape 

Features 

Linear 

SVM 

Polynomial SVM Gaussian SVM 

Quadratic Cubic Fine Medium Coarse 

Standard Deviation 96.5% 97.3% 96.9% 96% 96.7% 95.6% 

Range 91.3% 91.5% 89.8% 88.9% 90.6% 88% 

 
Figure 7.7: Spectral features and Standard deviation (a) Detection of Roads (b) Detection of Roofs 

(c) Scatter plot for both urban targets 

 

 
Figure 7.8: Spectral features and Range (a) Detection of Roads (b) Detection of Roofs (c) Scatter plot 

for both urban targets 

 

By analysing the results shown in Table 7.5, spectral features fused with 

standard deviation gives more accuracy as compared to spectral features combined with 

range. Amongst linear, polynomial and gaussian kernels, quadratic polynomial gives 

the highest accuracy of 97.3% when standard deviation is considered as spatial 

measure. Though Gaussian (fine, medium and coarse) and linear kernel tricks have also 

offered a consistent accuracy, but polynomial kernel has detected maximum target 

pixels in stipulated time. The reason articulated for this may be that range being a simple 

statistical measure works on minimum and maximum values in the neighborhood but 

standard deviation computes mean value and then on the basis of deviation, decides the 
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presence and absence of target. Again, polynomial kernel method with degree 2 gives 

better results as compared to the other types of SVM. The road boundary and cross-

section are easily delineated in Figure 7.7 (a) and roof clusters are also identified in 

Figure 7.7 (b). However, in Figure 7.8 (a) and (b) where spectral signatures are fused 

with range; misdetections are witnessed by visual examination of images. Also, the 

observation that can be drawn from the scatterplots displayed in Figure 7.7(c) and 

Figure 7.8(c) is that, despite of high positive correlation between road and roof features, 

they can be distinguished on the basis of spectral and spatial attributes. However, all 

the data points of roads and roofs are not appearing to be segregated by a visible 

boundary but maximum points are drifted apart.   

7.6. Summary 

A fusion approach by using spectral signatures and shape properties of urban 

surfaces is successfully applied by using hyperspectral data. The work emphasizes on 

averaging the spectral attributes with shape-based features for detecting roads and roofs 

which form major portion of urban landcovers. Training files with (i) spectral (ii) shape 

and (iii) combination of spectral and shape feature vectors is treated as input for 

multiple variants of SVM followed by using the best performing model for prediction 

of target availability. Pixels where target is present are highlighted as bright as 

compared to the background pixels giving a binary result image. The approach not only 

exploits the spectral information but also helps in detecting the shape of urban targets. 

In general, polynomial (quadratic and cubic) kernel trick has outperformed and given 

the highest results as compared to other methods studied for the work. Apart from this, 

standard deviation being a two-level statistic approach, which works locally on a small 

window, produces better results as compared to range. Strong and positive correlation 

between roads and roofs is inferred by scatterplots, when spectral, shape and fused 
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features are considered but still the datapoints are not separated by distinct boundary 

due to similar material used for their construction. Hyperspectral remote sensing 

already faces a challenge of spectral variability from one location to another, therefore 

this approach might help to detect linear (roads) and clusters (roofs) features of a 

landcover working locally on adjoining pixels.  
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Chapter 8 

Shape enhancement using spatial super-resolution  
 

Super resolution mapping techniques have been explored to address mixed 

pixel, which enable prediction of land-cover patches smaller than the size of image 

pixel. Elbakary and Alam proposed a method to produce high resolution bands from 

low resolution imagery based on local correlation values using super resolution 

reconstruction (Elbakary 2007). Models that enable to represent hyperspectral data as 

linear combination of small image planes to reconstruct spectrum of observed scene is 

also another approach mentioned in literature (Akgun 2005). In previous chapter, 

though the spatial attributes like, standard deviation and range have been considered 

along with spectral profiles of roads and roofs, but coarse spatial resolution is still a 

challenge to extract the shape of subpixel targets, therefore the shape derived may be 

enhanced using the concept of super-resolution.   

8.1. Introduction 

Atkinson presented a method to find spatial distribution of every endmember 

present in a pixel by dividing it into sub pixels such that their number is proportional to 

the fraction of that endmember in original pixel (Atkinson 1997). Super resolution 

mapping can be achieved in multiple ways as per literature, knowledge-based 

procedures (Kasetkasem 2005), Hopfield neural network (Nguyen 2005), Linear 

optimization, Genetic algorithm, neural network predicted wavelet coefficient (L. Y. 

Li, 2015).  

Extracting full pixels of targets along with its fractions or endmember 

abundance values using the concept of spectral unmixing is often followed by super-

resolution techniques in order to locate correct spatial distribution. Therefore, this 
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category of target detection lies unexplored as most of the approaches reported here, 

use random allocation of location to subpixels of different endmembers. This recursive 

procedure not only increases the computational complexity but adds on to CPU time as 

well, for instance, Pixel Swap Algorithm (P. M. Atkinson 2005). Algorithms like 

Inverse Euclidean Distance (Arora and Tiwari 2013) are based on a non-random, non-

recursive assignment of subpixels to binary end members. Both of these approaches are 

already explained in Chapter 2, Subsection 2.6.6. 

8.2. Problem Statement 

Targets of interest may be confined to multiple pixels (full pixel) or are a 

fraction of the pixel (subpixel) resulting into a mixed signal to the sensor. Coarse spatial 

resolution is also one of the major challenges faced while extraction of urban built-up 

surfaces using remote sensing methods. AVIRIS-NG hyperspectral data collected 

during the campaign has been considered for exploring the mixed pixels for extraction 

of spatial content of urban engineered surfaces. Spectral unmixing is one of the most 

common solutions to extract the abundance information about the target present in the 

pixel. However, spectral unmixing fails to provide spatial distribution of the subpixel 

components of target within the pixel. In case, a target resides fully in one pixel and 

partially in all the surrounding pixels then recovery of subpixel components of the target 

in all the surrounding pixels becomes necessary for correct estimation of the shape and 

size of the concerned target (urban engineered surfaces).  

The current work emphasizes extraction of mixed pixel using super resolution 

technique in order to delineate the boundaries of urban targets particularly roads and 

roofs. The AVIRIS-NG hyperspectral data has been used for the study. The approach 

provides an alternative to traditional mixed pixel analysis methods with an added 

advantage of refining it to fine spatial resolution. Simultaneously, it also presents a 
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comparative assessment of Atkinson’s pixel swap method with inverse Euclidean 

distance.  

8.3. Study area and data 

Due to lack of availability of ground truth data for different types of urban 

engineered surfaces, a set of synthetic data as described below has been generated. In 

all, two sets of data have been considered for extraction of road and roof surfaces.  

8.3.1. Synthetic Data 

The synthetic data generated for carrying out the analysis involves three road-

like and three roof-like structures with known abundance fractions in different pixels. 

These have been used to test the super-resolution techniques mentioned in Section 

2.6.6.1 and 2.6.6.2. Each structure approximates either the shape of a road or a roof and 

is of size 30 × 30 for uniformity and ease of computation. The scaling factors 

considered for analysis are 3, 5 and 7. So, the number of super-resolved pixels become 

𝑠2, where 𝑠 is the scaling factor and the subpixels generated are 32, 52 and 72 

respectively. For instance, if the value of 𝑠 = 5, image size is 30 × 30 , then the 

resultant imagery with subdivisions will be equal to (𝑚 × 𝑠)(𝑛 × 𝑠), that is 150 × 150. 

This can be down sampled using a filter of size 5 × 5, dividing every subpixel by 25. 

The reference targets corresponding to roads are shown in Figure 8.1 and for roofs are 

shown in Figure 8.2. The data before down-sampling is used as reference to validate 

the super-resolved image. Complexity of the synthetic targets approximating the shape 

of roads and roofs is increased sequentially from target number 1 to target number 3. 

 
(a) 

 
(b) 

 
(c) 
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Figure 8.1: Synthetic data for road targets 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 8.2: Synthetic data for roof targets 

8.3.2. AVIRIS-NG Data 

The hyperspectral data used for the analysis is acquired as part of AVIRIS-NG 

data collection campaign. Three targets each of roads and roofs individually are 

considered from the urban cover of Udaipur, Rajasthan region of India. A spatial RGB 

subset containing maximum urban coverage is shown in Figure 8.3. The road targets 

are shown with yellow-coloured shapes and the roof targets are shown with blue 

coloured shapes along with their zoomed layout. The spatial resolution of this data is 

8.1 m. The other descriptions of these targets are given in Table 8.1. 

 
Figure 8.3: Road and Roof targets identified for super-resolution 

 

Table 8.1: Description of road and roof targets selected from AVIRIS-NG hyperspectral Dataset 

S.No. Target Name Lines Samples Latitude 

(decimal) 

Longitude 

(decimal) 

Image 

1. Road 

Target 1 

NH48 

Highway 

37 31 24.566976 73.743191 
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2. Road 

Target 2 

Crossing 

over Ayad 

River 

48 40 24.565624  73.758564 

 

3. Road 

Target 3 

NH48 

Highway 

Khempura 

40 40 24.584506 73.749146 

 

4. Roof 

Target 1 

Roof from 

Transport 

Nagar 

32 26 24.586459 73.754064 

 

5. Roof 

Target 2 

Uday 

Pratap 

Colony 

48 28 24.568843  73.760123 

 

6. Roof 

Target 3 

ASDC- 

Golcha 

Grinding 

Unit 

31 25 24.578880  73.74570 

 

8.4. Methodology and Implementation 

Pre-processing: The data is atmospherically corrected by ISRO and Level 2 

reflectance imagery is received with metadata. The complete hypercube is then 

tested for bad bands and bands affected by noise, water vapours and atmospheric 

gases are removed to get a transformed data of 387 bands.   

Creation of synthetic dataset and other targets: The structures similar to roads 

and roofs are created to match the urban targets. Three targets belonging to each 

category are generated for super resolution with scale factor of 3, 5 and 7. For 

ease of referring synthetic targets, these have been labelled as, 

(Syn_Category_TargetNumber), that is, Syn_Road_T1, Syn_Road_T2, 

Syn_Road_T3, Syn_Roof_T1, Syn_Roof_T2 and Syn_Roof_T3. The process 

of creation of synthetic data has already been described in Section 8.3. 

Spectral Unmixing: On visual interpretation of the hyperspectral data and 

considering the parameters of field visit, the urban features identified as 
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endmembers are roads, roofs, vegetation, soil, and water. Linear spectral 

unmixing is carried out to determine the relative abundance of aforementioned 

features on the basis of their spectral characteristics. The reflectance of every 

pixel in the hyperspectral image is assumed to be a linear combination of every 

endmember present in it. In the resultant imagery the pixel values are an 

indicative of the fraction of pixel containing the endmember’s composition. For 

instance, the fraction value of 0.65 inside a particular pixel indicates that the 

pixel contains 65% of that endmember. Generally, the values lie in the range of 

0 to 1 and the process is also validated by calculation of Root Mean Square 

Error (RMSE). 

 For unmixing, 100 spectral signatures belonging to each urban feature 

have been extracted from the image itself and then mean spectra is calculated 

as a reference endmember  (Anita, Raczko and Zagajewski 2020). Later, after 

performing linear spectral unmixing, abundance maps have been generated. In 

the next step, the road and roof targets shown in Figure 8.3 have been extracted 

by spatial sub-setting from the corresponding abundance maps for input to 

super-resolution techniques. Figure 8.4 (a) and (b) show the results for road and 

roof surfaces. 

        

                                 
(a)                                                                (b) 

Figure 8.4: Abundance maps of (a)road and (b)roof surfaces generated using spectral linear 

unmixing 
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Super resolution using abundance fractions: The abundance fractions are 

optimized to generate subpixel map of fine spatial resolution, by varying the 

scale factors. For attaining super resolution, the quantification of subpixels in 

the given pixel is necessary to define the relationship with its neighborhood, at 

a given scale factor. Modelling of attractive influence between each subpixel 

and the consequent neighborhood requires defining an optimum distance 

function. The details of this function is given in Chapter 2, Section 2.6.6. 

For the present work, super resolution is performed using two methods 

(i) Pixel-swap and (ii) Inverse Euclidean approach already explained in Section 

2.6.6. Mixed pixels exist expansively in hyperspectral data due to sensor 

configuration and technical specifications. To address mixed pixels, unmixing 

algorithms can be used, but still the exact spatial location of the endmembers 

present in the mixed pixel remains unknown, which is resolved by super 

resolution.   

Performance Analysis: Performance Evaluation is done with reference to the 

synthetic dataset generated. Two parameters are considered to evaluate the 

accuracy, the first one is the detection rate (percentage) and the other one is 

CPU time (seconds). For AVIRIS-NG hyperspectral data, the inferences are 

made on the basis of visual examination and CPU time, due to unavailability of 

reference data of the same date.  

Implementation Background: Spectral linear unmixing is carried out using the 

software ENVI 4.8 and super resolution techniques are implemented in 

MATLAB 2018b environment on a system configuration of 16GB RAM, Intel® 

Core™ i7-8550U CPU and NVIDIA GeForce MX 130 GPU. The flow chart of 

the same is given in Figure 8.5. 



153 
 

 

Figure 8.5: Flow chart of the proposed Approach  

8.5. Results and Discussion 

8.5.1. Super-resolution using synthetic data 

In total six synthetic data have been considered resembling the shapes of road 

and roof surfaces. The advantage of creation of synthetic data is that the abundance 

fractions are already known for every pixel, so the detection percentage is determined 

by percent correct measure. The other performance parameter used for the comparative 

assessment is CPU cycle time. The detection percentage of Synthetic Road targets 

based on considered scale factors and the CPU time are tabulated in Table 8.2 and 

Figure 8.6. The figure shows the results of Pixel Swapping and Inverse Euclidean 

Distance method along with the original image without any scaling. 

Table 8.2: Accuracy Assessment of Synthetic Road Targets using Pixel Swapping and Inverse 

Euclidean Distance Method 

Scale 

Factor 

 

Synthetic 

Road Targets 

Pixel Swapping Method Inverse Euclidean Distance 

Detection                            

percentage (%) 

CPU Time 

(secs) 

Detection 

percentage (%) 

CPU Time 

(secs) 

3 Syn_Road_T1 82.1613 8.9064 84.4356 8.7187 

Syn_Road_T2 80.4031 8.4386 83.0665 8.0313 

Syn_Road_T3 56.0821 7.9699 63.8167 7.4375 

5 Syn_Road_T1 81.8497 8.0469 82.6743 7.6719 
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Syn_Road_T2 42.6624 9.5000 79.9685 9.8975 

Syn_Road_T3 55.8717 4.5735 50.1680 7.5000 

7 Syn_Road_T1 81.7338 8.1563 86.0655 8.2031 

Syn_Road_T2 40.3584 7.6719 79.8594 1.2031 

Syn_Road_T3 55.8222 9.2656 46.6349 8.1406 

 

It can be observed from Table 8.2 that the detection range for various road 

targets using different scale factors is ranging from 42% to 82% for Pixel Swapping 

method, whereas the Euclidean Inverse method gives a maximum accuracy of 86%. 

The CPU time is having marginal difference for both the algorithms. A similar trend is 

observed that with respect to the scale factors, the detection percentage decreases with 

the increase in scale factors, irrespective of the algorithm used. Apart from this, 

Syn_Road_T1 performs highest amongst Syn_Road_T2 and Syn_Road_T3 because of 

its simple structure, for scale factor 3, 5 and 7. Syn_Road_T2 and Syn_Road_T3 

resembles the curved roads, where the accuracy decreases due to their complex 

structures, in case of both algorithms considered.  

Scale 

Factor 

Synthetic 

Road Targets 
Abundance map 

Pixel Swapping 

Method 

Inverse 

Euclidean 

Distance 

3 

Syn_Road_T1 

   

Syn_Road_T2 

   

Syn_Road_T3 

   

5 Syn_Road_T1 
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Syn_Road_T2 

   

Syn_Road_T3 

   

7 

Syn_Road_T1 

   

Syn_Road_T2 

   

Syn_Road_T3 

   
Figure 8.6: Detection of Synthetic Road Targets using Pixel Swapping and Inverse Euclidean Distance 

Method 

 

On visually interpreting the results generated for synthetic road targets, in case 

of Syn_Road_T1 which is a linear road, the detection percentage is higher for all the 

scale factors (3, 5, and 7) considered, irrespective of the algorithm used. To replicate 

the real-time road targets, curved shapes are taken as Syn_Road_T2 and Syn_Road_T3. 

Here, Inverse Euclidean Distance performs better as compared to Pixel Swapping 

algorithm. Figure 8.6 demonstrates better performance of Inverse Euclidean method 

for detection of complex urban targets such as roads.  

Table 8.3: Accuracy Assessment of Synthetic Roof Targets using Pixel Swapping and Inverse 

Euclidean Distance Method 

Scale 

Factor 

 

Synthetic 

Roof Targets 

Pixel Swapping Method Inverse Euclidean Distance 

Detection                            

percentage (%) 

CPU Time 

(secs) 

Detection 

percentage (%) 

CPU Time 

(secs) 

3 Syn_Roof_T1 80.4343 0.8125 85.5492 10.0156 

Syn_Roof_T2 80.8687 0.7969 81.7212 11.8906 

Syn_Roof_T3 85.5661 0.8281 88.0317 8.1406 

5 Syn_Roof_T1 80.2683 0.9688 83.5263 9.8594 
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Syn_Roof_T2 80.7907 1.1015 86.2016 12.2344 

Syn_Roof_T3 82.8168 0.9844 85.4662 9.3750 

7 Syn_Roof_T1 34.3485 1.1875 80.2231 8.3281 

Syn_Roof_T2 38.3084 1.1119 80.7590 7.3906 

Syn_Roof_T3 53.6865 1.3125 85.4352 5.1563 

 

Similar to the synthetic road targets, synthetic roof targets have been also 

generated in order to attain super-resolution by varying the scale factors. The first target 

is a simple rectangular geometric shape named as Syn_Roof_T1, whereas the other two 

targets replicate a pentagon roof structure and are named Syn_Roof_T2 and 

Syn_Roof_T3 for reference. In Table 8.3, when detection percentages are compared for 

both the algorithms, Inverse Euclidian Distance approach is outperforming in detection 

of sub-pixel targets. The maximum accuracy observed is for Syn_Roof_T3, at a scale 

factor of 3, that is, 88.03%. Again, a trade-off between the accuracy and CPU time is 

observed, an increased accuracy is obtained at cost of higher CPU time. Also, one 

another pattern is observed that, for pixel swapping algorithm the detection rate either 

remains constant or decreases with increase in the scale factor but for the other 

approach, only a small difference in accuracy is detected.  

Scale 

Factor 

Synthetic 

Road Targets 
Abundance map 

Pixel Swapping 

Method 

Inverse 

Euclidean 

Distance 

3 

Syn_Roof_T1 

   

Syn_Roof_T2 

   

Syn_Roof_T3 
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5 

Syn_Roof_T1 

   

Syn_Roof_T2 

   

Syn_Roof_T3 

   

7 

Syn_Roof_T1 

   

Syn_Roof_T2 

   

Syn_Roof_T3 

   
Figure 8.7: Detection of Synthetic Roof Targets using Pixel Swapping and Inverse Euclidean Distance 

Method 

 

In Figure 8.7, by carefully examining the results generated, Pixel Swapping 

algorithm is not able to detect the corner most pixel of Syn_Roof_T1, whereas a 

complete rectangular structure is obtained at implementation of Inverse Euclidian 

distance. Also, with an increase in scale factor, a loss of information is detected in terms 

of boundary pixels.  

A common observation from the results discussed above is that the reason for 

low performance of pixel swapping algorithm is random allocation of subpixels, at the 

initial stage followed by an iterative process. In this algorithm, in order to super-resolve 

all the pixels, the pixel positions are translated thereby increasing the difference 
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between the target classes. However, in case of Inverse Euclidean distance, the 

attractive influence exerted by surrounding pixels is calculated ab initio itself and 

stored. There is no random initialization of subpixel allocations. During the super 

resolution process, the stored values are recalled and subpixels of a target are assigned 

locations based on comparative influence exerted by the surrounding pixels.  

8.4.2. Super-resolution using hyperspectral data 

The super-resolution using Pixel Swapping and Inverse Euclidean Distance 

Method is carried out on AVIRIS-NG hyperspectral datasets to extract road and roof 

targets. The input for both the algorithms is the unmixed results that is the abundance 

maps of the corresponding targets. The extraction of shapes of targets in hyperspectral 

data is complicated due to the influence of factors such as, sun’s angle, Instantaneous 

Field of View (IFOV) of the sensor, atmospheric hindrances etc. (Dixit and Agarwal 

2020).  Figure 8.8 shows the results obtained for detection of roads.  

 

Scale 

Factor 

AVIRIS-

NG Road 

Targets 

RGB Image Abundance map Pixel Swapping 

Method 

Inverse 

Euclidean 

Distance 

3 Road Target 

1 

    
Road Target 

2 

 

   
Road Target 

3 
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5 Road Target 

1 

    
Road Target 
2 

 

   
Road Target 

3 

 

   
7 Road Target 

1 

    
Road Target 
2 

 

   
Road Target 

3 

 

   
Figure 8.8: Detection of AVIRIS-NG Road Targets using Pixel Swapping and Inverse Euclidean 

Distance Method 

 

In general, similar inferences as that for synthetic datasets can be drawn for 

AVIRIS – NG dataset from Figure 8.8. In this case, three different road targetshave 

been super resolved, at different scale factors. The abundance maps of these targets are 

considered as input for super resolution, for which subpixels need to be detected. For 

Road Target 1, the oblique linear shape in the middle is the road, which is confused 

with bare soil and some other regions. It only amplifies with the increase in scale factor 

from 3 to 7. In case of Road Target 2, major region of the road is detected using 

Euclidean distance but pixel swapping method gives a distorted result. A precise road 

boundary is extracted for Road Target 3, at every scale factor, using Inverse Euclidean 
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Distance. The results of super-resolution are highly dependent upon the unmixing of 

the endmembers present in a scene. 

Scale 

Factor 

AVIRIS-

NG Road 

Targets 

RGB Image Abundance Maps Pixel Swapping 

Method 

Inverse Euclidean 

Distance 

3 Roof Target 1 

    

Roof Target 2 

 

   
Roof Target 3 

    

5 Roof Target 1 

    

Roof Target 2 

 

   
Roof Target 3 

    

7 Roof Target 1 

    

Roof Target 2 
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Roof Target 3 

    

Figure 8.9 Detection of AVIRIS-NG Roof Targets using Pixel Swapping and Inverse Euclidean 

Distance Method 

 

Figure 8.9 shows, the lack of efficiency in detection of subpixels targets for 

Pixel swapping method in contrast to Inverse Euclidean distance. Different roofs in an 

urban area are made up of multiple materials such as concrete, asphalt etc., making the 

extraction process difficult. For roof targets, maximum detection is observed in case of 

scale factor 3, because of their small size. Further super resolving the targets at a scale 

of 5 and 7 only degrades the performance in case of both the approaches considered. 

For Roof target 1, the shape extracted appears to be prominent as compared to other 

two targets. Due to high slope observed in case of Roof Target 2, only few pixels are 

extracted.  

The pixel swapping method does not attain convergence because of random 

initialization of subpixel locations. Also, the mathematical formulation includes, a non-

linear parameter for calculation of attractiveness function which is again difficult to 

predict.  

8.6. Summary 

In this work, two different datasets (Synthetic and hyperspectral) have been 

examined for detection of urban targets particularly roads and roofs. The problem of 

subpixel target in hyperspectral remote sensing is addressed by linear spectral unmixing 

followed by super-resolution. Two techniques namely, Atkinson’s Pixel swapping and 

Inverse Euclidean Distance are implemented for the mentioned data. Further, the shape 

enhancement is carried out to optimize the results generated by spectral unmixing. The 

spatial distribution of the abundance fractions obtained after unmixing are optimized 
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by super-resolution techniques. Performance of Inverse Euclidean distance is measured 

higher than the Pixel Swapping method by using the synthetic dataset for both roads 

and roofs, even at higher scale factors. The similar observations are drawn in case of 

AVIRIS-NG hyperspectral data also. Since the reference data is not available for the 

real-time satellite imagery, therefore the analysis is done solely on the basis of visual 

interpretation and field examination of the area considered. Another parameter 

considered for performance evaluation is CPU time, which is found to be increasing 

with respect to the scale factor. Therefore, despite of coarse spatial resolution of the 

sensor, the subpixel targets may be resolved by super-resolution mapping for extraction 

of complex urban targets.  
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Chapter 9 

Summary and Conclusions 
 

In this study, detection and identification of engineered objects have been carried 

out under three objectives using hyperspectral data: 

iv. Comparative assessment of spectral target detection algorithms for engineered 

objects using hyperspectral data. 

v. Development of strategies for detection of engineered objects.  

c. Spectral - Spatial Urban Target Detection for Hyperspectral Remote 

Sensing Data using Artificial Neural Network 

d. Detection of engineered surfaces using deep learning approach 

vi. Mixed pixel analysis and shape identification of engineered objects using 

hyperspectral data. 

c. Extraction of urban targets using fusion of spectral and shape features 

by Support Vector Machine 

d. Shape enhancement using super-resolution mapping 

This chapter highlights the conclusion drawn from this research based on theoretical or 

experimental contributions made, research contribution and the limitations. 

9.1. Conclusions 

Some of the major conclusions, drawn with respect to each of the objectives, 

are summarised here. 

i. The experiments conducted for target detection suggest that roads and roofs can 

be effectively extracted from the hyperspectral data using both the field 

reference spectra as well as the scene drawn spectra. However, in all the target 

detection implementations, it is seen that the reference signature drawn from the 
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image produces higher detection rate, thereby increasing the accuracy of the 

algorithm used whereas the field reference spectra due to prevailing effects of 

background, illumination and resolution yields low detection.  

ii. Regarding angle-based measures, it has been observed that Mahalanobis angle 

performs well in this category giving maximum accuracy of 87.88% for roads 

and 85.71% for roofs using image reference signature. This algorithm though 

reported in the literature has not been found implemented for target detection.  

iii. Machine learning measures, particularly ANN and ELM appear to outperform 

as compared to other measures. Both roads and roofs are detected with the 

accuracy range varying from 87.87% - 90.9% for roads and 83.33% – 90.48% 

for roofs. Machine learning methods appear to be more attractive and show their 

tremendous potential in detecting targets with less execution time and high 

accuracy rate. Their learning capability from known data and prediction for 

unknown data make them outperform among all the algorithms.  

iv. Overall, distance measures appear to be less effective and insensitive to spectral 

properties of roads and roofs with less accuracy.  

v. Information measures lead to partial detection of roads and roofs as all the 

techniques depend upon calculation of background covariance matrix. 

vi. Associating the spatial information from the pixels with their spectral pixels 

helped in delineating the sharp boundary of roads and roofs. Morphological 

operators, that is, opening and closing performed well for AVIRIS-NG data 

with disk as structuring element. Morphological operators when used with 

spectral features improved accuracy.  

vii. VCA algorithm which is used for spectral unmixing as reported in literature, is 

used for generating the ground reference which is further supplied to CNN as 
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input, yielding to 0.92 F-score for roads and 0.93, in case of roofs. Therefore, 

deep learning methods appear to automate the process of feature extraction and 

lead to better accuracy as compared to machine learning measures for targets 

having similar spectral composition such as roads and roofs of same material.  

viii. Training files with (i) spectral (ii) shape and (iii) combination of spectral and 

shape feature vectors, treated as input for multiple variants of SVM, is 

successfully employed for prediction of urban target availability in the scene. 

Here, two shape-based features are proposed for the study based on standard 

deviation and range. Standard deviation being a two-level statistic approach, 

produces better results as compared to range, for road and roof detection. Fusion 

appears to produce better detection of shapes of urban engineered surfaces.  

ix. Two techniques namely, Atkinson’s Pixel swapping and Inverse Euclidean 

Distance have been implemented for the mentioned data. The shape attributes 

from the abundance maps obtained after unmixing are optimized by super-

resolution techniques to extract urban targets. Performance of Inverse Euclidean 

distance appears to be better than Pixel Swapping method for both roads and 

roofs, even at higher scale factors. 

The AVIRIS-NG hyperspectral dataset collected during the joint campaign of ISRO 

and NASA lies highly unexplored with respect to urban applications. The study is 

an attempt to detect major engineered surfaces roads and roofs from the urban 

landcover. During the progression of the research, multiple traditional and modern 

techniques have been studied for detecting the mentioned targets. One of the major 

conclusions that can be drawn involves, extensive use of machine and deep learning 

approaches for large amount of data yielding higher accuracy. Also, inclusion of 

spatial features such as attribute profiles and shape-based features with spectral 
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signatures can further help in better detection of targets. Further, aforementioned 

techniques, consider pure – pixel targets, but due to sensor limitation mixed pixel 

targets become difficult to detect, therefore concept of super-resolution is also 

applied to combat the same.  

9.2. Research Contributions 

The research contributions from the thesis work are as under: 

i. Identification of Mahalanobis angle measure as a robust measure for detection 

of urban engineered surfaces (roads and roofs) using hyperspectral data.  

ii. The experiments conducted confirmed advantage of machine learning 

algorithms like ELM over other machine learning measures.  

iii. Improvement in accuracy in extraction of roads and roofs using hyperspectral 

data by combining spectral features with spatial morphological features.  

iv. Assessment that CNN based deep learning methods have a slight edge over 

other machine learning methods in extraction of engineered surfaces (roads and 

roofs). 

v. Usefulness of VCA as a method for ground truth generation. 

vi. Usefulness of standard deviation and range in conjunction with spectral features 

in characterising shape of urban engineered surfaces (roads and roofs).  

vii. Utility of super-resolution-based methods in mapping of subpixel components 

in surrounding pixels thereby aiding detection of a target (roads and roofs) by 

compete recovery of shape.  

9.3. Future Scope 

This section briefly mentions the future scope of this research, which may be 

undertaken to investigate further some of the results achieved in this research. 
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The present work is restricted till only the first level of extraction, as per 

Anderson’s classification (Anderson and James 1976) and subcategories of roads and 

roofs have not been extracted. Further the research can be carried out to determine the 

most suitable bands for urban target detection. Only a single category of machine 

learning and deep learning algorithms with available a priori data has been considered, 

unsupervised and semi-supervised methods can also be implemented. No specific 

feature selection or extraction technique such as Gray level co-occurrence matrix 

(GLCM) etc. is used, which may be helpful in increasing the current accuracy level. 

Apart from CNN, other deep learning approaches such as autoencoders can also 

be deployed for automatic feature selection process followed by urban target detection. 

Also, for dimensionality reduction PCA is applied for the study, but effect of other 

available standard measures can also be employed to analyse the same. Till now, the 

domain is confined to spatial super-resolution but it may be further extended to spectral 

super-resolution to transform a coarse resolution data to high resolution imagery. 

Besides, the attractive influence is modelled using a linear function, a non-linear 

function may also be considered.  
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Annexure 1 

Create Material and Terrain Spectral Data 
THEME * 
 

 

NAME OF THE SITE * 

 

Date and Time of Acquisition 

 

Format: 09/19/2021 - 19:56:29 

 
 

SOIL SPECTRAL NO 

 

Location details 

Geolocation (Decimal Degrees) 

 

LATITUDE LONGITUDE 

 

 

ALTITUDE  
 

meter 
 

LOCALITY 

 

DISTRICT 

 

STATE 

 

 

Environmental Information 

 
ATMOSPHERIC CONDITION 

- Select a value - Material and Terrain 

09/19/2021 - 19:56:29 
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WIND DIRECTION 
 

 

WIND SPEED  
 

meter/sec 
 

CLOUD TYPE 
 

 

CLOUD COVER 

% 
 

TEMPERATURE  
 

degree Celsius 
 

RELATIVE HUMIDITY 

 

SUN ALTITUDE  
 

degree 
 
 

 

Instrument Information 

 
INSTRUMENT ID 

 

FORE OPTICS 
 

 

SENSOR TYPE 
 

 

CALIBRATION DETAILS 
 
 
 
 
 
 
 
 
 

 

Measurement Information 

 
SPECTRAL SAMPLING 

- None - 

- None - 

- None - 

- None - 
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years 
 

SLOPE 

 
 

 
EROSION 

ELECTRICAL CONDUCTIVITY 

% s/m 

 
WATER CURRENT 

% meter/sec 

FACILITY OCCUPANCY 
 

 
FACILITY TYPE 
 

 
MATERIAL & TYPE 

DRAINAGE PATTERN Laboratory Test 

 

 

 

 
Soil Characteristics 

 
COLOR 
 

 
TEMPERATURE 

°C 

 
SOIL TEXTURE 

CATIONS-ANIONS ANALYSIS 

 
 
 
 
 
 

 
CHROMOPHORE DISSOLVED 

ORGANIC MATTER (CDOM) 

 
Camouflage 

 
OBJECT NAME 
 

 
COLOUR 
 

 
MATERIAL OF OBJECT TO BE 

CAMOUFLAGE 

 

  
 

 
Laboratory Test 

TYPE OF OBJECT 

 

DENSITY 

 
 

 
SOIL MOISTURE 

 
 
kg/m³ 

TYPE OF STRUCTURE 
 

 
SURROUNDING 

 

Gravimetric (in % weight) 
 

POROSITY 
 

 

 
RATING CONE INDEX (RCI) 
 

 

SURFACE TEMPERATURE 

°C 

 
SHAPE 

 

 
 

MATERIAL USED FOR CAMFLOUGED 

 

- None - 

- None - - None - 

- None - 

- None - 

- None - 

    

 

- None - 

- None - 

- None - 
- None - 

- None - 

- None - 

- None - 
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WHITE REFERENCE SOURCE 
 

 

FORE OPTICS HEIGHT ABOVE TARGET 

cm 

 
FORE OPTICS HEIGHT ABOVE GROUND 

cm 
 
 

 

Calibration 

Date of calibration 
 

MONTH DAY YEAR HOUR MINUTE 

 

     
 

 

CALIBRATION FILE 

 
No file chosen 

Files must be less than 2 MB. 

Allowed file types: txt csv xlsx xls dat. 
 
 

 

TERRAIN TYPE 
 

 
GEOMETRY OF OBSERVER 

POSITION RELATIVE TO 

INCIDENT RADIANCE 

 
 
 

 
Trafficability 

Landscape characteristics 

 
LANDFORM 
 

 
LANDUSE 
 

 
GEOLOGY 

 

TARGET 
 

 

Water depth analysis 

 
WATER BODY TYPE 
 

 

Turbidity 

 
IN NTU 
 

 
 

IN SSC 
 

 
 

 
PH 

Built in material 

 
COLOUR 
 

 
ROUGHNESS OF MATERIAL 

% 

 
SHAPE 
 

 
SURROUNDING 

 
 
 
 
 

FACILITY PURPOSE 
 

 
FACILITY AGE 

00 20 2021 19 Sep 

Choose File Upload 

- None - 

- None - 

- None - 

- None - 

- None - 

- None - 

- None - 

- None - 

- None - 
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STRENGTH 
 

 
 
 
 

CONDITION OF SPECTRAL DATA COLLECTION 
 

 

Files to Upload in .txt format 

 
SOLAR IRRADIANCE SPECTRA 

 
No file chosen 

Files must be less than 1 MB. Allowed 

file types: png gif jpg jpeg. 

Images must be between 320x200 and 640x480 pixels. 

 
IMAGE OF SPECTRA 

 
No file chosen 

Files must be less than 1 MB. Allowed 

file types: png gif jpg jpeg. 

Images must be between 320x200 and 640x480 pixels. 

 
REFLECTANCE SPECTRA 

 
No file chosen 

Files must be less than 1 MB. Allowed 

file types: txt csv. 

 
 
 
 

 

 
 
 
 

 

Choose File 

Choose File 

Choose File Upload 

Upload 

Upload 

- None - 

- None - 

Save Preview 
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