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ABSTRACT 

 
 

This master thesis presents research into inelastic buckling of cylindrical shells under 

axial loads. This type of structure is found in aerospace application like planes, launch 

vehicles, rockets etc. However modeling of these is not discussed here. Here the study is 

to see effects of plasticity on buckling loads. The idea behind this research is that in 

experiments we can’t separate plasticity of a material but in FEA Software we can. 

A FE Module is developed such that it’s buckling load according to classical theory is 

higher than yield point. It is first analyzed with linear elastic material model and then 

linear elastic-nonlinear plastic, and results are compared to study effects of plasticity. 

Material module is developed by using nonlinear kinematic hardening  equations for 

2024 T3 alloy of aluminum at room temperature(25
0 

C
 
). Data points for plotting graph 

are found by Matlab. To find inelastic critical buckling loads an iterative method related 

to reduced modulus theory is tried for three different shell thickness, though it was a 

failure.  

The results of analysis shows that there is an expected reduction of buckling load when 

plasticity is considered which in some cases could be about nine times of further 

reduction when imperfections are considered, so there is a need for a better theoretical 

model which would consider plasticity. The idea is maybe by studying inelastic load 

values we could get some insight on how to deal with theoretical equations or what kind 

of results should come. 

 

 

 

 

 

 

 

 



 

vi  

CONTENTS 

 

 
Candidate’s Declaration                                                                                                     ii 

Certificate                                                                                                                            iii 

Acknowledgement                                                                                                               iv 

Abstract                                                                                                                                v 

Contents                                                                                                                               vi 

List of Figures                                                                                                                     vii 

List of Tables                                                                                                                       ix 

List of Symbols and Abbreviations                                                                                    x 

CHAPTER 1: INTRODUCTION                                                                                    1-3 

   1.1 Background                                                                                                                   1 

   1.2 Objective                                                                                                                       2                        

   1.3 Organization of Thesis                                                                                                  2  

CHAPTER 2: CYLINDRICAL SHELL                                                                       4-12 

   2.1 Introduction                                                                                                                   4 

      2.1.1 Classical Theory                                                                                                      4 

      2.1.2 Equilibrium Equation                                                                                              5 

      2.1.3 Kinematic Relations                                                                                                8 

      2.1.4 Constitutive Relation                                                                                               8 

   2.2 Linearized Stability Equations                                                                                      9 

   2.3 Application of Stability Equations to Axially Loaded Cylinders                                10 

   2.4 Comparing Classical Theory with Experiments                                                          11 

   2.5 Causes of Discrepancy Between Test and Theory                                                      12 

CHAPTER 3: LITERATURE REVIEW AND FEA IN ABAQUS                          13-15 

   3.1 Introduction                                                                                                                 13 

   3.2 Literature Review                                                                                                        13 

   3.3 Using Abaqus                                                                                                              14 

CHAPTER 4: VERIFICATION OF CLASSICAL THEORY WITH  FEM          16-20 

   4.1 Introduction                                                                                                                 16 

   4.2 Linear Perturbation of Perfect Cylinder                                                                      16 

      4.2.1 Mesh Sensitivity Study                                                                                         16 

   4.3 Perfect Cylinder                                                                                                          17 



vii 

 

 

   4.4 Effect of Imperfection                                                                                                 18 

CHAPTER 5: INELASTIC BUCKLING AND MATERIAL MODELING           21-25 

   5.1 Introduction                                                                                                                 21 

   5.2 Material Modeling                                                                                                       21 

   5.3 Inelastic Buckling                                                                                                        22 

   5.4 Results of Inelastic Buckling Using FEM                                                                   23 

CHAPTER 6: RESULTS AND DISCUSSION                                                                25 

  6.1 Introduction                                                                                                                  25 

  6.2 Perfect Materially Nonlinear Body                                                                              25 

  6.3 Analysis with Imperfection                                                                                          28 

CHAPTER 7: CONCLUSION AND RECOMMENDATION                                       29 

References                                                                                                                      30-31 

List of Publications                                                                                                             32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii  

 

 

LIST OF FIGURES 

 

Fig. 1.1     General postbuckling behavior for different types of  elements 

Fig. 2.1      Displacements and forces in cylindrical shell elements 

Fig. 2.2      z component of in-plane forces due to initial curvature  

Fig. 2.3      Initial forces for slightly deformed configuration 

Fig. 2.4      Constant lateral prebuckling deflection 

Fig. 2.5      Distribution of experimental data of axially compressed cylindrical shell for 

different R/t ratio, from[8] 

Fig. 4.1      Curve for perfect cylinder near buckling point   

Fig. 4.2      Plot for elastic model for different imperfection amplitudes 

Fig. 5.1       Material model of 2024 T3 Al 

Fig. 6.1       Comparison of elastic and inelastic buckling for perfect shell of various 

thickness 

Fig. 6.2      Comparison of elastic and inelastic deformation pattern for perfect cylinder 

Fig. 6.3      Thick aluminum cylinder under uniform axial compression[11] 

Fig. 6.4      Comparison of inelastic buckling for different imperfection amplitude for 1mm 

thick shell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

LIST OF TABLES 

 

 
Table 4.1   Results for Mesh Convergence 

Table 4.2  Eigenmodes used to Seed Imperfection 

Table 5.1  Iterative Solution for Buckling Loads in Plastic Range     

Table 6.1  Comparison of Elastic and Inelastic Buckling Loads for perfect shells 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x  

 

LIST OF SYMBOLS AND ABBREVIATIONS 
 

 

 
            and          In-plane normal and shearing forces per unit edge length of a 

cylindrical shell element 

                                   Transverse shearing force per unit edge length 

                                  Bending moments 

                                 Twisting moments 

  
  

                              Coefficient used in constitutive relation, represents stiffness 

  
   

        
                    Bending stiffness of shell 

  
  

  
                   Batdorf factor                                                                                                                

                                      Number of half waves in longitudinal direction  

                                       Number of half waves in circumferential direction 

  
  

  
                              where l and R are length and radius of cylinder 

    
 

√       

  

 
              Critical stress for elastic buckling 

    
  

√ (    )
             Critical load for elastic buckling                                  

  
     

   
                            Knockdown factor 

                           where            
 

  
√

 

 
   for  

 

 
                                                                          

   ,                                  Engineering stress and strain 

 ,                                     True stress and strain  

   
 

 
(       )         Relation between plastic stress and strain by kinematic hardening 

model where    ε 
  

 
   and           ,    is yield stress                                                                                                                                                   

                                        Kinematic hardening modulus,   is a coefficient which defines 

rate of decrease of   with increase of the plastic deformation. 

      (
    

       
)
    

 
     Critical stress for plastic range, where    

 

 
 (

 

 
  )

  

 
                                           

   
 

 
                              Secant modulus 



xi 

 

 

   
  

  
                            Tangent modulus 

         E                                    Yong’s modulus                                                        

                                         Poisson’s ratio 





1 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

The phenomenon of sudden lateral bending of a slender body from its longitudinal 

position is called buckling. Buckling could be bifurcation type or deflection amplification 

type. Bifurcation buckling is a concept just to understand the phenomena and find upper 

bound solutions ,it is not observed in real life, even under ideal experimental conditions it 

is hard to occur. It basically means that load deflection curve bifurcates a lot from the 

prebuckling vertical graph. Till the least buckling load the load deflection curve will be 

straight vertical line and at buckling load theoretically there should be sudden increase in 

deflection making a constant function type graph passing through buckling load on vertical 

axis for the case of columns in case of cylinder and plates there are quadratic or cubic 

curves. But in real life situation there are always some imperfections present in the body 

and as load increases the curve won’t be a vertical line (Fig.1.1). 

Fig. 1.1 General post buckling behavior of different types of components[13] 

Slope of load curve represents stiffness of the component and negative stiffness is an 

indication of instability in the system (load decreases as deflection increases).Plates usually 

have stable ,columns neutral and cylindrical shells unstable initial postbuckling behavior 

Fig.1.1 .In fact one of the major design considerations in cylindrical shells is there stability 
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under static axial loading if loads are near buckling points very small disturbance can make 

structure unstable and force it to change from one equilibrium configuration to another of a 

different nature suddenly. In load deflection curves peak represents unstable , valleys 

stable and saddle points neutral equilibrium. 

The classical theories refer to buckling in elastic range and do not take plasticity and 

yielding into account as designing is already based on strength of a material and if 

buckling loads are higher than yielding it already be considered. But this is not completely 

true as buckling of shells is highly local phenomenon and its possible that though globally 

structure has not buckled, locally a section it has crossed yielding stresses due to deflection 

if not loading. The formulas in classical theories highly overestimates the buckling loads 

and in real life there could be external disturbances as well. Shells have membrane 

stiffness which are a lot greater than bending, and if this membrane strain energy has to be 

released as equivalent bending stiffness energy ,the shell will deform drastically. At the 

locations of large deformations the stresses would cross yield value and local yielding at 

multiple points would start.  

In practical experiments it is not possible to separate plasticity from a material. But one 

could do that in software. Plasticity could be studied on FEM software by taking separate 

elastic and inelastic material models. In one case material non linearity is ignored and then 

it can be compared to analysis with consideration of plasticity. There is also stress 

concentration due to boundary condition like clamping which could affect locations of 

maximum and minimum deformation. 

 

1.2 Objective 

 

The objectives of study presented herein are 

1. To compare buckling behavior of axially loaded cylindrical shells with and without 

consideration of plasticity 

2. To see how results from classical theory deviate from FE analysis 

3. To study buckling behavior of model whose buckling load is in plastic range if 

calculated by classical formulas 

4. To see if plasticity factor given in some literature can be used outside of its range if 

model has classical buckling loads in plastic range 
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1.3 Organization of Thesis 

 

In chapter 2 classical theory is discussed and critical stress formula is derived by solving 

equilibrium equations with the help of kinematic and constitutive relations. Comparison of  

theoretical data with that of experiments is discussed along with causes of discrepancy. 

In chapter 3 literature review for buckling theories, material modeling and inelastic 

buckling is given. How Abaqus can be used for buckling and postbuckling analysis is 

briefly discussed. 

In chapter 4 FE analysis of elastic body and its comparison with classical theory is 

discussed. A preliminary mesh convergence study is done to choose final mesh size. 

Buckling behavior of perfect and imperfect shells are compared. 

In chapter 5 nonlinear kinematic hardening model for plasticity is discussed for 2024 T3 

aluminum alloy at room temperature. Plasticity reduction factor given in literature is 

discussed and finally FE analysis is done for elastic-plastic material. 

In chapter 6 curves for elastic and plastic models are compared for different thickness , 

deformation patterns for elastic and plastic model are compared ,and possible relation 

between plastic loads and thickness is discussed. Buckling loads are also compared for 

different imperfection amplitudes. 

 In chapter 7 major conclusions are drawn and further study for each is recommended.
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CHAPTER 2 

 

CYLINDRICAL SHELL BUCKLING 

 

 

2.1 Introduction 

 

Shells are elements where one dimension(thickness) is very small compared to the other 

two. The difference between a plate element and a shell element is that the shell element 

has curvatures in the unloaded state. This curvature affects generalized internal forces in 

axial direction and moments in plane perpendicular to axis. The initial curvature does 

affects equilibrium equations in radial direction. 

Membrane action is caused by in-plane forces. These forces may be the primary forces 

caused by applied edge loads or edge deformations, or they may be secondary forces   

resulting from flexural deformations. In a stability analysis, primary in-plane forces must 

be considered whether or not initial curvature exists. However, the same is not necessarily 

the case regarding secondary in-plane forces. If the element is initially flat, secondary in-

plane forces do not affect membrane action significantly unless the bending deformations 

are large. It is for this reason that membrane action due to secondary forces is ignored in 

the small-deflection plate theory, but not in the large-deflection plate theory. If the element 

has initial curvature, on the other hand, membrane action caused by secondary in-plane 

forces will be significant regardless of the magnitude of the bending deformations. 

Membrane action resulting from secondary forces therefore must be accounted for in both 

small- and large-deflection shell theories. 

 

 

2.1.1 Classical Theory 

 

Consider a differential shell element with radius of curvature R and thickness t as shown in 

Fig. 2.1(a). We are using left hand Cartesian coordinates where  -axis is in axial direction, 

 -axis in tangential and  -axis is normal to surface and directed towards centre of 

curvature. The origin is in middle surface of shell.  

In Fig. 2.1 (a)     and   are displacements in     and  -axis directions respectively. It 
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                (a)                                                   (b)                                              (c) 

Fig. 2.1 Displacements and forces in cylindrical shell element 

 

is convenient to express internal forces (generalized) per unit edge length of shell  

element.            and     in Fig.2.1 (b) are in-plane normal and shearing forces per 

unit edge; in Fig. 2.1(c)       are transverse shearing force per unit edge;      are 

bending moments; and         are twisting moments. The directions of moments are 

clearer in Fig. 2.3(b) with double arrow notation following right hand thumb rule. 

They are related to internal stresses by 
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The stresses with bar   ̅̅ ̅ or     ̅̅ ̅̅  etc are that at any point through the thickness.  

 

2.1.2 Equilibrium Equations 

 

For nonlinear equilibrium equation we consider slightly deformed configuration like in 

Fig.2.3 and equate total force to zero. The angles of rotation 
  

  
 and 

  

  
 are assumed small 

,therefore sines and cosines of them can be replaced by angles themselves and unity 
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respectively. Due to initial curvature of shell element the force    has a component in z 

direction (Fig.2.2).This is not the case of any other in-plane force. All the in-plane forces 

however have components in z direction due to curvature produced by bending Fig.2.3(a). 

 

Fig.2.2 z components of in-plane forces due to initial curvature 

 

Equating summation of forces in x and y directions equal to zero yields following 

equations: 

   

  
 

    

  
                                                                                                                            

   

  
 

    

  
                                                                                                                               

Adding components of forces in z direction from Fig. 2.3(a) we get equation (2.7), 

neglecting higher order terms and regrouping we get equation (2.8). From (2.5) and  (2.6) 

we know that values inside brackets are zero. To simplify the expression further 
 

 
 is 

neglected relative to unity in (2.1), (2.2) and (2.3), then         and         as 

  ̅    ̅  and we get equilibrium equation (2.9) in z direction. The condition that sum of 

moments is zero about x-axis and y-axis gives (2.10) and (2.11) respectively. Substituting 

values of transverse shear force from (2.10) and (2.11) in (2.9) we get (2.12). 

  

     
  

  
 (   

   

  
  )   (

  

  
 

   

   
  ) 

     
  

  
 (   

   

  
  )  (

  

  
 

   

   
  ) 



7 

 

 

      (   
   

  
  )         (   

   

  
  )   

      
  

  
 (    

    

  
  )  (

  

  
 

   

    
  ) 

      
  

  
 (    

    

  
  )  (

  

  
 

   

    
  ) 

           
  

 
                                                                                                    

 

(a) 

(b) 

Fig. 2.3 Internal forces for slightly deformed configuration 
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Therefore the nonlinear equilibrium equations for thin cylindrical shells are 
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2.1.3 Kinematic relations 

 

Strains components at any point through thickness and corresponding quantities at 

points on mid surface are related as 

  ̅                        ̅                       ̅̅ ̅̅                                            

where 
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The equations above have  Green Lagrange strain components ,therefore combining 

with equilibrium equations can be used for large deflection problems. 

 

2.1.4 Constitutive Relations 
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Applying  Hooke’s law and bending equation to the lamina we have 
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where    is Yong’s modulus. Substituting (2.14),(2.15) and (2.16) in (2.1)and (2.3), and 

integrating the results gives(2.17) which are constitutive equations for thin walled isotropic 

elastic cylinders. 
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Where coefficients   and   are 

  
  

                              
   

        
                                                                                   

 

2.2 Linearized Stability Equations  

 

Substituting kinematic and constitutive relations for moments into equilibrium 

equations yields a set of three nonlinear differential equations in variables    ,   ,     and 

w as follows 
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Linear equations can be obtained by using kinematic and constitutive relations again 

and dropping  all the quadratic and higher order terms in   ,   and    as follows 
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First term in (2.20c)is left as that is connected to moments ,rest on LHS is related to in 

plane forces and RHS is related to pressure normal to surface. Here further   and   can be 

eliminated from (2.20c) by using operator    as 
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2.3 Application of Stability Equations to Axially Loaded Cylinders    

                

Consider a cylindrical shell of radius   ,length  , simply supported at ends and 

subjected to uniformly distributed axial compressive load  . 

Due to this load the cylinder shortens and except at ends its diameter increases forming 

an axisymmetric deformation in pre buckling range. Ideally the lateral deflection    in 

prebuckling state should change in axial direction, here it is considered constant for sake of 

simplicity (Fig.2.4). 

Fig.2.4 Constant lateral prebuckling deflection  

For unbuckled cylinder 

                                    
 

   
         and                    

where subscript 0 represents pre buckled state. Substituting these in (2.21c) gives 

                                                 
    

          
 

   
                                     

Boundary condition is           at x=0,  .Both differential equation and boundary 

conditions are satisfied if lateral displacement is of the form 
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where   
  

  
  ,   is number of half waves in longitudinal direction and   is number of 

half waves in circumferential direction. Substituting (2.23) in (2.22) gives 
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)
 

we get  
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Here   is a non dimensional variable called Batdorf parameter useful for distinguishing 

short and long cylinders. From (2.25) 
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Differentiating (2.28) with respect to 
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   and equation to zero gives condition for 

minimum    that is 
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and minimum value of    is 

                                                                     
   

                                                                

 putting values of    and   form (2.26) and (2.27) in (2.30) we get critical stress as 

                                                                  
 

√       

  

 
                                                      

and corresponding buckling load as 

                                                                 
  

√       
                                                        

Equations (2.31) and (2.32) are called classical solutions for buckling of axially 

compressed cylinders. As there is no length term therefore load found out is for local 

buckling. Since m and n are positive integers (2.29) would be hard to satisfy for very short 

cylinders (      ).Also these equations do not give correct results for Euler column 

buckling mode of very long cylinders(m=n=1).  

Another method of deriving these equations is through the principle of potential energy. 
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Total potential energy is sum of strain energy of  shell and loss of potential energy due to 

application of load. Equating first differential of potential energy gives equilibrium 

equations and equating second differential to zero gives stability equations. 

 

2.4 Comparing Classical Theory with Experiments 

 

Experiments suggest that classical theory overestimates buckling loads for intermediate 

to long cylinders and sometimes underestimate it for short ones. Very long slender 

cylinders buckle in Euler column mode .In 1960,Siede et al. published a collection of 

experimental results which led to the famous NASA SP-8007 guideline, published in 1965 

and revised in 1968. Knockdown factor is defined as ratio of actual buckling load      to 

theoretical     ,therefore value of one in Fig.2.5 represents theoretical buckling load, and 

experimental results are shown for different range of R/t ratio. Eqn (2.33) gives value for 

knockdown factor. 

Fig.2.5 Distribution of the experimental data of axial compressed cylindrical shells for 

different R/t ratios from[8] 
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2.5 Causes of Discrepancy Between Test and Theory 

 

There are many factors responsible for this discrepancy like boundary conditions ,initial 

geometric imperfections,  plasticity and residual stresses, radius and height of cylinder. 

Studying combination of these will tell the effects of each of them, which is now possible 

with computers as in experiments there is always a combination of parameters separating 

which is not practically possible. One such parameter is plasticity which could be easily 

removed or added in a software like ABAQUS as user can define material behaviour. 

Effect of plasticity on buckling loads is discussed in Chapter 5 and its modelling using 

FEM . 
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CHAPTER 3 

 

LITERATURE REVIEW AND FEA IN ABAQUS 

 

 

3.1 Introduction 

 

This chapter briefly tells about the development of classical theory and how they are 

used now with the help of NASA guidelines. Koiter’s work in the field of buckling ,post 

buckling and stability of elastic structures is discussed. Observations from Brushnell’s 

design guide are stated for the plastic range and a brief overview of Maximov’s material 

model for 2024 T3 aluminum is given.  

 

3.2 Literature Review 

 

Donnel[16] in 1936 , developed a large deformation theory which could develop 

formulations , which would take into account effect of initial geometric imperfections. He 

didn’t measure initial deflections in tests but it was shown that most of the differences in 

theory and results can be explained if it is assumed that initial deflections are in the form of 

double harmonic series(eg-Sin A *Cos B) ,and if boundary conditions are applied buckling 

stress could be found as a function of yield stress, young’s modulus and R/t ratio. He was 

the first to develop formulations which would take imperfections into account but non 

linear analysis failed to predict loads properly. 

Karman and Tsien in 1940 showed that large discrepancies between test and theory in 

some shell structures is related to highly unstable post buckling behavior. Koiter[15] 

developed general theory for elastic stability of systems in his doctoral thesis in 1945.He 

developed theories in postbuckling particularly initial postbuckling and connected buckling 

to stability of structures. In that case second differential of total energy of the system could 

be used to find cases where structure is in unstable equilibrium. The theory gives 

asymptotes about bifurcation point ,these asymptotes represent perfect structures and as 

initial imperfections increases in structure the graphs would move away from these. 
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Although one major drawback is that this theory is not applicable outside elastic range and 

is limited to small magnitude of imperfections and range of validity is generally unknown. 

Batdorf [17] in 1947 in his NACA(National Advisory Committee of Aeronautics) report 

presented modified uncoupled form of Donnel’s equation for equilibrium of thin shells . 

There is discussion on Batdorf parameter Z which is related to geometry of structure. Later 

in 1960 Weingarten ,Seide and Morgan published a collection of experimental results 

which combined with Donnel’s theory were base for NASA SP-8007 guideline [7] 

published in 1965 and revised in 1968. The guide lines basically gives knockdown factors 

which should be multiplied by loads calculated by classical theory (Donnel and Batdorf) to 

get safe load for use as one of the major drawback of classical theory is that it highly 

overestimates practical loads. Note Koiter’s work is independent of these and it was seen 

that his asymptotic relations predict postbuckling behavior of different types of structures 

quite well. 

In part four of an overview on shell buckling given by David Brushnell[11] , a rather 

thick aluminum cylinder under uniform axial deformation is discussed in which elastic- 

plastic buckle develops and at later stages it can be observed that deformations are 

concentrated at top end .[7] and [13] gives plasticity factors to be considered when 

buckling is in plastic range, but these are for a range of t/R ratios, and one could create 

models for materials such that buckling loads are in plastic range according to classical 

theory and yet does not come in this t/R range. 

Maximov et al.[12] developed constitutive models for 2024-T3 aluminum alloy at room 

and higher temperatures in order to be used in finite element analysis of cold hole working 

process. The material behavior in plastic range is described by nonlinear kinematic 

hardening model and verified with those of uniaxial tensile test. 2024 aluminum alloy has a 

wide range of applications in aerospace industries for various structural shell type 

elements. 

 

3.3 Using ABAQUS 

 

In Abaqus buckling analysis is done in two steps ,first is linear perturbation to find 

buckling loads and modes without consideration of any nonlinearity(geometric or 

material). Nonlinear analysis can be further done to make load-displacement curves of the 

body into postbuckling regions as well, this analysis gives more robust results as non 

linarites are considered. 
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In linear eigen value analysis we look for loads which will make model stiffness matrix 

singular [4],thus give nontrivial displacement solutions for 

[ ]{ }    

where   is tangent stiffness matrix and   represents displacement fields. An arbitrary base 

configuration is considered where stresses are in equilibrium with force and traction. We 

consider small displacement gradient   . Since problem is linear, if    is differential 

stiffness matrix for    then it would be     for     [3]. Where   represents different 

linear perturbations to base state and among these software finds those that gives non-

trivial solutions. These are called eigen values and corresponding displacement fields gives 

buckling modes. The iteration process is represented by following equation 

 [  ]    [  ] {  }    

where   is stiffness matrix corresponding to base state,   represents different linear 

perturbations to base state in increment  . 

For nonlinear analysis we have static general, static riks , dynamic implicit and dynamic 

explicit steps available in abaqus to plot load-deflection curve of the whole structure and 

check its stiffness variation. The element used (S8R5-good for analysis of shell 

application[5]) is not available for explicit analysis and riks method which used arc length 

method is the most convenient among the rest, as it calculates load proportionality factor 

which can be multiplied by applied load(could be any value) to get variation of load during 

analysis history, unlike static general and dynamic implicit which uses newton raphson 

method. To draw load-displacement curves in newton method steps one has to find 

reaction at all the end nodes and add it to get total reaction force and applied load should 

be greater than least buckling load. 
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CHAPTER 4 

 

VARIFICATION OF ELASTIC BUCKLING THEORY USING FEM 

 

 

4.1 Introduction 

 

In this chapter ABAQUS 6.14 is used for finite element analysis. In ABAQUS buckling 

analysis is done in two steps ,linear perturbation  analysis and nonlinear analysis. Linear 

perturbation analysis is used to get buckling loads and modes for a perfect cylinder ,these 

values can be compared to that given by Eqn (2.31).Then nonlinear analysis is done first 

for perfect body then for imperfect body taking first twenty eigen mode combination as 

imperfection, and imperfection amplitudes as 1%,10%and 20% of shell thickness . Lower 

range of this result is taken from NASA SP-8007 guideline[7] by calculating knockdown 

factors for relevant R/t ratio. 

 

4.2 Linear perturbation of perfect cylinder  

 

A perfect thin cylindrical shell of radius 100 mm ,length 200 mm and thickness of 1 mm 

is used. Aluminum  alloy 2024 T3 is used with elastic modulus 68563 MPa (25
0 

C)and 

poison’s ratio .33 .As Batdorf  factor is 3775.92  equation (2.32) can be used .The buckling 

load according to classical theory is 263.48 KN . The cylinder is modeled with eight noded 

doubly curved shell element S8R5 having five degrees of freedom at each node and 

recommended for thin shell applications [5]. Boundary conditions are applied to the 

reference points tied to all the end nodes through rigid body tie constraint for convenience. 

Boundary condition is that all degrees of freedom of end nodes are restrained except for 

axial movement of top nodes. Lanczos solver is used to calculate twenty buckling modes 

which could later be used to seed imperfection. Mesh sensitivity study is carried out by 

comparing eigen values and mode shapes. 

 

4.2.1 Mesh Sensitivity Study 

 

Global mesh sizes of 10mm,5mm,4mm,and 3mm are used for mesh sensitivity study. 

The results are shown in Table 4.1 . 
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A mesh size of 5mm is for the first time giving value nearer to converging value and 

there is difference of about 100s in cpu time from 10mm.Later convergence is checked for 

4mm and 3mm and cpu time is increasing in each mesh by about 50s. The 4mm mesh is 

having convergence to first decimal value as loads are in KN this should be considered but 

3mm mesh will take up too much time in nonlinear analysis .So considering cpu time and 

converging load value it is decided to use a 4mm mesh for the analysis. 

The buckling mode shape (number of longitudinal half waves m, and circumferential 

half waves n)for all meshes at first eigen value is same. Note that 3.* in the values of m 

means there are more than three half waves but are not fully developed at ends due to 

clamped boundary condition. The results of linear perturbation analysis shows that 

classical theory overestimates the results for this case. 

 

Table 4.1 Results of mesh convergence 

Mesh Size 10mm 5mm 4mm 3mm 

CPU Time(s) 37.3 145.6 237.3 306.6 

Mode Buckling load(KN) 

First mode(m,n) 3.*,18 3.*,18 3.*,18 3.*,18 

1  260.75 259.60 259.54 259.51 

2 260.75 259.60 259.54 259.51 

3 260.77 259.62 259.56 259.53 

4 260.77 259.62 259.56 259.53 

5 263.00 262.10 262.05 262.02 

6 263.00 262.10 262.05 262.02 

%error 1.03 1.45 1.49 1.5 

3.* means there are 3 full half waves but some partial half waves too 

 

 4.3 Perfect Cylinder 

 

Nonlinear(geometric nonlinearity is considered) analysis with static riks step is used to 

plot load vs end displacement curves for a perfect shell(without any initial geometric 

imperfections). The graph is drawn into postbuckling region to study stability of the body 

under axial load. It is seen that thought linear perturbation solution was converging to a 

value lower than classical theory ,in when geometric nonlinearities are considered for a 
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perfect shell there is a change in stiffness of the body at about 220MPa load (Fig. 4.1) but 

structure is still stable and at 263.2MPa it loses its stability, which is quite close to 

buckling load  given by classical theory. This is probably due to the reason that in linear  

Fig. 4.1 Curve for perfect cylinder near buckling point 

 

perturbation step any type of nonlinearity is ignored even geometric and classical theory 

considers finite deformations. 

 

4.4 Effect of Imperfection 

 

All real bodies have some imperfections in shells these could be due to some surface 

scratch or dent, irregularities due to rolling and other manufacturing processes etc. Curves 

changes due to these imperfections and buckling loads can decreases by as much as 

seventy percent of that calculated by classical theory. Koiter[15] theorized that one could 

take perfect body graphs as asymptotes for the imperfect graphs, the equations that he 

derived gave results quite similar to those found through experiments.  

NASA SP-8007 guideline[7] gives lower bound for the imperfect shells for different r/t 

ratios as explained in section 2.4 and equation (2.33) is used to find knockdown factor 

which came out to be .5812 and the corresponding lower bound load is 153.15MPa. First 

twenty eigen modes from the linear analysis are used to seed imperfections ,these modes 

are shown in Table 4.2 . Plots for all the imperfections and prefect body are shown in Fig. 

4.2 for comparison among each other. For imperfections of amplitudes 10% and 20% of 

the thickness , the shells started buckling below SP-8007 limits, but that could be explained 

through the fact that practically initial deflections are less than 10% to not be seen by eyes 
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or rejected during some quality test(Fig. 4.3) and the guide line is made for those shells 

which would be used in various applications. Here such high values are taken only to  

 

Table 4.2  Eigen modes used to seed imperfection 

 

259.54MPa 

 

249.54Mpa 

 

259.56MPa 

 

259.56MPa 

 

262.05MPa 

 

262.05MPa 

 

262.08MPa 

 

262.08MPa 

 

262.61MPa 

 

262.61MPa 

 

263.14MPa 

 

263.14MPa 

 

263.47MPa 

 

263.47MPa 

 

263.55MPa 

 

263.55MPa 

 

264.28MPa 

 

264.28MPa 

 

264.35MPa 

 

264.35MPa 

 

amplify deflection patterns and study them. In Fig. 4.39(a) the shell looks perfect but has 
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1% initial geometric deformation in the shape of first twenty eigen modes. These figures 

are not scaled ,this is what it would look like in real life. It could be seen from the results 

that graphs for imperfect bodies are asymptotic to that for perfect body supporting Koiter’s 

Fig. 4.2 Plot of elastic model for different imperfection amplitudes 

 

 theory. In fact curve for imperfection amplitude of 1% of thickness looks almost 

coinciding with perfect curve ,though there is some gap just can’t be seen at this scale.  

One more observation could be that, from riks step on perfect body the mode of 

deformation formed is not similar to that of least eigen mode of linear perturbation but 

higher one, infact it is similar to eigen mode corresponding to load of 163.14MPa which in 

turn is near to that by classical theory. So in abaqus final buckling load should be decided 

by combining linear perturbation (for loads) and riks method(for expected mode shape). 

 

       (a)1%                        (b)10%                           (c)20%                          (d)50% 

Fig. 4.3 Initial geometric imperfections on undeformed body for different imperfection 

amplitudes 
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CHAPTER 5 

 

INELASTIC BUCKLING AND MATERIAL MODELING 

 

 

5.1 Introduction 

 

An approximate  solutions for inelastic buckling loads for axial compressions case is 

given in [7], [9] and [13] for radius to thickness ratios such that there is chance of buckling 

to go into plastic range but shell is thin at the same time. In [13] the given range is 

10<
 

 
<50 ,although one of the ratios taken in this study is not in this range(R=100mm and 

t=1 mm as in last chapter ),even that is taken in a way that buckling stress falls between 

yielding and ultimate stresses for our material(2024 T3 Al) in uniaxial tensile test[9]. 

Nonlinear kinematic hardening model is used to draw true stress strain curve at room 

temperature with values taken from [12]. 

 

5.2 Material Model 

 

In elastic region linear behavior is considered and for plastic region a nonlinear 

kinematic hardening model is presented in [12] for 2024 T3 Al at different temperatures. 

For this analysis data is taken corresponding to room temperature (25
0
 C) and equations are 

written in a simplified form. Let    and    represent engineering stress and strain which is 

found by experiments ,then expressions for true stress ,strain ( ,  ) are 

                                                                                                             

In plastic range equivalent plastic strain is given by 

                                                                ε 
  

 
                                                             

where    is true yield stress and E is Yong’s modulus. Similarly a term    is defined as 

                                                                                                                             

and from kinematic hardening model it’s value is given as 

                                                         
 

 
(       

)                                                    

where   is kinematic hardening modulus,  is a coefficient which defines rate of decrease 
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of   with increase of the plastic deformation. Values of    ,   and E at various 

temperatures with      are given in [12].For this analysis these values at 25
0 

C are 

                                                                         

The stress strain plot is shown in Fig.5.1.  

 

5.3 Inelastic Buckling 

 

Very long slender cylinders buckle in Euler column mode and rest in a more localized 

axisymmetric(bellows) or asymmetric(diamond pattern).For intermediate length cylinders 

we find buckling loads for both type of modes and take the lower one as solution. A simple 

Fig. 5.1 Material model for 2024 T3 Al  

solution is provided in [13] to find inelastic loads for localized buckling modes as 

                                                      (
    

       
)
    

 
                                                       

where                                               
 

 
             

  

  
 

                                                                    
 

 
 (

 

 
  )

  

 
 

E is Yong’s modulus and   is Poisson’s ratio. Note    and    are secant and tangent 

modulus respectively, and are changing with stress, strain values on     curve ,therefore 

the solution of (5.5) is an iterative process. Let P be an assumed axial load then stress 

corresponding to it for pure axial compression will be    
 

    
 ,    and    are found 

corresponding to    from     curve ,     is calculated with these values and compared 
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with assumed value    ,if they are same it is the solution if not another axial load is 

assumed till we get a solution. To find solution in this case data points on stress-strain  

  

Table 5.1 Iterative Solution for Buckling Loads in Plastic Range 

    

(MPa) 
   

 

 
 

(MPa) 

   
  

  
 

(MPa) 

    

(MPa) 

t=1 

    

(MPa) 

t=2 

    

(MPa) 

t=3 

0 0 68563(E) 68563(E) 419.33 838.68 1258.02 

0.005388(  ) 369.47 68572.75 2447.7 79.2368 158.4736 237.7104 

0.0054 369.47 68420.37 2214.7 75.298 150.596 225.894 

0.0154 392.7626 25504.06 2004 45.8833 91.7666 137.6499 

0.0254 413.8385 16292.85 1813.3 35.3345 70.669 106.0035 

0.0354 432.9089 12229.06 1640.7 29.2934 58.5868 87.8802 

0.0454 450.1644 9915.515 1484.6 25.1789 50.3578 75.5367 

0.0554 465.7779 8407.543 1343.3 22.1054 44.2108 66.3162 

0.0654 479.9056 7338.006 1215.5 19.6772 39.3544 59.0316 

0.0754 492.6888 6534.334 1099.8 17.6848 35.3696 53.0544 

0.0854 504.2555 5904.631 995.1 16.0067 32.0134 48.0201 

0.0954 514.7216 5395.405 900.4 14.5663 29.1326 43.6989 

0.1054 524.1916 4973.355 814.8 13.3125 26.625 39.9375 

0.1154 532.7605 4616.642 737.2 12.2071 24.4142 36.6213 

0.1254 540.5139 4310.318 667.1 11.2258 22.4516 33.6774 

0.1354 547.5295 4043.792 603.6 10.3472 20.6944 31.0416 

0.1454 553.8774 3809.336 2447.7 20.2311 40.4622 60.6933 

 

curve plotted in material modeling is taken as assumed values and critical stresses 

according to (5.5) were found for 1mm,2mm ,and3mm shell. It was found that not just this 

doesn’t give a solution the critical stresses found were absurd Table 5.1for all three 

thicknesses. As critical stress is directly proportional to thickness ,as we increase thickness 

we will get in the range where this methods give some results (about 5mm and above) but 

2mm is at boundary and 3mm is clearly within the given range yet no results[13]. 
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 

 

6.1 Introduction 

 

Same model as in chapter 4 is used with two more models of thickness 2mm and 

3mm(other dimensions same) and fifteen equally spaced points are used to input plastic 

behavior in ABAQUS for accurate analysis (Table 5.1).From classical theory the buckling 

load is 263.47kN, 1053.91kN and 2371.3kN for shells of thickness 1mm,2mm,3mm 

respectively. Nonlinear(geometric nonlinearity is considered) analysis with static riks step 

is used to plot load vs end displacement curves for a perfect shell(without any initial 

geometric imperfections) with(inelastic) and without(elastic) consideration of material 

nonlinearity in plastic range. Later same is done for 1mm thick shell with imperfection 

sizes of 1% and 10% of thickness. 

 

6.2  Perfect Materially Nonlinear Body   

 

Here perfect means without any initial geometric imperfection. If we multiply yield 

stress(318.3MPa) with cross-section area we get 199.9kN,399.9kN and 599.98kN yielding 

loads corresponding to shell thickness of 1mm,2mm and 3mm respectively. From FEA we 

get plastic loads 198.6kN ,444.8kN and 682.9kN for the three thicknesses(Fig. 6.1). It is 

observed that even though classical theory gives buckling load above yield point FEA 

shows them to be within elastic limit 318.3MPa for 1mm thickness when linear elastic 

,nonlinear plastic model is considered. Loads are above yielding loads for 2mm and 3mm 

shell.  

In Fig.6.2 deformation pattern for perfect elastic and inelastic shell is compared. It can 

be observed that when plasticity is considered deformations starts at ends where as it is in 

mid length when material nonlinearity is not considered. If we further compare it with 

Fig.6.3 which shows a thick aluminum cylinder buckling into plastic range from an 

experiment, we can observe this similarity, though it was not pointed out in relation to 

plasticity by author[11].It could be reasoned that due to clamping there is stress 

concentration near ends. The material would cross yielding limit at points near ends earlier  
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than at those further away or near mid length. 

(a) 

(b) 

(c) 

Fig. 6.1 Comparison of elastic and inelastic buckling for perfect shell of various 

thickness 
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Fig. 6.2 Comparison of elastic and inelastic deformation pattern for perfect cylinder 

 

 

Fig. 6.3 Thick aluminum cylinder under uniform axial compression[11] 

 

Table 6.1 Comparison of Elastic and Inelastic Buckling Loads for perfect shells 

Thickness Elastic load(Pe) in kN Inelastic Load(Pi) in kN 

1mm 263.478 198.597 

2mm 1053.915 444.839 

3mm 2371.310 682.931 

 

From (2.32) if material, radius and length is same and let Pe denote elastic load and Pe1 

,Pe2 … represent elastic load for t1,t2…. shell thickness  respectively then  

                                                                 
   

   
 (

  

  
)
 

                                                  (6.1) 

Now let t1=1mm ,t2 =2mm and t3 =3mm and Pi1 ,Pi2….represents inelastic loads .It could be 

seen from Table. 6.1, that inelastic loads don’t follow relation (6.1) in fact data follows 

more of an arithmetic progression with respect to thickness. On the other hand  if one takes 

difference between elastic and inelastic buckling loads for each value of thickness one 

might find a relation like (6.1) for different power. This study could be further extended 
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with more data values to find some correlation. 

 

6.3 Analysis with Imperfections 

 

Load vs end displacement curves are compared for 1% and 10% imperfection 

magnitude with perfect model, classical theory(elastic), and SP-8007 lower bound for 1mm 

thick model. From Fig. 6.4 it can be observed that just by consideration of plastic data(for 

perfect shell) buckling load is reduced by 68.5kN. It would further reduce when 

imperfections are considered.  

 

Fig. 6.4 Comparison of inelastic buckling for different imperfection amplitude for 1mm 

thick shell 

 

It can also be seen that for imperfection amplitude of .01mm(1% thickness) buckling 

load is further decreased by 7.479kN. It is quite clear that major decrease in buckling load 

from classical theory is due to plasticity rather than imperfections in this case. One could 

argue about imperfect shells with 10% imperfection amplitude should not be below nasa 

lower bound but that is quite high imperfection amplitude taken just to get some smooth 

curve to see postbuckling behaviour. 
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CHAPTER 7 

 

CONCLUSION AND RECOMENDATIONS 

 
 

1-There is a change in location of maximum lateral deformation from mid length to 

ends for perfect cylinders without and with plasticity considerations respectively. It 

is recommended to study deformation patterns for different end conditions. 

  

2-There was a case where drop in buckling load by consideration of plasticity for 

perfect body is higher than further drop due to imperfection. It is recommended to 

use this method of analysis for a lot of different material and geometric model 

combinations. 

 

3-Thouth SP-8007 knockdowns are valid the study indicate that a range of different 

values for same R/t ratio could be due to different material properties as well(elastic 

modulus of material doesn’t affect knockdown factor as it is cancelled out eqn(2) but 

yield points could affect experimental output ) other than random initial 

imperfections. This means following that guideline one could be designing over safe 

structures with extra material mass and this type of study might help us save material 

cost. 

 

4-Ratio of elastic buckling loads is proportional to square of respective shell 

thickness if material and rest of the geometry is unchanged. Same is not true for 

inelastic loads , in fact they show somewhat  an arithmetic progression patterns and 

difference in elastic and inelastic loads shows a higher order pattern. It is 

recommended to collect a lot more data to study it further for some correlation if any, 

it might give some insight for theoretical study. 
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