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ABSTRACT 

Recently, the vision-based understanding in video sequences entices numerous 

real-life applications such as gaming, robotics, patients monitoring, content-based 

retrieval, video surveillance, and security.  One of the ultimate aims of artificial 

intelligence society is to develop an automatic system that can be recognized and 

understand human behaviour and activities in video sequences accurately.  Over 

the decade, many efforts are made to recognize the human activity in videos but 

still, it is a challenging task due to intra-class action similarity, occlusions, view 

variations and environmental conditions.   

To analyse and address the issue involved in the recognition of human ac-

tivity in video sequences.  Initially, we have reviewed the most popular and prom-

inent state-of-the-art solutions, compared and presented.  Based on the literature 

survey, these solutions are categorized into handcrafted features based descriptors 

and automatically learned feature based on deep architectures. In this thesis work, 

the proposed action recognition framework is divided into handcrafted and deep 

learning-based architectures which are then utilized throughout this work by em-

bedding the new algorithms for activity recognition, both in the handcrafted and 

automatic learned features domains.   

First, a novel handcrafted feature based descriptor is presented. This 

method addressed the major challenges such as abrupt scene change phenomena, 

clutter background and viewpoints variations by presented a novel visual cogni-

zance based multi-resolution descriptor for action recognition using key pose 

frames. This descriptor framework is constructed by computation of textural and 

spatial cues at multi-resolution in still images obtained from videos sequences. A 

fuzzy inference model is used to select the single key pose image from action video 

sequences using maximum histogram distance between stacks of frames. To rep-

resent, these key pose images the textural traits at various orientations and scales 
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are extracted using Gabor wavelet while shape traits are computed through a mul-

tilevel approach called Spatial Edge Distribution of Gradients (SEDGs). Finally, a 

hybrid model of action descriptor is developed using shape and textural evidence, 

which is known as Extended Multi-Resolution Features (EMRFs) model. The ac-

tion classification is carried through two most famous and efficient distinctive clas-

sifiers known as SVM and k-NN. The performance of the EMRF is computed on 

four publically available datasets, and it shows outstanding accuracy as compared 

with earlier state-of-the-art approaches which show its applicability for real-time 

applications.     

Second, two deep learning-based ConvNet architectures are presented to 

overcome the limitations of handcrafted solutions. These ConvNets frameworks is 

based on transfer learning by utilized a pre-trained deep model for features ex-

tractions to identify the human actions in video sequences. It is experimentally 

observed that deep pre-trained model trained on a large annotated dataset is ex-

changeable to action recognition task with the smaller training dataset. In the first 

work, a deeply coupled ConvNet for human activity recognition proposed that 

utilize the RGB frames at the top layer with Bi-directional Long Short Term 

Memory (Bi-LSTM), and at the bottom layer, CNN model is trained with a single 

Dynamic Motion Image (DMI).  For the RGB frames, the CNN-Bi-LSTM model is 

trained end-to-end learning to refine the feature of the pre-trained CNN while dy-

namic images stream is fine-tuned with the top layers of the pre-trained model to 

extract temporal information in videos. The features obtained from both the data 

streams are fused at the decision level after the softmax layer with different late 

fusion techniques. The highest classification accuracies are achieved with signifi-

cant margin through the proposed model on four human action datasets: SBU In-

teraction, MIVIA Action, MSR Action Pair, and MSR Daily Activity as compared 

with similar state-of-the-arts and outperforms. 
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In the second proposed framework, a deep bottleneck multimodal feature 

fusion (D-BMFF) technique is presented that utilized three different modalities 

RGB, RGB-D(depth) and 3D coordinates information for activity classification be-

cause it helps for better recognition and complete utilization of information avail-

able from a depth sensor video simultaneously.  During the training process RGB 

and depth, frames are fed at regular intervals for an activity video while 3D coor-

dinates are first converted into single RGB skeleton motion history image (RGB-

SklMHI). The multimodal features obtained from bottleneck layers before the top 

layer are fused by using multiset discriminant correlation analysis (M-DCA), 

which helps for robust visual action modelling. Finally, the fused features are clas-

sified using a linear multiclass support vector machine (SVM) technique. The pro-

posed approach is evaluated over four standard RGB-D datasets: UT-Kinect, CAD-

60, Florence 3D and SBU Interaction. Our method exhibits excellent results and 

outperforms the state-of-the-art approaches.   

Finally, this thesis work is concluded with significant findings and future 

research aspects in the field of human action recognition.  
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Introduction of Human Activity Recogni-

tion   

Human activity recognition in videos became an imperative choice of researchers in 

computer vision because of its wide range of real-life applications. It includes e-health, 

patients monitoring, assistive daily living activities, video surveillance, security and 

behavior analysis, sports analysis and many more. This chapter introduced the background 

of the human activity recognition system, basic terminology, fundamental architecture, 

various challenging presents in video analysis, and numerous applications of human action 

recognition in day to day life. Furthermore, research problem statements, significant 

contribution, motivations for research, significance of the study, and thesis organization 

are discussed.    

1.1 Background 

Human activity recognition in the video sequence is the most popular and ever-

increasing area of computer vision research due to its plethora of applications in 

daily life. It includes safety, surveillance, healthcare, robotics, animations, sports 

analysis, content-based video summarization, and behavioural analysis, smart 

homes and many more. One of the ultimate aims of artificial intelligence society is 

to develop an automatic system that can recognize and understand human behav-

iour and activities accurately.  So that it can serve the society in a better way for 

example, a robot assistant can be capable enough of assisting a patient under ob-

servation at home and analysing the right way of exercise and preventing the pa-

tient from future injuries. Therefore, such an intelligent system will be very helpful 



  

2 
 

for us as it saves time to visit the doctor, reducing the medical cost and provides 

continuous remote monitoring of the patient.  In the past two decades, many hand-

crafted and automatically learned feature-based approaches developed for human 

action recognition in the videos. Earlier human activity recognition approaches are 

based on handcrafted features mainly focused on simple atomic actions  [1] [2] [3].  

Later on, convolutional neural networks(CNNs) based deep models for video ac-

tivity analysis were proposed that can automatically learn the features and classify 

from raw video only [4] [5] [6] [7]. 

The handcrafted feature extraction approaches for activity recognition is 

based on spatial background subtraction, optical flow, dense trajectories, and hu-

man pose variations [8] [9] [10] [11] [12]. After the tremendous progress of deep 

learning architectures on human pose estimation [13], object detection [14], seg-

mentation [15], speech analysis [16], object tracking [17] and super-resolution [18]. 

The deep learning model also plays a central role in visual recognition tasks. Un-

like handcrafted solutions, deep learning-based approaches provide a new way to 

extract the features from images automatically. It is observed that handcrafted fea-

tures solutions showed promising results but relied more on features descriptors 

for action classification. These solutions required more labour and subject 

knowledge expertise.  On the other hand, the deep learning-based approaches are 

dominated because of automatic features extraction from raw videos and provides 

better recognition rate. 

Still, human activity recognition is a challenging problem in machine learn-

ing and many key difficulties remain unresolved such as intra-class variation, il-

lumination changes, occlusion, actions similarities, viewpoint variations, change 

in scale, appearance, age, frame resolutions, and lightening conditions [19] [20] 

[21] [22]. With the invention of advanced Kinect depth sensor various deep learn-

ing methods based on single modality (RGB, depth(D), and skeleton coordinates) 

and their various combinations are introduced [23] [24] [25] [26] [27]. However, 
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very few approaches are based on the combination of RGB, depth and 3D-skeleton 

coordinates for activity recognition [28]. 

In general, a video consists of visual multimedia information in the form of 

sequences of images (frame per second). Unlike the feature representation in an 

image, the human action modelling in video sequences is based on Spatio-tem-

poral features representation. The spatiotemporal models extracted the spatial ap-

pearance features present in video frames and existing pose variations. The extrac-

tion of Spatio-temporal features is needed to recognize the action in video se-

quences. The main objective of this thesis work is to automatically detect and an-

alyse human action or activities from the data acquired from sensors, e.g.  video 

camera, depth sensors and other modalities. 

1.2 What is Action?   

According to Oxford dictionary, “the fact or process of doing something, typically 

to achieve an aim” is called action and similarly, an activity is defined as “a thing 

that a person or group does or has done”. There are numerous definitions of action 

given by various authors in their works. However, most suitable stated by  Herath 

et al. [1], “Action is the most elementary human-surrounding interaction with a mean-

ing”.  Therefore, human activities can be classified based on interaction with the 

surrounding into four major categories as follows: 

 Gestures are defined as basic or atomic movements of body parts, for exam-

ple, hand waving, moving the head up and down, etc.  

 Actions are defined as a body activity of one person or actors such as run-

ning, walking, and jogging, etc. An action can be considered as combina-

tions of atomic gestures. 

 Interactions are defined as two or more peoples involved in one to one com-

munications. It may be both types of human-human interaction (HHI) and 
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human-objects interaction (HOI). Examples of human-human interactions 

are handshaking, hugging, exchanging objects fighting with each other, etc. 

while Human objects interactions (HOI) may see as the person making tea, 

answering the phone calls etc. 

 Group Activities are defined as multiple persons or groups involved in com-

mon objectives such as a group meeting, two groups fighting with each 

other, etc. 

It can be observed from Figure 1.1 that the complexity of action representation is 

increased from gesture recognition to group activity recognition.  

1.2.1 Modality 

It is defined as a method to record and collect information in a video dataset.  A 

multimodal video dataset is recorded with two or more sensors to captures the 

human activity in the videos. The three different types of modalities that collect 

the information from depth sensors are as follows: 

 RGB frames: It is available in various resolutions and formats. The format 

determines the type of colour image data, whether it is encoded as RGB or 

longer time scale 
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Figure 1.1: Levels of Human Activities   



  

5 
 

Grey.  High-resolution images have high data per frames as compared to 

low-resolution images. 

 Depth frames: It is a measure of distance, in millimetre, to the nearest object 

at that particular spatial coordinates in the depth sensor’s (Kinect) field of 

view. The depth images can be captured in three different spatial 

resolutions: 640×480, 320×240, and 80×60 according to specified image 

format. It can be utilized to track a person’s motion and background 

segmentation tasks. 

 3D Skeleton coordinates: It consists of the 3D position of data for human 

skeletons which are visible in the depth sensors. In tracking mode, the 

position of a skeleton and each of the skeleton joints is stored in three-

dimensional coordinates in meters.  

This thesis work mainly focused on recognition of action and interaction activities 

from video sequences by utilizing all three modalities either individually or 

combinedly.  

1.3 Human Action Recognition 

Typical human activity recognition can be broadly categorized into three different 

representation levels, as depicted in Figure 1.2. It consists of low-level fundamen-

tal technology to extract the information from sensors, mid-level various activity 

recognition and associated high-level human activity recognition applications.  

In a traditional HAR system, low-level generally represented the core fun-

damental techniques that are necessary for human activity recognition from video 

sequences. It involves various basic steps, such as pre-processing of input frames, 

features extraction, and action classification. On the other hand, deep learned fea-

tures based methods extracted the features from pixels’ basis and classified the 

activity automatically. The basic steps utilized by the core technology from data 

acquisition to representation and classification of human activity are as follows: 
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 Pre-processing: It is used to enhances the quality of input video sequences 

for robust features extraction. It included various techniques such as back-

ground segmentation, silhouettes extractions, histogram equalization, opti-

cal flow estimation etc. Earlier human action recognition methods focused 

on the processing of extraction of human silhouettes to represent human 

motion. It includes background removal, frame normalization, and vector 

quantization in a constrained environment. 
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Figure 1.2: Block Diagram of Human Action Recognition System 
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The main disadvantages of these pre-processing techniques are that these are 

less applicable to real-time applications and not so efficient for unconstrained 

environments such as complex and low illumination conditions. With the in-

vention of advanced depth sensors that provide different modality including 

RGB frames, depth and 3D skeleton coordinates. The background segmenta-

tion is easier in depth frames as compared with RGB frames for object recogni-

tion in the presence of clutter background or illumination variation.  The 3D 

skeleton joints represent the human posture movements by tracking the hu-

man-specific parts such as feet, hands, legs, arms, and torso. The pre-pro-

cessing of these 3D features are robust and invariant to illumination and back-

ground conditions that can be helpful for real-time action recognition.     

 Feature extraction and Representation: The raw video sequences acquired 

from sensors contains redundant information. The feature extraction pro-

cess removed such redundant information from raw videos and unveiled 

the hidden Spatio-temporal relationship to recognized human activity. Fur-

ther, the feature extraction techniques eliminate the noise that occurred 

during the recording of data from sensors. It will reduce the memory re-

quirement and save precious time for classification. There are various well 

known and established hand-crafted feature extraction methods such as 

MHI, MEI, STIP, SIFT, Optical flow, BoWs, HOG, HOF, dense trajectories 

etc. to extract the robust features for activity representation. Unlike the tra-

ditional features, deep learned models extracted features automatically 

from raw pixels of video sequences. Transfer learning is well known ap-

proach to extract the features from input sensors. Other features extraction 

techniques used for sequential information extraction are Recurrent Neural 

Network (RNN), LSTM (long short term memory).  The automatic learned 

feature models are dominated over hand-crafted features due to their more 

robust architecture and generalization to real-life problems.      
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 Activity Classification: It is the final step in the activity recognition system. 

The classification accuracy directly depends on the features extraction pro-

cess from input data. Traditional hand-crafted methods utilized the ma-

chine learning techniques for label the activity classes. These techniques are 

linear multiclass SVM, HMM, K-NN, Random forest, Bootstrap and k-

means etc. Automatic learned deep methods used the Softmax classifier af-

ter the fully connected layers to classify the action class. Recently, multi-

streams fusion networks with different fusion techniques such as early and 

late fusion are used for final prediction.   

The mid-level of the HAR system consists of the single-person activity, multiple 

person activities, crowd behaviour, anomaly detection and suspicious activities. 

This level extended the low-level human action recognition to be more specific 

into realistic problems such as assistive daily living applications and human be-

haviour understanding with the surrounding. At last, high level HAR system dis-

cussed the necessity of human activity recognition and various potential applica-

tions based on video analysis. These HAR applications play a significant role in 

day to day life such as video surveillance, security, healthcare, sports and many 

more.  

In the following sub-section, the various challenges involved in human ac-

tivity recognition in video sequences are discussed in details. 

1.4 Challenges in HAR 

The recorded videos in the datasets are having limitations in at least one of aspects 

such as similarity of actions, cluttered background, viewpoints variations, illumi-

nations variations, and occlusions. Initially, human action datasets were less chal-

lenging compared to current dataset due to less number of action classes, subjects, 
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and reasonably recorded in controlled environmental conditions. The perfor-

mance measure of an algorithm depends on these crucial factors present in the 

datasets. The RGB datasets is more challenges like view changes, intra-class vari-

ations, cluttered background, partial occlusions, and camera movements than 

RGB-D(depth) datasets.   

1.4.1 Background and Environment Conditions  

The natural environment contains various objects such as trees, waves, rain, and 

water and these factors affect the recognition activity in videos. The performance 

of feature descriptors directly influenced by background subtraction techniques or 

foreground detection. The KTH Action dataset [29] is more challenging due to 

changing background compared to Weizmann dataset [30]. Recognizing human 

activity in videos is a crucial task in the presence of moving object or background. 

The background in videos may be of different types such as slow/fast, dynamic, 

static, occluded, airy, rainy, and densely populated. 

1.4.2 Intra and Inter-class Variations 

It can be noticed that different persons performed same actions in a different man-

ner. For considering the ‘running’ action, a person can run slow, fast or sometimes 

jumps and then run. It means an action class may contain different styles per-

formed by the human motion. Furthermore, the execution time of action vary per-

son to person pose variations. All such factors lead to interclass pose and appear-

ance variations [31] [32]. The similarity between the actions classes in videos pro-

vides a fundamental challenge to the researcher. Many actions seem to be similar 

in videos such as jogging, running, walking, etc. These similarities provide the 

challenges for automatic recognition system which lead to misclassification.  
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1.4.3 Occlusion 

Occlusion is a thing where another object hides the object of interest. It is a chal-

lenging task to recognize human activities from occluded videos. The occlusion is 

a major challenge in the field of computer vision such as human pose estimation, 

object tracking, video surveillance, 3D foreground reconstruction, and traffic mon-

itoring applications. It occurs due to the relative motion of static and dynamic oc-

cluding objects. Occlusion is two types in human pose estimation self-occlusion 

and occlusion by another object. Self–occlusion is occurring when body parts oc-

clude each other due to different viewpoints while other occlusions occur when 

an object obstructs the view [33] [34].  

1.4.4 View-Variations 

The viewpoint of any activity recorded inside the video dataset is a key attribute 

in the human activity recognition system. The videos recorded with multiple 

views have more robust information than a single view and independent of the 

captured view angle. However, multi-views increase the complexity of the HAR 

system [3] [35]. 

1.4.5  Lack of Labelled Data  

It is observed that most of the HAR approach shown impressive performance on 

small human activity datasets. It is a challenging task to generalized these solu-

tions on large scales for real-time applications. The deep network based architec-

tures provide a promising performance on large scale datasets. But these deep 

models required a large amount of labelled training data for training the model 

[36] [37]. Although, few action datasets such as YouTube-8M [38] and Sports-1M 

[32] consist of millions of action videos. But annotations of videos are created by 

retrieval techniques that may not be so accurate. The training on such datasets is 
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challenging due to insufficient labelled training data. Therefore, the performance 

of action descriptors is affected due to inaccurate labelling.   

1.5 Applications 

HAR using video sequences spreads dimensions in a vast area of research due to 

its practical applications. These are broadly categorized as: 

1.5.1 Interactive Applications and Environments  

Human-computer interaction is a challenging task in the design of the human-

computer interface. The visual features are the main components of non-verbal 

communication. Human activity recognition such as gestures, actions, and inter-

actions can be utilized as a useful tool for this interaction. A HAR model helps to 

a better understanding between the human-computer interface such as robotics 

[39], smart homes [40]. Although these solutions are not so developed to interact 

perfectly; therefore, it attracts a lot of research attention.    

1.5.2 Behaviour Biometric  

Initially, traditional biometric algorithms are based on physical attribute cues such 

as iris, fingerprints or face to recognizing the human identity. It is noted that these 

solutions need the physical involvement of the person to be identified. Due to such 

limitations, ‘Behavioral Biometric’ attracts much attention to recognize person 

identity because it is observed that the behaviour of a person is an essential cue as 

equal to other physical cues.  Further, it has an advantage because of no interfer-

ence of person to recognizing the personal activities. In this context, to identify a 

person behaviour need more observation time. Therefore, human activity recog-

nition in video sequences plays a significant role in behavioural biometric systems 

such as Gait Analysis [41].  
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1.5.3 Content-based video retrieval  

Today, video plays a core role in the day to day lifestyle to sharing information on 

social media platform (Facebook, Twitter, Instagram) or online entertainment 

websites (YouTube, Netflix, hot star). The video summarization and indexing are 

gaining more popularity similarly the content-based image retrieval(CBIR) be-

cause of utilization in potential commercial field application such as sports analyt-

ics [42] [43] [44].  

1.5.4 Animation and Synthesis  

The human motion analysis is useful for gaming industry due to variation of 

poses, view variations, and motion patterns. The movie industry highly depends 

on good quality animation applications that depend on fusing both the realistic 

human and human motion. This is fast-growing area many applications are devel-

oped for military applications, fire-fighters and other national disaster manage-

ment team for rescue purposes in adverse situations. With the help of advanced 

algorithms and high computing devices, a simulated environment is created for 

training these soldiers for hazardous conditions. Due to the availability of high-

quality videos, inexpensive hardware and continuous monitoring, it is possible to 

track the desired target for object detection. Therefore, a HAR system helps to im-

prove the qualities of the existing challenging problem [45].  

1.5.5 Video surveillance and security  

The security and surveillance system in our houses and smart city directly depend 

on videos, e.g. CCTV cameras installed on a specific location. Traditional security 

networks are highly depending on the awareness of security persons and the cam-

era’s area of view. Recently, with the availability of inexpensive high resolution 

capturing devices and connectivity of internet stretched the vision-based tasks and 
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eliminated the dependency of operators. The advance security networks are seek-

ing automatic recognition of suspicious or abnormal activities. That is why auto-

matic human activity recognition in video sequences attracted the researcher’s at-

tention to computer vision-based applications more rapidly [46] [47].    

1.6 Problem Statement 

Based upon the challenges mentioned above such as intra-class similarity, view 

variation, scales, varying illumination conditions, clutter background, and various 

types occlusions, need to developed a HAR system that can overcome such limi-

tations exist in video sequences. To handle such issues an effective, robust models 

based on handcrafted features descriptor and learned features based architectures 

are presented in this thesis work. Practically to handle the problem of action recog-

nition in videos, we have formulated the following statements given below as:  

 To design and develop a robust activity recognition model that can auto-

mate analysis or interpretation of ongoing events and their context from 

video data. 

 To design an algorithm which can handle issues such as low illumination, 

de-noising, background and enhance the video quality so that representa-

tion is more efficient to recognize human activities.  

 To design and develop a deep learning-based model for action classification 

that is invariant to scale, viewpoint, occlusions, illuminations changes and 

environmental conditions.  

 To design and develop a multimodal features fusion approach based on 

deep convolution neural network architecture that can automatically learn 

the Spatio-temporal features for efficient human action modelling in video 

sequences.  

 To validate the developed algorithm and experiment can be conducted on 

standard human activity RGB-D datasets and know the effectiveness of the 
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novel algorithm through a comparative study and implementation to be 

conducted. 

1.7  Major Contributions of Thesis  

This section explained the major contribution of this thesis work.  This work is also 

presented the theoretical formulation and experimental validation basis for im-

provement of HAR solutions in the following sub-sections.  

1.7.1 Theoretical Formulation 

The theoretical contribution of this work as follows: 

 The problem of the frame redundancy is identified in videos sequences, and 

an appropriate model is chosen which can adequately represent the video 

with a small set of discriminative key pose frames. 

 The issue of efficient shape features extraction and noise removal from a 

background in video frames is identified and solved with the help standard 

edges detector with a threshold mechanism. 

 To handle the issue of view variation and scales variations, an appropriate 

orientation model is chosen at various orientations and scales.  

 The problem of low recognition accuracy in the HAR model under various 

challenging conditions is detected.  

 The issue of overfitting the trained model due to small samples datasets is 

addressed by utilizing the concept of transfer learning and dropout mech-

anism for extracting the Spatio-temporal features for action representations.  

 The issue due to limitations of joints and coordinates of upper or lower 

body parts used to represent activity is studied and dealt with.  

 To handle the issue of skeleton data is degraded due to noise and occlusions 

present in RGB-D images has been identified.  
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 The performance of various fusion techniques under different constraints 

for effective features extractions has been observed.  

1.7.2 Experimental Validation 

The proposed frameworks are experimentally evaluated over publically available 

standard RGB-D(depth) human activity datasets. These datasets are included sin-

gle person, multiple people, human-human interaction and human-object interac-

tion activities videos recorded in various challenging environmental conditions.  

 An Extended Multi-Resolution Features (EMRFs) model is developed by 

concatenation of shape and textural evidence and the performance of the 

EMRFs is measured in terms of accuracy on standard datasets. 

 Design a fuzzy-model-based approach used to select single key pose action 

images from input video sequences. 

 Utilized Gabor wavelet transforms for extractions of the textural features at 

various orientations and scales. 

 Experiment studies of the proposed method on the set of the reference da-

taset. 

 A hybrid two-stream deep ConvNets are presented that utilized two differ-

ent spatial and temporal data streams to recognize human action. 

 Developed a hybrid two-stream deep ConvNets that utilized two different 

spatial and temporal data streams to recognize human action. 

 Design a deep architecture based on transfer learning model for features 

extraction and Bi-LSTM architecture for sequential data modelling. 

 Studied and observed the effect of various late fusion techniques at top lay-

ers.  

 Design the bottleneck features extraction model by fine-tuning the latest 

pre-trained architectures for action modelling. 
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 Development of multimodal data stream fused with multiset DCA tech-

nique. 

 Experiment studies of the proposed method on a set of the reference da-

taset. 

1.8 Motivations 

Over the last decades, understanding human activities in video sequences is tied 

to complementary research including human dynamics, semantic segmentation, 

objection recognition, and domain adaptions. Today, human action recognition 

can automatically learn from thousands of videos and applied to all daily life ap-

plications.  

Recently, it is observing a rapid increase of video contents on social media plat-

forms such as YouTube, Facebook and Twitter. The availability of inexpensive, 

high-quality camera devices and high internet speed in smart mobile phones, a 

huge amount of videos uploaded every year on these social media platforms. Due 

to the enormous amount of data, there is a need for a system which can accurately 

analyse these videos and provide necessary solutions and suggestions. Human ac-

tion recognition is a key ingredient of such systems.    

We can observe that robotics is an interdisciplinary field of science and engineer-

ing. It deals with the development of machines which can replace humans. Robots 

is a multipurpose machine that can be used in adverse situations such as bomb 

detection and de-activation or where humans could not handle. Human action 

recognition system plays a significant role in many robotics applications. For ex-

ample, autonomous vehicles that are a specific type of robot which can control the 

road situation and reduce the accidental loss on roads. Autonomous driving re-

quires an accurate human pedestrian detection and prediction of body, and it can 

avoid potentially dangerous situations.  
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With the broader range of applications from robotics to human-computer interac-

tion and video surveillance motivated us to recognize the human actions in video 

sequences.  

1.9 Significance of Human Action Recognition   

Vision-based human action recognition is a lively area of research in the field of 

computer vision and machine learning. The main objective of human action recog-

nition is to automatically detect and analyse of human activities from the data ac-

quired from sensors, e.g. video sequences, depth sensors and other modalities. It 

has countless applications such as security and surveillance, assistive healthcare, 

human-computer interaction, robotics, user-interface design, video browsing, 

sports analysis, human object tracking, robotics, and prevention of terrorist activ-

ities etc. In the present societal situation, suspicious activities, road accidents, ter-

rorist attacks, riots, and stampede are progressively increased daily. Due to a large 

amount of information extracted from video sequences, a HAR model can be uti-

lized as an effective tool to combat such security issues.      

1.10 Thesis overview  

This thesis is organized into five chapters. The brief outlines are given below: 

 Chapter 1: This chapter introduced the background of the human activity 

recognition system, basic terminology, fundamental architectures, various 

challenges in video analysis, applications of action recognition. Further-

more, research problem statements, significant contribution, motivations, 

and significance of the study are discussed.    

 Chapter 2: This chapter explained the merits and demerits of existing state-

of-the-art methods. We have reviewed the traditional hand-crafted features 

as well as automatic learned features descriptors for the representation of 
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human activity in video sequences. It helps us to discover the research gaps 

in existing solutions in the relevant area.  We also provide a comparison for 

publically available human activity datasets. Further, the research objec-

tives are formulated based on these research gaps later on which are ad-

dressed in this thesis. 

 Chapter 3: This chapter presents a hand-crafted features descriptor for hu-

man action recognition using key pose. The proposed framework is 

constructed by computation of textural and spatial cues at multi-resolution 

in still images obtained from videos sequences, which is known as Ex-

tended Multi-Resolution Features (EMRFs) model. The effectiveness of the 

proposed approach is explained and validated through experiments on 

standard datasets and state-of-the-art comparison of obtained results.    

 Chapter 4:  This chapter introduced the two automatic learned deep frame-

works for human activity recognition in RGB and RGB-D(depth) videos. 

The first deeply coupled ConvNet model based on transfer learning that 

utilized RGB only frames and dynamic images for the representation of 

complex actions in videos. On the other hand, our second approach utilized 

and fused three different modalities RGB, RGB-D(depth) and 3D coordinate 

information for activity classification for better action recognition and com-

plete utilization of information available from a depth sensor video simul-

taneously. Further, the classification results of both deep learning ap-

proaches are validated on standard depth action datasets and compared 

with existing state-of-the-art methods.  

 Chapter 5: This chapter provides a summary of proposed works, significant 

finding, contributions and limitations. In this chapter, we also suggest some 

future directions, short-term and long-term perspectives for human activity 

recognition in videos.   
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Literature Review 

This chapter explained the merits and demerits of existing state-of-the-art methods. We 

have reviewed the traditional hand-crafted features as well as automatic learned features 

descriptors for the representation of human activity in video sequences. It helps us to 

discover the research gaps in existing solutions in the relevant area.  We also provide a 

comparison for publically available human activity datasets. Further, the research 

objectives are formulated based on these research gaps later on which are addressed in this 

thesis. 

2.1 Introduction 

In the last decade, many handcrafted and automatically learned feature-based ap-

proaches developed for human action recognition in the videos. Earlier human 

activity recognition approaches are based on handcrafted features mainly focused 

on simple atomic actions that seem to be somewhat less useful to practical appli-

cations  [2]  [9] [12] [23]. The main drawback of these approaches is data pre-pro-

cessing and difficult to generalize in real life despite gaining a high accuracy 

model. Later on, after the success of convolutional neural networks(CNNs) on text 

and image classification, various Spatio-Temporal approaches for video activity 

analysis were proposed that can automatically learn the features and classify from 

raw RGB video only [4] [5][21]. However, such approaches could not achieve 

higher accuracy due to data dependency for training the CNN models and the lack 

of hardware resources [26] [27] [48] [49].  Therefore, it is required that developed 
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solutions should overcome the challenges present in video datasets such as clut-

tered background, view-variation, occlusion, intra-class similarity and application 

scenarios. 

 

 

These solutions can broadly categorised into two parts: Handcrafted fea-

ture descriptor and Automatic learned features based solutions as shown in the 

Fig.2.1. Handcrafted features solutions based on spatiotemporal volume domi-

nated the research from 2001 to 2010. The main disadvantages of these descriptors 

solutions are average performance for the complex dataset and less generalization 

of the algorithm to realistic scenarios. Later on, deep learning-based solutions out-

perform handcrafted solutions due to robust feature extraction and classification 

in videos. With the advancement of high computational power and increasing size 

of the video dataset, deep learning-based solution is beneficial for real-life appli-

cations.  

Figure 2.1: A taxonomy of HAR Solutions in Video datasets 
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2.1.1 Handcrafted features based Solutions 

The very first step towards action recognition from a video sequence is introduced 

by Hogg [50]. A WALKER model based on 3D structural hierarchical modelling is 

proposed to interpret human actions. A similar, approach based on the connected 

cylindrical shape to represent the limb connection for pedestrian recognition is in-

troduced by Rohr [51]. However, building the perfect 3D model from videos is a 

cumbersome and costly task. Therefore, many approaches avoided 3D modelling 

instead developed the handcrafted features extraction techniques. The hand-

crafted feature-based solutions extracted the global and local features such as 

edge, shape, and motions from the human body. Further, these representations 

can be categorised into two categories depending on features extraction from the 

input video as follows: 

2.1.2 Global Features Extraction based Representation 

Global solutions are based on the features extraction of body shape and motion to 

represents human action.  

Bobick and Davis [30] extracted the motion feature from videos sequences in the 

form of Motion History Images (MHI) and Motion Energy Images (MEI) temporal 

template to recognized human action in static background conditions. They have 

targeted the view of specific human motion activities and motion is considered 

overtime. The binary cumulative motion image for the video image sequences, 

MEI is defined as: 

 
𝙴𝜏(𝚡, 𝚢, 𝚝 ) =⋃𝙳(𝚡, 𝚢, 𝚝 − 𝚒)

𝜏−1

𝚒=0

 (2.1) 

where, 𝙴𝜏 and  𝙳(𝚡, 𝚢, 𝚝 − 𝚒) represented the formed MEI  and binary image se-

quence denoting the region of motion at a time 𝜏 respectively. The MHI template 
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represented the temporal history of motion denoting the pixel intensity at that lo-

cation and defined as: 

 
𝙷𝜏(𝚡, 𝚢, 𝚝 ) = {

   𝜏                                                    if 𝙳(𝚡, 𝚢, 𝚝) = 1

max(0, 𝙷𝜏(𝚡, 𝚢, 𝚝 − 1 ) − 1)   ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.2) 

Both MEI and MHI template gives useful information about the moving object and 

removes the cluttered background problem in video sequences.  

Tian et al. [52] utilized the gradient of MHI template to improvised activity recog-

nition in a cluttered background. They detected the interest point with the help of 

2D Harris corner detector [53] at the high-intensity point in MHI template. Further, 

the Spatio-temporal features are represented by HOG and actions are classified 

with the GMM model. Blank et al. [54] proposed the Space-Time 3D shape model 

of MEI template using binary silhouettes which outperform over previous ap-

proaches of human action recognition, detection and clustering.  Their approach 

does not require video alignment and can be applicable for realistic scenarios. A 

similar approach is adopted in work proposed by Weinland et al. [55] using spati-

otemporal volumes to recognized view-invariant human activities in videos. They 

introduced a Motion History-Volume(MHV) to represent human action view-free 

in multi calibrated, segmented background videos. Further, to reduce the dimen-

sions, PCA and LDA algorithm is used and the Fourier transform is utilized to 

discarding the phase to recognised the primitive action classes.  

Shechtman and Irani [56] proposed a behaviour based similarity matrix template 

to measure the similarity between human actions. They extended the 2D image 

correlation to 3D space-time volume to correlate the dynamic behaviour and ac-

tions. Rodriguez et al. [57] introduced a maximum average correlation height 

(MACH) filter template-based approach to recognize the action in videos. Their 

model is capable of addressing the problem of intra-class variations at a minimum 

computational cost. Yilmaz and Shah [58] proposed action sketch to analysed the 
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Spatio-temporal variations by using differential geometrical surface properties. A 

space-time volume (STV) is created by stacking the consecutive contours along 

time axis using the graph-theoretical method. Action sketch extracted the features 

from the surface of STV to recognised the actions and invariant to viewpoint vari-

ations.  

It is noted that the global features based action representation solutions 

were most popular between the period of 2001 to 2007. However, at present local 

features and deep learning based approaches dominated the research for action 

recognition. The reason for this shifted focus is apparent that global features solu-

tions are less sensitive to challenges that exist in a video such as view variations or 

occlusions. Furthermore, the binary silhouettes based features extraction tech-

nique is not so useful to captures the fine details in the video sequences. Therefore, 

the gear is changed from global to local features extraction based action represen-

tation.    

2.1.3 Local Features Extraction based Representation  

These techniques are based on the extraction of local features from the body shape. 

These techniques outperform over global feature-based techniques due to robust 

feature extraction and invariant to changes. These features descriptors used both 

cuboids as well as trajectories for action recognition and classified as follows: 

2.1.3.1 Interest Point Detection Approaches  

In the image pre-processing techniques, corners are considered the most important 

features points because of invariant to rotation, translation, and illumination 

changes. The two most famous techniques used to detect the interest points are 

Harris corner detector [53] and Hessian detector in computer vision applications. 

Harris corner detector used the differential gradient to detect the corners and 

edges while the Hessian detector detects the corner features with second-order 
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derivatives function. In order to recognize the action based on local interest points, 

Laptev et al. [59] proposed a Space-Time Interest Points(STIPs) approach by ex-

tended the 2D Harris detector to a 3D corner detector. STIP features based repre-

sentation shown excellent results to pose estimation in the presence of occluded 

background and view variations conditions. However, their approach is sensitive 

to motion of camera, i.e. camera jitters. In other of extension of 2D Hessian detector 

to 3D, Willems et al. [60] proposed an approach to localized action using second 

derivatives of the corner detector. Dollar et al. [61] introduced the spatial filtering 

approaches to recognize and characterize the behaviour from the video sequences. 

They suggested that direct computation of 3D counterpart to commonly used 2D 

interest point are not a good idea for identifying the Spatio-temporal features.  

It is a challenging task to extract the exact and informative features in the 

presence of camera motion and background clutter in untrimmed videos. The ir-

relevant Spatio-temporal features are detected in such conditions. To addressed 

this problem, Liu et al. [2]  proposed a statistically prune Spatio-temporal features 

based methods to recognized and localization of action in untrimmed videos. They 

employed a PageRank method for informative static features mining. Finally, the 

heterogeneous features are fused and classified with AdaBoost classifier.   

2.1.3.2 Local Features Approaches  

After the recent development of visual recognition in static image numerous meth-

ods such as HoG, Bag of Features(BoFs) etc. are extended to video sequence anal-

ysis. In this context,  Kläser et al. [62] proposed an action descriptor based on the 

histogram of oriented 3D Spatio-temporal features. They have extended and gen-

eralized HoG features based descriptors to 3D Spatio-temporal volumes for action 

recognition in videos. Furthermore, they extended the concept of integral images 

[63] to integral videos on gradient basis. For a given video sequence 𝑣(𝑥, 𝑦, 𝑡) the 
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integral video 𝑣𝜕𝑥 along its partial derivatives in the 𝑥 direction can be expressed 

as:  

 𝑖𝑣𝜕𝑥(𝑥, 𝑦, 𝑡) = ∑ 𝑣(𝑥′, 𝑦′, 𝑡′)

𝑥′≤𝑥,𝑦′≤𝑦,𝑡′≤𝑡

 (2.3) 

The integral video components 𝑣𝜕𝑦, and 𝑣𝜕𝑧, along 𝑦, and 𝑧 are calculated Eq (1.3) 

accordingly.   

A novel approach to automatically annotate the movie clips for training the action 

classifier,  Laptev et al. [64] introduced the Histogram of Optical Flow (HOF) based 

spatiotemporal descriptor that is the extension of 2D Harris interest point detector 

to recognize the actions in realistic videos. Further, the bag of features based ap-

proach shown robustness to view-variations, illumination changes and clutter 

background conditions.  Dalal et al. [65] developed a human pose descriptor using 

the Histogram of Oriented (HoG) to recognized the action in moving environmen-

tal conditions. This approach is fusing the gradient features with differential opti-

cal flow motion descriptor for the representation of human activities in realistic 

movie scenarios. The combined features of descriptor showed promising results 

in various challenging conditions. Kantorov and Laptev [66] proposed a reduced 

size video MPEG compression encoding technique for features extraction instead 

of optical flow that improved the speed of recognition around two times for rep-

resentation of human actions. Further, the Fisher Vector encoding is used for ac-

tion recognition and showed the efficient speed of operation with higher accuracy.   

The BoWs feature based approaches [67] [68] are more dependent on seg-

mentation of backgrounds, silhouettes extraction and optical flow estimation. It is 

found that such techniques are computationally complex and more prone to envi-

ronmental disturbance. To overcome the existing problem in BoWs descriptors, 

Matikainen et al. [67] introduced ‘trajectons’ based on quantized trajectory tracked 

features. These ‘trajectons’ outperform the existing motion features descriptors for 
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recognition of human action in realistic scenarios. The spatiotemporal interest 

point extracted from cuboids are not so efficient as compared to trajectories of local 

features. Messing et al. [68] presented a generative mixture model based on the 

velocity history of tracked key points to recognized the human action in high-res-

olution video sequence. The proposed model extracted and tracked the features 

trajectories using Birchfield’s implementation of KL tracker [69] that calculated the 

interest points where the eigenvalues are greater than a fixed threshold and 

tracked with consistency test by frame to frame translation.  In [70] human actions 

and interaction recognized using trajectories features. However, these features are 

not so robust when camera motion and occlusions are present in videos, so sparse 

feature extraction is introduced for action detection [71]. The earlier sparse coding 

technique was useful for face recognition, image restoration, and subspace clus-

tering.  

In order to recognize the actions of different length and time scales in real-

time a method based on the string kernel is proposed by Brun et al. [72]. They 

represented an action with the help of a string called ‘aclet’ and similarity between 

these ‘aclets is described based on Gaussian kernel. 

2.1.3.3 Features Aggregation based Representation    

In action recognition system, various action videos have not the same lengths. The 

various local Spatio-temporal features vector extracted are varying according to 

video lengths. In a machine learning algorithm such as SVM supports a fixed size 

vector length for a classification task. Therefore, to solve this problem of varying 

size features vector, we need a tool to aggregate sets of these local features de-

scriptor into fixed-size vectors discriminative descriptor. In order to perform such 

task various dictionary learning [73] and Bag of Visual words(BoVs) [74] are intro-

duced in the literature.   
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Zhu et al. [73] introduced a max-pooling sparse coding framework based on fea-

tures extracted from dense Spatio-temporal features cuboids to recognize the hu-

man action in realistic unannotated videos. They adopted a HOG3D [62] de-

scriptor to extract the dense Spatio-temporal features. Each extracted features are 

encoded sparsely with a pre-trained dictionary and max-pooling applied over the 

entire sparse code for each video. Guha and Ward [75] proposed a human action 

recognition sparse model based on the learned dictionary for video classification 

and behaviour analysis. The Spatio-temporal features descriptors are encoded and 

represented using sparse coding by over-complete learned dictionaries. However, 

this common dictionary approach is limited to when new action classes presented. 

Therefore, to alleviates, this problem class-specific dictionaries are suggested to 

enhance accuracy.   

Somasundaram et al. [76] proposed a dictionary learning approach based on 

global Spatio-temporal self-similarity score saliency to recognized the human ac-

tion.  Sadanand and Corso [77] introduced a high-level features representation 

model called ‘action bank’  for activity recognition in videos. These action banks 

were acting as a high-level dictionary and consisted of many low-level features 

descriptors obtained from semantic and viewpoint spaces.  A relevant idea pre-

sented by Shao et al. [10] based on Laplacian of 3D Gaussian filter is used to rep-

resents the action space. Both of these methods based on pyramid structure to in-

crease the robustness across the Spatio-temporal domains. 

Gaidon et al. [78]  presented an Actom Sequence Model (ASM) based on the tem-

poral extension of the bag-of-features approach to recognize variable-length action 

videos. Actoms are formulated based on the sequence of atom units and the visual 

features are represented as a sequence of the histogram of Actoms. The initial suc-

cess of Hidden Markov Models (HMMs) [79] in speech processing motivates the 

researcher for action recognition in videos because videos can be considered as a 

sequence of transition frames like state transition in HMMs.  Hongeng and Nevatia 
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[80] proposed an approach using a modified semi HMMs model in conjunction 

with Bayesian networks for event detection in videos.  

The inconsistency occurs due to first-order state transition improvised in the work 

of Tang et al. [81] using the max-margin variable interval HMM model. They uti-

lized a conditional model in a trained max-margin structure that can discover the 

discriminative segments in the video simultaneously.  Sun and Nevatia [82] ad-

dressed the problem of fixed size feature vector (e.g. BoW) by developing the con-

cept of activity transition in video events. The Fisher Kernel methods are applied 

to facilitate the concept variables transitions over the interval can be encoded into 

a dense and fixed-size length feature vector.  

Charletti et al. [83] proposed a hybrid feature extractors approach to recognize hu-

man activity using depth videos. The dimensionality of obtained feature vectors is 

reduced with the help of LDA and PCA techniques. Finally, the activities are clas-

sified using GMM classier. However, they claimed superior accuracy but their 

modal is sensitive to view variations and noises.   

Ji et al. [27] introduced a soft-regression based transition maps approach for early 

detection of human activities using depth frames only. They divided human action 

into different patterns and evaluated the temporal coherence between action se-

quences. Inspire from the object recognition technique using hidden conditional 

random field (HCRF), Wang and Mori [84]  presented a discriminative part-based 

approach called as max-margin hidden conditional random field (MMHCRF) us-

ing motion features for human action recognition in video sequences. Their model 

combined both large-scale global and local patch features to identify the different 

actions. Furthermore, a max-margin framework is used for learning the parame-

ters of a hidden conditional random field model. 

Liu et al. [85] proposed a hierarchical multi-task learning (HC-MTL) approach for 

joint human action grouping and recognition. They designed and jointly opti-

mized the objective function into the group-wise least square loss regularized by 
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low rank and sparsely with respect to model parameters and grouping infor-

mation.  The non-convex optimization problem is solved by dividing the task into 

multi-task learning and task relatedness discovery. Xu et al. [86] proposed a two-

layer hierarchical spatiotemporal model (HSTM) for recognition of complex hu-

man activities in videos. The HSTM model contains two hidden conditional ran-

dom field layers in which the bottom layer used for spatial cues and top layer used 

for temporal information to characterize the video sequences.  

Shan et al. [87] proposed a slicing representation based approach to recognize hu-

man action in videos. A minimum entropy method is used to select the optimal 

slicing angle for each video sequence, and then the slice sequences are converted 

into one-dimensional signals to represent the distribution of pixels along the time 

axis. Yu et al. [88] proposed a Gaze Encoding Attention Network (GEAN) based 

on the spatiotemporal sentence generation for video captioning in human activity 

dataset.  

The et al. [89] presented a Spatio-temporal features approach based on Pachinko 

Allocation Model that describes the relation features for recognition of interactive 

activity. The intra and inter-person joint features of distance are calculated using 

the pose estimation outcome. The joint distance and angle features are represented 

by two codewords separately in the Poselet layer. The proposed model able to dis-

criminate complex activities utilizing the correlation between generated body fea-

tures and codebooks.   

Unlike the Gait recognition in which human is identified only by walking activity, 

Yan [90] introduced discriminative sparse projections and ensemble learning-

based approach for activity-based person recognition. The human body is pro-

jected into low dimensional subspace and collected into a number of clusters sim-

ultaneously. Yuan et al. [91]  focused on action classification and annotations using 

temporal action localization in untrimmed videos. The Pyramid distribution fea-
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ture (PSDF) model is proposed to extract motion cues in videos at multiple reso-

lutions.  Wang et al. [92] proposed a framework based on IDT features extraction 

and FV encoding for action spotting and localization in interaction videos. 

Vishwakarma et al. [93] proposed a unified framework for based on the spatial 

distribution of edges gradient (SDEG) and R- transform to recognized human ac-

tivity.  Agahian et al. [94] proposed 3D skeleton joints based bag-of-poses a spati-

otemporal model for action recognition. The K-means algorithm is used to train 

the pose descriptor and SVM to classify action pose.  

Over the year, several handcrafted approaches introduced for action repre-

sentation such as MEI, MHI, optical flow, MBH, HOG, HOF, Sparse representa-

tion, and dense trajectories. The most effective existing work for action recognized 

given by [8] [95] IDT with fisher vectors (FV). However, high computations com-

plexity of IDT methods limits its implementation for real-time applications.   

2.1.4 Still Image Based Action Recognition  

We have reviewed previous works for human action recognition in still images 

and there are numerous spatial-temporal information-based techniques have been 

proposed for action recognition, but very few works are reported based on still 

images [96] [97] [98]. 

Thurau and Hlavac [99] introduced a human pose model feature descriptor 

for action recognition based histogram of the gradient (HOG) on a selected region 

of interest (ROI) and represented a feature vector using non-negative matrix 

factorisation. Raja et al. [100] proposed a subspaces graphical information ap-

proach using connecting images for human action recognition in still frames. Liu 

et al. [2] proposed an approach to recognized actions from the unconstrained real-

istic video. They utilized both motion and static feature and AdaBoost for final 

classification. In [101] they used non-negative matrix factorisation for high-level 

cues to recognise an action in still single images from a video frame of Weizmann 
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dataset, and Google downloaded images dataset. Zhang et al. [98] proposed a sys-

tematic approached to detect the shape of human interaction regions and a prod-

uct quantisation approached was used for action labelling to obtained feature from 

the HOI parts. Zhao et al. [102] proposed the Riemannian projection model in 

which each video is considered as an image set and Grassmannian point is 

extracted for every six frames and projected through into a subspace using SVD. 

2.1.5 Hand Crafted Feature Descriptors based on Skeleton Sequences  

Seggesi et al. [103] proposed an automatic configurable trained feature extractor 

for the representation of skeleton pose from training samples data. However, their 

modal showed promising results on static poses, but the response is found slow 

for real-time action recognition. To recognize the online action in a complex back-

ground using depth cameras,  Ji et al. [26] proposed a hybrid approach by embed-

ding skeleton coordinates into depth frames and extracts features using a 

spatiotemporal pyramid on a partitioned set of action sequences. However, these 

methods are showing satisfactory performance but less competent to tackle the 

environmental changes such as camera jitters, occlusion and illumination varia-

tions [65] [104] [57] [105].   

Ghodsi et al. [106] proposed a spatio-temporal action template based on tempo-

rally averaging the action samples to recognize human activity using 3-D skeleton 

data. The actions classes are represented as multi-dimensional signals and able to 

deal with the variations in present in the activities such as speed. Yang et al. [107] 

introduced a latent max-margin multitasking learning approach for action recog-

nition from skeleton data. Their skelets model learned and correlate mid-level 

granularity of joints to represents action classes. Shabaninia et al. [108] proposed 

a weighted histogram 3D joints skeleton method to addressed the human activity 

recognition. Further, a weighted motion energy function is utilized to define the 

temporal variation and of actions.   
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The hybrid multimodal features approaches are introduced to compensate for the 

shortcomings of a single modality. A Gaussian descriptor is used to represent ac-

tion and poses based on high order statistics of local features in two levels is pro-

posed by Nguyen et al. [25]. They utilized K-means and sparse coding technique 

to compensate for the information loss generated by heterogeneous feature vectors 

obtained from two different input streams: depth and skeleton poses. Kong et al. 

[109]  introduced a multi-modal fusion-based shared features learning approach 

to representing the local dynamics of each joint action class. The classification of 

action is performed using a max-margin framework. Raman and Maybank [110] 

presented a two-level hierarchical model based on Hidden Markov Model for ac-

tivity recognition using depth sequences and skeleton coordinates. They provided 

a flexible representation to discriminates the action classes with similar activity 

labels.  Automatic Learned Feature-based Solutions 

Deep learning approaches have been famous in industrial and commercial appli-

cations for a decade. Initially, these solutions are not performed well due to small 

datasets and hardware resources.  With the advent of the latest computer technol-

ogies, it is possible to train these models over millions of videos samples. Pres-

ently, human action recognition with deep features extraction become trends in 

computer vision community due to the availability of larger videos datasets. Deep 

learning solutions let behind the handcrafted feature solutions as a comparison in 

robustness and classification accuracy. 

The majority of deep learning architectures are based on CNN, and it only differs 

on how the input is applied.  Few approaches using raw video frames as input 

while others using spatiotemporal features for training the network. The multitask 

deep learning and transfer learning approaches [32] [23] [111] were introduced, 

which combines the two datasets for action classification to availability medium 

datasets like UCF101, or HMDB51. The multiple task learning uses two-softmax 
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classification layer while in the transfer learning final fully connected layer is fine-

tuned for a specific dataset. 

In this sub-section, our objective is to discuss the deep learning architectures based 

approaches that have been introduced and used for learning action recognition, 

detection and localization in the videos in the past years. We have divided these 

deep models into four categories based on applied action classes as follows:  

 Spatio Temporal Features based Architectures 

 Multiple Stream Network-based Architectures 

 Deep Generative Network-based Architectures 

 Temporal Coherency network-based Architectures 

In the following sub-sections, we have reviewed the above-mentioned ar-

chitectures starting from earlier works to the state-of-the-art in details. Further-

more, we have discussed the merits and demerits of existing works.  

2.1.6 Spatio-Temporal Features based Architectures  

The first step towards the automatic features learning from raw RGB frames intro-

duced by Ji et al. [5]. This approach is based on 3D ConvNets for human action 

recognition in videos. The 3D convolutional network extracts the spatial features 

along with the time axis; hence Spatio-temporal information is captured from the 

video for action representation. However, due to the rigid architecture of 3D CNN 

accepting the fixed input video frames (i.e. 7 frames), such model is not so efficient 

for action representation because different videos have a different time span.  

To overcome the problem of a fixed number of input frames, Ng et al. [112] 

introduced ConvNets architectures based video level descriptor for recognition of 

action. The proposed architecture observed the effect of optical flow images with 

LSTM model and showed the robustness in terms of classification of action in 
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realistic videos.  Karpathy et al. [32] introduced the concept of slow fusion in con-

volutional network layers to learn Spatio-temporal features. They proposed an ar-

chitecture that processed the two streams, first is low resolution features context 

stream and second is high-level resolution fovea stream to reduce the time for 

training the CNN at promising speed. They showed that multi-resolution network 

improved the accuracy with the help of parameter sharing among layers.  

Tran et al. [24] presented a 3D convolutional neural network (C3D) model based 

on the extraction of Spatio-temporal features for efficient video descriptors. They 

empirically showed that 3D ConvNet represented the temporal information in a 

better way as owing to 2D ConvNet features. Furthermore, the proposed C3D 

model is compact, simple and efficient for different video analysis. Donahue et al.  

[113]  proposed a deep hybrid model that combines both CNN visual features and 

long range temporal recursion for human action recognition and video descrip-

tion. The Long Recurrent convolutional network (LRCN) extracts the visual fea-

tures from varying length input videos using ConvNet and these extracted fea-

tures are fed to long-short memory unit (LSTM) for extraction of sequential fea-

tures. Both the CNN and LSTM architectures shared the parameters along time 

and resulting in a robust representation for action recognition.   

Han et al. [114] proposed the dis-ordered multi-layer deep convolutional network, 

and they developed high-level features through transfer learning for action recog-

nition in videos. Safaei and Foroosh [115]  introduced a CNN model based on a 

prediction of the future motion of action in still images. They recognized shape 

and location feature in images with the help of the saliency map. Liu et al. [116] 

presented a view-invariant spatiotemporal deep network-based using skeleton 

joints for human activity recognition.  Khaire et al. [28] proposed a three streams 

deep model to recognized human activity. They have constructed MHI from RGB, 

depth motion map sequences, and average skeleton images to trained the CNNs 
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model and extracted features are fused at decision level for final action classifica-

tion.  

It can be observed that shape and motion information are correlated in-depth se-

quences but are challenging to record both these simultaneously. Moreover, the 

3D skeleton joint coordinates are not capable of discriminating some activities due 

to noise and occlusion errors such as self-occlusion with body parts etc. There are 

some action examples such as ‘eating’ and ‘drinking’ having the same motion pat-

tern which cannot distinguish clearly using by 3D skeleton joints coordinates. 

2.1.7 Multiple Stream Network-based Architectures 

Simoyan and Zisserman [23] introduced two streams (spatial and temporal) net-

work parallelly for action recognition. The spatial network receives raw input 

video frames while the temporal network accepts optical flow motion as input 

data. The spatial stream network fine-tuned to pre-trained network Imagenet 

while temporal stream trained using early fusion in the network on input optical 

flow fields. The temporal stream has multiple classification layers due to the limi-

tation of a medium dataset, and each layer is trained separately, which leads to 

multiple task learning.  

Feichtenhofer et al. [117] proposed a spatiotemporal multi-stream based ConvNet 

architecture for video action. They used multiplicative gating functions to utilise 

spatial and temporal information in the single forward pass. Baccouche et al. [4] 

introduced a hybrid model for action recognition that extracts spatial features us-

ing CNN and LSTM for motion cues.  

Currently, a combination of both depth and local features are popular for 

activity recognition  [8] [32] [95]. Feng et al. [49] proposed a geometrical relational 

features approach based on multilayer LSTM network for recognition of human 

activities using skeleton joints information.  
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Keçeli et al. [118] presented an approach to recognize the dyadic activity from 

depth sequence that is the combination of 3D and 2D CNN architectures. They 

extract the temporal features through 3D CNN trained 3D depth volume while 2D 

CNN is fine-tuned on weighted sum depth sequences. The obtained features are 

ranked using Reliff algorithm [118] and classify using an SVM classifier. Ijjina and 

Chalavadi [119] proposed a multimodal action recognition model based on feature 

extraction from RGB and depth videos using CNN architecture.  

An ELM classifier is used to recognize the human activities from these fused fea-

tures architecture. Jing et al. [120] presented a Spatio-temporal based hybrid neu-

ral network which characterizes human activity in RGB-D video based on a two-

stream neural network. Further, they claimed to improvement in the classification 

accuracy by utilizing joint loss function to exploits the spatial and temporal fea-

tures of videos.  

Srihari et al. [121] introduced a four-stream CNN network consisted of two RGB-

D video data and two temporal motion optical flow streams for recognition of hu-

man action. Elboushaki et al. [122] proposed a multi-dimensional CNN that 

learned high-level features for gesture recognition in RGB-D videos in conjunction 

with LSTM network. They investigated various fusion scheme at different layers 

of a deep network for the classification task.  

2.1.8 Deep Generative Network-based Architectures 

Deep learning generative model trains the temporal data in an unsupervised man-

ner. It is a good option for video analysis because labelling the data is a difficult 

task and time-consuming. A deep generative model predicts future sequences ac-

curately for motion dynamics.  
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Yan et al. [111] proposed a deep dynencoder to model the video dynamics that 

means study the characteristics between all pairs of adjacent frames in image se-

quences. A basic autoencoder and its variant are used to form the dynencoder fol-

lowed by stacked strategy to deepen the architecture. The model is trained layer-

wise pre-training and joint fine-tuning for understanding video dynamics.  

Later on, to solve the constraint of smaller training samples,  Srivastava et al. [123] 

introduced the multilayer LSTM network-based autoencoder model to predicted 

the future video sequences and reconstructed the input sequence. Goodfellow et 

al. [124]  presented a discriminative adversarial network to overcome the difficul-

ties present in the deep generative network. During training, this model learns 

with judgement whether the given input sequence is authenticated or not.  

Mathieu et al. [125] proposed a multi-scale adversarial network for predicting the 

future sequence directly in pixel space. The proposed model addressed the prob-

lem sharpness in predicted future sequences by introducing an image gradients 

difference loss function to the realm the sharpness of the frames. They also dis-

cussed on merits and demerits of pooling technique in generative networks.  

2.1.9 Temporal Coherency Network-based Architectures 

It is observed that temporal annotation in each video sequence is a complex and 

time-consuming task. In the meantime, social sites such as YouTube produced nu-

merous daily hour of untrimmed videos and annotated each video are impractical.  

To solve the problem of annotation of untrimmed videos for action recognition 

and detection, Wang et al. [126] introduced an UntrimmedNet architecture for ac-

tion recognition and detection in untrimmed video sequences. The proposed 

model implemented using end-to-end training and avoided the temporal annota-

tions of action sequences. Cherian et al. [127] proposed a generalised low-rank 

pooling approach for action representation and video summarization that extracts 
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the features from intermediate CNN layers trained on subsequences.  The conju-

gate gradient of the Grassmann manifold is for optimization of the proposed 

model.  

Wang et al. [92] proposed view-invariant three-channel ConvNets architecture us-

ing weighted hierarchical depth maps for human action and interaction recogni-

tion. They projected spatiotemporal motion into the 2-D spatial structure.  Mishra 

et al. [128] introduced the deep feature model based on temporal coherency to 

recognized action and posed. However, the temporal coherency based model is 

not a perfect choice for dynamic background videos. Lea et al. [129] introduced a 

time series model called temporal convolutional network (TCNs) that utilised hi-

erarchical temporal convolution for recognition fine-grained human detection in 

videos. The proposed model decomposed into encoder and decoder temporal net-

work used for pooling and up sampling respectively, for estimation the long-range 

temporal shapes efficiently. 

Fernando et al. [130] presented a rank pooling function based method to extract 

video-wise temporal information for action recognition and video representation. 

For this objective, they assumed a video as a vector function that learned to order 

frames based appearance trajectories. The proposed approach is unsupervised 

based on temporal pooling that aggregates the information through the learning 

to rank procedure. Later on,  Fernando and Gould [131] proposed end-to-end 

learning-based approach with backpropagation and temporal pooling mechanism 

for classification of video sequences. The proposed method coupled the CNN with 

temporal pooling layer that works on inner-optimization to encode the temporal 

semantics over long video clips into a fixed-length vector representation.  

2.2 State-of-the-art Accuracy on RGB and RGB-D Datasets 

Table 2.1 and 2.2 listed standard publically available RGB and RGB-D datasets. 

Furthermore, the highest recognition accuracies on these datasets obtained 
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through various state-of-the-art techniques and evaluation protocol are mentioned 

in tables. It is noted that the different feature descriptors are developed on these 

datasets in the past two decades, and no unique solution exists that can apply to 

both categories of RGB and RGB-D datasets. Earlier, action datasets recorded in a 

controlled environment with fewer numbers of samples and action classes. That is 

why they are more suitable for handcrafted features solutions such as in KTH, 

Weizmann, IXMAS, MSR Action 3D, CAD-60, Berkeley MHAD, and 50 salad da-

tasets. Latest benchmarks recorded with multiple modalities in real scenarios such 

as UCF101, HMDB51, Hollywood, or YouTube 1M or 8M datasets.  

Table 2.1: State-of-the-art Accuracy on RGB Dataset 

Dataset Classification Technique 
Max Avg. Accuracy 

(%) 
Evaluation 

Protocol 
Year 

Weizmann EMRFs 100  [11] 
LOOCV 

 
2019 

KTH EMRFs 95.83 [11] 
cross-valida-

tion 
2019 

IXMAS HC-MTL+ L/S Reg 94.7 [85] Cross-View 2017 

CASIA Ac-
tion 

Hierarchical Spatio-Tem-
poral model (HSTM) 

95.24 [86] - 2017 

UIUC Sport 
Adaptive Slicing feature, 

MFCC, SVM 
98.9 [87] LOSO 2015 

Olympic 
Games 

Motion Part Regularisation 92.3 [132] LOOCV 2015 

Hollywood 
Joint max margin semantic 

features 
48.58 [133] - 2016 

Hollywood2 (GEAN), RGP 92.40  [88] - 2017 

UT- Interac-
tion 

Hierarchical  Spatio-Tem-
poral Model 

94.17 [86] LOOCV 2017 

UCF-
YouTube 

Bag of Expression(BoE) 96.68 [134] - 2018 

BEHAVE (GIZ), (ARF + GCT + AF) 93.74 [135] 
3-folds-cross-

validation 
2014 



  

40 
 

HMDB51 
Spatiotemporal Multiplier 

Networks 
72.20 [36] - 2017 

UCF50 ST-VLMPF(DF) 95.10 [136] 
LOSO (Cross-

View) 
2017 

BIT-Interac-
tion 

4-level , Pachinko Alloca-
tion Model 

93 [89] 
10-fold cross-

validation 
2016 

MPII Cook-
ing 

GRP + IDT-FV 75.5 [92] - 2015 

UCF101 
Spatiotemporal Multiplier 

Networks 
94.9 [36] - 2017 

YouTube 
Sports 1M 

HC-MTL+ L/S Reg 89.7 [85] 
LOGO (Cross-

View 
2017 

ActivityNet UntrimmedNet (hard) 91.3  [126] - 2017 

THU-
MOS’15 

Pyramid of Score Distribu-
tion Feature (PSDF) 

40.9(0.1) [91] - 2016 

ChaLearn: 
Action/In-
teraction 

Fisher vector + Idt features 53.85 [92] LOOCV 2015 

FCVID Rdnn 76.0 [137] - 2017 

MOBISERV-
AIIA 

DSP+ OEML 68.0 [90] - 2016 

MERL 
Shopping 

MSB-RNN 80.31 [138] - 2016 

YouTube 
8M 

NetVLAD + CG after pool-
ing and MoE 

83.0 [139] - 2017 

Okutama 
Action 

SSD( RGB) 18.80 [140] 
Cross valida-

tion 
2017 

20BN Some-
thing-Some-

thing (v1) 
2D+3D-CNN (top-1) 63.80 [141] - 2018 

20BN Some-
thing Some-

thing(v2) 
TPN(top-5) 91.28 [142] - 2020 
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Table 2.2: State-of-the-art Accuracy on RGB-D(Depth) Dataset 

Dataset Classification Technique 
Max Avg. 

Accuracy (%) 
Evolution protocol Year 

i3DPost 
Multi-view 

SDEG, + R transform 92.92 [93] LOOCV 2016 

MSR Ac-
tion 3D 

ConvNets 100  cross-subject 2015 

RGB-D 
HuDaAct 

BoW with χ2 kernel SVM 82.9 [143] 
cross subject valida-

tion 
2014 

CAD-60 HOG+BOW fusion 98.30 [144] LOSO- CV 2020 

50- Salads ED-TCN 73.40 [129] - 2017 

Berkeley 
MHAD 

Hierarchy of LDSs,   
HBRNN-L 

100 [145] - 2013 

CAD-120 
QQSTR with feature selec-

tion 
95.2 [146] 

4-fold cross valida-
tion 

2015 

Hollywood 
3D 

Bag of features (BoFs) 36.09 [147] cross-validation 2014 

MSR 
Action 
Pairs 

Two stream coupled Con-
vNet 

98.30 [148] cross validation 2020 

UWA3D 
Multi-view 

MSO-SVM 91.79 [149] cross-view 2015 

Northwest-
ern –UCLA 

CNN+ Synthesized  92.3  [116] cross-view 2017 

LIRIS 
Pose+ Appearance+ con-

text 
74  [150] - 2014 

IM-Daily 
Depth 

ICP + KNN 81.17  [151] cross- subject 2014 

UTD-
MHAD 

Bag- of- Poses, ELM 95.0 [94] LOSO- CV 2018 

M2I FV/BoVs 92.33 [35] cross –view 2017 

SYSU- 3D 
HOI 

SRNet 86.0  [152] cross subject 2019 

NTU 
RGB+D 

SRNet 94.90 [152] cross-view 2019 
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2.3 Gaps Identified in the Present Study  

Based on the literature survey, we have identified the following gaps: 

 It is noted that global features based descriptors are too rigid to captures 

the possible variations (scale change, view variations, occlusion etc.) in the 

video frames. Furthermore, silhouettes feature extraction based solutions 

are not capable enough to find the fine details within the silhouettes.  

 It can be visualized that abrupt scene change is a common phenomenon in 

videos. Some videos show little variation from frame to frame while other 

too fast. Therefore, it is not a good idea to extract key poses frames using 

normal distance function or some fixed threshold because of the risk of high 

information lost.  

 Although the existing solutions are effective for action recognition from a 

similar viewpoint, the overall accuracy is degraded due to multi-view or 

view variations.  

 It is observed that Convolutional Neural Networks(CNNs) based deep ar-

chitectures shown the outstanding results, for understanding the image 

content and video-based analysis. From a computational viewpoint, these 

models need additional time and larger dataset samples to train the model 

effectively and optimize the millions of parameters for video representa-

tions.  

 It is observed that optical flow-based solutions are less effective in challeng-

ing conditions such as view-variations and occlusions present in videos.  

 It is observed that the traditional feedforward network and convolutional 

neural network are inefficient to deal with sequential data such as video 

DAHLIA Multi cam HOG 82.14 [153] cross-subject 2017 

PRAXIS 
Gesture 

CNN + LSTM 84.74 [154] - 2018 

PKU-MMD SRNet 97.10  [152] cross-view 2019 
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analysis. The RNN deep network has capability to deal with sequential 

data. However, RNNs are inefficient for longer duration sequential input 

because of the vanishing gradient in the backpropagation process.  

2.4 0.Research Objectives  

A robust human action recognition system must be generic, compact, efficient, and 

straightforward. To overcome the limitations in at least one of aspects such as sim-

ilarity of actions, cluttered background, viewpoints variations, illuminations vari-

ations, and occlusions, the main objectives of this thesis work are as follows:  

 To review state-of-the-art handcrafted and deep learning approaches, 

standard single and multimodal human activity datasets, existing solutions 

and their limitations. 

 To develop an effective approach for representation of various human ac-

tivities. 

 To develop an algorithm which can handle issues of low illumination, 

noise, cluttered background and environmental conditions. 

 To develop an algorithm which can enhance the video quality so that rep-

resentation is more efficient than available resources. 

 To develop a robust algorithm to classify the represented activity. 

 To validate the developed algorithm and experiment can be conducted on 

standard datasets. 

 To know the effectiveness of the novel algorithm a comparative study and 

implementation is to be conducted. 

 To develop useful feature representation and classification using a deep 

learning based model simultaneously. 
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Human Activity Recognition Using Hand-

crafted Features 

This chapter presents a novel hand-crafted features descriptor for human action recognition 

in video sequences. This method addressed the major challenges such as abrupt scene 

change phenomena, clutter background and viewpoints variations by presented a novel 

visual cognizance based multi-resolution descriptor for action recognition using key pose 

frames.  The proposed framework is constructed by computation of textural and spatial 

cues at multi-resolution in still images obtained from videos sequences, which is known as 

Extended Multi-Resolution Features (EMRFs) model. The effectiveness of the proposed 

approach is explained and validated through experiments on standard datasets and state-

of-the-art comparison of obtained results.    

3.1 Introduction  

The objectives of this chapter are to develop a novel handcrafted feature-based 

descriptor for human action recognition in video sequences. Recently, action 

recognition in still frames become an imperative choice for a researcher in com-

puter vision. The still image-based recognition tries to find out a person’s behav-

iour or action using only a single image.  Although, most of the present literature 

regarding behaviour analysis uses videos analysis in which temporal and spatial 

cues are used. It can be considered more challenging to recognised action in still 

image than video analysis because it does not involve the temporal variations, il-

lumination variation and alignment of the images.  
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3.2 A Visual Cognizance Based Multi-Resolution Descriptor for Human Action 

Recognition using Key Pose 

In this framework, a robust architecture is constructed by computation of textural 

and spatial cues at multi-resolution in still images obtained from videos sequences. 

A fuzzy inference model is used to select the single key pose image from action 

video sequences using maximum histogram distance between stacks of frames. To 

represent these key pose images, the textural traits at various orientations and 

scales are extracted using Gabor wavelet while shape traits are computed through 

a multilevel approach called Spatial Edge Distribution of Gradients (SEDGs).  

 Hence, a hybrid model of action descriptor is developed using shape and 

textural evidence, which is known as Extended Multi-Resolution Features 

(EMRFs) model. The action classification is carried through two most famous and 

efficient distinctive classifiers known as SVM and k-NN and compared individual 

recognition accuracies. The developed model showed the outstanding results on 

standard human action datasets with SVM classifier. The performance of the pro-

posed framework shows supremacy as compared with earlier state-of-the-art ap-

proaches. The underlying architecture of the proposed work is depicted in Fig. 3.1.  

3.2.1 Selection of Single Key Pose using Fuzzy Logic 

We extract the stacks of key poses frames from input action video sequences using 

histogram distance between adjacent frames. Further, we select the single key still 

image from these stacks of frames based on Fuzzy logic inference model. The de-

tails descriptions of each block are explained in the following sub-sections.   

3.2.1.1 Key Poses extraction from Action Video Sequence 

Human activity can be effectively recognized with the help of key poses extracted 

from the video sequence and provides an explicit representation of human body 
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posture. These key poses are chosen as a single prime keyframe by using 

histogram distance which shows a spatial representation of 2D posture of human 

body motion. The key pose frames are selected as stacks of ten frames at a regular 

interval from the input video sequences. To make these stacks of frames device 

invariant, they are transformed into a CIELab colour space [155]. The histogram 

distances are calculated for three different parameters, Luminance(L), and hue an-

gle axis(a) at 0º and hue angle(b) at 90º of CIELab color space. The histogram dis-

tance (Ɗ) between the frames can be calculated and given by using Eq. 3.1.  

 

Ɗ = ‖∑∑𝑆𝑖𝑗
𝑡 − 𝑆𝑖𝑗

𝑡+1

𝑁

𝑗=1

𝑀

𝑖=1

‖ (3.1) 

where, 𝑆 is the stacks of frames of size 𝑀 ×𝑁 and 𝑡 represents the number of 

frames. The histogram distance is useful for measure instance changes in the 

frames of input video sequences. The computed distances for adjacent frames are 

utilized for the selection of key poses in the following sub-section.    

Key pose selection 

using Fuzzy Logic 

Bounding Box & 

Normalization 

  
  
  
  
  

Input Video Se-

quence 

Pose Feature Extraction 
Spatial Edge Distribution 

of Gradients (SEDGs) 
  
  

Gabor Wavelet 

  

  

  

  

Activity Classifica-

tion 

Figure 3.1: Shown Visual Cognizance Based Multi-Resolution Descriptor for Human Action 
Recognition using Key Pose 
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3.2.1.2 Fuzzy Inference model   

It can be visualized that abrupt scene change is a common phenomenon in videos. 

Some videos sequence shows little variation from frame to frame while other too 

fast.  It is not a good idea to extract key poses frames using normal distance func-

tion or some fixed threshold because of the risk of high information lost. Therefore, 

a fuzzy logic rule-based model is utilized to extract key pose images from video 

sequences. Further, the histogram distances are calculated for adjacent frames for 

selecting optimised keyframes.  

The fuzzy logic models proposed by L. Zadeh [156] is based on the degree 

of membership. This theory is the extension of Crips Boolean logic which takes a 

hard decision whether a particular class belongs to a group or not such that: 

 
𝜇𝐴(𝑥) = {

1          𝑖𝑓𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥𝜖𝐴
 0      𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 ∉ 𝐴

 
(3.2) 

On the other hand, Fuzzy logic is simple and deals with rule-based IF X AND Y 

THEN Z approach to assign the degree of membership to a particular class rather 

than to model a system mathematically. Fuzzy logic assigns a flexible membership 

between 0 and 1 to a variable class for a particular group. Fig.3.2 depicts the Fuzzy 

trapezoidal membership function which is used for selecting the keyframes from 

video sequences.  
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Figure 3.2:  Fuzzy trapezoidal membership function for selecting the key poses frames  
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In this approach, the keyframes are selected using the fuzzy model, as shown in 

Fig. 3.2.  These key pose frames are internally compared and ranked according to 

histogram distance. It is found that the higher value of histogram distance frames 

shows maximum variations as compared to other frames. If the extracted key 

frames are denoted as 𝚏1𝚏2𝚏3𝚏4… . . 𝚏𝑛, then the histogram distance for adjacent 

frames is calculated as:  

 𝑘𝑒𝑦 𝑝𝑜𝑠𝑒 𝑓𝑟𝑎𝑚𝑒 = argmax (Ɗ𝑖) ,    𝑖 𝜖 𝑛 (3.3) 

The highest distance keyframes that is having higher pixel difference as 

compared with other and selected as a single key still frame as illustrated in Fig. 

3.3. The proposed algorithm for single key pose extraction is listed in Algorithm 1.   

 

Algorithm 1: Fuzzy Inference Model for Selection of  Single Key Pose 

Step 1: The image frames are selected at the interval of 10 frames from the input 

video sequence.  

Step 2:  Selected frames are converted into new colour space ‘CIELab’.  

Step 3:  Histogram distances are computed for ′𝑳′(𝒍𝒊𝒈𝒉𝒕𝒏𝒆𝒔𝒔), 

′𝒃′( 𝒉𝒖𝒆 𝒂𝒏𝒈𝒍𝒆 𝒂𝒙𝒊𝒔 𝒂𝒕 𝟗𝟎°) and  ′𝒂′(𝒉𝒖𝒆 𝒂𝒏𝒈𝒍𝒆 𝒂𝒙𝒊𝒔 𝒂𝒕𝟎°), parameters using 

Eq.(3.1) 

Step 4: The means 𝖚𝖉 are computed for all adjacent frames differences as:                                              

𝖚𝖉 = [
𝑪𝒐𝒖𝒏𝒕 𝑳 + 𝑪𝒐𝒖𝒏𝒕 𝒃 + 𝑪𝒐𝒖𝒏𝒕 𝒂

𝟑
] 

Step 5: Find the values of endpoints components of the membership function 

shown as in Fig.3.2  𝑨 = (𝖚𝖉 − 𝖚𝖉 ∗ 𝟎. 𝟒), 𝑩 = (𝖚𝖉 − 𝖚𝖉 ∗ 𝟎. 𝟑), 𝑪 = (𝖚𝖉 − 𝖚𝖉 ∗

𝟎. 𝟐), 𝑫 = (𝖚𝖉 + 𝖚𝖉 ∗ 𝟎. 𝟒), 𝑬 = (𝖚𝖉 + 𝖚𝖉 ∗ 𝟎. 𝟓), 𝑭 = (𝖚𝖉 + 𝖚𝖉 ∗ 𝟎. 𝟖). 

Step 6: Create the trapezoidal fuzzy membership function for computed mean 

𝖚𝖉 as depicted in Fig. 3.2, where linguistic parameters are defined as: small, me-

dium, and large.  
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 Rule 1: IF the distance between a segment frame and its neighboring seg-

ment frame is “medium” THEN it is a key frame. 

 Rule 2: IF the distance between a segment frame and its neighbouring 

segment frame is “large” THEN it is a key frame. 

 Rule 3: IF the distance between a segment frame and its neighboring seg-

ment frame is “small” THEN it is NOT a key frame.  

Step 7:  Set the fuzzy rules based on neighbouring small or large distances 

frames to extract key pose frames.  

Step 8: Compared to the selected frames with internal frames and ranked ac-

cording to a histogram distances difference between them is a single still key 

pose and denoted as 𝒇𝒔(𝒙, 𝒚) of size 𝑴×𝑵 as depicted in Fig. 3.3. 

3.3 Extended Multi-Resolution Features (EMRFs) 

We can observe that human actions are visualized and defined by the movement 

of different body postures. The movement of these body postures reflects the vis-

ual cues in the video scene and help to distinguished the actions. The proposed 

model is based on human visual perceptions that extract the shape and orienta-

tions features are from still pose images to recognize the action class. The shape 

features are using Spatial Edge Distribution of Gradients (SEDGs) and orientation 

features at different scales are represented by Gabor wavelet transform for action 

classification. The detail explanation of each features representation is discussed 

in the following subsections: 

3.3.1 SEDGs Feature Map 

The body posture performed by human contains information about body motion. 

The 2-D representation of these images gives spatial information about human 

motion. Such spatial distribution of postures provides the attitude of action 
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behaviour of persons.  The still image approaches are less complex and time effi-

cient. Edges detection are the most important task for efficient shape feature ex-

traction from an image. In our approach, we have efficiently utilized the Canny 

edge detector [157] to obtain the edges and a threshold mechanism based on pixel 

variation are employed to remove unnecessary edges present in an image. To ex-

tract shape feature, the region of interest (ROI) is chosen which further divide into 

sub-regions at different sub-levels. The proposed algorithm of SEDGs is shown in 

Algorithm 2. 

 

Walking 

Running 

Input Video  

Sequence 

Hand-clap-

ping 

Boxing 

Hand-wav-

ing 

Jogging 

Key poses Plot of histogram dis-

tance 
Single still image 

Figure 3.3:  Illustration of workflow for selecting a single image from input video of KTH dataset 
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Algorithm 2: SEDGs Feature Map 

Step1: Select ‘t’ set of frames from input video sequences  Ϝ(𝘅, 𝘆, 𝖙).  

Step 2: Select a single key pose frame from as described in section 3.2.  

Step 3: Choose ROI and normalized it to the fixed spatial dimension 50×50, and denoted as: 

                                           𝓡(𝘅, 𝘆, 𝝓),    𝐟𝐨𝐫 𝐚𝐥𝐥 𝟎 ≤ 𝘅, 𝘆 ≤ 𝟓𝟎. 

Step 4: Apply the canny edge detector to detect edges of selected ROI and given as: 

                                                      𝛜(𝘅, 𝘆, 𝝓) = 𝐜𝐚𝐧𝐧𝐲〈 𝓡(𝘅, 𝘆,𝝓)〉 

Step 5: Find the spatial edge distribution vector at any point (𝘅, 𝘆) of the entire image 𝛜(𝘅, 𝘆, 𝝓)  
different sub levels as: 

i. At level-0, the Magnitude𝑴(𝘅, 𝘆) = √𝕹𝘅(𝘅, 𝘆)
𝟐  +  𝕹𝘆(𝘅, 𝘆)

𝟐and Orientation𝝓(𝘅, 𝘆) =

𝐚𝐫𝐜𝐭𝐚𝐧
𝕹𝘅(𝘅,𝘆)

𝕹𝘆(𝘅,𝘆)
. Where 𝕹𝘅(𝘅, 𝘆),  𝕹𝘅(𝘅, 𝘆) are 𝘅  and  𝘆 direction gradients of image respec-

tively. Each sub region is quantized into the 8 orientation bins evenly distributed 
between 𝟎° to 𝟑𝟔𝟎°. The resulted feature vector for selected ROI is of 𝟖 × 𝟏 dimension.  

ii. At level-1, the total region of an image 𝛜(𝘅, 𝘆, 𝝓) is sub-divided into 4 sub-image regions, 
and represented as:  𝛜(𝘅, 𝘆, 𝝓)= {𝓢𝟏(𝘅, 𝘆,𝝓), 𝓢𝟐(𝘅, 𝘆, 𝝓), 𝓢𝟑(𝘅, 𝘆,𝝓), 𝓢𝟒(𝘅, 𝘆, 𝝓)}. The fea-
ture vector of dimension 𝟖 × [𝟏 + 𝟒]  is formed using (step 5-i). 

iii. At level-2, Each of these sub-blocks (Step 5-ii) are further divided into four sub-blocks. 
A feature vector is of dimension 𝟖 × [𝟏+ 𝟒 + 𝟏𝟔]  is obtained from 16 sub-block as in 
(step 5-i).  

Step 6: A  final feature vector based on spatial edge distribution is formed and summing all 
vectors of sub-levels and represented as: 𝓕𝝐 = 𝟖 × [𝟏] + 𝟖 × [𝟏 + 𝟒] + 𝟖 × [𝟏 + 𝟒 + 𝟏𝟔] = 𝟐𝟏𝟔. 
The results of the final feature vector are depicted in Fig. 3.4. 

Fig. 3.4 and 3.5 depict the results obtained at a different level using SEDGs feature 

extractor. It can be observed from Fig. 3.5 that the extracted shape features are 

Level-0 Level-2 

Still Image ROI Image Edges of posture              Normalized Image  

Level-1 

Figure 3.4: Simulation Results of Proposed Algorithm 2 
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discriminative due to the variation of the histogram for different activities. There-

fore, these features are robust to represents human activities. It is a fast and 

straightforward approach to calculate the features based on spatial shape 

information. 

3.3.2 Orientation Feature Map 

The orientation information of the action pose is extracted by Gabor filter, which 

is one of the widely used techniques for orientation and texture in the image. 

Arivazhagan et al. [158] introduced an invariant rotation approach for texture 

classification based on wavelet and defined as per Eq. (3.4). 

 
𝜓(𝑥, 𝑦) = (2𝜋𝜎𝑥𝜎𝑦)

−1 exp (−
1

2
(
𝑥2

𝜎𝑥2
+
𝑦2

𝜎𝑦2
))exp (2𝜋𝑗𝜔𝑥) (3.4) 

where 𝜎, 𝜔 are sacle and modulation frequency respectively. For a given still image 

 𝑓𝑠(𝑥, 𝑦) of size 𝑀 × 𝑁, the Gabor wavelet transform (GWT) at scale 𝓅 and orienta-

tion 𝓆 is obtained by convolving  𝑓𝑠(𝑥, 𝑦) with 𝜓∗
𝓅𝓆
(𝑥, 𝑦) as per Eq. (3.5). 

 𝒢𝓅𝓆 =∑∑ 𝑓𝑠(𝑥, 𝑦) ∗ 𝜓
∗
𝓅𝓆
(𝑥, 𝑦) (3.5) 

where 𝜓∗
𝓅𝓆

 is complex conjugate of mother wavelet as given in Eq.(4). The Gabor 

wavelets are formed by exciting function as given in Eq. (3.6). 

 𝜓(𝑥, 𝑦) = 𝑎−𝓅𝜓(𝑋, 𝑌) (3.6) 

where 𝑋 = 𝑎−𝓅(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃) , 𝑌 = 𝑎−𝓅(𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃), 𝜃 is orenation 

parameter, 𝑎 is the scaling parameter, for 𝑎 > 1 , 𝜃 =
𝓆𝜋

𝒬
. 𝓅 = 0, 1…𝒫 − 1,𝓆 =

0,1… . . 𝒬 − 1. 𝒫 and 𝒬 are the total number of scale and orienations respectivily.  

The still image at various scales and orientations can be represented through the 

convolution of the image with Gabor wavelet transformed as shown in Fig.3.6, 

which have three scale and eight orientations. The obtained images at different 

orientations and scales are arranged according to the energy content. The 

orientation with the highest energy image is called the dominant orientations. 
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Hence, the feature extracted from these images has to place first in the feature 

vector. The energy is computed using Eq. 3.7. 

 𝒰(𝓅, 𝓆) =∑∑‖𝒢(𝑥, 𝑦)‖

𝑦𝑥

 (3.7) 

The mean and standard deviation of all the transformed coefficient is computed 

using Eq. 3.8. These values represent the region of homogenous texture in the 

image. 

 𝜇𝓅𝓆 =
𝒰(𝓅,𝓆)

𝑀𝑁
   and 𝜎𝓅𝓆 = √

∑ ∑ ‖𝒢(𝑥,𝑦)‖−𝜇𝓅𝓆𝑦𝑥

𝑀𝑁
 (3.8) 

A Gabor feature map ℱ𝐺  are formed for 𝒫: Scales and 𝒬: Oreinations as in Eq.3.9.  

 ℱ𝐺 = [𝜇00, 𝜎00, 𝜇01, 𝜎01, 𝜇02 , 𝜎02, ……… . , 𝜇𝒫−1𝒬−1, 𝜎𝒫−1𝒬−1] (3.9) 

 

3.4 EMRFs Representation 

The EMRFs model is inspired by the human visual cognizance [159] as shown in 

Fig. 3.7. The EMRFs representation is achieved by concatenated the features 

obtained from SEDGs and GWTs vectors. The proposed model provides an 

informative representation of the human activities by capturing shape and  

Figure 3.5: First row shows Region of Interest (ROI) on various activities images, Second row shows 
edges computed on different postures, and third row represents histogram of SEDGs at level ‘2’. 
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GWT 
03: Scales 

08: Orientations 
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Figure 3.6: Shown the orientation features extraction vector map using Gabor Wavelet Transform 
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Figure 3.7: Procedure of proposed EMRFs framework for HAR  
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orientations features at multiple resolutions, scales and bins. Hence,  the EMRF  is 

robust enough to deal with challenging situations such as translation, rotations, 

and scaling, rotation. The effectiveness of EMRFs representation is measured by 

experimenting on human actions datasets. 

3.4.1  Performance Evaluation on Human Action Datasets 

In this section, the performance of our proposed approach is evaluated on four 

publically available human action datasets such as Weizmann Action [54], KTH 

[29], Ballet Movement [160] and UCF YouTube [2]. In the following sub-sections, 

a brief description of all four datasets and different experimental conditions are 

presented. 

 

Bending Jumping-Jack Jumping-Forward Jumping-In-Place Running 

Galloping-Side Skipping Walking WavingHand-1 WavingHand-2 

Figure 3.8: Example frames from Weizmann Action Dataset 
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3.4.2 Weizmann Action Dataset 

Blank et al. [54] introduced this dataset for simple atomic action recognition in 

videos. It is recorded with normal RGB cameras in outdoor environmental condi-

tions. It consisted of 10 action classes performed by 9 people such as: Run, Side, 

Skips, Jump, jumping -jack, Bend, Jack, Walk, Wave-1, and Wave-2. There are a 

total of 90 videos clips recorded at 15 fps with 144×180-pixel spatial resolution.  

The examples frames from Weizmann action dataset are shown in the Fig.3.8.  

3.4.3 KTH Action Dataset 

KTH action dataset [29] is the most widely used dataset for human action analysis. 

Walking Jogging Running Boxing Waving Clapping 

Figure 3.9: Example frames of KTH Action Dataset 
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It is more challenging action dataset as compared with Weizmann because chang-

ing illumination conditions and outdoor environments. It consists of 25 subjects 

performing six activities such as jumping, hand-clapping, jogging, walking, hand-

waving, and running. There is a total of 600 videos recorded with 25 fps with spa-

tial resolution 160×120 pixels, in 4 different scenarios. The example frames from 

KTH action dataset is depicted in Figure 3.9.    

3.4.4 The Ballet Dataset 

Fathi and Mori [160] collected this dataset from ballet DVD videos. It consists of 8 

movement activities performed by 1 woman and 2 men actors as: turning(TR), 

jumping(JP), left to the right-hand opening(LRHO), standing still(SS), right to the 

left-hand opening(RLHO), leg swinging(LS), hopping(HP), and stand with hand 

opening(SWHO). There are total of four annotated video sequences in each video. 

This dataset is challenging regarding large intra-class dissimilarity and inter-class 

similarity, clothing variations, the speed of activity, and spatiotemporal variations.  

The examples frames from ballet movement dataset are shown in Fig. 3.10. 

 

TR 

LRHO RLHO SWHO LS 

JP HP SS 

Figure 3.10: Example frames from Ballet Movement Dataset 
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3.4.5 UCF YouTube Action 

Liu et al. [2] introduced this dataset to recognised complex action in a realistic 

environment. It consists of 11 action classes as tennis swinging, volleyball spiking, 

soccer juggling, walking with a dog, basketball shooting, cycling, horseback 

riding, swinging, golf swinging, trampoline jumping, and diving. There are 

twenty-five video groups each having four video clips sharing common features. 

These dataset videos are challenging due to view-points, occlusions, varying 

illumination conditions, and clutter backgrounds. The samples image frames from 

UCF YouTube dataset is shown in Fig. 3.11.  

3.5 Experimental details and Results Analysis  

In this section, we discussed the experimental setup evaluations protocols applied 

for different human action datasets. Since the developed approach is computed on 

Running Golf swinging Volleyball 

Basketball Biking Diving Horse Riding 

Soccer juggling Swinging Tennis Trampoline 

Figure 3.11: Example frames from UCF YouTube Action Dataset 
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still key pose image, hence, where the action is captured in the video, first the key 

pose are images are extracted from the video as explained in sections 3.2 and 3.3 

respectively. The spatial distribution features map is divided into eight orienta-

tions bins in the range of [0, 3600]. On the other hand, Gabor features map is cal-

culated with three scales and eight orientation angles. Finally, action recognition 

is done by combining the extracting the spatial and textural features vectors maps. 

The action classification is carried through a linear Support Vector Machine (SVM) 

[161] and a non-parametric technique K-nearest neighbour (k-NN) [162] classifi-

ers. The accuracy of our EMRFs is measured as average recognition accuracy 

(ARA) in leave-one-out-cross-validation (LOOCV) evaluation protocol. The ARA 

is calculated using Eq. 3.10.  

 Accuracy =  
True Postive + True Negative

True Postive + TrueNegative + False Positive + FalsePositve
 × 100% (3.10) 

The classification accuracy is computed by dividing the correct number of pre-

dicted images by the number of tested images. The classification accuracies in the 

form of confusion matrices using k-NN and SVM classifier on four datasets are 

shown in Fig. 3.12 and 3.13, respectively. 

The confusion matrix obtained from k-NN classifier for all dataset is shown 

in Fig. 3.12. It can be observed from the confusion matrix of Weizmann dataset 

depicted in Fig.3.12(a) that the accuracy achieved on this dataset is very high. Sim-

ilarly, the confusion matrixes of KTH, Ballet, and UCF YouTube datasets are 

shown in Fig.3.12(b), (c) and (d) respectively. The activities in other video datasets 

are classified with fewer ambiguities. The accuracy is achieved on Ballet dataset is 

less as compared with other datasets because of existing challenges such as self-

occlusion and high intra-class similarity of actions. It can be inferred from the da-

taset too.  

The classification accuracies in the form of a confusion matrix with SVM 

classifier for all datasets is shown in Fig. 3.13. In the presence of various challenges 



  

61 
 

in the videos such as high interclass similarity in still key poses of running, walk-

ing, and jumping. Besides this our model performed well and most of the activities 

are discriminated with the highest recognition accuracy. The confusion matrix of 

the Weizmann dataset is shown in Fig. 3.13(a). There is slightly less confusion in 

the case of ‘jack hand’ and ‘wave-2’ due to similar key poses. In Fig. 3.13(b) the 

confusion matrix for KTH dataset shows much satisfactorily results with average 

recognition accuracy 95.85 % and very less misclassification is found only three 

classes: ‘running’, ’walking’, and ‘jogging’ due to similar key still key poses. Fur-

ther, our model efficiently classified with maximum accuracy on the rest three ac-

tion classes. The ARA of 92.75 % is obtained on Ballet dataset shown in the 

confusion matrix in Fig. 3.13(c).  Although action recognition in this dataset is 

complex due to clothing, gender, and size variations. But the proposed EMRFs 

model is insensitive to these variations and complexity of actions. It can be 

observed from the confusion matrix Fig.3.13(c) that there are little bit confused 

about still key pose of action pair such as ‘hopping’ and’ jumping’, ‘leg swing’ and 

‘Right to left-hand opening’, ‘turning right’ and ‘stand hand opening’, and 

‘jumping and standing still’ beside this our model gives comparable accuracy with 

the existing state-of-the-art methods [114], [163]. The confusion matrix of UCF 

YouTube dataset is shown in Fig. 3.13(d). Some similar action is creating the 

confusion in motion feature such as ‘cycling’ and ‘horseback riding’ and ‘jogging’ 

and ‘running’. Our method gives the highest accuracy on this challenging realistic 

video dataset. 

The accuracy achieved through k-NN and SVM has been compared as 

shown in Fig. 3.14. It can be seen from the figure that the performance of SVM is 

better than k-NN for all dataset because the k-NN classifier shows best results with 

higher dimensional training data and a larger value of k, but the large values of k 

lead to high computation. However, the ARA is varying from one data set to an-

other because of the recording conditions and environment setting of the dataset. 
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The highest accuracy achieved for all datasets through SVM has been compared 

with the similar state-of-the-art. 

 

a)  ARA= 97.70 % b) ARA=93.16 % 

c)  ARA= 90.25 % d)  ARA= 92.36 % 

Figure 3.12: Classification result of k-NN classifier on (a) Weizmann Action (b) KTH (c) Ballet 
Movement (d) UCF YouTube action datasets. 
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(d) ARA=96.36 % 

(a) ARA=100 % (b) ARA= 95.85 % 

(c) ARA=92.75 % 

Figure 3.13: Classification result of SVM classifier on (a) Weizmann Action (b) KTH (c) Ballet 
Movement (d) UCF YouTube action datasets 



  

64 
 

3.6 Comparison of EMRFs with State-of-the-Art Approaches 

The results comparison developed EMRFs with state-of-the-art approaches is 

illustrated in Tables 3.1,3.2,3.3, and 3.4. The comparison is carried through in terms 

of earlier works, various form of input data to the features extractor, techniques, 

evaluation protocol, types of classifiers used for classification of action, and high-

est recognition accuracy. It can be observed from tables that most of the ap-

proaches for action recognition in video sequences relied on spatial-temporal fea-

tures [99] [102] [114] [164] [75] [165] [166]. There are very few approaches using a 

single image or still image data information [100] [167] [168]. Because it is a chal-

lenging task to extracts robust features from spatial cue only and in the absence of 

temporal information. The proposed EMRFs approach with SVM classifier 

achieved the highest accuracies on the action datasets such as Weizmann, KTH, 

and UCF YouTube is compared with other state-of-the-arts. The ARA achieved on 

Weizmann human action dataset is 100%. The main reason for achieving such a 

high recognition rate is because of simple atomic action performed in control way 

under non-varying environmental conditions.  
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Figure 3.14: ARA Comparison of k-NN and SVM Classfier on HAR datasets 
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The result comparison for the Weizmann and KTH datasets is shown in Ta-

bles 3.1 and 3.2, respectively. The comparative analysis with a similar state-of-the-

art on KTH dataset is depicted in Table 3.2. For KTH dataset, the action classifica-

tion ARA equal to 95.83%. The drop of recognition rate in this dataset as compared 

to Weizmann dataset is due to the more varying illumination and challenging en-

vironmental conditions. It is also observed that EMRFs gives a significant amount 

of increase in recognition accuracy.  

The comparison of the various state-of-the-art methods on Ballet dataset is 

listed in Table 3.3. It is considered a challenging dataset regarding the complexity 

of human activities performed such as the speed of action and low illumination, 

but due to enclosed setup conditions, and EMRFs features extraction results for 

the dataset is practically satisfactory. 

Table 3.1: Result comparison with the state-of-the-art on Weizmann Action Dataset 

Works Input Method Classifier Test scheme ARA (%) 

Niebles and Fei [169] 
Spatiotem-

poral 
BoFs SVM LOOCV 55.00 

Thrurau [170] Temporal HOG SVM LOOCV 57.45 

Eweiwi et al. [171] Still Image NMF Bayesian - 55.20 

Thurau and Hlavac [99] 
Spatiotem-

poral 
HOG 

1-NN classi-
fier 

LOOCV 74.40 

Chaaraoui et al. [168] Still Image Silhouettes SVM LOSO 92.80 

Baysal and Duygulu 
[172] 

Temporal GPB, DTW K-NN LOOCV 95.10 

Guan et al. [101] Still Image TNMF - CV 91.70 

Batchuluun et al. [173] Temporal Silhouettes Fuzzy Logic - 99.20 

Ours Still Image EMRFs SVM LOOCV 100 

 

 

 



  

66 
 

Table 3.2:  Result comparison with the state-of-the-art on KTH Dataset 

Works Input Method Classifier Test scheme ARA (%) 

Raja et al. [100] Still Image HOG LSVM - 86.58 

Baysal and Duygulu  
[172] 

Temporal GPB k-NN LOOCV 81.30 

Saghafi and Rajan [164] Spatiotemporal PDE - LOOCV 92.60 

Han et al. [114] Spatiotemporal Deeper spatial  ConvNets Splits 61.11 

Zheng et al. [163] Temporal Fisher vector LSVM Splits 94.58 

Ours Still Image EMRF SVM LOOCV 95.83 

 

 

Table 3.3: Result comparison with the state-of-the-art on Ballet Dataset 

Works Input Method Classifiers 
Test 

Scheme 
ARA 
(%) 

Fathi & Mori [160] Temporal Optical flow Adaboost LOOCV 51.00 

Wang and Mori [174] Temporal BoWs S-CTM LOO 91.30 

Guha and Ward [75] Spatiotemporal Cuboids+ LMP RSR LOO 91.10 

Iosifidious et al. [165] Temporal BoWs SVM LOO 91.10 

Zhao et al. [102] Spatiotemporal RKHS K-means - 79.78 

Wang et al. [167] Still Image LGLRR K-means - 60.87 

Vishwakarma et al. 
[166] 

Spatiotemporal LDA SVM-NN LOOCV 94.00 

Ours Still Image EMRFs SVM LOOCV 92.75 

The experimental setup used for this dataset is similar to work [166]. The average 

recognition accuracy achieved is 92.75% which is better than [102] [167]  [165] but 

less than [166]. The main reason for the slightly less accuracy is using of spatial 

shape feature only in still image of complex motion action dataset. 
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Table 3.4: Result comparison with the state-of-the-art on UCF YouTube Dataset 

Works Input Method Classifiers Test Scheme 
ARA 
(%) 

Liu et al. [2] Spatiotemporal Hybrid features Adaboost LOOCV 71.20 

Cinbis and Sclaroff 
[175] 

Spatiotemporal MIL SVM LOOCV 75.20 

Le et al. [176] Spatiotemporal 
Independent sub 

space analysis 
K-Means - 75.80 

Yi and Lin [177] Spatiotemporal 
Spatio-temporal 

graph 
- LOO 84.63 

Wang et al. [9] Spatiotemporal 
Dense trajecto-

ries 
- LOOCV 85.40 

Shao et al. [178] Spatiotemporal 
Kernel multi-

view projection 
Naïve Bayes 5-fold CV 87.60 

Jung and Hong [179] Temporal 
Bag of Sequence 

lets 
SVM LOOCV 89.90 

Nazir et al. [134] Spatiotemporal 
Bag of Expres-

sion(BoE) 
KNN - 96.68 

Ours Still Image EMRFs SVM LOOCV 96.36 

Table 3.4 consist of various state-of-the-art approaches on UCF YouTube 

datasets. It is a more challenging activity dataset because most of the video was 

recorded in a free environment and complex background conditions. The de-

veloped method gave 96.36% recognition accuracy with spatial cues only which 

outperform over existing spatiotemporal approaches on this complex dataset.   

3.7 Significant Outcomes  

The above-mentioned study is performed to address the problem of human activ-

ity recognition in single still key pose images obtained from video sequences un-

der the challenging conditions such as the absence of temporal information, scale 

variation, illumination changes, and view variations. After doing this empirical 

study, we observed the following significance outcomes as: 
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 It can be noted from Tables 3.1,3.2,3.3, and 3.4 that the proposed approach 

for action representation showed better results as compared with existing 

Spatio-temporal approaches using single still images only. 

 The proposed feature descriptor shows higher accuracy with two best dis-

criminative classification techniques such as supervised SVM and non-par-

ametric k-nearest neighbour (k-NN). However, the classification accuracy 

of k-NN classifier somewhat less as compared with SVM classifier because 

k-NN required higher dimensional data for training the model. 

 It is observed that as the number of key poses increase slightly increase the 

classification accuracy at the cost of increasing complexity of the model. On 

the other hand, if we increase the number of levels, it has shown effective 

accuracy, but a higher dimension of the feature vector.  
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Learned features based Action Recognition 

This chapter introduced the two automatic learned deep frameworks for human activity 

recognition in RGB and RGB-D(depth) videos. The first deeply coupled ConvNet model 

based on transfer learning that utilized RGB only frames and dynamic images for the 

representation of complex actions in videos. On the other hand, our second approach 

utilized and fused three different modalities RGB, RGB-D(depth) and 3D coordinate 

information for activity classification for better action recognition and complete utilization 

of information available from a depth sensor video simultaneously. Further, the 

classification results of both deep learning approaches are validated on standard depth 

action datasets and compared with existing state-of-the-art methods. 

4.1 Introduction  

This chapter work is motivated by the tremendous achievement of deep learning 

models for computer vision tasks, particularly for human activity recognition. It is 

gaining more attention due to the numerous applications in real life, for example, 

smart surveillance system, human-computer interaction, sports action analysis, el-

derly healthcare etc. Recent days, the acquisition and interface of multimodal data 

are straightforward due to the invention of low-cost depth devices. Several ap-

proaches have been developed based on RGB-D (depth) evidence at the cost of 

additional equipment’s set up and high complexity. Contrarily, the methods that 

utilize RGB frames only provide inferior performance due to the absence of depth 

evidence; however, these approaches need less hardware, simple and easy to gen-

eralize using only colour cameras. In the first part of this chapter, Section 4.2 de-
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scribed the hybrid two-stream ConvNet architecture for human activity recogni-

tion by utilized only RGB frames. In the second part of this chapter, Section 4.3 

explained the details architecture of proposed deep multimodal network based on 

bottleneck layer features fusion for action recognition. The details architecture of 

both the proposed approaches are explained in the following sections:  

4.2 A Deeply Coupled ConvNet for Human Activity Recognition using Dy-

namic and RGB Images 

Human action recognition in video sequences motivated and extended by the im-

proved image recognition approaches. Most of the video action recognition ap-

proaches based on shallow higher dimensional spatiotemporal features extraction 

from stacked raw video frames. Human action motion can be disintegrated into 

spatial and temporal features in a video. The spatial features contain the appear-

ance information about an object in each sequence of a given video. On the other 

hand, temporal features represented in the form object moving across the video 

sequences. The proposed human action recognition model accordingly divided 

into two streams model as depicted in Fig.4.1.  

In this work, a hybrid two-stream deep architecture based on two different 

data streams (spatial and temporal) is developed that is then fused by late fusion 

techniques to recognize the activities. The spatial features are extracted from RGB 

frames fed at regular interval to recognize action while the temporal stream is 

trained using the dynamic motion images that captured the full temporal dynam-

ics of a video. Both the streams are trained using pre-trained Inception-v3 deep 

architecture [180]. The first spatial stream of the network is trained end-to-end 

learning through a pre-trained ConvNet and followed by the Bi-LSTM network 

for additional sequential information representation. The second temporal stream 

of the network is fine-tuned on the pre-trained ConvNet. These streams of net-

works are connected parallelly, as shown in Fig.4.1. Further, the scores obtained 
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by these two streams of the network are fused with late fusion techniques at the 

decision level after the softmax layer to enhance the classification accuracy of the 

proposed model. 

4.2.1 Features Extraction with Pre-Trained Inception-v3 Architecture 

In this section, we briefly discussed the underlying architecture of deep pre-

trained model that is utilized for fine-tuning and feature extraction from the input 

video. Fig. 4.2 depicted the deep Inception-v3 architecture consisted of one input 

block, three blocks of Inception Module A, B and C, two blocks of grid size reduc-

tion, one Auxiliary classifier block and one output block. This deep network model 

enriched with some advanced features such as RMSProp optimizer, Batch Nor-

malization, Label Smoothing to reduced overfitting and add loss function as com-

pared with the previous version of inception architectures. This network consists 

of 42 deep layers that accept input data 299 × 299 × 3 of spatial dimension at input 

block.  The Inception Module A is used for smaller factorization convolutional 

(Conv) and converted a  5 × 5 (Conv) filter into two 3 × 3 Conv filters which re-

Figure 4.1: Schema of Deeply Coupled ConvNet for Human Activity Recognition using Dynamic and 
RGB Images 
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sulted in reducing parameters between the layers without decreasing the effi-

ciency of the network. The Inception Module B utilized for asymmetric spatial fac-

torization convolutions which converts a 3 × 3 Conv filter into 1 × 3 Conv fol-

lowed by 3 × 1 Conv filters. It can be observed that a 𝑛 × 𝑛 Conv can be repre-

sented by 1 × 𝑛 Conv followed by a 𝑛 × 1 Conv save the computational cost and 

reduced the overall parameters. The Inception Module C is introduced for stimu-

lating the high dimensional representations similarly works as module B in this 

network. The grid size-reduction block is used for downsizing the feature map 

such as in deep AlexNet or VGGNet models. The main difference between tradi-

tional models and inception-v3 is that a 𝑚 ×𝑚 grid with 𝑛 filters is divided into 

𝑚/2 × 𝑚/2 grid with 2𝑛 filters. Thus the overall computational cost is decreased 

by using convolutional operation followed by pooling operation. This network 

contains one auxiliary classifier on the top of the last 17 × 17 layer which is used 

as a Regularizer for enhancing the convergence of the deep network.  

  

Auxiliary classifier 

5X Inception Module A 4X Inception Module B 
2X Inception Module C 

Grid Size Reduction Grid Size Reduction 

Input: 299×299×3 

Output: 8×8×2048 

Figure 4.2: Block diagram of Inception-v3 improved Deep Architecture 
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In this work, the deep pre-trained network is trained in an end-to-end man-

ner followed by the Bi-LSTM architecture which represents one of the action de-

scriptors for the two-stream HAR model. In the following sub-section, we briefly 

discussed the underlying architecture of LSTM [181] and Bi-LSTM that is utilized 

for additional sequential features extractions. 

4.2.2 The Bi-Directional LSTM (Bi-LSTM) 

It is observed that the traditional feedforward network and convolutional neural 

network are inefficient to deal with sequential data such as video analysis. Such 

networks accepts fixed-length input videos. To overcome the problem of fixed 

size, input padding is used but the performance of such approaches are not 

comparable with RNNs [182] and LSTM network [181]. The RNN deep network 

has compatibility with the help of the chain and loop structure to deal with 

sequential data. However, RNNs are inefficient as compared to LSTM for longer 

duration sequential input because of the vanishing gradient in the 

backpropagation process. Due to the problem of vanishing gradient, the LSTM 

architecture was proposed, which utilized two parallel RNNs for enhancing the 

long term dependencies and training for bigger input networks. The gated 

structure of the LSTM network helped the many sequential learning problems in 

Figure 4.3: Basic LSTM Architecture 
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a very effective way.  

Fig. 4.3 depicted the basic architecture of the LSTM network. It can be observed 

from that LSTM network has a similar chain-like structure like RNN. It consisted 

of four neural layers, while RNN is having only one neural sigmoid layer (𝑡𝑎𝑛ℎ). 

A horizontal line at the top of Fig. 4.3 is called the ‘cell state’ of LSTM which is 

works like a conveyor belt. This cell state has the capabilities to remove and add 

information. The LSTM is consists of three gates: input (𝑖𝑡), forget and output (𝑜𝑡) 

gates to control and protect the cell states. These each gates having sigmoid neural 

layer and capable of process the information through pointwise multiplication 

units. 

In the beginning, the ‘forget gate (𝑓𝑡) decides what information between (ℎ𝑡−1, 𝑥𝑡) 

is passed through the cell states and defined as Eq.(4.1). 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4.1) 

where, the activation function is denoted by the 𝜎(. ) and 𝑥𝑡  , ℎ𝑡−1 , 𝑊𝑓, 𝑏𝑓  repre-

sent the input, output at previous LSTM block, weight, and bias at the forget gate 

layer respectively at time 𝑡.  On the next step, the input gate (𝑖𝑡), decides what new 

information is to store in the cell state. The input gate equation is given as Eq.(4.2).                                                                                                 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4.2) 

where, 𝑊𝑖 , and 𝑏𝑖 represent the weight and bias at the input gate layer, respec-

tively.               

For the update, a new state in the cell state, a sigmoid function creates a new vector 

𝐶̂𝑡 as defined by Eq.(4.3). Later on, Eq.(4.2) and Eq.(4.3) are combined for updating 

a new state.                                               

 𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4.3) 

In order to update the old cell (𝐶𝑡−1) into new (𝐶𝑡), the old state is multiplied with 

forget gate and add other parameters as shown in Eq.(4.4). 
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 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̂𝑡 (4.4) 

Finally, the output 𝑜𝑡 is given the cell state based on the output of the sigmoid of 

output gates and defined by: 

 𝑜𝑡 =  𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4.5) 

 
 ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (4.6) 

where 𝑊𝑜, and 𝑏𝑜 represent the weight and bias at the output layer, respectively.                                                                               

It is noticed that unidirectional LSTM network stores the information data 

from the past direction only. On the other hand, a Bi-LSTM network preserves the 

information data both direction from past to future as well as the future to past. 

Further, the Bi-LSTM network performed much better than LSTM for sequential 

data applications. The basic architecture of a Bi-LSTM network depicted in Fig. 

4.4. The output sequence in the forward layer ℎ⃗  is computed for given inputs in 

positive sequence from 𝑥𝑡−1… . . 𝑥𝑛. The backward output sequence ℎ⃗⃖ is computed 

for reversed inputs sequences. The final layer output is evaluated with the help of 

Figure 4.4: The Bi-directional LSTM Architecture 
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Equations (4.1) - (4.6) for the backward and forward layer outputs. The bi-direc-

tional LSTM layer yields an output vector as: 𝑌𝑇 = 𝑦𝑡−1, 𝑦𝑡 , . . 𝑦𝑡+𝑛 in which each 

𝑦𝑡 = 𝜎(ℎ⃗ , ℎ⃗⃖), where 𝜎 is called a summation function or concatenating function.   

It is observed that fine-tune the all sequential frames related to action labels 

is not a good idea for learning good discriminative features. Therefore, in this 

work, RGB video is sampled out ten frames at a fixed interval of to the pre-trained 

CNN architecture and trained excluding the fully connected layer. The upper half 

of the proposed ConvNet is end-to-end trained with only the last five layers. For 

each frame, a features vector of dimension 10 × 4 × 4 × 2048 is obtained from 

CNN architecture. Further, these extracted features are given to average pooling 

layer and obtained a vector of dimension 10 × 1 × 2048 for each layer. Finally, the 

feature vectors acquired from the pre-trained model is further fed to the Bi-LSTM 

layer for better feature extractions. It helps for better generalization in terms of 

learning features from frames. In the following subsection, the concept of dynamic 

motion images and fine-tuning with CNN for temporal extraction features are ex-

plained in detail.   

4.2.3 Dynamic motion image (DMI) from video sequences   

In this section, we emphasized understanding the long term temporal dynamics 

in terms of a single dynamic image. Later on, these images are fed as an input for 

fine-tuned inception-v3 architecture for temporal features extraction. It is a para-

mount task to understand the content of videos precisely on a large scale because 

of videos are consisting of a sequence of still images. Therefore,  the summariza-

tion of the whole video sequence into a single still dynamic image using standard 

CNN architecture introduced in work [183]. A rank pooling mechanism is adopted 

that utilized the work of Fernando et al. [130] for obtaining a dynamic image from 

whole video sequences. This technique encrypts the temporal variation cues of the 

video sequences into one single image.  A rank pooling function directly applied 

to raw RGB frames to produces a single dynamic image for each activity video. 
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The idea behind the creation of dynamic images depends on the ranking 

function [130]  that ranks its each video frames  (𝐼1, 𝐼2, 𝐼3, …… , 𝐼𝑇) according to the 

time axis. Let a feature vector represented by 𝜑(𝐼𝑡) ∈ ℝ
𝗱 , 𝑡 ∈ [1, 𝑇] , where 𝜑(. ) is 

showed the rank for each frame 𝐼𝑡 at time instance 𝑡. A score function  𝒮(𝘵 │𝗱) =

〈𝗱,𝒱𝘵 〉, is associated with ranking function, where 𝗱 ∈ ℝ𝗱 is a vector of parameters 

and  𝒱𝘵 =
1

𝘵
∑ 𝜑(𝐼𝘵)
𝘵
𝜏=1  is the time average of these features at this instant. According 

to the RankSVM [184], the learning of vector 𝗱 is modelled as a convex optimiza-

tion problem and given by Eq. (4.7),  

 𝗱∗ = 𝜌(𝐼1, 𝐼2, 𝐼3, …… , 𝐼𝑇; 𝜑) = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝖽

 𝘌(𝗱)  (4.7) 

              

 
𝘌(𝗱) =

𝛿

2
∥ 𝗱 ∥2+

2

𝑇(𝑇 − 1)
×∑max{0,1 − 𝒮(𝘲|𝗱) − 𝒮(𝘵|𝗱) }

𝘲>𝘵

 
(4.8) 

where  𝜌(𝐼1, 𝐼2, 𝐼3, …… , 𝐼𝑇; 𝜑) maps a sequence of  𝑇  number of video frames into a 

single vector 𝗱∗  called a rank pooling function that aggregates information from 

all video frames. The first term in Eq. (4.8),  
𝛿

2
∥ 𝗱 ∥2  is a quadratic regularized 

function used for SVM. The second term related to soft counting loss that calcu-

lates how many pairs are not correctly ranked for 𝘲 > 𝘵 by the ranking function.  

The score function is calculated for video frames based on ranking function and a 

pair of the frame is chosen for which score having unit margin i.e. 𝒮(𝘲|𝗱) >

𝒮(𝘵|𝗱) + 1. 

The dynamic motion image obtained using approximate rank pooling func-

tion [183] is fifty times faster than rank pooling function for similar performance. 

The approximate rank pooling mechanism is worked on a gradient optimization 

algorithm and derived using Eq. (4.9) to (4.12) as follows:    

for 𝗱 = 0, 𝗱∗ = 0⃗ − 𝜂∇𝘌(𝗱)|
𝗱=𝟎⃗⃗ 

∝ −∇𝘌(𝗱)|𝗱=𝟎⃗⃗     for all 𝜂 > 0  where, 
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∇𝘌(0⃗ ) ∝∑max{0,1 − 𝒮(𝘲|𝗱) − 𝒮(𝚝|𝗱) }

𝘲>𝚝

|

𝗱=𝟎⃗⃗ 

= ∑∇⟨𝗱, 𝒱𝘵 − 𝒱𝘲⟩ =

𝗊>𝚝

∑𝒱𝘵 −𝒱𝘲
𝘲>𝚝

 

(4.9) 

Further, the function 𝗱∗ used as video descriptor because it aggregates information 

from all stacks frame and defined as: 

 

𝗱∗ ∝∑𝒱𝘵 −𝒱𝘲
𝘲>𝚝

=∑[
1

𝘲
∑𝜑𝑖 −

1

𝘵

𝘲

𝑖=1

∑𝜑𝑗

𝘵

𝑗=1

] = ∑Ω𝘵𝜑𝘵

𝑇

𝘵=1𝘲>𝚝

 

(4.10) 

where, the Ω𝘵 is denoted as: 

 Ω𝘵 = 2(𝑇 − 𝑡 + 1) − (𝑇 + 1)(𝙷𝑇 − 𝙷𝑡−1) (4.11) 

where, 𝙷𝑡 = ∑
1

𝘵

𝑇
𝑖=1  is the 𝑖𝑡ℎ Harmonic number and 𝙷0 = 0.  

Therefore, the updated approximate rank pooling function is defined as weighted 

sum of adjacent video frames as: 

 𝜌̂( 𝐼1, 𝐼2, 𝐼3, …… , 𝐼𝑇; 𝜑) =∑Ω𝘵𝜑𝘵

𝑇

𝘵=1

 (4.12) 

The weights parameter Ω𝑡 ∈ (1, 𝑇) is calculated for fixed video length accord-

ingly, as shown in the Fig.4.5. This demonstration showed that Ω𝘵 depends on 

the consecutive video frames belongs to frames (1, 𝑇). The  weight parameter Ω𝑇 

is the combination of the sum of all  weight parameters obtained from each frame 

2∗𝒊−𝑇−1

𝒊
 , where 𝑖 ∈ (𝑡, 𝑇) by using Eq.(4.10). It showed that DMIs computation is 

limited only to by pre-multiplying function Ω𝘵 for all video frames. Therefore, 

approximate rank pooling function does not require to compute the intermedi-

ate average features vector 𝒱𝘵 =
1

𝘵
∑ 𝜑(𝐼𝘵)
𝘵
𝜏=1 .  Instead, it can be directly calculated 
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by using individual frame feature 𝜑(𝐼𝘵) and Ω𝘵 = 2𝑡 − 𝑇 − 1, which is a  linear 

function of time 𝑡. 

               𝐼1         ⨁        𝐼2          ⨁       𝐼3            ……………             𝐼𝑇−1            ⨁            𝐼𝑇 

Ω1   →      
2∗𝟏−𝑇−1

𝟏
         

2∗𝟐−𝑇−1

𝟐
          

2∗𝟑−𝑇−1

𝟑
        ……………      

2∗(𝑻−𝟏)−𝑇−1

𝑻−𝟏
               

2∗(𝑻)−𝑇−1

𝑻
 

Ω2   →                          
2∗𝟐−𝑇−1

𝟐
           

2∗𝟑−𝑇−1

𝟑
        ….………          

2∗(𝑻−𝟏)−𝑇−1

(𝑻−𝟏)
               

2∗(𝑻)−𝑇−1

𝑻
 

Ω3   →                                                  
2∗𝟑−𝑇−1

𝟑
        ……………       

2∗(𝑻−𝟏)−𝑇−1

(𝑻−𝟏)
               

2∗(𝑻)−𝑇−1

𝑻
 

.                                                                                                                   .                                . 

.                                                                                                                    .                                . 

.                                                                                                                    .                                . 

Ω𝑇−1 →                                                                                                 
2∗(𝑻−𝟏)−𝑇−1

(𝑻−𝟏)
              

2∗(𝑻)−𝑇−1

𝑻
 

Ω𝑇     →                                                                                                                                  
2∗(𝑻)−𝑇−1

𝑻
 

Figure 4.5: Shown the process of calculation of parameter 𝜴𝑻 for finite length video sequences 

𝑻. The  bold part shows the dependency of parameter 𝜴𝑻 on consecutive video frames ∈ (𝟏, 𝑻). 

 

The example of dynamic image formation using the approximate rank pooling 

technique from ‘approaching’ activity video is illustrated in Fig.4.6. It can be noted 

that each video frames is multiplied with the corresponding weight, i.e. frame 𝐼1 

𝐼2 

RGB Frames  

G-Channel  

 

Dynamic Image  

frames  𝐼1 𝐼𝑇 …. 

Figure 4.6: Shown the formation of Dynamic Motion Image using Approximate Rank Pooling Mecha-
nism from Red, Green and Blue channel of each video frame   

 

Figure 4.Error! Bookmark not defined.: Shown the formation of Dynamic Motion Image using Approx-
imate Rank Pooling Mechanism from Red, Green and Blue channel of each video frame   

 

Figure 4.7: Shown the formation of Dynamic Motion Image using Approximate Rank Pooling Mecha-
nism from Red, Green and Blue channel of each video frame   
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is multiplied by Ω1 for each channel individually. The final obtained DMI is the 

weighted sum of each Red, Green, and Blue channels of each frame and of the 

same size as the frames. It is observed that the temporal action modelling pattern 

can be easily seen from a dynamic image when a person is approaching another 

person irrespective to background and illumination conditions. The so obtained 

DMIs are fed to pre-trained ConvNet to extracts the temporal features to recognize 

the action in a video.  

4.2.4 Late Fusion 

The late fusion techniques for two-stream networks are categorized as Sum Fu-

sion, Maximum fusion and Concatenation Fusion [117]. The main objective of fus-

ing the two-stream network is that features extracted from the same pixel’s loca-

tion through the different channel are combining for better prediction. For exam-

ple, differentiating between the activities of ‘talking on mobile phone’ and ‘drink-

ing water through glass’. To discriminates these activities, a hand movement pat-

tern can be easily recognized by the temporal network at some spatial location 

while then the spatial network can identify the location of the head and their com-

bination help to increase the overall prediction accuracy.  In the proposed work, 

these techniques are defined using the scores of a decision level of Inception-Bi-

LSTM stream (𝘢) and DMI stream (𝘣). 

A general function 𝘧 for fusing the two feature maps 𝘢 and 𝘣 at a given 

time 𝘵 is denoted by Eq.(4.13).  

 𝘧: 𝘹𝘵
𝘢, 𝘹𝘵

𝘣 → 𝘺𝘵 (4.13) 

where,  𝘹𝘵
𝘢 ∈  ℝ𝘏

𝘢×𝘞𝘢×𝘋𝘢 ,   𝘹𝘵
𝘢 ∈  ℝ𝘏

𝘣×𝘞𝘣×𝘋𝘣  are two different features maps respec-

tively. 

The  output feature map is denoted as: 𝘺𝘵 ∈  ℝ
𝘏×𝘞×𝘋 , where 𝘞, 𝘏 and 𝘋 are 

represented width, height and number of the channel of respective feature maps. 

For simplicity, we assume that 𝘞𝘢 = 𝘞𝘣 = 𝘞,𝘏𝘢 = 𝘏𝘣 = 𝘏, 𝘋𝘢 = 𝘋𝘣 = 𝘋. The late 
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fused score obtained by these approaches are denoted as 𝘺𝑠𝑢𝑚 (Sum), 𝘺𝑚𝑎𝑥 (Max-

imum), and 𝘺𝑐𝑎𝑡 (Concatenation). 

Sum Fusion: It calculates the sum 𝘺𝑠𝑢𝑚 = 𝘧𝑠𝑢𝑚( 𝘹𝘢, 𝘹𝘣)                                                                                                      

of two features maps in the feature channels 𝘥, at the same spatial location (𝘪, 𝘫) 

and expressed using in Eq.4.14. 

 𝑦𝘪,𝘫,𝘥
𝑠𝑢𝑚 = 𝑥𝘪,𝘫,𝘥

𝑎 + 𝑥𝘪,𝘫,𝘥
𝑏  (4.14) 

where, 1 ≤ 𝘪 ≤ 𝘏   1 ≤ 𝘫 ≤ 𝘞  1 ≤ 𝘥 ≤ 𝘋   and   𝘹𝘢, 𝘹𝘣, 𝘺 ∈ ℝ𝘏𝘹𝘞𝘹𝘋. The sum fusion 

scores 𝘺𝑠𝑢𝑚 show a random correlation between the network layers. 

Maximum fusion: In this technique, 𝘺𝑚𝑎𝑥 = 𝘧𝑚𝑎𝑥( 𝘹𝘢, 𝘹𝘣) the maximum score is 

selected between the two feature maps. It defined using Eq. 4.15. 

 𝑦𝘪,𝘫,𝘥
𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑥𝘪,𝘫,𝘥

𝑎 + 𝑥𝘪,𝘫,𝘥
𝑏 } (4.15) 

where all the parameter representations are similar as in Eq. (4.14). It increases 

accuracy as it incorporates best the predictions of both the models and this ap-

proach is used in our model.  

Concatenation Fusion: In this fusion method,  𝘺𝑐𝑎𝑡 = 𝘧𝑐𝑎𝑡( 𝘹𝘢, 𝘹𝘣)  features ex-

tracted from both streams are stacked across the feature channel 𝘥 as:                                                                                            

 𝑦𝘪,𝘫,2𝘥
𝑐𝑎𝑡 = 𝑥𝘪,𝘫,𝘥

𝑎     𝑦𝘪,𝘫,2𝘥−1
𝑐𝑎𝑡 = 𝑥𝘪,𝘫,𝘥

𝑏  (4.16) 

here 𝘺𝘵 ∈  ℝ
𝘏×𝘞×2𝘋, the concatenation fusion does not show any correlation be-

tween the two feature maps. 

4.2.5 Implementation Details  

In the following section, model descriptions, training, results and comparison with 

similar state-of-the-art approaches on four standard RGB-D datasets are discussed 

in details. In the proposed ConvNet the deep network is trained on one NVIDIA 

GTX 2GB graphic with 8GB RAM, GPU machine.   The Keras API deep learning 

library is used for the implementation of two streams of convolutional networks. 
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To evaluate the performance of our two-stream network, we use the four standard 

datasets one is focused on a dyadic activity as SBU Interaction [185], single and 

human-object interaction activity datasets as MIVIA Action [83], MSR Daily Ac-

tivity [186] and MSR Action Pairs [187]. The detailed description of these datasets 

such as a number of actions, actors, and challenges are explained in the following 

subsection.  

4.2.5.1 The SBU Interaction Dataset 

Yun et al. [185]  introduced this human interaction activity dataset. It is recorded 

with three different modalities RGB, depth frames, and 3D coordinates with the 

help of Kinect Sensor. It consists of 7 subjects performing 8 human-human inter-

action activities: departing (S1), approaching (S2), hugging (S3), pushing (S4), kick-

ing (S5), punching (S6), exchanging object (S7), and shaking hands (S8). The sam-

ple images from this dataset are depicted in Fig.4.7.  

 

Approaching Departing  Hand-Shaking Hugging 

Exchanging Pushing Kicking  Punching 

Figure 4.7: Sample RGB frames from SBU Interaction dataset 
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4.2.5.2 MIVIA Action 

Carletti et al. [83] introduced this dataset intending to recognize human-object in-

teraction in an indoor lab environment. This dataset is recorded with two different 

modalities RGB and depth frames with the of Kinect sensors. It contains 14 actors 

(7 females and 7 males) performing 7 activities such as: “drinking” (M1), “sleep-

ing” (M2), “opening a jar” (M3), “sitting” (M4), “interacting with a table” (M5), 

“stopping” (M6), and “random motion” (M7). The sample images from this da-

taset are depicted in Fig.4.8. testing and 5 for training purposes. The sample im-

ages from this dataset is depicted in Fig.4.9. 

4.2.5.3 MSR Action Pairs 3D 

Oreifej and Liu [187] introduced this dataset consists of pairs of action videos. It is 

a challenging dataset because similar activities have the same shape and motion 

cues such as ‘Put down’ and ‘Put up’. Ten subjects are performing 6 actions pairs: 

“Pushing and Pulling a chair” (MA1), “Putting and Taking off a backpack” (MA2), 

“Sticking and Removing a poster” (MA3), “Wearing and Taking off a hat” (MA4), 

Sleeping Sitting Drinking Interactive with table 

Opening-Jar Random Motion Stopping 

Figure 4.8: Sample RGB frames from MIVIA Action dataset 
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“Lifting and Placing a box” (MA5), “Picking up and Putting down a box” (MA6). 

Each action was repeated three times by subjects in which 5 subjects are used for  

4.2.5.4 MSR DAILY Activity 3D Dataset 

Wang et al. [186] proposed this dataset intending to recognize the daily use of hu-

man activity in an indoor room environment. It is recorded with two different mo-

dalities: RGB video and depth frames by a Kinect sensor. It contains 10 subjects 

doing 16 different daily activities: tossing paper (MD1), playing game(MD2), stand 

up(MD3), playing guitar(MD4), walking(MD5), using laptop(MD6), cheer 

up(MD7), using vacuum cleaner(MD8), calling on cell phone (MD9), sit still 

(MD10, drinking (MD11), lay down on sofa(MD12), reading book(MD13), writing 

on a paper(MD14), sitting down(MD15), and eating(MD16). All such activities are 

repeated twice for the sitting and standing position. The sample images from this 

dataset are shown in Fig. 4.10.  

  

Put and Take off  Stick and Remove  

Pick up and Put down Lift and Place  Push and Pull  

Wear and Take 

Figure 4.9: Sample RGB frames from MSR Action Pair dataset 
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Cheer up Drink Write on Paper 

Use laptop Use vacuum cleaner Walk Sit Still 

Call cell phone 

Eat Lie down Play game Stand up 

Play guitar Read-book Sit down Toss paper 

Figure 4.15: Sample RGB frames from MSR Daily Activity dataset 
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4.2.6 Model Parameter Description and Training Settings 

The proposed hybrid ConvNet is trained for two different data streams, i.e. RGB 

frames and dynamic image independently. The overfitting problem that occurs 

due to smaller training datasets in LSTM is compensated with the implementation 

of L2 regularization and dropout mechanism. The CNN-LSTM stream extracted 

the features from RGB frames that are fed with a batch size of 8 videos. The RGB 

stream is trained in an end to end fashion up to 150 epochs to refine the features 

of the pre-trained CNN. Initially, the learning rate of 10−4 , and a momentum con-

stant equal to 0.9 is used for training the SGD optimizer. A recurrent dropout of 

0.6 is used and added with each Bi-LSTM layer. In the SGD optimizer, the Mini-

mum Square Error (MSE) loss function is selected for calculated the loss during 

training and test process. Alternatively, the dynamic motion images are fine-tuned 

with last fully connected layers on the pre-trained CNN model. This DMIs stream 

is trained on CNN with a batch size of 8 videos up to 150 epochs in Adam Opti-

mizer [188].  

The initial learning rate and various parameters in Adam optimizer are 

used as:  10−4, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 = 10−8 respectively, and 0.8 of dropout 

added after every fully connected layer. We used Adam optimizer for DMIs be-

cause it is easy to implement, computationally efficient, requires less memory as 

compared with other optimizers. It requires less tuning and suitable for non-static 

patterns objective. Fig. 4.11 illustrated the training and test loss curves using MSE 

loss function for all four datasets. It is observed from the loss curves that our model 

attained a lower value of square error near 147 epochs.   

All the datasets used in the evaluation of the algorithm is multiclass and 

therefore, we adopted a multiclass classification cross-validation scheme. The 

leave one out 5-fold cross-validation multiclass classification scheme is applied for 
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SBU dataset, where the number of test samples predicted as true class samples are 

defined as true positives and the test samples predicted as any of other negative 

classes of the action datasets is considered as false negatives or true negatives. For 

MIVIA Action dataset, leave-one-subject-out (LOSO)-CV is applied. There is a to-

tal of 14 actors performing the 7 human activities. In this evaluation protocol, 13 

actors are used for training and the remaining one actor is for testing. This process 

is repeating 14 times, always leaving another actor’s data for testing. The evalua-

tion method adopted for MSR Daily Activity and MSR Action pairs datasets in 

which half of the subject used for training and half of the subject for testing. The 

scores generated by both the softmax layers are fused using some late fusion tech-

niques for prediction the final label activity. 

(a) 

(c) 
(d) 

(b) 

Figure 4.11: Shown the training minimum squared (MSE) loss and test loss for activity da-
tasets: a) SBU Interaction b) Mivia Action c) MSR Action Pairs d) MSR Daily Activity 



  

88 
 

4.2.7 Results Analysis and Comparisons  

The proposed ConvNet model is tested on four datasets. The evaluation perfor-

mance  is measured in terms of Average Recognition Accuracy (ARA) per class for 

many classes (𝒞𝑖), which is calculated as in Eq.(4.17), 

 𝐴𝑅𝐴 =
1

𝑘
∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖
𝑡𝑝𝑖 + 𝑓𝑛𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖

𝑘

𝑖=1

 (4.17) 

where, 𝑡𝑝𝑖  true positive of (𝒞𝑖), 𝑡𝑛𝑖 true negative of (𝒞𝑖), 𝑓𝑝𝑖 false positive of (𝒞𝑖) , 

𝑓𝑛𝑖 false negative  of (𝒞𝑖).   

4.2.8 The Mann-Whitney U Test (Wilcoxon Rank Sum Test) 

In order to have a better understanding of classification accuracy, a Wilcoxon Rank 

Sum Test is used to analyse the result. It is a non-parametric test [189] which is 

used to test whether two samples are similar in a distribution or not. The null hy-

pothesis that comes from the same observation samples (i.e. have the same me-

dian) or alternatively, whether observation in one sample tends to be greater than 

observed in the other samples. In the proposed work, we have tested the accura-

cies of both streams i.e. RGB frames and DMI using non- parametric test. Because 

both streams extracted the features from the same input video sequences inde-

pendently. The null and alternative hypotheses for the test are stated: 

𝐻0 = the two independent samples accuracy are the same verses,  

𝐻1 = the two independent samples' accuracy is not the same. 

This non-parametric test is conducted as a two-tailed test and observed that pop-

ulations are not the same as opposed to specifying directionality. The test statistic 

for Wilcoxon Rank Sum Test is represented as U and is chosen from a minimum 

of  𝑈𝑅𝐺𝐵  and 𝑈𝐷𝑀𝐼  given by the following equations. 
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 𝑈𝑅𝐺𝐵 = 𝑛1𝑛2 −
𝑛1(𝑛1 + 1)

2
−∑𝑅1 (4.18) 

 

 𝑈𝐷𝑀𝐼 = 𝑛1𝑛2 −
𝑛2(𝑛2 + 1)

2
−∑𝑅2 (4.19) 

where ∑𝑅1 , and ∑𝑅2 are the sum of the ranks for RGB frame samples and DMI 

samples respectively,  𝑛1 is the total samples of RGB frame accuracy and 𝑛2 is the 

total samples of DMI accuracy as illustrated in Tables 4.1,4.2,4.3 and 4.4.  

Table 4.1: Activity wise Results of RGB Frames and DMI streams on SBU Interaction Dataset 

Activity S1 S2 S3 S4 S5 S6 S7 S8 

Accuracy 
(%) 

RGB 82 84 72 71 72 73 76 83 

DMI 98 86 95 96 92 94 82 88 

Each time we tested and observed the value of U (𝑈𝑆𝑡𝑎𝑡) whether it supports the 

null or alternative hypothesis like parametric testing. Further, we have determined 

the critical value (𝑈𝐶𝑟𝑖(0.05 𝑜𝑟 0.01)) and compared with a minimum value of 𝑈𝑆𝑡𝑎𝑡 . 

If the critical value is higher, then we reject the null hypothesis 𝐻0 and if the 𝑈𝑆𝑡𝑎𝑡  

value is higher than critical value we reject the alternate hypothesis 𝐻1 i.e. 𝑈𝑆𝑡𝑎𝑡 =

min(𝑈𝑅𝐺𝐵 , 𝑈𝐷𝑀𝐼) ; and if  𝑈𝑆𝑡𝑎𝑡 < 𝑈𝐶𝑟𝑖(0.05 𝑜𝑟 0.01), then 𝐻0 (Rejected), and (Accepted). 

Table 4.2: Activity wise Results of RGB Frames and DMI streams on MIVIA Action Dataset 

Activity M1 M2 M3 M4 M5 M6 M7 

Accuracy (%) 
RGB 82 74 92 85 76 83 79 

DMI 95 94 96 89 94 97 84 

 

Table 4.3: Activity wise Results of RGB Frames and DMI streams on MSR Action Pairs Dataset 
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Activity MA1 MA2 MA3 MA4 MA5 MA6 

Accuracy (%) 

RGB 91 88 90 87 84 86 

DMI 97 96 98 95 87 96 

 

Table 4.4: Activity wise Results of RGB Frames and DMI streams on MSR Daily Activity Da-
taset 

Activity MD1 MD2 MD3 MD4 MD5 MD6 MD7 MD8 

Accuracy (%) 
RGB 81 67 82 80 71 66 82 84 

DMI 88 72 90 87 79 72 94 90 

Activity MD9 M10 MD11 MD12 MD13 MD14 MD15 MD16 

Accuracy (%) 
RGB 72 73 78 84 80 67 80 79 

DMI 80 81 86 91 89 72 88 84 

It can be observed from Table 4.5 that for each dataset the null hypothesis 

𝐻0 is rejected and alternate hypothesis 𝐻1 is accepted because in the value of  

𝑈𝑆𝑡𝑎𝑡 < 𝑈𝐶𝑟𝑖(0.05 𝑜𝑟 0.01). Therefore, our observation on the samples from independ-

ent input streams such as RGB and DMI is not accepted in the same way according 

to a two-tailed analysis of Wilcoxon rank-sum hypothesis.   

Table 4.5: Wilcoxon Rank Sum Test results on four human activity datasets 

Dataset 
Samples 

𝑼𝑹𝑮𝑩 𝑼𝑫𝑴𝑰 𝑼𝑺𝒕𝒂𝒕 
𝑼𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 

𝒏𝟏(𝑹𝑮𝑩) = 𝒏𝟐(𝑫𝑴𝑰) 𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 

SBU Interaction 8 61.50 2.5 2.5 13 7 

Mivia Action 7 46 3 3 8 4 

MSR Action Pairs 6 32.5 3.5 3.5 5 2 

MSR Daily Activity 16 201 55 55 75 60 

The result obtained by various late fusion techniques is compared to four 

datasets in Table 4.6. It can be observed that max fusion and sum fusion techniques 

give high scores as compared to average and concatenation fusion technique. The 
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max fusion yields highest recognition accuracy at softmax layers because it selects 

the maximum probability from both of the softmax prediction scores and assigns 

a label activity in correspondence to that probability. The highest accuracy is high-

lighted with a bold letter. 

Table 4.6: Accuracy (%) comparison of different fusion techniques on human activity datasets 

Dataset 

RGB+DMI Late Fusion Scores 

Sum Fusion Average Fusion Concatenation Fusion 
Max Fu-

sion 

SBU 98.10 96.45 96.50 98.70 

MIVIA 98.40 97.20 95.75 99.41 

MSR Action Pair 96.90 94.60 94.80 98.30 

MSR Daily Activity 95.36 90.40 91.60 94.37 

 

4.2.9 Results comparison with State-of-the-art  

The comparison of average recognition accuracy (ARA) achieved on these datasets 

with two different input data stream as RGB frames, and single dynamic motion 
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Figure 4.12: Shown results on four datasets with different data inputs: Only RGB frames, Dynamic 
motion image (DMI) and RGB+DMI 
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image(DMI) and the max fusion scores of RGB with DMI is shown in Fig.4.12.  It 

is clear from Fig. 4.12, max fusion of both RGB with DMI gives the best results as 

compared with independent input data streams: RGB and single DMIs. It can be 

seen from work Bilen et al. [183] that the dynamic image obtained with approxi-

mate rank pooling with CNN showed excellent results in many indoor or outdoor 

activities recognition tasks in videos. Further, features extracted from RGB only 

frames are not sufficient to represent the complex activities of human activities. 

Therefore, the proposed approach fused the discriminative features extracted from 

DMI and RGB frames to represents Spatio-temporal variation in activity video. 

The proposed model shows excellent results on all four video benchmarks. The 

results obtained on the MSR Daily activity dataset show somewhat less accuracy 

as compared with SBU Interaction, MIVIA Action and MSR Action pairs due to 

intra-class similarity exists between activity classes and complex background.   

The classification result on these datasets is shown in the form of a confu-

sion matrix is as shown in Fig.4.13. The confusion matrix of SBU dataset is shown 

in Fig.4.13 (a). It is a challenging dataset because of the similarity of action and the 

same motion cues in video frames. It is clear from the confusion matrix that the 

main confusion exists with two similar activities such as ‘approaching’ and ‘de-

parting’ and ‘handshaking’ and ‘exchanging object’. The state-of-the-art compari-

son of similar works on SBU dataset is listed in Table 4.7. Our deep model is eval-

uated on SBU dataset with 5-fold cross-validation similar in the work [185]. The 

recognition accuracy of the proposed approach with two-stream fusion shows the 

best accuracy on this dataset. 



  

93 
 

 

 

 

 

(a) (b) 

(c) (d) 

Figure 4.13: The confusion matrix of datasets: a) SBU Interaction b) MIVIA Action c) MSR Action 
Pairs d) MSR Daily Activity 
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Table 4.7: State-of-the-art comparison of SBU interaction Dataset 

Works Methods Accuracy (%) 

Yun et al. [185] SVM and MIL Boost 87.30 

Feng et al. [49] BiVector and LSTM 82.70 

Ijjina and Chalavadi [119] ConvNet + ELM Classifier 86.58 

Keçeli et al. [118] 2D and 3D ConvNet 94.70 

Elboushaki et al. [122] MultiD-CNN 97.51 

Proposed Approach( RGB) 

Inception-v3 + Bi-LSTM 

76.60 

Proposed Approach (DMI) 91.40 

Proposed Approach (RGB+DMI) Max Fusion 98.70 

The experimental result of MIVIA action and comparison with similar ap-

proaches are shown in Table 4.8.  The LOSO cross-validation evaluation protocol 

is followed for training and testing the proposed model similar in [83]. It is ob-

served from the confusion matrix shown in Fig. 4.13 (b) that actions having no 

motion in the video found confusion for recognize for example ‘sitting’ and ‘sleep-

ing’ activities. The spatial features for both the activities are the same but lack of 

temporal cue due to no movement of actors. In this situation, DMI stream features 

extraction is not so useful for activity prediction. However, the proposed ConvNet 

model obtained the best results with the fusion of CNN-LSTM and dynamic im-

ages as compared with existing methods.  

The result comparison of MSR Action Pairs is shown in Table 4.9. The eval-

uation protocol is followed as in similar works by Wang et al.  [186]. Out of total 

performer, half of the actors are used for training the model and half of the actors 

for testing the action classes. It is observed that from the confusion matrix in 

Fig.4.13 (c) that all the six action pairs are correctly recognized by the proposed 

approach and no occurrence of intra-class pair confusion. There is slight confusion 

between ‘lift a box’ and ‘put down a box’ action pairs but our hybrid model shows 

good performance to recognized each action pairs activity.    
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Table 4.8: State-of-the-art comparison of MIVIA Action Dataset 

Works Method Accuracy (%) 

Carletti et al. [83] Reject 79.80 

Foggia et al. [37] Deep Learning 84.70 

Brun et al. [72] Edit Distance 85.20 

Ijjina and Chalavadi [119] ConNnets + ELM Classifier 93.37 

Saggese et al. [103] Skeleton feature 95.00 

Brun et al. [72] Aclets sequences 95.40 

Proposed Approach (RGB) 

Inception-v3 + Bi-LSTM 

81.59 

Proposed Approach(DMI) 92.71 

Proposed Ap-
proach(RGB+DMI) 

Max Fusion 

99.41 

 

Table 4.9: State-of-the-art comparison of MSR Action Pairs Dataset 

Works Method Accuracy (%) 

Wang et al. [186] LOP 82.22 

Jia et al. [190] LTTL 91.40 

Oreifej and Liu [187] HON4D 93.33 

Vemulapalli and Chellapa 
[191] 

FTP representation 94.67 

Ji et al. [27] One-shot learning 95.10 

Ji et al. [26] Skeleton embedded feature 97.70 

Proposed Approach(RGB) 

Inception-v3 + Bi-LSTM 

87.70 

Proposed Approach(DMI) 94.76 

Proposed Ap-
proach(RGB+DMI) 

Max Fusion 

98.30 
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Table 4.10: State-of-the-art comparison of MSR Daily Activity Dataset 

Works Method Accuracy (%) 

Amor et al. [48] Rate-Invariant Analysis 70.00 

Seidenari et al. [192] NBNN Bag-of-Poses 70.00 

Cai et al. [193] Markov Random Field 78.20 

Zhang and Parker [194] BIPOD 79.70 

Ji et al. [26] Skeleton embedded feature 81.30 

Jing et al. [120] Joint loss function 88.00 

Srihari et al. [121] 4-stream CNN 89.05 

Huynh-The et al. [195] PAM + Pose-Transition 90.63 

Proposed Approach(RGB) 

Inception-v3 + Bi-LSTM 

76.64 

Proposed Approach(DMI) 83.90 

Proposed Ap-
proach(RGB+DMI) 

Max Fusion 

94.37 

The confusion matrix for MSR Daily Activity dataset is shown in Fig.4.13 

(d). It is seen from the confusion matrix that the main confusion occurs in similar 

activities such as play game using a laptop, and write on the paper. Most of the 

activities are correctly classified with a high confidence level. As illustrated in Ta-

ble 4.10, our proposed model performed well and achieved superior accuracy with 

similar state-of-the-art approaches.  

In the next section, a deep bottleneck multimodal feature fusion (D-BMFF) 

technique is proposed that utilized three different modalities RGB, RGB-D(depth) 

and 3D coordinates information for activity classification.  
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4.3 A deep multimodal network based on bottleneck layer features fusion for 

action recognition 

With the invention of advanced Kinect depth sensor various deep learning meth-

ods based on single modality (RGB, depth(D), and skeleton coordinates) and their 

various combinations are introduced for action recognition tasks in videos [23] [24] 

[25] [26] [27]. However, very few approaches are based on the combination of RGB, 

depth and 3D-skeleton coordinates for activity recognition [28]. Such activity 

recognition solutions showed promising results but had limitations due to posi-

tions of joints and coordinates of upper or lower body parts used to represent ac-

tivity [48] [49]. Sometimes skeleton data is degraded due to noise and occlusions 

present in RGB-D images. Therefore, these single modalities based solutions are 

less effective for action representation. In the proposed work, we utilized three 

modalities RGB, depth, and 3D coordinates information for activity classification 

because it helps for better recognition and complete utilization of information 

Features Extraction using Deep Pre-Trained Model  
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Figure 4.14: Schema of deep multimodal network based on bottleneck layer features fusion for action 
Recognition 
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Figure 4.14: Schema of deep multimodal network based on bottleneck layer features fusion for action 
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available from a depth sensor video simultaneously. The details descriptions of 

the proposed model are explained in the following sub-sections  

4.3.1 Deep fusion framework for Human Activity Recognition 

This is known fact that a new deep model requires a large amount of training data 

and computational power when trained from raw data. Consequently, it is not a 

feasible task for collecting and labelling a large amount of data which make a deep 

learning model quite difficult to apply. Due to constrained of large training data, 

we utilized transfer learning for human activity recognition. In the proposed deep 

framework, we have fine-tuned the bottleneck layers and fully connected (FC) 

layer of the pre-trained inception-Resnet-v2 architecture [196] for different input 

streams. The RGB and depth frames activity videos are fed to the pre-trained net-

work at regular interval of ten frames for spatial features extraction while a single 

Skel-MHI image for each activity is given as an input for additional temporal fea-

tures evidence. Further, the extracted multimodal features from three data streams 

are fused at (Conv ‘7b’) and (FC) layers using Multiset DCA fusion technique. The 

activity classification is carried through the SVM machine learning technique after 

fusing the features obtained from a pre-trained deep network. Fig. 4.14 depicted 

the underlying architecture of the proposed framework for human activity recog-

nition.   

4.3.1.1 Features Extraction 

It is experimentally observed that deep pre-trained model trained on a large an-

notated dataset is exchangeable to action recognition task with the smaller training 

dataset. It can be observed from table 4.11 that deep Inception architecture is 

shown promising results at little computational cost as compared with other deep 

architecture. This is because by adding a residual unit with the traditional incep-

tion model given a state-of-the-art performance in recent ILSVRC challenges [196]. 
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Further, it has increased the training speed of Inception model by a sufficient mar-

gin and improve the image recognition task significantly.  

Table 4.11: Comparison of accuracies of Inception-Resnet-v2 architecture with similar state-of-
the-art architectures 

Deep Pre-trained Net-
work 

Crops Top-1 Error 
Top-5 Er-

ror 
Filter bank sizes 

Inception-v3 [180] 144 18.9% 4.3% - 

Inception-ResNet-v1 
[196] 

144 18.8% 4.3% 
k=192,l=224,m=256, 

n=384 

Inception-v4   [196] 144 17.7% 3.8% 
k=192,l=192,m=256, 

n=384 

Inception-Resnet-v2 
[196]  

144 17.8% 3.7% 
k=256,l=256,m=384, 

n=384 

  

In this work, we used Inception-ResNet-v2 architecture for features extrac-

tion from input videos. This deep model is trained on a large image database 

which showed excellent results with minimum error on image classification com-

petitions. It is a 164 layers deep network that accepts 299 × 299 × 3 size of input 

images. It contains two deep architectures residual connections [197] and the latest 

inception architecture Inception-v4 [196]. It is observed that residual connections 

are a favourable choice for training very deep architectures and so that computa-

tional efficiency of deep Inception would be increased by adding the residual units 

into the architecture. The details structure of each Inception-ResNet blocks A, B 

and C is shown in Fig.4.15. The three blocks of inception block is followed by a 

filter expansion layer (1 × 1 convolutional layer without activation). This 1 × 1 

Conv layer help for scaling the dimensionality of the filter bank earlier the addition 

to match the depth of the input.  
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4.3.1.2 RGB Skeleton Motion History Images (RGB-SklMHI) 

It is experimentally observed that the skeleton joint coordinates are not capable 

enough to discriminating some activities due to noise and occlusion errors such as 

self-occlusion with body parts etc. Sometimes skeleton data is degraded due to 

noise and occlusions present in RGB-D images and less effective for action recog-

nition. Further, it is observed that binary MHI images are not sufficient enough to 

discriminate some similar motion pattern such as ‘sitting down’ and ‘standing up’ 

position. To overcome such limitations the concept of a RGB skeleton MHIs from 

the 3D coordinates is introduced in the work of [198].  The RGB skeleton MHIs are 

obtained from joints coordinates based on averaging the binary MHIs on the se-

quential time interval for each action classes. These colour MHIs are based on view 

temporal template and robust to shadows, noise, occlusion and illuminance con-

ditions for action recognition tasks. The formation of RGB-SklMHI from 3D coor-

dinates joint information is based on the sequential time interval for each action 

classes are described in Algorithm 1.  

Inception ResNet-A Inception ResNet-B Inception ResNet-

Figure 4.15: Shown the systematic block diagram for 35𝗑35 grid module of Inception ResNet-A, 
17𝗑17 grid module of Inception ResNet-B, and 8𝗑8 grid module of Inception ResNet-C 
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Algorithm 1: Colorization of Skeleton Motion History Image 

Input: 3D joints coordinates 

Output: RGB Skeleton MHIs 
Input:  

1. N=1,2,3………, n     ; total joints 
2. f=1,2,3, ………,n     ; total frames 
3. p=1,2,3, .........,n      ;all labels    
4. I (X, Y)     template RGB-SklMHI          
5. I(SkeletonConnectionMap)= [spine, left, right, ……] 
6. I(ColorSet)= [0,1,0;0,1,0.33, …….. ] 
7. RGBSkeleton Img (  ) 

Procedure: Create_SklImg ((N, p, f, I (X, Y), ColorSet, color_c, SkeletonConnectionMap) 
for p ←all labels  (do) 
for f ←all frames  (do) 
   for frame= startframe +(N-1): endframe 
      I(X,Y)=zeros(height,width,3); 
      color_c=1; 
   for k = frame-(N-1): frame 
      color_img = (ColorSet, color_c, SkeletonConnectionMap); 
      I(X,Y)= I(X,Y)+ color_img; 
      color_c= color_c + 1; 
    end for 
    end for 
end for 
end for 
end procedure 
Output: RGB Skeleton MHIs. 
 

We have generated the RGB-SklMHI for each RGB-D datasets using the 

procedure explained Algorithm 1. The RGB-SklMHI are given as an input to the 

pre-trained network for extracting the temporal variations patterns in an activity 

video. The classification results obtained using individual stream and fusion with 

other streams are discussed in section 4.3.5.  

4.3.1.3 Multimodal features fusion using Discriminate Correlation Analysis (M-

DCA) 

Deep trained features vector contained the highest redundant information with 

high dimension. Therefore, it is required to adopt an effective dimension reduction 



  

102 
 

technique as compared to conventional data reduction technique. Discriminant 

correlation analysis (DCA) fusion technique is proposed by Haghighat et al. [199] 

for real-time multimodal biometric recognition system with low computational 

complexity. It is a compelling fusion technique which maximized the pairwise cor-

relations among the features sets. Further, it removes the between class correlation 

and restricting the correlation to be within classes. It can be useful for fusing the 

features extracted the multiple modalities or combining the different feature vec-

tors extracted from single modalities.  

DCA algorithm fused the multiple feature sets from multi-modal data 

streams at the decision level.  It showed promising results with more discrimina-

tive efficiency. In proposed work, we have fused the features obtained from three 

different inputs by pre-trained deep architecture at the bottleneck layer ‘Conv 7b’ 

before the fully connected layers. Further, the representation ability further in-

creases as compared fusion at fully connected layer. Algorithm 2 shows the fun-

damental steps for fusing the feature sets using DCA technique.   

In this work, we used the multiple features sets DCA for fusing the features 

extracted from three input streams RGB, RGB-D and RGB-SkelMHI. Let, we have 

𝑚 set of features, 𝒳𝑖 ∈ ℝ
𝑖×𝑛 , 𝑖 = 1,2,3………𝑚 , which are selected by their rank, i.e. 

𝑟𝑎𝑛𝑘(𝒳1) ≥ 𝑟𝑎𝑛𝑘(𝒳2)……… .≥ 𝑟𝑎𝑛𝑘(𝒳𝑚).  Since we have three sets of features 

vector obtained from the pre-trained model. Therefore, DCA is applied for two 

sets of feature stream at a single time, i.e. features vector from the RGB, RGB-D 

and Skel-MHI input data streams are fused first or which are having highest rank 

and next to the highest rank feature set will be fused. The length of fused feature 

vector 𝑟 are selected as given as:                                        

 𝑟 ≤ min (𝑐 − 1, 𝑟𝑎𝑛𝑘(𝒳𝑖), 𝑟𝑎𝑛𝑘(𝒳𝑗)) (4.20) 

Fig.4.16 depicted an example of multiset DCA fusion for three data streams RGB, 

RGB-D and RGB-SkelMHI feature sets. 
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Algorithm 2 Muti-set features fusion using DCA 

Step 1 The mean 𝑚̃𝑖 and 𝑚̃ is calculated for each class and training data, respectively 
as:  

𝑚̃𝑖 =
1

𝑛𝑖
∑ 𝑚𝑗

𝑖𝑛𝑗
𝑗=1

 ,      𝑚̃ =
1

𝑛
∑ 𝑛𝑖𝑚̃𝑖
𝑐
𝑖=1  

Where, 𝑛 number of images, 𝑐 number of classes. 

Step 2 The covariance matrix is computed as Ϲ = ɸᵀɸ 

where ɸ = (√𝑛𝑖(𝑚̃𝑖 − 𝑚̃), ……… . ,√𝑛𝑐(𝑚̃𝑐 − 𝑚̃)), 

Step 3 Calculate the SVD of Ϲ as Ϲ = 𝑼𝜦𝑼ᵀ , 𝜦 = 𝑑𝑖𝑎𝑔(𝜆1𝜆2,…………𝜆𝑐)(𝜆1 ≥ 𝜆2,… ≥ 𝜆𝑐) 

Step 4 
The transform matrix is calculated as 𝙋 =ɸ𝑼𝑟𝜦𝑟×𝑟

−1

2 . 

Step 5 Repeat the steps (1-4) to compute the transform matrix for 𝓧𝑹𝑮𝑩, 𝓧𝑹𝑮𝑩−𝑫, and 
𝓧𝑺𝒌𝒆𝒍−𝑴𝑯𝑰 streams separately. 

Step 6 Calculate the transform data: 𝓩𝟏 = 𝙋𝟏
ᵀ𝓧𝑹𝑮𝑩, 𝓩𝟐 = 𝙋1

ᵀ𝓧𝑹𝑮𝑩−𝑫, and 𝓩𝟑 =

𝙋1
ᵀ𝓧𝑺𝒌𝒆𝒍−𝑴𝑯𝑰.  

Step 7 Evaluate the between-set covariance matrix for two sets of the transformed 

feature set: 𝓢𝒃𝒘𝒏 = 𝓩𝟏𝓩𝟐
𝑻.  

Step 8 Evaluate the SVD of 𝓢𝒃𝒘𝒏 = 𝙑Ʃ𝙑
ᵀ 

Step 9 Define the transform matrix: 𝓣 = 𝙑Ʃ−1/2 

Step 10 Evaluate the transformed data: 𝓧𝟏
′ = 𝓣ᵀ𝓩𝟏, 𝓧𝟐

′ = 𝓣ᵀ𝓩𝟐, and 𝓧𝟑
′ = 𝓣ᵀ𝓩𝟑, 

Step 11 Apply the Multiset DCA on two feature sets at a time using the maximum 
length of the fused feature vector r according to Eq. (4.20). as shown in Fig. 

(4.13). 
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𝓧𝑹𝑮𝑩−𝑫 

𝓧𝑹𝑮𝑩−𝑺𝒌𝒆𝒍𝑴𝑯𝑰  

 

Figure 4.16: Shown the multiset DCA analysis on three data stream features RGB, depth and RGB-
SkelMHI 
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4.3.2 Implementation Details  

We have trained and test our model on MatConvNet toolbox on a system having 

an NVIDIA TITAN RTX memory card with Xenon processor. The RGB and depth 

videos with a batch size of 8 videos are fine-tuned on Conv ‘7b’ up to 140 epochs 

with a dropout of 0.8 after average pooling layer to avoid the overfitting. Initially, 

we used the momentum constant of 0.9 and a learning rate of 0.0001. The scaling 

factor is choosing between 0.1 to 0.3 for residual connection to stabilize the training 

data. For the transparency of results and comparison, we adopt the same evalua-

tion protocol for each dataset as in their original work.  The Leave one out cross-

validation(LOOCV) training protocol used for UT Kinect [200], CAD 60 [201], and 

Florence 3D Action [192] datasets. The 5-fold cross-validation evaluation criteria 

applied for SBU Interaction dataset. The performance of the proposed method is 

measure in terms of Average Recognition Accuracy (ARA) per class for many clas-

ses (𝒞𝑖), which is calculated as in Eq.(4.17). 

4.3.2.1 Human Activities RGB-D Datasets 

In order to test the performance of the proposed method, evaluation is done over 

four publically available RGB-D datasets: UT Kinect, CAD 60, Florence 3D, and 

SBU Interaction. Our deep multimodal fusion approach shows superior recogni-

tion accuracy as compared with earlier approaches on such dataset.  The detailed 

information about the RGB-D datasets is explained in the following subsection. 

4.3.2.2 UT Kinect Action Dataset 

This dataset is introduced by Xia et al. [200] and captured through a single Kinect 

sensor with three different modalities color, depth and 3D skeleton coordinates 

simultaneously. It consists of 10 actors performing 10 action class: waving, walk-

ing, sitting down, sitting up, carry, picking up, pulling, clapping hands, throwing 

and pushing. There are 200 video sequences with total 6220 frames. The spatial 
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resolution for RGB and depth maps are 640×480 and 320×240 pixels respectively 

and recorded with 30 frames per second. The skeleton information is capture with 

20 skeleton joints. It is a challenging dataset in terms of intra-similar activities. The 

sample images of UT dataset are shown in Fig.4.17. 

4.3.2.3 CAD 60 Action Dataset  

Sung et al. [201] proposed this dataset to recognized the human activity in the var-

ious indoor home environment living room, bathroom, office, kitchen and bed-

room.  This dataset is recorded by the Kinect sensor with three different modalities 

such as RGB, Depth and 3D skeleton coordinates data. There are four actors 2 

males and 2 females performing 12 different activities: working on computer, writ-

ing on whiteboard, relaxing on couch, talking on couch, cooking (chopping), open-

ing pill container, cooking (stirring), talking on phone, wearing contact lens, drink-

ing water, brushing teeth, rinsing mouth. The RGB-D frames have the spatial res-

olution 640x480 and skeleton joints contain 15 body joints information data. The 

sample images from this dataset are depicted in Fig.4.18. 

Walk Sit-Down Stand-Up Pick-Up 

Carry Throw Push 

Pull 

Wave-Hands Clap-Hands 

Figure 4.17: Sample frames from UT Kinect dataset 
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4.3.2.4 Florence 3D Action Dataset 

Seidenari et al. [192] proposed this dataset at the University of Florence. It has been 

captured through Kinect Sensor. There are 10 actors performing 9 human activi-

ties: stand up, sit down, bow, tight lace, wave, answer phone, read watch, clap, 

drink from a bottle. Each actor repeated above activities two to three times. There 

is a total of 215 activity video sequences. The sample images from this dataset for 

various activities is depicted in Fig.4.19. 

4.3.3 Result Analysis  

The confusion matrices for all four RGB-D datasets are depicted in Fig. 4.20. We 

can see that the proposed method performs well on all the datasets. The multi-

modal bottleneck layer fusion in conjunction with SVM classifier significantly in-

creases the classification accuracy. The confusion matrix for UT Kinect dataset is 

shown in Fig. 4.20 (a). 

Work on Computer Brushing teeth Drinking water Rinsing mouth 

Relax on couch Write on white-board Cook(chopping) Cook(stirring) 

Talking on phone Open pill container Wear contact lens Talking on couch 

Figure 4.18: Sample frames from CAD 60 Dataset 
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It is noted that most of the activities in the dataset are classified with higher confi-

dence by the proposed D-BMFF technique. Still, there is slight confusion between 

the ‘throwing’ and ‘carry’ activities due to the occlusion caused by the human-

object interaction and field of view in which captured by the sensor. However, the 

model demonstrates the highest accuracy as compared with other existing solu-

tions.   

      The confusion matrix for CAD-60 dataset is shown in Fig.4.20 (b). It is challeng-

ing dataset because most of the activities consist of the upper body part movement 

only. Most of the activities are classified, but there is slight confusion for actions 

such as: ‘opening pill container’, ‘drinking water’, ‘relaxing on the couch’, and 

‘talking on the phone’. This dataset action video shows high sematic level activities 

that could be considered as an advantage such as drinking, eating. 

 

waving 

Clapping Stand up Sit down 

bow Tight lace Answer phone 

Drink from bottle  Read watch 

Figure 4.19: Sample frames from Florence 3D Action 
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(a) (b) 

(c) (d) 

Figure 4.20: Shown the confusion matrix of proposed D-BMFF technique on four datasets: a) UT Ki-
nect, b) CAD-60, c) Florence Action 3D, and d) SBU Interaction dataset 

 

Figure 4.20: Shown the confusion matrix of proposed D-BMFF technique on four datasets: a) UT Ki-
nect, b) CAD-60, c) Florence Action 3D, and d) SBU Interaction dataset 
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The confusion matrix for Florence 3D dataset is shown in Fig.4.20 (c). We 

can see that the proposed method performs well and shows better results than 

existing works on all actions of this dataset. The main confusion occurs for actions 

like ‘sit down’, ‘drinking water’ and ‘answering the phone’. It is because of the 

same action is performing in various ways and human-object interaction. 

The confusion matrix for SBU Interaction dataset is shown in Fig.4.20 (d). It 

is challenging dataset because the interaction activities performed by the pair of 

actors, unlike the single actor independently. The actions are non-periodic and 

very similar in movements. We can see that the main misclassification is observed 

in ‘shaking hands’ and ‘exchanging the object’ or ‘approaching and departing’ ac-

tivities of this dataset. Besides this high similarity actions, the proposed method 

shows superior performance on all activities.  

4.3.4 State-of-the-art Comparison  

In this section, we discussed and compared the results obtained by the deep model 

on four RGB-D datasets. The average recognition accuracies on UT Kinect, CAD-

60, Florence 3D, SBU Interaction are: 99%, 98.50%, 98.10%, and 97.75% respec-

tively. Table 4.12 listed the results obtained by different existing works on UT Ki-

nect dataset. We can see that the proposed method shows the comparable accuracy 

on this dataset as compared with state-of-the-art approaches. It can be observed 

that most of the works utilize only skeleton input for action representation and 

very few on multiple modalities [25] [202].  However, it seems easy to implement 

the model using skeleton information only, but they suffer due to self-occlusion 

and noise errors present to estimates the skeleton coordinates. Our method shows 

higher activities than the cited works [203] [106] [204] by a sufficient margin. The 

accuracy is comparable with the work [25] as they fused the depth and skeleton 

information for action recognition.  
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Table 4.12: Comparison of multimodal features fusion score using Inception-Resnet-v2 on UT 
Kinect Dataset 

Works Input Method Accuracy (%) 

Avola et al. [202] RGB + Depth BoW + ELM 84.00 

Devanne et al. 
[203] 

Skeleton Riemannian Manifold 91.50 

Ghodsi et al. 
[106] 

Skeleton Joint skeleton trajectories 96.80 

Zhang et al. [204] Skeleton Multilayer LSTM 97.00 

Vemulapalli et al. 
[205] 

Skeleton Lie Group 97.08 

Huynh-The et al. 
[195] 

Skeleton PAM + Pose-Transition 97.00 

Nguyen et al. [25] Depth +skeleton KM-IELLogE-IELLogE 99.50 

Proposed RGB+ Depth+ Skeleton D-BMFF 99.00 

Table 4.13 depicted the state-of-the-art comparison of CAD-60 dataset. It is noted 

that the proposed model gave the highest accuracy as compared with similar ap-

proaches. Our model shows a significant hike in accuracy as compared with the 

multimodal features based works [28] [109] [110]. 

Table 4.13: Comparison of multimodal features fusion score using Inception-Resnet-v2 on 
CAD 60 Dataset 

Works Input Method Accuracy(%) 

Avola et al. [202] RGB+ Depth BoW +ELM 82.60 

Sung et al. [201] Depth +skeleton Max Entropy Model 83.20 

Raman and Maybank 
[110] 

Depth+ Skeleton H-HMM 85.40 

Khaire et al. [28] RGB+ Depth+ Skeleton 5-CNNs 90.00 

Kong et al. [109] RGB+ Depth+ Skeleton CMFL 94.10 

Liu et al. [206] Skeleton Pose+ kNN 95.75 

Li et al. [207] Skeleton ShapeDTW 97.30 
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Franco et al. [144] RGB+ Skeleton HOG+BOW fusion 98.30 

Proposed RGB+ Depth + Skeleton D-BMFF 98.50 

 

Table 4.14: Comparison of multimodal features fusion score using Inception-Resnet-v2 on 
Florence 3D Action Dataset 

Works Input Method Accuracy (%) 

Seidenari et al. [192] Skeleton NBNN Bag-of-Poses 82.00 

Devanne et al. [203] Skeleton Riemannian Manifold 87.04 

Vemulapalli et al. 
[205] 

Skeleton Lie Group 90.88 

Salih and Youssef 
[208] 

Skeleton STIP MSH 86.13 

Huynh-The et al. 
[195] 

Skeleton PAM + Pose-Transition 92.09 

Sun et al. [209] Skeleton 
Local and global Histo-

gram 
92.19 

Yang et al. [107] Skeleton Latent Max-Margin 93.42 

Nguyen et al. [25] Skeleton +Depth KM-IELLogE-IELLogE 95.37 

Proposed RGB+ Depth+ Skeleton D-BMFF 98.10 

The results obtained on Florence 3D dataset are shown in Table 4.14. It is 

observed that our multi-modal approach shows higher accuracy despite the intra-

class similarity and different way of performing the action classes. The state-of-

the-art comparison of SBU interaction dataset is shown in Table 4.15. The proposed 

model outperforms the other existing approaches to this challenging dataset. We 

have achieved the highest accuracy of 97.75% on such complex interaction activity 

dataset. Our model gained a sufficient margin accuracy as compared with only 

skeleton features based activity descriptors [49] [185]. 
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4.3.4.1 Accuracy Comparison with Existing Pre-Trained Deep Models 

In this section, we discussed the recognition accuracies using both single and 

multi-modal fusion streams obtained through different pre-trained deep architec-

tures. The multimodal features are extracted by fine-tuned the pre-trained incep-

tion-ResNet-v2 model and fused the extracted features from three different data 

streams at ‘Conv 7b’ layer just before the fully connected layers. It is empirically 

observed that fine-tuning on ‘Conv 7b’ layer showed better results than features 

extraction from a fully connected layer in conjunction with multi-class SVM clas-

sifier. This is because SVM classifier shows better results for intermediate layers 

for small datasets as compared with features extracted from fully connected layers.   

Table 4.15: Comparison of multimodal features fusion score using Inception-Resnet-v2 on 
SBU Interaction Dataset 

Works Input Methods Accuracy (%) 

Yun et al. [185] Skeleton SVM and MIL Boost 87.30 

Feng et al. [49] Skeleton Bi-Vector and LSTM 82.70 

Ijjina and Chalavadi 
[119] 

RGB + Depth ConvNet + ELM  86.58 

Keçeli et al. [118] Depth 2D and 3D ConvNet 94.70 

Khaire et al. [28] RGB + Depth + Skeleton VGG-F+WPM 96.26 

Proposed RGB+ Depth+ Skeleton D-BMFF 97.75 

Furthermore, the features are extracted by fine-tuning at fully connected layers. 

The obtained results compare with the bottleneck layers’ results. Table 4.16 depicts 

the result of the different pre-trained model on UT Kinect dataset. The fusion re-

sults obtained at Conv ‘7b’ layer is 6% higher than ‘FC’ layer by using Inception-

ResNet-v2 architecture.  For a comparison point of view, we have evaluated the 

proposed model on existing famous pre-trained models. We have fine-tuned the 

action classes on other deep architectures at the last fully connected layers for  In-

ception- v1 [180], ResNet [197], and VGGNet [210]. 
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Similarly, Tables 4.17, 4.18, and 4.19 listed the results obtained from fine-tuned 

deep architectures for CAD-60, Florence Action, and SBU Interaction datasets, re-

spectively. The fusion accuracy increase for CAD-60(8%,), Florence 3D (6%), and 

SBU (7%) datasets. It is observed that fusion results are increased by a significant 

margin when the features are extracted from intermediate Conv ‘7b’ layer as com-

pared with the fully connected layer.  

Table 4.16: Results comparison of Pre-trained architectures on UT Kinect Dataset 

Model 

Dataset 
Modality 

VGGNet 

[210] 

(FC) 

Inception-

v1 [180] 

(FC) 

ResNet 

[197] 

(FC) 

Inception-ResNet-v2 

(FC) (Conv ‘7b’) 

UT  

Kinect 

RGB 84.50 80.70 85.40 86.00 90.70 

Depth 82.50 85.10 86.20 87.70 91.20 

Skeleton 86.40 88.50 89.40 86.60 90.10 

Fusion 90.00 91.40 92.30 93.60 99.00 
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Figure 4.21: Shown the fusion accuracies comparison obtained from different pre-trained 
models on RGB-D datasets 
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Table 4.17: Results comparison of Pre-trained Architectures on CAD-60 Dataset 

            
Model   

 Dataset 

Modality 

VGG19 
[210] 

(FC) 

Inception-
v1 [180] 

 (FC) 

ResNet 
[197] 

(FC) 

Inception ResNet-v2 

(FC) (Conv ‘7b’) 

CAD 60 

RGB 85.80 87.00 86.10 89.30 94.40 

Depth 84.40 88.70 89.60 85.70 91.30 

Skeleton 89.10 88.50 91.10 89.80 95.60 

Fusion 90.60 89.60 97.80 90.10 98.66 

 

Table 4.18:  Results comparison of  Pre-trained Architectures on Florence 3D Dataset  

        Model   

 

 Dataset 

Modal-
ity 

VGG19 
[210] 

(FC) 

Inception-v1 
[180] 

(FC) 

ResNet 
[197] 

(FC) 

Inception ResNet-v2 

(FC) (Conv ‘7b’) 

Florence 
3D  

RGB 86.50 85.60 87.70 90.60 92.90 

Depth 84.60 88.10 89.60 87.40 91.20 

Skeleton 86.70 92.30 90.50 88.20 93.40 

Fusion 90.00 91.30 92.40 91.35 97.20 

 

Table 4.19: Results comparison of Pre-trained Architectures on SBU Interaction Dataset 

          Model   

 

Dataset 

Modal-
ity 

VGG19 
[210] 

(FC) 

Inception-
v1 [180] 

(FC) 

ResNet 
[197] 

(FC) 

Inception ResNet-v2 

(FC) (Conv ‘7b’) 

SBU 

RGB 90.80 90.00 92.80 92.40 96.80 

Depth 89.50 89.80 90.10 89.30 92.30 

Skeleton 91.40 90.50 92.10 87.70 95.60 

Fusion 93.50 92.60 94.60 90.70 97.75 
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It is observed from Tables (4.16-4.19) that skeleton streams given the maximum 

accuracy for each dataset as compared with RGB and depth frames. This is because 

3D coordinates are first converted into motion history skeleton images for each 

activity videos. The RGB-SkelMHIs incorporates temporal pose variations and ro-

bust to variations due to similar action classes.  

4.4 Significant Outcomes  

The deep learning-based architectures are dominated and widely adopted for 

computer vision applications, especially in visual recognition. The above-men-

tioned study proposed the two-deep learning-based ConvNet architectures are 

presented to overcome the limitations of handcrafted solutions. After doing this 

empirical study, we observed the following significance outcomes as: 

 It is experimentally observed that deep pre-trained model trained on a large 

annotated dataset is exchangeable to action recognition task with the 

smaller training dataset.   

 The first deep ConvNet model utilized two parallel deep learned architec-

tures, first is the pre-trained CNN and Bi-LSTM to extracted the spatial fea-

tures from the RGB frames and on the other hand the second stream used a 

pre-trained CNN fine-tuned with fully connected layers to extracted the 

temporal features from DMIs. 

 It is observed that the activities which do not have motion, the CNN-Bi-

LSTM stream combination classify the activity classes with better recogni-

tion accuracy.  On the other hand, the activities which have high motion, 

the dynamic images are used to boost the prediction with the CNN-LSTM 

stream after late fusion at softmax layer.  

 It can be observed that from Tables 4.7,4.8,4.9 and 4.10, the comparisons 

with other state-of-the-art are outlined for the proposed deep architecture 
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proving the dominance of the framework in terms of accuracy. The predic-

tion accuracy is computed on four publically available video benchmarks 

as SBU (98.70%), MIVIA (99.41%), MSR Action Pairs (98.30%), and MSR 

Daily Activity (94.37%). 

 It is observed that single modality based approaches severe affected by self-

occlusions, noise and error present in the video, especially in skeleton coor-

dinates. Therefore, the multimodal feature fusion increases the recognition 

rate and helps to complete utilization of available data. 

 In the second approach, we proposed a deep bottleneck multimodal fea-

tures extraction (D-BMFF) technique for human activity recognition by uti-

lized the all three modalities RGB, Depth(d), and 3D Skeleton information. 

 It is noted that from Tables, 4.12,4.13,4.14, and 4.15, multiset features fusion 

at the bottleneck layer before the top layer increases the classification accu-

racy with the SVM classifier technique. 

 The proposed model is evaluated on four RGB-D datasets and outperforms 

the state-of-the-art approaches. It achieved the highest accuracy on CAD-

60, Florence 3D and SBU interaction dataset and comparable performance 

on UT Kinect dataset. 

 However, multimodal features extraction from intermediate layers is more 

complex due to a large number of deep layers of the pre-trained architec-

tures. In future, we will try to developed deep model by utilizing the par-

allel computation and representation of CNN architecture.  
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Conclusion and Future Scope  

This chapter provides a summary of proposed works, significant finding, contributions and 

limitations. Further, we also suggest some future directions, short-term and long-term 

perspectives for human activity recognition in videos.   

5.1 Conclusions  

This work started with background knowledge about human action or activity 

recognition in the video sequences, and major challenges existing for action recog-

nition in videos, associated HAR applications and their potential manifestation by 

using existing solutions. Based on the theoretical and experimental works in this 

study, we can draw the following conclusions are as follows:  

 It has been observed that to recognized action in single still image is more 

challenging than video sequences.  It can be considered more challenging 

to recognised action in still image than video analysis. Because it does not 

involve the temporal variations, illumination variation and alignment of 

the images.  

 In this context, a multiresolution based feature descriptor model (EMRFs) 

is developed for the recognition of human action in video sequences with 

the help of still key pose images.  

 It is observed that it not a good idea to extract key poses frames using nor-

mal distance function or some fixed threshold because of the risk of high 

information lost. Therefore, still key poses images are selected from videos 
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using fuzzy inference model based on maximum histogram distances be-

tween adjacent frames that removed adjacent frames redundancy.  

 Furthermore, the Gabor wavelet transform is used to make these key poses 

frames invariant for different orientations and scales. The parameters such 

as numbers of bins, number of scale and orientations are chosen empirically 

for development of the EMRFs. 

 The performance of the EMRFs is measured on publically available such as 

Weizmann, KTH, UCF YouTube datasets, those are challenging in respect 

of lightening variations, and zoom in and out.  

 The developed handcrafted feature descriptor showed best results as com-

pared with state-of-the-art approaches.  

In the second part of this thesis work, we proposed two deep learning-

based architectures for activity recognition and concluded that:   

 It is observed that the improved image recognition approaches extend hu-

man action recognition in video sequences. Human action motion in a video 

can be disintegrated into spatial and temporal features. The spatial features 

contain the appearance information about an object in each video sequence 

while temporal features represented in the form object moving across the 

video sequences.  

 The first-deep model architecture, we utilized two parallel stream deep ar-

chitectures, first upper stream combination of the pre-trained CNN and Bi-

LSTM to extract the spatial features from the given RGB frames. The second 

lower stream is a pre-trained CNN fine-tuned with fully connected layers 

fed with DMIs as input for temporal extraction cues. Therefore, a robust 

two-stream deep ConvNet model is developed for the recognition of single, 

multi-person and human-object interaction (HOI) activities in the video se-

quence. 
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 The proposed ConvNet is evaluated on four publically available standard 

video benchmarks: SBU Interaction, MIVIA Action, MSR Action Pairs, and 

MSR Daily Activity.  

 These datasets are challenging due to the existence of non-periodic action, 

human-object interactions, intra-class similarity, and similar motion cues 

activities. The comparisons of accuracy with state-of-the-art and outper-

form, proving the dominance of the proposed framework. 

 In the second-deep model architecture, a deep bottleneck multimodal fea-

tures extraction (D-BMFF) technique for human activity recognition that 

utilized three modalities RGB, Depth(D), and 3D Skeleton information are 

proposed. The multimodal data features fusion helps to complete utiliza-

tion of available sensor data and increased the recognition rate. 

 It is observed that single modality based approaches are severely affected 

by self-occlusions, noise and error present in the video, especially in skele-

ton coordinates. Therefore, the RGB skeleton MHIs is utilized to eliminate 

the errors presenting in the estimation of 3D coordinates.  

 Further, it is observed that fusion at the bottleneck layer before the top layer 

increases the classification accuracy with the SVM classifier as compared to 

softmax layer prediction scores.  

 The order to test the efficacy of the proposed model we evaluated our 

model on four challenging RGB-D datasets and our model outperform the 

other state-of-the-art model. We achieved the highest accuracy on CAD-60, 

Florence 3D and SBU interaction dataset and comparable performance on 

UT Kinect dataset. 
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5.2 Future Prospective  

The main objective of HAR system approaches is to automatically recognize activ-

ity in videos. Most of the handcrafted features solutions are developed and recog-

nized an activity from action template building on a given set of videos. Instead of 

satisfactory results of many issues are unresolved till now. Due to the process of 

building the action template is more prone to human mistakes in handcrafted fea-

tures descriptors. Therefore, we have to focus on new extensions to the latest 

model of action templates. We have to more conscious, especially on real-time ap-

plications of computer visions systems that iteratively apply the action templates 

on online streaming video. 

It is observed that training deep ConvNet architectures requires a lot of la-

belled data to avoid the overfitting of the model. Further, the performance of ac-

tion recognition architectures suffers due to inaccurate labels. However, it possible 

for a mixture of annotated and unannotated data for training the models. There-

fore, it is required to design such ConvNet architectures for action recognition that 

can learn features from both labelled and unlabelled data.   

 In future, a more realistic study may be conducted on the unconstrained 

dataset, and EMRFs can be used for many other applications such as visual 

sentiment representation and analysis, movie analysis, content-based rec-

ommender systems etc. 

 In future work, depth frames along with 3D skeleton coordinate infor-

mation and multi-view actions classes may be used to make the action pre-

diction more dynamic to intra-class-life applications. It may also be applied 

for real-time detection of human activities, and other useful applications 

such as crowd anomaly detection, sports actions classification, and devel-

opment of intelligent surveillance system, etc. 
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 However, multimodal features extraction from intermediate layers is more 

complicated due to a large number of deep layers of the pre-trained archi-

tectures. Therefore, we can try to develop such a deep model by utilizing 

the parallel computation and representation of CNN architecture. Hence, 

we can extend our approach for real-time applications, elderly care, and 

more complex actions with less complexity. 

5.3 Future Applications 

It is observed that most of the existing solutions based on handcrafted features or 

deep features are less suitable for real-time action recognition due to their depend-

encies on computational resources.  It is necessary to develop such models that 

meet real-time action recognition in videos. In future, our motive to design and 

make necessary changes in the proposed frameworks to make them suitable for 

such challenges.  

 Real-time multi-person pose estimation 

Human pose estimation is the process of detecting the human pose in an 

image or video sequences. It is also called localization of human joints. A 

pose estimation task can be of any type such as single person pose estima-

tion; Multiperson pose estimation and real-time pose estimation in public 

places. Real-time multi-person pose estimation is a challenging task as com-

pared with others. It may include unknown number of persons at multiple 

time, orientations, scales, complex interactions, occlusions, and limb artic-

ulations. The complexities of the algorithm may grow with the number of 

peoples in the scene. Therefore, it is a challenging task and needs to explore 

for future research [211].  

 Suspicious Activity recognition 

In recent world video surveillance plays a major role in the security tasks 

[212]. The video surveillance system consisted of activities recognition or 
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abnormal activities detection and behavioural analysis that can be used for 

real-time applications. In future, we would like to extend our deep learn-

ing-based model for detection of abnormal or suspicious activities events in 

real-time during video surveillance.   

 Children Activity recognition  

Due to the prevalence of smartphones and advanced wireless technologies, 

the popularity of smartphones based activity recognition increasing daily, 

especially for mobile healthcare (mHealth). Till now, major activity recog-

nition solutions focused on adult healthcare diseases such as asthma attacks 

[213]. However, recent studies and available physiological data impact of 

asthma exacerbation in children also [214]. In future, our target is devel-

oped activity model with the help of smart devices for prevention and 

recognition of asthma attacks in patients, especially in children. It seems to 

be more challenging because collecting large annotated database for chil-

dren as compared with adult’s database. Further, there is a large variation 

between children’s activities when performing similar activities.  

 Autonomous Driving Vehicle 

Activity recognition is the most fundamental building block of autonomous 

driving vehicles. Action detection and prediction algorithms could be one 

of the potential application for self-driving vehicles. In future, we will try 

to extend our deep learning action classification model for real-time action 

prediction such as pedestrian’s action detection. 
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