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ABSTRACT 

 

Artificial Intelligence & Machine Learning has already established a fairly strong foothold 

in the field of finance & other associated areas. On the front end  machine learning is 

widely utilized for risk management and fraudulent transaction detection. At the front end  

AI is used for customer segmentation and support and pricing the derivatives (options 

,futures & such). 

 

The only arena with limited Machine Learning usage has been in the buy-side of financial 

activity or more precisely Portfolio Management which includes selection of the best 

portfolio among a set of portfolios in accordance with certain objective such as expected 

return, financial risk in short any tangible or intangible aim. 

 

The aim of this project is to  review traditional  mathematical methods for portfolio 

optimization ( such as Markowitz ) , unsupervised ( such as Principal Component 

Analysis), supervised machine learning approaches, and related techniques. 

 

For the purpose of this project we will be using NSE stock data and identifying the top 

stock options and applying various optimization algorithms using python. Based on the 

results obtained we plan on identifying the optimal method. 
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CHAPTER  1 - INTRODUCTION 

 

Investment and portfolio management is a fairly significant aspect of the secondary capital 

market due to the fact that it helps in mobilizing the savings of the investors and 

subsequently assisting in the development of the economy via saving and transfer process. 

An investor can be a corporation , an individual, a government, or a pension fund. There 

are a variety of investment options  available, offering different risk-reward tradeoffs. A 

thorough understanding of the core concepts and analysis of the various options available 

can help the investors in creating a portfolio the maximizes returns while reducing the 

exposure to risk.  

With the availability of a wide variety of investment aveneues , investors have 

considerable options to build their portfolio after weighing the pros and cons of each 

option. There are two main categories of investment options i.e.,  

 Financial assets  :  equity shares, derivative instruments , government securities,  

post office schemes, mutual fund shares, corporate debentures ,insurance policies, 

and deposit with banks. 

 Real assets  :  tangible assets such as  house, gold, commercial property, 

agricultural farm, precious stones, and art objects. 

There are two broad categories of investing – direct and indirect investing .  Direct 

investing is where investors manage their own individual portfolios and the risk and return 

they receive is solely dependent on their ability to analyze the market behaviour and 

fluctuations. Indirect investing involves financial intermediaries which invest pools of 

funds into the market and maintain the investor portfolios, providing the investors with 

expert advice and recommendations and  relieving the investors of making their own 

decisions.  

This is the point where portfolio managers come in, their primary job is to manage  

investor portfolios framed according to their invidual  preferences ,return objectives and 

risk bearing capacity. Portfolio management entails portfolio planning, identification, 

selection and construction, feedback and evaluation of securities. The hidden talent in 



 
 

portfolio management lies in obtaining an adequate balance between the objectives of 

safety, liquidity and profitability. 

Traditionally after setting up the investment policy and portfolio objectives by assessing 

the  current and future financial needs of the individual investor, the next task for the 

investor/portfolio manager is the analysis and evaluation of the investment options 

performed with the help of a combination of technical and fundamental analysis. 

Technical analysis aims to predict the future movement of the price of a particular 

financial asset that is traded on the market , one of the main drawback of technical analysis 

is the fact that the analysis of historical prices is based on the assumption that trends and 

patterns repeat itself.  

On the other hand fundamental analysis aims to determne the intrinsic value of an 

particular financial asset, it helps in determining which financial asset is over-priced or 

under- priced based on the difference between their market value and intrinsic value. 

Similar to technical analysis , fundamental analysis is also prone to errors and bias one of 

the assumptions that gives rise to the same is the fact that fundamental analysis  assumes  

that intrinsic value is the present value of future flows from particular investment.  

Thus there was felt a need to provide sound and accurate analysis of investment 

instruments in order to construct even more risk - resistant and high return yielding 

portfolios. Modern portfolio theory (MPT) gave rise to the same. MPT  or portfolio theory 

was first introduced by Harry Markowitz in his paper “Portfolio Selection”  in the Journal 

of Finance ( 1952 ).  Before modern portfolio theory ( MPT ), the decision about whether 

to include a investment option in a portfolio was based solely upon the  fundamental 

analysis of the firm, its dividend policy and its financial statements. Harry Markowitz 

stirred a whirlwing by suggesting the fact that the value of a security to an investor might 

can be evaluated optimally by calculating its mean, its standard deviation  and its 

correlation to other securities in the portfolio. 

Portfolio theory evaluates how risk - averse investors frame portfolios in order to optimize 

expected returns for a given level of market risk. The theory also aims to quantify the 

benefits of diversification. Portfolio theory constructs an efficient frontier of optimal 

portfolios out of a universe of risky assets . Every portfolio on the efficient frontier 



 
 

provides the maximum  expected return for a particular  level of risk. Investors are 

required to hold one of the optimal portfolios on the efficient frontier and adjust their total 

market risk positions within the risk - free financial asset. 

Furthermore in this study we have sought to explore the applications of Machine Learning 

algorithms in the field of investment and portfolio management Machine learning based 

methods that refer to statistical learning with data are widely applicable in computational 

finance.Which is found to be particularly helpful in order to obtain more accurate and risk 

resistant portfolios and also to overcome the limitations and shortcomings of the 

traditional portfolio optimization techiques. Some of the Machine Learning lagorithms 

that we have tried to use are Principal Component Analysis (PCA), Auto-encoder risk, 

Hierarchical Clustering, etc. 

 

 

1.1 Industry Profile 

1.1.1 Investment options  

There is wide variety of investment vehicles/options  now available to investors and 

portfolio managers. Investors are free to select any one or more alternative options 

depending on their needs. All categories of investors are equally interested in safety, 

liquidity and reasonable return on the alternatives invested by them. In India, investment 

alternatives are continuously increasing along with new developments in the financial 

market. For sensible investing, investors should be aware of the the characteristics and 

features of various investment options. 

 Equity Shares : type of security that represents  ownership in a company. 

Investment in shares is more risky because the share prices go on changing day by 

day. Today, the market is more volatile and hence fluctuating share leading to lack 

of stability. However , returns on equities over a long time horizon are generally 

higher than most other investment options. 

 



 
 

 Bonds & Debentures : are debt instrument issued for a period of more than one 

year with the purpose of raising capital by borrowing. Debenture is a document 

issued by a company while bond is issued by the Government. There is not much 

risk while e investing in debentures as compared to shares. The return on 

debentures is also reasonable and stable. 

 

Fig 1.1 Investment Options 

 

 Mutual Funds : is made up of money that is pooled together by a large number of 

investors. The investments by the Mutual Funds are made in shares, bonds, 

debentures,etc. The  current value of Mutual Funds  is calculated  on daily basis 

and is reflected in Net Asset Value (NAV) declared regularly and NAV keeps on 

fluctuating with the changes in the stock and bond market. Hence the investing in 



 
 

Mutual Funds is not risk free, but a good fund manager can assist in providing 

regular and higher returns compared to the returns from fixed deposits of a bank. 

Mutual Funds provide liquidity in case of open-ended schemes and some of the 

schemes provide tax-relaxation. 

 

 Life Insurance Policy : The life insurance sector in India has been gradually 

developing at a steady pace since the last few decades with a lot of new private 

players entering the market. Life insurance is a kind of investment option that 

serves a dual purpose - provides family protection to the investor as well as return 

on investment in the form of yearly bonus on the policy. The return on investment 

is reasonably low  6%  because of risk exposure and tax relaxation. The premium 

paid on a life insurance policy is exempted from the taxable income . Even though 

the maturity period of a life insurance policy  is long, it can be liquidated or loan 

can be availed on the policy, hence there is some level of liquidity in this 

investment avenue. Therefore, life insurance is a profitable investing option and 

there is almost negligible risk in it. 

 

 Bank Deposits :   Investing of surplus money in bank  is quite popular in India 

especially among service class population. Deposits are made by the account 

holders for specific period of time  and the bank pays interest on it. Bank deposits 

have high level of liquidity. Banks also provide loans on the security of fixed 

deposit receipts. One of the main limitations of bank deposits as an investment 

option is that the rate of return is low when compared to other investment options. 

Also capital appreciation is not possible when investing in a bank. 

 

 Investment in Real Estate :  includes properties like industrial land, building, 

agricultural land ,plantations, farm houses , flats or houses. As the demand 

increases but the supply of land is limited, the prices tend to increase. Hence, it is 

lucrative investment option which provides higher return within a short period of 

time. But in this option there is a low liquidity and the risk in this type of  

investment is higher when compared to investment in banks and mutual funds. 



 
 

 

 Investment in Silver & Gold : in India the value of precious metals is deeply rooted 

in the culture and customs, with gold being used as most sought after wedding gift 

since centuries. The prices of gold and silver are rising at rapid rate, because of the 

fact that the supply is increasing at a lower  rate than the demand which is quite 

high. This investment option is highly liquid, as it could be sold at any time. The 

market prices are continuously climbing. Hence, the return on investment avenue 

is also increasing. The investment is also safe and secured combined with the 

advantage of capital appreciation. 

 

1.1.2 Objectives of Portfolio Management 

Any portfolio management decision will be influenced by three objectives security, 

liquidity and yield. A best investment decision will be one, which has the best possible 

compromise between these three objectives :  

 

Fig 1.2 Objectives of Portfolio Management 

 Security/Safety of Principal: Security not only involves keeping the principal sum 

intact but also keeping intact its purchasing power intact. Safety means protection 

for investment against loss under reasonably variations. In order to provide safety, 

a careful review of economic and industry trends is necessary. In other words 

errors in portfolio are unavoidable and it requires extensive diversification. Every 

investor wants his basic amount of investment should remain safe. 



 
 

 Liquidity i.e. nearness to money: Because investors may need to convert their 

investment back to cash or funds to meet their unexpected needs and demands , 

their investment should be highly liquid. They should been cashable at short 

notice, without any difficulty and  minimal loss . If they cannot come to our rescue, 

investors may have to borrow or raise funds externally at high cost and at 

unfavorable terms and conditions. Such liquidity can be possible only in the case 

of investment, which has always-ready market and willing buyers and sellers. Such 

instruments of investment are called highly liquid investments. 

 

 Diversification: The basic objective of building a portfolio is to reduce risk of loss 

of capital and / or income by investing in various types of securities and over a 

wide range of industries. 

 

 Yield : best described as the net return out of any investment. Hence given the 

level or kind of security and liquidity of the investment, the appropriate yield 

should encourage the investor to go for the investment. If the yield is low 

compared to the expectation of the investor, they might prefer to avoid such 

investment and keep the funds in the bank account or in worst case, in cash form 

in lockers. Hence yield is the attraction for any investment and normally deciding 

the right yield is the key to any investment for any portfolio manager. 

 Stability of Income: So as to facilitate planning more accurately and systematically 

the reinvestment consumption of income is important. 

 

 Capital Growth: This can be attained by reinvesting in growth securities or through 

purchase of growth securities. Capital appreciation has become an important 

investment principle. Investors seek growth stocks which provides a very large 

capital appreciation by way of rights, bonus and appreciation in the market price 

of a share. 

 

 



 
 

 Marketability: It is the case with which a security can be bought or sold. This is 

essential for providing flexibility to investment portfolio. 

 

 Favorable Tax status (Tax Incentives): The effective yield an investor gets via his 

investment depends on tax to which it is subjected to . By minimizing the tax 

burden, the yield can be effectively improved. Investors try to minimise their tax 

liabilities from the investments. The portfolio manager has to keep a list of such 

investment vehicles along with the return risk, profile, tax implications, yields and 

other returns. Investment programs without considering their subsequent tax 

implications may prove  costly to the investor. 

 

 

1.1.3 Portfolio Management Industry- Return 

A return is the ultimate objective for any investor and every type of investment avenue 

can be characterized by certain level of profitability. But a adequate balance between 

return and risk is a key concept of investment and portfolio management. The most basic 

definition of return is the benefit reaped from an investment. In most cases the investor 

can estimate his/ her historical return precisely. 

Most investments have two components of their measurable return - some form of income 

and a capital gain or loss. The rate of return is the percentage increase in returns with 

respect  the holding period :  

   𝑅𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 =
𝐼𝑛𝑐𝑜𝑚𝑒+𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑔𝑎𝑖𝑛𝑠

𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑝𝑟𝑖𝑐𝑒(%)
 ………...(1.1) 

 

For example, rate of return of the share (r) will be estimated as : 

𝑅 = 𝐷 +
 𝑃𝑚𝑒−𝑃𝑚𝑏

𝑃𝑚𝑏
(%).............................(1.2) 

 

Here   D – dividends; 



 
 

Pmb- market price of stock at the beginning of holding period; 

Pme - market price of stock at the end of the holding period; 

The rate of return, calculated in equations 1.1 and 1.2 is called holding period return, due 

to the fact that its calculation is independent of the variable of time. The investor only  

knows about the beginning of the investment period and its end. The investor has to be 

very careful during the interpretation of holding period returns in portfolio analysis as it 

is impossible compare the alternative investments using holding period returns, if their 

holding periods  have been different. Statistical data that can be used for the investment  

and portfolio formation analysis deals with a series of holding period returns. In such cases 

arithmetic average return or sample mean of the returns  (ř)  can be calculated as : 

ř =  
Ʃ𝑟𝑖

𝑛
...................................(1.3) 

Here   ri - rate of return in period i; 

n - number of observations ; 

It must be kept in mind that both holding period returns and sample mean of returns have 

been calculated using historical data. Howsoever , what happened in the past for the 

investor is not as important as whatever happens in the future, because all the decisions of 

the  investor are focused on the expected results from the investments which occur in the 

future.  

In order to analyze each particular investment option’s probability to earn profit in the 

future , the investor must think about several scenarios of possible fluctuations in macro 

economy, industry and the organization which could influence asset prices ant rate of 

return.  

Hypothetically ,  it could be a series of discrete possible rates of return in the future for 

the same asset with the different probabilities of earning the particular rate of return. But 

for the same asset the sum of all probabilities of these rates of returns must be equal to 1 

or 100 % ,  called simple probability distribution in mathematics.The expected rate of 

return E(r) of investment is defined as the statistical measure of return, which includes the 



 
 

sum of all possible rates of returns for the same investment weighted by their respective 

probabilities : 

 

𝐸(𝑟) =  Ʃ ℎ𝑖 ∗ 𝑟𝑖………………………(1.4) 

Here hi - probability of rate of return; 

ri - rate of return. 

Cases where the investor has  more than enough information for modeling of future 

scenarios of changes in rate of return for investment, the decisions should be based on 

estimated expected rate of return. But sometimes sample mean of return (arithmetic 

average return) are a useful proxy for the concept of expected rate of return. Sample mean 

can give an unbiased estimate of the expected value, but obviously it‘s not perfectly 

accurate, because based on the assumption that the returns in the future will be the same 

as they were in the past. In general, the sample mean of returns should be taken for the 

cases of longer duration, as the investor is positive that there has not been too much change 

in the shape of historical rate of return probability distribution. 

 

1.1.4 Portfolio Management Industry- Risk 

The most important characteristics of investment avenues on which the foundation of the 

overall variety of portfolios is based upon  is the return on investment and the risk which 

is defined as the uncertainty of the actual return that can be earned on that investment. A 

portfolio manager has to explore ways in which  the risk can be minimized with respect 

to a desired level of return on the investment or maximize the return according to the 

constraints of a particular level of risk.  

There are mainly two broad categories of risk – Systematic & Unsystematic risk. 

Systematic risk  also referred to as non-diversifiable risk or market risk. It is defined as 

the fluctuations in the returns on securities that occur due to macroeconomic factors. These 

factors can be the political, social or economic , that affect the business. Systematic risk 



 
 

can be caused due to unfavorable reasons such as an act of nature like a natural disaster, 

changes in government policy, international economic components, etc. Systematic risk 

distresses a large number of organizations in the market or an entire industry sector. It can 

be eradicated through several ways like asset allocation or hedging.  

The Great Recession of 2008 proves to be a prime example of systematic risk. People who 

had invested in all types of securities saw the values of their investments plummet down 

due to the market-wide economic event. The great recession affected various securities in 

diverse ways. Hence investors who held stocks were affected in worse ways as compared 

to those with wider asset allocations. Systematic risk is further divided into three 

categories - Interest, Inflation and Market risk. 

Unsystematic risk is defind as the  fluctuations in profits of a company occuring due to 

micro-economic factors . These risk factors exist within the company and could be 

avoided if necessary action is taken. The risk factors can include the production of 

undesirable products, labor strikes, etc. Unsystematic risk is caused by internal factors and 

can be controlled and avoided, up to some  extent via portfolio diversification. 

Unsystematic risks can be further divided into – Business and Financial risks. 

After obtaining an acceptable level of risk for an investor’s  portfolio by analyzing their 

individual time horizon and bankroll, portfolio managers can use the risk pyramid 

approach to balance their investment options. This pyramid can be thought of as an asset 

allocation tool that investors can use to diversify their portfolio investments according to 

the risk profile of each security. The pyramid, representing the investor's portfolio, has 

three tiers :  

Base of the Pyramid is the foundation of the pyramid representing the strongest portion. 

This area should be composed of investment optiond which  are low in risk and have 

tangible expected returns. It is the largest area and composes the bulk of your assets.  

Middle Portion is the area  made up of medium-risk investments that provide a relatively 

stable return while still giving room for capital appreciation. Although more risky than the 

investment avenues creating the base, these investments can still be considered relatively 

safe. 



 
 

Summit is the composed of specifically high-risk investments, it is the smallest area of the 

portfolio. The amount of funds invested in the summit should be quite  disposable so that 

the investor doesn't have to sell prematurely in situations of capital losses. 

 

Fig 1.3 Investment Risk Pyramid 

 

Investing in securities pre-supposes risk. One of the most common way of reducing risk 

is to follow the principle of diversification. In a diversified portfolio, some investment 

avenues might not perform as expected but others might exceed expectations leading to 

the effect that the actual results of the portfolio would be reasonably nearer to the desired 

results.  

Risk is associated with the dispersion in the likely outcome. And dispersion entails 

variability. Hence, the total risk of investment options can be measured via – Variance 

and Standard Deviation.Variance can be calculated as the deviation of each possible 

investment’s rate of return from the expected rate of return : 



 
 

  𝛿2(𝑟) =  ∑ ℎ𝑖 
𝑛
𝑖=1 ∗ [𝑟𝑖 − 𝐸(𝑟)]2…………….(1.5) 

In order to compute the variance in equation (1.5) all the rates of returns which were 

observed in estimating expected rate of return (ri) have to be taken along  with their 

probabilities of occurance (hi).  

Another equivalent to obtain the total risk is standard deviation which is calculated as the 

square root of the variance :  

𝛿(𝑟) =  √∑ ℎ𝑖 
𝑛
𝑖=1 ∗ [𝑟𝑖 − 𝐸(𝑟)]2   ……………..(1.6) 

When the arithmetic average return or sample mean of the returns (ř) is used instead of 

expected rate of return, sample variance (δ²(r)) can be calculated as : 

𝛿2 (𝑟) =  
∑ (𝑟𝑡  −ř)2𝑛

𝑡=1

𝑛−1
 ……………….(1.7) 

 

 

      Fig 1.4 Graph of Expected Returrn vs Risk 

 



 
 

Similarly Sample standard deviation (δr)  can be calculated as the square root of the sample 

variance :  

𝛿𝑟 =  √𝛿𝑟
2  …………………(1.8) 

 

Variance and the standard deviation are similar measures of risk which could be used for 

the similar purposes in investment analysis however, standard deviation is used more 

commonly. Variance and standard deviation are used when investor is trying to estimate 

the total risk that is expected in the particular period in thenear  future. Sample variance 

and standard deviation are more commonly used in the cases when investor evaluates total 

risk of their investments during historical period. 

There are several types of risk associated with investment options and so are a number of 

returns and profits associated with investment avenues but the maintaining of the balance 

between risk and return is of the prime imoortance for any portfolio manager. There are 

several techniques and approaches that quantify the level of risk and returns associated 

with various types of investment options  and the preferences of the investors, but in the 

end the optimization of the profitability and risk exposure can only be kept in check 

through thorough investigation and analysis of investment avenues and diversification of 

portfolios in order to mitigate the losses incurred in one investment option via the profit 

earned in order investment instruments. 

 

1.1.5 Types of Portfolio Optimization 

It is a widely held consensus that portfolio optimization is a powerful tool that can be used 

as a mechanism  to make best use of all the information available to investors. While 

portfolio optimization has a strong theoretical merit, it is not particularly useful in practice. 

Portfolio managers are concerned that optimization is an error maximizing process 

entailing numerous estimation issues.  

The Modern Portfolio Theory (MPT) which was heavily influenced by the principles of 

Harry Markowitz who came up with the use of mean-variance for asset valuation posed 



 
 

some major problems when used practically because of the fact that mean-variance 

optimization has a  tendency to maximize the effects of errors in the input assumptions.  

The methods of portfolio construction and optimization primarily takes the following 

approaches – 

 Market capitalization weight - investments are held in accordance to their market 

capitalizations. The Capital Asset Pricing Model (CAPM) described by Sharpe and 

Treynor  proposed a linear relationship between returns and an investment’s β 

coefficient (the sensitivity of the asset returns to market returns). CAPM suggested 

that the market rewards the investors for the risk of being invested in the market , 

and not for any stock-specific risks that can be diversified away. Investors who 

believe that the CAPM expresses a justifiable relationship between risk and return 

will select to hold the market portfolio. CAPM is a model for pricing an individual 

security or a portfolio and enables to calculate the reward-to-risk ratio for any 

security in relation to the overall market. Theoretically,  a security is correctly 

priced when the observed price is equal to the  value calculated using the CAPM  

discount rate. If the observed price is higher than the valuation, then it can be said 

taht the security is overvalued. But one of the main limitation of CAPM is that it 

suffers from poor explanatory power in practical use due to the fact that  returns 

have historically exhibited only a weak relationship with market β coefficient. 

 

Fig 1.4 Capital Market Line 

 



 
 

 Minimum Variance based optimization - The primary objective of the Minimum 

Variance portfolio is that if all investments have equal expected return independent 

of risk factor, investors desiring maximum returns for minimum risk should 

concentrate exclusively on minimizing risk. It was assumed that relationship 

between risk and return should be ignored, at least in the case of equities 

 

𝜔𝑀𝑉 = arg 𝑚𝑖𝑛. 𝜔𝑇 . Ʃ𝜔……………..(1.9) 

 

Here – Ʃ is the Covariance matrix ; 

Due the presence of a faulty link between risk and return,it was established  that  

regularly reconstituted lonng-buy only Minimum Variance portfolio could 

compensate for the capitalization weighted portfolio for stocks.  

 

 Maximum Diversification based optimization -  in this approach it is assumed that 

the markets are risk-efficient, in a way so  that the investments would produce 

returns in accordance to total risk,  measured by volatility. This differs from 

CAPM, which assumes returns are in accordance to non-diversifiable (i.e. 

systematic) risk. In accordancewith the view that returns are directly proportional 

to volatility, the Maximum Diversification optimization replaces asset volatilities 

for returns in a maximum Sharpe ratio optimization, defined by : 

 

𝜔𝑀𝐷 = arg 𝑚𝑎𝑥 
𝜔∗ 𝜎

√𝜔𝑇     +Ʃ𝜔
……………….(1.10) 

 

 

Here σ  - is reference a vector of volatility; 

Ʃ  - is reference a vector of the covariance matrix ; 

It can be clearly concluded that volatility of a portfolio of positively correlated 

investments could be equal to the weighted sum of the volatilities of their 

components, because of the fact that there can be  no opportunity for 

diversification. While in the case where the assets are imperfectly correlated, the 



 
 

weighted average volatility becomes larger than the portfolio volatility in 

accordance to the available level of diversification. 

 

 Maximum Decorrelation based optimization – this approach is very closely related 

to the aforementioned Minimum Variance and Maximum Diversification, but the 

only differing point is that it is only used in the cases where an investor believes 

that all assets have similar returns and volatility, but heterogeneous correlations. 

It is defined as a Minimum Variance optimization performed on the correlation 

matrix instead of the covariance matrix.  Maximum  Decorrelation portfolio  can 

be obtained via : 

𝜔𝑀 𝐷𝑒𝑐 = arg min 𝜔𝑇  . 𝐴 . 𝜔 …………….(1.11) 

 

Here A – is the correlation matrix ; 

One major limitation of this approach is that Maximum Diversification portfolio 

tends to concentrate at  assets with high volatility and low covariance with respect 

to  the market. 

 

 Inverse Volatality & Variance based optimization  – aims to overcome  the 

drawback of Minimum Variance & Maximum Diversification that they can be 

fairly concentrated when the number of assets is small. Concentrated portfolio 

might not be able to account for large amounts of capital without high market 

impact costs. In addition, concentrated portfolios tend to be more susceptible 

towards mis estimation of volatility.  

When investments have similar Sharpe ratios and an investor can’t  adequately 

estimate correlations, the optimal portfolio will be weighted in proportion to 

inverse of the assets’ volatility. In case of  investments having similar expected 

returns (irrespective of volatility) and anonymous correlations, the Inverse 

Variance portfolio is mean-variance optimal. The weights for the Inverse 

Volatility and Inverse Variance portfolios are defined via : 
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1
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  …………………...(1.12) 

𝜔𝐼𝑉 𝑎𝑟 =
1

𝜎2⁄

∑ 1
𝜎2⁄𝑛

𝑖=1

 ……….(1.13) 

  Here  σ - is the vector of asset volatilities ; 

 𝜎2 – is the vector of asset variances ; 

 

1.1.6 Government framework & guidelines 

Securities and Exchange Board of India (SEBI) was  established in 1988 with the prime 

objective  to provide protecion to the investors and their vested interests in the capital 

market and also to restore the faith of investors and other constituents of the market. It 

was  also required to promote the development of capital market and to regulate the 

securities market. The trust of the investors and their confidence are the key requirement 

for the development and overhaul of a flourishing and smooth capital market. The role of 

regulator in establishing and enhancing investor confidence is hence forth of the prime 

importance. 

The prime focus of SEBI is on investor protection which it ensures via  

 Penalties which can be imposed by on different intermediaries, for 

failures/defaults, a failure to furnish information and maintainance of books of 

accounts, failure to enter into an agreement with clients/to redress investors 

grievances; failure by an AMC to observe rules/regulations; defaults in case of 

mutual funds/stock brokers; insider tradings; non-disclosure of substantial 

acquisition of shares and takeover bids; fraudulent and unfair trade practices. 

 Ombudsman Regulation – In order to redress the grievances of investors,  SEBI 

established an ombudsman/stipendary ombudsman. An ombudsman is an official 

who would receive complaints and assist in providing their resolution by amicable 

settlement, approve an amicable settlement between parties and adjudicate 

complaints in the event of failure of a settlement. 



 
 

 SEBI Intermediary Regulation - The main components of the regulation of 

intermediary entails registration, obligations, inspection and disciplinary 

proceedings and action in case of default of all intermediaries associated with the 

securities market such as  brokers/sub-brokers/bankers to an issue, registrar to an 

issue, trustees, underwriters, merchant bankers,portfolio managers, investment 

advisor c,redit rating agencies and other intermediaries associated with the 

securities market in any manner that is laid down by SEBI. 

Portfolio management service is among the merchant banking activities acknowledged by 

Securities and Exchange Board of India (SEBI). Portfolio management service could 

either be rendered by the SEBI recognized category  I and category II merchant bankers 

or portfolio managers or discretionary portfolio manager as it is defined in clause (e) and 

(f) of rule 2 of SEBI (portfolio managers) Rules ,1993. Recognizing the importance of 

portfolio management services, the SEBI has also defined certain specific guidelines for 

the proper and professional conduct of portfolio management services. As per the 

aforementioned guidelines only recognized merchant bankers registered with SEBI are 

authorized to offer those services. A portfolio manager by virtue of his knowledge, 

background and experience is expected to study the various avenues available for 

profitable investment and advise his client to enable the latter to maximize the return on 

his investment and at the same time safeguard the funds invested. 

 

 

1.2 Organization Profile 

Portfolio management has been one among the prime components of the secondary capital 

market. Besides serving the aim of mibilizing the savings of the masses and pooling them 

for investment purposes so as to produce assistance within the economic stimuli of the 

country , it also helps in maintaining the balance of price formation and maintaining 

liquidity equilibrium within the market successively helping in establishing the method of 

capital formation for organizations.  



 
 

Portfolio optimization is kind of a frequently studied problem in fields of mathematics, 

finance , statistics furthermore as because the growing area of knowledge analytics. In 

theory portfolio optimization is primarily related to determining the weights reminiscent 

of each investment option. But in real because of increasing market fluctuations ,price 

volatality, business constraints and individual investor preferences requires the urgent 

need of an adequate computational facility so as to judge and analyze the many complex 

and ever increasing parameters. 

Traditionally portfolio managers relied and other players during this arena mostly relied 

on their ability and intution by performing the basic analysis of the investment options 

like shares, bonds, debentures and mutual funds via doing background check on the 

organization issuing them its financial state, financial statements like record and income 

statement and its performance on the stock exchange. But gradually with the technological 

advancement within the field of knowledge analytics especially within the field of 

knowledge mining and massive data analytics has opened a completely new arena for 

finance with a solid foundation and supply adequate capabilities to analyse large datasets 

with multiple parameters , overcoming the limitation of traditional statistical models 

which fail to produce reliable leads to the presence of enormous datasets. 

 

 

1.3 Objective of the Study 

The prime goal of this study is to identify potentially optimum technique that can be 

utilized for portfolio management and subsequent portfolio optimization by comparing 

and evaluating both traditional statistical portfolio optimization techniques as well as 

supervised and unsupervised Machine Learning algorithms against the market benchmark. 

The study presented is exploratory in nature attempting to spot and recognize the optimum 

approach for portfolio management starting from traditional ones like Markowitz to 

Machine Learning algorithms. 

We have utilized four variations of Markowitz, then use PCA , Autoencoder ,HRP and 

Smoothening. The main hypothesis for this study has been : 



 
 

H0 : There is no difference in the return ,volatality, α , β and Sharpe ratio calculated  

for these methods. 

H1 : Difference is found in the return ,volatality, α , β and Sharpe ratio calculated  

for these methods. 

 

The objective is further divided into the following stages : 

 Stage I :  

Data cleaning & mapping of prices to stocks. 

 Stage II : 

Smoothening of the data 

 Stage III :  

Setting up the objectives of your portfolio market benchmark ( β coefficient ) and 

the Sharpe Ratio . 

 Stage IV : 

Applying unsupervised ML algorithm Principal Component Analysis in order to 

obtain eigenportfolios 

 Stage V  : 

Applying Auto-encoder to obtain hierarchy and overcome the limitations of PCA. 

 Stage VI :  

Applying the supervised learning model. 

 Stage VII : 

Comparing the results of all the techniques with the market benchmark and 

evaluating the best possible fit. 

 

 

 

 

 



 
 

CHAPTER  2 – LITERATURE REVIEW 

 

Portfolio management is one of the  significant aspect of primary and secondary capital 

markets. Essentially portfolio management involves the identification & subsequent 

selection of a group of financial assets such as debt instruments, shares, stocks, bonds, 

cash equivalents, mutual funds, etc. In order to avoid less than optimum yield portfolio 

management is governed scientifically by four factors - Risk, Return, Safety and 

Liquidity. Of the aforementioned factors Risk and Return are of prime importance, with 

the objective of portfolio management being to maximize return and minimize risk of the 

non-performing financial assets. 

Duly certified portfolio managers act on behalf of clients in accordance with a variety of 

approaches to portfolio management such as – active , passive portfolio management and 

discretionary , non-discretionary portfolio management with varying levels of control. 

Similar to any major activity in Indian capital markets, portfolio managers are also liable 

to the guidelines of SEBI ( Securities & Exchange Board of India ). The first set of 

guidelines was issued in the year 1993 after which due to growing market demand and 

need for more diverse and customized investment portfolios  required a complete overhaul 

in the form of the SEBI (Portfolio Managers) Regulations, 2020. The new regulations 

sought out to bring about greater transparency in a largely unregulated field to promote 

healthier competition and ethical transactions ultimately to keep fraudulent activities in 

check and maintain the attractiveness & viability of the industry. 

Modelling the behavior of financial markets has remained a challenge for a long period of 

time due to the volatility, uncertainty and lack of stationarity all resulting in poor 

predictive quality when using traditional mathematical models. But since the advent of 

technology especially in the fields of Artificial Intelligence and Machine Learning we now 

have the opportunity to obtain a more efficient asset selection for a gamut of clients with 

varying investment needs and objectives with a help of supervised and unsupervised 

machine learning algorithms such as Clustering, PCA (Principal Component Analysis) 

and other advanced techniques such as reinforcement learning. 



 
 

M. Ivanova and L. Dospatliev (2017) realized that portfolio optimization is a crucial factor 

in determining the strategies for investors both retail and institutional. The goal of 

portfolio optimization is to maximize portfolio return and minimize portfolio risk. As the 

return varies based on risk stockholders have to trade-off the inconsistency between risk 

and return for their savings. Therefore, there is no one particular optimized portfolio that 

satisfies all investors. The optimal portfolio is calculated by the inclinations of the saver’s 

risk and return.  

The objective of M. Ivanova and L. Dospatliev’s report was to determine on the efficient 

limits in summing up the three optimal portfolios (Minimum risk portfolio, Maximum 

portfolio return for a given level of risk, and Maximum Sharpe ratio portfolio) using 

Markowitz Theory. The data inputs for this study was weekly closing prices of 50 stocks 

traded on Bulgarian Stock Exchange between January 2013 and December 2016. 

In the study as of December 2016, there are 516 corporations listed on the Bulgarian Stock 

Exchange. Fifty of them were chosen for the study based on two criteria: 

-  top50th largest market capital on the stock market; 

- the listed companies have minimum 4 years of listing on the market from January 2013  

The study used Portfolio Efficient Frontier and Sharpe Ratio. They compute the average 

weekly return for each of the 50 assets. There are 47 out of 50 sample stocks yielding 

profitable returns in the study period. The remaining 6% had poor performance with 

negative rate of return. Risk Return was drawn and using Markowitz model, minimum 

risk portfolios were obtained. 

Every possible asset combination can be plotted in risk-return space, and the collection of 

all such possible portfolios defines a region in this space. The line along the upper edge 

of this region is known as the efficient frontier sometimes called the” Markowitz bullet”. 

Combinations along this line represent portfolios (explicitly excluding the risk-free 

alternative) for which there is lowest risk for a given level of return. Conversely, for a 

given amount of risk, the portfolio lying on the efficient frontier represents the 

combination offering the best possible return. Mathematically the efficient frontier is the 



 
 

intersection of the set of portfolios with minimum risk and the set of portfolios with 

maximum return. 

 

Fig 2.1 Sharpe Ratio 

Sharpe’s measure is also known as Sharpe ratio or reward-to-volatility ratio. Sharpe’s 

measure is a measure of portfolio performance that gives the risk premium per unit of total 

risk, which is measured by the portfolio’s standard deviation of return. The risk premium 

on a portfolio itself is the total portfolio return minus the risk-free rate. In other words, 

Sharpe’s measure divides average portfolio excess return by the standard deviation of 

returns on the same time period. Sharpe’s measure can be expressed in the following 

formula 

 

The research attained its goal of the practical application of Markowitz model to set up an 

optimal portfolio included stocks traded in Bulgarian stock market during the said. It was 

noted that during the study time period the portfolios formed by Markowitz model 

performed better than any domestic individual security. By investing in efficient portfolios 

- the ones located on the efficient frontier, investors afford to get maximum return on 

investment given a certain level of risk, maximum Sharpe ratio, or a minimum risk. It is 

(2.1) 



 
 

the power of Markowitz diversification by seriously taking into account covariance and 

correlation between assets. Accordingly, Bulgarian investors, if knowing how to properly 

apply Markowitz model, certainly can improve their investment performance. 

 

Ye Wang, Yanju Chen, and YanKui Liu (2016) in their paper study the portfolio selection 

problem using hybrid decision systems. Firstly, the return rates are characterized by 

random fuzzy variables. The goal is to maximize the total expected return rate. For a 

random fuzzy variable, this paper defines a new equilibrium risk value (ERV) with 

credibility level beta and probability level alpha. As a result, our portfolio problem is built 

as a new random fuzzy expected value (EV) model subject to ERV constraint, which is 

referred to as EV-ERV model. 

Under mild assumptions, the proposed EV-ERV model is a convex programming 

problem. Furthermore, when the possibility distributions are triangular, trapezoidal, and 

normal, the EV-ERV model can be transformed into its equivalent deterministic convex 

programming models, which can be solved by general purpose optimization software. To 

demonstrate the effectiveness of the proposed equilibrium optimization method, some 

numerical experiments are conducted. The computational results and comparison study 

demonstrate that the developed equilibrium optimization method is effective to model 

portfolio selection optimization problem with twofold uncertain return rates. 

When the randomness of uncertain return rates follows normal distributions, the proposed 

equilibrium portfolio selection model was turned into an equivalent credibilistic portfolio 

optimization model. The convexity of the credibilistic portfolio optimization model was 

discussed, which facilitates finding the desired global optimal portfolio. 

Furthermore, when the fuzziness of uncertain return rates follows trapezoidal, triangular, 

and normal distributions, the credibilistic portfolio optimization model was turned into its 

equivalent deterministic convex programming models. 

Ye Wang, Yanju Chen, and YanKui Liu compared the proposed equilibrium optimization 

method with traditional stochastic optimization method via a portfolio selection problem. 

The computational results demonstrated that both optimization methods can provide 



 
 

diversified investment schemes. However, the obtained equilibrium optimal solutions are 

more superior in terms of diversification. That is, when the fuzziness of uncertain return 

rates is considered, the equilibrium optimal solution usually diversified the optimal 

solutions obtained by stochastic method. 

 

As a consequence, when the exact probability distributions of return rates are unavailable, 

the proposed equilibrium optimization method provided an effective way to model 

practical portfolio selection problem. 

Ankit Dangi (2012) addresses the problem that in practice, portfolio optimization faces 

challenges by virtue of varying mathematical formulations, parameters, business 

constraints and complex financial instruments. Empirical nature of data is no longer one-

sided; thereby reflecting upside and downside trends with repeated yet unidentifiable 

cyclic behaviors potentially caused due to high frequency volatile movements in asset 

trades. Portfolio optimization under such circumstances is theoretically and 

computationally challenging. This work presents a novel mechanism to reach to an 

optimal solution by encoding a variety of optimal solutions in a solution bank to guide the 

search process with regard to the global investment objective formulation. It 

conceptualizes the role of individual solver agents that contribute optimal solutions to a 

bank of solutions, and a super-agent solver that learns from the solution bank, and, thus 

reflects a knowledge-based computationally guided agents approach to investigate, 

analyze and reach to optimal solution for informed investment decisions. 

In order to avoid the slow convergence, this study relaxes constraints to soft constraints.  

Markowitz Formulation (Soft Return Constraints) 

 

 

(2.2) 



 
 

Where, the asset returns for the above formulation are the absolute return measures and 

absolute risk measures. The formulation considers arithmetic returns for the assets as the 

return measure and the standard deviation as the risk measure. Additionally, one could 

consider formulating the problem with other classes of parameters of estimating return 

measures that would address critical aspects of the financial markets which are significant 

to large financial institutional investors and public/private banks. These may include the 

Average Profit and Loss I.e. Average PnL (as an absolute value, or as a %age, or per each 

industrial sector, or as per a pre-specified time interval), and Compounded Annual Growth 

Rate (CAGR). Other critically relevant measures may include the relative return measures 

(incl. upward-downward movement capture ratio, or the upward-downward movement 

number/percentage ratio), or the absolute risk-adjusted return measures (incl. Sharpe ratio, 

Calmar ratio, Sterling ratio or Sortino ratio), or the relative risk-adjusted return measures. 

Perrin & Roncalli (2019) realized the need for practical & established alternative solutions 

to the Markowitz model because even though it provided great computational ease, most 

of the models derived from it are not feasible from a financial perspective as they can only 

be utilized on a limited number of assets and require enormous computational power and 

resources, thereby raising the cost. Perrin & Roncalli aimed to find an alternative to the 

quadratic programming approach of the Markowitz model, they studied and analyzed four 

machine learning algorithms in order to determine their viability and extent of usefulness 

for large – scale portfolio optimization. The four algorithms analyzed were alternating 

direction method of multipliers, Dykstra’s algorithm, coordinate descent and proximal 

gradient.  

Perrin & Roncalli are focused more on the numerical implantation rather than just the 

quadratic objective function. They began with the selection of a non-quadratic objective 

function for asset allocation and then deriving the numerical solution of the selected non-

quadratic function, in doing so they discovered that the coordinate descent algorithm is 

the fastest method for performing high-dimensional lasso regression on the other hand 

Dykstra’s algorithm has been created to find the solution of restricted least squares 

regression. Since there is a strong correlation  between Multi Variance Optimization 

(MVO) and linear regression, these algorithms could assist in solving MVO asset 



 
 

allocation models. Perrin & Roncalli later found out that even coordinate descent & 

Dykstra’s algorithm has their limitation as they were unsuccessful in defining a standard 

framework, for which the need of alternating direction method of multipliers and proximal 

gradient methods was realized.  

In short Perrin & Roncalli were successful in utilizing Multi Variance Optimization 

models with non-linear penalty functions such as the logarithmic barrier, etc. Also they 

devised an approach on handling the non-linear constraints such as volatility targeting, 

leverage limits, transaction costs, active share, etc. One of the most significant outcome 

of their study was combining the quadratic programming extensions and obataining an 

amalgamation of these four algorithms (CD, ADMM, PO and Dykstra) in order to utilize 

asset allocation models that cannot be cast into a Quadratic Programming form to achieve 

optimum results. 

 

Ban, Karaoui & Lim (2013) sought to address the practical limitation of the portfolio 

optimization model when it is applied on real data by introducing a performance-based 

regularization ( PBR ) which acts as a limiter to sample variances of expected risk and 

return as it controls their stability which in turn  helps in achieving a solution with lower 

estimation error and better performance. Ban, Karaoui & Lim introduce PBR with the 

main purpose to improve the out-of-sample performance of the result  rather than focusing 

on the numerical stability ( which was the approach of Perrin & Roncalli ). 

Ban, Karaoui & Lim mark four major milestones in their study. Firstly, the construction 

of a new portfolio optimization model by applying performance-based regularization ( 

PBR ) on mean-variance problems by introducing a new quartic polynomial constraint 

and analyze the convexity of the approximation and determine in quantifiable terms the 

effect of PBR on the result. 

Secondly, they prove that performance-based regularization (PBR) can be utilized for 

robust optimization problems, the PBR constraint requires the expected return of the 

portfolio to be robust to all possible values of the mean vector falling within an ellipsoid, 



 
 

centered about the true mean, which not only solidifies the link between PBR and robust 

models but also justifies the empirical PBR standard in its own right. 

Thirdly, Ban, Karaoui & Lim establish the fact that the solutions of Sample Average 

Approximation (SAA) and PBR are always asymptotically optimal because of the proven 

assumption that true solutions must be separated and identifiable, this is extremely 

significant due to the fact that most data-driven decisions cease to be asymptotically 

optimal when the number of observations is high. Lastly, they make a comparative study 

on SAA with respect to PBR and develop a new, performance-based extension of the k-

fold cross-validation algorithm which is validated by computing the Sharpe ratio (prime 

practical performance metric for investment) rather than using the mean squared error. 

In conclusion Ban, Karaoui & Lim are able to establish the fact that that PBR with 

performance-based cross-validation is highly adept at increasing the finite-sample 

performance of the data-driven portfolio decision compared to SAA proving without 

doubt that PBR is a superior modelling parameter. 

Filos & Mandic (2018) have explored the concept of Reinforcement Learning, a branch 

of Machine Learning that efficiently solves sequential decision-making problem sets 

through direct interaction to the environment in a continuous manner. Filos & Mandic 

have used the aforementioned technique in developing portfolio optimization and asset 

allocation strategies. 

The aim of this report is to determine the effectiveness of Reinforcement Learning models 

on asset allocation. After the selection of financial instruments, the model constructs a 

framework representation of the market & determine how to optimally allocate funds of a 

limited budget to those assets. The model is trained on both synthetic and real market data. 

Then the model performance is compared with standard portfolio management algorithms 

on a test data-set. 

Furthermore, Filos & Mandic provide a thorough analysis of the modelling efficiency, 

performance advantages and expressive power of the trading models/agents developed (i.e., 

Deep Soft Recurrent Q-Network (DSRQN) and Mixture of Score Machines (MSM)), 

which have their roots both in traditional system identification as well as on context-



 
 

independent agents. Filos & Mandic are also able to establish the fact that model-free 

reinforcement learning techniques not only reduce the memory size and computational 

complexity but are also able to standardize strategies across different financial instruments 

and markets, irrespective of the fact that they belong to different trading universe on which 

they have been trained. 

The analysis and simulations conducted by Filos & Mandic confirm the superiority of 

universal model-free reinforcement learning agents over current portfolio management 

model in asset allocation strategies. The model obtained was found to outperformed all 

trading agents, in the S&P 500 and the EURO STOXX 50 markets. Lastly, model pre-

training, data augmentation and simulations enabled robust training of deep neural 

network architectures, even with a limited number of available real market data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER  3 – RESEARCH METHODOLGY 

 

Machine Learning for Portfolio Optimization is an Exploratory study to study various 

methods of Portfolio Optimization to arrive at the best method. Exploratory research is 

well-defined as a study used to inspect a problem which is not clearly defined. It is 

conducted to have an improved understanding of the prevailing issue, but will not provide 

conclusive results. For such a research, a researcher starts with a broad notion and uses 

this research as a mode to identify issues, that can be the focus for forthcoming research 

in the future. A central facet here is that the researcher must be enthusiastic to change 

his/her direction subject to the revelation of new data or insight. Such a research is usually 

carried out when the problem is at a preliminary stage. It is called as grounded theory 

approach or interpretive research as it used to explore answers to questions such as what, 

why and how. 

 

3.1 EXPOLATORY STUDY METHODOLOGY 

 

 

 

 

 

Fig 3.1: Exploratory study stages 
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STAGE I: EXPLORE 

In this study initially the goals and scope of the research was explored. This phase aimed 

at exploring the main aspects of an under-researched problem, in this study it is portfolio 

optimization using Machine Learning techniques and Deep learning methods.  

The historic and the ongoing methods of Portfolio optimization was studied. In-depth 

literature study led us to understanding the various methodologies used and also lead us 

to the understanding that though technical analysis is a very commonly used tool in 

portfolio optimization the extent of its utility is not fully capitalized. Machine Learning, 

Deep learning and other data intensive techniques find large scale utilization in trading 

and financial analytics but its utility in portfolio optimization is still limited.  

Hence, the aim of this study was set as exploring the Machine Learning and Deep Learning 

techniques in Portfolio optimization. 

STAGE II: GENERATE 

This phase included generating a model for the study to be conducted. This stage included 

the identification of data points to be considered, the algorithm to be considered and the 

data analysis toolkit to be utilized.  

The model chosen as fit for this exploratory study was cascading incremental algorithm 

testing using Python on to National Stock Exchange data of to 15 stocks over a period of 

360 days. Average price of these stocks were chosen (to ensure reduced fluctuations in 

case of selection of opening prices or closing prices).  

The techniques to be utilized was two pronged: 

 

 Technical Analysis: 

 



 
 

Technical analysis provides an outline for notifying investment management decisions by 

applying a supply and demand methodology to market prices. Fundamental principles 

underling the study of technical analysis are derived from the supposition that changes in 

the supply and demand of transacted securities affect their current market prices.  

 

Tools of technical analysis are constructed on a background that seeks to achieve 

insight from the changes in forces of supply and demand. This structure has evolved over 

time from a totally graphic analysis to more quantitative techniques. Comparable to 

other analytical tools, technical analysis deploys a controlled, systematic approach that 

pursues to minimize the effect of interactive biases and emotion from the practice of 

speculation selection; subsequently, many institutional investment analysts, financial 

strategists, and portfolio administrators fuse technical research with other analytical 

methods, like quantitative, fundamental, and macroeconomic methods.   

 

Independent or retail researchers have established the value of technical analysis, 

beginning with the validation of the momentum anomaly. Momentum, or relative strength 

in the lingo of technical analysts, has been functional from 1930s. It is now extensively 

accepted that relative strength analysis can benefit investment managers attain statistically 

and economically significant surplus or profits. Supplementary research has established 

the worth of other technical tools, as well as pattern investigation, moving averages, and 

other pointers.  

 

Additional fresh research has spoken for the significance of technical analysis in the larger 

context of financial markets and commences to trace the connections among behavioral 

economics, individual players in financial markets, and the importance of technical 

analysis in studying the behavior of individual actors.  

 

 

 

 

 



 
 

 Comparative Study 

The comparative method of study is used in the initial stages of a branch of research. It 

can help the researcher to climb from the early stages of exploratory case studies to a more 

advanced level. The design of comparative study is pretty easy.  

Objects are samples or cases which are similar in some respects (else, it would not be 

logical to compare them) but they diverge in some respects. These alterations become the 

center of the scrutiny. The goal is to discover why the cases are dissimilar: to reveal the 

common underlying arrangement which produces or allows such a variation. 

 

 

 

 

Fig 3.2: Comparative study Methodology 

Contrast is one of the greatest efficient approaches for explaining or 

applying implicit knowledge or attitudes. This can be done, for example, by showing in 

parallel two slides of two slightly different objects or situations and by asking people to 

explain verbally their differences. 

 

 

Fig 3.3: Research Lifecycle 
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3.1.1 Characteristics of Exploratory research 

 They are unstructured researches 

 It is low cost, collaborating and wide scoped. 

 It will allow a researcher to respond to questions such what the problem is? What 

the goal of the study is? And what the topical scope of the study is? 

 Commonly, there is no preceding research done or the current ones do not retort 

the problem accurately enough. 

 It is a time intense and it needs perseverance and has perils related to it. 

 It requires for the researcher to do a thorough research and study all the 

information. 

 There is no set of guidelines for this research, as they are flexible, wide-ranging 

and dispersed. 

 The research needs to have significance or worth. If the problem is not significant 

in the industry the study supported is vain. 

 The study should have a few models which can support its results. 

 Such a study generally produces qualitative data, but in definite cases quantitative 

data can be generalized for a larger sample. 

3.1.2 Advantages of Exploratory research 

 The investigator has a lot of tractability and can adapt to deviations as the study 

evolves. 

 It is generally inexpensive. 

 It supports laying the foundation of a study, which can lead to supplementary 

research. 

 It allows the academic to understand at an initial stage, if the subject is worth 

capitalizing the time and resources. 

 It can support other scholars to find out possible reasons for the issue, which can 

be supplementary studied in detail to figure out, which of them is the utmost cause 

of this problem. 

 

https://www.questionpro.com/blog/exploratory-research/
https://www.questionpro.com/blog/exploratory-research/


 
 

 

3.2 Procedure 

This study was fully devoted to the problem of portfolio optimization — it reviewed 

traditional mathematical methods for boosting portfolio, unsupervised, supervised machine 

learning approaches, reinforcement learning means and some more less traditional options.  

3.2.1 The Optimization Machine 

Regardless of the fact if investors are conscious of it or not, the choices investor make 

about portfolio structure express, their views (biases) about the characteristics of the asset 

(universal set) under deliberation. It is true whether the investor chooses to allot to reserves 

based on naive approaches, such as capitalization weights or equivalent weights; applying 

empirical methods like inverse volatility or variance; or deploying full-scale portfolio 

optimization. The question of whether the investor wishes to express the views 

consciously or unconsciously. 

 

Fig 3.4: Optimization Machine 

Fundamental Assumptions: 

 Investors have inclinations that are well explained by mean-variance function. 

Investors desire to own the portfolio that capitalize on their expected return subject 

to a maximum tolerable portfolio volatility.  



 
 

 Many investors barely care about volatility as compared to risks like “permanent 

loss of capital”, “maximum drawdown”, or “expected shortfall”. However, these 

alternative definitions of risk are well captured by mean and variance.  

 A methodical approach is often rebalanced, a huge probable mean relative to 

volatility strongly implies a smaller risk of permanent loss, a smaller expected 

maximum drawdown, and a smaller expected shortfall 

3.2.2 Classical optimization 

Optimization problem requires maximizing or minimizing some function with respect to 

its parameters. In the case of this study, we maximize returns while minimizing the risk 

with respect to the amount of money we allocate on each asset in our portfolio. 

Markowitz efficient frontier 

Modern Portfolio Theory is based Markowitz's theory regarding maximizing the 

return investors can get as a result of the investment portfolio bearing in mind the risk 

associated with the said investments. Modern Portfolio Theory expects the investor to take 

into account how much the risk of a single investment can impact their complete portfolio., 

that every investor on the market is rational (is guided by the risk and return based on the 

market forces alone), circumvent risks and aim to maximize their anticipated returns. 

 

Fig 3.5: Markowitz Efficiency Frontier 



 
 

The optimum decision could be established with capitalize on expected returns (deliberated 

from the preceding movements of the stock market assets) and diminishing accompanying 

risk (as unpredictability of the market assets). The proportion of anticipated return upon 

risk is known as Sharpe ratio and the portfolio with the highest Sharpe ratio can be 

established with a rather typical optimization toolkit. 

 

Fig 3.6: Portfolio Optimisation Decision Tree 

There are a lot of different optimization criteria we might aim for. What if we even don’t 

care about the expected returns and just want to minimize the risk? 

 

 

https://en.wikipedia.org/wiki/Sharpe_ratio
https://medium.com/@alexrachnog/optimization-cookbook-1-262aa5555b61


 
 

Risk Based Optimization 

The examination of risk-based optimization methods would be linked directly to a 

discussion of which risks are reimbursed in stock markets, provided risk is compensated in 

the first place.  

Minimum Variance 

All the investments have the identical anticipated return free of risk, stockholders in quest 

of maximum returns for minimum risk should concentrate exclusively on minimalizing 

risk. This is the unambiguous objective of the Minimum Variance portfolio.  

 

(Haugen and Baker 1991) suggested giving up the relationship between risk and return, at 

least for equities. Stock market returns are not well expounded by beta. Rather, an adverse 

relationship among returns and volatility. In case of spurious association between risk and 

return, (Haugen and Baker 1991) suggested that a frequently altered long-only Minimum 

Variance portfolio will govern the capitalization weighted portfolio for bonds. 

Maximum diversification 

(Choueifaty and Coignard 2008) anticipated that marketplaces are risk-efficient, such that 

reserves will yield returns in ratio of total risk, as measured by volatility. This differs from 

CAPM, which adopts returns are comparative to non-diversifiable (i.e. systematic) risk. 

Unfailing with the opinion that returns are openly proportional to volatility, the Maximum 

Diversification mode of optimization proxies asset volatilities for yields in a maximum 

Sharpe ratio optimization.  

 

(3.1) 

 

(3.2) 



 
 

Maximum Decorrelation  

It is defined by (Christoffersen et al. 2010) is strictly linked to Minimum Variance and 

Maximum Diversification, but relates to the occasion where a stockholder has faith in all 

assets have identical returns as well as volatility, but these are heterogeneous correlations.  

 

 

Risk Parity  

Both Minimum Variance as well as Maximum Diversification portfolios have mean-

variance proficient under innate assumptions. Minimum Variance is competent if stocks 

have identical returns despite the fact that Maximum Diversification is effective if assets 

have related Sharpe ratios. However, both devices have the drawback that they are fairly 

focused on a small set of assets.  

 

Inverse volatility and variance  

Identical anticipated Sharpe ratios and a stockholder could not consistently approximate 

correlations, the optimum portfolio will be biased in proportion to the reverse of the assets’ 

instabilities. When investments have identical expected yields and unidentified 

correlations, the Inverse Variance portfolio is mean-variance optimum.  

3.2.3 Unsupervised learning 

Portfolio optimization questions look a lot like unsupervised learning questions 

or representation learning tasks: having a set of stocks/bonds we need to group them into 

some “clusters” based on their cost-effectiveness and after allot more funds on the most 

predictive ones and not as much on the conflicting side.  

 

(3.3) 



 
 

Principal component analysis (PCA) 

While there are a number of variables or features should be less than 10, then we are 

advised to perform PCA. PCA is an arithmetical technique which decreases the 

dimensions of the data and help us comprehend, visualise the data with lesser dimension 

compared to original data. As the name recounts PCA aids us calculate the Principal 

components of data. Principal components are fundamentally vectors that are linearly 

uncorrelated and sport a variance.  

 

Fig 3.6 PCA decomposition 

While dealing with data of financial markets the premier principal component serves as 

the closest estimate of the market, hence, selecting second or other components will 

give uncorrelated results to the stock market strategies, which is exactly what most of the 

investors desire. 

Autoencoder risk 

Autoencoder facilitates non-linear dimensionality reduction, is based on neural networks. 

They can “squeeze” data that’s given as input in to a low-dimensional vector and after 



 
 

reinstating a input from this demonstration. Autoencoder could be capitalized in 

several  ways for portfolio assortment, one of them is associated to the valuation of the risk 

supported by the specific asset: if some asset movement can’t be reinstated well from the 

low-dimensional demonstration it’s associated with greater risk.  

 

 

Fig 3.7: Autoencoder 

Hierarchical risk parity 

 

 

Fig 3.8: HRP  

A covariance matrix of the stocks in the portfolio is a comprehensive graph. The 

optimization question, where we allot the risk rather than the capital funds. While occupied 

with portfolios of very massive scope — if we characterize links among assets 

https://arxiv.org/pdf/1605.07230.pdf


 
 

geometrically, there would be in the form of the comprehensive plots, it is an over-

complication. The solution lies again in unsupervised learning, but with the use of 

the hierarchical clustering algorithms applied to the covariance matrix. After finding 

clusters of the stocks, we can re-allocate risk over them recursively.  

 

 

Fig 3.9: HRP Steps 

3.2.4 Supervised learning 

The optimization and unsupervised approaches appear good, but they have one main 

shortcoming: they just exploit evidence about the historical performance and associated 

asset movements and co-correlations without any norms for their future behaviour. There 

is no guarantee the future assets will move in a pattern same as in the past.  

 

Forecasting weights 

 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2708678


 
 

Fig 3.10: Forecasting Weights 

The concept is pretty forthright: if we could use any model to predict the price movement 

in the future, we can use this forecast for allotting weight. Of course, we need to regularize 

these predictions so their summation is equal to unity, but this is rather a technical step and 

can be done with the single L1-normalization. We can deploy use the simplest predicting 

algorithm: exponential smoothing.  

 

Fig 3.11: Smoothening 

 

 

 

 

 

 

 

 

 

https://towardsdatascience.com/ai-for-algorithmic-trading-rethinking-bars-labeling-and-stationarity-90a7b626f3e1


 
 

3.3 Python Architecture 

 

Fig 3.12: Python Logo 

The above mentioned business problem was solved using PYTHON. Python is 

an integrated, high-utility, generic language. Created by Guido van Rossum and released 

first 1991, Python's design focuses code readability making it easy to comprehend with its 

notable use in significant whitespace. Its language constructs and object centric approach 

aim to help programmers write pure, rational code for small and large-scale projects.  

Python is dynamic and it supports multiple programing languages, including structured, 

object-oriented, and functional programing. Python is often described as a "batteries 

included" because of its inclusive standard library. 

PyCharm is an integrated development environment (IDE) employed in programming, 

specially for the Python language. It is advanced by the Czech company JetBrains. It 

offers code examination, a graphical debugger, integrated unit tester, has full integration 

with version control systems (VCSes), and enables web development with Django as well 

as Data Science tools such as Anaconda. 

 

Fig 3.12: Pycharm Logo 

https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Language_construct
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Standard_library


 
 

3.3.1 Libraries Used 

 

Fig 3.13: Python Data analytics libraries 

1. SciPy Optimize  

It offers utilities for minimizing (or maximizing) objective functions, possibly subject to 

constrictions. It contains solvers for nonlinear complications (with provision for both 

global and local optimization procedures), linear programing, root finding, constrained 

and nonlinear least-squares and curve fitting. 

 Minimize_scalar: minimizes a scalar function of one variable 

 Minimize(fun, x0[, args, method, jac, hess, …]): minimizes a scalar function with 

one or more variables 

 NonlinearConstraint(fun, lb, ub[, jac, …]): imposes constraint that are nonlinear 

on the variables. 

 LinearConstraint(A, lb, ub[, keep_feasible]): imposes constraint that are linear on 

the variables. 

2. scikit-learn 

It is an easy and effective tool for extrapolative data analysis. Accessible to everybody, 

and recyclable in numerous circumstances. Constructed on NumPy, SciPy, and matplotlib. 

Open source and is commercially usable. 

 It can be used for classification using algorithms such as random forest, support 

vector machines etc. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize


 
 

 It can help in forecasting a continuous series associated with the object. It uses 

algorithms such as nearest neighbors, random forest and SVR. 

 class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=Fal

se, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None): 

Even dimensionality reduction can be done to reduce the number of random 

variables. K-means, feature selection and PCA. 

3. Pandas:  

Python data analytics library is fast, powerful, flexible and facile to use open source data 

analysis and manipulation tool.  

 DataFrame object for data manipulation with integrated indexing; 

 Reading and writing data among data constructions and different formats: 

Microsoft Excel, SQL databases, CSV and text files and the fast HDF5 format; 

 Smart data alignment and cohesive handling of missing data 

4. Numphy: 

NumPy is a very frequently used Python package, it stands for 'Numerical Python'. It is 

the essential library for scientific computing, which contains a prevailing n-dimensional 

array object, provide implements for integrating C, C++ etc.  

 

Fig 3.14: Keras Library 



 
 

5. Keras 

Keras Python library that provides a clean and convenient way to create a range of deep 

learning models on top of Theano or TensorFlow.  minimalist Python library for deep 

learning that can run on top of Theano or TensorFlow. 

It was developed to make implementing deep learning models as fast and easy as 

possible for research and development. 

It runs on Python 2.7 or 3.5 and can seamlessly execute on GPUs and CPUs given the 

underlying frameworks. It is released under the permissive MIT license. 

Keras was developed and maintained by François Chollet, a Google engineer using four 

guiding principles: 

 Modularity: A model can be understood as a sequence or a graph alone. All the 

concerns of a deep learning model are discrete components that can be combined 

in arbitrary ways. 

 Minimalism: The library provides just enough to achieve an outcome, no frills and 

maximizing readability. 

 Extensibility: New components are intentionally easy to add and use within the 

framework, intended for researchers to trial and explore new ideas. 

 Python: No separate model files with custom file formats. Everything is native 

Python. 

 

6. Statsmodels 

It is a Python module that provides classes and functions for the estimation of many 

different statistical models, as well as for conducting statistical tests, and statistical data 

exploration. An extensive list of result statistics are available for each estimator. The 

results are tested against existing statistical packages to ensure that they are correct. The 

package is released under the open source Modified BSD (3-clause) license. The online 

documentation is hosted at statsmodels.org 

 

https://www.linkedin.com/in/fchollet
https://www.statsmodels.org/


 
 

7. Random 

This module implements pseudo-random number generators for various distributions. For 

integers, there is uniform selection from a range. For sequences, there is uniform selection 

of a random element, a function to generate a random permutation of a list in-place, and a 

function for random sampling without replacement. 

The functions supplied by this module are actually bound methods of a hidden instance 

of the random.random class. You can instantiate your own instances of Random to get 

generators that don’t share state. 

 

8. Matplotlib  

It is a comprehensive library for creating static, animated, and interactive visualizations 

in Python.  

 It helps Create develop publication quality plots with few lines of code and uses 

interactive figures such as zoom, pan and update.  

 It allows customization of line styles, font properties, axes properties and can 

export and embed a number of file formats 

 It extends tailored functionality to 3rd party languages 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://docs.python.org/3/library/random.html#random.Random


 
 

3.3.2 Program Architecture 

 

 Agent.py: this file runs the tensor flow background to perform all the deep 

learning programs. 

 

Fig 3.15: Agent.py 

 

 Utils.py: this python script defines all the utilities that run to make all the 

algorithms work. 

 

Fig 3.16: Utils.py 

 

 Environment.py 

This file calls the data files and builds a class variable that the code can work on. The 

class defines each of the labels and uses a pipeline to run the code. 



 
 

 

 

Fig 3.17: environment.py 

 HRP_routines.py 

Runs the HRP which is a unsupervised learning technique.  

 

 

Fig 3.18: HRP-routines.py 

 

 

 

 

 



 
 

CHAPTER  4 – RESULTS 

 

4.1 Minimal Variance Portfolio (Markowitz) 

 

Fig 4.1 Minimal Variance Portfolio 

 

Result obtained: 

  MEAN 
RETURN 

VOLATILITY SHARPE 
RATIO 

ALPHA BETA 

BENCHMARK 0.0005 0.00777 1.2545 0 1 

MINIMAL 
VRIANCE 

0.0004 0.0033 1.8305 0.0003 0.1297 

Table 4.1: Minimal Variance Portfolio 



 
 

 

4.2 Minimal Returns 

 

 

Fig 4.2: Minimal Return Portfolio 

 

Results: 

  MEAN 
RETURN 

VOLATILITY SHARPE 
RATIO 

ALPHA BETA 

BENCHMARK 0.0005 0.00777 1.2545 0 1 

MINIMAL RETURNS 0 0.0129 0.0033 0.0001 0.094 

Table 4.2: Minimal Return Portfolio 



 
 

4.3 Maximal Sharpe 

 

Fig 4.3: Maximal Sharpe Portfolio 

 

Results: 

 
MEAN 

RETURN 
VOLATILITY 

SHARPE 
RATIO 

ALPHA BETA 

BENCHMARK 0.0005 0.00777 1.2545 0 1 

MAXIMAL SHARPE 0 0.004 0.1975 0 0.0275 

 

Table 4.3: Maximal Sharpe Portfolio 

 



 
 

4.4 Maximal Decorrelation 

 

Fig 4.4: Maximal Decorrelation Portfolio 

 

Results: 

 
MEAN 

RETURN 
VOLATILITY 

SHARPE 
RATIO 

ALPHA BETA 

BENCHMARK 0.0005 0.00777 1.2545 0 1 

MAXIMAL 
DECORRELATION 

0.0005 0.0061 1.4572 0.0002 0.636 

Table 4.4: Maximal Decorrelation Portfolio 

 

The null hypothesis does not prove to be true for any variation of  Markowitz. 

 



 
 

4.5 Principal Component Analysis 

 

Fig 4.5: PCA Portfolio 

Results: 

The null hypothesis does not prove to be true. 

 
MEAN 

RETURN 
VOLATILITY 

SHARPE 
RATIO 

ALPHA BETA 

BENCHMARK 0.0005 0.00777 1.2545 0 1 

PCA 0.0006 0.0087 1.0608 0.0005 0.1431 

Table 4.5: PCA Portfolio 

 



 
 

4.6 Autoencoder 

 

Fig 4.6: Autoencoder Portfolio 

 

Results: 

The null hypothesis does not prove to be true. 

 
MEAN 

RETURN 
VOLATILITY 

SHARPE 
RATIO 

ALPHA BETA 

BENCHMARK 0.0005 0.00777 1.2545 0 1 

AUTOENCODER 0.0002 0.009 0.5153 0.0003 0.0561 

Table 4.6: Autoencoder Portfolio 

 

 



 
 

4.7 Hierarchical Risk Parity Analysis 

 

Fig 4.7: HRP Portfolio 

Results: 

The null hypothesis does not prove to be true. 

 
MEAN 

RETURN 
VOLATILITY 

SHARPE 
RATIO 

ALPHA BETA 

BENCHMARK 0.0005 0.00777 1.2545 0 1 

HRP 0.0004 0.0075 1.0421 0.0001 0.9571 

 

Table 4.7: HRP Portfolio 



 
 

4.8 Smoothening 

 

Fig 4.8: Smoothening Portfolio 

 

Results: 

The null hypothesis does not prove to be true. 

 
MEAN 

RETURN 
VOLATILITY 

SHARPE 
RATIO 

ALPHA BETA 

BENCHMARK 0.0005 0.00777 1.2545 0 1 

SMOOTHENING 0.0002 0.009 0.4921 0 0.3702 

 

Table 4.8: Smoothening Portfolio 



 
 

CHAPTER  5 – FINDING AND RECOMMENDATION 

 

  
BENCH

MARK 

MINIMAL 

VARIANCE 

MINIMAL 

RETURNS 

MAXIMAL 

SHARPE 

MAXIMAL 

DECORREL

ATION 

PCA HRP 
AUTOEN

CODER 

SMOOTH

ENING 

MEAN 

RETURN 
0.0005 0.0004 0 0 0.0005 0.0006 0.0004 0.0002 0.0002 

VOLATIL

ITY 
0.0078 0.0033 0.0129 0.004 0.0061 0.0087 0.0075 0.009 0.009 

SHARPE 

RATIO 
1.2545 1.8305 0.0033 0.1975 1.4572 1.0608 1.0421 0.5153 0.4921 

ALPHA 0 0.0003 0.0001 0 0.0002 0.0005 0.0001 0.0003 0 

BETA 1 0.1297 0.094 0.0275 0.636 0.1431 0.9571 0.561 0.3702 

Table 5.1: Portfolio Results 

 

The Markowitz techniques 

In case of Minimal Variance, Minimal Return, Maximal Sharpe:  

 Cater to only a single aim 

 Fail on all other parameters 

It is fair to conclude that it is not the best solution available to us.  

But surprisingly, Maximal Decorrelation fairs well on fronts: 

 Lower Alpha shows that the gap between the actual and expected returns is low, 

showing an improved prediction model. 

 Lower Beta of portfolio built based on maximal decorrelation denotes that the 

performance of the portfolio is not dependent on the market fluctuations i.e. 

sensitivity to market volatility is low. 

 Lower Volatility is good as it makes the portfolio less risky 



 
 

 Higher Sharpe indicates that fund in the given portfolio is risk-adjusted, which 

again is a positive indicator, which caters to all the risk and is risk-adjusted 

 Higher Returns  

Unsupervised Learning Techniques 

In case of PCA fares well on all fronts: 

 Lower Alpha shows that the gap between the actual and expected returns is low, 

showing an improved prediction model. 

 Lower Beta of portfolio built based on PCA denotes that the performance of the 

portfolio is not dependent on the market fluctuations i.e. sensitivity to market 

volatility is low. 

 Lower Volatility is good as it makes the portfolio less risky 

 Higher Sharpe indicates that fund in the given portfolio is risk-adjusted, which 

again is a positive indicator, which caters to all the risk and is risk-adjusted 

 Higher Returns more than the benchmark 

Though Autoencoder and HRP are better methods and often seen as upgrades to PCA in 

our case they do not seem to make the cut. 

 

Supervised Learning 

The method of supervised learning used here, Smoothening does not fare well on the 

following counts: 

 Lower Returns 

 Lower Sharpe indicating that the portfolio is not adjusted to the risks. 

A more advanced method like Reinforced Learning can overcome this limitation. 

 

Conclusions: 

 There is no one solution to your portfolio woes. 



 
 

 Complex algorithms may not always mean better results. 

 Definite goal setting is mandatory for Markowitz to work your way. 

 The results of this model may or may not align for other market options like 

securities, ETF or cryptocurrency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER  6 – LIMITATION 

 

DATA SET CONSTRAINTS 

 The module and all the algorithms were tested on the same data set. The results 

could have been validated better if we could fit the given model on a different data 

set. 

 The data set pans over 360 days, a data set over a longer time frame would have 

had different results. 

 The data used is unidimensional is bound to only prices. Exploring the volume 

traded with the price could have led to different results. 

 This study is limited to the top 15 stocks of the NSE. A study of other stocks could 

have resulted to variable results. 

MODEL CONSTRAINTS 

 The study is limited to the 6 methods mentioned above. 

 Study of Reinforced learning technique would help explore newer patterns 

 Deep Learning and Q learning techniques were not explored 

MARKET CONSTRAINTS 

 2018-2019 have not been the greatest years in terms of the growth 

 The slowdown has set in and this has effects on the data set chosen 
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CHAPTER  8 – ANNEXURE 

 

1. Utils.py 

import numpy as np 

import pandas as pd 

 

import statsmodels.api as sm 

from statsmodels import regression 

 

import matplotlib 

import os 

 

import matplotlib.pylab as plt 

 

current_cmap = matplotlib.cm.get_cmap() 

current_cmap.set_bad(color='red') 

 

 

def plot_results(benchmark_series, 

                 target_series, 

                 target_balances, 

                 n_assets, 

                 columns, 

                 name2plot='', 

                 path2save='./', 

                 base_name_series='series'): 

    #     N = len(np.array(benchmark_series).cumsum()) 

    N = len(np.array([item for sublist in benchmark_series for item in 

sublist]).cumsum()) 

 

    if not os.path.exists(path2save): 

        os.makedirs(path2save) 

 

    for i in range(0, len(target_balances)): 

        current_range = np.arange(0, N) 

        current_ts = np.zeros(N) 

        current_ts2 = np.zeros(N) 

 

        ts_benchmark = np.array([item for sublist in benchmark_series[:i 

+ 1] for item in sublist]).cumsum() 

        ts_target = np.array([item for sublist in target_series[:i + 1] 

for item in sublist]).cumsum() 

 

        t = len(ts_benchmark) 

        current_ts[:t] = ts_benchmark 

        current_ts2[:t] = ts_target 

 

        current_ts[current_ts == 0] = ts_benchmark[-1] 

        current_ts2[current_ts2 == 0] = ts_target[-1] 

 

        plt.figure(figsize=(12, 10)) 

 

        plt.subplot(2, 1, 1) 

        plt.bar(np.arange(n_assets), target_balances[i], color='grey') 

        plt.xticks(np.arange(n_assets), columns, rotation='vertical') 

 

        plt.subplot(2, 1, 2) 

        plt.colormaps = current_cmap 



 
 

        plt.plot(current_range[:t], current_ts[:t], color='black', 

label='Benchmark') 

        plt.plot(current_range[:t], current_ts2[:t], color='red', 

label=name2plot) 

        plt.plot(current_range[t:], current_ts[t:], ls='--', lw=.1, 

color='black') 

        plt.autoscale(False) 

        plt.ylim([-1, 1]) 

        plt.legend() 

        plt.savefig(path2save + base_name_series + str(i) + '.jpg') 

 

 

def portfolio(returns, weights): 

    weights = np.array(weights) 

    rets = returns.mean() * 252 

    covs = returns.cov() * 252 

    P_ret = np.sum(rets * weights) 

    P_vol = np.sqrt(np.dot(weights.T, np.dot(covs, weights))) 

    P_sharpe = P_ret / P_vol 

    return np.array([P_ret, P_vol, P_sharpe]) 

 

 

def sharpe(R): 

    r = np.diff(R) 

    sr = r.mean() / r.std() * np.sqrt(252) 

    return sr 

 

 

import statsmodels.api as sm 

from statsmodels import regression 

 

 

def print_stats(result, benchmark): 

    sharpe_ratio = sharpe(np.array(result).cumsum()) 

    returns = np.mean(np.array(result)) 

    volatility = np.std(np.array(result)) 

 

    X = benchmark 

    y = result 

    x = sm.add_constant(X) 

    model = regression.linear_model.OLS(y, x).fit() 

    alpha = model.params[0] 

    beta = model.params[1] 

 

    return np.round(np.array([returns, volatility, sharpe_ratio, alpha, 

beta]), 4).tolist() 

 

 

 

 

 

 

 



 
 

2. Agent.py 

from sklearn.decomposition import PCA 

import scipy.optimize as sco 

import pandas as pd 

import numpy as np 

 

from keras.layers import Input, Dense 

from keras.models import Model 

from keras import regularizers 

from keras.models import load_model 

 

from statsmodels.tsa.api import ExponentialSmoothing, 

SimpleExpSmoothing, Holt 

from utils import portfolio 

 

from hrp_routines import * 

 

 

class HRPAgent: 

 

    def __init__( 

            self, 

            portfolio_size, 

            allow_short=True, 

    ): 

 

        self.portfolio_size = portfolio_size 

        self.allow_short = allow_short 

        self.input_shape = (portfolio_size, portfolio_size,) 

 

    def act(self, returns): 

 

        corr = returns.corr() 

        cov = returns.cov() 

        optimal_weights = getHRP(cov, corr) 

 

        if self.allow_short: 

            optimal_weights /= sum(np.abs(optimal_weights)) 

        else: 

            optimal_weights += np.abs(np.min(optimal_weights)) 

            optimal_weights /= sum(optimal_weights) 

 

        return optimal_weights 

 

 

class AutoencoderAgent: 

 

    def __init__( 

            self, 

            portfolio_size, 

            allow_short=True, 

            encoding_dim=25 

    ): 

 

        self.portfolio_size = portfolio_size 

        self.allow_short = allow_short 

        self.encoding_dim = encoding_dim 

 

    def model(self): 

        input_img = Input(shape=(self.portfolio_size,)) 

        encoded = Dense(self.encoding_dim, activation='relu', 



 
 

kernel_regularizer=regularizers.l2(1e-6))(input_img) 

        decoded = Dense(self.portfolio_size, activation='linear', 

kernel_regularizer=regularizers.l2(1e-6))(encoded) 

        autoencoder = Model(input_img, decoded) 

        autoencoder.compile(optimizer='adam', loss='mse') 

        return autoencoder 

 

    def act(self, returns): 

        data = returns 

        autoencoder = self.model() 

        autoencoder.fit(data, data, shuffle=False, epochs=25, 

batch_size=32, verbose=False) 

        reconstruct = autoencoder.predict(data) 

 

        communal_information = [] 

 

        for i in range(0, len(returns.columns)): 

            diff = np.linalg.norm((returns.iloc[:, i] - reconstruct[:, 

i]))  # 2 norm difference 

            communal_information.append(float(diff)) 

 

        optimal_weights = np.array(communal_information) / 

sum(communal_information) 

 

        if self.allow_short: 

            optimal_weights /= sum(np.abs(optimal_weights)) 

        else: 

            optimal_weights += np.abs(np.min(optimal_weights)) 

            optimal_weights /= sum(optimal_weights) 

 

        return optimal_weights 

 

 

class SmoothingAgent: 

 

    def __init__( 

            self, 

            portfolio_size, 

            allow_short=True, 

            forecast_horizon=252, 

    ): 

 

        self.portfolio_size = portfolio_size 

        self.allow_short = allow_short 

        self.forecast_horizon = forecast_horizon 

 

    def act(self, timeseries): 

 

        optimal_weights = [] 

 

        for asset in timeseries.columns: 

            ts = timeseries[asset] 

            fit1 = Holt(ts).fit() 

            forecast = fit1.forecast(self.forecast_horizon) 

            prediction = forecast.values[-1] - forecast.values[0] 

            optimal_weights.append(prediction) 

 

        if self.allow_short: 

            optimal_weights /= sum(np.abs(optimal_weights)) 

        else: 

            optimal_weights += np.abs(np.min(optimal_weights)) 

            optimal_weights /= sum(optimal_weights) 

 



 
 

        return optimal_weights 

 

 

class PCAAgent: 

 

    def __init__( 

            self, 

            portfolio_size, 

            pc_id=0, 

            pca_max=10, 

            allow_short=False, 

    ): 

 

        self.portfolio_size = portfolio_size 

        self.allow_short = allow_short 

        self.input_shape = (portfolio_size, portfolio_size,) 

        self.pc_id = pc_id 

        self.pc_max = pca_max 

 

    def act(self, returns): 

        C = self.pc_max 

        pca = PCA(C) 

        returns_pca = pca.fit_transform(returns) 

        pcs = pca.components_ 

 

        pc1 = pcs[self.pc_id, :] 

 

        if self.allow_short: 

            optimal_weights = pc1 / sum(np.abs(pc1)) 

        else: 

            optimal_weights += np.abs(np.min(optimal_weights)) 

            optimal_weights /= sum(optimal_weights) 

 

        return optimal_weights 

 

 

class MaxReturnsAgent: 

 

    def __init__( 

            self, 

            portfolio_size, 

            allow_short=False, 

    ): 

 

        self.portfolio_size = portfolio_size 

        self.allow_short = allow_short 

        self.input_shape = (portfolio_size, portfolio_size,) 

 

    def act(self, returns): 

 

        def loss(weights): 

            return -portfolio(returns, weights)[0] 

 

        n_assets = len(returns.columns) 

 

        if self.allow_short: 

            bnds = tuple((-1.0, 1.0) for x in range(n_assets)) 

            cons = ({'type': 'eq', 'fun': lambda x: 1.0 - 

np.sum(np.abs(x))}) 

        else: 

            bnds = tuple((0.0, 1.0) for x in range(n_assets)) 

            cons = ({'type': 'eq', 'fun': lambda x: 1.0 - np.sum(x)}) 

 



 
 

        opt_S = sco.minimize( 

            loss, 

            n_assets * [1.0 / n_assets], 

            method='SLSQP', bounds=bnds, 

            constraints=cons) 

 

        optimal_weights = opt_S['x'] 

 

        # sometimes optimization fails with constraints, need to be 

fixed by hands 

        if self.allow_short: 

            optimal_weights /= sum(np.abs(optimal_weights)) 

        else: 

            optimal_weights += np.abs(np.min(optimal_weights)) 

            optimal_weights /= sum(optimal_weights) 

 

        return optimal_weights 

 

 

class MinVarianceAgent: 

 

    def __init__( 

            self, 

            portfolio_size, 

            allow_short=False, 

    ): 

 

        self.portfolio_size = portfolio_size 

        self.allow_short = allow_short 

        self.input_shape = (portfolio_size, portfolio_size,) 

 

    def act(self, returns): 

 

        def loss(weights): 

            return portfolio(returns, weights)[1] ** 2 

 

        n_assets = len(returns.columns) 

 

        if self.allow_short: 

            bnds = tuple((-1.0, 1.0) for x in range(n_assets)) 

            cons = ({'type': 'eq', 'fun': lambda x: 1.0 - 

np.sum(np.abs(x))}) 

        else: 

            bnds = tuple((0.0, 1.0) for x in range(n_assets)) 

            cons = ({'type': 'eq', 'fun': lambda x: 1.0 - np.sum(x)}) 

 

        opt_S = sco.minimize( 

            loss, 

            n_assets * [1.0 / n_assets], 

            method='SLSQP', bounds=bnds, 

            constraints=cons) 

 

        optimal_weights = opt_S['x'] 

 

        # sometimes optimization fails with constraints, need to be 

fixed by hands 

        if self.allow_short: 

            optimal_weights /= sum(np.abs(optimal_weights)) 

        else: 

            optimal_weights += np.abs(np.min(optimal_weights)) 

            optimal_weights /= sum(optimal_weights) 

 

        return optimal_weights 



 
 

 

 

class MaxSharpeAgent: 

 

    def __init__( 

            self, 

            portfolio_size, 

            allow_short=False, 

    ): 

 

        self.portfolio_size = portfolio_size 

        self.allow_short = allow_short 

        self.input_shape = (portfolio_size, portfolio_size,) 

 

    def act(self, returns): 

 

        def loss(weights): 

            return -portfolio(returns, weights)[2] 

 

        n_assets = len(returns.columns) 

 

        if self.allow_short: 

            bnds = tuple((-1.0, 1.0) for x in range(n_assets)) 

            cons = ({'type': 'eq', 'fun': lambda x: 1.0 - 

np.sum(np.abs(x))}) 

        else: 

            bnds = tuple((0.0, 1.0) for x in range(n_assets)) 

            cons = ({'type': 'eq', 'fun': lambda x: 1.0 - np.sum(x)}) 

 

        opt_S = sco.minimize( 

            loss, 

            n_assets * [1.0 / n_assets], 

            method='SLSQP', bounds=bnds, 

            constraints=cons) 

 

        optimal_weights = opt_S['x'] 

 

        # sometimes optimization fails with constraints, need to be 

fixed by hands 

        if self.allow_short: 

            optimal_weights /= sum(np.abs(optimal_weights)) 

        else: 

            optimal_weights += np.abs(np.min(optimal_weights)) 

            optimal_weights /= sum(optimal_weights) 

 

        return optimal_weights 

 

 

class MaxDecorrelationAgent: 

 

    def __init__( 

            self, 

            portfolio_size, 

            allow_short=False, 

    ): 

 

        self.portfolio_size = portfolio_size 

        self.allow_short = allow_short 

        self.input_shape = (portfolio_size, portfolio_size,) 

 

    def act(self, returns): 

 

        def loss(weights): 



 
 

            weights = np.array(weights) 

            return np.sqrt(np.dot(weights.T, np.dot(returns.corr(), 

weights))) 

 

        n_assets = len(returns.columns) 

 

        if self.allow_short: 

            bnds = tuple((-1.0, 1.0) for x in range(n_assets)) 

            cons = ({'type': 'eq', 'fun': lambda x: 1.0 - 

np.sum(np.abs(x))}) 

        else: 

            bnds = tuple((0.0, 1.0) for x in range(n_assets)) 

            cons = ({'type': 'eq', 'fun': lambda x: 1.0 - np.sum(x)}) 

 

        opt_S = sco.minimize( 

            loss, 

            n_assets * [1.0 / n_assets], 

            method='SLSQP', bounds=bnds, 

            constraints=cons) 

 

        optimal_weights = opt_S['x'] 

 

        # sometimes optimization fails with constraints, need to be 

fixed by hands 

        if self.allow_short: 

            optimal_weights /= sum(np.abs(optimal_weights)) 

        else: 

            optimal_weights += np.abs(np.min(optimal_weights)) 

            optimal_weights /= sum(optimal_weights) 

 

        return optimal_weights 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3. Environment,py 

import numpy as np 

import pandas as pd 

 

from utils import portfolio 

 

 

class CryptoEnvironment: 

 

    def __init__(self, prices = './data/crypto_portfolio.csv', capital = 

1e6): 

        self.prices = prices 

        self.capital = capital 

        self.data = self.load_data() 

 

    def load_data(self): 

        data =  pd.read_csv(self.prices) 

        try: 

            data.index = data['Date'] 

            data = data.drop(columns = ['Date']) 

        except: 

            data.index = data['date'] 

            data = data.drop(columns = ['date']) 

        return data 

 

    def preprocess_state(self, state): 

        return state 

 

    def get_state(self, t, lookback, is_cov_matrix = True, 

is_raw_time_series = False): 

 

        assert lookback <= t 

 

        decision_making_state = self.data.iloc[t-lookback:t] 

        decision_making_state = 

decision_making_state.pct_change().dropna() 

 

        if is_cov_matrix: 

            x = decision_making_state.cov() 

            return x 

        else: 

            if is_raw_time_series: 

                decision_making_state = self.data.iloc[t-lookback:t] 

            return self.preprocess_state(decision_making_state) 

 

    def get_reward(self, action, action_t, reward_t, alpha = 0.01): 

 

        def local_portfolio(returns, weights): 

            weights = np.array(weights) 

            rets = returns.mean() # * 252 

            covs = returns.cov() # * 252 

            P_ret = np.sum(rets * weights) 

            P_vol = np.sqrt(np.dot(weights.T, np.dot(covs, weights))) 

            P_sharpe = P_ret / P_vol 

            return np.array([P_ret, P_vol, P_sharpe]) 

 

        data_period = self.data[action_t:reward_t] 

        weights = action 

        returns = data_period.pct_change().dropna() 

 

        sharpe = local_portfolio(returns, weights)[-1] 



 
 

        sharpe = np.array([sharpe] * len(self.data.columns)) 

        rew = (data_period.values[-1] - data_period.values[0]) / 

data_period.values[0] 

 

        return np.dot(returns, weights), rew 

 

 

 

class ETFEnvironment: 

 

    def __init__(self, volumes = './data/volumes.txt', 

                       prices = './data/prices.txt', 

                       returns = './data/returns.txt', 

                       capital = 1e6): 

 

        self.returns = returns 

        self.prices = prices 

        self.volumes = volumes 

        self.capital = capital 

 

        self.data = self.load_data() 

 

    def load_data(self): 

        volumes = np.genfromtxt(self.volumes, delimiter=',')[2:, 1:] 

        prices = np.genfromtxt(self.prices, delimiter=',')[2:, 1:] 

        returns=pd.read_csv(self.returns, index_col=0) 

        assets=np.array(returns.columns) 

        dates=np.array(returns.index) 

        returns=returns.as_matrix() 

        return pd.DataFrame(prices, 

             columns = assets, 

             index = dates 

            ) 

 

    def preprocess_state(self, state): 

        return state 

 

    def get_state(self, t, lookback, is_cov_matrix = True, 

is_raw_time_series = False): 

 

        assert lookback <= t 

 

        decision_making_state = self.data.iloc[t-lookback:t] 

        decision_making_state = 

decision_making_state.pct_change().dropna() 

 

        if is_cov_matrix: 

            x = decision_making_state.cov() 

            return x 

        else: 

            if is_raw_time_series: 

                decision_making_state = self.data.iloc[t-lookback:t] 

            return self.preprocess_state(decision_making_state) 

 

    def get_reward(self, action, action_t, reward_t): 

 

        def local_portfolio(returns, weights): 

            weights = np.array(weights) 

            rets = returns.mean() # * 252 

            covs = returns.cov() # * 252 

            P_ret = np.sum(rets * weights) 

            P_vol = np.sqrt(np.dot(weights.T, np.dot(covs, weights))) 

            P_sharpe = P_ret / P_vol 



 
 

            return np.array([P_ret, P_vol, P_sharpe]) 

 

        weights = action 

        returns = self.data[action_t:reward_t].pct_change().dropna() 

 

        rew = local_portfolio(returns, weights)[-1] 

        rew = np.array([rew] * len(self.data.columns)) 

 

        return np.dot(returns, weights), rew 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4. HRP_routines.py 

import numpy as np 

import pandas as pd 

from scipy.cluster.hierarchy import dendrogram, linkage 

from scipy.cluster.hierarchy import cophenet 

from scipy.spatial.distance import pdist 

import pylab 

 

 

 

# On 20151227 by MLdP <lopezdeprado@lbl.gov> 

# Hierarchical Risk Parity 

 

 

def getIVP(cov, **kargs): 

    # Compute the inverse-variance portfolio 

    ivp = 1. / np.diag(cov) 

    ivp /= ivp.sum() 

    return ivp 

 

 

def getClusterVar(cov,cItems): 

    # Compute variance per cluster 

    cov_=cov.loc[cItems,cItems] # matrix slice 

    w_=getIVP(cov_).reshape(-1,1) 

    cVar=np.dot(np.dot(w_.T,cov_),w_)[0,0] 

    return cVar 

 

 

def getQuasiDiag(link): 

    # Sort clustered items by distance 

    link = link.astype(int) 

    sortIx = pd.Series([link[-1, 0], link[-1, 1]]) 

    numItems = link[-1, 3]  # number of original items 

    while sortIx.max() >= numItems: 

        sortIx.index = range(0, sortIx.shape[0] * 2, 2)  # make space 

        df0 = sortIx[sortIx >= numItems]  # find clusters 

        i = df0.index 

        j = df0.values - numItems 

        sortIx[i] = link[j, 0]  # item 1 

        df0 = pd.Series(link[j, 1], index=i + 1) 

        sortIx = sortIx.append(df0)  # item 2 

        sortIx = sortIx.sort_index()  # re-sort 

        sortIx.index = range(sortIx.shape[0])  # re-index 

    return sortIx.tolist() 

 

 

def getRecBipart(cov, sortIx): 

    # Compute HRP alloc 

    w = pd.Series(1, index=sortIx) 

    cItems = [sortIx]  # initialize all items in one cluster 

    while len(cItems) > 0: 

        cItems = [i[j:k] for i in cItems for j, k in ((0, len(i) // 2), 

(len(i) // 2, len(i))) if len(i) > 1]  # bi-section 

        for i in range(0, len(cItems), 2):  # parse in pairs 

            cItems0 = cItems[i]  # cluster 1 

            cItems1 = cItems[i + 1]  # cluster 2 

            cVar0 = getClusterVar(cov, cItems0) 

            cVar1 = getClusterVar(cov, cItems1) 

            alpha = 1 - cVar0 / (cVar0 + cVar1) 

            w[cItems0] *= alpha  # weight 1 



 
 

            w[cItems1] *= 1 - alpha  # weight 2 

    return w 

 

 

def correlDist(corr): 

    # A distance matrix based on correlation, where 0<=d[i,j]<=1 

    # This is a proper distance metric 

    dist = ((1 - corr) / 2.)**.5  # distance matrix 

    return dist 

 

 

def getHRP(cov, corr): 

    # Construct a hierarchical portfolio 

    dist = correlDist(corr) 

    link = linkage(dist, 'single') 

    #dn = sch.dendrogram(link, labels=cov.index.values, 

label_rotation=90) 

    #plt.show() 

    sortIx = getQuasiDiag(link) 

    sortIx = corr.index[sortIx].tolist() 

    hrp = getRecBipart(cov, sortIx) 

    return hrp.sort_index() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5. Stockmarket.py 

6. # 1 
import warnings 

 

warnings.filterwarnings('ignore') 

 

from keras.layers import Input, Dense, Flatten, Dropout 

from keras.models import Model 

 

import numpy as np 

import pandas as pd 

import os 

 

import random 

from collections import deque 

import matplotlib.pylab as plt 

 

from sklearn.decomposition import PCA 

 

# 2 

from environment import ETFEnvironment, CryptoEnvironment 

from agent import MinVarianceAgent, MaxSharpeAgent, 

MaxDecorrelationAgent, MaxReturnsAgent 

from utils import * 

 

# 3 

N_ASSETS = 15  # 53 

WINDOW_FIT = 180  # 252 

WINDOW_HOLD = 90  # 252 

env = CryptoEnvironment()  # ETFEnvironment 

 

# 4 

agent_max_returns = MaxReturnsAgent(N_ASSETS, allow_short=True) 

agent_minvar = MinVarianceAgent(N_ASSETS, allow_short=True) 

agent_maxsharpe = MaxSharpeAgent(N_ASSETS, allow_short=True) 

agent_maxdecorr = MaxDecorrelationAgent(N_ASSETS, allow_short=True) 

 

# 5 

actions_equal, actions_returns, actions_minvar, actions_maxsharpe, 

actions_maxdecorr = [], [], [], [], [] 

result_equal, result_returns, result_minvar, result_maxsharpe, 

result_maxdecorr = [], [], [], [], [] 

 

for i in range(WINDOW_FIT, len(env.data), WINDOW_HOLD): 

    state = env.get_state(i, WINDOW_FIT, is_cov_matrix=False) 

 

    action_equal = np.ones(N_ASSETS) / N_ASSETS 

    action_minvar = agent_minvar.act(state) 

    action_max_returns = agent_max_returns.act(state) 

    action_maxsharpe = agent_maxsharpe.act(state) 

    action_maxdecorr = agent_maxdecorr.act(state) 

 

    state_action = env.get_state(i + WINDOW_HOLD, WINDOW_HOLD, 

is_cov_matrix=False) 

 

    r = np.dot(state_action, action_equal) 

    result_equal.append(r.tolist()) 

    actions_equal.append(action_equal) 

 

    r = np.dot(state_action, action_minvar) 

    result_minvar.append(r.tolist()) 



 
 

    actions_minvar.append(action_minvar) 

 

    r = np.dot(state_action, action_max_returns) 

    result_returns.append(r.tolist()) 

    actions_returns.append(action_max_returns) 

 

    r = np.dot(state_action, action_maxsharpe) 

    result_maxsharpe.append(r.tolist()) 

    actions_maxsharpe.append(action_maxsharpe) 

 

    r = np.dot(state_action, action_maxdecorr) 

    result_maxdecorr.append(r.tolist()) 

    actions_maxdecorr.append(action_maxdecorr) 

 

# 6 

result_equal_vis = [item for sublist in result_equal for item in 

sublist] 

result_returns_vis = [item for sublist in result_returns for item in 

sublist] 

result_minvar_vis = [item for sublist in result_minvar for item in 

sublist] 

result_maxsharpe_vis = [item for sublist in result_maxsharpe for item in 

sublist] 

result_maxdecorr_vis = [item for sublist in result_maxdecorr for item in 

sublist] 

 

# 7 

plt.figure() 

plt.plot(np.array(result_equal_vis).cumsum()) 

plt.plot(np.array(result_minvar_vis).cumsum()) 

plt.plot(np.array(result_returns_vis).cumsum()) 

plt.plot(np.array(result_maxsharpe_vis).cumsum()) 

plt.plot(np.array(result_maxdecorr_vis).cumsum()) 

plt.show() 

 

# 8 

print('EQUAL', print_stats(result_equal_vis, result_equal_vis)) 

print('MINVAR', print_stats(result_minvar_vis, result_equal_vis)) 

print('MAXRET', print_stats(result_returns_vis, result_equal_vis)) 

print('MAXSHRAPE', print_stats(result_maxsharpe_vis, result_equal_vis)) 

print('MAXDECORR', print_stats(result_maxdecorr_vis, result_equal_vis)) 

 

# 9 

import matplotlib 

 

current_cmap = matplotlib.cm.get_cmap() 

current_cmap.set_bad(color='red') 

 

 

# 10 

def plot_results(benchmark_series, 

                 target_series, 

                 target_balances, 

                 n_assets=N_ASSETS, 

                 columns=state.columns, 

                 name2plot='', 

                 path2save='./', 

                 base_name_series='series'): 

    #     N = len(np.array(benchmark_series).cumsum()) 

    N = len(np.array([item for sublist in benchmark_series for item in 

sublist]).cumsum()) 

 

    if not os.path.exists(path2save): 



 
 

        os.makedirs(path2save) 

 

    for i in range(0, len(target_balances)): 

        current_range = np.arange(0, N) 

        current_ts = np.zeros(N) 

        current_ts2 = np.zeros(N) 

 

        ts_benchmark = np.array([item for sublist in benchmark_series[:i 

+ 1] for item in sublist]).cumsum() 

        ts_target = np.array([item for sublist in target_series[:i + 1] 

for item in sublist]).cumsum() 

 

        t = len(ts_benchmark) 

        current_ts[:t] = ts_benchmark 

        current_ts2[:t] = ts_target 

 

        current_ts[current_ts == 0] = ts_benchmark[-1] 

        current_ts2[current_ts2 == 0] = ts_target[-1] 

 

        plt.figure(figsize=(12, 10)) 

 

        plt.subplot(2, 1, 1) 

        plt.bar(np.arange(n_assets), target_balances[i], color='grey') 

        plt.xticks(np.arange(n_assets), columns, rotation='vertical') 

 

        plt.subplot(2, 1, 2) 

        plt.colormaps = current_cmap 

        plt.plot(current_range[:t], current_ts[:t], color='black', 

label='Benchmark') 

        plt.plot(current_range[:t], current_ts2[:t], color='red', 

label=name2plot) 

        plt.plot(current_range[t:], current_ts[t:], ls='--', lw=.1, 

color='black') 

        plt.autoscale(False) 

        plt.ylim([-1, 1]) 

        plt.legend() 

        plt.savefig(path2save + base_name_series + str(i) + '.jpg') 

 

 

# 11 

plot_results(result_equal, 

             result_maxdecorr, 

             actions_maxdecorr, 

             N_ASSETS, 

             state.columns.tolist(), 

             'Decorrelation portfolio', './images/decorr/', 'series') 

# 12 

plot_results(result_equal, 

             result_maxsharpe, 

             actions_maxsharpe, 

             N_ASSETS, 

             state.columns.tolist(), 

             'Maximal Sharpe portfolio', './images/sharpe/', 'series') 

 

# 13 

plot_results(result_equal, 

             result_minvar, 

             actions_minvar, 

             N_ASSETS, 

             state.columns.tolist(), 

             'Minimal variance portfolio', './images/minvar/', 'series') 

 

# 14 



 
 

plot_results(result_equal, 

             result_returns, 

             actions_returns, 

             N_ASSETS, 

             state.columns.tolist(), 

             'Maximal returns portfolio', './images/maxret/', 'series') 

# 15 

from agent import PCAAgent 

 

# 50 

 

agent_pca = PCAAgent(N_ASSETS, allow_short=True, pc_id=0) 

actions_equal, actions_pca = [], [] 

result_equal, result_pca = [], [] 

 

for i in range(WINDOW_FIT, len(env.data), WINDOW_HOLD): 

    state = env.get_state(i, WINDOW_FIT, is_cov_matrix=False) 

 

    action_equal = np.ones(N_ASSETS) / N_ASSETS 

    action_pca = agent_pca.act(state) 

 

    state_action = env.get_state(i + WINDOW_HOLD, WINDOW_HOLD, 

is_cov_matrix=False) 

 

    r = np.dot(state_action, action_equal) 

    result_equal.append(r.tolist()) 

    actions_equal.append(action_equal) 

 

    r = np.dot(state_action, action_pca) 

    result_pca.append(r.tolist()) 

    actions_pca.append(action_pca) 

 

# 52 

result_equal_vis = [item for sublist in result_equal for item in 

sublist] 

result_pca_vis = [item for sublist in result_pca for item in sublist] 

 

# 53 

plt.figure() 

plt.plot(np.array(result_equal_vis).cumsum()) 

plt.plot(np.array(result_pca_vis).cumsum()) 

plt.show() 

 

# 54 

print('EQUAL', print_stats(result_equal_vis, result_equal_vis)) 

print('PCA', print_stats(result_pca_vis, result_equal_vis)) 

 

 

 

# 21 

import matplotlib 

 

current_cmap = matplotlib.cm.get_cmap() 

 

# 22 

plot_results(result_equal, 

             result_pca, 

             actions_pca, 

             N_ASSETS, 

             state.columns, 

             'PCA PC0 portfolio', './images/pca/', 'series') 

 

# 23 



 
 

from agent import HRPAgent 

 

# 24 

agent_hrp = HRPAgent(N_ASSETS, allow_short=True) 

 

# 25 

actions_equal, actions_hrp = [], [] 

result_equal, result_hrp = [], [] 

 

for i in range(WINDOW_FIT, len(env.data), WINDOW_HOLD): 

    state = env.get_state(i, WINDOW_FIT, is_cov_matrix=False) 

 

    action_equal = np.ones(N_ASSETS) / N_ASSETS 

    action_hrp = agent_hrp.act(state) 

 

    state_action = env.get_state(i + WINDOW_HOLD, WINDOW_HOLD, 

is_cov_matrix=False) 

 

    r = np.dot(state_action, action_equal) 

    result_equal.append(r.tolist()) 

    actions_equal.append(action_equal) 

 

    r = np.dot(state_action, action_hrp) 

    result_hrp.append(r.tolist()) 

    actions_hrp.append(action_hrp) 

 

# 26 

result_equal_vis = [item for sublist in result_equal for item in 

sublist] 

result_hrp_vis = [item for sublist in result_hrp for item in sublist] 

 

# 27 

plt.figure() 

plt.plot(np.array(result_equal_vis).cumsum()) 

plt.plot(np.array(result_hrp_vis).cumsum()) 

plt.show() 

 

# 28 

print('EQUAL', print_stats(result_equal_vis, result_equal_vis)) 

print('HRP', print_stats(result_hrp_vis, result_equal_vis)) 

 

# 29 

import matplotlib 

 

current_cmap = matplotlib.cm.get_cmap() 

 

# 30 

plot_results(result_equal, 

             result_hrp, 

             actions_hrp, 

             N_ASSETS, 

             state.columns, 

             'HRP portfolio', './images/hrp/', 'series') 

 

# 31 

from agent import SmoothingAgent 

 

agent_smooth = SmoothingAgent(N_ASSETS, allow_short=True, 

forecast_horizon=WINDOW_HOLD) 

actions_equal, actions_smooth = [], [] 

result_equal, result_smooth = [], [] 

 

for i in range(WINDOW_FIT, len(env.data), WINDOW_HOLD): 



 
 

    state = env.get_state(i, WINDOW_FIT, is_cov_matrix=False, 

is_raw_time_series=True) 

 

    action_equal = np.ones(N_ASSETS) / N_ASSETS 

    action_smooth = agent_smooth.act(state) 

 

    state_action = env.get_state(i + WINDOW_HOLD, WINDOW_HOLD, 

is_cov_matrix=False) 

 

    r = np.dot(state_action, action_equal) 

    result_equal.append(r.tolist()) 

    actions_equal.append(action_equal) 

 

    r = np.dot(state_action, action_smooth) 

    result_smooth.append(r.tolist()) 

    actions_smooth.append(action_smooth) 

 

# 34 

result_equal_vis = [item for sublist in result_equal for item in 

sublist] 

result_smooth_vis = [item for sublist in result_smooth for item in 

sublist] 

 

# 35 

plt.figure() 

plt.plot(np.array(result_equal_vis).cumsum()) 

plt.plot(np.array(result_smooth_vis).cumsum()) 

plt.show() 

 

# 36 

print('EQUAL', print_stats(result_equal_vis, result_equal_vis)) 

print('SMOOTHING', print_stats(result_smooth_vis, result_equal_vis)) 

 

# 37 

plot_results(result_equal, 

             result_smooth, 

             actions_smooth, 

             N_ASSETS, 

             state.columns, 

             'Holt smoothing portfolio', './images/smoothing/', 

'series') 

 

# 38 

from agent import AutoencoderAgent 

 

agent_ae = AutoencoderAgent(N_ASSETS, allow_short=True, encoding_dim=5) 

actions_equal, actions_ae = [], [] 

result_equal, result_ae = [], [] 

 

for i in range(WINDOW_FIT, len(env.data), WINDOW_HOLD): 

    state = env.get_state(i, WINDOW_FIT, is_cov_matrix=False, 

is_raw_time_series=True) 

 

    action_equal = np.ones(N_ASSETS) / N_ASSETS 

    action_ae = agent_ae.act(state) 

 

    state_action = env.get_state(i + WINDOW_HOLD, WINDOW_HOLD, 

is_cov_matrix=False) 

 

    r = np.dot(state_action, action_equal) 

    result_equal.append(r.tolist()) 

    actions_equal.append(action_equal) 

 



 
 

    r = np.dot(state_action, action_ae) 

    result_ae.append(r.tolist()) 

    actions_ae.append(action_ae) 

 

result_equal_vis = [item for sublist in result_equal for item in 

sublist] 

result_ae_vis = [item for sublist in result_ae for item in sublist] 

 

plt.figure() 

plt.plot(np.array(result_equal_vis).cumsum()) 

plt.plot(np.array(result_ae_vis).cumsum()) 

plt.show() 

 

print('EQUAL', print_stats(result_equal_vis, result_equal_vis)) 

print('AUTOENCODER', print_stats(result_ae_vis, result_equal_vis)) 

 

plot_results(result_equal, 

             result_ae, 

             actions_ae, 

             N_ASSETS, 

             state.columns, 

             'Autoencoder portfolio', './images/ae/', 'series') 

 

# 45 

import imageio 

import glob 

 

name = 'decorr' 

 

filenames = sorted(glob.glob('./images/' + name + '/series*.jpg')) 

 

filenames 

 

images = [] 

for filename in filenames: 

    images.append(imageio.imread(filename)) 

imageio.mimsave('./images/' + name + '_gif.gif', images, duration=0.5) 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

7. Stockmarketdata.csv 

Date RELIANCE TCS HINDUNILVR 
HDFC 
Bank INFOSYS BHARTIARTL KOTAKBKETF 

ICICI 
Bank ITC 

######## 894.38 2888.94 1337.86 1837.11 1135.86 394.41 248.09 262.9 256.75 

######## 891.67 2907.92 1344.06 1827.19 1135.21 397.83 249.74 265.84 258.63 

######## 901.57 2914.91 1352.9 1807.48 1131.81 399.14 249.39 268.92 258.54 

######## 907.4 2949.56 1375.38 1820.17 1140.71 394.28 250.65 275.34 258.65 

######## 912.81 2943.69 1371.58 1830.21 1128.81 386.64 252.29 279.81 261.06 

######## 916.01 2936.88 1387.27 1839.27 1113.12 381.47 254.86 279.15 264.65 

######## 919.12 2943.58 1392.16 1825.12 1115.77 379.78 255.88 289.29 266.64 

######## 927.88 2987.68 1406.67 1813.54 1124.78 386.38 255.06 284.83 264.95 

######## 929.39 3116.29 1406.2 1822.63 1157.71 381.34 255.37 287.38 262.57 

######## 937.05 3181.37 1406.09 1835.33 1172.37 379.64 257.37 288.7 261.59 

######## 932.57 3169.39 1414.59 1864.29 1125.66 377.4 258.04 287.29 263.6 

######## 942.33 3165.81 1438.77 1879.58 1121.63 378.56 258.84 290.56 265.28 

######## 941.25 3166.57 1449.94 1886.3 1124.27 386.56 257.54 291.81 275.48 

######## 941.25 3190.56 1454.72 1867.66 1132.61 391.59 256.15 288.97 277.18 

######## 928.21 3351.07 1455.55 1839.83 1171.78 397.85 252.98 284.43 276.21 

######## 936.28 3478.05 1455.1 1835.94 1186.79 403.38 254.03 279.08 275.87 

######## 959.86 3385.7 1454.35 1855.59 1168.64 402.57 254.91 284.41 276.77 

######## 971 3445.24 1454.79 1847.36 1160.85 420.42 253.43 281.17 274.5 

######## 977.14 3528.84 1479.86 1850.57 1172.76 411.68 253.47 277.94 277.35 

######## 999.97 3475.49 1479.83 1852.06 1183.9 406.79 257.16 288.07 279.6 

######## 969.39 3523.56 1500.69 1880.38 1199.78 409.6 260.13 285.71 282.15 

######## 973.34 3496.99 1482.49 1896.68 1192.72 408.6 261.51 278.24 286.01 

######## 964.27 3501.58 1451.68 1921.83 1195.66 403.77 261.31 281.51 285.64 

######## 954.68 3485.14 1462.46 1914.82 1165.5 405.42 261.84 282.99 279.28 

######## 963.82 3438.41 1493.07 1912.92 1181.67 400.03 262.81 287.62 280.63 

######## 972.41 3447.8 1494.94 1905.65 1167.51 399.95 265.2 308.91 283.51 

######## 973.59 3480.95 1498.62 1893.2 1169.95 403.14 265.05 307.23 282.95 

######## 980.67 3478.59 1492.6 1896.16 1173.06 409.31 265.78 308.66 279.73 

######## 986.84 3461.07 1498.41 1913.69 1174.3 389.19 267.01 309.93 281.68 

######## 984.23 3427.81 1503.4 1927.77 1184.18 386.2 269.75 308.28 285.56 

######## 988.75 3477.97 1524.08 1936.07 1196.6 382.08 270.75 311.45 282.78 

######## 962.49 3494.21 1556.14 1921.18 1191.85 376.83 267.4 299.4 284.33 

######## 949.68 3509.69 1581.28 1886.56 1186.19 371.49 265.94 297.56 282.74 

######## 941.11 3487.86 1595.09 1858.85 1181.08 360.42 263.94 288.06 282 

######## 927.05 3567.15 1593.71 1830.4 1182.21 364.41 263.27 290.11 281.94 



 
 

######## 930.25 3520.43 1570.66 1808.53 1189.56 362.92 263.54 290.66 280.06 

######## 917.49 3513.84 1571.17 1791.87 1198.4 359.94 261.87 294.22 275.22 

######## 916.46 3579.69 1558.3 1802.61 1217.23 366.24 263.18 295.51 274.73 

######## 920.3 3633.11 1576.89 1812.9 1239.09 375.35 265.83 297.12 272.16 

######## 922.21 3516.38 1582.16 1828.99 1218.07 376.48 270.36 299.45 275.87 

######## 920.32 3517.42 1579.72 1817.47 1214.01 376.91 266.97 292.27 275.89 

######## 915.8 3508.9 1574.59 1793.23 1214.64 375.03 266.52 285.4 271.49 

######## 921.07 1742.44 1605 1818.76 1230.2 374.71 270.31 283.33 271.41 

######## 926.94 1742.29 1598.28 1844.43 1229.79 379.99 272.28 292.82 270.17 

######## 939.73 1730.25 1569.46 1845.64 1233.14 378.28 267.56 288.82 270.07 

######## 949.46 1728.88 1563.05 1835.68 1226.49 362.71 267.84 284.88 268.14 

######## 952.01 1725.85 1568.87 1850.8 1234.18 374.47 267.53 283.6 269.35 

######## 969.3 1738 1596.01 1868.34 1252.57 380.61 270.53 290.47 271.22 

######## 974.6 1748.59 1593.85 1841.82 1257.48 378.18 268.83 287.23 268.62 

######## 991.25 1752.55 1604.2 1842.44 1262.71 387.78 270.88 287.48 270.36 

######## 991.14 1773.52 1619.06 1847.89 1258.01 384.68 270.62 287.01 271.9 

######## 999.25 1818.17 1625.64 1836.34 1275.2 377.63 271.69 290.32 269.54 

######## 1001.22 1795.49 1608.43 1832.06 1242.78 378.11 271.85 286.05 267.26 

######## 1015.48 1823.42 1614.79 1834.12 1267.1 375.31 271.07 283.49 264.77 

######## 1014.97 1840.85 1619.1 1825.62 1273.18 375.78 270.18 290.76 264.52 

######## 1002.7 1829.83 1598.23 1827.21 1244.36 372.73 268.75 291.41 265.1 

######## 1015.65 1828.68 1607.29 1842.64 1245.07 373.45 268.73 293.04 264.01 

######## 1030.56 1822.83 1599.81 1858.55 1247.63 369.86 270.32 298.08 261.73 

######## 1014.6 1810.38 1603.17 1883.28 1249.94 371.81 269.68 298.78 264.82 

######## 1010.49 1817.52 1619.81 1894.14 1271.05 374.61 262.45 293.45 261.96 

######## 986.72 1842.52 1623.39 1913.98 1277.24 379.59 270.62 286.56 265.06 

######## 973.82 1870.51 1633.54 1917.81 1281.92 376.68 270.97 279.05 262.45 

######## 952.67 1846.23 1605.56 1880.17 1290.08 376.28 269.69 272.74 261.78 

######## 967.48 1851.25 1629.6 1895.06 1298.31 380.73 269.44 273.82 264.67 

######## 962.14 1852 1639 1895.71 1325.09 371.04 267.6 274.48 262.63 

######## 972.1 1872.16 1650.6 1881.84 1347.06 369.9 267.55 274.51 263.65 

######## 982.92 1863.61 1661.45 1909.61 1345.49 367.94 268.97 272.71 263.7 

######## 988.25 1874.33 1681.35 1926.73 1290.51 362.92 270.6 273.09 270.19 

######## 977.82 1907.65 1686.9 1925.99 1281.04 362.18 270.24 269.81 272.52 

######## 991.93 1888.15 1684.71 1908.8 1294.01 362.67 272.55 272.56 274.2 

######## 1018.86 1881.79 1687.42 1924.81 1305.09 365.71 273.79 274.11 275.43 

######## 1030.85 1951.99 1709.79 1944.19 1317.22 364.35 272.83 270.74 277.74 

######## 1080.29 1972.52 1739.12 1963.41 1299.24 362.91 275.56 271.72 276.11 

######## 1098.67 1986.23 1738.95 1970.08 1315.39 359.95 275.29 268.24 271.64 

######## 1082.43 1988.74 1762.14 1988.45 1345.93 350.92 273.77 259.58 271.68 

######## 1085.22 1994.6 1712.73 1983.3 1333.08 342.93 273.15 264.24 270.74 

######## 1091.64 2000.88 1655.5 2010.89 1325.16 336.43 276.43 263.58 269.28 

######## 1098.53 1984.27 1654.44 1989.14 1318.01 343.9 274.4 261.69 270.99 



 
 

######## 1125.34 1993.61 1653.2 1970.28 1352.12 344.58 274.15 265.82 273.32 

######## 1119.33 2005.83 1686.82 1971.96 1350.21 355.47 274.23 272.11 283.57 

######## 1115.46 1998.52 1679.97 1973.74 1368.92 361.67 276.58 274.97 285.37 

######## 1116.21 1979.25 1651.34 1998.75 1383.06 347.96 275.29 273.99 285.64 

######## 1113.9 1968.67 1661.25 2014.03 1377.36 356.44 279.46 283.67 288.1 

######## 1127.43 1948.53 1653.47 2036.67 1377.08 363.22 281.13 290.79 301.39 

######## 1143.36 1942.3 1682.66 2036.01 1356.75 374.32 282.65 302.62 301.53 

######## 1171.82 1934.85 1713.9 1987.35 1351.3 388.29 282.81 304.63 297.9 

######## 1193.58 1972.85 1731.56 1980.41 1355.85 391.75 282.99 301.76 299.14 

######## 1174.13 1960.41 1749.59 1942 1357.31 374.22 280.55 298.01 300.56 

######## 1175.98 1973.58 1756.65 1968.28 1361.34 373.61 282.28 304.11 302.22 

######## 1188.86 1981.25 1731.83 1979.47 1358.6 382.22 284.65 314.59 303.29 

######## 1186.35 1967.34 1730.71 1981.2 1366.36 382.15 285.19 314.62 301.77 

######## 1204.7 1969.57 1746.54 1975.61 1362.16 380.21 287.42 314.69 301.07 

######## 1221.41 1974.51 1753.38 1972.77 1381.59 369.03 288.27 334.73 302.52 

######## 1207.99 1985.67 1753.63 1963.96 1380.64 370.86 287.73 331.31 304.58 

######## 1191.83 1998.04 1743.98 1945.97 1401.07 371.52 285.09 324.83 305.91 

######## 1203.27 2010.34 1749.3 1953.53 1414.34 367.16 286.36 329.49 308.55 

######## 1204.69 2008.49 1740.41 1907.11 1426.82 370 285.13 335.63 306.97 

######## 1208.89 2012.85 1764.26 1892.02 1430.85 369.39 286.46 339.72 313.17 

######## 1227.54 2011.43 1790.26 1915.19 1389.04 370.78 289.15 339.52 313.42 

######## 1244.28 2015.38 1759.16 1916.42 1381.18 367.87 287.23 337.68 313.84 

######## 1259.12 2030.81 1769.65 1925.56 1392.99 370.67 287.93 336.89 312.05 

######## 1271.78 2041.86 1778.31 1914.46 1386.47 367.7 286.46 330.76 309.65 

######## 1290.31 2051.79 1789.67 1926.63 1406 376.01 288.1 338.81 313.57 

######## 1311.31 2065.5 1778.99 1946.42 1427.92 377.85 287.54 338.94 312.78 

######## 1309.99 2065.1 1759.56 1958.79 1412.92 377.96 289.91 340.57 312.1 

######## 1278.51 2078.06 1769.96 1938.39 1411.92 380.8 288.03 342.19 318.38 

######## 1247.15 2082.1 1778.75 1925.82 1439.05 380.95 287.02 342.19 320.54 

######## 1241.4 2072.5 1729.5 1939.87 1451.3 384.15 287.04 337.46 318.71 

######## 1241.44 2093.77 1645.16 1952.12 739.04 380.24 281.69 330.87 308.6 

######## 1230.06 2086.52 1617.43 1939.78 734.79 373.06 280.49 327.88 311.33 

######## 1245.01 2070.41 1615.22 1945.23 730.17 371.59 280.87 328.92 310.2 

######## 1272.05 2076.27 1629.77 1932.77 730.95 383.91 281.51 331.34 311.02 

######## 1263.51 2083.98 1613.62 1891.11 736.29 387.87 279.14 333.2 306.96 

######## 1248.31 2055.93 1589.84 1867.02 738.58 381.85 279.81 331.08 298.06 

######## 1243.62 2048.93 1619.28 1873.37 741.14 377.1 273.51 322.27 303.42 

######## 1258.4 2042.02 1623.81 1909.27 735.78 378.39 277.22 326.84 306.62 

######## 1232.59 2067.17 1605.71 1884.45 730.79 384.11 275.44 324.7 303.27 

######## 1228.49 2069.75 1654.67 1870.41 720.33 377.99 272.05 322.32 302.47 

######## 1214.62 2081.53 1658.44 1841.25 719.4 373.93 268.24 320.91 302.15 

######## 1223.31 2083.75 1625.59 1836.62 706.4 368.24 263.9 323.83 303.82 

######## 1225.23 2168.27 1605.21 1752.33 721.56 356.85 257.89 311.79 299.62 



 
 

######## 1226.67 2186.15 1615.46 1746.38 727.76 350.66 260.47 305.99 297.9 

######## 1239.18 2161.8 1610.72 1772.93 720.78 360.58 261.35 310.8 293.94 

######## 1252.61 2175.57 1617.39 1734.79 724.8 358.63 262.1 307.96 292.28 

######## 1259.94 2177.54 1611.94 1758.62 727.98 342.35 258.67 305.95 296.25 

######## 1231.68 2242.36 1627.99 1781.73 745.05 326.95 255 308.33 296.68 

######## 1218.04 2195.08 1625.03 1803.62 738.21 320.89 255.72 308.37 297.16 

######## 1140.4 2084.35 1580.24 1765.74 711.02 310.94 253.37 310.99 290.28 

######## 1079.24 2079.05 1550.21 1733.69 717.57 306.64 251.28 313.64 280.41 

######## 1082.04 2074.99 1558.57 1677.58 717.09 294.64 250.34 307.62 273.6 

######## 1105.24 2086.07 1522 1716.64 711.05 289.74 251.01 306.69 271.27 

######## 1101.57 2063.1 1517.7 1742.06 703.19 292.67 255.94 316.33 269.63 

######## 1086.1 1984.8 1499.63 1691.26 676.06 287.94 254.05 311.78 265.96 

######## 1121.38 1927.35 1560.56 1727.12 673.71 288.74 259.14 320.1 274.98 

######## 1136.88 1939.74 1521.84 1732.64 691.39 288.1 258.54 313.28 279.8 

######## 1154.23 1952.66 1543.19 1758.43 702.32 293.11 261.68 320.07 280.86 

######## 1166.52 1945.4 1564.12 1750.3 711.55 291.49 261.58 321.89 287.08 

######## 1092.05 1896.96 1570.69 1697.79 682.35 288.7 256.59 316.63 288.32 

######## 1084.3 1903.03 1582.54 1669.93 679.08 283.7 259.76 325.23 290.63 

######## 1053.27 1865.59 1562.87 1691.14 663.77 286.22 254.26 323.47 287.61 

######## 1050.33 1841.95 1572.51 1724.61 653.45 304.18 256.7 324.06 288.33 

######## 1029.24 1859.3 1569.01 1706.96 647.53 300.05 254.48 317.74 287.25 

######## 1043.01 1813.56 1566.91 1700.89 636.49 297.97 252.1 318.44 281.31 

######## 1069.59 1832.62 1538.93 1679.92 637.82 296.73 251.09 341.45 282.71 

######## 1065.23 1890.59 1581.09 1680.37 657.39 293.24 253.4 348.07 280.55 

######## 1059.51 1915.93 1603.21 1736.64 681.52 287.48 254.28 349.35 277.1 

######## 1059.03 1918.75 1597.61 1764.01 671.01 293.75 258.5 354.48 277.04 

######## 1072.3 1926.04 1635.23 1806.7 665.4 302.17 262.65 355.2 282.86 

######## 1081.82 1901.41 1626.11 1794.02 662.36 301.82 263.12 349.98 280.43 

######## 1104.23 1926.88 1634.23 1799.53 668.4 305.3 262.87 352.83 277.91 

######## 1110.53 1942.26 1642.77 1815.07 674.86 306.22 263.99 355.8 279.8 

######## 1101.88 1918.61 1666.33 1813.72 661.4 298.24 264.86 355.43 277.48 

######## 1085.52 1928.01 1667.56 1810.69 669.82 298.19 261.91 354.43 275.29 

######## 1090.11 1927.95 1659.66 1807.92 663.83 294.85 261.18 355.9 275.13 

######## 1098.36 1883.81 1717.8 1840.11 648.72 304.82 264.23 365.82 276.23 

######## 1095.12 1881.5 1710.7 1844.57 660.71 304.26 265.16 369.4 276.1 

######## 1121.66 1883.01 1695.82 1878.88 649.95 324.02 266.85 370.18 276.61 

######## 1142.86 1883.58 1693.34 1891.81 652.75 330.59 268.12 363.67 281.29 

######## 1143.18 1883.47 1699.17 1882.93 645.31 335.22 267.27 359.08 284.45 

######## 1116.81 1813.73 1690.74 1873.76 618.73 334.39 267.11 356.73 281.99 

######## 1113.39 1830.63 1683.93 1880.34 623.11 329.2 264.79 354.55 281.79 

######## 1107.7 1813.41 1727.56 1882.83 613.78 335.29 267.18 354.72 284.26 

######## 1121.98 1864.24 1725.98 1892.65 634.88 329.54 268.61 353.96 284.28 

######## 1144.01 1951.77 1732.38 1920.81 659.36 322.36 272.13 356.24 283.94 



 
 

######## 1170.72 1964.64 1763.68 1949.63 667.03 315.72 273.02 362.87 287.04 

######## 1171.45 1972.18 1763.32 1982.42 667.52 317.01 274.86 357.99 286.99 

######## 1158.74 1978.67 1794.19 1989.66 670.58 318.25 275.37 354.79 285.71 

######## 1149.79 2004.77 1817.21 1937.54 682.83 316.08 272.58 356.94 282.12 

######## 1150.35 2004.02 1826.46 1952.48 678.97 314.59 270.9 353.11 276.58 

######## 1136.17 1997.82 1815.81 1960.13 672.12 305.66 268.01 346.72 273.28 

######## 1124.39 1991.36 1811.81 1943.81 679.07 303.81 269.02 349.55 274.54 

######## 1091.18 1988.81 1802.24 1917.18 671.47 296.51 267.72 346.89 270.45 

######## 1079.85 1993.07 1795.87 1885.14 672.27 289.74 263.81 340.84 272.14 

######## 1099.51 2011.87 1826.8 1923.88 675.12 301.02 270.97 347.52 274.97 

######## 1110.87 1995.57 1853.19 1943.93 690.27 306.32 274.54 351.28 276.73 

######## 1107.1 1984.61 1852.52 1913.13 705.93 317.82 273 352.22 275.73 

######## 1125.03 1993.85 1855.7 1942.9 697.79 317.71 275.68 358.62 279.14 

######## 1129.68 1986.56 1839.35 1943.92 679.65 316.13 275.74 358.52 278.46 

######## 1141.63 1968.84 1848.62 1973.76 665.07 321.02 278.52 366.02 282.31 

######## 1125.05 1955.65 1839.16 1960.03 664.34 317.07 277.6 363.42 282.65 

######## 1109.5 1913.17 1816.56 1951.03 651.1 314.65 275.93 356.18 278.72 

######## 1094.03 1924.7 1797.63 1925.72 652.59 307.98 274.11 354.13 278.38 

######## 1081.5 1884.77 1772.77 1910.4 641.76 311.08 273.03 352.47 277.08 

######## 1119.69 1920.44 1807.59 1943.86 658.16 317.52 275.67 357.63 279.93 

######## 1129.79 1907.36 1826.37 1981.67 658.29 318.34 279.22 360.98 282.2 

######## 1122.29 1896.42 1820.78 1971.07 659.27 315.49 276.95 361.17 282.39 

######## 1119.01 1899.78 1804.57 1990.57 660.66 316.4 278.08 360.35 281.41 

######## 1113.42 1922.9 1786.89 1984.08 669.97 314.25 278.3 364.87 280.46 

######## 1101.37 1916.85 1792.38 1950.27 669.66 311.27 276.18 365.31 279.76 

######## 1093.06 1869.19 1784.94 1957.64 660.17 320.11 276.77 362.95 281.12 

######## 1110.32 1894.04 1790.16 1975.79 667.51 324.8 280.21 369.12 282.6 

######## 1103.82 1892.03 1773.74 1959.5 672.86 328.66 279.55 375.83 283.69 

######## 1110.55 1897.56 1785.48 1980.98 678.41 332.55 281.2 380.96 288.51 

######## 1106.3 1891.77 1787.93 1980.17 677.63 335.31 281.71 378.96 291.17 

######## 1099.31 1849.37 1773.87 1989.68 679.18 333.13 280.92 377.6 294.22 

######## 1093.55 1817.21 1766.64 1962.84 701.27 330.74 279.07 374.37 292.6 

######## 1124.77 1857.55 1780.97 1982.27 721.52 332.71 279.56 372.71 296.12 

######## 1139.05 1861.89 1774.6 1976.96 734.12 338.82 282.07 377.05 294.08 

######## 1139.3 1887.33 1760.88 1994.18 733.06 332.79 281.7 375.22 292.42 

######## 1162.97 1891.36 1746.76 2001.77 730.43 314.69 281.88 373.1 292 

######## 1222.77 1916.27 1747.7 2002.93 744.87 311.46 282.88 373.1 290.9 

######## 1234.02 1902.97 1749.37 1978.04 739.94 306.14 281.67 368.59 287.89 

######## 1233.79 1882.8 1774.32 1963.4 735.7 304.62 281.97 370.64 284.09 

######## 1240.42 1893.8 1763.94 1956.37 727.66 302.05 278.82 365.05 280.55 

######## 1253.45 1921.92 1763.2 1982.39 731.7 306.91 278.91 359.39 280.86 

######## 1237.32 1948.39 1751.66 1953.84 725.12 303.72 273.68 343.42 276.75 

######## 1212.83 1959.99 1750.93 1924.99 721.76 306.98 272 344.5 276.78 



 
 

######## 1208.06 1975.06 1740.74 1885.95 726.45 307.49 274.35 361.89 275.93 

######## 1220.45 2008.37 1764.22 1909.13 744.47 305.91 277.23 367.18 277.32 

######## 1240.68 2022.08 1802.24 1955.77 753.37 313.54 276.72 357.38 281.39 

######## 1269.56 2039.87 1807.77 1964.33 754.39 305.15 276.2 351.33 278.63 

######## 1292.06 2043.13 1825.73 1974.51 753.48 301.39 279.51 352.04 274.72 

######## 1309.33 2067.55 1830.56 1988.96 762.75 305.41 279.16 358.86 276.88 

######## 1302.19 2084.77 1839.14 1976.27 766.2 311.48 280.61 359.43 279.09 

######## 1282.97 2072.46 1827.11 1956.33 763.4 310.94 280.7 354.14 277.7 

######## 1259.38 2061.4 1804.64 1947.12 764.82 312.76 278.69 351.61 274.4 

######## 1259.38 2061.4 1804.64 1947.12 764.82 312.76 278.69 351.61 274.4 

######## 1261.8 2042.96 1796.79 1924.17 748.38 312.4 277.87 348.35 277.85 

######## 1258.94 2064.32 1803.74 1928.38 753.01 310.57 275.77 343.01 279.84 

######## 1227.02 2050.83 1786.78 1910.35 745.6 301.16 274.57 342.29 278.42 

######## 1228.62 2031.88 1765.01 1872.23 739.44 301.25 274.17 343.61 278.4 

######## 1226.57 2029.7 1746.17 1874.84 739.9 301.85 273.89 339.7 278.1 

######## 1226.57 2029.7 1746.17 1874.84 739.9 301.85 273.89 339.7 278.1 

######## 1228.49 1930.07 1741.74 1869.81 726.7 308.7 274.65 345.9 277.69 

######## 1228.29 1908.2 1731.28 1866.82 734.78 307.75 274.7 345.19 275.38 

######## 1246.51 1922.84 1750.18 1881.67 732.23 306.1 276.05 352.18 275.06 

######## 1233.91 1920.72 1765.88 1888.58 733.71 313.75 275.21 352.44 273.97 

######## 1232.29 1925.65 1767.01 1886.54 749.2 316.43 276.24 355.64 275.47 

######## 1232.29 1925.65 1767.01 1886.54 749.2 316.43 276.24 355.64 275.47 

######## 1221.22 2022.12 1776.55 1865.27 745.77 316.66 276.73 349.4 275.46 

######## 1227.12 2050.25 1745.45 1845.85 738.56 319.12 275.28 347.94 275.81 

######## 1233.07 2009.42 1739.45 1841.82 735.59 320.07 275.32 347.9 275.78 

######## 1229.08 1993.73 1739.39 1851.62 740 307.61 277.39 352.79 277.46 

######## 1229.02 1987.11 1724.93 1857.2 734.79 306.51 279.03 358.98 279.76 

######## 1257.64 2001.3 1707.44 1873.84 732.02 310.52 282.94 370.13 286.76 

######## 1271.7 2014.4 1708.79 1878.9 724.84 309.38 284.08 370.8 288.8 

######## 1267.28 2023.03 1702.7 1879.97 714.77 309.59 283.88 370.45 291.53 

######## 1291.98 2017.1 1716.43 1895.34 712.07 325.7 286.46 375.79 293.18 

######## 1324.88 2015.6 1734.4 1915.08 708.99 346.61 290.64 386.34 294.38 

######## 1339.1 2001.12 1747.33 1946.93 710.81 343.85 292.03 389.13 295.2 

######## 1352.38 1991.28 1736.25 1959.13 710.02 340.45 296.16 389.17 293.62 

######## 1334.04 2040.01 1702.04 1972.9 717.57 336.67 299.31 394.71 291.9 

######## 1341.23 2033.02 1698.64 1968.65 715 333.42 301.2 396.52 292.93 

######## 1362.21 2010.71 1698.3 1968.78 715.22 336.06 302.81 398.15 297.34 

######## 1376.17 2025.82 1702.74 1984.87 737.53 334.89 304.34 394.49 299.02 

######## 1375.45 2015.05 1685.25 1991.26 741.4 337.63 304.26 392.9 298.11 

######## 1375.45 2015.05 1685.25 1991.26 741.4 337.63 304.26 392.9 298.11 

######## 1325.16 1987.88 1674.08 1952.32 735.24 328.45 298.32 384.41 294.75 

######## 1353.06 1971.46 1683.21 1944.21 724.65 328.27 301.91 389.46 293.19 

######## 1360.73 1979.12 1693.98 1937.71 730.32 327.92 307.34 394.23 294.27 



 
 

######## 1357.34 1993.96 1681.5 1942.93 739.73 327.25 308.43 398.93 298.2 

######## 1363.56 2001.7 1706.33 1956.38 743.49 332.89 316.02 399.11 297.57 

######## 1386.73 2027.91 1702.01 1960.06 754.32 340.15 310.68 404.53 297.81 

######## 1390.35 2064.13 1687.2 1979.73 760.56 353.2 309.65 395.93 297.74 

######## 1390.2 2073.86 1677.49 2019.73 752.48 357.37 306.38 397.01 297.5 

######## 1360.64 2039.77 1671.46 2037.46 748.43 356.35 308.16 391 294.95 

######## 1352.52 2037.19 1656.32 2055.28 758.69 356.24 305.17 388.82 294.04 

######## 1335.09 2056.64 1669.4 2048.64 762.8 357.93 307.41 388.41 292.86 

######## 1330.46 2085.63 1673.99 2057.72 765.16 348.74 306.45 392.6 295.24 

######## 1337.99 2053.91 1694.92 2038.39 759.53 347.35 307.32 395.63 295.11 

######## 1338.41 2028.47 1710.78 2029.46 744.27 345.92 303.85 390.26 295.33 

######## 1346.08 2019.97 1718.84 2020.07 746.82 343.75 305.57 392.26 302.46 

######## 1341.32 2086.02 1722.9 2019.1 724.58 341.45 307.58 394.89 306.76 

######## 1349.7 2137.54 1736.15 2025.8 722.4 346.14 310.61 404.8 308.2 

######## 1379.51 2138.81 1738.82 2013.04 716.8 341.94 310.2 406.69 305.58 

######## 1353.82 2165.74 1738.7 1970.41 721.04 346.74 304.06 398.24 302.48 

######## 1362.98 2147.21 1742.1 1944.34 726.32 319.44 302.72 397.18 303.55 

######## 1379.35 2172.32 1742.32 1958.44 733.43 322.13 302.19 397.78 302.71 

######## 1391.77 2189.55 1743.94 1970.35 730.72 327.66 305.01 398.27 305.76 

######## 1383.98 2225.36 1738.85 1963.96 736.11 327 304.39 402.32 304.33 

######## 1384.81 2252.48 1755.94 1976.43 748.61 318.75 302.22 407.21 302.17 

######## 1402.33 2227.88 1740.05 2012.44 738.19 326.15 303.02 399.85 303.85 

######## 1412.19 2153 1698.94 2020.47 725.26 330.73 305.18 400.66 305.73 

######## 1392.39 2150.11 1666.58 1967.93 718.07 332.08 302.49 400.54 305 

######## 1361.64 2163.53 1700.33 1983.01 724.51 330.53 301.48 397.17 305.31 

######## 1313.1 2151.85 1686.13 1941.55 721.65 323.94 297.29 384.93 301.46 

######## 1265.1 2166.98 1695.24 1918.15 724.48 320.52 294.65 382.09 299.17 

######## 1263.56 2161.83 1694.39 1936.05 717.88 322.96 295.61 385.98 298.68 

######## 1246.96 2143.87 1705.6 1958.85 720.09 323.43 294.03 380.82 296.21 

######## 1252.66 2101.14 1696.91 1951.75 711.18 330.06 294.42 382.41 294.07 

######## 1269.53 2103.66 1681.14 1961.65 719.58 333.58 294.87 381.46 296.8 

######## 1264.7 2107.55 1686.43 1935.38 730.03 326.23 294.73 380.92 294.8 

######## 1268.85 2107.34 1729.2 1980.19 725.44 326.01 298.17 386.58 299.22 

######## 1319.23 2119.5 1761.28 2093.43 719.31 335.84 310.75 409.17 305.1 

######## 1348 2122.37 1786.16 2145.11 712.09 334.15 310.28 404.16 307.81 

######## 1345.18 2091.31 1761.42 2138.55 712.73 334.03 310.94 406.02 299.48 

######## 1364.45 2071.74 1775 2168.72 708.67 341.53 317.58 417.39 294.75 

######## 1334.73 2051.14 1744.24 2120.74 706.58 349.09 315.74 424.41 289.83 

######## 1322.83 2054.87 1757.68 2161.74 711.8 349.01 321.34 433.75 291.65 

######## 1323.88 2076.46 1773.19 2140.11 725.58 345.44 322.01 433.06 289.3 

######## 1321.09 2109.46 1778.64 2150.97 729.38 340.4 321.01 425.79 289.46 

######## 1329.55 2142.62 1786.56 2169.63 733.51 346.13 322.4 424.71 289.53 

######## 1330.68 2184.11 1784.89 2180.23 737.91 348.68 324.14 424.04 282.35 



 
 

######## 1344.47 2223.68 1817.64 2217.73 742.27 351.93 322.87 423.15 277.56 

######## 1358.17 2195.01 1817.55 2222.85 736.49 352.48 324.24 420 280.31 

######## 1335.47 2169.63 1838.66 2200.67 736.86 352.01 317.29 414.37 277.27 

######## 1314.55 2161.21 1830.55 2191.61 739.65 357.2 316.89 414.74 275.22 

######## 1319.5 2219.98 1852.7 2193.98 751.37 360.22 318.28 417.03 278.72 

######## 1327.51 2250.89 1842.68 2192.02 754.71 362.23 318.69 419.85 280.17 

######## 1332.57 2241.29 1837.61 2174.02 750.69 359.89 318.09 417.27 279.84 

######## 1322.47 2265.77 1836.77 2182.23 743.56 362.51 316.21 418.62 279.98 

######## 1316.01 2250.08 1831.03 2189.8 741.51 355.79 313.64 418.86 278.81 

######## 1291.9 2252.43 1816.94 2173.16 741.8 348.21 310.76 415.63 276.08 

######## 1279.9 2245.75 1802.57 2165.07 749.2 343.69 311.14 421.58 275.88 

######## 1284.31 2262.19 1813.27 2173.69 751.2 341.76 312.94 422.34 277.11 

######## 1288.38 2248.36 1801.08 2193.71 749.22 347.04 312.39 427.74 276.4 

######## 1282.04 2255.87 1774.8 2153.08 750.28 345.62 313.4 431.95 274.41 

######## 1264.03 2267.8 1764.09 2148.03 747.99 346.24 313.34 430.92 276.29 

######## 1281.36 2264.08 1754.21 2160.66 744.67 347.21 313.96 429.37 277.68 

######## 1295.88 2259.22 1756.61 2165.85 743.56 346.87 317.32 437.59 277.5 

######## 1281.11 2254.5 1777.67 2189.62 733.31 346.63 320.45 441.05 274.82 

######## 1261.89 2234.73 1782.4 2192.12 732.85 346.01 319.78 437.24 273.98 

######## 1263.04 2237.15 1783.43 2227.98 733.32 347.66 321.57 440.52 275.18 

######## 1272.92 2237.79 1784.46 2262.05 734.99 351.74 320.65 436.41 273.97 

######## 1281.62 2242.16 1785.7 2275.44 736.8 354.15 322.11 436.58 273.97 

######## 1285.9 2241.04 1788.87 2275.11 733.38 361.71 324.35 438.41 276.63 

######## 1275.14 2179.39 1804.5 2284.65 723.71 365.11 322.24 436.79 276.25 

######## 1256.53 2168.49 1758.08 2259.59 717.2 359.53 316.99 427.7 278.85 

######## 1272.67 2128.96 1741.37 2220.71 713.79 359.07 312.81 427.87 273.98 

######## 1277.53 2102.52 1733.53 2232.59 716.16 357.83 313.45 430.21 273.82 

######## 1284.68 2103.2 1731.52 2254.42 716.61 359.8 313.94 426.97 275.86 

######## 1292.37 2108.31 1724.02 2271.09 724.08 355.91 315.57 427.77 275.01 

######## 1276.79 2126.77 1715.21 2259.05 769.12 352.66 312.14 423.79 272.07 

######## 1285.92 2108.89 1740.12 2272.13 782.56 351.32 313 427.13 271.66 

######## 1287.12 2111.55 1751.21 2284.73 789.65 348.45 314.51 424.69 272.3 

######## 1269.25 2084.29 1735.42 2332.67 793.85 345.25 313.99 421.3 273.86 

######## 1256.85 2080.79 1733.33 2313.11 786.53 340.26 310.09 413.12 269.75 

######## 1262.08 2099.33 1684.64 2201.94 787.13 340.71 301.2 409.91 265.53 

######## 1281.65 2120.71 1688.7 2143.22 795.33 343.02 300.64 413.88 268.88 

######## 1261.14 2097.5 1708.56 2175.12 786.78 338.41 298.04 406.86 270.08 

######## 1245.25 2118.42 1738.55 2196.99 793.82 340.16 300.22 409 269.13 

######## 1222.79 2109.59 1729.53 2178.06 786.88 333.22 300.85 413.72 269.59 

######## 1212.37 2123.42 1715.42 2142.3 790.84 333.96 300.88 430.36 268.53 

######## 1199.24 2162.72 1719.38 2132.05 793.92 344.41 300.11 432.02 268.33 

######## 1173.86 2180.17 1730.76 2119.57 792.38 340.98 295.24 425.24 268.62 

######## 1163.85 2195.1 1730.7 2083.17 774.33 329.6 292.37 419.1 268.26 



 
 

######## 1181.63 2185.91 1729.04 2097.26 770.48 337.94 287.66 410.35 264.78 

######## 1143.81 2241.19 1739.21 2132.6 777.83 348.5 282.15 401.22 259.65 

######## 1137.27 2232.27 1745.62 2179.27 776.57 365.55 286.04 408.32 259.8 

######## 1118.77 2223.14 1775.25 2178.88 778.99 368.43 285.54 411.55 255.88 

######## 1124.86 2247.44 1795.8 2167.66 787.81 373.28 285.29 409.14 255.73 

######## 1166.33 2253.09 1829.51 2222.52 790.13 369.63 292.71 419.14 254.99 

######## 1274.8 2219.61 1824.91 2136.79 772.53 352.5 287.52 415.92 247.57 

######## 1292.12 2200.61 1833.58 2125.76 773.33 359.15 285.89 418.24 249.79 

######## 1280.75 2173.77 1832.3 2114.45 772.37 360.31 286.95 416.36 251.44 

######## 1289.52 2171.81 1827.1 2118.78 779.02 363.19 289.76 424.67 254.36 

######## 1280.83 2190.28 1836.93 2099.65 793.28 359.61 285.99 417.39 247.35 

######## 1271.42 2193.43 1850.21 2079.25 799.47 356.83 285.56 415.25 242.98 

######## 1251.88 2213.54 1871.88 2034.79 797 354.18 281.67 404.13 242.66 

######## 1258.18 2244.15 1862.24 2019.52 802.51 355.35 278.23 394.27 236.55 

######## 1274.2 2259.83 1867.97 2112.51 799.09 358.35 287.91 404.34 240.73 

######## 1272.49 2241.51 1862.39 2171.77 785.23 349.6 289.93 417.06 245.22 

######## 1266.27 2233.18 1828.31 2177.34 796.96 344.52 285.83 414.46 245.55 

######## 1247.45 2235.21 1831.49 2140.01 805.11 344.75 282.44 404.32 242.37 

######## 1237.5 2241.92 1859.34 2149.86 809.24 344.46 280.79 407.42 244.01 

######## 1222.13 2275.88 1852.01 2100.34 816.96 340.35 277.52 396.27 242.18 

######## 1196 2248.41 1836.71 2095.5 818.11 343.06 279.04 395.72 243.17 

######## 1202.7 2225.26 1827.43 2054.36 833 345.5 277.44 390.76 244.46 

######## 1215.37 2204.18 1824.47 2037.08 840.49 350.02 278.36 392 244.19 

######## 1224.14 2188.09 1843.73 2060.07 830.92 353.46 279.31 396.17 245.47 

######## 1233.81 2162.64 1830.91 2070.62 818.82 355.81 283.31 395.79 243.89 

######## 1222.41 2135.46 1818.67 2096.43 816.08 349.7 285.88 404.39 242.19 

######## 1216.36 2135.83 1810.25 2075.39 824.18 343.05 285.71 407.77 240.31 

######## 1205.64 2151.17 1816.87 2052.4 827.38 343.12 286.65 412.22 239.29 

######## 1201.83 2123.78 1830.88 2006.18 827.54 337.97 282.89 406.05 238.09 

######## 1205.99 2133.02 1827.69 1993.65 828.68 336.72 279.58 400.63 237.53 

######## 1189.5 2103.74 1827.22 1985.51 820.99 337.55 275.55 388.74 237.42 

######## 1238.4 2083.7 1925.76 2038.33 811.86 352.45 293.41 411.8 240.62 

######## 1249.95 2011.62 2066.01 2146.38 770.66 352.36 309.94 441.55 255.71 

######## 1282.47 2045.07 2041.07 2138.91 785.94 348.86 311.34 439.43 255.96 

######## 1284.48 2077.98 2030 2071.36 793.69 342.67 304.97 434.35 251.89 

######## 1293.25 2084.45 2034.46 2068.89 783.93 344.13 308.6 449.49 249.43 

######## 1307.46 2065.56 2017.61 2061.64 785.46 345.53 308.76 447.4 254.55 

######## 1322.09 2090.07 1991.92 1989.56 801.63 356.16 304.88 436.05 256.6 

######## 1320.17 2059.04 1999.2 1994.56 796.66 356.45 300.24 431.03 258.41 
 

 



 
 

 

 



 
 

 

 

 

 

 



 
 

 

 


