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ABSTRACT  

The concept of an intelligent identification of human actions in videos is evolving 

as an active research area of computer vision and has covered a wide range of 

applications such as Ambient Assistive Living (AAL) [1], healthcare of elderly people 

[2], Intelligent Video surveillance systems [3], human-computer interfaces (HCI) [4] 

[5] , sports [6], event analysis, robotics [7], intrusion detection system [8], content-

based video analysis [9], multimedia semantic annotation and indexing [10] etc. With 

the advent of technology and proliferating demand of society, automatic video sequence 

analysis based systems have become the need of the hour and their application in real 

life is helping to raise the standards of safety and security in society. 

The performance of the intelligent human action identification system greatly 

depends on the type of input fed to the systems, and features extracted from the input 

data. Feature designing plays an important role in understanding the actions in videos. 

However, various environmental conditions such as lighting conditions, cluttered 

background, partial or complete occlusion, crowded scenes, different viewpoint of the 

camera, size, shape, appearance and complexity of human actions, badly affect the 

process of discriminating feature. Such challenges have always pushed forth 

researchers to explore new dimensions of the solution from vision-based to sensors, 

from 2D data to 3D data based Surveillance Systems, integrating multiple features, over 

the years. Various algorithms [11] [12] [13] [14] have been developed by the 

researchers, keeping different challenging scenarios in mind. Various real-time depth 

and skeleton based fall detection systems [15] [16] [17] [18] are developed considering 

the affordable range of the common user and practical challenges involved in video 
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analysis.  In addition to this, deep architectures [19] have also foot-stepped in computer 

vision field and used for automatic assessment of Parkinson’s disease, AAL 

applications and many more. Therefore, this thesis investigates both two-dimensional: 

RGB and three-dimensional: Depth and Skeleton based human action identification 

methods using both traditional handcrafted features as well as deep features. The human 

action identification objective is mainly divided into three steps:  

▪ The first step deals with human silhouette extraction. For different types of inputs 

different human silhouette extraction methods are used, which are listed as 

follows:  

i. For RGB video sequences, entropy based texture segmentation helps to 

segment the human silhouettes from background.  

ii. While dealing with depth images, human silhouette extraction process is 

accomplished by using global thresholding.  

iii. For skeleton data, joining of skeleton 3D coordinates generate the human 

poses for each frame. 

▪ The second step is feature extraction and representation using both traditional 

and deep learning models. For different types of combination of inputs, features 

are extracted with four different approaches, given as follows.  

i. For RGB video sequences, feature vector is generated by combining 

global Spatial Distribution Gradient (SDGs) representation and 

Difference of Gaussian (DoG) based STIPs which are scale, rotation and 

translation invariant. 
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ii. For Depth and skeleton data, a robust feature vector is computed by 

using 𝓡-transform and Zernike moments based human pose description, 

which is robust in terms of translation, rotation and scale variations. 

iii. For RGB and Depth data, motion dynamics of an action is represented 

as Dynamic Images (DIs) based CNN features and geometrical view-

invariant details of human poses are defined as deep HPM based features 

followed by learning of temporal information using LSTM model. 

iv. For skeleton data, part-wise spatio-temporal CNN – RIAC Network-

based 3D human action features are defined. 

▪ The third step is classification of human actions. K-NN, SVM, and HMM are 

used to classify traditional handcrafted features. Weighted, max, average and 

multiply late fusion strategies are used for deep learning models.  

The performance of each proposed action identification model is tested with 

various publicly available datasets and compared with earlier state-of-the-art 

algorithms. In addition to this, a novel Abnormal Human Action (AbHA) dataset is 

generated, while developing an automatic abnormal human action identification 

framework targeting the elderly health care and made publically available. 

Finally, the research work is concluded followed by future research direction as 

well as possible future applications which are highlighted and discussed in detail.  
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INTRODUCTION  

With the advent of camera technology, nowadays, we are flooded with profuse 

amount of image and video data. Smart cameras are used everywhere for surveillance 

at public place, for recording recreational activities in education, homes, banks, shops, 

medical domain, in air and under water. With the proliferating number of recorded 

videos and their widespread availability, analysis of the video content becomes crucial 

in terms of social safety and security. Efficiency of human cognizance system starts 

getting effected while analysing videos for long durations. Therefore, automated 

systems must be developed to analyse and understand videos content efficiently for 

long hours.  Identification of human actions in videos is an important area of video 

understanding. This thesis focuses on both handcrafted features based approaches and 

deep learning based feature extraction approaches to recognize human actions in 

videos.  

This chapter introduces the fundamental building blocks of human action 

identification in video sequences, its application and the challenges involved therein. 

In the last section, the major research contributions of the thesis are discussed, followed 

by thesis organisation. 

1.1 Human Action Identification 

Human Action Recognition (HAR) broadly refers to identification of types of 

human action, activity, pose, gesture, automatically through computer or machine. 

Therefore, identification and recognition terms are used interchangeably in the thesis. 
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Identification of Human Actions in video sequences has appealed tremendous attention 

in the field of computer vision. It is also because of its gigantic potential in wide 

spectrum of areas i.e. Ambient Assistive Living (AAL) [20] [21] [22], healthcare of 

elderly people [23], Intelligent Video surveillance systems [24] [3], human-computer 

interfaces (HCI) [25] [26] [27], sports [28] [29], event analysis, robotics [7], intrusion 

detection system [30], content-based video analysis [31] [9], multimedia semantic 

annotation and indexing [10] etc. However, the real time videos project complex actions 

sometimes with large inter class similarity or large intra class variations, illumination 

variations, view variations, partial or complete occlusion, cluttered background and 

moving camera. 

Before understanding the details of identification of types of Human 

Actions/Activity, let us first understand about human actions/activity. Human activity 

can be broadly categorised into four categories [32]: gestures, actions, interactions and 

group activity. Gestures are the fundamental motion patterns of the human body parts 

i.e. raising a leg, stretching an arm. Actions are defined as single person activities 

having a collection of multiple gestures i.e. walking, punching and waving.  Interactions 

include at least two people and/or object such as two people fighting, a person stealing 

the suitcase. Group activities are performed by a group of people and/or objects i.e. 

group fighting, or a meeting. This thesis mainly focuses on human actions and its 

identification in video sequences.  A vision based human action identification system 

automatically extracts the spatial and temporal information about the action from action 

sequences to recognize the action. The fundamental steps of human action identification 

in videos include pre-processing, feature extraction and classification, as shown in Fig. 

1.1. In order to understand the real world complex actions and activities automatically, 
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an identification system must have the understanding about the basic human poses like, 

standing, bending, walking, sitting down etc. Pre-processing of action sequences helps 

to detect the person in action in the video, and feature extraction stage ensures that 

meaningful spatio-temporal information of human poses, hence the action performed, 

is extracted. In classification stage, the identification system makes a final decision 

about the action on the basis of extracted features. Therefore, each stage of the 

identification system greatly effects the action recognition performance. 

Pre-processing of RGB frames involve segmentation of human silhouettes 

which can be performed by using background differencing, background modelling, 

texture based segmentation, and optical flow based object segmentation etc. With the 

innovations in the field of imagery technology, over a period of time, it has become 

possible to capture the depth and skeleton representation of the actions in real time 

along with RGB representation in cost-effective manner. Due to this, the inputs to the 

Human Action Recognition (HAR) systems are now available in three forms namely 

RGB, Depth and Skeleton. It has expanded the dimensions of feature extraction 

approaches to represent an action.  Since, depth value estimation involves infrared 

radiation, which are not sensitive to lighting conditions or visible light. They make 

foreground extraction much simpler and faster at pre-processing stage. Whereas 

skeletons provide access to 3D coordinates of human joints in 3D space. Due to these 

benefits of depth and skeleton images, researchers are now inclining towards depth and 

skeleton image based action analysis.  Spatial representation of skeleton joints helps to 

observe the human pose variations of the action. The change in skeleton joints’ location 

in 3D space over time provides temporal representation of the action. Researchers may 

either process all the frames of the action sequence or select only the distinct key poses 
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from the action sequences, in order to reduce redundant data. With the availability of 

enormous amount of data, feature extraction methods are evolving from traditional 

handcrafted features to deep learning based features. 

 

Figure 1.1: Overview of Human Action Identification (HAI) system 

Deep learning approaches generate more robust and dynamic features than the 

traditional handcrafted features. It is due to the fact that deep learning approaches start 

from pixel level at layer one and look for all possible combinations of edges and shapes 

formed, layer by layer in the training phase. 2D Convolution Neural Networks (CNNs), 

3D CNNs, two stream and three stream networks are some of the well-established 

approaches for deep spatial feature extraction. Whereas, Recurrent Neural Networks 

(RNNs), Bi-Directional Long Short Term Memory (Bi-LSTMs), Long Short Term 

Memory (LSTM), are used to learn the temporal changes in human poses. K-NN, SVM, 

HMM, Random Forest, Bootstrap are some of the popularly used traditional 

classification approaches. Whereas, Softmax is used for classification, in deep learning 

approaches. In multi-stream networks, early fusion and late fusion are preferred 
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approaches for final prediction. Weighted fusion is one of the method to perform late 

fusion and early fusion deals with combining the multi-stream features which are later 

classified by applying Softmax layer on it. 

1.2 Major Challenges  

Despite the consistent efforts made in the domain of human action identification 

in video sequences, it is a challenging task to develop a discriminative action 

representation in realistic videos. A variety of environmental challenges exist such as 

presence of cluttered background, viewpoint variation, illumination variation, scale 

variations, high inter class similarity, high intra class dissimilarity, different colour and 

texture of clothes. The effective action identification system requires a good descriptor 

capable of handling these challenges. 

The environmental conditions during video sequence recording greatly affect 

the performance of vision based recognition system. Different amount of illumination 

exposure or night vision distort the information acquired in images leading to the poor 

quality of video frames. Due to which, section of pixels in an image are highly 

illuminated and some of them appear dark and the information about the object in these 

sections gets unclear. Hence, the object and background of the scene may be 

indistinguishable. It affects the results obtained at pre-processing and feature extraction 

stages of action identification process. Therefore, in pre-processing stage, the effect of 

illumination must be reduced so that the spatial information of the object in the frame 

can be correctly detected. For this purpose, histogram equalisation [11] is used to 

normalise the contrast of the pixels but despite the added complexity to the system, 

histogram equalisation based approaches could not result in stable performance for 
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different amount of illumination conditions. A few researchers [33] [34] processed 

texture data of the object to segment the object from the frame using GMM, LBPs etc. 

However, GMM and LBP based object segmentation involves significant amount of 

processing time. Nowadays, Microsoft Kinect camera provide depth information of the 

scene along with RGB information. Since, depth images are generated by IR rays which 

are insensitive to illuminations. Therefore, depth images are also illumination invariant. 

Hence, depth image based action recognition can be preferred solution. 

The camera movement while acquiring the action, causes blurriness in the 

image that makes the boundary of objects in the scene hazy and unclear. Therefore, 

additional de-blurring algorithm needs to be applied. Hence, an action must be captured 

in a controlled environment with proper camera calibration.  

The cluttered background increases the complexity of the background and 

makes the foreground extraction difficult which is responsible for inaccurate 

segmentation of the object. This is noted especially in outdoor activities, where the 

cluttered background cannot be avoided. Hence, complex foreground modelling 

approaches like Gaussian Mixture Modelling (GMM) [33] [34], salient object detection 

algorithms [35] are used to extract the object.  

There is a high possibility that while performing an action, the object may get 

occluded partially or temporarily, that result in occlusion of significant human pose 

information. There are different types of occlusions, categorised as temporary 

occlusion, permanent occlusion, self-occlusion, partial occlusion and complete 

occlusion. Permanent and complete occlusions are most dangerous type of occlusion. 

Because they result in loss of spatial information of the object permanently, which we 
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cannot retrieve during the entire video sequence. Whereas, in case of temporary, self 

and partial occlusions, the spatial information of the object under action is not visible 

only for few frames. The effect of occlusion can be reduced by using multiple camera 

recordings which provide information at multiple views [36], [37] for recorded actions. 

However, use of multiple cameras increases the cost and complexity of system.  

The action performed at different angles from the camera, by different 

performers, is also an important challenge which greatly affect the performance of an 

automatic identification system. Variation in viewpoints of action leads to occlusion of 

the object. Therefore, to extract the occluded information, multiple views are used. The 

methods [36] have been evolved which extract unique features of the actions 

irrespective of the views, such that change in view does not affect the performance of 

the identification system.    

1.3 Problem Statement 

The challenges involved in identification of human actions in videos, motivate 

to develop efficient algorithms to fulfil the purpose of developing robust recognition 

system. In order to achieve this, four problem statements are formulated here to handle 

the practical challenges involved mentioned above, which are as follows:  

✓ Design and development of translation, rotation and scale invariant framework 

for automatic identification of abnormal human actions in video sequences, with 

less execution time. 

✓ Establish a novel framework for human action identification in RGB video 

sequences, which is robust against scale and illumination variations.  
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✓ To establish a novel view-invariant deep RGBD human action identification by 

integrating two important action cues: motion and shape temporal dynamics 

(STD). 

✓ To design a novel part-wise spatio-temporal CNN – RIAC Network based 3D 

human action recognition framework. 

1.4 Theoretical Formulation 

▪ The need for an appropriate type of segmentation approach is identified, which 

can handle different illumination conditions, and spatio-temporal redundancy in 

the RGB video sequence. 

▪ The issues involved in recognising human actions under different viewpoints 

are highlighted. A recognition system can understand view variations of the 

actions performed by different people properly, if it is introduced with possible 

multi-view human poses of the action in the learning phase.    

▪ The challenges in identifying human actions correctly for a set of samples with 

large similarities among different action classes and small similarity among 

actions samples belonging to the same action class, are identified and addressed 

by using the concept of part-wise spatio-temporal CNN features. 

▪ The use of depth images of action sequence simplifies foreground segmentation. 

The use of 𝓡-transform and Zernike moments based human pose descriptor 

introduces translation, scale, and rotation invariant action description, which 

enhances the human action identification performance. 
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1.5 Experimental Validation 

The developed algorithms are experimentally validated using publically 

available datasets. These datasets have numerous real life challenges such as 

illumination variation, cluttered background, scale variation, rotation and translation 

variations, high inter class similarity and intra class dissimilarity.  

▪ Entropy based texture segmentation model exhibit illumination invariance for 

RGB videos sequences. The spatio-temporal redundancy is removed by 

converting the RGB video sequence into the compact Average Energy 

Silhouette Images (AESI) representation. 

▪ Difference of Gaussian based STIPs and Spatial Distribution Gradient (DoG-

SDG) action descriptor enriches the global shape description given by SDG 

with implicit scale and rotation invariant property of local STIPs.  

▪ It is experimentally observed that unification of 𝓡-Transform and Zernike 

moments preserves the translational, scale and rotational invariance of the 

action descriptor leading to improved performance with low computation cost. 

▪ The Deep Part-wise Spatio-Temporal CNN – RIAC Network based 3D features 

are observed to be superior over the global deep RIAC-Network based features 

and validated for publically available standard datasets.  

▪ Two stream deep network turns out to be robust against view-variations, which 

is enriched by two important action cues: motion and shape temporal dynamics 

(STD) for a RGBD action sequence. 
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1.6 Motivation for Human Action Identification 

The key motivation behind the study of human action identification is its 

proliferating applications in real world including critical issues such as safety and 

security of humans in society. More than two-thirds of the accidents suffered by the 

elderly people are due to fall. It becomes rather difficult to leave the elderly people 

unattended alone at home. The European Statistical Office reported that by 2060, the 

ratio of young and old person will be 1:1 in the EU [38]. In addition to this, World 

Health Organization [39] mentioned that injuries due to fall will shoot up by 100% by 

2030. Henceforth, the concept of smart homes, is appealing to the research community 

[40] [41] [42] [43]as a means to support peoples’ health. Technological inventions and 

development play a significant role in extending support through assistive and 

autonomous care facilities, preferably based on a low-cost setup, that can be set up 

easily at homes and care centres. 

A real time Virtual Exercise Rehabilitation Assistant-VERA  is developed by a 

Reflexion Health organisation, San Diego, U.S. which using the concept of depth 

silhouettes based human poses analysis. It is a patient-centered, data-driven, and value-

based solution for post-acute care rehabilitation. It is helping the patients and clinicians 

to efficiently manage physical therapy from pre-habilitation through to post-acute care. 

VERA, a digital platform, is currently used at academic medical centers, ambulatory 

surgical centers, home health organizations, senior living communities, and individual 

patient homes across the U.S.  

Recently, a tele-robotic surgery is performed remotely by Dr. Tejas M. Patel 

using robotically controlled instruments at Ahmedabad-based Apex Heart Institute, 
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Gujrat, India. The instructions given by the doctor with his gestures, and speech, were 

understood and executed by the robot successfully. It is one of the best examples of 

how Artificial Intelligence (AI) can contribute to the benefits of the mankind.  

Such application of intelligent systems motivates us to develop real-time robust 

human action identification framework which can help to distinctly recognise, both 

normal and abnormal types of actions despite of translation, scale and view variations. 

From the existing literature [43] [44] [45] [46], it is identified that multiple features 

provide richer information than one type of features. Therefore, in this thesis, novel 

human action identification frameworks are established which unify more than one type 

of action features, to achieve higher recognition accuracy.  

1.7 Significance of the Study 

Human action identification has been a growing field in computer vision 

because of its gigantic potential in wide spectrum of areas i.e. Ambient Assistive Living 

(AAL), healthcare of elderly people, Intelligent Video surveillance systems, human 

computer interfaces (HCI), event analysis, sports, intrusion detection system, robotics 

content-based video analysis, home automation etc.  

The key findings of this study leads to expand the dimensions of human action 

identification in video sequences to a wider framework for many real life applications. 

These applications will foster the security to a higher level in day-to-day routine of 

common user. Another important significance of this study is to establish a state-of-

the-art that can escort the research community to dig deeper in this area. 
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1.8 Thesis Overview 

Chapter 2 provides the detailed study of the existing state-of-the-arts and their 

analysis i.e. merits and demerits at different levels of video analysis: pre-processing, 

feature extraction and representation, and classification. It helped to draw an outline of 

research gaps in the concerned area. The final research objectives are defined which are 

addressed in the thesis later. 

In Chapter 3, two handcrafted features based models are defined to recognise 

human actions in video sequences. The first model unifies spatial distribution of 

gradients and difference of Gaussian based STIPs, to represent the actions in RGB 

videos. The second model describes a robust framework for abnormal human action 

recognition using 𝓡-Transform and Zernike moments in depth videos. The strengths of 

the proposed models are supported by detailed explanations of video pre-processing, 

feature extraction and representation, classifications, experimental setup and discussion 

of results.  

Chapter 4 discusses about two deep learning models for human action 

identification in videos. The first deep model utilises the concept of transfer learning to 

develop view-invariant action representation by combining both RGB and depth frames 

of the video samples. The second proposed deep model highlights the strength of Part-

wise Spatio Temporal attention driven CNN features for 3D human action identification 

in videos. 

Lastly, chapter 5 highlights the important conclusions drawn from these 

methods and gives the details of future scope of work.
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CHAPTER 2  

LITERATURE REVIEW 

This chapter discusses about the existing state-of-the-arts for robust human action 

identification. To understand the evolution of various types of action descriptors over 

time, which enhance the ability of recognition systems, the literature is broadly 

classified in two categories: Handcrafted features based approaches and Deep features 

based approaches. Both the categories cover the state-of-the-arts developed using 2-

Dimensional RGB data and 3-Dimensional Depth and Skeleton data to recognise the 

actions to make the identification of actions more effective. 

2.1 Traditional handcrafted features based approaches 

Handcrafted features refer to manually designed features. The design of 

handcrafted features requires right selection of discriminant features and often involves 

a trade-off between accuracy and computational efficiency. A large number of features, 

as reported in the literatures [47] [48] [49] [12] have been manually designed either to 

extract texture, colour, shape, spatial information, scale and view invariant information, 

temporal information , motion information as spatio-temporal interest points (STIPs), 

Scale Invariant Feature Transform (SIFT) [50], Discrete Time Warping (DTW) [51], 

optical flow (OF) [52], Dense Trajectory based features (DTF) [12], respectively, to 

understand the close characteristics of actions. The selection of key feature also depends 

on the type of inputs available to the system which hold the action characteristics such 

as RGB video sequences, depth video sequences, skeleton representation of action. 

Choosing the right trade-off between accuracy and computational efficiency is crucial.  
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Human action identification (HAI) approaches are broadly categorized as single 

person HAI and Multiple Persons HAI. The thesis focuses on single person action 

recognition in videos, which are categorized into three sections on the basis of their 

significant contributions in the field of single person action recognition. First 

subsection, discusses about the approaches defining silhouette based and spatio-

temporal features of the RGB action sequences. Second subsection deals with depth 

and skeleton based action representation methods.    

2.1.1 RGB based HAI approches 

A comprehensive survey [53]  focused on the developed methods from 2008 to 

2012. These human action identification approaches can be broadly divided into three 

categories: human detection (low-level vision), human tracking (intermediate-level 

vision), and behavior understanding methods (high-level vision). Another survey [53], 

analysed various scene behaviour modelling approaches which extracted context based 

features. Over the year’s behavior modeling focus has shifted from rule-based methods 

to probability-based statistical methods, being superior in robustness and scalability. 

But the real challenge still lies in making the system free from human interventions and 

minimizing false alarm (positive/negative) rate. For which global and local features 

have proved to be highly descriptive and discriminative in nature to encode the 

behavior. In addition to it, trajectory, speed, and direction, optical flow, object-based 

abstraction methods are also used for complete abstraction of the scene behavior. 

Whereas, for high dimensional behavior modelling, learning with Generative Topic 

Model framework [53] generate more robust sparse spatial-temporal interest points than 

and can determine eloquent activities from co-occurrence of visual words 
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automatically. Various vision-based approaches or RGB based human action 

identification approaches [54] [13] [55] [56] have utilised spatiotemporal details, shape 

deformation features, posture information to analyse the scenes. In this section various 

recognition methods in RGB videos are discussed under silhouette based and spatio-

temporal information based approaches. Since AAL, home monitoring is one of the 

major application of single person HAI, third subsection highlights various HAI 

methodologies approaches supporting elderly health care issues and AAL [41].  

2.1.1.1   Silhouette based approaches 

Robustness of any HAI method depends on the extraction of action evidence 

from an image in an efficient manner. Human silhouette is a fundamental entity that 

provides a holistic description of the action. In many approaches [57] [58] [59], the 

foreground is extracted from the background to obtain human silhouette. In HAI, a set 

of features generated from image sequences, must be suitably rich for robust 

classification against illumination, occlusion, viewpoint, camera motion, compression 

and frame rates. In [60], the human silhouette is extracted in three steps: pre-processing, 

probability map as a weighted sum of mean shape template prior, colour histogram prior 

and saliency prior, and graph-cut segmentation. It proves to be an appropriate solution 

for still images, in terms of accuracy and computation time. A similar approach [61] 

combined shape and appearance based probabilities, computed for local windows 

inside the bounding box. Further, the Colour histogram probabilities followed by GMM 

probabilities are computed for each shape and appearance cue, which are then fused 

together by weight maps generated from the genetic algorithm. Segmentation cut is 

applied on the fused image to extract the silhouette. Since this approach depends on 
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colour histogram probabilities, the segmentation results are sensitive to illumination 

variations. For RGB datasets, with clutter background and more texture, strong 3D 

gradient are extracted from a background which is mostly not associated to the action 

and acts as a noise. Additional de-noising methodology needs to be followed, which is 

responsible for additional time complexity. Laplacian fitting scheme [62] is also used 

for automatic extraction of human silhouette. The raw object motion segmented images 

are taken as input and Laplacian matrices are computed and minimized to obtain 

foreground human silhouettes. For part based human attribute recognition, heat maps 

[63] are preferred to localise the salient objects. Human segmentation process is a pre-

processing step of video processing; therefore, it needs to be computationally less 

complex with decent segmentation results. It is observed that human segmentation 

approaches have improved the accuracy of background modelling and foreground 

segmentation in a reliable manner. However, due to the inherent complexity of real 

videos, human silhouettes extraction tends to suffer with high computation cost. 

Instead, the extraction of human silhouettes in many well-known human pose datasets 

[64] still rely on manual intervention with significant time consumption. In the 

proposed approach, the employed entropy based human silhouette segmentation for 

RGB video considers, both accuracy and computation cost parameters. Hence, fine 

human silhouette segmentation is performed with needful computation time, against the 

posed challenges of the datasets used.  

 R-Transform has been used frequently [65] [66] to target elderly health care 

issues and providing highly practical solutions. Khan and Sohn [66] considered six 

possible unusual activities (i) faint (ii) backward fall (iii) forward fall (iv) vomit (v) 

chest pain and (vi) a headache. The work integrated R-Transform with Kernel 
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Discriminant Analysis (KDA) to minimize interclass similarity of different activity 

postures as binary silhouette maintaining individual’s privacy. Khan et al. [65] designed 

a two-level hierarchical anomalous human activity recognition system to increase the 

recognition rate for intra-class activities, particularly for falling forward - vomiting 

postures and falling backward - fainting postures. This hierarchical approach has 

increased the average recognition rate of similar activities to 97.1% in confined 

environment which needs to be extended with real-time abnormal activity dataset 

augmented with noise. Binary silhouette fails to describe the posture in case of self-

occlusion. This limitation can be removed using depth silhouettes.  

Shape analysis of human silhouettes plays a vital role to understand the action 

performed. Hence, a large number of researchers [54] [67] [68] have focused on shape 

analysis of a person. Rougier et al. [54] analysed the human shape deformations using 

shape context matching [67] to detect fall using Gaussian mixture model which can be 

used to confirm the safety of elderly individuals at home. Recently, recurrent neural 

network (RNN) based fall prediction method [68] analysed human biomechanics 

equilibrium with 91.7% fall prediction. It computed unbalanced posture features using 

skeleton joints. Yuna et al. [69] utilised R features to capture the geometrical statistics 

of the interest points, which are invariant to geometry transformation and robust to 

noise.  

2.1.1.2   Spatio-temporal features based approaches 

For human action identification, a remarkable amount of work [70] [71] [72] 

[73] has been reported by designing spatio-temporal features using both global and 

local evidences. The global evidences provide a holistic representation of the action in 
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terms of shape and motion, whereas the local evidences highlight local details of the 

action and are less sensitive to noise. Motion Energy Image (MEI) and Motion History 

Image (MHI) introduced by Bobick and Davis [74] greatly influenced the holistic 

representation of the action. Recently, Ijjina et al. [75] modelled the motion information 

by defining temporal templates (TT) as a weighted sum of MHI and MEI of the RGB-

D video. And this temporal representation of the video is given as input to CNN to 

predict the class labels. The temporal templates for each action is obtained from RGB 

and binarized depth stream. Binarized depth silhouettes are similar to binary silhouettes. 

But binarization leads to loss of depth details which may provide the fine variations of 

depth silhouette. Recently, human gait motion in a video is represented by 2D Spatio-

temporal template [76], called as Average Energy Silhouette Image (AESI)  that 

preserves all the shape variations with time, in a single frame with an additional 

advantage of storage and less time consumption in post-processing steps. It motivated 

us to employ SDG descriptor on AESI representation of an action video instead of each 

frame that makes the SDG descriptor computation for entire dataset faster and 

complimentary for real-time applications. In [77] shape and motion orientation of the 

object are used as baseline features to define action. The approach utilised spatial edge 

distribution of gradients and texture based segmentation technique to extract binary 

silhouette. Whereas, motion orientation is obtained with the help of R -transform 

followed by Local Linear Embedding (LLE). Gaglio et al. [78] defined human activity 

as spatiotemporal evolutions of different body postures. The recurrent postures are 

represented by most substantial structures of joint locations. Aggarwal et al. [76] 

applied Zernike moment invariants (ZMI), a shape descriptor, on Average Energy 

Silhouette Images (AESI) to detect undesired covariates in the gait sequences such as 
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clothing or carrying bag. However, this approach needs to be tested for multi-view gait 

samples. Sintorn et al. [79] defined Regional Zernike Moments (RZM) that combine 

zernike moments of pixels confined in a region to create a suitable measure for texture 

analysis. In [80], content-based image retrieval complex zernike moments are used for 

shape feature extraction. A concept of discriminative and informative semantic for 

human action recognition is used in [81] to overcome the problem of non-extraction of 

abundant visual spatial-temporal information using local and global features, using 

mid-level representation based on optical flow method, Hu, and zernike moment 

together. Local representation of action emerged from the pioneering work of Laptev 

[82] on Spatio-temporal Interest key points (STIPs) detection which is later extended 

to local descriptor extraction and aggregation of local descriptors. Raptis and Soatto 

[83] introduced spatio-temporal action descriptors using HOG or HOF along the 

trajectories to represent the local appearance and geometrical information around 

trajectories. It modelled the actions by using the bag-of-words model. The descriptor is 

based on low-level statistics which do not enforce global shape, motion statistics. 

Hence, the obtained action recognition accuracy is not optimal for practical scenario. 

P. Lishen et al. [84] represented each action video as the histogram of visual words 

obtained by pooling learned local spatial features from action cubes. The performance 

of spatial features greatly depends on the pooling strategies. Hence, weighted pooling 

strategy should be followed. In [85], perpendicular local binary pattern (PLBP) is 

presented to describe textures in the local neighbourhood of a pixel efficiently by 

considering the relative differences of intensity between a pixel and its neighbours. It 

handles noise adaptive thresholding based on the image contrast of a region. However, 

performance suffers with the trade-off between accuracy and computational cost  
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2.1.1.3   Identification of actions for Elderly health care and AAL  

A Few surveys [42] [86] are identified, discussing about computer vision 

solutions for elderly health care, home surveillance and AAL. Rashidi et al. [42] talked 

about Ambient-Assisted Living tools and techniques for the elderly people using 

various types of wearable and ambient sensors to vision sensors. Chaaraoui et al. [86]  

highlighted the challenges of sensor technologies, limited assistive robot technologies, 

social security and privacy issues of AAL systems to make it widely acceptable among 

users. Whereas, in [41] the focus is brought to IoT, wearable devices, cloud computing, 

advanced robotics, sensor networks based assistive living products to discern the wider 

frontiers of AAL for healthcare, rehabilitation and assistive living. A broad survey [53] 

of video-based anomaly detection has brought forward diversified work much more in-

depth. It defined the characteristics of an anomaly and context-based anomaly which 

may not be an anomaly in another frame of reference. Various scene behavior modeling 

methods are defined, considering behavior abstraction. LOTAR framework [87] offers 

a stronger feature representation platform for AAL application which analyzes both 

short term and long term anomalies by collecting data from multiple sensors i.e. 

temperature, pressure & RFID sensors along with vision sensors. For experimentation, 

the framework is employed in real patient home, which needs to be extended to multiple 

individuals for realistic results. In work [88], the habit of the person is studied and 

analyzed for the first time by fusing ISUS (Intelligent space for understanding and 

service) and multi-camera positioning algorithm. 

2.1.2  Depth and Skeleton based HAI approaches 
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For 3-Dimensional HAI, the system is fed with depth silhouettes and skeleton 

structures of a person. Both kinds of approaches have their own set of applications and 

benefits. Recently in [89], an overview of various available depth sensors and their 

benefits over conventional cameras are described. It is observed that the growing 

research area is addressing human action recognition as normal or abnormal and 

focusing on depth based body part detection, pose estimation, body pose modeling, and 

space-time evidences. Some surveys [89] [90] [91] [92] conferred about depth imagery 

based human motion analysis, 3D skeleton based human action classification and 

introduced new datasets for handling complex interactions and smart home activities 

respectively. Depth images not only simplify and fasten up the low-level image 

processing but also deliver better processing outcomes in terms of background 

subtraction, object motion detection, and localization. In the following series various 

popular depth based approaches are discussed.  

2.1.2.1   Depth based action description 

Jalal et al. [93] defined the human pose feature as HOG-DDS which represent 

the projections of the Depth Differential Silhouettes (DDS) between two consecutive 

frames onto three orthogonal planes by the histogram of oriented gradients (HOG) 

format. Further, it is fused with skeletal based key joint-based distance feature (DK), 

the spatiotemporal magnitude feature (M), and the spatiotemporal directional angle 

feature (θ) and torso based distance feature (DT). For IM-DailyDepthActivity dataset, 

the body shape feature HOG-DDS and skeletal features-{𝐷𝐾, 𝐷𝑇,𝑀} individual1y 

obtained 45.12% and 51.70% recognition accuracy, as reported in [22], which indicates 
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the considered features are not efficient descriptor of the action. In [94], a supervised 

spatio-temporal kernel descriptor is defined to represent the RGB-D action. 

Depth-silhouette based statistics such as height to width ratio, centroid, and 

silhouette shape deformations, are commonly used to extract features of the person 

under motion. Human motion and shape variation features [54] [13] can handle realistic 

challenges such as occlusion, different viewpoints etc. A new dataset CONVERSE 

representing Complex Conversational Interactions between two individuals via 3D 

poses in the survey has opened more possibilities for Abnormal Human activity 

Recognition (AbHAR). This dataset caters real-world challenging scenarios 

incorporating frequent primitive actions, interactions, and motion over a period of time. 

It is quite evident that in this decade, it is the vantage point for posed based 3D abnormal 

human activity recognition in research. Presti et al. [90] discussed different aspects of 

data pre-processing, publically available benchmarks, and commonly used accuracy 

measurements along with feature representation and 3D Skeleton based action 

classification at length.  The concept of inactive period strengthens the severity of fall. 

A person who is lying on the floor and is inactive for an extended amount of time 

indicates a severe fall. Fall detection cannot be made from one instance information, 

but discriminative features need to be analyzed for the entire duration of fall and also 

after it. The confirmation of inactivity is highly context dependent. The exact location 

of person, time and duration of inactivity collectively leads to sensible decision such as 

staying in bed for long hours is not an alarming event but staying on the floor for long, 

after a fall will lead to an alarm. Hence contextual information helps to reduce the false 

alarming rate. Therefore, Jansen et al. [55]  learnt about contextual details of the fall by 

quantifying the area of body on the floor and 3D orientation of fall to understand the 
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inactive duration of a person during and after fall.  In daily activities, human body 

undergoes various quick movements which may lead to false large motion 

identification. Therefore in [13] center of mass of human 2D silhouette is quantified to 

observe overall motion (magnitude and orientation) of the object, with the help of image 

moments, along with human shape feature. It reduces the impact of sudden movements 

on fall detection. In addition to this, MHI (motion history image) provides exact 

location and trajectory of motion in the video sequence. Yao et al. [95]  introduced 

Human Torso Motion Model (HTMM) which can discriminate fall and fall-like 

activities such as bending and crouching down with 97.5% accuracy by observing 

changing rates of torso angle and the centroid height. Since the existing RGB-D action 

datasets i.e. CAD-60/120 do not provide fall sequences, ADL and fall sequences are 

recorded for experimentation. However, the method is dependent on threshold values 

obtained with trial and error approach to optimize the result, which needs to be 

identified every time for a new dataset. Rougier et al. [96] computed human centroid 

height relative to the ground and 3D person velocity. 3D person velocity helps the 

system to make fine discrimination between crouching down behind the sofa from fall 

behind the sofa – look alike cases. Here, 3D velocity is preferred over 2D velocity of a 

person during fall because 2D velocity is, generally, very high near the camera for 

normal walking activity resulting in misclassification between a fall and a walk. It is 

observed that height [97]and height velocity [98] based approaches fail to distinguish 

fall and fall-like actions and whereas bounding box width to height ratio based [13] [96] 

and HTMM [95] based fall detection model has the higher discrimintaion power in fall-

like actions. Ma et al. [15] represented the actions by a bag of words model (BoCSS) 

using distinctive Curvature Scale Space (CSS) features of depth silhouette for fall 

detection, whereas Akagunduz et al. [16] integrated orientation scale space (OSS) and 
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morphological scale space of a curve to form robust Silhouette Orientation volume 

(SOV) global scale invariant descriptor to represent actions. However, these approaches 

have high computational cost. Some researchers came up with fusion of sensor 

(accelerometer, floor sensor) and visual depth data which improved the performance of 

the fall detection. B. U. Toreyin et.al. [99] integrated sound impact of falling person 

with height to width ratio of the bounding box on a person under falling condition to 

discriminate a fall from a normal sitting in the floor action. Zerrouki et al. [100] used 

the concept of Univariate Statistical monitoring method Exponentially Weighted 

Moving Average (EWMA) control scheme to detect potential fall integrating 

accelerometric data and depth data with low computational cost. Though such fusions 

produce impressive outcome but this detection is dependent on sensor and its periphery 

which may not be in the comfort zone of the user. Therefore, the purpose of making the 

fall detection system non-intrusive to the user is defeated. 

2.1.2.2   Skeleton based action description 

Skeleton representation of human body provides incisive details about the 

human posture in compact form. This resolved the problem of need of effective 

segmentation technique to extract 2D silhouettes and simplifies the height centroid 

computation [96]  from depth silhouettes. This, also, encouraged researchers to develop 

real-time applications using skeleton modality making the computation process faster, 

simpler and more effective. Nar et al. [101] designed an effective real-time ATM 

intelligent monitoring system to recognize abnormal postures prevailing stronger 

security in the ATM i.e. fiddling with the camera, aggressive posture, and peeping. The 

work used angles between different bones as useful features to compute the optimum 
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weights’ values to obtain the probability of current pose of the person under 

surveillance being abnormal. The computation of angle between joints (𝑥, 𝑦, 𝑧) 

becomes quite simple, fast and more accurate with 3D skeleton coordinates. Hendryli 

et al. [102] addressed the issue of automatic detection of abnormal activities of students 

in examination hall that generates warning to exam proctors if any suspicious activity 

is detected (Cheating activity). For this purpose, MCMCLDA (Multi-class Markov 

Chain Latent Dirichlet Allocation) framework is designed that access arm joints and 

head location as interest points directly from skeleton representation without 

considering irrelevant ones resulting better accuracy and higher computational speed 

than Harris3D detector. Chaaraoui et al. [103] developed generic machine learning 

framework (Bag- of-Key-Poses) using joint motion history feature i.e. 3D location of 

skeletal joints and motion cues. To handle complex behaviors, both low and high-level 

multi-scale motion cues are extracted in [104]. However, skeleton data acquired with a 

Kinect sensor, is likely to suffer from a large amount of noise, and also contain outliers, 

especially in case of partial occlusion. Therefore, the work incorporates diffusion maps 

to filter the outliers. Jalal et al. [105], tried to develop a design continuous surveillance 

and daily activity recognition in indoor environments (i.e., smart homes, smart office 

and smart hospitals) turning the space into a smart living space. However, it failed to 

handle complex activities or partial occlusion of the body while generating skeleton 

joints and resulting in noise.  To improve and expedite the medical care, an accurate 

automatic fall detector [106] is an essential element. Skeletal representation of a person 

is proving its strength by enhancing the performances of fall detection systems and 

many other abnormal activities in daily routine. Trajectory of joints [107] [108] [109] 

and Joint Motion History (JMH) [103] based action description is simple and effective 
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with high temporal efficiency, appreciable view and illumination invariance property 

for skeleton-based abnormal human action detection. However, the distance between 

silhouette center and the floor [96] or shape deformation based fall detection work is 

not able to discriminate the initiative action from the fall accidents well i.e. fall in bed 

and fall on the floor without defining normal inactivity zones, a person is sleeping on 

the sofa or bed and falls down to the floor. 3D human skeleton joins distance from the 

floor, joins hitting velocity, joint position and its height from the ground [108] [109] 

collectively elicit robust results by discriminating a fall from slowly lying down on the 

floor and other similar cases. While falling, human body orientation changes 

dramatically which leads to poor tracking of joints. Therefore in [110], the author 

initially corrected the trunk orientation (from hip point to neck) of the person before 

applying a fast Randomized Decision Forest (RDF) algorithm for human skeleton 

extraction which has improved the accuracy of fall detection. The presented work is 

able to detect minor fall like falling from the sofa when our lower half body is still on 

the sofa by simultaneously tracking head, which silhouette center-based approach fails 

to identify. A view independent statistical method [17] takes a decision based on human 

behaviour information in last few frames after falling. It defined a feature set f = [f1, f2, 

f3, f4, f5], where f1 is duration of fall, f2 is total head drop, f3 is the maximum speed of 

fall, f4 is the smallest head height, f5 is the fraction of frames where head has a smaller 

height than in the previous frame. The five features are combined using the Bayesian 

network. But few false alarms are received for a person lying on the floor and a person 

jumping on the bed. Diraco et al.  [18] used distance of 3D centroid from floor plane as 

threshold to confirm high performance in terms of consistency and competence on a 

large real dataset which uses Bayesian segmentation to detect moving regions.  
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2.2 Deep features based approaches 

It is observed that over the passage of time the concept of manual feature 

engineering is evolving from 2D features to 3D features in order to improve the action 

representation. However, complexity involved in designing handcrafted features is very 

high which is one of the key reasons to shift the feature designing methods from shallow 

region to deep, thereby boosting the practical applicability of the action recognition 

algorithms to higher level of excellence by empowering the knowledge of deep learning 

to recognition systems. Though the concept of deep learning and architectures [111] 

exist, since 1980s but they could not perform up to the mark due to the lack of sufficient 

datasets and computational resources. In1998, LeNet [112] came up as the first real-

world successful application of CNN for handwritten digit recognition. However, in 

successive years, various deeper architectures have been reported in [113] and are being 

used in different application areas such as computer vision [114] [115] [116] , speech 

recognition [117], brain-computer interaction [118] and natural language processing 

[119] with the availability of large datasets and hardware resources.  Deep models 

construct and learn from low-level features to high-level features. CNN is a type of 

deep model which is made up of neurons and learnable weights and biases which were 

initially applied on 2D images for visual object segmentation [120] and recognition 

[121] [122] tasks. And later, many researchers experimented CNN with videos by 

considering video frames as still images to recognise action in each frame. However, 

this approach was limited to learn only spatial information. Some authors [123] tried to 

incorporate temporal information by expanding the 2D CNN to 3D CNN. 3D CNN 

applies 3D convolution in CNN convolution layers by using 3D kernel to multiple 

contiguous frames stacked together to encode the motion information with spatial one. 
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In subsequent years, the work has extended, further by bringing the concept of multi-

stream CNNs [124] based action recognition, which has fortified feature description of 

an action to a higher level. It makes the deep recognition system to analyse not just raw 

images at a time but also multiple set of inputs such as: RGB image, optical flow [124], 

dynamic images [125], and depth images [126]. Whereas, LSTM [127] has emerged as 

one of the most popular unsupervised model that learns temporal arrangements of 

frames and predict time series data.   

It is observed from the previous works [128] [129] that appearance, motion and 

temporal information act as important cues to understand human actions in an effective 

manner [130]. The multi-stream architectures [131]: two streams [132] and three 

streams [133] have boosted the response of CNN based recognition systems, by jointly 

exploiting RGB and depth based appearance and motion content of actions. Optical 

flow [134] and dense trajectories [135] are majorly used to represent the motion of the 

object in videos. However, these techniques are not fine-tuned to include viewpoint 

invariance. Dense trajectories are sensitive to camera views and do not include explicit 

human pose details during the action. Depth human pose can be useful to understand 

the temporal structure and global motion of human gait for more accurate recognition. 

Recently, the skeleton-based action recognition approaches [136] [137] are progressing 

towards the temporal dynamics of the action using RNNs and LSTMs. Du et al. [136] 

encoded relative motion between skeleton joints which are split into anatomically 

relevant parts and passed through each independent subnet to extract local features. 

Shahroudy et al. [137] introduced a part-aware LSTM which possess part-based 

memory sub-cells and a new gating mechanism, showing the superior performance of 

LSTM over some hand-crafted features and RNN. To learn the human motion features 
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of the skeleton sequence, RNN-LSTM [138] allows the network to access and store 

long-range contextual information of a skeleton sequence. Several authors [139] [140] 

exploited feature learning ability of CNNs which largely focused on a better skeletal 

representation and learning with simple CNNs. To better capture the Spatio-temporal 

dynamics of the skeleton sequences, some authors [141] [142] [143]  used CNN as a 

spatial feature extractor and unified with RNN-LSTM network to model human motion. 

However, it is noticed that RNN-LSTM based approaches performed better. On the 

other side, the use of RNNs results in overfitting if the number of input features are 

short enough to train the network and computational time dynamically increases with 

the number of input vectors. Spatial-temporal encryption of skeleton action sequences 

is more descriptive than using just temporal information of skeletons-based action 

representation. Tu et al. [144] defined the correlation among three-dimensional signal 

using 3DCNN to capture spatial and temporal information of the action sequence. Liu 

et al. [145] mapped the skeleton joints in 3D coordinate space before extracting view-

invariant Spatio-Temporal features, which significantly improved the action 

recognition results. Whereas, the work [146] learnt adequate geometric features of 3D 

human actions by using Lie Group and unified it with deep neural networks. Chen et 

al. [147] encoded the skeleton joints as part based 5D feature vector, to identify the 

most relevant joints of the skeleton during the action sequence using a two-level 

hierarchical framework. Amor et al. [148] used trajectories on Kendall's shape 

manifolds to model the dynamics of human skeleton poses and used a parametrization-

invariant metric for aligning, comparing, and modelling skeleton joint trajectories, to 

deal with the noise caused by different execution rates of the actions performed. 

However, this method is time-consuming. A good amount of work is also done to 

address the spatial representation of human skeleton poses which are characterized by 
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the interactions or combinations of a subset of skeleton joints [138]. The methods to 

model action spatial patterns can be categorised in two classes: part-based model and 

sub-pose model. In the first category of spatial pattern modelling, the skeleton is divided 

into several groups, instead of considering the complete skeleton. The HBRNN [149] 

model decomposed the skeletons into five parts, two arms, two legs, and one torso, and 

built a hierarchical recurrent neural network to model the relationship among these 

parts. Similarly, Shahroudy et al. [137] proposed a part-aware LSTM model that 

constructs the relationship between body parts. Whereas, in sub-pose model, the 

informative joints or their interactions are mainly focused. A handcraft feature based 

approach [150] defined a SMIJ model which selects the most informative joints by 

calculating statistical parameters such as mean and variance of joint angle trajectories 

and used the sequence of selected informative joints to represent the action. Wang et 

al.  [151] mined co-occurrence distinctive spatial body-part structures as spatial part-

sets and temporal evolutions of the pose as temporal part sets. Whereas Lillo et al. [152] 

learnt the Spatio-temporal annotations of complex actions using motion poselets and 

actionlet dictionaries. Such annotations help to understand which body part is active for 

a particular action but not discriminative enough in classification.  

2.3 Research Gaps 

On the basis of the outlines of literature review of the earlier state-of-the-arts for 

identifications of human actions in video sequences (RGB, Depth, or skeleton) research 

gaps are identified and a layout of solutions for the identified research gaps are listed, 

which are as follows:   
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▪ Identification of abnormal actions especially for elderly healthcare, demands 

accurate and automatic recognition. Therefore, a translation, rotation and scale 

invariant framework is designed for automatic identification of abnormal 

human actions in video sequences with low computational cost using depth 

videos. 

▪ It is observed that scale and illumination variations badly affect the performance 

of action identification in videos. Therefore, a novel framework is designed 

which is robust against scale and illumination variations. The entropy based 

texture segmentation of human silhouettes introduces illumination invariance, 

and Difference of Gaussian (DoG) based Spatial Temporal Interest Points 

(STIPs) impart scale and view invariance to global Spatial Distribution Gradient 

(SGD) descriptor. 

▪ Actions performed at different angles limit the performance of the action 

identification system greatly. Therefore, a view-invariant deep architecture is 

defined for human action identification using late fusion which learns the 

adequate multi-view human poses to correctly identify the actions irrespective 

of the view. 

▪ The performance of an identification algorithm decays if the actions possess 

large inter-class similarity and large intra-class dissimilarity. Therefore, to 

handle these challenges, we have developed a Part-wise Spatio-temporal 

Attention Driven CNN based 3D Human Action Identification framework 

which reduces the inter class similarity and increases the intra class similarity 

resulting in improved human action identification performance. 
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2.4 Research Objectives 

The main objective of the thesis is to analyse the practical challenges involved in 

the human action recognition in video sequences such as illumination, view variation, 

inter-class similarity and intra-class variations and further, to propose robust and 

computationally efficient action recognition frameworks. In order to achieve these 

objectives, the following frameworks have been proposed: 

▪ A novel human abnormal action identification framework is defined which 

unifies the translation, rotation and scale invariant properties of ℛ -transform 

and Zernike moments over structural appearance of human pose and its 

temporal motion content of an action, encrypted as Average Energy Silhouette 

Images (AESI). Human poses in depth videos are extracted as binary silhouettes 

by superimposing skeleton joints on depth images supporting low storage 

capacity and low computational cost. 

▪ A hybrid framework for human action recognition in RGB video sequences is 

developed by integrating a set of global, local handcrafted features computed, 

which is robust against illumination variation, view variations via entropy based 

texture segmentation, and integration of view invariant Spatial Distribution 

Gradient (SGD) descriptor and Difference of Gaussian (DoG) based Spatial 

Temporal Interest Points respectively. 

▪ A view-invariant deep human action recognition framework is proposed as a 

novel integration of two important action cues: motion and shape temporal 

dynamics (STD) by late fusion. The motion stream encapsulates the motion 
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content of action as RGB Dynamic Images (RGB-DIs) which are processed by 

the fine-tuned InceptionV3 model. The STD stream learns long-term view-

invariant shape dynamics of action using human pose model (HPM) [36] based 

view-invariant features mined from structural similarity index matrix (SSIM) 

based key depth human pose frames.  

▪ A novel skeleton based part-wise spatio-temporal CNN – RIAC Network based 

3D human action recognition framework is presented to visualise the action 

dynamics in part wise manner and utilise each part for action recognition by 

applying weighted late fusion mechanism. Part-wise skeleton based motion 

dynamics helps to highlight local features of the skeleton which is performed 

by partitioning the complete skeleton in five parts.  

 

 



 

34 

CHAPTER 3  

HANDCRAFTED FEATURES BASED MODELS 

This chapter introduces two handcrafted features based human action identification 

models using both RGB and depth videos in order to handle the practical challenges 

involved in video analysis such as scale, rotation, translation and illumination 

variations. The proposed frameworks are supported by the feature extraction and 

representation, experimental setting, comparative analysis of result, and discussions.  

3.1 Abnormal Human Action Recognition Framework using 

𝓡-Transform and Zernike Moments in Depth Videos 

This chapter presents a novel human action identification approach for elderly people. 

The most likely abnormal actions occurring with elderly people such as fainting, chest 

pain, headache, falling forward and backward, are analysed in order to reduce the 

dependency of the elders over others. The framework is structured to construct a robust 

feature vector by computing 𝓡-transform and Zernike moments on Average Energy 

Silhouette Images (AESIs). The AESIs are generated by the integral sum of the 

segmented silhouettes obtained from the Microsoft’s Kinect sensor v1.  The proposed 

feature descriptor possesses scale, translation and rotation invariant properties, which 

is less sensitive to noise and minimizes data redundancy. It enhances proposed 

algorithm’s robustness and makes the classification process more efficient. The 

proposed work is validated on a new abnormal human action (AbHA) dataset and three 

publically available 3D datasets - UR fall detection dataset, Kinect Activity 

Recognition Dataset (KARD) and multi-view NUCLA dataset. The proposed 
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framework exhibits superior results from other state-of-the-art methods in terms of 

Average Recognition Accuracy (ARA). 

3.1.1 Proposed Methodology 

  In the proposed work, a robust action descriptor is defined by combining the 

scale, translation and rotation properties of 𝓡–Transform and Zernike moment. The 

action is described as a sequence of depth images which is later represented as AESI 

images encrypted by 𝓡–Transform and Zernike moments. The proposed methodology 

is as shown in Fig. 3.1.  

 

Figure 3.1: Flow diagram of proposed framework 

3.1.1.1 Average Energy Silhouette Image (AESI) formation 

    Initially, fusion of depth action sequences acquired by Microsoft Kinect 

camera v1, and skeleton joint locations per frame, help to locate the person in the frame 

that makes the fine binary silhouette extraction easier. The entire action video is 
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encrypted as a single image i.e. Average energy Silhouette Image, using extracted 

binary silhouettes. Consider any action with 𝑁 key frames. Mathematically, AESI of 

an action is defined as shown in Eq. (3.1): 

𝐴(𝑥, 𝑦) =
∑ |𝐼(𝑥,𝑦,𝑡)| 2𝑁

𝑡=1

𝑁
                              (3.1)  

where 𝐼(𝑥, 𝑦, 𝑡) represents each binary silhouette frame of the action at time instance𝑡. 

𝐴(𝑥, 𝑦) is the final AESI image constructed for one action sequence. The single frame 

representation of an action sequence as AESI not only removes computational 

complexity involved in processing entire video but the averaging function of AESI 

formation smoothens the unwanted noise in the frames. Hence, AESI images are less 

sensitive to the noise occurring between the frames, also termed as temporal noise.  

3.1.1.2 𝓡 –Transform and Zernike moments based Shape Descriptor 

    Shape of the object possesses meaningful and important information about the 

action. A strong shape description is a key to a stronger recognition system. AESI is 

used as a compact representation of the action that holds the shape and its variations 

with time. Combination of ℛ -transform and Zernike moments is used to define the 

shape descriptor. 

𝓡 -Transform : ℛ -transform [77] provides orientation detail of an object which is 

calculated by applying Radon transform, ℝ𝑇 on AESI images,𝐴(𝑥, 𝑦). Radon transform 

generate directional features as the integral sum of 𝐴(𝑥, 𝑦), mathematically defined as 

Eq. (3.2): 
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ℝ𝑇(𝜎, 𝜃) = ∬ 𝐴(𝑥, 𝑦)𝛿(𝜎 − 𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃)𝑑𝑥𝑑𝑦
∞

−∞
                   (3.2)  

𝜎 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃,  𝜎𝜖[−∞,∞]                      (3.3) 

where 𝜃𝜖[0, 𝜋], 𝛿(. )is a standard direct delta function which remains zero except at 

origin and 𝜎 is the shortest distance between origin and radon line, given by Eq. (3.3), 

graphically illustrated in Fig. 3.2. Radon projection, ℝ𝑇of an image cannot preserve all  

 

Figure 3.2 (a) Projection of radon lines over a 2D Image 𝑨(𝒙, 𝒚) (b) radon line 

the characteristics of original geometric transformation- translation, rotation, or scaling 

the image. Tabbone et al. [153] introduced ℛ-transform that is defined as an integral 

transform of the squared values of Radon transform, ℝ𝑇, mathematically defined as in 

Eq. (3.4). 

ℛ (𝜃) = ∫ ℝ𝑇(𝜎, 𝜃)2 𝜕𝜎
∞

−∞
                                            (3.4) 

where 𝜎 is the radial distance from the centre of the image to the radon line, and 𝜃 is 

the angle. Therefore, Radon transform  ℝ𝑇 generates a 2-D feature representation and 

ℛ -transform is a 1-D compact representation of ℝ𝑇. Normalization of ℛ-transform 

𝐴(𝑥, 𝑦)
𝑥1 

𝑥2 
𝑦2 

𝑦1 

𝜃 𝑥  

𝑦  

𝜃 𝜎 

(a) (b) 
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further improve the similarity measure of the feature vector, mathematically given as 

Eq. (3.5). 

ℛ𝑛𝑜𝑟𝑚(𝜃) =
∫ ℛ(𝜃)𝑑𝜃
∞
−∞

𝑚𝑎𝑥 (ℛ(𝜃))
                         (3.5)  

𝓡-Transform Properties: Tabbone et al. [153] illustrated the basic properties of ℛ -

Transform which confirms that it is scaling and translation invariant but sensitive to 

rotational characteristics. The properties of  ℛ -Transform are verified by considering 

chest pain activity AESI from AbHA dataset as shown in Fig. 3.3. It is observed from 

Fig. 3.4, case 4, that rotation in the original image leads to more changes in the pixel 

values falling on the projection lines, resulting in deformation in ℛ -transformed image 

representation. The ℛ -transform representation of different abnormal actions – ‘chest 

pain’, ‘headache’, ‘fainting’, ‘falling forward’ and ‘falling backward’, is shown in Fig. 

3.4. 

Zernike Moment:  Ordinary geometric moments contain a lot of data redundancy. This 

is not desirable for any feature vector. Whereas Zernike moments reduces data 

redundancy with the help of complex polynomials called Zernike polynomials which 

comprise of a complete orthogonal basis set defined on a unit circle. This orthogonality 

of the polynomials helps to reduce the redundancy, hence producing an enhanced 

feature. Zernike polynomials [154] originally used to describe optical irregularities. For 

Zernike moment’s computation, we need to transform the image from Cartesian to polar 

coordinates. Complex Zernike moments can be determined by Eq. (3.6). 
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𝑍𝑛,𝑚 =
𝑛+1

𝜋
∑ ∑𝑓(𝜎, 𝜃)𝑉𝑛,𝑚

∗ (𝜎, 𝜃)(𝜎,𝜃)𝜀𝑢𝑛𝑖𝑡 𝑑𝑖𝑠𝑐                   (3.6) 

where, 𝑉𝑛𝑚(𝜎, 𝜃) is the basis function which can be determined by Eq. (3.7) followed 

by Eq. (3.8). 

𝑉𝑛𝑚(𝜎, 𝜃) = 𝑅𝑛𝑚(𝜎)𝑒𝑗𝑚𝜃                                (3.7) 

𝑅𝑛𝑚(𝜎) = ∑
−1𝑠(𝑛−𝑠)!𝜎𝑛−2𝑠

𝑠!(
𝑛+|𝑚|

2
−𝑠)!(

𝑛−|𝑚|

2
−𝑠)!

𝑛−|𝑚|

2
𝑠=0                                       (3.8)    

where, 𝑛 is the order of the moment and 𝑚 is the repetition. There are some constraints 

on the values of m and n: 𝑛 ≥ 0, 𝑛 ≥ |𝑚|, 𝑛 − |𝑚| is an even number. Since, the 

moments are calculated on the unit circle, 𝑥2 + 𝑦2 ≤ 1 holds true. The incentive of 

using Zernike moment is that it is rotation invariant. Table 3.1 illustrates rotation 

invariant property of Zernike moment, which is unexploited in 𝓡-transform. Lower 

order Zernike moments suggest the static information about the image by giving the 

basic details. Whereas, higher order moments describe the dynamic information by 

giving the image detailing. Jin et al. [155] established Zernike moments shape 

description efficacy by detecting heavily occluded targets such as airplane and warship 

efficiently.  
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Figure 3.3: Illustrates that 𝓡-Transform is scale and translation invariant but rotation variant 

 

Figure 3.4: Representation of 𝓡 Transform for five activities- AbHA dataset (a) chest pain (b) 

Headache (c) fainting (d) falling backward (e) falling forward. Row 1: 130×100 AESI, Row 2:  

Normalized 𝓡-Transform 

3.1.1.3 Final Feature Vector Formation 

   Radon Transform computes a 2D Projection of AESI of size [480 ×

640] along the angle  ∈ (00, 1790). It generates ℝT feature matrix of size[803 × 180]. 

Application of ℛ-Transform develops a feature vector of size [1 × 180] independent 

of σ by integral sum of the squared values of ℝT, Radon transform, as shown in 
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Equation (3.4) and simultaneously perform dimensionality reduction. Hence, ℛ-

Transform produces 1–D projection of  ℝT feature matrix given by Fℛ. Zernike moment 

feature vector Fzm, is obtained that includes one magnitude and phase value for every 

AESI image. Therefore, size of Fzm vector is [1 × 2]. The final feature vector is defined  

by integrating  ℝ - transformed feature vector 𝐹ℝ𝑃 and Zernike feature vector 𝐹𝑧𝑚. Final 

feature so formed possesses the dimensions as [1 × 182] per action. By doing so, we 

are able to inherit the desirable properties of both 𝐹ℝ𝑃 and  𝐹𝑧𝑚 

Table 3.1: Illustrates that magnitude of each Zernike moment is invariant under rotation.  Mnm: 

magnitude of Zernike moment for order m and n. 

 

that result in a translation, rotation and scale, invariant feature vector formation. 

3.1.2 Experimental Work and Results 

The performance of the proposed algorithm is evaluated by conducting the 

experiments are on a novel AbHA dataset and three publically available datasets - UR 

fall detection dataset, KARD dataset [78] and multi-view NUCLA dataset. K-Nearest 

Neighbour (K-NN) and Support Vector Machine (SVM) classifiers are used to classify 

the actions for the experiments. It is not necessary that features are always linearly 

separable. Therefore, to handle non-linearly separable action features, Radial Basis 

Function (RBF) kernel based SVM is used for classification. To optimise the 
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performance of the non-linear SVM classifier penalty 𝐶, and gamma 𝛾 are optimised 

for each dataset that reduces overfitting. Average recognition accuracy is calculated to 

measure the performance of the algorithm, mathematically defined as Eq. (3.9). 

ARA =  
TP+TN

TP+TN+FP+FN
× 100%                                            (3.9) 

where TP is true positive, TN is true negative, FP is false positive, FN is false negative. 

Effectiveness of the proposed work is measured in terms of Average Recognition 

Accuracy (ARA), and compared with similar state-of-the-arts. The comparisons are 

relatively limited for UR Fall detection dataset [156] and KARD dataset [156] because 

few works are reported on these datasets. 

3.1.2.1 UR Fall detection dataset  

  It is a RGB-D dataset, which was introduced by Kwolek et al. [156]. It 

comprises of 40 instances of ADL activities and 30 instances for fall for two viewpoints 

– front view and top view. In this work, only depth instances are chosen from the front 

view, and AESI are generated for 22 fall and 22 ADL activities for evaluation purpose. 

Sample images of the RGB/Depth Fall and ADL sequences are shown in Fig. 3.5. For 

UR fall dataset, performance of recognition system is optimised for ′𝐾′=3, while using 

K-NN classifier and Leave-One-Out Cross Validation (LOOCV) technique is used. For 

non-linear SVM (𝐶, 𝛾) parameters are set to (0.4, default) while using one-vs-one, and 

5-fold cross-validation approach. Where penalty factor, 𝐶 balances the trade-off 

between training error and margin maximization. For large value of 𝐶 the training error 

will be reduced. However, excessive increase in the value of penalty factor may risk in 

losing the generalization properties of the classifier. One vs one classification is 
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preferred over one vs all to ensure adequate ratio between testing and training samples 

of the dataset.  

The experimental results are presented in Table 3.2. The ARA obtained for 

UR Fall dataset is compared with similar state-of-the-art techniques in Table 3.3. From 

Table 3.2 it is clearly evident that integration of Zernike moment and ℛ -transform 

improves the recognition ability of the framework, by making it view insensitive. In 

Table 3.3, some of the state-of-the-arts [156] [100] [157] have achieved higher 

recognition accuracy than the proposed framework. This is so because these works 

utilised combination of RGB-D and accelerometric data to encrypt the actions. 

However, the work [156] has achieved only 90% accuracy while utilising only depth 

maps.  

Table 3.2: ARA of the proposed work for UR Fall Detection Dataset 

Activities Action descriptor  Fall (%) ADL (%) ARA (%) 

SVM (%) 

ℛ -Transform 94.6 93.2 93.9 

ℛ -Transform + Zernike 

moments 
95.5 95.5 95.5 

K-NN (%) 

ℛ -Transform 94.7 96.28 95.89 

ℛ -Transform + Zernike 

moments 
96 97 96.5 

Table 3.3: Comparison of ARA with other state-of-the-arts for UR fall detection dataset 

Method Classifier Input ARA (%) 

Riemannian manifold [158] SVM RGB + v 96.77 

V-DGP [156] 

SVM Depth maps 90 

SVM RGB-D + Accelerometer 94.22 

K-NN RGBD + Accelerometer 95.71 

HTP [159] SVM RGB-D 87.76 

EWMA [100] SVM RGB + Accelerometer 96.77 

Curvelet [157] SVM-HMM RGB 96.88 

OFFD [160] CNN RGB 95 

Proposed Method K-NN Depth maps 96.5 
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3.1.2.2 KARD Dataset 

    Gaglio et al. [78] introduced Kinect Activity Recognition Dataset (KARD) in 

2015. It is composed of eighteen activities as classified in Fig. 3.5. Ten different 

individuals perform each activity three times. Therefore, the dataset consists of 

540 (18 × 3 × 10) sequences captured at 640 × 480 resolution with 30 fps. For 

activity recognition K-NN (K = 5) and SVM with one vs one, 5-fold cross-validation 

technique is used. The performance of the proposed work on KARD dataset is provided 

in Fig. 3.5, which is 1.74% higher than the recent [161]. In Table 3.4, action recognition 

performance of the proposed work is compared with other state-of-the-arts exhibiting 

the generalisability of the proposed approach with superior accuracy.  

 

Figure 3.5: ARA for KARD dataset using SVM and K-NN 

3.1.2.3 Abnormal Human Action (AbHA) Dataset 

Abnormal Human Action Dataset (AbHA) [162] includes a novel set of 

commonly occurring abnormal actions in day-to-day lives of the elderly people such as 

‘chest pain’, ‘headache’, ‘fainting’ and ‘falling backward’ and ‘falling forward’ as 

shown in Fig. 3.6. Abnormal actions, addressed here, stands for uncomfortable human 

postures in which the person require assistance in context of elderly people. Due to non-
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availability of the publicly available dataset for such activities, we generated our own 

dataset namely AbHA dataset. Which includes five actions, each performed by eight 

individuals and repeated two times. Hence, total generated samples are 80 (8 × 2 × 5). 

Microsoft Kinect Depth sensor v1 is used to extract fine binary silhouettes by combing 

both skeleton joint coordinates over depth images. It simplifies the process of 

background subtraction to obtain binary silhouettes in real time scenario as the Kinect 

sensor is comparatively insensitive to the noise, clutter and illumination variations. Two 

third samples are used for training and one third for testing. The classification results 

on AbHA dataset are presented in Fig. 3.7. It is clear from Fig. 3.7 that the recognition 

rate for a headache and chest pain is 100 % because these actions are highly 

discriminating, whereas forward fall, fainting, backward fall, have substantial 

resemblance in their postures which resulted in lower recognition rate. 

3.1.2.4 NUCLA Multi-View Action dataset 

The NUCLA multi-view action dataset [165] is a collection of 10 actions 

performed by 10 subjects and acquired from three views: (i) left, (ii) front, and (iii) 

right, using Microsoft Kinect v1 as RGB-D videos . The actions of the dataset are (l) 

one hand pick up, (2) two hand pick up, (3) drop trash, (4) walk around, (5) sit down, 

(6) stand up, (7) donning, (8) doffing, (9) throw, and (l0) carry. The dataset possesses 

similar actions which makes it very challenging such “one hand pick up” and “two hand 

pick up”. For the experiments, two views are used for training, and rest for testing. It is 

observed from the Table 3.5 that the view variations of the actions are handled quite 

well with the integration of Zernike moment with 𝓡-transform, improving the 

performance of the framework by a significant amount 3.87% for K-NN(′𝐾′=5) and 
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0.6% for RBF-SVM classifier. Non-linear SVM is optimised for (𝐶, 𝛾) hyper-

parameters as (0.99,default) values using one-vs-one, and 5-fold cross-validation. For 

K-NN classifier, LOOCV technique is used.  

Table 3.4: Comparison of ARA with other state-of-the-arts for KARD dataset 

Method Classifier Input Data ARA (%) 

Cippitelli et al. [161] SVM Skeleton 94.9 

Gaglio et al. [78] SVM Skeleton 94.2 

Madany et al. [163] ConvNet Skeleton 98.5 

Pham et al. [164] ResNet-44 Skeleton 99.97 

Proposed method SVM Depth 96.64 

 

 

Figure 3.6:  Binary silhouettes of AbHA dataset (a) chest pain (b) headache (c) fainting (d) falling 

backward (e) falling forward 

(a) 

(b) 

(e) 

(d) 

(c) 
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Figure 3.7: ARA for AbHA dataset 

Table 3.5:  Comparison of ARA with other state-of-the-arts on multi-view NUCLA dataset 

Method Input 𝑽(𝟑) 𝑽(𝟐) 𝑽(𝟏) ARA (%) 

Depth-DVV [167] Depth 58.5 55.2 39.3 51.0 

CV-CVP [168] Depth 60.6 55.8 39.5 52.0 

NKTM [169] RGB 75.8 73.3 59.1 69.4 

R-NKTM [37] RGB 78.1 - - 78.1 

HPM [166] RGB-D 91.7 73.0 79.0 81.3 

Skepxels [170] Skeleton 91.5 85.5 79.2 85.4 

Proposed method 

𝓡-transfrom_KNN 89 82.4 75 82.13 

Hybrid vector_KNN 91.8 86.1 80.1 86 

𝓡-transform_SVM 90.6 85.6 79 85.06 

Hybrid vector_SVM 92.0 86.7 80.5 86.4 

The real-time performance of the proposed work is verified on single NVIDIA 

GeForce 940M Graphics Card, Intel core i5 Processor and 8GB RAM. The processing 

time required to generate the feature vector and the time required to test the action, are 

computed, given in Table 3.6, that clearly proves the superiority in action recognition 

for the proposed framework in terms of processing and testing time than [166]. 
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Table 3.6: Comparison of computation time of the proposed framework on multi-view NUCLA 

Dataset 

Method 
Feature vector formation/ 

action (per video) 

Testing time per sample 

(per video) 

HPMRGB-D GAN Refined Model  [166] 49.1ms 0.68ms 

Proposed framework 0.95ms 0.33ms 

3.2 DoG-SDG based human action identification model 

Understanding of human actions in videos is a growing field and received rapid 

importance due to surveillance, security, entertainment and personal logging. In this 

work, a new hybrid technique is proposed to describe RGB human action sequences. A 

unified framework endows a robust feature vector wrapping both global and local 

information that strengthens the discriminative depiction of action identification. For 

this purpose, initially, entropy-based texture segmentation is used for human silhouette 

extraction followed by construction of average energy silhouette images (AEIs). AEIs 

are the 2D binary projection of human silhouette frames of the video sequences, which 

reduces the feature vector generation time complexity. Spatial Distribution Gradients 

(SDGs) are computed at different levels of resolution of sub-images of AEI consisting 

overall shape variations of human silhouette during the activity. Scale, rotation and 

translation invariant properties of STIPs are used to develop a richer the vocabulary of 

DoG based STIPs using vector quantization which is unique for each class of the action. 

Experiments are performed to observe the behaviour of the proposed approach on four 

standard benchmarks i.e. Weizmann, KTH, Ballet Movements, Multi-view IXMAS. 

Promising results are obtained when compared with the similar state-of-the-arts, 

demonstrating the robustness of the proposed hybrid feature vector for different types 

of challenges –illumination, view variations posed by the datasets.   



      Chapter 3: Handcrafted Features based Models 

49 

 

3.2.1 Proposed Methodology 

 We propose a novel hybrid technique for feature mining for human action 

recognition on standard HAR datasets. The uniqueness of this work is in the integration 

of AEI based spatial distribution gradients (SDGs) with scale, rotation and view-

invariant Spatio-temporal interest points (STIPs). The hybrid feature is used to train 

SVM and HMM for action recognition and to compare the accuracy of the two 

classifiers. The block diagram depicts the flow of the proposed work in Fig. 3.8. 

 

Figure 3.8: Flow diagram of the proposed framework 

3.2.1.1   Spatial Distribution Gradients (SDGs) 

A 2D spatial representation of an image includes a significant amount of 

information for non-verbal communication, which can be mined using spatial 

distribution descriptor of the human posture in the image. In this work, SDG is applied 

on Average Energy Images for each video sequence describing entire shape variations 

of the object in one image instead of accessing every frame or key frames of the videos. 
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Keyframe of videos are used in [171] [172] for feature generation, but it results in loss 

of temporal information, which can be preserved through AEI images.  

3.2.1.1.1  Entropy based Texture Segmentation 

For vision-based human action recognition, background extraction is an 

elementary objective. Addition of occlusion, background changes, illumination 

variations, and noise etc. [173] makes the task more challenging. An adaptive 

background extraction approach generates a background model and updates it frame by 

frame. If the frame possesses pixels which don’t satisfy background model, are treated 

as foreground pixels (human silhouette). In past years, Gaussian Mixture Model 

(GMM) [33] [34] and Local Binary Pattern (LBP) [174] [175] based strategies are 

widely used for texture-based foreground segmentation. The major problem of texture 

based segmentation approaches is that they are highly noise sensitive. Two objects, 

which need to be segmented, may have the same texture. To address these issues, 

Rampun et al. [176] defined Gray-Level Co-Occurrence Matrix (GLCM) based 32 

features including eight Haralick’s statistical features [177]. Soh et al. [178] defined six 

features, which are Cluster Prominence, Dissimilarity, Entropy, Cluster Shade, 

Homogeneity and Maximum Probability.  

 Recently, implementation of GLCM based segmentation on FPGA [179] has 

provided a fast and efficient solution for real-time applications, which motivates us to 

use textural feature based segmentation technique using GLCM for human silhouette 

extraction. Entropy is the most broadly utilized parameter for depicting the textural 

properties. It is a factual measure of randomness in the gray level values of the image, 

mathematically given as Eq. (3.9): 
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 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝛺(𝑖, 𝑗) 𝑙𝑜𝑔 𝛺(𝑖, 𝑗)𝑗𝑖                                              (3.9)                                                                          

where Ω(𝑖, 𝑗) =
𝑀(𝑖,𝑗)

∑ 𝑀(𝑖,𝑗)𝑖,𝑗
 is the probability density function, and 𝑖 and 𝑗 are indices of 

Gray-Level Co-occurrence Matrix 𝑀. Large value of entropy indicates the complexity 

of the image is high. An entropy filter is applied on every pixel using 9 × 9  

neighborhood pixels to generate texture mask. For small entropy kernel size 

i.e. 3 × 3 , 5 × 5  minute texture information are extracted as a noisy element   and for 

larger kernel size 15× 15 required texture information is filtered out. However, for 

9 × 9 kernel size, relevant texture information is obtained without any noisy element, 

as observed in Fig. 3.9 (a).  The obtained binary mask is mapped with the original image 

to extract human silhouette Fig. 3.9 (b). 

3.2.1.1.2   Average Energy Image (AEI) Computation 

There are various features, which are used to represent human actions such 

as a bag of features, local descriptors, and global descriptors. In this work, average 

energy image is exploited to represent human actions. The concept of AEI is an 

extension of GEI which contains space and temporal features. It reduces the effect of 

the rate at which action is performed, hence reduces the intra-class variations. It is 

computed as the average sum of binary silhouette frames in a video. Let 

{ 𝐴1, 𝐴2, …… . , 𝐴𝑛} be the binary silhouettes of a video sequence performing an activity 

and 𝑛 represents the frame number. Thus a set of binary silhouette images per action is  
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Figure 3.9: Entropy-based silhouette extraction (a) Entropy Filter Kernel (b) Extraction of a 

human silhouette 

represented by one average energy image. It handles the problem of huge data storage 

and computational complexity involved in it. The average energy image (AEI) can be 

generated by using Eq. (3.10). 

𝐴𝐸𝐼(𝑥, 𝑦) =
1

𝑛
∑ |𝐴𝑖(𝑥, 𝑦)|2

 
𝑛
𝑖=1                (3.10) 

where 𝑥 and 𝑦 are coordinates of a binary image 𝐴𝑖. AEI in Fig. 3.10 shows, the AEIs 

of and ROIs of a video clip of an action. The bright section in AEI image Fig. 3.10 (c) 

and (d) represent the static portion of the body and less brightened section shows 

variations of the body during the activity. During the activity, the main body of the 

actor performing the hand-waving action is still, i.e. only hand movement is present. 
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Hence the middle portion of the curve represents the pixel’s values at those points 

which are not in motion. The still body points have pixel intensity of value 1, whereas 

the hands have different pixels’ values ranging from greater than to 0 to less than 1. To 

process a small region of interest is computationally more efficient than the whole 

image. Therefore, to further process the AEI, firstly ROI is extracted from the AEI 

frame by scanning the image from left to right column wise. The first column with one 

or more non-zero pixels is considered as ROI extreme left and the last column with 

non- zero pixel/s is considered as ROI extreme right. AEI image is accessed from top 

to bottom and first and last rows with non-zero pixels are taken as ROI top most and 

lowest extreme of the ROI. And a rectangle is drawn using these extreme points.  

 

Figure 3.10: Illustration of AEI formation and ROI Extraction: (a) Input video (b) Entropy 

based silhouette segmentation (c) AEI formation (d) cropped AEI (e) AEI-3D Plot 

In the experiments, the dimension of ROI 64 × 38 depends on the height and 

width of the person performing the action. To maintain the uniformity, the dimension 

of ROI of all the samples is resized to 64 × 38. Fig. 3.11 illustrates ‘check watch’ action 

at five different camera views used in IXMAs dataset and from these images the Spatio 

temporal variations are reflected in terms of intensity variations. 

(a) (b) (c) (d) (e) 
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Figure 3.11: AEI image of ‘check watch’ action class of IXMAS datasets at different camera 

angles 

3.2.1.1.3   Spatial Distribution of Gradients (SDGs) Computation 

Spatial Distribution of Gradients (SDGs) [172] is a shape appearance-based 

object descriptor.  In this work, SDGs descriptor is computed for AEIs of each human 

action video. This method aims to represent the shape of the object by providing a 

spatial distribution computational model. It divides the gradient of AEI 𝐸(𝑥, 𝑦) into 4ℓ 

sub-regions at each level ℓ {0, 1, 2}. Increase in number of levels, increases the length 

of SDG feature vector and the maximum value of the SDG magnitude decreases as 

shown in Fig. 3.12. And the variation in SDG magnitude are quite comparable for ℓ=2 

& 3 with respect to the maxima and minima of magnitude. Therefore, higher level 

decomposition will only increase the dimension of the descriptor, without any 

significant improvement in performance. The Spatial Distribution Gradient algorithm 

is explained in Algorithm 1 by considering 0, 1 and 2 level of decomposition. For each 

sub-region at level ℓ of decomposition, angle, and magnitude of Gradients 𝐸(𝑥, 𝑦) of 

AEI image are computed. Gradients represent the edges of the shape variations in AEI. 

The canny edge detector is used to obtain edges jointly. SDGs descriptor quantise the 

magnitudes of the AEI for 8-evenly spaced orientation bins which adds to 

dimensionality reduction and generates the histogram spatial gradient feature for each 

sub-region of the image at different levels. To guarantee that the image having a larger 
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number of edges are not preferred over other images, SDG descriptor is standardized 

by normalization to unity. The vectors at every level are connected such that the loss of 

spatial data is reduced. The SDGs descriptor is analogous to the pyramidal outline of 

HOG descriptor. From Fig. 3.13 it can be observed that the computed SDG descriptor 

is insensitive to translation and scale variations but changes with rotation. Since, SDG 

descriptor is applied on ROI extracted from Average Energy Image (AEI), in the 

algorithm. ROI of the average energy remains unaffected by scale and translation 

variations. Thus, SDG descriptor remains invariant to translation and scale disparity. 

However, in case of rotation, due to deviation in ROI of an action, SDG descriptor 

magnitude distribution per bin changes.  

3.2.1.2   Spatio Temporal Interest Points (STIP) 

For action recognition, extraction of appropriate features is a critical task. 

Recently, STIPs have emerged as a popular means of local descriptor-based action 

recognition. However, distribution of STIPs should be stable around the object. A point 

in space and time is considered as a Spatiotemporal interest point (STIP) if it possesses 

prominent intensity variation in space as well as time. Intensity variation in space 

implies enormous contrast variation. Whereas, intensity variation in time domain 

occurs if a point varies over time significantly. In real-time surveillance applications, 

the person under observation can be captured from completely different camera 

viewpoints, with different scene compositions and resolution and scales. This 

introduces large intra-class separation among features, resulting in misclassification. 
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Figure 3.12: Spatial Distribution Gradients representation with level compositions 

To handle the issue of scale variations scale, invariant STIPs are computed for video 

sequences by exploiting Difference of Gaussians (DoG).   

3.2.1.2.1    Difference of Gaussian (DoG)  

The Difference of Gaussian (DoG) is widely used to derive scale-invariant interest 

points. The incentive of using DoG is that it removes high-frequency spatial details  

Algorithm: Computation of SDGs 

Step 1: Input 𝐴𝐸𝐼(𝑖, 𝑗) of a video sequence 𝑉(𝑖, 𝑗, 𝑡). 

Step 2: Apply Canny Edge Detector as  𝐸(𝑥, 𝑦) = 𝐶𝑎𝑛𝑛𝑦(𝐴𝐸𝐼(𝑖, 𝑗)) 

Step 3: Compute SDGs at different levels as follows: 

(a) At level 0: Compute magnitude ℳ(𝑥, 𝑦) and orientation Θ(𝑥, 𝑦) of 

𝐸(𝑥, 𝑦) at any point (𝑥, 𝑦) using following formulas. 
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ℳ(𝑥, 𝑦) = [𝐸𝐺𝑥(𝑥, 𝑦) 2 + 𝐸𝐺𝑦(𝑥, 𝑦) 2] 
1

2; Θ(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝐸𝐺𝑦(𝑥,𝑦)

𝐸𝐺𝑥(𝑥,𝑦)
)  

where 𝐸𝐺𝑥(𝑥, 𝑦) and 𝐸𝐺𝑦(𝑥, 𝑦) are image gradients of 𝐸(𝑥, 𝑦) image in 𝑥 

and 𝑦 directions respectively. The magnitude values are quantized into 𝐾-

evenly spaced orientation bins from 00 to 1800. Hence, length of the 

generated histogram ℎ0 is computed as 𝐿ℓ = 𝐾 ∑ 4ℓ2
ℓ=0  where 𝐾=8 and 

ℓ = 0 i.e. 𝐿0 = 8 × 1 = 8. 

(b) At level 1: Image 𝐸(𝑥, 𝑦) is divided in four sub-

regions {𝐸1(𝑥, 𝑦), 𝐸2(𝑥, 𝑦), 𝐸3(𝑥, 𝑦), 𝐸4(𝑥, 𝑦)} and a feature vector is 

framed by applying step 4(a) on each sub-region. Length of the generated 

histogram ℎ1 is  𝐿1 = 8 × [1 + 4] = 40. 

(c) At level 2: Each sub-region 𝐸𝑖(𝑥, 𝑦), 𝑖 = 1,2,3,4  is further divided in 

four sub regions as 𝐸𝑖𝑗(𝑥, 𝑦), 𝑖 = 1 𝑡𝑜4    & 𝑗 = 1 𝑡𝑜 4  . Histogram ℎ2 

is generated for each sub-region using step 4(a) with length 𝐿2 =

8 × [1 + 4 + 16] =168.  

Step 4:  Output: Histogram of Spatial Distribution Gradient for an 𝐴𝐸𝐼(𝑥, 𝑦) is 

obtained as         ℎ = {ℎ0 , ℎ1 , ℎ2} 

such as random noise, which is a common element in real-time applications. According 

to scale-space theory, each frame of the video is given multi- scale signal representation 

(𝑥, 𝑦, 𝜎) , mathematically defined using Eq. (3.11): 

𝑆(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)              (3.11) 

where 𝐺(𝑥, 𝑦, 𝜎) correspond to a Gaussian kernel function with kernel size [25 × 25], 

(𝑥, 𝑦)𝜖 𝑅𝑚×𝑛 , 𝑚 × 𝑛 is the dimension of the image 𝐼(𝑥, 𝑦). A  [25 × 25]  Gaussian 

kernel captures strong DoG keypoints with 118 as highest DoG keypoint pixel value. 

For smaller Gaussian kernels i.e.  [9 × 9], [3 × 3] the highest DoG keypoint pixel value 

obtained are 104 and 65 respectively.  
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Figure 3.13: Geometric invariance of SDG descriptor (a) input image (b) extracted ROI (c) SDG 

descriptor 

As the kernel size is increased further  [50 × 50] the possible highest DoG keypoint 

pixel value saturated to 118. Therefore, the Gaussian kernel [25 × 25] is selected for 

DoG based key features extraction.  Mathematically 𝐺(𝑥, 𝑦, 𝜎)  is defined as Eq. 3.12: 

𝐺(𝑥, 𝑦, 𝜎) =
1

√2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2                                                        (3.12) 

For the identification of stable key-points or edges in scale space, 𝐷𝑜𝐺(𝑥, 𝑦, 𝜎)  

is defined as: 

O
ri

g
in

a
l 

Im
a
g

e 

S
c
a

le
d

  

Im
a
g

e 
T

ra
n

sl
a

te
d

 

Im
a
g

e 
R

o
ta

te
d

 

Im
a
g

e 

(a) (b) (c) 



      Chapter 3: Handcrafted Features based Models 

59 

 

 

Figure 3.14: Extraction of. DoG based STIPs, k = scale of Gaussian function 

𝐷𝑜𝐺(𝑥, 𝑦) = 𝑆(𝑥, 𝑦, 𝑘𝜎) − 𝑆(𝑥, 𝑦, 𝜎)   =    [𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)] ∗ 𝐼(𝑥, 𝑦)  (3.13) 

For experimental work, 𝜎 is chosen to be 0.7 and 𝑘 is the scale parameter chosen to be 

10, to optimise the prominent key features. High value of the Difference of Gaussian 

pixel represents the strong interest points which are independent of scale variations. 

The obtained 𝐷𝑜𝐺(𝑥, 𝑦) is passed through a filter with the threshold value as 10% of 

the highest DoG pixel value per frame. It rejects the pixels lesser than the threshold 

value.  The obtained key-points per frame are concatenated to maintain the codebook 

[ 𝑥𝑘 𝑦𝑘 𝑝𝑘], 𝑘 = 1: no of key points per frame for each video sequence.  

3.2.1.2.2  Codebook Generation 

A vocabulary of Spatio-Temporal key interest points is created for better 

action representation. For each frame in the video, there is a key point vector, which 
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depicts the number of interest points in that frame. Usually, there are two kinds of 

approaches [180] for codebook generation algorithm i) partition each feature vector 

space represented by its centre called code-word ii) to compute the probability 

distribution of features using a generative model such as GMM. Under category one, 

there are many vector quantization approaches such as 𝐾-means clustering [180], 

hierarchal clustering [181] and spectral clustering [182]. Among them, 𝐾-means 

clustering is the widely used approach to construct codebook. For a set of local features 

{𝑞1, 𝑞2, … 𝑞𝑛} where 𝑞𝑛 ∈  ℝ𝐷our objective is to partition the local feature vector in 𝐾 

clusters as {𝑓1, 𝑓2, … 𝑓𝐾}, where 𝑓𝐾 ∈  ℝ𝐷. For each feature 𝑞𝑛 a binary indicator 

variable 𝑏𝑛𝐾  ∈ {0,1} is assigned. If  𝑞𝑛 is allotted to 𝐾𝑡ℎcluster 𝑏𝑛𝐾 = 1 and 𝑏𝑛𝑖 = 0 

if 𝑖 ≠ 𝐾. The objective function is defined as: min 𝜁({𝑏𝑛𝑘, 𝑓𝑘}) =

∑ ∑ 𝑏𝑛𝐾‖𝑞𝑛 − 𝑓𝑘‖
2𝐾

𝑘=1
𝑁
𝑛=1 .  The values of {𝑏𝑛𝑘}𝑎𝑛𝑑  {𝑓𝑘} are optimised to minimize 

the objective function 𝜁 iteratively. The fundamental steps involved in codebook 

generation are illustrated in Fig. 3.15. The extracted DoG based STIPs are stored as 

{𝑥𝑘, 𝑦𝑘, 𝑝𝑘}, 𝑘 = no of STIPs per frame, {𝑥𝑘, 𝑦𝑘} is the x and y coordinates of the 

𝑘𝑡ℎSTIP and  𝑝𝑘 is the pixel value of the  𝑘𝑡ℎ STIP. Hence a feature vector of dimension 

3 × 𝑘 is formed per frame. For a video sequence of 𝑛 no. of frames, a feature vector of 

dimension 3 × 𝑘 × 𝑛 is constructed. It is quantised using K-means clustering approach 

[180], where K is optimised with K=128 for maximized recognition accuracy for the 

dataset. The optimised feature vector with dimension (3 × 128)’ for each video is 

collected in the codebook of dimension  128 × 3 × 𝑚 . 

The final feature vector is designed by integrating SDGs and Codebook 

representation of extracted DoG based Spatio-Temporal interest points for 

classification. This fusion model is enriched with shape and motion evidence and has 
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the power of recognizing the activity distinctly. In Fig. 3.16, histogram patterns of the 

designed hybrid feature vector are illustrated for KTH dataset activities, which depicts 

unique patterns for each activity. This property of hybrid feature vector assures large 

inter-class separation.  

3.2.2 Experimental Work and Results 

To observe the performance of the proposed framework four publicly available 

datasets: KTH [183], Weizmann [184], Ballet [185] and IXMAS [186] dataset are used. 

It helped to verify the strength of the proposed approach against the illumination 

change, viewpoint variation, high interclass similarity, and low intra-class similarity of 

the actions. The image samples for each dataset are provided in Fig. 3.17. The 

performance of the algorithm is measured in terms of Average Recognition Accuracy 

(ARA) using HMM and multi-class SVM classifier. For experimentation, the standard 

HMM is defined for 𝑛 no. of output states (no. of action classes) and tested for 2 to 11 

no. of hidden states. Expectation Maximisation (EM) algorithm is used to estimate the 

model parameters for 80 iterations.   

3.2.2.1 Weizmann Dataset 

Weizmann dataset [184] consists of total 90 video sequences with 25fps frame 

rate and 144×180 frame size. The dataset includes 10 different actions perfromed by 9 

people, as shown in Fig.3.19 (a).  
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Figure 3.15: Illustration of codebook generation of STIP feature vector 

3.2.2.2 KTH Dataset 

The KTH dataset [183] consists 100 videos sequences for 6 basic activities, as shown 

in Fig. 3.19 (b), in indoor and outdoor. These video sequences are acquired in the 

constant background condition with a fixed calibrated camera, and 25fps frame rate 

with 160×120 frame size. It is a larger and more challenging dataset than Weizmann 

dataset. 
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Figure 3.16: Histogram pattern of Hybrid feature vectors of various KTH dataset activities 

3.2.2.3 Ballet Dataset 

 Ballet dataset [185] consists of eight human ballet movements, as shown in 

Fig. 3.19 (c). It offers significant amount of intra-class dissimilarity and inter-class 

similarity in terms of scale variations, speed of the action performed, and clothes. 

3.2.2.4 IXMAS Dataset 

INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset [186] is a 

view-invariant human action recognition dataset. It is one of the widely used dataset to 

analyse human actions performed under different views. It includes 13 daily living 
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activities recorded via five cameras with 23𝑓𝑝𝑠 frame rate, which are shown in Fig.3.19 

(d). These actions are enacted by 12 actors repeated three times with 390×291 spatial 

resolutions. The dataset offers the challenges in terms of variation in clothing, sex, 

execution rate of the actions and different heights of the actor preforming the action. 

The performance of the proposed approach is evaluated in terms of ARA on four 

different datasets, as shown in Table 3.7.  

 
Figure 3.17: Sample frames a) Weizmann b) KTH c) Ballet d) IXMAS human action dataset 

The performance of the proposed algorithm is compared with Human Pose 

Model (HPM) and Human Pose Model-Temporal Modelling (HPM+TM) [187] for 

each dataset. Due to non-availability of a large and sufficient set of poses, Rahmani et 
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al. [187] used CMU Motion Capture Database [188] which covers over 2600 mocap 

sequences trained for synthetic human poses in different views from 00 to 1800 . It 

supports the view invariance property of the HPM architecture.  

Table 3.7: Average Recognition Accuracy (ARA) of the proposed algorithm using SVM and 

HMM classifier 

Classifier/ Dataset ARA(%) with HMM ARA(%) with SVM 

Weizmann 96.2 97.5 

KTH 95.8 96.6 

Ballet                    94.3 95.62 

IXMAS 88.36 89.18 

It motivated us to compare the adaptive capacity of the proposed work 

against view changes. HPM is trained for depth sequences. Though, selected datasets, 

in the work, possess only RGB frames. Therefore, binary silhouettes are fed to HPM 

model instead of depth silhouettes. The concept of transfer learning is used to fine tune 

the HPM model for 10 classes of Weizmann dataset, 6 classes for KTH, 7 classes for 

ballet and 13 classes for IXMAS dataset, which describe each frame as feature vector 

4096 × 1 . Fourier Temporal Pyramid (FTP) feature vector 4096 × 28 is computed to 

encode the temporal details of 4096 × 𝑛 HPM feature vector 𝑆𝑖 for 𝑖𝑡ℎ action sequence 

with a number of frames in the action sequence, using a pyramid of three levels which 

divides 𝑆𝑖in equal halves at each level as 1 + 2 + 4 = 7 feature groups. Short Fourier 

Transform is applied to each group. It generates spatio-temporal action descriptor in the 

form of four low-frequency coefficients (4 × 7 = 28) . It is noticed that temporal 

encoding has definitely improved the recognition accuracy than HPM [187]. However, 

significantly higher accuracy is obtained for the proposed the proposed work. The 

confusion matrix for the same is shown in Fig. 3.19(a)-(d). For Weizmann dataset state-

of-the-art with ARA of 97.5% is achieved. Despite of clothing variation present in 
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Weizmann dataset, texture based segmentation for silhouette extraction is accountable 

for such high recognition rate. Integration of SDG and DoG based STIPs feature vectors 

achieves 100% recognition accuracies for ‘bend’, ‘jack’, ‘jump’, ‘pjump’, ‘wave1’ and 

‘wave2’, as shown in Fig. 3.18(a). Though in KTH dataset there are smaller number of 

action classes, the recording conditions are more irregular than Weizmann. Hence, 

KTH is more challenging dataset than Weizmann dataset due to different setups and 

scale variations. Therefore, silhouette extraction is an important and challenging task 

for KTH dataset. Background subtraction approach is also sensitive to illumination and 

recording conditions’ variations. Whereas, texture based foreground extraction 

approach makes it insensitive to illumination and recording conditions. In our 

experiment, the highest ARA achieved using texture based silhouette extraction 

methodology for human activity recognition is 96.6% for KTH dataset. Proposed 

algorithm (SDG + DoG based STIPs) evaluation results on KTH dataset are given in 

Fig. 3.18(b) and also compared with HPM and HPM+TM method [189]. 

In Ballet dataset size variation, clothing, sex and execution rate of actions 

introduced additional complexity that makes action recognition even more challenging. 

The proposed hybrid feature design is insensitive to execution rate and size variation of 

the actor while performing the action. Because it incorporates Difference of Gaussian 

(DoG) based scale invariant Spatio-temporal key points (STIPs) and AEI based Spatial 

Distribution Gradients (SDGs) which is insensitive to the speed of action. 

For AEI formation sequence of human pose energy is collected irrespective of 

the speed of action performed. Fusion of DoG based STIPS with SDG feature vector 

has increased recognition accuracy from 92.2% to 95.62% ARA for Ballet dataset, Fig. 
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3.18 (c). From confusion matrix, in Fig. 3.19(c), it is quite evident that except ‘hopping 

and jumping’ misclassification, appreciable recognition results are obtained for all the  

 
 

 

activities in the dataset despite of the present complexity, as mentioned above. Table 

3.8 reports the ARA evaluated for IXMAS dataset by the proposed algorithm. For 

experiment, pair-wise train-test camera views are selected and classification is 

performed. 
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Figure 3.18: Per class performance of the proposed method (SDG + DoG based STIPs) vs HPM 

and HPM+TM [176] for (a) Weizman dataset (b) KTH dataset (c) Ballet dataset (d) Multi-view 

IXMAS dataset 

In First row in Table 3.8 indicates test view and first column shows selected training 

view. Complexity of viewpoint variations is very well handled by simple yet effective 

DoG based STIPs feature vector which has increased the overall recognition accuracy 

from 80.24% to 89.18%, when fused with SDG descriptor. Fig. 3.19(d) depicts the 

confusion matrix for IXMAs dataset with 13 activities when cam2 is used for testing 

and (train-test) pair-wise multi-view testing is performed. The performance of the 

proposed algorithm is also compared with other state-of-arts, as presented in Tables 3.9 

to 3.12. It is evident from these comparisons, that the obtained recognition accuracy of 
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the proposed method is superior from other approaches. Hence, the proposed 

framework is proved to be more robust than other state-of arts for human activity 

recognition, tested for variable conditions offered by the datasets. There are number of 

approaches [190] [191] [192] [193] [194] [195] [196], which used Weizmann dataset 

to evaluate the algorithm but only few achieves comparable accuracy such as BoCP 

[191] and VCHA [196], Table 3.  BoCP [191] unified bag of correlated silhouette poses 

and MHI for local and global action description. A bioinspired computational model 

[196] received little higher recognition accuracy than ours as which recognized human 

actions by stimulating computationally intensive neural networks. A comparative study 

of the performance of the proposed work with other state-of-the-arts on Ballet dataset 

is shown in Table 3.11. It is one of the toughest dataset in terms of human action’s 

complexity. Since, the actions are performed in in controlled environment, silhouette 

extraction process generated satisfactory results for the dataset. The proposed feature 

design achieved, slightly higher ARA than Vishwakarma et al. [58] due to scale, 

illumination, translation and view-invariant property of the hybrid feature, which is the 

integration of DoG based STIPs with AEI based SDG action descriptor. 

Table 3.8: Pair-wise cross-view action recognition accuracy for the proposed approach on the 

IXMAS dataset 

Train/Test View 

Cam0 Cam1 Cam2 Cam3 Cam4 

HMM   SVM HMM   SVM HMM   SVM HMM   SVM HMM   SVM 

Cam0  - 88.1         88.6   87.6        86.5   93            94.7 86       87.3 

Cam1 89.6           88.4 -  87           87.6 93.5          94.8 86.6    87.8 

 Cam2 88.4           89.5 91.4         90.5 - 93.6           94.1 85.8     86.3 

Cam3 88.6            90.2   87          88.3 88.9          88 - 84.2     86.5 

Cam4  87              87.9 86.5        87.7 86.1        86.2  91.9           92.8 - 

Avg.  88.4            89  88.25         88.8 87.4          87  93              94.1 85.65    87 
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Figure 3.19: Confusion matrix for four publicly available datasets (a) Weizmann (b) KTH (c) 

Ballet (d) IXMAS dataset (test view - cam2) using SVM classifier 

Table 3.9: Comparison with other state-of-the-arts on Weizmann Dataset 

Method 
Parameters 

Classifiers Test scheme ARA (%) 

Contour Points [190]                       KNN LOSO 92.8 

BoCP [191]                          SVM LOSO 97.78 

BST [192]                   SVM LOPO 95.42 

SC-STV [193] NNC - 96.3 

CA [195] CNN-HMM - 89.2 

VCHA [196] NN - 98.52 

Proposed method                        HMM/SVM LOO 96.2/97.5 

Table 3.10: Comparison with other state-of-the-arts on KTH Dataset 

(a) 
(b) 

(c) (d) 
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Method Parameters 

Classifiers Cross Validation scheme ARA (%) 

    AMI [197]                        SVM - 93.30 

PDE [198]                                      KNN LOO 92.6 

BST [192]                    SVM LOPO 93.14 

NSF [199] KNN LOO 94.49 

Hankelets [200] SVM LOO 95.89 

SC-STV [193] NNC LOO 94.33 

SGF [194] AdaBoost LOO 95.17 

CA [195] CNN-HMM - 94.43 

VCHA [196] NN - 93.16 

DTD [201] CNN-LSTM - 96.8 

Proposed method                                 SVM, HMM LOO 96.6, 95.8 

Table 3.11: Comparison with other HAR state of-the-art methods on Ballet dataset 

Method 
Parameters 

Classifiers Cross Validation scheme ARA (%) 

MLMF [202] Adaboost LOOCV 51 

SLTM [203]  S-CTM LOO   91.3 

Cuboid-LMPF [185] RSR LOO 91.1 

Chaotic Invariants [204] RVM LOO 90.8 

DBW [205] SVM LOO 91.1 

HSC [58] SVM-NN LOOCV 94.0 

BS-SDG [57] SVM-NN LOOCV 94.5 

Proposed Method SVM, HMM LOOCV 95.62, 94.3 

Table 3.12: Comparison with other HAR state-of-the-art methods on IXMAS dataset 

Method Input Actions Views Accuracy 

CDF-UBM [206] Images 12 4 88.2 

MHV [186] Silhouettes 11 5 93.3 

3DHOG [207] Images 11 5 83.5 

LKSS [208] Images 12 5 86.21 

Hankelets [200] Images 11 5 90.5 

KFSO [171] AEI 12 5 85.8 

STF [209] Images 11 5 86.9 

Proposed Method AEI 13 5 89.18 

It is noticed from Table 3.12, that the proposed framework performed superior 

than the other state-of-art methods [171] [209] [210] [208] with 89.18% recognition 

accuracy. Hankelets [200] obtained little higher recognition accuracy due to view-

invariant property of Hanklets which do not carry Spatio-temporal information of an 

activity. The Hanklet approach finds ‘Pick Up’ activity hardest in IXMAs dataset to 
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recognize with an average accuracy of 86.5% due to severe occlusion. However, the 

proposed Spatio-temporal approach can recognize ‘Pick up’ with 100% accuracy. 

Motion History Volume based action description [186] used Fourier-magnitudes and 

cylindrical coordinates, to represent translational and rotation invariant motion 

templates around the z-axis. However, a single template is not sufficient to represent 

all kinds of motion i.e. ‘turn-around’ can be misinterpreted as ‘single side step’ in small 

steps. Therefore, to remove this interclass similarity single motion template should be 

replaced with temporal networks of motion. The accuracy achieved by CDF-UBM 

[206], is very close to the proposed algorithm due to the use of alike spatiotemporal 

context distribution interest points. Though, the proposed algorithm obtained higher 

accuracy due to additional scale and view-invariant STIP used with AEI based SDG 

feature. Computational efficiency of the framework is analyszed in terms of time taken 

by each step for a single interation and given in Table 3.13. The computational 

complexity is an important parameter for the practical implementation of any method. 

Therefore, the approach should be efficient and simple to handle the computational 

complexity. We consider the proposed hybrid feature computations to illustrate the 

computational efficiency. For experiments, the proposed work is implemented using 

image processing toolbox, however for comparison with HPM+TM model [187], it  is 

implemented using Matlab2017b with MatConvNet toolbox on a single NVIDIA 

GeForce 940M Graphics Card, 8GB RAM, Intel core i5 Processor. The time 

performance of the proposed work is evaluated by dividing the hybrid feature vector 

formation into five major steps: entropy based silhouette extraction, Average Energy 

Image (AEI) formation, SDG descriptor computation, DoG based STIPs extraction and 

Quantized Code-word generation. Execution time for each dataset for feature extraction 
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is explained in Table 3.13, which confirms that the hybrid feature vector can be 

produced in an affordable time.  

Table 3.13:  Execution time of key steps for hybrid feature vector 

             Key Steps 

 

 

Dataset 

Entropy 

based 

silhouette 

extraction 

(per frame) 

AEI 

formation 

(per video 

sequence) 

SDG 

descriptor 

(per video) 

DoG based 

STIPs 

detection 

(per frame) 

Quantised 

Code word 

generation 

(Per Video) 

Weizmann 0.690 sec 0.300 sec 0.137sec 2.43 sec 0.526 sec 

KTH 0.473 sec 0.296 sec 0.137sec 1.58 sec 1.15 sec 

Ballet 0.559 sec 0.344 sec 0.137sec 2.66 sec 0.44 sec 

IXMAS 0.211 sec 0.121 sec 0.137sec 2.04 sec 1.934 sec 

Average Time 0.483 sec 0.265 sec 0.137sec 2.177 sec 1.012sec 

 

3.3 Significant Outcomes 

The outcomes of this chapter are twofold. Firstly, this chapter addresses the 

problem of poor human action identification due to the illumination and scale variations 

in videos. Secondly, it targets the problem of elderly health care by developing a robust 

automated abnormal human action identification system using handcrafted model. The 

experimental results demonstrate some interesting observations, which are as follows: 

▪ Dataset generation- A new dataset, possessing five set of abnormal actions, is 

generated which is captured by Microsoft Kinect sensor v1. It consists of total 

80 samples for five abnormal actions: ‘headache’, ‘chest pain’, ‘fainting’, 

‘backward fall’ and ‘forward fall’. It is made publically available for other 

researchers in order to extend the research work in this direction. 

▪ Encryption of structural appearance and temporal motion of human pose as 

Average Energy Silhouette Images (AESI) support low storage capacity and 

low computational cost.  



Chapter 3: Handcrafted Features based Models                                                              

74 

 

▪ A robust translation, scale and rotation invariant novel action descriptor, 

developed by unifying the properties of both ℛ -transform and Zernike moment, 

outperforms similar silhouette based action recognition methods, as provided in 

Table 3.3, 3.4, and 3.5. 

▪ Global and local features based action representation is able to handle the 

illumination, scale and view variations discriminately, in videos.  It is observed 

from the experimental results that fusion of DoG based STIPs with its SDG 

descriptor, potentially leads to the significant improvements for the KTH and 

Ballet, and IXMAS dataset, despite different environmental conditions, high 

intra-class variations in terms of speed of action, spatiotemporal scaling, 

clothing, and view variations etc. 

▪ For human silhouette extraction, entropy based texture segmentation method 

works quite well in binary texture scenes. However, the performance of 

silhouette extraction may get effected for complex or multi-textured scenes. 

▪ It is observed that the performance of any human action identification system 

greatly depends on how the action features are engineered. In this chapter 

handcrafted features extraction procedures are discussed and their performances 

are evaluated. However, complexity involved in designing handcrafted action 

descriptors for the actions acquired in challenging environmental conditions 

increases for efficient action recognition in videos. Therefore, now researchers 

are delving towards deep features to handle the practical challenges involved in 

action recognition in videos more effectively. Chapter 4 discusses about deep 

features based action recognition methods in videos. 
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▪ D. K. Vishwakarma, C. Dhiman, "A unified model for human activity 
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CHAPTER 4  

DEEP LEARNING MODELS 

The objective of this chapter is to describe two human action identification deep models 

using the concept of transfer learning and part-wise feature engineering approach 

followed by late fusion. The key components of this chapter include the extensive study 

for highly discriminating deep features’ engineering which include transfer learning 

based view invariant depth human pose description, motion dynamics encryption as 

Dynamic Images (DIs), Residual Inception Attention driven CNN network (RIAC-Net) 

based part wise human action representation and weighted late fusion.  The proposed 

deep models are supported by experimental validation, results discussion and 

comparative analysis of results with the similar state-of-the-arts. 

4.1 View-invariant Deep Human Action Recognition model 

using motion and Shape temporal dynamics  

Recognition of human actions for unknown views is a challenging task. In this 

section, we propose a view-invariant deep action recognition framework is proposed, 

which is a novel integration of two important action cues: motion and shape temporal 

dynamics (STD). The motion stream encapsulates the motion content of action as RGB 

Dynamic Images (RGB-DIs) which are processed by the fine-tuned InceptionV3 

model. The STD stream learns long-term view-invariant shape dynamics of action 

using human pose model (HPM) based view-invariant features mined from structural 

similarity index matrix (SSIM) based key depth human pose frames. To predict the 

score of the test sample, three types of late fusion (maximum, average and product) 

techniques are applied on individual stream scores. Cross subject and cross-view 
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validation schemes are used to evaluate the proposed work. Our algorithm outperforms 

the existing state-of-the-arts significantly that is reported in terms of accuracy, Receiver 

Operating Characteristic (ROC) curve and Area Under the Curve (AUC). The detailed 

description of developed approach, the experimental results and their discussion are 

provided in the subsequent sections.  

4.1.1 Proposed Approach  

Schematic block diagram of the deep view-invariant RGB-D action recognition 

framework is demonstrated in Fig. 4.1. The architecture is designed by learning both 

motion, view-invariant deep shape of the object over a period. The motion content of 

the action is encrypted as dynamic images (DI), and the concept of transfer learning is 

used to understand the action in RGB videos with the help of InceptionV3. Geometric 

details of the shape of the object during actions are extracted as view-invariant Human 

Pose Model (HPM) [36] features which are learned in a sequential manner using one 

Bi-LSTM, and one LSTM layer followed by dense, dropout and softmax layers. Two 

streams are combined using a late fusion concept to predict the action. 

4.1.1.1 Depth-Human Pose Model (HPM) based action descriptor 

Depth shape representation of human pose preserves the information about 

relative positions of the body parts. In the proposed work, fine details of depth human 

pose irrespective of the viewpoint are represented as view-invariant HPM features. 

HPM model [36] has similar architecture to the AlexNet [211]. It is trained with 

synthetically generated multi-viewpoint action data from 180 viewpoints which are 

generated by fitting human pose models to the CMU motion capture data [188]. It 
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makes HPM view invariant. To preserve the temporal structure of action, HPM features 

are learned over LSTM sequential model. 

 

Figure 4.1: Schematic Block Diagram of the proposed approach 

4.1.1.1.1   Self-Similarity Index Matrix (SSIM) based key frame Extraction  

Initially a depth video with 𝑛 no. of depth frames{𝑓1, 𝑓2 …… . , 𝑓𝑛}, is pre-

processed by morphological operations, to obtain depth human silhouette to reduce the 

background noise. The redundant information in the video is removed by selecting key 

pose frames based on the Structural Similarity Index Matrix (SSIM) [212]. It computes 

the global structural similarity index value and local SSIM map for two consecutive 

depth frames. If there are small changes in a human pose with time during an action 

structural similarity index (𝕊𝕊𝕀) value is high. For distinct human poses, the 𝕊𝕊𝕀 value 

is small. Mathematically SSIM value is defined as below: 

𝕊𝕊𝕀(𝑓𝑖, 𝑓𝑖+1) = [ℒ(𝑓𝑖, 𝑓𝑖+1)
𝛼] × [ℂ(𝑓𝑖 , 𝑓𝑖+1)

𝛽] × [𝒮(𝑓𝑖, 𝑓𝑖+1)
𝛾]         (4.1) 
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where ℒ(𝑓𝑖 , 𝑓𝑖+1) =
(2∗𝜗𝑓𝑖

∗𝜗𝑓𝑖+1
+Κ1) 

𝜗𝑥
2+𝜗𝑦

2+Κ1
, ℂ(𝑓𝑖, 𝑓𝑖+1) =

(2∗𝜎𝑥∗𝜎𝑦+Κ2)

𝜎𝑥
2+𝜎𝑦

2+Κ2
, 𝒮(𝑓𝑖 , 𝑓𝑖+1)

 =
(𝜎𝑥𝑦+Κ3)

𝜎𝑥𝜎𝑦+Κ3
  

where 𝜗𝑥, 𝜗𝑦, 𝜎𝑥, 𝜎𝑦 , 𝜎𝑥𝑦are the local means, variances and cross-variances for any two 

consecutive frames 𝑓𝑖 , 𝑓𝑖+1and ℒ(. ),, ℂ(. )and 𝒮(. ) are luminance, contrast and 

structural components of the pixels. Since depth images are not sensitive to luminance 

and contrast components, the exponents of ℒ(. ) and ℂ(. )𝑖. 𝑒. 𝛼, 𝛽 are set to 0.5 and 

exponent of structural component 𝒮(. ) , 𝛾 is set to 1. 𝕊𝕊𝕀 value is computed for every 

two consecutive frames in a video and arranged in an ascending order with their 

respective frame numbers, in a vector Λ.  First ten 𝕊𝕊𝕀 values and corresponding frames 

numbers 𝑖, 𝑖 ∈ (1, 𝑛) are selected from the arranged vector Λ as key frames. The salient 

information of each selected key frames is extracted as region of interest (ROI) and 

resized to [227 × 227] images to transform into view-invariant HPM features 

composed as 𝑓𝑐7 layer [10 × 4096] feature vector using HPM [36] model.  

4.1.1.1.2   Model architecture and learning 

In this paper shape temporal dynamics (STD) stream is designed to describe 

the long term shape dynamics of the action with deep convolutional neural network 

structure, whose architecture is similar to [36] except that we have connected the last 

𝑓𝑐7 layer with a combination of Bidirectional LSTM and LSTM layers. The 

architecture of our CNN follows:   

  𝐼𝑛𝑝𝑢𝑡(227,227) → 𝐶𝑜𝑛𝑣(11,96,4) → 𝑅𝑒𝐿𝑈 → 𝑚𝑎𝑥𝑃𝑜𝑜𝑙(3,2) →

𝑁𝑜𝑟𝑚 → 𝐶𝑜𝑛𝑣(5,256,1) → 𝑅𝑒𝐿𝑈 → 𝑚𝑎𝑥𝑃𝑜𝑜𝑙(3,2) → 𝑁𝑜𝑟𝑚 → 𝐶𝑜𝑛𝑣(3,256,1) →

𝑅𝑒𝐿𝑈 → 𝑃(3,2) → 𝐹𝑐6(4096) → 𝑅𝑒𝐿𝑈 → 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.5) → 𝐹𝑐7(4096) →

𝐵𝑖𝐿𝑠𝑡𝑚(512) → 𝐿𝑠𝑡𝑚(128) → 𝑅𝑒𝐿𝑈 → 𝐹𝑐(. ) → 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(. ) 
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where 𝐶𝑜𝑛𝑣(ℎ,𝓃, 𝕤) is a convolution layer with ℎ × ℎ kernel size, 𝓃 number of filters, 

𝕤 stride,  𝑚𝑎𝑥𝑃𝑜𝑜𝑙(ℎ, 𝕤) is a max pooling layer of ℎ × ℎ kernel size and stride 𝕤, 𝑁𝑜𝑟𝑚 

is a normalization layer, 𝑅𝑒𝐿𝑈 is a rectified linear unit, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑝) is Dropout layer 

with (𝑝) dropout ratio, 𝐹𝑐(ℕ) is a fully connected layer with ℕ no. of 

neurons. 𝐵𝑖𝐿𝑠𝑡𝑚(Ο)and 𝐿𝑠𝑡𝑚(Ο)are Bidirectional Long short term memory(LSTM) 

layer, and  one directional LSTM later respectively with ‘Ο’ output shape. Bidirectional 

LSTM layer is trained with weight regularizer 0.001 and recurrent dropout of 0.55 with 

the true return sequence for Bidirectional LSTM layer. Softmax layer is attached in the 

end of the network. Last fully connected layer is designed with 10, 30, and 60 neurons 

as output shape for NUCLA, UWA3D, and NTU RGB-D dataset respectively 

according to number of classes in the datasets. 

The pre-trained HPM model is learned for view invariant synthetic action 

data for 399 types of human poses. Therefore, the proposed deep HPM based shape 

descriptor model is learned end to end with 80 epochs and ‘Adam’ optimizer. The 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 layer will generate a probability vector [1 × 𝑛], where 𝑛 is no. of classes, that 

shows the belongingness of the test sample to all the classes of the dataset. 

4.1.1.2 RGB-Dynamic Image (DI) based action descriptor 

In this section appearance and dynamics of a video is represented in terms of 

dynamic images (DIs), which are later used to learn pre-trained inceptionV3 

architecture according to the dynamics of the action sequence. DIs focus mainly on the 

salient objects and motion of the salient object by averaging away the background 

pixels and their motion patterns, by preserving long-term action dynamics. In 
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comparison to other sequence invariant temporal pooling strategies [213] [35], ARP 

emphasize the order (𝜏) of frame occurrence to extract complex long term dynamics of 

an action. 

 

Figure 4.2: (a) Shape Temporal Dynamics (STD) stream  design (b) SSIM based key feature 

extraction procedure is demonstrated for only nine frames as a test case considering α=0.5,β=0.5, 

γ=1 

Construction of dynamic image depends on the ranking function that rank each 

frame in time axis. According to Fernando et al. [35], a video, i.e. {𝐼1, 𝐼2, … . . , 𝐼𝑁} is 

represented as a ranking function𝜑(𝐼𝑡), 𝑡 ∈ [1, 𝑁] where, 𝜑(. ) function assigns a score 

𝓈 to each frame 𝐼𝑡at instance 𝑡 to reflect the rank of each frame. The time average of 

𝜑(𝐼𝑡) up to time 𝑡 is computed as 𝑄𝑡 =
1

𝑡
∑ 𝜑(𝐼𝑖)

𝑡
𝑖=1   and𝓈(𝑡|𝒓) =< 𝒓, 𝑄𝑡 >, where 

𝒓 ∈ 𝑅𝑟 is a vector of parameters. Score for each frame is computed in such a manner 
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that𝓈(𝑡2|𝒓) > 𝓈(𝑡1|𝒓), 𝑡2 > 𝑡1. For which vector 𝒓 is learned as a convex optimization 

problem using RankSVM [214]. The optimising equation is given as Eq. (4.2):  

𝑟∗ = 𝜕(𝐼1, 𝐼2, … . . , 𝐼𝑁: 𝜑) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑟𝐸(𝑟),                                       (4.2) 

where      𝐸(𝑟) =
𝜆

2
‖𝑟‖2 +

2

𝑁(𝑁−1)
× ∑ max {0,1 −𝑡1>𝑡2  𝓈(𝑡2|𝒓) + 𝓈(𝑡1|𝒓)} and  

𝜕(𝐼1, 𝐼2, … . . , 𝐼𝑁: 𝜑) maps a sequence of 𝑁 number of frames to 𝑟∗, also termed as rank 

pooling function, that holds the information to rank all the frames in the video.  The 

first term in objective function 𝐸(𝑟) is the quadratic regularised used in support vector 

machines. The second term is a hinge-loss that counts the number of pairs 𝑡2 > 𝑡1 are 

falsely ranked by the scoring function 𝓈(. )., if scores are not separated by at least unit 

margin i.e. 𝓈(𝑡2|𝒓) > 𝓈(𝑡1|𝒓) + 1. In the proposed work, learning of the ranking 

function for dynamic images construction is accelerated by applying approximate rank  

 
Figure 4.3: computation of 𝜸𝒕 parameter for fixed video length N; numbers in red show the 

dependency of 𝜸𝒕 on consecutive video frames ∈ (𝒊, 𝑵) 
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Figure 4.4: Dynamic image formation using Approximate Rank Pooling (ARP) [48]. First row: 

R-channel, Second row: G-channel, Third row: B-channel of each RGB video frame 

pooling (ARP) [215]. It involves simple linear operations at pixel level, over the frames 

to rank them, which is extremely efficient and simple for fast computation. ARP 

approximates the rank pooling procedure by using gradient-based optimization in Eq. 

(4.3) as follow: 

For 𝒓 = 0⃗ , 𝒓∗ = 0⃗ − 𝜂∇𝐸(𝒓)|𝒓=0⃗⃗  for any 𝜂 > 0,               (4.4) 

where    ∇𝐸(𝑟) ∝ ∑ ∇max{0,1 − 𝓈(𝑡2|𝒓) + 𝓈(𝑡1|𝒓)} 𝑡2>𝑡1 |𝑑=0⃗⃗        

∇𝐸(𝑟) = ∑ ∇< 𝒓, 𝑄𝑡1 − 𝑄𝑡2 > 𝑡2>𝑡1 = ∑ 𝑄𝑡1 − 𝑄𝑡2 𝑡2>𝑡1             (4.5) 

𝒓∗ ∝ ∑ [
1

𝑡2
∑ 𝜑𝑖 −

1

𝑡1
∑ 𝜑𝑗

𝑡1
𝑗=1

𝑡2
𝑖=1 ] = ∑ 𝛾𝑡

𝑇
𝑡=1 𝑡2>𝑡1 𝜑𝑡                    (4.6) 

where 𝛾𝑡 = 2(𝑇 − 𝑡 + 1) − (𝑇 + 1)(ℎ𝑡 − ℎ𝑡−1), and ℎ𝑡 = ∑
1

𝑡

𝑡
𝑖=1   is the 𝑡𝑡ℎharmonic 

number, ℎ0 = 0. Hence, rank-pooling function is re-written as:  

𝜕̂(𝐼1, 𝐼2, … . . , 𝐼𝑁: 𝜑) = ∑ 𝛾𝑡𝜑(𝐼𝑡)
𝑇
𝑡=1                (4.7) 

𝛾1 𝛾𝑁 

𝒇
𝟏
 

𝛾2 

𝒇
𝟐
 𝒇

𝑵
 

𝛾1 

𝛾1 

𝛾2 

𝛾2 

𝛾𝑁 

𝛾𝑁 
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Therefore, ARP can be defined as a weighted sum of sequential video frames. The 

weights 𝛾𝑡, 𝑡𝜖[1, 𝑁]are pre computed for a fixed length video, using Eq. (4.7) as shown 

in Fig. 4.3. While computing 𝛾𝑛, the order of occurrence of all the frames, for time 𝑡 ≥

𝑛, are considered by computing a weight for each frame 
2∗𝑖−𝑁−1

𝑖
, where 𝑖 ∈ [𝑛, 𝑁]. The 

computed weight value for each considered frame is summed to obtain single value of 

𝛾𝑛. Therefore, rank-pooling function can be directly defined by using individual frame 

features 𝜑(𝐼𝑡) and 𝛾𝑡 = 2(𝑇 − 𝑡 + 1) as a linear function of time𝑡, instead of 

computing the intermediate average feature vectors 𝑄𝑡 per frame to assign the score to 

rank the frames. The procedure of Approximate Rank Pooling (ARP) is shown in Fig. 

4.4. Where each video frame is multiplied with the corresponding computed, 𝛾𝑡weight 

i.e. 𝑓1is multiplied with 𝛾1for every channel separately.  R, G, and B channels of the 

dynamic image is obtained as weighted sum of R, G, and B -channels of each video 

frame respectively.  

 

Figure 4.5: Layer Structure of the Motion Stream, GAP: Global Average Pooling, BN: Batch 

normalization 

The size of the DI, so obtained, is same as original frame. To compute view 

invariant motion features of the action, the constructed DIs are passed through the 

motion stream as shown in Fig. 4.5, which is a combination of InceptionV3 architecture 

InceptionV3 

[𝟐𝟗𝟗 × 𝟐𝟗𝟗 × 𝟑] [𝟖 × 𝟖 × 𝟐𝟎𝟒𝟖] 

GAP 

[𝟏 × 𝟏 × 𝟐𝟎𝟒𝟖] 

BN 
Fc 

[𝟏 ×

Dropout 

Fc [𝟏 × 𝟏𝟎] 

ReLU activation 

Softmax activation 

Output 

Dropout 
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convolution layers followed by set of classification layers i.e. 

 𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 𝐿𝑎𝑦𝑒𝑟2𝐷( ), 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛( ), 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(0.3),

𝑑𝑒𝑛𝑠𝑒(512,′ 𝑅𝑒𝑙𝑢′), 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(0.5), 𝑎𝑛𝑑 𝐷𝑒𝑛𝑠𝑒(10, ’𝑠𝑜𝑓𝑡𝑚𝑎𝑥’)  layers.Convolution 

features  with vector shape of 8 × 8 × 2048 is received as high dimensional 

representation of input image using pre-trained InceptionV3 model. Batch 

normalisation layer is used to maintain the internal covariate shift  of hidden units’ 

values to be minimal after ‘ReLU’ activations in 𝑑𝑒𝑛𝑠𝑒(512, ′𝑅𝑒𝑙𝑢′) layer. 

Combination of Batch normalisation and Dropout layer helped to handle the overfitting 

phenomena without minimal loss of dropouts rather than only depending on dropout 

layer resulting in larger loss of weights. The layers of the motion stream are trained end 

to end for multiview datasets to update the weights of the InceptionV3 convoultion 

layers according to training samples. The best trained model weights so obtained for 

the highest achieved validation accuracy are used for testing of the sample to achieve 

the high recognition rate irrespective of view variations. 

4.1.2     Experimental Work and Results 

 The performance of the proposed view-invariant human action recognition 

framework is tested on three publically available NUCLA multi-view action 3D dataset, 

UWA3D Depth dataset and NTU RGB-D activity datasets are used.  

4.1.1.3 NUCLA multi-view action 3D Dataset  

The Northern-UCLA multi-view RGB-D dataset [216] is captured by Jiang 

Wang and Xiaohan Nie in UCLA  simultaneously from three different viewpoints using 

Kinect v1. The dataset covers 10 action categories performed by 10 subjects (l) pick up 
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with one hand, (2) pick up with two hands, (3) drop trash, (4) walk around, (5) sit down, 

(6) stand up, (7) donning, (8) doffing, (9) throw, (l0) carry. Many actions share the same 

“walking” pattern before and after the actual action is performed, which increases the 

challenges offered by the dataset. To handle this inter-class similarity SSIM based ten 

depth key frames are selected and processed as 3D-HPM shape features. Some actions 

such as “pick up with on hand” and “pick up with two hands” are difficult to 

discriminate from different views. For cross view validation one view is used for testing 

and rest for training. For cross-subject validation, test samples are selected irrespective 

of viewpoint. The action samples of the dataset are given in Fig. 4.6(a). 

4.1.1.4 UWA3D Multi view Activity-II Dataset 

UWA3D multi-view activity-II dataset [217] is a large dataset which covers  

30 human actions performed by ten subjects and recorded from 4 different viewpoints 

at different times using the Kinect v1 sensor. The 30 actions are: one hand waving, one 

hand punching, two hands waving, two hands punching, sitting down, standing up, 

vibrating, falling down, holding chest, holding head, holding back, walking, irregular 

walking, lying down, turning around, drinking, phone answering, bending, jumping 

jack, running, picking up, putting down, kicking, jumping, dancing, moping floor, 

sneezing, sitting down, squatting, and coughing. The four viewpoints are: (i) front, (ii) 

left, (iii) right, (iv) top. There exist small intra class similarity since large number of 

action classes are not recorded simultaneously. Sample images of UWA3D dataset from 

four different viewpoints are shown in Fig. 4.6(b). 

4.1.1.5 NTU RGB-D Human Activity Dataset 
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NTU RGB+D action recognition dataset [218] is a largest and most complex 

cross-view  RGB-D dataset for human activity analysis captured by 3 Microsoft Kinect 

v.2 cameras placed at three different angles: −450, 00, 450, simultaneously. It consists 

of 56,880 action samples including RGB videos, depth map sequences, 3D skeletal 

data, and infrared videos for each sample. The dataset consists of 60 types of actions 

performed by 40 subjects repeated two times. The sample frames of dataset are shown 

in Fig. 4.6(c). The resolution of RGB videos and depth maps is 1920×1080 and 

512×424 respectively. We follow the standard cross subject and cross view evaluation 

protocol in the experiments, as specified in [218]. Under cross subject evaluation 

protocol, out of 40 subjects 20 subjects are selected for training and 20 subjects for 

testing. Under cross subject evaluation protocol, out of 40, 20 subjects are selected for 

training and 20 subjects for testing. Under cross view evaluation protocol, view 2 and 

view 3 are used as training views and view 1 is used as test view. 

In the experiments, both motion stream and STD stream of the proposed deep 

framework are pre-trained end-to-end independently. For testing phase, the best-trained 

model is selected based on highest validation accuracy achieved. Under cross view 

validation scheme one view is used as test view and rest all views are used for training. 

In the training phase, the training samples are split in training samples and validation 

samples using 80-20 splitting strategy and Adaptive Moment Estimation (Adam) 

optimizer is used with (epochs, batch size, learning rate of the Adam optimizer) as 

(80, 10, 0.0002). In the testing phase, the scores obtained from each stream for each 

test sample are fused using three late fusion mechanisms: maximum, average and 

product.  The obtained performance of our approaches for cross subject and cross view 
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validation scheme for NUCLA multi-view dataset and UWA3D II activity dataset is 

provided in Table 4.1, 4.2 and 4.3, which highlight the obtained highest accuracy of the 

proposed framework for each dataset. Where results are described in terms of motion 

stream, STD stream and proposed hybrid approach which stands for [DI_InceptionV3],  

 

Figure 4.6:  Sample Images of (a) NUCLA multi-view 3D Action Dataset (b) UWA3D II Multi-

View Action Dataset and (c) NTU RGB-D Human Activity Dataset. Left group and right group 

of images in the Fig. 4.6(c) are recorded when the subject face camera sensor C-3, and C-2 

respectively 

[HPM_LSTM] and [HPM_LSTM + DI_InceptionV3] respectively. It is observed that 

for cross view and cross-subject validation both, late fusion scheme has produced 

remarkable results. The small variation in the accuracy for different views exhibits the 

view invariance property of the proposed framework. Whereas, in other state-of-the-

arts [36] [219] [166], accuracy of the presented frameworks vary from view to view in 

the range of 10% that shows these state-of-the-arts are sensitive to different views. It is 

noticed that the novel integration of motion stream and STD stream of the proposed 

method has outperformed the recent works HPM_TM [36], HPM_TM+DT [135], 

NKTM [37]. Interestingly, our method achieves 91.3% and 83.6% average recognition 

accuracy which is about 9% and 10.86% higher than the nearest competitor 

HPM_TM+DT [135] when view 1 is considered for test view for both UWA3D II 

(a) (c) 

V-3 V-1 V-2 V-1 V-2 

V 1 V2 V3 

(b) 

V-3 



             Chapter 4: Deep Learning Models 

89 

 

activity dataset and NUCLA dataset. However, the obtained classification accuracy for 

NTU RGB-D dataset is not as good as obtained from other datasets due to the large 

variety of number of samples and their complexity in NTU RGB + D dataset. Viewpoint 

and large intra-class variations make this dataset very challenging. The performance of 

other work [170], Table 4.6, is comparatively better than the proposed framework for 

NTU RGB-D Activity dataset. It utilized the skeleton joints based action features to 

make prediction. However, the novel integration of motion stream and STD stream 

using late fusion has boosted recognition accuracy for all three multi-view datasets 

verified as ROC curves and AUC in Fig. 4.7 for individual test view of each multi-view 

dataset. From where it can be easily visualised that the hybrid approach based ROC 

curves are showing superior performance than the individual motion stream and STD 

stream based classification results which supports the fact that the fusion of the scores 

of two streams has resulted in increase in correct selection of true samples thereby 

improved true positive rate (TPR). At the same time, AUC values of the ROC curves 

help to understand and compare the ROC curves in a clearer way when they cross each 

other or nearly close to each other. 

Table 4.1: Cross Subject validation results in terms of ARA(%) for NUCLA and UWA3D II and 

NTU RGB-D Activity Dataset 

                Dataset             

 

Method            

NUCLA dataset UWA3D II dataset NTU RGB-D 

dataset 

Motion stream                    93               82.6           62 

STD stream 76 73.5 68.3 

Proposed 

Hybrid 

Approach 

Max  83 81.8 71.6 

Avg  84.5  79.6 75.7 

Mul.  87.3 85.2 79.4 
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Table 4.2: Cross View validation results in terms of ARA for NUCLA Multi-View Action 3D 

Dataset 

Training/ Test View [1,2]/3 [1,3] / 2 [2,3]/ 1     ARA 

Motion stream 86.29 76.42 70.6 77.77 

            STD stream  58.88 73.67 63.83 65.46 

           Hybrid 

Max  91.73 85.43 79.72 85.68 

Avg  90.46 80.65 74.50 81.87 

Mul. 93.12 89.94 85.36 89.47 

Table 4.3: Cross View validation results in terms of ARA for UWA3D Multi View Activity-II 

Dataset (%) 

Computation time:  The proposed view-invariant deep model outperformed the recent 

state-of-the-arts on multi-view NUCLA, UWA3D II and NTU RGB-D Activity Dataset 

by fusing motion stream and view-invariant Shape Temporal Dynamics (STD) stream 

information. Therefore, the proposed two stream deep architecture not only perform 

proficiently but also time efficient in comparison with the existing view invaraint deep 

recognition models. The experiments are performed on 24GB RAM, NVIDIA Geforce 

RTX 2080 Ti GPU. It does not demand computationally expensive training and testing 

phases, as shown in Table 4.7. The major reason behind small computation cost 

involved in training and testing phase, is the compact and competent representation of 

action. In motion stream, the entire video sequence is represented by a single DI and 

STD stream process the key human pose depth frame instead of all the frames in the 

action sequence.  

Training 

View 
[v1,v2] [v1, v3] [v1,v4] [v2,v3] [v2,v4] [v3,v4] 

mean 

Test View v3 v4 v2 v4 v2 v3 v1 v4 v1 v3 v2 v4 

Motion 

Stream 
87.4 81.2 78.1 85.5 73.9 79.4 82.6 73.1 81.6 72.4 83.5 81.1 79.98 

STD stream 62.1 73.5 69.6 79.6 65.4 75.9 64.3 69.5 66.3 69.8 78.6 68.8 70.2 

Hybrid 

Approach 

(max, avg, 

mul) 

86.6 85.3 81.8 86.5 78.3 82.8 85.1 83.6 85.1 81.2 85.3 82.3 83.65 

73.2 78.8 75.4 81.3 79.9 81.4 79.4 77.3 79.4 80.9 84.1 84.2 79.6 

88.2 84.3 82.6 88.6 80.5 83.2 88.9 84.6 93.9 85.2 91.2 83.0 86.18 
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Table 4.4: Comparison with other-state-of-the-arts on NUCLA Multi-View Action 3D Dataset 

       Train-Test View 

        Methods  

Data 

Type 

[1,2]/ 3 [1,3] /2 [2,3] /1 Mean 

CVP [220] RGB 60.6 55.8 39.5 52 

nCTE [221] RGB 68.6 68.3 52.1 63 

NKTM [37] RGB 75.8 73.3 59.1 69.4 

HOPC+STK [217] Depth 80 - - - 

HPM_TM [36] Depth 92.2 78.5 68.5 79.7 

HPM_TM+DT [135] RGBD 92.9 82.8 72.5 82.7 

HPM [36] Depth 85.21 78.57 71.96 78.58 

Motion Stream RGB 86.29 79.7 70.6 77.77 

STD stream Depth 89.96 81.37 75.12 82.15 

Proposed Hybrid 

Approach 

RGBD 93.12 89.94 85.36 89.47 

Table 4.5: Comparison with other state-of-the-arts in terms of ARA (%) on UWA3D Multi-View 

Activity-II Dataset 

Table 4.6: Comparison of with other state-of-the-arts in terms of ARA (%) on NTU RGB-D 

Activity Dataset 

Method Data type Cross subject 

validation 

Cross view 

validation 

Skepxelloc+vel [170] Joints 81.3 89.2 

STA-LSTM [223] Joints 73.4 81.2 

ST-LSTM [224] Joints 69.2 77.7 

HPM(RGB+D)_Traj [166] RGB-D 80.9 86.1 

HPM_TM+DT [135] RGB-D 77.5 84.5 

Re-TCN [225] Joints 74.3 83.1 

dyadic [226] RGB-D 62.1 - 

DeepResnet-56 [227] Joints 78.2 85.6 

HPM  [36] Depth 65.8 70.9 

Motion Stream RGB 62 68.7 

STD stream Depth Maps 68.3 72.4 

Proposed Hybrid 

Approach 

RGB-D (max fusion) 71.6 79.8 

RGB-D (late fusion) 75.7 83 

RGB-D (product fusion) 79.4 84.1 

 

        Train-Test  

 

Methods 

Data 

Type 

[v1,v2] [v1, v3] [v1,v4] [v2,v3] [v2,v4] [v3,v4] 
ARA 

v3 v4 v2 v4 v2 v3 v1 v4 v1 v3 v1 v2 

DT [222] RGB 57.1 59.9 60.6 54.1 61.2 60.8 71 59.5 68.4 51.1 69.5 51.5 60.4 

C3D [219] RGB 59.5 59.6 56.6 64 59.5 60.8 71.7 60 69.5 53.5 67.1 50.4 61 

nCTE [221] RGB 55.6 60.6 56.7 62.5 61.9 60.4 69.9 56.1 70.3 54.9 71.7 54.1 61.2 

NKTM [169] RGB 60.1 61.3 57.1 65.1 61.6 66.8 70.6 59.5 73.2 59.3 72.5 54.5 63.5 

R-NKTM [37] RGB 64.9 67.7 61.2 68.4 64.9 70.1 73.6 66.5 73.6 60.8 75.5 61.2 67.4 

HPM(RGB+D)_Traj 
[166] 

RGBD 85.8 89.9 79.3 85.4 74.4 78 83.3 73 91.1 82.1 90.3 80.5 82.8 

HPM_TM+DT 

[135] 
RGBD 86.9 89.8 81.9 89.5 76.7 83.6 83.6 79 89.6 82.1 89.2 83.8 84.6 

HPM [36] Depth 58.61 69.92 65.42 73.11 61.33 69.98 61.02 63.18 61.19 61.47 73.99 64.31 65.29 

Motion Stream RGB 87.4 81.2 78.1 85.5 73.9 79.4 82.6 73.1 81.6 72.4 83.5 81.1 79.98 

STD stream Depth 62.1 73.5 69.6 79.6 65.4 75.9 64.3 69.5 66.3 69.8 78.6 68.8 70.2 

Proposed 

Hybrid 

Approach 

RGBD 

86.6 85.3 81.8 86.5 78.3 82.8 85.1 83.6 85.1 81.2 85.3 82.3 83.65 

73.2 78.8 75.4 81.3 79.9 81.4 79.4 77.3 79.4 80.9 84.1 84.2 79.6 

88.2 84.3 82.6 88.6 80.5 83.2 88.9 84.6 93.9 85.2 91.2 83.0 86.18 



Chapter 4: Deep Learning Models                    

92 

 

        

(a)                                                                                             (b) 

        

(c)                                                                                (d)   

         

                                                    (e)                                                                           (f) 

0

0.2

0.4

0.6

0.8

1

0 0.5 1

T
P

R

FPR

Late Fusion(AUC=0.998)

STD Stream(AUC=0.90)

Motion Stream(AUC=0.98)
0

0.2

0.4

0.6

0.8

1

0 0.5 1

T
P

R

FPR

Late Fusion(AUC=0.994)

STD Stream(AUC=0.973)

Motion Stream(AUC=0.960)

0

0.2

0.4

0.6

0.8

1

0 0.5 1

T
P

R

FPR

Late Fusion(AUC=0.972)

Motion Stream(AUC=0.920)

STD Stream (AUC=0.931) 0

0.2

0.4

0.6

0.8

1

0 0.5 1

T
P

R

FPR

Late Fusion(AUC=0.98)

STD stream(AUC=0.93)

Motion Stream(AUC=0.89)

0

0.2

0.4

0.6

0.8

1

0 0.5 1

T
P

R

FPR

Late Stream(AUC=0.96)

STD Fusion(AUC=0.89)

Motion Stream(AUC=0.92)
0

0.2

0.4

0.6

0.8

1

0 0.5 1

T
P

R

FPR

Late Fusion(AUC=0.99)
STD Stream(AUC=0.87)
Motion Stream(AUC=0.93)



             Chapter 4: Deep Learning Models 

93 

 

        

                                                  (g)                                                                              (h) 

Figure 4.7: Performance evaluation of the proposed framework for NUCLA multi-view dataset 

(a)-(c), UWA3D dataset (d)-(g) and NTU RGB-D Activity dataset (h) in terms of ROC curve and 

area under the curve (AUC) 

Table 4.7: Average Computation Speed (frame per sec: fps) 

 Method Training Testing 

NKTM [169] 12fps 16fps 

HOPC [217] 0.04fps 0.5fps 

HPM+TM [36] 22fps 25fps 

Ours 26fps 30 fps 

4.2 Part-wise Spatio-temporal Attention Driven CNN based 

3D Human Action Recognition 

There exist a wide range of intra-class variations of the same actions and inter-

class similarity among the actions, at the same time, which makes the action recognition 

in videos very challenging. In this section, a novel skeleton-based part-wise Spatio-

temporal CNN – RIAC Network-based 3D human action recognition framework is 

presented to visualize the action dynamics in part wise manner and utilize each part for 

action recognition by applying weighted late fusion mechanism. Part-wise skeleton-

based motion dynamics helps to highlight local features of the skeleton which is 

performed by partitioning the complete skeleton in five parts- Head to Spine (HS), Left 
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Leg (LL), Right Leg (RL), Left Hand (LH), Right Hand (RH). The RIAC-Net 

architecture is greatly inspired by the InceptionV4 architecture which unified the 

ResNet and Inception based Spatio-temporal feature representation concept and 

achieving the highest top-1 accuracy till date. To extract and learn salient features for 

action recognition, attention driven residues are used which enhance the performance 

of residual components for effective 3D skeleton-based Spatio-temporal action 

representation. The robustness of the proposed framework is evaluated by performing 

extensive experiments on three challenging datasets such as UT Kinect Action 3D, 

Florence 3D action Dataset, and MSR Daily Action3D datasets, which consistently 

demonstrate the superiority of our method. 

4.2.1 Proposed Approach  

 This section discusses about skeleton-based deep human action recognition 

framework. It describes the formation of Compact Action Skeleton Sequence formation 

and proposed RIAC-Net architecture design in detail which includes three main steps- 

formation of Spatial-Temporal Convolution Features (STCF), defining Attention 

Driven Residual Block (ADRB), and lastly learning part-wise RIAC-Net-based action 

features and to ensemble the predictions per part using weighted fusion scheme.   

4.2.1.1 Compact Action Skeleton Sequence (CASS) generation  

CASS is basically, a projection of each frame 3D coordinates of skeleton joints 

on the image frame which describes the spatial variation of the human skeleton pose 

during the action. The temporal details about the sequence of human poses are 

encrypted by using different colour coding for skeletons in such a way that colour of 
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the skeletons changes with time to exhibit the sequence of occurrence of frames. To 

exploit the discriminative local features of the actions, the generated CASS are further 

divided into five significant parts: 𝑖) head to spine (𝐻𝑆) 𝑖𝑖) left leg (𝐿𝐿) 𝑖𝑖𝑖) right leg 

(𝑅𝐿) 𝑖𝑣) left hand (𝐿𝐻) and 𝑣) right hand (𝑅𝐻). Therefore, CASS is defined for FS as 

well as for other five parts of the skeleton - {HS, RL, LL, RH, LH}.  

Let an action video has 𝑛 no. of frames {𝑓1, 𝑓2 …… . , 𝑓𝑛}, and each frame 

possess a human skeleton with 𝑘 no. of skeleton joints 𝑖. 𝑒. 

{(𝐽𝑥1, 𝐽𝑦1, 𝐽𝑧1), (𝐽𝑥2, 𝐽𝑦2, 𝐽𝑧2), . … . (𝐽𝑥𝑘, 𝐽𝑦𝑘 , 𝐽𝑧𝑘)}, 𝑘𝜖[1,20]. According to the 

configuration of skeleton joints in Figure 1, skeleton joints are partitioned in five groups 

as: 𝐻𝑆 = {𝐽4, 𝐽3, 𝐽2, 𝐽1},  𝐿𝐿 = {𝐽13, 𝐽14, 𝐽15, 𝐽16}, 𝑅𝐿 = {𝐽17, 𝐽18, 𝐽19, 𝐽20}, 𝐿𝐻 =

{𝐽5, 𝐽6, 𝐽7, 𝐽8}, 𝑅𝐻 = {𝐽9, 𝐽10, 𝐽11, 𝐽12}. To generate CASS, the variations in joint 

coordinates of each group are sketched, mathematically defined as Eq. (4.5): 

𝐶𝐴𝑆𝑆𝑝 = (
𝐽𝑘
𝑡 ⋯ 𝐽𝑘

𝑛

⋮ ⋱ ⋮
𝐽𝑘+4
𝑡 ⋯ 𝐽𝑘+4

𝑛
)                     (4.5)  

where  𝑘 is the first skeleton coordinate number of each group, 𝑝 is the partition label 

∃  𝑝𝜖(𝐻𝑆, 𝐿𝐿, 𝑅𝐿, 𝐿𝐻, 𝑅𝐻), n is the number of frames in the action video. From the 

sample images of part-wise CASSs, for two actions- waving hand and sitting down, of 

the Florence3D Action dataset, in Fig. 4.8, it is observed that a different amount of 

motion is associated with each part of the skeleton for an action resulting in unique 

patterns for each action. The part wise feature extraction and learning highlight the local 

dynamics of the skeleton. However, if the complete skeleton is processed to extract 

spatial deep features, the prominent movements in the action would be subsided. 
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Figure 4.8: (a) Configuration of skeleton joints - Head to Spine (HS) joints: Yellow, LH joints: 

Blue, RH joints: Brown, LL joints: Green, RL joints: Pink (b) Part wise CASS formation for two 

actions – ‘waving hand’ and ‘sitting down’ 

4.2.1.2   Skeleton based action recognition with RIAC-Net 

The training of Inception networks with residual connections has accelerated 

significantly, resulting in outperforming the similarly expensive inception networks 

without residual connections [17]. Therefore, to solve the problem of skeleton-based 

action recognition for large inter-class similarity Residual Inception Attention-based 

Convolution Network (RIAC-Net), Fig. 4.9, is designed which is majorly divided into 

two parts- ‘Spatial-Temporal Convolution Features’ (STCF) and ‘Attention Driven 

Residual Block’ (ADRB). 
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Figure 4.9: Proposed Residual Inception Attention-based Convolution Network (RIAC-Net) 

block diagram 

4.2.1.2.1   Spatial-Temporal Convolution Features (STCF) 

 Salient features in an image, generally, can have an extremely large variation 

in size i.e. covering a major section of the image or small section. Convolution helps to 

recover Spatio-temporal features only with the right selection of kernel size.  A large 

convolution kernel has a large receptive field that highlights the globally distributed 

information and a smaller convolution kernel is preferred for locally distributed 

information. Use of multiple sized kernels in convolution filters i.e. (1 × 1, 3 × 3,

5 × 5) is an efficient solution to select the appropriate kernel size for good convolution 
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features [228]. 

Table 4.8: Description of RIAC-Net –STCF Block Architecture Parameters 

RIAC-Net 

Branches No. of filters 
Kernel 

size/stride 

Input size 

(𝑊𝐼 × 𝐻𝐼 × 𝐷𝐼) 

Output size 

(𝑊𝑂 × 𝐻𝑂 × 𝐷𝑂) 

Branch 1 Conv, 64 (1 × 1)/2 (224 × 224 × 3) (112 × 112 × 64) 

Branch 2 
Conv, 32 (1 × 1)/1 (224 × 224 × 64) (224 × 224 × 32) 

Conv, 64 (3 × 3)/2 (224 × 224 × 32) (112 × 112 × 64) 

Branch 3 

Conv, 128 (1 × 1)/1 (224 × 224 × 3) (224 × 224 × 128) 

Conv, 64 (3 × 3)/1 (224 × 224 × 128) (224 × 224 × 64) 

Conv, 64 (3 × 3)/2 (224 × 224 × 64) (112 × 112 × 64) 

Branch 4 
𝑀𝑎𝑥𝑝𝑜𝑜𝑙 (2 × 2)/1 (224 × 224 × 3) (112 × 112 × 3) 

Conv, 64 (1 × 1)/1 (112 × 112 × 3) (112 × 112 × 64) 

It essentially widens the network size and also computationally less expensive than 

deeper networks. It is the basic concept behind building the inception blocks [228] that 

targeted large size variations of spatial features. The convolution filters are made 

computationally more efficient by factorising (5 × 5) filters with two (3 × 3) filters in 

STCF. Description of the parameters of STCF block is provided in Table 4.8. It can be 

notified that equal-sized features (𝑊(112) × 𝐻(112) × 𝐷(64)) are generated from all 

four branches of STCF block. And the final STCF feature vector is obtained by stacking 

STCF branch wise convolution features as 𝑆𝑇𝐶𝐹𝐹𝑉 = {𝑆𝑇𝐶𝐹𝑉𝐹𝑉𝑖}, where 𝑖𝜖[1,4] and 

each branch vector is constructed with dimension (𝑊𝑖 × 𝐻𝑖 × 𝐷𝑖) = (112 × 112 ×

64) that results in 𝑆𝑇𝐶𝐹𝐹𝑉 with [448 × 448 × 64] dimesion. 

4.2.1.2.2   Attention Driven Residual Block (ADRB) 

The key structure of residual units allows input to the unit to propagate from 

first layer to the last layer of the network directly and gradients to propagate from the 

loss layer to any previous layer by skipping the midway weight layers during 

backpropagation, which helps to handle the vanishing gradient problem to a great 

extent. Hence, the idea of residuals [229] proliferated the performance of deep networks 
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by adding the identity function. The effect can be further enhanced by adding salient 

features instead of the identity function directly. It is implemented by using Attention 

Driven Residual Block (ADRB), shown in Fig. 4.10 (a) and (b), where the attention 

block [230] tends to extract a spatial attention map by utilizing the inter-spatial 

relationship of features. The residual 

 

Figure 4.10: Illustration of Attention Driven Residual Block architecture (a) Basic Residual 

Block (b) Attention Driven Residual Block (c) Attention block 

units are defined as follows: 

𝑦 = 𝜎1(𝑥 + ℱ(𝑥;𝒲))                         (4.6)  

where 𝑥 and 𝑦 are the input and output of the RIAC-Net architecture, 𝜎1(. ) ≡  ReLU 

[231], and ℱ is a non-linear residual mapping function for input 𝑥 which is formulated 

as follows: 

ℱ(𝑥;𝒲) = 𝑆𝑇𝐶𝐹𝐹𝑉(𝑥;𝒲𝑘)                 (4.7) 

where is 𝒲 = {𝒲𝑘, 4 ≤ 𝑘 ≤ 1} for each convolution branch of STCF block. The 

residual unit is modified as 

 𝑦′ = 𝜎1(Ψ(𝑥) + ℱ(𝑥;𝒲))                (4.8) 
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And  Ψ(𝑥) = 𝑥 ∗ 𝜎2{𝑓
1×1{𝜎1[𝑓

7×7(𝑥) + 𝑓1×1(Λ(𝑥))]}}, Ψ𝜖ℝ𝑊×𝐻            (4.9) 

where 𝜎1is a ReLU function and 𝜎2 is a sigmoid function, 𝑓1×1(. ), 𝑓7×7(. )  are non- 

linear convolution layers with 1 × 1 and 7× 7 kernel sizes and Λ(. ) is a 2D max-pool 

layer with 2 × 2 kernel size. The ‘*’ and ‘+’ are multiplicative [232] and additive [233] 

attention operator.  To extract salient features additive attention method performs better 

for large dimensional input features [234] whereas the multiplicative attention method 

holds fast computations and also memory-efficient due to the matrix multiplication. 

Therefore, at the input stage additive attention operator is applied to handle larger input 

dimension than the later one, as shown in Fig. 4.10 (c).  

 
Figure 4.11: Illustration of Residue and Attention driven residue activation maps (8×8) for 

complete CASS of an action (a) whole Skelton of CASS, (b) and (e) residue activation maps, (c) 

and (f) attention driven residue activation map (d) left leg (LL) C 

(a) 
(b) (c) 
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The two different sized kernels in the convolution layer 𝑓  𝑘×𝑘 cover the features 

on the coarse spatial grid level and finer grid level which collectively helps to identify 

relevant features and disambiguate the task irrelevant features in  𝑥. Sample images of 

the residue and attention driven residue activation maps of the action, for complete 

CASS and part wise CASS, are shown in Fig. 4.11. It is clearly observed that the residue 

branch extracts noisy data whereas attention driven residue branch highlight the salient 

information about the action resulting in improved recognition performance. 

4.2.1.2.3  Learning of part-wise RIAC-Net-based action descriptors 

Late fusion approach works better than the early fusion scheme [235] at the 

cost of additional learning attempts. Therefore, RIAC-Net-based action descriptor is 

designed and learnt for each part-wise CASS, individually, using the combination of 

global average pooling(GAP), batch normalisation (BN), Long Short Term Memory 

(LSTM) layers, dropout layer with 0.2 dropout probability and dense layer.  The final 

prediction is given by fusing the learnt part-wise CASS based predictions using 

weighted fusion scheme, as shown in Fig. 4.12. The best recognition performance for a 

specific weight combination i.e. {𝑤𝑖}∃𝑖 ∈ [1,5], is reported finally. To learn the unique 

patterns of the part wise RIAC-Net based action features two consecutive LSTM layers 

are used in such a way that output gate 𝒉𝒕
𝟐of former LSTM layer is fed to the input gate 

𝒊𝒕
𝟐of later LSTM layer. Let 𝑥𝑡

𝑖
 
, ℎ𝑡

𝑖
 
, and  𝐶𝑡

𝑖
 
be input, output and cell state of  the 

𝑖𝑡ℎ LSTM layer, at instance 𝑡 respectively. The sequence of flow of the signal from first 

LSTM layer to second LSTM layer is given by from Eq. (4.10) to (4.13) as follows: 

ℎ𝑡
1 = 𝜎(𝑊0

1
 
∗ [ℎ𝑡−1

1 , 𝑥𝑡
1]+𝑏𝑜) ∗ tanh (𝐶𝑡

1)           (4.10) 
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𝐶𝑡
1 = 𝐶𝑡−1

1 ∗ 𝑓𝑡
1 + 𝐶𝑡

1̂ ∗ 𝑖𝑡
1              (4.11) 

𝑥𝑡
2 = ℎ𝑡

1 𝑎𝑛𝑑 ℎ𝑡
2 = 𝜎(𝑊0

2
 
∗ [ℎ𝑡−1

2 , 𝑥𝑡
2]+𝑏𝑜) ∗ tanh (𝐶𝑡

2)           (4.12) 

𝐶𝑡
2 = 𝐶𝑡−1

2 ∗ 𝑓𝑡
2 + 𝐶𝑡

2̂ ∗ 𝑖𝑡
2                  (4.13) 

where 𝜎 is the sigmoid operation,  𝑊0
𝑖 is the weights of the output gate of the 𝑖𝑡ℎ LSTM 

layer, cell state 𝐶𝑡
𝑖of the 𝑖𝑡ℎ layer is computed using both forget gate output as 𝑓𝑡

𝑖 and 

input gate output as 𝑖𝑡
𝑡. 𝐶𝑡

𝑖̂ control the amount of update required to current cell state 𝐶𝑡
𝑖, 

according to the input 𝑥𝑡
𝑖 passed through input gate, 𝑖𝑡

𝑖. The learnt vector ℎ𝑡
2 with 

 
Figure 4.12: Description of proposed Part-wise Spatiotemporal and Attention Driven Residues 

based Learning for skeleton human action recognition 

[1 × 128] dimension is fed to dropout layer to handle the overfitting problem followed 

by a dense layer and Softmax activation function. Predictions from each part-wise 

branch are fused using weighted fusion that utilises all possible combination of weights 

𝑤𝑖 to find the best set of weights, as shown follows: 

𝑃𝑐 = ∑ 𝑤𝑖 × 𝑝𝑖
5
𝑖=1 , 𝑐 ∈ (1, 𝑛)             (4.14)   

where n is the number of classes. 
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4.2.2 Experimental work and Results 

The proposed framework is evaluated for three publically available 3D datasets- 

UT Kinect Action 3D and Florence 3D actions Dataset and MSR Daily Action3D 

datasets. 

4.2.2.1   UT Kinect Action 3D dataset   

UT Kinect Action 3D dataset [236] includes 10 human actions captured in 

indoor settings with single stationary Microsoft Kinect camera. The dataset includes an 

RGB image with 640×480 resolution, depth image with 320×240 and twenty 3D joints 

of a human skeleton per frame captured at 30 FPS. These actions are performed by 9 

males and 1 female actor, each repeated two times, as shown in Fig. 4.13(a). Hence, it 

consists of a total of 200 (10×10×2) action samples with 6220 frames. The challenge 

lies in the fact that there exist viewpoint variations and high intra-class variations. The 

length of the sample actions ranges from 5 frames to 120 frames. Therefore, in the 

proposed work the number of frames for each action sample is made equal to 60 frames, 

before generating CASS representation of the action. It is performed by down-sampling 

the frames of the actions which possess more than 60 frames. And up-sampling is 

applied to the actions which possess less than 60 frames to maintain a symmetricity in 

the CASS generated using action frames. The sample RGB images are shown in Fig. 

4.13(a) below. We use the skeleton representation of human actions for human action 

recognition. 
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4.2.2.2   Florence 3D Action dataset 

Florence 3D Action dataset [237] dataset includes 9 actions performed by 10 

actors as shown in Fig 4.13(b). It possesses total 215 skeleton action sequences captured 

by Microsoft Kinect SDK. The main challenges of this dataset are high inter class 

similarity and small intra class similarity among actions, the human object interaction. 

4.2.2.3 MSR Action 3D Dataset 

The MSR Action 3D dataset [238] consists of 20 actions, each performed by 

10 subjects for three times. The dataset is divided into 3 subsets AS1, AS2, AS3 each 

include 8 actions, as shown in Table 4.9. It includes total 567 skeleton sequences. 

However, skeletons for 10 sequences are missing. Therefore, 557 action sequences are 

used for experimentation. Cross-subject evaluation protocol is used for 

experimentation. According to which, half of the dataset with 1, 3, 5, 7 and 9 subject 

ids, is used for training and another half of the dataset with 2, 4, 6, 8, 10 subject ids is 

used for testing for each action set-AS1, AS2, AS3. 

 

 

Figure 4.13: Sample frames of (a) UT-Kinect Action 3D Dataset (b) Florence Action 3D dataset 
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Data augmentation: Deep neural networks demand a large amount of training data to 

perform efficiently. We have only 557,428, and 200 skeleton sequences, for MSR 

Action 3D dataset, Florence 3D Action dataset and UT Kinect Action 3D Dataset. Data 

augmentation helps to reduce the overfitting effect, before processing the data. It 

includes cropping, horizontal and vertical flip, rotation at 450 and −450. 

Parameter settings: The RIAC-Net architecture is defined and implemented on Python 

with Keras framework using the Tensor-Flow backend. We used mini-batches of 256 

images, and Adam optimizer with default parameters, β1 = 0.9 and β2 = 0.999, during 

training. The initial learning rate is set to 0.001 and is decreased by a factor of 0.02 after 

every 20 epochs. The network is trained for each set of part wise input (HS, LH, RH, 

LL, RL), for 1000 epochs from scratch. To handle the overfitting in the training phase, 

we adopted weight noise and early stopping [239] along with drop-out strategy.  

Table 4.9: List of action classes in three action subsets of MSR Action 3D Dataset 

AS1 
Horizontal 

arm wave 
Hammer 

Forward 

punch 

High 

Throw 

Hand 

clap 
Bend 

Tennis 

serve 

Pick up 

and 

throw 

 AS2 
Horizontal 

arm wave 

Hand 

catch 

 

Draw X 

 

Draw 

Tick 

 

Draw 

Circle 

 

Two 

hand 

wave 

Forward 

kick 

Side 

boxing 

AS3 
High 

throw 

Forward 

kick 

Side 

kick 
Jogging 

Tennis 

Swing 

Tennis 

Serve 

Golf 

Swing 

Pick up 

and 

Throw 

 

The experimental results on UT Kinect 3D Action dataset, Florence 3D Action 

dataset and MSR Action 3D dataset are reported in Table 4.10, 4.11 and 4.12 

respectively.  The weights 𝑤𝑖, 𝑖𝜖(1,5) corresponding with the best test accuracy 

achieved are also provided in tables. The Validation loss curves for UT Kinect 3D 

Action dataset, Florence 3D Action dataset and MSR Action 3D dataset are shown in 

Fig. 4.14 (a), (b), and (c)-(e), respectively. The Validation losses gradually decrease 
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with the epochs, which confirms the adequate learning of the models for each part. 

Receiver output Characteristic (ROC) curve plotted between True Positive Rate (TPR) 

and False Positive Rate (FPR), in Fig. 4.15 (a) and (b), also support the fact that 

weighted fusion of part-wise skeleton RIAC-Net features turned out better action 

representation than Full skeletons (FS) for UT Kinect 3D Action dataset, Florence 3D 

Action dataset and MSR Action 3D dataset. Area Under the Curve (AUC), i.e.  𝐴𝑈𝐶 ∈

(0,1), is also computed for each method. The highest AUC values 1.00, 0.97, 

(0.97,0.99, and 1.00) are obtained for weighted average late fusion strategy over FS and 

part-wise (HS, LL, LH, RH, RL) skeleton based approaches for UT Kinect 3D Action 

dataset, Florence 3D Action dataset, MSR Action 3D dataset - AS1, AS2, AS3 action 

subsets respectively. The achieved accuracy of the proposed work is compared with the 

other-state-of-arts for UT Kinect 3D Action dataset, Florence 3D Action dataset and 

MSR Action 3D dataset in Table 4.13, 4.14, and 4.15. The obtained results outperforms 

many previous studies [240]- [146], [241] - [242]. The proposed work achieved 100% 

recognition accuracy for UT Kinect 3D Action dataset using Leave-One-Out Cross 

Validation (LOOCV) scheme. The weighted classification confusion matrix of the UT 

Kinect 3D action dataset is shown in Fig. 4.16 (a). From where it is clearly evident that 

each action is recognized correctly without any misclassification irrespective of the 

presence of high intra class variations and view variations. The obtained result 

outperforms many previous studies Lie groups [240] , LRCNLG [146] , Grassmann 

Manifold [243], TS-LSTM [244] which tried to learn geometrical 3D features of human 

actions using Lie groups, Grassmann Manifold and temporal sliding LSTMs 

respectively. 

The proposed work achieved 98.33% recognition accuracy on Florence 3D 
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Action dataset, which is 2.96% higher than LRCNLG [146] that integrated Lie groups 

with deep neural networks to learn the geometrical 3D features. The confusion matrix 

for Florence 3D action dataset is shown in Fig. 4.16 (b) which shows that very good 

recognition accuracy is obtained for most of the actions. However, there exist some 

confusion between similar actions such as ‘Answer Phone’, ‘drink from bottle’, and 

‘high arm wave’, ‘stand up’ and ‘sit down’. We have achieved 98.05% fairly a high 

recognition accuracy on MSR action 3D dataset which outperformed previous works 

[245] [149]. However, Pham et al. [242] achieved 99.90% accuracy which utilised deep 

 

 

Figure 4.14: Illustration of Part-Wise (RL, RH, LL, LH, HS) and full skeleton (FS) based 

validation loss curves for (a) UT Kinect 3D Action Dataset, (b) Florence 3D Action dataset, (c)-(e) 

MSR Action 3D dataset AS1, AS2, and AS3 

ResNets to process skeleton data for human action recognition. Some skeleton based 

methods [149] [245] used pairwise distances between skeleton joints . However, our 

results obtained on MSR action 3-D dataset show that part wise analysis of whole 

skeletons followed by late fusion approach is more discriminative approach than taking 
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into consideration the joints separately. 

The Classification result for each action subset of the MSR-Action3D dataset 

are shown in Fig. 4.16 (c), (d), and (e). It is noticed that misclassification occurs only 

for the actions with high inter class similarity such as ‘draw tick’ and ‘draw 𝑋’, ‘Pickup 

and Throw’ and ‘Bend’.  Whereas “Forward Kick” and “Tennis Serve” actions which 

share a large overlap in the sequences, are more challenging to distinguish the two 

actions in AS3 set. 
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Figure 4.15: ROC Curves of (a) UT Kinect 3D dataset (b) Florence Action 3D dataset (c)-(e) MSR 

Action 3D dataset: AS1, AS2, AS3 

The proposed framework handled this inter class similarity between the two actions and 

recognized ‘Forward Kick’ and ‘Tennis Serve’ with 100% accuracy. 

Table 4.10: Performance of the proposed framework for UT Kinect dataset 

        Parts / 

Parameters 
FS HS LL RL LH RH Weighted Fusion 

Training 

Loss 
0.2836 0.4480 0.4697 0.3209 0.3164 0.3801 

𝑊𝐻𝑆, 𝑊𝐿𝐿, 𝑊𝑅𝐿 , 𝑊𝐿𝐻, 𝑊𝑅𝐻 

{2,3,4,4,5} 
Training 

Accuracy 
99.96 92.94 92.94 97.65 97.13 95.92 

Test 

accuracy 
97.71 97.49 97.49 96.45 95.94 96.48 100.00 

 
Table 4.11: Performance of the proposed framework for Florence 3D Action Dataset 

      Parts / 

Parameters 
FS HS LL RL LH RH Weighted Fusion 

Training Loss 0.1221 0.370 0.0279 0.0630 0.0868 0.0127 

𝑾𝑯𝑺, 𝑾𝑳𝑳, 𝑾𝑹𝑳, 𝑾𝑳𝑯,

 𝑾𝑹𝑯 {3,4,2,3,2} 
Training 

Accuracy 
100.00 100.0 100.0 99.69 96.65 100.0 

Test accuracy 95.89 100.00 92.47 95.89 92.63 91.85 98.33 
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Figure 4.16: Confusion Matrix of the a) UT Kinect Dataset, b) Florence Action 3D dataset and 

MSR action 3D dataset c) AS1, d) AS2 and e) AS3 sets. Where H_A_W: Horizontal Arm Wave 

and High_A_W: High Arm Wave 

(a) (b) 

(c) 
(d) 

(e) 
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Table 4.12: Performance (%) of the proposed framework for MSR Action 3D Dataset under 

cross-subject evaluation strategy 

Dataset 

subsets 
FS HS LL RL LH RH 

Weighted Fusion 

Accuracy 

𝑊𝐻𝑆, 𝑊𝐿𝐿, 𝑊𝑅𝐿 , 𝑊𝐿𝐻, 𝑊𝑅𝐻  

AS1  94.8 96 95 98.7 96 90 96.7 { 2,3,3,3,3 } 

AS2 93.3 97.33 100.00 99.5 96.44 93.3 98.6 { 1,5,4,1,5 }  

AS3 96.5 100 98.2 100 97.3 
95.4 

99.9  { 2,4,1,1,3 } 

Overall  94.8 97.77 96.84 99.39 96.58 
92.9 

98.40 

Table 4.13: A comparison of the proposed framework with other state-of-the-arts for UT Kinect 

Action Dataset 

Method 
Learning Model 

Protocol 
Accuracy 

(%) 

Feature Combination [246] K-NN LOOCV 98 

ST-LSTM+Trust Gate 

[136] 

Hierarchal RNN 
LOOCV 97 

Grassmann Manifold [243] LTBSVM LOOCV 88.5 

Geometric Features [247] 

Multi-layer LSTM 

cross validation 95.96 

TS-LSTM [244] 
Ensemble Temporal 

sliding LSTM 
cross validation 96.97 

Lie groups [240] 
SVM One vs all cross 

validation 
97.08 

Kernel Linearization [248] 
SVM 

cross validation 98.2 

LRCNLG [146] 
LSTM 

LOCCV 98.5 

Proposed work 
LSTM layers 

LOOCV 100.00 

Table 4.14: A comparison of the proposed framework with other state-of-the-arts for Florence 

3D Action Dataset 

Method Learning Model Protocol Accuracy (%) 

Lie groups [240] SVM One vs all Cross validation 90.88 

Kernel Linearization [248] SVM Cross validation 95.23 

Riemannian Manifold [249] K-NN LOOCV 87.04 

Mining key pose [250] Inference Algorithm LOOCV 92.25 

Feature combination [246] K-NN LOOCV 94.39 

LRCNLG [146] LSTM LOOCV 95.37 

Proposed work  LSTM layers LOOCV 98.33 
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Table 4.15: A comparison of the proposed framework with other state-of-the-arts for MSR 

Action 3D Dataset cross subject evaluation 

Method  Learning Model AS1 AS2 AS3 Accuracy (%) 

HBRNN-L [241] Hierarchical RNN 93.33 94.64 95.50 94.49 

ST-NBNN [149] 
Naive-Bayes 

Nearest-Neighbor 
91.50 95.60 97.30 94.80 

DMM-LBP-DF [251] K-ELM 98.10 92.00 94.60 94.90 

VBDDM [125]  ProCRC 99.10  92.30  98.20  96.50 

Mean3DJ [252] Random Forest - - - 82.68 

Lie group-MinP-PrefixSpan 

[253] 
SVM - - - 97.4 

SPMFs [245] D-CNN 97.06 99.00 98.09 98.05 

ResNet-44 [242] D-CNN 99.90  99.80 100 99.90 

Proposed method LSTM layers 95.70 98.60 99.90 98.06 

4.3 Significant Outcomes 

The outcomes of this chapter are two folds. Firstly, this chapter addresses the 

problem view variations in action sequences and secondly the high inter class similarity 

and intra class variations of the action which drastically effect the performance of the 

automatic human action identification in videos. The experimental results demonstrate 

some stimulating observations, which are as follows: 

▪ Fusion of multiple features leads to a richer action representation than one 

feature. Both the proposed deep models for action identification fuses multiple 

cues that resulted in a highly discriminating action representation which 

outperforms other existing state-of-the-arts as shown in Table 4.4, 4.5, 4.6, 4.13, 

4.14, and 4.15. 

▪ Late fusion generates richer information, however, it demands extensive 

learning of the deep model for individual features. Transfer learning based 

feature extraction reduces the computational cost to a great extent. 

▪ It is interestingly observed that RIAC-Net based part wise attention driven CNN 
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features (local features) weighted fusion result in better action identification 

than the global features for the complete skeletons. 

▪ Instead of processing each frame of the action, sequence of frames of an action 

are represented as Compact Action Skeleton Sequence (CASS) which preserves 

the temporal skeleton joints’ details and leads to lesser computations.  

This chapter is based on the following works: 

▪ C. Dhiman, D.K. Vishwakarma, "View-invariant Deep Architecture for 

Human Action Recognition using late fusion", arXiv preprint [online]  

https://arxiv.org/abs/1912.03632v1, 2019.  

▪ C. Dhiman, D. K. Vishwakarma, P. Aggarwal, “Skeleton based Activity 

Recognition by Fusing Part-wise Spatio-temporal and Attention Driven 

Residues”. arXiv preprint [online]  https://arxiv.org/abs/1912.00576v1, 2019. 

http://10.0.4.85/JSEN.2019.2903645
https://arxiv.org/abs/1912.03632v1
https://arxiv.org/abs/1912.00576v1
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CHAPTER 5  

CONCLUSIONS & FUTURE SCOPE 

This chapter highlights the conclusion drawn from this study on the basis of theoretical 

or experimental contributions made, and the details of future research directions as well 

as the social and technological impact of the work. 

5.1 Conclusions 

Four major approaches of the human action identification based on traditional 

handcrafted features and deep features are presented and these approaches are as 

follows:  

▪ An abnormal human action identification approach is presented to monitor the 

daily life actions of elderly people to recognise the abnormal action. The 

proposed framework encrypts an action in terms of AESI image which is rich 

in the spatio-temporal details and introduce less computational cost. AESI are 

processed using 𝓡-transform and Zernike moments that introduces 

translational, scale and rotation invariance with appreciable inter-class 

separation ability. Henceforth, a complete geometrical transformation invariant 

feature is obtained with less noise sensitivity. Efficiency of the presented work 

is validated by using three publically available 3D datasets and our own created 

dataset. The average recognition accuracy achieved on these datasets are 96.5%, 

96.64%, 95.9% and 86.4% on UR fall detection dataset, KARD dataset and new 

AbHA dataset and multi-view NUCLA dataset, respectively. However, the 
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inter-class similarity between fainting and falling forward needs to be reduced 

in AbHA dataset. 

▪ An efficient and robust HAR framework is proposed by unifying the Spatial 

Distribution Gradients (SDGs) and Difference of Gaussian (DoG) based Spatio-

temporal interest points (STIP). To handle the illumination variations and 

recording conditions entropy based texture segmentation is used to extract 

human silhouette. Spatial Distribution Gradients provide global shape 

description, which is computed on AEI. AEI represent the entire video sequence 

temporal and spatial shape variations of the object in a single frame diminishing 

data storage and computational complexity problems. SDGs is strengthened by 

scale, rotation, translation and view-invariant property of local STIPs. Which is 

one of the key reason of obtaining a robust and noise free action modelling and 

modelling handling view variations efficiently with 95.62% and 89.18% ARA 

for Ballet and multi-view IXMAS dataset. A codebook of Spatio-temporal 

interest points is generated per frame for each video sequence and vector 

quantised code-words are finally used to represent the video sequences. The 

designed structure for action description is simple yet effective, in terms of time 

of computation, as observed in Table 3.13, and practical challenge handling 

capacity.   

▪ A novel two stream RGBD deep framework is proposed that exploits view-

invariant characteristics of depth stream and RGB stream. It processes the RGB 

based motion stream and depth based STD stream independently to exploit the 
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individual modalities without any influence of each other. Motion stream 

captures the motion details of the action in the form of RGB-Dynamic images 

(RGB-DIs) which are processed with fine-tuned InceptionV3 deep network. 

STD stream captures the view-invariant temporal dynamics of depth frames of 

key poses using HPM [36] model followed by sequence of Bi-LSTM and LSTM 

layers that helped to learn long-term view-invariant shape dynamics of the 

actions. Structural Similarity Index Matrix (SSIM) based key pose extraction 

helps to inspect only major shape variations during the action reducing the 

redundant frames having minor shape changes. The late fusion of scores of the 

motion stream and STD stream helps to make prediction about the action label 

of the test action sequence. The performance of the framework is validated on 

three publically available multi-view datasets-NUCLA multi-view dataset, 

UWA3D II Activity dataset, and NTU RGB-D Activity dataset using cross view 

and cross-subject cross-validation scheme. The ROC representation of the 

recognition performance of the proposed framework for each test view exhibits 

the improved AUC for late fusion over motion and STD streams individually. 

It is also, noticed that the recognition accuracy of the framework is consistent 

for different views that confirms the view-invariant characteristics of the 

framework. In the last, comparisons with other state-of-the-arts are outlined for 

the proposed deep architecture proving the superiority of the framework in 

terms of time efficiency and accuracy both. 

▪ An effective skeleton based part-wise spatio-temporal CNN – RIAC Network 
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based 3D human action recognition framework is proposed. It models the 

dynamics of the action by splitting the skeletons into five parts- Head to Spine 

(HS), Left Leg (LL), Right Leg (RL), Left Hand (LH), Right Hand (RH). Each 

part of the skeleton behaves differently for every action which is encrypted 

using RIAC-Net network which helps to highlight local dynamics {LL, LH, RH, 

RL, HS} of the action, that proved superior representation than the global action 

dynamics {FS} of the skeleton. The architecture of the RAIC-Net is designed 

using the concept of attention based residues and inception blocks. The final 

action class scores are generated by weighted (decision level) fusion of deep 

features. The empirical results and the analysis of the performance of our 

proposed approach exhibit promising results with high accuracies 100%, 

98.03%, and 98.7% on UT Kinect Action 3D and Florence 3D actions Dataset 

and MSR Daily Action3D datasets. Obtained results show that weighted fusion 

of part wise skeleton action dynamics’ learning performs better than FS based 

action recognition. It is also observed that the proposed model is able to handle 

the intra class variations and inter class similarity among the actions quite 

decently. 

 

5.2 Future Research Scope 

▪ The proposed algorithm targeting the abnormal human action identification in 

video sequences worked satisfactorily with very small computation time. In 

future, the algorithm can be transformed into real-time normal/abnormal action 
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identification solution to serve healthcare applications systems for elderly care 

at home. 

▪ The SDG-STIP based hybrid feature vector endows promising results but for 

multi-textured or in complex textured scenes or cluttered background, a simple 

entropy based texture segmentation approach may not work that efficiently for 

silhouette segmentation. Therefore, the silhouette extraction approach needs to 

be tuned for cluttered background, multi-textured images and occlusion.  

▪ 3D shape analysis of actions can describe the variations in shape geometry of 

the person more clearly, in comparison to 2D model. Therefore, in the future 

work, SDG descriptor can be applied on 3D shape models instead of 2D AESI 

images for better shape description.  

▪ To design a feature vector, codebook is formed using pixel values of the 

identified DoG based STIPs. However, codebook can be made more effective 

by introducing STIPs trajectory information.  

▪ A two stream RGBD deep framework performed robustly against view-

variations using depth and RGB data. The actual benefit of the framework lies 

in real time application of the design, which demands lesser storage capacity 

and computation time for fast identification at application side. Therefore, the 

predefined inceptionV3 model used for feature extraction from DIs can be 

replaced by MobileNet or squeezeNet by maintaining an acceptable trade-off 

between identification performance and number of parameters required. 
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▪ The part-wise spatio-temporal attention driven CNN based 3D human action 

identification framework, utilized only skeletons to develop spatio-temporal 

features of human poses during the action. Since, depth frames provide richer 

spatial information of the shapes, integration of both depth and skeleton based 

human pose representations can be fruitful to develop better and richer action 

description in order to handle the view variations and occlusion.  

5.3 Future Applications 

In the future, by utilizing these approaches, one can develop a variety of real 

life application systems such as: 

▪ Monitoring of public places such as like shopping malls, railways stations, bus 

stand, parking area is at utmost priority to identify occurrence of any abnormal 

event due to increase in criminal activities in society.  Efficiency of manual 

monitoring of the area under surveillance, for long hours, decreases with time. 

Therefore, an automatic surveillance system must be defined which can 

identify the abnormal actions and generate alarm for the action required 

against it. 

▪ Nuclear family concept is dominating in urban cities, where the elderly people 

have to stay alone. In this situation, the health of the elderly people is a serious 

concern. Because to appoint an assistant in routine with the elder person is not 

affordable by all. Therefore, keeping in view this fact, a real time efficient 
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human action identification system can play an important role in taking care of 

health of the elderly people which can detect and notify the occurrence of any 

abnormal event with the person at home to the close relatives and nearby 

hospital for necessary action. 

▪ The concept of automatic human actions identification in videos has recently 

been used to develop a Virtual Exercise Rehabilitation Assistant-VERA which 

assists the individuals or athletes to measure the efficiency of the exercise done 

during one session and suggest the correct set of exercise postures/techniques 

e.g. golf swing, cricket swing etc. Therefore, this field of automatic human 

action identification is finding new dimension of applications. 

▪ Sports analysis is another important application where automatic human action 

identification can be used to make unbiased decision about the players which 

can reduce the incidences of objections raised on umpire’s decisions. 

▪ In order to increase the safety and security at home or offices, deployment of an 

automatic intrusion detection system can be of great help. 
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