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ABSTRACT 

In recent years, price prediction for cryptocurrency has gained so much attention as there 

are a lot of investors, spectators and consumers in the market and are interested to know 

where to spend their money for profitable trades. Cryptocurrency is attracting customer 

in reshaping the finance structure because of its fame and acceptance. Bitcoin is the most 

popular and transparent cryptocurrency over the internet. Due to the rapid fluctuation in 

bitcoin prices, uncertainty, dynamic features, etc. there comes a need to predict its price 

as it varies rapidly in short interval of time. Many deep learning model has been 

implemented for price prediction but attention mechanism is proved to be more efficient 

and has sought focus in recent years. The aim of our work is to develop a trained and 

efficient machine model which can predict bitcoin price if we input huge amount of data 

with a good computational time and power. In our study, we proposed transformer 

architecture which implements attention layer. Our dataset contains features which are 

related to bitcoin price and has data of over ten years recorded daily. Features in the 

dataset are dependent on each other which can affect the price level for the upcoming 

time. The architecture is used with two types of deep learning models which are LSTM 

and GRU. Both these model are used as LSTM-with-attention and GRU-with-attention. 

Finally, we compared both these models on the basis of four error metrics which are mean 

absolute error (MAE), mean square error (RMSE), maximum error (ME), and root mean 

squared error (RMSE). After comparing results, it has been observed that the transformer 

model GRU-with-attention gives less error rate i.e. better estimation than LSTM-with-

attention. The results obtained might have inferences on implementation of more complex 

time series problems with deep neural networks. 
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CHAPTER 1 INTRODUCTION 

1.1 BLOCKCHAIN AND CRYPTOCURRENCY 

Blockchain is an immutable, transparent, public ledger that is distributed among the nodes 

in the network. It is a decentralized system in which transactions run on untrusted devices. 

It is like a chain of nodes which are connected through hash values. If any of the block in 

the chain is hacked or interrupted, the whole chain after that block becomes invalid and 

is informed to the whole network of the peers. Cryptocurrency is a blockchain platform 

which is critically used for confirmation of the transactions. Various consensus 

algorithms are used for making transactions valid among the peers in the network.   

1.1.1 Blockchain Architecture 

Blockchain is an immutable and distributed system. It keeps a record of all transactions 

and this record is referred to as ‘ledger’. It is a common ledger of data exchanges or 

transactions which is shared among all the participants in the network. Blocks in these 

systems are made up of transactions. A block can refer to its previous block using a hash 

value [2]. The transactions among the peers are verified by the participating nodes in the 

network. Once verified and signed, the block is added to the chain and it cannot be altered. 

Blockchains ensure reliable transfer of data in a decentralized way with third party 

involvement. [5]. 

The blocks are arranged in a chronological order. The first block in the chain is referred 

to as genesis block and does not has a parent block [1]. Basically, a block consist of the 

block header, hash value of its previous and current block, transaction counter, timestamp 

and merkle root as shown in figure 1. Hash is a one-way function that takes input of any 

size and the resultant output is of fixed length [4]. A transaction is started by a node and 

is digitally signed by its private key. A block is created which represents these 

transactions. This block is now shared with every node in the network. A group of nodes 

is assigned to validate the block and in return, they receive the reward for the Proof of 

Work. This validated block is added to the existing blockchain. All the processes are done 

based on a set of rules which are known as the consensus protocol. Depending on the type 

of blockchain implementation (permissioned or permissionless), the consensus is applied. 
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Figure 1. 1 Blockchain Framework 

Broadly, blockchain are classified into three categories. They are public, consortium and 

fully private blockchain [3]. A public blockchain is permissionless blockchain whereas 

consortium and fully private blockchain come under the category of permissioned 

blockchain. In a public blockchain system, no centralized party is there. Everyone in 

public blockchain possesses equal power and has the right to validate the transaction. 

Anyone can join or leave the system according to their wish as these blockchains are open 

for all. The best and well-known example of a public blockchain is Bitcoin. In consortium 

blockchain, not everyone holds the power to validate transactions. Only a few people 

have the privilege to validate. The rest of the people can validate but they have to agree 

on consensus first before implementation. The fully private blockchain is a little bit 

different from them. They have a centralized structure. The system runs based on the 

consensus proposed by the centralized head. The head possesses the power to make all 

decisions and controls the whole validation process. Compared to permissionless 
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blockchains, permissioned blockchains are faster, easy to implement and more energy 

efficient. 

1.1.2 Blockchain Applications 

The decentralized and verifiable nature of blockchain results in many applications. 

Blockchains are implemented in various industrial, business and research areas. Major 

applications of blockchain include Internet of Things (IoT), Big Data, Identity 

Management, Smart Contracts, Identity Management, Supply Chains, Medical 

Informatics, Cloud and Edge Computing, Communication and Networking and many 

others as shown in the figure 2.  

 

Figure 1. 2 Blockchain Applications 

1.1.3 Blockchain Consensus Algorithms 

Consensus algorithms are the root of blockchain technology. As blockchain systems are 

decentralized that runs on untrusted devices, algorithms are required to reach on an 

agreement among the nodes to append a new block. Consensus algorithms are like the 

decision-making process for a group of individuals to construct and support decisions that 

work best for all in the chain. Consensus models are the methods to provide fairness and 

equality in the network. There are so many algorithms like Proof-of-Work (PoW), Proof-

of-Stake (PoS), Proof-of-Burn (PoB), Proof-of-Capacity (PoC), Practical Byzantine fault 

Tolerance Protocol (PBFT), Proof-of-Elasped Time (PoET), Proof-of-Weight (Pow) and 

many more. Out of these, we have discussed three major consensus algorithms that are 

being used in blockchain transactions and compared them.  
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A. Proof-of-Work (PoW) 

PoW is a widely used mechanism in blockchain systems. PoW consensus algorithm is used 

by many blockchain systems to validate all their transactions and to introduce relevant 

blocks to the chain. Participating miners have to solve a mathematical puzzle. The miner 

who wins the race is rewarded. The peer who creates a block successfully receives a reward 

as coins for their work [10]. A lot of computational power is required to solve this puzzle. 

An example is: calculating a hash function or reaching an output without knowing input. 

This algorithm depends on power, number of users and overall load on the network. New 

blocks are added to the chain like a node is added to the linked list. Instead of an address, 

blocks contain the hash functions of the previous block. The transaction is confirmed when 

the miner solves the puzzle and the block is added to the chain. PoW is used in bitcoin 

technology. In Bitcoin, the node who first solves the mathematical puzzle wins the race. 

After winning, the node broadcasts this block and the rest of the nodes vote to accept the 

block [8].  PoW is more likely prone to 51% attack. The attacker can alter or reshuffle the 

order of the transactions if he takes control of more than half of the computational power 

of the system [9]. Greater energy consumption and the centralization of miners are the 

main limitations of this algorithm. 

B. Proof-of-Stake (PoS) 

As there was a greater energy consumption issue in PoW, PoS is introduced to overcome 

this drawback. Basically, the nodes having a high stake will be getting a chance to add 

blocks to the network more often as compared to other nodes having less stake. Random 

selection based on the amount of stake of miners is done to elect a new block. Because of 

this, the power consumption in mining is reduced as compared to PoW. Two well-known 

PoS based consensus protocols are Oroboros and Casper [6]. PIVX, NavCoin, Startis are 

three most popular cryptocurrencies using Proof-of-Stake as a base in blockchain 

technology. This algorithm does not need any heavy amount of hardware for its backup, 

the threat of 51% attack is reduced, and less power consumption is required. As the system 

is fully decentralized, nodes having larger coins can take control of the network. This also 

makes double spending attacks easier for the attacker [7]. 

C. Practical Byzantine Fault Tolerance (PBFT)  

This algorithm has been designed to solve issues of Byzantine Fault Tolerance solutions 

and to work effectively in asynchronous systems. PBFT can work even if there are 



5 

 

malicious nodes in the system. Nodes are sequentially ordered. One node is the leader node 

or the primary node and others are backup nodes or the secondary nodes. In the case of a 

primary node failure, any eligible secondary node can be assigned as the primary node. 

PBFT works on the principle that a number of malicious nodes should not be greater than 

or equal to one-third of the total nodes in the system. This consensus is done in four phases. 

The leader node is replaced in every phase. If required, honest nodes can vote and replace 

the current leader node by the next node in the line. Transactions in PBFT do not require 

multiple confirmations. This algorithm is energy efficient and every node in the network 

leads to low reward variance which is good for decision making. The disadvantage of 

PBFT is that it is prone to Sybil attacks and Scaling. This algorithm does not scale well 

because of the communication gap. 

We have compared these three consensus on the basis of their type, energy consumption, 

power tolerance and blockchain platform as shown in table 1.1. 

Property PoW PoS PBFT 

Type of blockchain Permissionless Permissionless Permissioned 

Energy Consumption Higher Partial Lower 

Power Tolerance Less than 25% 

computing power 

Less than 51% stake Less than 33% 

Defective replicas 

Blockchain Platform Bitcoin Ethereum Hyperledger Fabric 

 

Table 1. 1 Comparison between PoW, PoS and PBFT 

1.2 CRYPTOCURRENCY – A BLOCKCHAIN PLATFORM 

Cryptocurrency is a digital currency which is introduced to work as a mode of exchange 

of assets between various users in the network. This digital currency is critically used for 

confirmation of the transactions. Strong cryptography algorithms are used to make secure 

transactions and to control additional creation of nodes in the network. They are fully 

decentralised that is there is no role of any third party involvement in the whole process. 

This decentralised control works with the help of distributed ledger. Major advantages of 

cryptocurrency include security, permissionless, faster, global, pseudonymous etc. Some 

of the well-known cryptocurrency are “Bitcoin” and “Ethereum”. Bitcoin was first 

released in 2009 as an open source software. It is basically a decentralised cryptocurrency. 

This makes it different from standard financial models. After seven years of its 
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foundation, its value raised from 0 to 650 dollars and achieved a daily transaction volume 

of around 200 transactions per day.  Some well-known cryptocurrency are shown in the 

figure below. 

 

                

Figure 1. 3 Bitcoin, Ethereum, Hyperledger Fabric, Ripple, Litecoin 

 

1.3 PREDICTION – MACHINE LEARNING 

Prediction may be defined as the estimation making of values. Prediction is the outcome 

of an algorithm after the algorithm is trained with some kind of  historical dataset and 

then employed on new data. Prediction can be made for many outputs like for wheather 

forecasting, for estimating stock price, and many more. Along with data, predictive 

analysis uses statics, machine learning techniques to construct predictive models. 

Supervised learning is used for predictive models as they can compute future values or 

can make probability estimations. Some of the area of application for prediction are 

healthcare, finance, aerospace, and manufacturing etc. Predictive analysis can be done in 

the foloowing steps as shown in figure 1.4. 

 

Figure 1. 4 Predictive Analysis Workflow 

In machine learning, every algorithm is based on either supervised or unsupervised 

learning. They both are the base for deciding which type of model we want to build. Both 

can be brieflt described as follows:  

1.3.1 Supervised Learning 

In supervised learning, we have input variables as ‘x’ and an output variable as ‘Y’ and 

an algorithm to map function from input to output. It can be shown in equation below. As 
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the name suggests, the machine is supervised with training data which is labelled. 

Machine is provided with new data and supervised learning algorithms gives output 

according to labelled data. 

Y = f(x)                                                             (1.1) 

The aim is to produce correct output ‘Y’ on providing set of new data ‘x’. Classification 

and Regression uses supervised learning. Some of the supervised learning techniques are 

Support Vector Machine, Linear and Logistic Regression, Decision Trees, and more. 

1.3.2 Unsupervised Learning 

In unsupervised learning, we have input data ‘x’ only and no respective output data. The 

machine is trained without any classified or labelled data. The machine itself learns to 

group the information with the help of similarities, patterns or differences in the given 

data. Unlike supervised learning, there is no supervisor to provide correct labels to the 

input data and algorithm tries to find hidden structures in the data. Clustering and 

Association are the examples of unsupervised learning. Some of the unsupervised 

learning approaches involve K-means clustering, Neural Networks, Principle Component 

Analysis (PCA), Hierarchal Clustering, etc. 

1.4 RECURRENT NEURAL NETWORK (RNN) 

In Recurrent Neural Network, the output of previous stage act as input for the next state. 

Basically in a deep neural network, inputs are independent of each other. But it might be 

possible that relationship between inputs may provide better results. For example, if we 

want to predict next word in the sentence, it is necessary to have the knowledge of the 

word which comes before it. Here comes the need of connection between the inputs 

themselves. RNN consist of three types of layers which are input, hidden and output layer. 

A basic RNN with only one hidden layer is presented in figure 1.5. The hidden layers in 

the network may be of any number. Hidden layer in the network plays the most important 

role because they have memory to remember information about the sequence.  
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Figure 1. 5 A basic Recurrent Neural Network 

1.4.1 LSTM 

Long Short-Term Memory networks are the type of RNN which are used to predict 

sequence prediction problems. They have capacity to learn order dependencies and 

because of this behaviour they are used in the field of speech recognition, machine 

translation, handwriting recognition, and many more. LSTM uses feedback connections 

unlike standard feed-forward neural network. A single unit of LSTM is made up of a cell, 

an input gate, an output gate and a forget gate as presented in figure 1.6. 

 

Figure 1. 6 Long Short-Term Memory [24] 

 The work of the cell is to keep magnitude over the time interval and these three gates are 

used to process the information flow in and out of the cell. The responsibility of the cell 
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is to keep track of the dependencies between input elements. Input gate keeps controlling 

flow of new values to the cell, forget gate controls the limit that the value should remain 

in the cell and the output gate ensures the limit to which the value is used to process the 

activation of the whole LSTM unit. The logistic function is employed for calculating 

activation function. Connections are there in and out of the LSTM gates and some of them 

are recurrent. During in phase, the weights of these connections are required to be learned 

that examines operation of these gates. LSTM models works well for classification, 

making predictions on the basis of time series data. LSTMs are programmed to solve 

exploding and vanishing gradient problems which comes while training standard RNNs. 

One of the advantage of LSTM network is relative insensitivity to gap the length. 

Mathematic implementation can be shown as below.  Output hidden state (ht) in LSTM 

is calculated as: 

it = σ ( xtU
i + ht-1W

i)                                                (1.2) 

ft = σ (xtU
f + ht-1W

f )                                                (1.3) 

ot = σ (xtU
o + ht-1W

o)                                                 (1.4) 

Ct’ = tanh ( xtU
g + ht-1W

g )                                           (1.5) 

Ct = σ ( ft * Ct-1 + it * Ct’ )                                           (1.6) 

ht = tanh ( Ct ) * ot                                                                          (1.7) 

where ‘i’, ‘f’ and ‘o’ are input, forget and output gates respectively. ‘W’ is the recurrent 

connection for previous hidden layer. ‘U’ is weight matrix which connects input layer to 

hidden layer. Ct’ is candidate hidden state and ‘C’ is the internal memory of the unit. 

1.4.1.1 Bidirectional LSTM 

Bidirectional LSTM is the improvement of basic LSTM. It is the combination of 

Bidirectional RNNs (BRNNs) and LSTMS. Unlike standard LSTM, the idea behind 

bidirectional RNN is to process every training sequence in both forward and backward 

direction to two different recurrent nets. These both recurrent nets are connected to the 

same output layer which indicates that at each point in the sequence, the bidirectional 

recurrent neural network (BRNN) possesses complete and sequential information before 

and after it. There is no necessity to find a time window as the network is free to use as 

much as required. The disadvantage of basic RNNs is that they can use the information 

of previous context. BRNNs resolves this issue by processing the data in two directions 
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i.e. forward and backward with two separate layers leading to same output layer. One of 

the hidden layer processes the input in forward direction while the other hidden layer 

processes the sequences in the reverse direction. 

1.4.2 GRU 

Gated Recurrent Units (GRUs) are the improvement on LSTM recurrent neural networks. 

Both these models consists of additional parameters to control memory updating process. 

They both are able to capture long and short term dependencies in the sequences but there 

are less parameters in GRU as compared to LSTM and hence training process is faster in 

GRUs. In GRU, there are two types of gates reset and forget gate. There is no output gate 

unlike LSTMs. These gates helps in assuring that memory is not taken over when short 

term dependencies are tracked. The network itself is able to learn how to use its gates to 

guard its memory so as to make long term predictions. Some of the applications of GRU 

which showed better performance than LSTM involves polyphonic music modelling, 

speech signal modelling, etc. Even on smaller datasets, they shows better results. A basic 

GRU cell can be shown in figure 1.7.  

 

Figure 1. 7 Gated Recurrent Unit [31] 

In GRU, the hidden state is calculated as: 

       zt = σ ( xtU
z + ht-1W

z )                                               (1.7) 

rt = σ ( xtU
r + ht-1W

r )                                               (1.8) 

Ht = tanh ( xtU
h + ( rt * ht-1 ) W

h )                                     (1.9) 

ht = ( 1 – zt ) * ht-1 + zt * Ht                                      (1.10) 
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where ‘r’ is the reset gate and ‘z’ is an update gate. Rest of the symbols are same as in 

LSTM. 

1.4.2.1 Bidirectional GRU 

Bidirectional GRU are a type of bidirectional recurrent neural networks. Bidirectional 

GRU or BGRU consists of input and forget gates. It uses information from previous and 

later both time intervals for predictions about the current state. The model performs fairly 

well on classification tasks. Same as bidirectional LSTM, in bidirectional GRU, the idea 

is to process every training sequence in both forward and backward direction to two 

different recurrent nets. These both recurrent nets are connected to the same output layer. 

It is the combination of Bidirectional RNNs (BRNNs) and GRUs. 
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CHAPTER 2 RELATED WORK 

In this section, we reviewed what work has been done before in the field of price 

prediction. We studied the type of techniques has been employed for the same and how 

much they are efficient. 

Bitcoin is widely used and valuable cryptocurrency in the market. Because of high 

fluctuation in its price, prediction becomes difficult [18]. In this paper, the authors 

discovered accurate and efficient methods for predicting price using machine learning. 

Regression model is chosen because of the continuous values of prices. Four models are 

selected; Theil-Sen Regression Huber Regression, LSTM and GRU. In Theil-Sen model, 

slope median of lines with pairs of data points is used. Due to this, outliers grows to 29% 

for 2-D data. On increasing dimensions, outlier’s robustness decreases [19]. Theil-Sen 

method took parameters – maximum step size, loss function and epsilon. Huber 

Regression uses linear loss for separating outlier and inlier data. Data is outlier if it has 

weight less than weight of the inlier. Parameters involved in this method are epsilon and 

alpha, which is a parameter for regularization. For LSTM and GRU, same parameters are 

taken as epochs, batch size, level, neurons, activation and kernel initializer. Metrics 

evaluated for the comparison of all four methods are Mean-Squared error and R-square 

(R2). Results showed that out of all methods, GRU model gives best values of MSE at 

0.0002 and R2 at 99.2%, whereas computational time for predicting values is much less 

for Huber Regression as compared to LSTM and GRU.  

Various other methods are also computed to achieve high accuracy for price prediction. 

The task is accomplished by implementing Bayesian optimized recurrent neural network 

and LSTM network [20]. Among both these methods, LSTM acquired better accuracy of 

52% and RMSE of 8%. To compare these deep learning methods, the authors built an 

optimised ARIMA model as the model is used for price prediction problems [24] [25]. 

Now the authors compared accuracy and RMSE value for all these models and achieved 

highest accuracy and lowest RMSE with LSTM model. To evaluate model training, 

performance of RNN and LSTM are measured on the basis of CPU and GPU 

computational time. In the results, RNN model runs faster with less execution time on 

both processors. The authors also analysed bitcoin price by using Support Vector 
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Machine (SVM) and Artificial Neural Networks (ANN) and obtained an accuracy around 

55% [21] with the standard ANN. However, implementation of SVM, Random Forest 

and Binomial Generalised Linear model (GLM) gives an accuracy of 97% with no cross-

validation of the model limiting generalisability. [22] [23] wavelets has been also applied 

for bitcoin price prediction having positive correlation between views from search 

engines, hash rate of the network and mining complexity in bitcoin prices.  

Some of the established methods for price prediction are Auto-Regressive Integrated 

Moving Average Model (ARIMA), Latent Source Model, Multi-Layer Perceptron Model 

and Non-Linear Auto-Regressive with Exogenous Input Model (NARX) [26]. ARIMA 

can predict time-series data even with less term time period. It is a parametric method for 

predicting time series individually. Prices are accurately predicted by using threshold for 

estimation [27]. Some of the disadvantages of this model are: it cannot work parallel for 

more than one time series, it is not guaranteed that values estimated are closer to actual 

ones and lastly, the model fails when accuracy, RMSE etc. parameters are considered. 

Latent Source Model was developed for binary classification. There is a method called 

Bayesian Regression for predicting variation in bitcoin price. In combination with 

Bayesian Regression, LSM determines the patterns in the system. Using trading strategy 

for making decision either to buy or sell bitcoin, mid-price is predicted. A threshold value 

is set for this. If average price is less than the threshold, then bitcoin will be sold and if it 

is equal to greater than bitcoin is purchased. Value for threshold is updated from time to 

time according to trading strategy. Another method which is multi-layer perceptron is a 

Deep Artificial Neural Network containing greater than one perceptron. It contains one 

input and output layer, and an arbitrary number of hidden layers. MLP uses 

backpropagation and are implemented for supervised learning problems. MLP uses 

binary classification with two classes as 0 or 1 [28] where 1 indicates increment in bitcoin 

price for the upcoming day and 0 indicates there will drop in price for the same. One more 

model i.e. NARX is a dynamic recurrent network having feedback connections with many 

network layers [29]. This model can make predictions even on dynamic data of time 

series. The attraction of the model is that this model can accept continuous as well as 

discreet values for making predictions. It is implemented from linear ARX model. 

Advantages of this model is that it is faster, gives good accuracy, understand system 

behaviour better and can generalise effectively as compared to other neural networks. 
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Comparing all these models it was found that NARX model gave highest accuracy in 

predicting prices. 

Having a lot of methods and models for price prediction, there is a need to design methods 

which can improve performance of prediction [30]. In this study, the authors proposed 

techniques for closing stock price prediction using deep beliefs networks (DBNs). 

Intrinsic Plasticity (IP) has been also applied to make the network more adaptive. Results 

show that employment of intrinsic plasticity improved the performance. DBN with IP 

performed better as compared to Triesch’s IP and without IP. Deep Belief Networks are 

multilayer probabilistic generative models implemented with various Restricted 

Boltzmann Machine (RBM) layers and BP layer. A RBM has two layers, one is visible 

and another is hidden layer. The two layers are not connected by themselves but there is 

a connection between their random units. The training sample is first given to the visible 

units which computes binary state of hidden layers. Now all nodes of hidden layers are 

examined to compute binary state of visible units and obtains updated visible layer. IP 

rule is used as it keeps the neuron in discriminative state. The employment of IP in DBNs 

not only increased prediction ability but also lead to have less computational time for the 

test.  

In our study, we introduced a new deep learning architecture which is known as 

transformer. Transformer uses the concept of attention layer. To best of our knowledge, 

this work gives better results which are closer to actual values with a fair computational 

time. 
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CHAPTER 3 - EXPERIMENTAL APPROACH 

3.1 DATASET 

We downloaded the  historical bitcoin dataset from kaggle. The dataset consists of bitcoin 

price of last 10 years from 2009 to 2019 and is of size 118 Mb. It has columns as 

Timestamp, Open value, High value, Low value, Close value for the bitcoin price, 

Volume of bitcoin, Volume of currency and Weighted Price. A sample image for the 

taken dataset is shown in figure 3.1. We have shown last few columns in our image. Our 

dataset consist of 3778816 rows and 8 columns. 

 

Figure 3. 1 Bitcoin price dataset 

3.2. DATA PRE-PROCESSING 

Most of the time, the real world data or the raw data is not complete, not consistent, or is 

full of so many errors. To transform the data into an understandable form, data pre-

processing is done. Data pre-processing is the method to resolve the unwanted issues 

before applying algorithms. Some of the data pre-processing steps involves cleaning, 

integration, transformation, reduction, etc. We have pre-processed our data for further 

feeding into algorithms in the following steps:    

 As from figure 3.1, we can see there are so many NaN (not a number) cells. To 

get rid of NaN values, we have used the function - df.dropna(), where df is the 

variable name of our dataset, to drop the rows containing NaN values. This is done 
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to make the dataset more efficient for processing. Now, the size of our dataset 

became 59562, 9. 

 To get the time in more abstracted form, we convert the value of timestamp in to 

the date format as yyyy-mm-dd-hh. After converting, our dataset looks like as 

shown in figure 3.2. This gives our dataset a better look rather than timestamp.  

 Also, as we have four different type of values for bitcoin price in our dataset which 

are open, close, high and low, it is required to manipulate them in a single type of 

value. To do this, we selected high and low values of the price and divided it by 2 

(basically we are taking average of high and low values) and hence calculated mid 

value for the same. The obtained dataset sample is shown in figure 3.2. We have 

shown starting ten values in the figure of our dataset.  

 

Figure 3. 2 Dataset after processing 

 After getting mid values, we now plot the mid values with corresponding date to 

see the pattern of the fluctuation of bitcoin price as shown in figure 3.3. This give 

us insight about how the bitcoin price varied in those ten years. As we found that 

the minimum value of ‘mid’ is 4.14 and maximum value is 19565.24208 

approximately, we set a range for middle price values. The range we put is >=500 

to <=20000. The sample figure shows the ‘mid’ values in the same range. Now, 

our dataset contains 29974 rows. 
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Figure 3. 3 Plotting average values from ‘low’ and ‘high’ values 

 A column named as ‘future’ is set. We made another column as ‘target’. We 

distributed the value in this column as - if the price of future value is greater than 

price of mid, than target is set to ‘1’ otherwise it is set to ‘0’. We have displayed 

first ten rows of the dataset as shown in figure 3.4.  

 

Figure 3. 4 Dataset after setting target column 

 We have divided the dataset into three different datasets which are train set which 

is used to train our model, validation set for validating our results and test set 

predict the value on the sample values. We have distributed our data in train, valid 



18 

 

and test set as 70%, 20% and 10% of the whole dataset respectively. Now, for our 

processing, we only need two columns ‘mid’ and ‘target’. So, we dropped the rest 

of the columns. The dataset after dropping looks like as shown in figure 3.5. 

 

Figure 3. 5 Dataset after dropping columns 

 We reshape train and test data and normalise test and validation dataset. After that, 

we performed exponential moving average smoothing so that the data have 

smoother curves as compared to original data. Figure 3.6 shows the curve for train, 

valid and test dataset in blue, gray and black colour respectively. The graph shows 

how these three set are separated. The normalized predictions with respect to time 

is shown in the graph. 

 

Figure 3. 6 Separation between train, valid and test set 
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3.3 METHODOLOGY 

After pre-processing, we now move on to our transformer model architecture. We run the 

transformer model with two types of RNNs - transformer with LSTM and transformer 

with GRU. 

3.3.1 Model Architecture 

 

 

Figure 3. 7 The Transformer Model Architecture 

Most of the good competitive neural networks have encoder decoder structure [11] [12] 

[13]. The function of encoder is to map the input sequence x = ( x1, x2, ….. xn ) to the 

continuous sequence of z = ( z1, z2, ….. zn ). Obtaining z, now comes the function of the 

decoder. The decoder now produces the sequence of output as y = ( y1, y2, ….. yn ), 

generated as a single element once at a time. Model is auto-regressive at every step [14], 

which consumes the symbols that are generated previously as more inputs to generate the 

next one. Transformer model follows the above described process with the help of stacked 

self-attention and point-wise, fully-connected layers for both the encoder and the decoder 

as represented in the figure 3.7 respectively.  
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3.3.2 Encoder and Decoder Stacks 

3.3.2.1 Encoder 

The encoder in the model is made up of a stack of N similar layers and every layer is 

composed of two sub-layers. The first mechanism is the Multi-Head Attention and the 

second one is a basic, Position-Wise Fully-Connected Feed Forward network. Around 

each sub-layer, we applied a residual connection [16] following by layer normalization 

[15]. This means that output of every sub-layer is LayerNorm( x + SubLayer(x) ), where 

SubLayer(x) is implemented by the sub-layer itself. And hence, the output of dimensional 

dmodel is produced by all the sub-layers and embedding layers in the model just to facilitate 

the residual connections. A basic encoder-decoder mapping can be shown in figure 3.2.  

 

Figure 3. 8 A simple Encoder-Decoder mapping 

The step-wise working of encoder may be defined as follows: 

 The input to the encoder is produced by adding combination of input embedding 

and positional encoding. 

 Residual connections are most vital part of encoding. Around each of the sub-

layers, ‘n’ multi-head attention layers and position-wise feed forward along with 

these connections are applied and is followed by layer normalization. 

 Lastly, before the normalization, for each of the sub-layers, dropout are applied 

to the output. 

Input embedding and positional encoding in transformer first generates initial inputs in 

encoder phase for every word in the sequence of the input. For every single word, the role 

of self-attention is to aggregate information from all the pair-wise words of the sentence. 
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This leads to the creation of new representation of all words. This is an attended 

presentation of each word of the sequence. Lastly, the above process loops for every word 

and hence builds new representation on the top the previous ones for multiple times.  

3.3.2.2 Decoder 

Just like encoder, decoder is too made up of a stack of ‘N’ similar layers. Having same 

those two sub-layers in each encoder layer, decoder, in addition it has a third sub-layer. 

This additional layer performs the multi-head attention on the encoder output stack, same 

as encoder in which residual connections are applied upon each sub-layers and is 

following by layer normalization. In decoder stack, modifications on self-attention layer 

are made so as to avoid positions from attending to subsequent ones. The embedding of 

the output are the offsets by one position. This masking is combined with the above fact 

and it ensures that for a given position, predictions are dependent on the already known 

outputs by less than the given position. The steps can be summarised as shown below, 

they are much similar like in encoder: 

 The input of the decoder is obtained by the combination of output embedding and 

positional encoding by one offset position ensuring that the prediction for the 

given position is dependent only on the position before the given one. 

 Around each of the two sub-layers, ‘n’ masked multi-head attention layers, multi-

head attention and position-wise feed forward along with residual connections are 

applied and is followed by layer normalization. 

 To avoid words from future being the part of attention, masked multi-head 

attention is employed and followed by position-wise feed forward neural network. 

 Internal working of the encoder-decoder model can be visually shown in figure 3.3. 

Decoder produces a single word at an instance of time starting from left to right. The first 

word in the sequence is dependent on finalised presentation of encoder which is the offset 

by one position. Each predicted word attends to word produced at that layer of the decoder 

and multi-head representation of encoder which is identical to a typical encoder-decoder 

structure.   
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Figure 3. 9 Working of internal layers in Encoder-Decoder 

3.3.3 Attention 

3.3.3.1 Layer Normalization 

One of the main reasons why deep learning progressed lot in recent years is due to batch 

normalization. Although batch normalization is an effective tool, but it also has various 

shortcomings too. The most important limitation of batch normalization is that it depends 

on the mini batch. In this method, mean and variance of each mini-batch is calculated and 

each feature is normalized according to mini-batch statics. Due to this reason, mean and 

variance of each mini-batch differs from each other. This leads in two main problems. 

First one is: Lower limit on batch size. It is obvious that batch normalization cannot be 

used when the batch size is ‘1’. But if the batch size is slightly greater, it may also cause 

problems. The process of calculating mean of the whole dataset after each network update 

is costly and due to this mean and variance are estimated using mini-batch statics. Now 

they will have error which varies from one mini-batch to another mini-batch. The second 

issue is that it is difficult to apply batch normalization to recurrent connections in RNN. 

In an RNN, the activation of each step has different statics. It means that it is necessary 

to fit a separate normalization layer for each step. And hence, all this makes the model 
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more typical. In layer Normalization, mini-batch dependency is eliminated. Let us explain 

what layer normalization is. Let’s consider that a mini batch with same number of features 

having multiple example. Mini-batches are matrices where one axis or axes refers to the 

batch dimensions and other axis or axes refers to the feature dimensions (if input is multi-

dimensional). In batch normalization, normalization of inputs is done on batch dimension 

where as in layer normalization it is done on feature dimensions. This is the prime feature 

of layer normalization. The equations for both batch and layer normalization are so much 

identical as shown: 

Equations for batch normalization: 

𝜇𝑗 =
1

𝑚
∑ 𝑥𝑖𝑗

𝑚
𝑖=1                                                    (3.1) 
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                                                        (3.3) 

Equations for layer normalization: 

𝜇𝑗 =
1

𝑚
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𝑚
𝑖=1                                                      (3.4) 

𝜎𝑗
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√𝜎𝑗
2+∈

                                                         (3.6) 

Where xij is the i-jth element of the input, the first one represents the batch and the second 

one represents the features. The difference can be made clear with help of the figure 3.10 

shown below.  
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Figure 3. 10 Batch Normalization (left) and Layer Normalization (right) 

As from the figure, it is easy to understand that in batch normalization, the statistics are 

made across batch and are same for each batch where as in layer normalization, it is 

computed across the features and there is no dependency on the examples. Mean and 

standard variance are same for all feature dimensions. 

Advantages of layer normalization are: 

1. Experimental results have shown that layer normalization have better performance on 

recurrent neural networks. 

2. As there are independency between inputs, this indicates that each input has different 

normalization operation even if we are using mini-batch sizes.  

3.3.3.2 Scaled Dot-Product Attention 

The attention used in the model is called as Scaled Dot-Product Attention as shown in 

figure 3.3. In the model, the input is containing queries, keys and values, keys of 

dimension dk and values of dimension dv. Query dot-product with all the keys are 

computed and this multiplication is divided by √dk. To get weights on the values, we 

applied ‘Softmax’ function. However, the queries Q, keys K and values V are packed 

together in the matrix, simultaneously we compute function for attention on the set of 

queries Q. Matrix for the output is calculated as shown below in the equation:  

Attention (Q, K, V) = Softmax (QKT /√dk)V                            (3.7) 
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Figure 3. 11 Scaled Dot-Product Attention 

There are two common functions for attention, they are additive attention and dot-product 

attention. In additive attention, compatibility function is calculated with the help of a feed-

forward network with one hidden layer. In fact, the dot-product attention is similar to our 

algorithm, the only difference is the scaling factor of 1/√dk. However, both the methods 

are same in theoretical complexity but dot-product attention is much efficient in space 

and faster too in use as it is implemented with high optimized matrices multiplication 

code. 

In case of low values of dk, both the above methods performs same. Without scaling for 

larger value of dk, additive attention method performs better than the dot-product attention 

method. For greater values of dk, we find that the dot-product grows large value and push 

the function ‘softmax’ into areas where it has very low gradients. And to overcome this 

effect, we scaled this dot-product by 1/ dk. 

3.3.3.3 Multi Head Attention 

Instead of applying an individual attention function with dmodel-dimensional on queries, 

keys and values, we observed that is fruitful to project linearly h times these queries, keys 

and values with various learning linear projections to dk, dk and dv dimensions 

respectively. We now performed attention function in parallel on each projected version 

of queries, keys and values and yield dv-dimensional output values. 
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Figure 3. 12 Multi-Head Attention 

They are now combined and projected again which results in final values as shown in the 

figure 3.4. This multi-head attention permits the model for attending information in 

combined form at different positions from different representation subspaces.  

Multi Head Attention (Q, K, V) = Concat ( head1, head2, …… headh )W
O                        (3.8) 
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Transformer model applies multi-head attention in the following different forms: 

1. The encoder has self-attention layers internally. All queries, keys and values 

comes from the same place in the self-attention layer i.e. the outcome of the 

previous encoder layer. The input sequence itself is the input to multi-head self-

attention i.e. the queries, keys and values in linearly transform heads. 

2. The queries comes from previous layer of decoder whereas the values and keys 

comes from outcome of the decoder in encoder-decoder attention layers. This 

helps the decoder in allowing each position for attending all positions in input 

sequence like in the basic encoder-decoder structure. 
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3. Masking support is employed in scaled dot-product attention. This is done by 

masking out the input values of multi-head attention softmax referring to wrong 

connections. 

3.3.3.4 Position-Wise Feed Forward Network 

Every layer in Encoder and Decoder consist a Fully-Connected Feed-Forward network 

(dense layers) in addition to attention sub-layers. They are applied to every position 

identically and in separation. And it contains two linear transformation in between with a 

ReLU activation function. However, these linear transformation are identical for different 

positions, different parameters are used which varies from layer to layer. 

FNN (x) = max ( 0, xW1 + b1 )W2 + b2                                         (3.9) 

3.3.3.5 Positional Encoding 

As the model is containing no recurrent and convolution layer, then how then model will 

be able to know about the order of the sequence? Because of the absence of recurrent and 

convolution layer, we needed positional encodings. We are required to add few 

information for relative or absolute positions of the tokens in the sequence. With the help 

of positional encodings, we can input embedding at the end of the stacks of encoder and 

decoder. As the dimensions of both the positional encoding and dmodel are same, they both 

can be summed up. The positional encoding tells the model that to which potion of the 

input the model is dealing with currently. There are various methods for positional 

encodings but in our work we have taken sin and cos functions of variable frequencies: 

PE (pos, 2i) = sin (pos/ 10002i/d
model)                                  (3.10) 

PE (pos, 2i+1) = cos (pos/ 10002i/d
model)                               (3.11) 

where ‘pos’ refers to the position and ‘i’ is the dimension, means dimension of positional 

encoding corresponding to a sinusoid and the wavelengths are in geometric progression 

of 2π to 1000*2π. We choose this as it will permit the model to learn efficiently to attend 

on the basis of relative positions.  

3.3.4 Add and Norm 

In this phase, the output and input of position-wise feed forward network or multi-head 

attention layer are concatenated by a block which consists of residual structure a layer for 

layer normalization. Layer normalization is identical to batch normalization except the 

mean and variances are computed over the last dimension i.e. X_mean(axis=-1) instead 
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of dimension of batch which is X_mean (axis=0). The block which is employed accepts 

inputs X and Y which are input and output of another block. Dropout is applied in this 

connection block. X and Y must have similar shape because of residual connections. 

3.3.5. Masking 

Input of variable length in recurrent neural networks are handle by masking. Although 

RNNs are efficient in handling inputs of variable length but still it is required that inputs 

should be of fixed length. To manage this issue we create mask per sample of length 

which is equal to the longest sequence in the dataset and is initialised to ‘0’. After that, 

the mask is filled with value ‘1’ where it was containing values in. In our model, we have 

used two type of masking sub-mask and pad-mask. 

3.3.6 Pooling 

Pooling is a way of down sampling the extracted feature map, through reducing the 

number of dimensions of the feature map but also keeping map features required for 

classifying which sufficiently decreases the processing time, while still keeping the 

important features for further processing. The aim of pooling is to achieve spatial 

invariance. This is done with the help of rotational invariance and translation. For training 

pooling operations, backpropagation is used. Pooling is mostly used for making input or 

features independent. There are so many types of pooling like sum pooling, max pooling, 

min pooling, average pooling, etc. In our model, we have applied global average and 

global max pooling. 

3.3.6.1 Global Max Pooling 

Max pooling or Maximum pooling operation is basically used to calculate the maximum 

value in each feature map. Like in normal pooling, patches of input map are down-

sampled while in global pooling, the whole feature map is down-sampled to a one value. 

It means we are setting the pool size to the input feature map size. The outputs are down-

sampled feature maps to highlight the existing features in that patch means not like the 

average presence of features in average pooling. It is found that max pooling works better 

than average pooling. Arguments required by Max Pooling are pool size, strides, padding, 

and data format whereas Global Max Pooling requires only data format argument. 

Sometimes, global pooling is used as a substitute for fully-connected layer to transform 

feature map to the output prediction in the model. 
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3.3.6.2 Global Average Pooling 

The global average pooling operation computes the average outcome of each feature map 

of previous employed layer. This operation is used to reduce the data sufficiently and to 

prepare the model for final stage of classification. It contains no trainable parameters 

which is same as in max pooling. The reduction of these trainable parameters eliminates 

the tendency of overfitting which are required in fully-connected layers with the help of 

dropout. Due to this, every feature map becomes a type of ‘confidence map’. Average 

pooling makes the model more efficient for spatial translation. Average Pooling takes 

arguments as pool size, strides, padding, and data format whereas Global Average 

Pooling requires only data format argument. 

3.3.6.3 Max and Average Pooling Concatenation  

Hybrid of both global max pooling and global average pooling seems to give better and 

improved results. Although the operation is supposed to have higher computational cost 

but the outputs are more flexible. Applying this concatenation, one should make checks 

that the output has the same shape as that was of single pooling.  

3.3.7 Building the Model 

The summary of constructed model can be shown in figure 3.13. 
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Figure 3. 13 Model Summary 
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CHAPTER 4 RESULTS 

After applying model on both LSTM-with-attention and GRU-with-attention, we obtain 

the predicted values as shown in the table 4.1, only first ten values of the dataset has been 

shown. Observing these values, we can see the difference between the actual and 

predicted values for both the models. 

Sr. No. 

 

Actual Values Predicted values 

from LSTM 

 

Predicted values 

from GRU 

0 0.307744 0.375506 0.419975 

1 0.307679 0.375485 0.419990 

2 0.307167 0.375453 0.420010 

3 0.307238 0.375363 0.420008 

4 0.307348 0.375278 0.420015 

5 0.307587 0.375220 0.420038 

6 0.307496 0.375187 0.420077 

7 0.307074 0.375169 0.420122 

8 0.307216 0.375134 0.420154 

9 0.307254 0.375129 0.420202 

 

Table 4. 1 Comparison of predicted values with actual values of both models 

We plot these actual and predicted values for both model as shown in figure 4.1 and 4.2. 

We plot around 3000 values from our test dataset to make predictions. From the figures, 

we can observe that the GRU model gives better results for predicting bitcoin values. The 

values predicted by GRU model are closer to actual values than in LSTM model.  
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Figure 4. 1 Bitcoin Price Prediction using GRU-with-Attention 

 

 

Figure 4. 2 Bitcoin Price Prediction using LSTM-with-Attention 
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Error Measurement Metrics 

We now compared the performance of both the model in terms of ‘Mean Absolute Error’, 

‘Mean Squared Error’, ‘Root Mean Squared Error’ and ‘Maximum Error’. All the metrics 

can be defined as follows: 

Mean Absolute Error (MAE) 

MAE is used to calculate the average value of errors in a dataset without any consideration 

of direction. The average is taken over the test set of the absolute difference between 

actual values and predicted values and each difference has equal weight. MAE can be 

mathematically defined as: 

MAE = 
1

𝑛
 ∑ |𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑|𝑛

𝑖=1                                        (3.12) 

where, ‘n’ is the total number of rows in dataset, ‘i’ is a particular value at instance,  

𝑦𝑎𝑐𝑡𝑢𝑎𝑙 is actual value and 𝑦𝑝𝑟𝑒𝑑 is predicted value. 

Mean Squared Error (MSE) 

Also known as Mean Squared Deviation (MSD). MSE is used to calculate the average of 

the squares of the errors of the dataset obtained from the difference of actual and predicted 

observations. Value of MSE is always positive. The reason behind it is randomness. It is 

the quality measurement for an estimator. Values are always non-negative. The more 

close the value to zero, the better the results are. Formula for MSE can be written 

mathematically as: 

MSE = 
1

𝑛
 ∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 −  𝑦𝑝𝑟𝑒𝑑)2𝑛

𝑖=1                                    (3.13) 

where, abbreviations are same as in mean absolute error. 

Root Mean Squared Error (RMSE) 

As can be seen from equation, it is the square-root of the MSE. RMSE is also calculated 

to obtain average of error magnitude. It is a rule for quadratic scoring. Basically it is the 

square-root of the difference of squared values of actual and predicted values. Lower 

values show better results. Equation for RMSE can be shown below:  

RMSE = √
1

𝑛
 ∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑)2𝑛

𝑖=1                               (3.14) 
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Maximum Error (ME) 

It is the maximum difference obtained by subtracting actual value and predicted values. 

Depending upon the difference, it can be either negative or positive in nature. Max error 

shows how far our predicted value is from actual value. 

The table for both the models i.e. LSTM-with-attention and GRU-with-attention having 

above explained metrics is shown below: 

Model MAE MSE RMSE ME 

LSTM 0.0527239 0.003102204 0.05569743 0.146352951 

GRU 0.011985815 0.011985815 0.020012971 0.096071129 

 

Table 4. 2 Comparison of both models on the basis of different error values 

Observing the above table, we can see that for every metric our model GRU-with-

attention outperforms the model LSTM-with-attention. Each metric for GRU model is 

better than LSTM model. A visual graphical representation for the same can be shown in 

figure 4.3. 

 

Figure 4. 3 Graphical form for comparison of error measurements 

From the above graphical representation, it can be seen that the bar of LSTM model is 

higher than the bar of GRU model. It is required that error measurements should be close 

to zero for better predictions. GRU model fulfils the requirements effectively as compared 

to LSTM model. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

Blockchain technology ends up with various factors such as security, privacy, 

transparency, trustworthiness, etc. which a network communication demands the most for 

information exchange. Cryptocurrency, like bitcoin, is its one of the component which 

proved a leading role in decentralization. Every moment of time the price of bitcoin 

fluctuates and for coin holders or the customers willing to have it, it is an interesting 

concern for them. Hence, it is important to know the features these fluctuations depends 

upon. In this study, we build transformer model for predicting mid-price of bitcoin. Our 

work employed two types of deep learning architecture, transformer model, with Long-

Short Term with attention and Gated Recurrent Unit with attention. Mid-price for bitcoin 

is predicted using attributes mainly ‘Open’, ‘Close’, ‘High’ and ‘Low’. Applying both 

these, we compared error measurements MAE, MSE, ME and RMSE for both the models. 

We observed that model with GRU predicted bitcoin price more precisely as compared 

to LSTM. GRU gives closer values of mid-price to actual values.  

The proposed work can further be utilised for making predictions in healthcare, finance, 

business and many more. The techniques implemented in this study can further be 

extended by more work and research on advanced upcoming methods.  The proposed 

model can be implemented with other upcoming technique so that it can operate in lesser 

time. The main aim of the work is to predict the prices with as much as possible precision 

so as the investors can have idea whether to invest the funds analysing the future prices.    
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