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ABSTRACT 

The presence of both the fading and shadowing effects (also called composite 

multipath/shadowed fading) is often encountered in a realistic radio propagation scenario, 

thus, making it necessary to consider the simultaneous effect of fading and shadowing on 

the received signal. The performance of L-Hoyt/gamma and L-Hoyt/lognormal composite 

fading channels with Maximum Ratio Combining (MRC) employing micro-diversity is 

analyzed. Closed-form expressions for distribution function, moments, outage probability 

and channel capacity are derived using the probability density function (PDF) of the 

received instantaneous signal to noise ratio (SNR) in terms of hypergeometric functions. 

The detailed analysis of communication system in terms of average bit/symbol error 

probability (ABEP/ASEP) for both coherent and non-coherent modulation techniques are 

performed. 

The performance of energy detector over L-Hoyt/gamma and L-Hoyt/lognormal 

channel is also performed. The analytical expressions of average probability of detection 

and the average area under the receiver operating characteristic over the composite fading 

channel are derived. In addition, the optimized threshold has been incorporated to 

overcome the problem of spectrum sensing (SS) at low signal to noise ratio. For 

independent diversity receivers the analysis has been carried out for the arbitrary number 

of input branches. The effect of diversity order and fading parameters on the performance 

measures are studied. For the expressions with infinite series, the convergence is 

observed and wherever possible the expressions for upper bound on truncation error have 

been provided. To validate the accuracy of the derived expressions Monte-Carlo/Exact 

simulations are performed. The results are useful for system design engineers and can be 
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directly used in several wireless applications such as cooperative and non-cooperative 

cognitive radio networks.  
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CHAPTER 1  

INTRODUCTION 

 

A signal experiences reflection, diffraction and scattering phenomenon while traveling 

from transmitter to receiver depending upon the dimensions of the objects which comes 

in its path [1]. Due to which the overall quality of the signal reaches the receiver is 

degraded and it is termed as fading. Depending upon the distance between the transmitter 

and receiver, fading is characterized into small-scale fading and large-scale fading. In 

small-scale fading, the rapid fluctuations in the received signal are experienced when the 

mobile user moves over a small distance (few wavelengths) [1]. The gradual variation in 

the received signal is experienced in large-scale fading when the mobile user moves over 

large distances [2] [3]. This chapter discusses different performance measures to study 

the wireless communication systems. A brief introduction on SS in CR and test statistics 

of an energy detector is also presented. In the final section, the main contribution and 

organization of thesis are elaborated. 

 

1.1   Multipath Fading Models 

Small-scale fading is also known as multipath fading. In this phenomenon, multiple 

replicas of the same transmitted information reach the receiver at different time instances. 

Due to multipath fading, the overall quality of the signal is degraded [1] [3] [3]. The 
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variation of fading is very in-deterministic, and hence it is difficult to have an accurate 

model of fading [5]. However, many researchers have given a number of mathematical 

models for fading channels. These models depend upon the different environments and 

can be described by different statistical distributions. Some of the common multipath 

fading models are described below.    

Rayleigh 

Rayleigh distribution is used to model the communication systems when independent 

scatters are very large. In Rayleigh distribution, there is no LOS component of the signal 

present at the receiver and the envelope is the sum of two quadrature Gaussian signals 

[3]. The PDF of Rayleigh is 

                               

 
2

2 2
exp ,         z 0

2
Z z

z z
p

 

   
    

                                 

(1.1) 

The random variable can be modeled as
2 2Z X Y  . Here X and Y are i.i.d RVs 

following Gaussian distribution with mean and variance as 0 and 2 . 

Nakagami 

1. Nakagami-m: Nakagami-m distribution is used to model ionosphere radio and indoor 

mobile propagation links [1]. The PDF of Nakagami-m is 

 
 

2 1 22 1
, exp    0

2
  , ,

m

m
z

m m
p z z z z m

m

   
       

     
    (1.2) 

here m is shape parameter and   is controlling spread parameter of  Nakagami-m. For 

m=1, the PDF of Nakagami-m distribution can be simplified to Rayleigh distribution. 

http://en.wikipedia.org/wiki/Shape_parameter
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2. Nakagami-n (Rice): Rice is used to model propagation path when there exist a strong 

LOS path component and many random weak components [1]. The PDF of Rice is 

given by [6] as 

 
       2

2
0   

12 1 exp 1
exp 2 , z 0 z

K KK K z K
p z z I z

               
 

(1.3)
 

here X and Y are i.i.d. Gaussian RVs having mean m1, m2 and variance 2  and 

2 2Z X Y  . K is Rice factor and is related to Nakagami-n fading parameter n by

2K n . 

3. Nakagami-q (Hoyt): This distribution is used to model the propagation channel with 

more severe fading conditions [1]. Hoyt PDF is given as 

             

 
     

2
2 2 2 4 2

02 2
        

1 1 1
exp , 0

4 4
Z

q z q z q z
p z I z

q q q

      
      
      

               

(1.4)

 

2 2Z X Y  , where X and Y are i.i.d. Gaussian RVs having zero mean and variance

2

x and
2

y respectively. q is the Hoyt fading parameter, having the value from 0 to 1 

and is related to the variance as y xq   and  2 2 21y w q q    
  . 

Weibull 

Another important fading distribution which is used to model radio system in 800-900 

MHz frequency range is Weibull distribution [7] [8]with the PDF given as 
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   

2

2 2
1

2
1

2
z exp 1 , 0        

c

c

c

Z

zc
p z c z

c



  
                           

 
                   

(1.5) 

here c is the Weibull fading parameter. For c = 2, the above PDF becomes Rayleigh 

distribution.  

 

1.2   Shadowing Models 

Since variations due to shadowing occur over relatively large distances, this variation 

comes under large-scale fading. Large obstacles between the transmitter and receiver like 

buildings and towers are the main cause of shadowing.  

Lognormal 

There is a general consensus among the researchers that shadowing can be best modeled 

in the form of lognormal distribution with PDF given by [1] 

                                

 
 

2

2

log1
exp

22

e

Z

µ

z
zp

z

 

 
  
 
                                     

(1.6) 

where µ is the mean and σ is the standard deviation of RV loge z . These variables can be 

expressed in dB by dB k   and dB k   where 10/ ln(10)k   [3] [8]. 

Gamma 

Representing shadowing using the lognormal PDF often leads to analytical difficulty in 

deriving the closed-form expressions when combined with other functions. Gamma 
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distribution is the most acceptable approximation of lognormal distribution and is most 

widely used in literature to model shadowing effects [9]. The PDF of gamma distribution 

is given as 

                                 

 
 

 

1

exp         , 0
m

Z m

z z
p z z

m 


 

   
                               

(1.7)

 

Here  is average received SNR and m is shaping parameter.  

Inverse Gaussian 

Inverse Gaussian distribution is also used to model shadowing because of its closeness 

with the lognormal PDF [10] [11]. The PDF of inverse Gaussian distribution is expressed 

as 

                             

 
 

1 2
2

3 2
exp , 0

2 2
        Z

z
p z z

z z

 

 

   
    
                          

(1.8) 

here   is the mean and is the shape parameter of the distribution. The values of both 

the parameters are positive [3]. 

 

1.3   Diversity and Combining Techniques 

Diversity is a scheme in which two or more independent communication channels with 

different characteristics are used to improve the reliability of a message [4]. With the 

increase in the number of independent branches, the probability that all the branches fade 

at the same time reduces sharply. Thus diversity techniques stabilize the wireless link 
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leading to an improvement in link reliability or error rate. The following diversity 

schemes are used.  

Time Diversity 

The same signal is transmitted over different time instances separated by the coherent 

time of the channel [11].  

Frequency Diversity 

The same signal is transmitted through different modulation frequencies separated by the 

coherent bandwidth of the channel to induce independent fading channels [11]. 

Angle Diversity 

Angle diversity requires antenna beam widths that are narrow compared to the 

transmitted beam width, such that the two beams are oriented towards different portions 

of the transmitted signal, and thus the signals received via the multiple beams appear to 

be uncorrelated [13].   

Spatial Diversity 

Spatial diversity is based on reception or transmission via multiple antenna elements 

along with appropriate signal processing that combines the signals from the various 

antennas. It is observed that with sufficient spacing between antennas, the fading 

fluctuations of the received signals are independent of each another [14].  

Diversity Combining 

Diversity combining is a method to mitigate the effect of fading. This technique is 

employed at the receiver side to improve the received instantaneous SNR. The overall 

performance of the system improves when different replicas of the message are combined 

efficiently at the receiver [1].  
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The combining may be SC, EGC or MRC. Figure 1.1 is showing a general diversity 

combiner with L independent branches. The output of the combiner is shown in equation 

1.9.  

                                                         

   
1

L

l l

l

y t a r t



                                              

(1.9) 

here la  is the combining coefficient and      l l lr t s t n t   is the received signal of 

the lth branch of the combiner.  

Selection Combining 

In SC, only one signal with the highest SNR is selected out of the L available signals at 

the output of the combiner. From the implementation point of view, this is the simplest 

scheme out of the available diversity schemes [3]. The value of the coefficient is defined 

in equation 1.10 

                                                         

1,

0,

   max( )

 otherwise
l

l
a

 
  
 

                                       

(1.10) 

a2 

a1 

aL 

r1(t) 

r2(t) 

rL(t) 

1 

2 

L 

Diversity 

Combiner y(t) 

Figure 1.1 Block Diagram of a diversity combining system 
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Equal Gain Combining 

The received signal from all the L branches are co-phased and multiplied with the 

corresponding weights and added. In EGC equal weights are assigned to all diversity 

branches. It is suboptimal but simple to implement as it does not depend on channel 

estimation. The overall SNR at the EGC combiner output is given as [1] 

                                                         

2

1 0

L
b

l

l

E

LN
 



 
  
 


                                           

(1.11)

 

where bE  is the energy of the received signal over a bit duration and 0N
 
is AWGN. 

 

Maximum Ratio Combining 

Extension of the selection diversity to linear combining yields the well-known MRC 

approach. This technique weights the signal received by each diversity branch according 

to the actual channel estimation, for maximizing the SNR at the output of the combiner. 

MRC is best of all the combining techniques [14] in terms of performance. SNR of the 

combined signal is given as  

                                                                 1

L

l

l

 



                                                        

(1.12) 

 

1.4   Performance Measures of the System 

There are various measures used in literature for the performance analysis of the 

communication systems.  
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Outage Probability 

Outage probability is an important performance parameter of a communication system. It 

is the probability that the received SNR falls below the predetermined threshold  th . 

Mathematically it can be given by [1] as 

                                              

   
0

th

out thP p d



   
                                                

(1.13) 

Amount of Fading 

The AF is defined as the ratio of the variance to the square mean output SNR. It is used to 

measure the severity of the channel and can be expressed as [1] 

                                                          
 

2

2
1

E
AF

E





   

                                                 

(1.14) 

Channel Capacity  

Channel capacity is another performance parameter which is kept in mind while 

designing the system. Different adaptive transmissions schemes of channel capacity such 

as ORA, CIFR and TIFR are discussed in this thesis. 

ASEP/ABEP 

ASEP/ABEP is commonly used to measure the performance of digital communication 

systems in the fading environments. ASEP/ABEP is defined by [1] as 

                                       

 
0

( ) ( ) ( )e e eP E P P p d   


  
                                     

(1.15) 
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here ( )eP   is the instantaneous error probability. ( )eP   depends upon on the modulation 

technique used in the system.  

 

1.5   Cognitive Radios and Spectrum Sensing 

Researchers have found out that the fixed allocation of spectrum causes underutilization 

of radio spectrum. This is because most of the channels are occupied only for a short 

period, while these remain unoccupied for rest of the time. Therefore, the problem of lack 

of RF spectrum is a result of underutilization of the available spectrum [15]. To mitigate 

this problem, CR, inclusive of SDR, has been proposed as a tempting solution to the 

problem of scarcity of the spectrum [15] [16] [17].  

There are two types of users in CR networks: the PUs which are licensed users and the 

SUs which are unlicensed users. The PU has the higher priority to occupy the particular 

frequency band whereas the SU has the lower priority for that. The SUs can employ the 

frequency band of the PU when PU is not using that band. SU should have the capability 

to sense the presence of the PU in a particular frequency band and make the correct 

decision in a timely and accurate manner [18]. Hence, the SU is equipped with the 

cognitive capability which is not available in the conventional radio systems [18] [19].  

SS is a crucial part of CR network because all the steps depend on the result of this 

process. In the open technical literature, many SS techniques are used to detect the 

presence of PUs signals, such as MFD, CFD, and energy detection. Out of these 

techniques, energy detection has been widely used to provide SS in both CR and the 

UWB systems. In contrast to the MFD and the CFD techniques, the energy detection is a 

non-coherent detection method. Thus, the computational and implementation complexity 
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of this technique is low in comparison with the aforementioned techniques. Moreover, it 

needs a shorter time to provide the sensing result [20]. In spite of the energy detection 

technique having the accuracy, high speed, low complexity and low power consumption, 

new challenges appear when it is used to detect the PU signal in CR networks. Therefore, 

the designing a good energy detector requires overcoming these challenges. One of these 

challenges is the difficulty in selecting the threshold value that depends on the noise 

power and accordingly may change over time [19]. The second challenge arises when the 

wireless signals concurrently undergo multipath fading and shadowing. In spite of few 

works that have been devoted to deal with this challenge, an extensive study by using a 

practical channel model should be investigated to get clarifications about the impacts of 

composite fading on the performance of the energy detector. Another challenge is the 

complexity of channel models expressions that leads to intractable performance metrics 

especially when diversity reception schemes are used. This challenge can also be noticed 

in analyzing the performance of communications systems. 

Motivated by these challenges, this thesis studies the behavior of energy detector over 

different channel models for SS in CR network. Moreover, some techniques are utilized 

to improve the performance of energy detector under different communication scenarios. 

 

1.6   Test Statistic of an Energy Detector 

Consider a narrow band composite signal,  r t  is detected at the receiver. The received 

signal can be represented by [21] as  

                                      

 
 

   
0

1

;

* ;

n t H
r t

h s t n t H


 

                                                

(1.16) 
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here h denotes the time-invariant channel gain,  s t denotes the unknown deterministic 

signal coming from the transmitter and  n t is AWGN.  

                                                                                                          y  

                                                                                              y  

 r t   

 

                                                                                                                                                                                          

 

As shown in Figure 1.2,  r t  is passed through a BPF, squaring device and integrator. 

The output of the integrator, y acts as the test statistic. The decision device compares y 

with the predefined threshold ( ). The received signal can be formulated by binary 

hypothesis 0H (signal is not present) and 1H (signal is present). The output of integrator 

can be expressed as    2

0

0

2 /
T

y N r t dt   . y can be expressed by [21] as  

      
22

2

0 0 0

10

2 / / :
T u

k

k

y N n t dt n N B H


      (1.17) 

2

2~ uy                                       (1.18) 

Note that since  0~ 0,kn N N B , y under 0H , is the square sum of 2u  Gaussian random 

variable
 
with mean 0 and variance 1. Thus y is chi-square distribution (central, 2u  

degrees of freedom) and u TB (time-bandwidth product) [22]. Similarly, under the 

alternate hypothesis 1H , the decision statistic is chi-square distribution (non-central, 2u  

degrees of freedom and 2  non-centrality parameter), and can be expressed by [21] as 

Band Pass 

Filter 

Squaring 

Device 
Integrator 

Decision 

Device 

Figure 1.2 Block diagram of an energy detector 
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           
22

2

0 0 1

10

2 / / :
T u

k k

k

y N h s t n t dt hx n N W H


       (1.19) 

 2

2~ 2uy                  (1.20) 

Thus, knowing the PDF of decision statistic y, one can easily estimate the probability of y 

being less than which is nothing but the outage probability of y. The probability of 

detection,  ,dP    is given by [23] as 

          
     1, 2 ,d r uP P y H Q      

                                         
(1.21)                         

and the probability of false alarm,  fP  is given by [23] as 

   
 0

,
2

f r

u

P P y H
u



 

 
 
   


                                   (1.22) 

Generalized Marcum- Q function can be defined in equation (4.74) of [1] as  

  
   

1

0 0

1
2 , exp exp

! ! 2 2

lm m n

u

m l

Q
m l

  
  

  

 

  
    

  
 

                   

(1.23) 

Using equation (8.352.2) of [24], Marcum- Q function can be written in terms of upper 

incomplete gamma function as 

                          

   
 
 0

, 2
2 , exp

!
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u

m

m u
Q
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
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



 
 

 


                             

(1.24) 
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It is evident from equation 1.21 that  fP  is same over any fading channel as it does not 

depend on the fading parameter. The expression in equation 1.21 and 1.22 are achieved 

by considering the channel as non-fading, and thus channel gain in equation 1.16 is 

assumed to be constant. If the channel is characterized by fading channel, then  ,dP  

in equation 1.21 becomes statistical parameter and hence its average with respect to the 

given distribution needs to be found. 

 

1.7   Thesis Organization and Contributions 

In this thesis, the performance analysis of composite fading channels is performed. The 

thesis work is divided into different chapters. Chapter wise contribution of the thesis is as 

follows:  

Chapter 2: Literature Review  

 A detailed and exhaustive literature survey is presented for the various 

approaches and techniques used to evaluate the performance of communication 

systems in different fading channels. 

 Performances of various models of energy detector that are widely employed in 

the literature are given. Based on the literature survey research gaps are 

identified, and research objective of the thesis is formulated. 

Chapter 3: Performance Analysis of L-Hoyt/Gamma Composite Fading Channel  

 L-Hoyt/gamma composite fading channel employing micro-diversity reception 

using MRC is analyzed.  
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 The closed-form mathematical expressions for the performance parameters 

outage probability, AF, channel capacity and ASEP/ABEP are derived. 

Chapter 4: Performance Analysis of L-Hoyt/Lognormal Composite Fading Channel  

 Performance of communications systems with MRC diversity combining 

schemes over Hoyt/lognormal composite fading channels.  

 The analytic expressions of the performance parameters for MRC schemes are 

provided with high accuracy. 

Chapter 5: Energy Detector performance over L-Hoyt/Gamma and L-

Hoyt/Lognormal Composite Fading Channel 

 Energy detector performances over L-Hoyt/gamma and L-Hoyt/lognormal 

channel are presented here. The closed–form mathematical expressions for 

average probability of detection and average AUC are derived. 

 The optimized threshold has been incorporated to overcome the problem of SS 

at low SNR. 

Chapter 6: Conclusion and Future Scope of Work 

 Conclusions of proposed methods and algorithms are presented in this chapter. 

 A detailed discussion of possible avenues of future scope work is presented.



CHAPTER 2  

LITERATURE REVIEW 

 

This chapter presents the summary of various algorithms and methods used to model 

wireless communication channel and the performance evaluation of these channels 

present in the literature. A detailed literature review of SS and energy detector 

performance over different channels are also presented. 

 

2.1   Performance Evaluation of Fading Channels 

The propagation of the signal in wireless channels is affected by multipath fading and 

shadowing [1]. There is a general consensus that multipath fading is modeled using the 

various distribution such as Rayleigh, Nakagami, and Weibull distribution etc. [1] [25]. 

Performance measures of these multipath fading models are investigated in the literature. 

Closed-form expressions of PDF and CDF for the product of n independent Rayleigh 

distributed random variables are derived in [26]. Analytical expressions of the 

performance measures for double Rice channels are obtained in [27] while for Bivariate 

Ricean Model is described in [28]. The performance analysis of Weibull distribution is 

performed in [29] [30]. In [29], second-order statistics and channel capacity for Weibull 

fading channel are also evaluated.  
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Hoyt distribution is used to model the small-scale fading characteristics of severely faded 

wireless systems [31]. Analytical expressions for PDF and MGF for Hoyt distribution are 

obtained in [1], and the expression for CDF is derived in [32]. The closed-form analysis 

for the outage probability of Hoyt channel under Rayleigh interference and Rayleigh 

channel under mixed Rayleigh and Hoyt interference are described in [33] [34]. The 

average channel capacity and the ABEP for multi-user MIMO over i.i.d. α–μ distribution 

are given in [35].  A comparison of the ergodic capacity for generalized fading channels 

is presented in [30], while a comparison of second-order statistics for the generalized 

multipath fading channels is discussed in [36]. 

In shadowed fading, large-scale signal variation can be described in the form of various 

distributions like lognormal, gamma and inverse Gaussian etc. [3]. There is a general 

consensus that lognormal distribution is the most accurate model of shadowing [1]. Error 

probability over the lognormal fading channel is derived for various modulation schemes 

in [37] [38] while its channel capacity is estimated in [39]. In [40] lognormal fading 

model is presented and its second order statistics are evaluated. Because of the 

mathematically simpler form of gamma distribution and its closeness with lognormal, it 

is most widely used in literature to model shadowing effects [9]. Gamma distribution is 

used in place of lognormal distribution to represent shadowing in K [9], generalized-K 

[41], and Weibull/gamma [42] composite distributions. In [10], the authors have 

investigated that inverse Gaussian distribution is better suited for capturing shadowing 

effect than gamma distribution. So inverse Gaussian distribution is also studied in 

literature as a model of shadowing. An alternate approach was adopted to represent 

shadowing and in [43], shadowing is modeled by cascading short-term fading, while N-
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gamma model is suggested in [44] to represent shadowing. All the above approaches 

have their limitations in the sense that none of them can be used in all the scenarios to 

model shadowing.  

Composite fading channels are frequently encountered in the radio wave propagation in 

which multipath fading is superimposed on shadowing [1]. Modeling of composite fading 

is important in analyzing the wireless communication system such as MIMO and CR 

network and in the modeling of interference in the cellular system. Various composite 

fading models such as Rician/lognormal, Rayleigh/lognormal and Nakagami/lognormal 

are considered, and their performance is demonstrated in [45] [46] [47]. A mixture 

gamma distribution is studied in [48] to find the closed-form expressions for performance 

parameters of Nakagami/lognormal with high accuracy. In [49], considering 

Weibull/lognormal composite fading, second-order statistics of fading channel have been 

derived. 

However, due to mathematical complexity, the performance parameters of lognormal 

based composite fading channels are not given in closed-form, which makes the analysis 

of the channel very difficult [3]. The performance of several composite distributions like 

K [9] [50], generalized-K [41] and the Weibull/gamma [42] have been studied in 

literature where shadowing is modeled in terms of gamma function. Specifically, in [51] 

a general model of a class of composite fading such as η–μ/gamma is carried out, where 

the results, as a special case, reduce to Hoyt/gamma case is presented. The channel 

capacity over composite κ–μ/Nakagami-m and κ–μ/gamma channels is studied in [52] 

[53] while for α–μ/gamma channel is demonstrated in [54]. In [51] [55], the analytic 
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expressions for the ABEP, the ergodic capacity and the outage probability for η–

μ/gamma fading channels are evaluated. 

Performance of Rayleigh/inverse Gaussian composite fading is investigated in [10] and 

the merit of using Rayleigh/inverse Gaussian over K channel to represent composite 

fading is demonstrated. The work in [11] model the composite Nakagami/lognormal 

fading by approximating lognormal shadowing in the form of inverse Gaussian 

distribution, thus, ensuring the resultant expression in the closed-form. The analysis of 

various fading and shadowing statistical models are estimated in [56].  

In [57] EGC is used for analyzing the performance of dual-branch Rice and Hoyt fading 

channel. ABEP performance of both coherent/non-coherent detection for EGC receiver 

over Hoyt fading is obtained in [58] [59]. An MGF base approach is used in [60] to 

estimate the performance of EGC over Rice and Hoyt channels. The expressions of the 

outage probability over α–μ, κ–μ and η–μ channels with EGC receivers with co-channel 

interference are derived in [61]. Performance of SC over Rayleigh [62], Nakagami-m and 

Hoyt [63] [64] fading for the correlated channel is analyzed. MRC is the most popular of 

all the diversity techniques, and error rate performance of coherent modulation over 

cascaded Rayleigh fading with receive antenna diversity is investigated in [65]. The 

effect of diversity order on the system performance is also demonstrated. MRC diversity 

is used for the performance analysis of double Nakagami-m fading channels in [66] while 

performance over triple selection diversity is studied in [67]. The ergodic capacity of 

MRC combiner over Hoyt channel is analyzed in [68] while ABEP performance is 

examined in [69] [70]. The performance of MRC diversity over η–μ fading with co-

channel interference is evaluated in [71]. 
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Analytic expressions for the ASEP of MRC and EGC schemes for various modulation 

schemes over α–μ fading channel have been recently studied in [72] using Mellin 

transform. In [73] ASEP and the ergodic capacity over i.i.d generalized-K fading 

channels with MRC and SC receivers are computed. 

Performance of MRC combiner over lognormal shadowed fading channel is investigated 

in [74]. By using the fact that the sum of lognormal RV is well approximated by another 

lognormal RV, the ergodic capacity for MRC and EGC over lognormal channel is studied 

in [75]. The effect of cooperative diversity over lognormal channels is demonstrated in 

[76] while dual diversity performance over correlated lognormal channels is analyzed in 

[77]. 

Short-term fading is mitigated through micro-diversity while the macro-diversity 

approach is used to overcome the effect of long-term fading. Hinging on the fact that SC 

diversity enjoys the lowest implementation complexity, the performance of macro-

diversity and micro-diversity systems using SC are studied in [78] [79] [80]. In [78] [79] 

the first order statistic of the system is examined while in [80] second order statistic of 

the system is evaluated. 

 

2.2   Energy Detection Model and its Performance Evaluation 

CR has been suggested as a prompting solution to the spectrum scarcity problem. SS is 

the key function of CR. In spite of the energy detection technique having the accuracy, 

high speed and low power consumption, some challenges appear when it is used to sense 

the PU signal in CR networks. The first challenge is to analyze the behavior of energy 
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detector in a practical channel model and then propose a method to enhance its 

performance. The second challenge arises when the wireless signals undergo multipath 

fading and shadowing. In spite of few works that have been devoted to deal with this 

challenge, an extensive study by using different channel models should be investigated to 

get clarifications about the impacts of multipath and shadowing on the energy detector 

performance.  

Energy detector performance over Nakagami-m fading channel is studied in [23]. The 

AUC expression of energy detector for Nakagami-m and η–μ channels is presented in 

[81]. The analysis of an energy detector under the η–μ fading channel is exploited in [82] 

[83]. A generalized expression for the performance of energy detector is derived over α–μ 

generalized gamma fading model in [84] while for κ–μ and κ–μ extreme fading channels 

are derived in [85]. The performance for various SS techniques over TWDP channel has 

been demonstrated for CR based IoT devices in [86].  

In a practical wireless communication system, both multipath and shadowing effects are 

experienced simultaneously. Analysis of energy detection over Rician/lognormal channel 

is studied in [87] while for K and generalized-K channels is analyzed in [88] [89]. Energy 

detection based measures in terms of CROC curves and CAUC curves over 

Rician/gamma fading channels are discussed in [90] and the performance of energy 

detector over gamma shadowed α–μ, κ–μ and η–μ channels is studied in [91]. 

The analytical expressions for the ROC over Nakagami-m channel with diversity 

combiner is presented in [92] while the performance in terms of CROC and CAUC have 

been derived in [93] [94]. Based on MGF, energy detector over Nakagmai-m and Rician 

channels in terms of CROC curves with different diversity techniques are studied in [95]. 
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An analytical study of SC diversity under η-μ multipath fading is presented in [96] while 

energy detector performance for diversity reception over κ–μ and η–μ channels is 

proposed in [97]. Study of an energy detector over η–μ, κ–μ and α–μ fading with 

diversity reception is presented in [98]. 

New analytical approach is used in [99] to study the energy detector behavior over κ-

μ/gamma channel. In [100], transmit and relay diversity approaches are used to alleviate 

the impact of the imperfect reporting channel on the performance of CSS. 

In wireless communication systems, energy detector with cooperative SS has been 

studied over different fading channels. Cooperative SS over κ–μ/gamma channel is 

analyzed in [101]. The performance analysis of cooperative SS is studied over different 

composite channels [102]. 

Conventional or fixed threshold method does not work at low SNR, the optimized 

threshold is used in place of the fixed threshold to improve the performance of energy 

detector [103]. In [104] [105] [106], the threshold is optimized for cooperative SS by 

minimizing the total probability of error over Rayleigh and Nakagami-m channel.  

 

2.3   Research Gaps and Motivation 

In literature survey, the study for diversity reception of Hoyt fading channel is available, 

but the micro-diversity analysis of composite Hoyt/gamma and Hoyt/lognormal fading 

channel has not received enough attention.  

There are some challenges in using the energy detector for SS in CR networks that should 

be addressed to obtain good sensing results. The first challenge is analyzing the behavior 

of the energy detector in practical channel model without mathematical limitations and 
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then proposing a method to alleviate the performance of the energy detector by 

depending on this analysis. The second challenge arises when the wireless signals 

concurrently undergo multipath fading and shadowing. In spite of few works that have 

been devoted to deal with this challenge, an extensive study by using a practical channel 

model should be investigated to get clarifications about the impacts of the composite 

channel on the performance of the energy detector. Accordingly, an optimal method to 

alleviate the effects of the shadowing can be developed. Another challenge is the 

complexity of channel models expressions that leads to intractable performance metrics 

especially when diversity reception schemes are used. This challenge can also be noticed 

in analyzing the performance of communication systems.  

Motived by these challenges, this thesis studies the performance evaluation of energy 

detector over the composite channels with diversity combiner in CR network. Moreover, 

some techniques are utilized for the performance improvement over energy detector 

under different communication scenarios. 

 

2.4   Problems Formulation 

Based on the discussion presented in the previous section, we consider the following 

problems for analysis in this report. Analysis of diversity receivers over the composite 

channels with micro-diversity reception can be a potential area of research. The 

performance evaluation of energy detector over the composite channels with diversity 

reception can be of interest to the research community.  
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2.5   Aim and Objectives 

The main aim and objectives of this thesis are highlighted in the following points: 

 To study the performance of MRC combiner over Hoyt/gamma composite fading 

channel with the arbitrary number of branches. 

 To derive the unified expressions for the performance metrics of communication 

systems over Hoyt/lognormal composite fading channel for MRC with the arbitrary 

number of branches. 

 To analyze the behavior of the energy detector over Hoyt/gamma composite fading 

channel with micro-diversity reception using the method which gives non-limited 

analytic expressions for the performance metrics. 

 To study the performance of the energy detector over Hoyt/lognormal composite 

fading channel with micro-diversity reception that can be applied for a variety of 

wireless channel models. 

 

To fulfill the above-stated aims and objectives, we focus on the mathematical analysis of 

the performance measures of the receivers in the best possible compact form. 

 

 

 

  



CHAPTER 3  

PERFORMANCE ANALYSIS OF L-HOYT/GAMMA 

COMPOSITE FADING CHANNEL 

 

This chapter demonstrates the performance analysis of L-Hoyt/gamma composite fading 

channel. Hoyt distribution is used to model the short-term fading characteristics of the 

channel with more severe fading conditions and gamma distribution is the most 

acceptable approximation of lognormal distribution and is most widely used in literature 

to model shadowing effects. Short-term fading is mitigated through micro-diversity while 

the macro-diversity approach is used to overcome the effect of long-term fading. Hinging 

on the fact that MRC gives the best performance of all the diversity techniques, the 

composite fading channel employing micro-diversity reception is studied. Closed-form 

mathematical expressions for distribution function, moments, outage probability and 

channel capacity are presented in terms of hypergeometric functions. Further, the 

expressions of ASEP/ABEP for coherent and non-coherent modulation techniques 

involving Q-functions and Marcum- Q function are derived over the composite fading 

channel.  

 

3.1   System and Channel Model 

PDF of   for conditional Hoyt fading channel at the output of L branch MRC receiver is 

defined by [69] as 
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where w is the average received SNR of the conditional Hoyt distribution.
 
If w is slowly 

varying, the PDF in equation 3.1 becomes a statistical term and its average need to be 

computed. Here, the slowly varying fading is modeled using gamma distribution with 

PDF given by equation 1.7.  The composite fading distribution can be evaluated by 

using 
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Substituting equation 1.7 and 3.1 into equation 3.2, we get 
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where  1 1 .;.;.F can be simplified using equation (9.210.1) of [24]. Transforming each 

exponential term by using equation (07.34.03.0228.01) of [107] and rearranging the 

terms, equation 3.3 can be written as    
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where    2 4 21 / 2 , 1 / 2s q q t q q    . Using equation (9.31.2) of [24], equation 

(07.34.21.0011.01) of [107] and after some mathematical manipulations, the 

mathematical expression of PDF of L-Hoyt/gamma channel can be simplified as 
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By putting q=1 in the definition of s and t, equation 3.5 can be simplified to PDF of K 

distribution.  

 

3.2   Performance Parameters 

3.2.1   Outage Probability 

Substituting equation 3.5 in 1.13, the expression for outage probability of L-Hoyt/gamma 

channel comes out as  
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3.2.2   Amount of Fading 

The thi  moment of   is defined as  
0

i iE p d   


     . By putting equation 3.5 in the 

definition and using equation (07.34.21.0009.01) of [107], the i
th

 moment of the 

composite fading channel can be easily evaluated as 
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 The AF is defined as  
22 1AF E E     . AF of the L-Hoyt/gamma channel can be 

easily evaluated using equation 3.7. 

3.2.3   Channel Capacity 

Shannon’s channel capacity is defined as the maximum rate of data transmission over a 

channel with small error probability. It is an important performance parameter which is 

kept in mind while designing the system. Motivated by this fact, the closed-form 

expressions for channel capacity under ORA and CIFR are presented here. 

3.2.3.1  ORA 

In this scheme, the transmit power remains constant. This scheme is more practical and 

its channel capacity is expressed by [1] as 

               2

0

log 1oraC B p d  


                        (3.8) 

here B is the band-width of the channel. Putting equation 3.5 in 3.8, and using equations 

(07.34.03.0456.01) and (07.34.21.0011.01) of [107], the above equation can be simplified 

as 
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3.2.3.2  CIFR 

Under this policy, transmitter allocates higher power to the channel with low SNR and 

lower power to channel with higher SNR such that the constant received power is 

maintained. It is the capacity which gives lower bound of data rate through any channel. 

The channel capacity under this scheme is defined by [1] as 
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                            (3.10) 

Using the result of equation 3.7 for  1E 
 
in equation 3.10, one can easily find out the 

final expression of cifrC . 

3.2.4   ASEP/ABEP 

In this section, we have derived the closed-form expressions for ASEP/ABEP for 

coherent/non-coherent detection. The general formula for ASEP/ABEP is given by 

equation 1.15. 

3.2.4.1  Coherent Modulation Scheme 

The generalized instantaneous error probability for coherent modulation is given by [38] 

                0

1

( )

dD

e d

d

P Q c  


 
                               (3.11) 

The values of D, d and 0c depends upon the modulation scheme and their values are 

defined in Table 3.1. It is difficult to perform the averaging of instantaneous error 
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probability in equation 1.15 by directly applying equation 3.11 in terms of Q-function. 

Hence we need to find the approximate of Q-function. Various approximations of Q-

function are used in the literature [38] [108]. 

Table 3.1 Coherent Modulation schemes incorporating the integral power of Q-functions 

Modulation D     d  

Binary Antipodal BPSK 1 2 1 1   

Binary Orthogonal BPSK 1 1 1 1   

QPSK 1 1 1 2   

M-PSK 1      (  ⁄ ) 1 2   

M-PAM 1 
 

    
 

 
 
 (   )

 
 

M-QAM 2 
 

   
 


 
 
 (√   )

√ 
  


 
  

 (√   )
 

 
 

DEQPSK 4 1 

 
    


 
     


 
   

 
    

 

The Q-function is approximated using [38] as 

  
     1 2

1 1exp 2 exp
2 2

a a
Q t bt b t                                  (3.12) 

Here 1 2 0.3070, 0.4389 a a  and 1 1.0510.b 
 ASEP can be found by substituting 

equation 3.5 and 3.11 into equation 1.15 and using the approximation of Q-function
 
as in 

equation 3.12. The resultant expression is evaluated as
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        (3.13) 

This integral can be solved by expanding the square bracket of the integrand with the 

help of binomial theorem    
0

, .
nn n k k

k
x y C n k x y


   

Using equations 

(07.34.03.0228.01) and (07.34.21.0011.01) of [107], the generalized closed-form solution 

of ASEP for all formats of coherent modulation techniques is given by 
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The next section deals with the average probability of error for non-coherent modulation 

techniques.  

3.2.4.2  Non-coherent Modulation Scheme 

In some situations, the phase recovery of the carrier signal cannot be recovered 

accurately. In that situation, the communication system has to be dependent on non-

coherent reception. The popularly used modulation techniques in non-coherent reception 

are FSK DPSK and DQPSK. In [108] [109] the mathematical expressions for non-

coherent reception have been studied. In this section, we have proposed the closed-form 

analysis for non-coherent reception over the composite fading with diversity. 
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a) DPSK: The bit error probability for DPSK (a=1) and BFSK (a=0.5) is given by [13] 

as 
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(3.15) 

Putting equation 3.5 and 3.15 into equation 1.15, and using the transformation of 

exponential function into G-function and integral of the product of two G-functions using  

equation (07.34.21.0011.01) of [107], we can obtain the final expression of ABEP for 

non-coherent DPSK and BFSK modulation schemes as 
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b) MFSK: The instantaneous probability of symbol error for MFSK is given by [13] as 
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here each symbol of MFSK represents 2log M
 
bits. The ASEP expression for MFSK is 

obtained by substituting equation 3.5 and 3.17 into equation 1.15 and using equations 

(07.34.03.0228.01) and (07.34.21.0011.01) of [107] 
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c) DQPSK: Bit error probability for DQPSK is defined by [13] as 
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where    2 1 1 2 , 2 1 1 2a b    . Substituting equations 3.5 and 3.19 into 

equation 1.15 and using the expansion of Marcum- Q function and modified Bessel 

function [13], one can write the resulting expression as  
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where 
2 2

,
2 2
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x r
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  , and 2z l k  . Using equations (07.34.03.0228.01) and 

(07.34.21.0011.01) of [107], we can obtain the final result for ABEP of DQPSK as 
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3.3   Numerical Results and Discussions 

The validity of our performance parameters are confirmed in this section. The default 

value of 
 
is taken as unity in all the calculations. Monte-Carlo simulations are also 

included with 10
7 

numbers of samples for generating L- Hoyt/gamma composite 

distribution for validating the accuracy of the derived expressions. The simulation results 

are in close match with the derived results obtained by keeping enough number of terms 

in the infinite series.  

 

Figure 3.1 Diversity effect on Outage Probability for several values of m and q 

In Figure 3.1, outage probability against the normalized outage threshold  th 
 
for 

arbitrary values of m and q using the closed-form expression as given in equation 3.6 is 

plotted. It is evident from the results that outage probability increases with increase in th
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indicating an increase in the likelihood of failure to achieve a given threshold level. As 

expected, the outage probability is shown to decrease with increase in m and q, hinting an 

improvement in performance of the receiver. The effect of channel condition 

improvement with diversity is clearly shown in the plot. AF as a function of m for several 

values of q is plotted in Figure 3.2. It is noted that AF decreases as m and L increases, 

showing improved performance. Furthermore, as q increases, AF plot shift downwards, 

while it can also be observed that the gap among the curves decreases as L increases. 

Moreover, in Figure 3.3 the impact of q on the channel capacity is demonstrated for 

various values of diversity order L based on equation 3.9. It is observed that the increase 

in the values of q or L both help to improve the performance of the system. 

 

Figure 3.2 AF versus m for several values of q and L 
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Figure 3.3 Effect of diversity and fading parameter on channel capacity with ORA for m= 1 

  

 

 

Figure 3.4 Channel Capacity with ORA and CIFR for m= 2 and L= 4 
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Figure 3.5 ABEP Comparison between QPSK and DQPSK for different values of L 

Figure 3.4 depicts the average channel capacity as a function of the average received 

SNR for the ORA and CIFR schemes with several values of the fading parameter q. 

Monte-Carlo simulations exactly match with the analytical results. It is evident that, as 

the average received SNR increases, the capacity of both the transmission schemes 

increases.  It is noted that CIFR achieves the lower capacity than ORA. The reason for 

this is that CIFR uses a fixed transmission data rate; and more power is required to 

compensate for the effect of severe fading. 

 

0 2 4 6 8 10 12 14 16 18 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Average SNR(dB)

A
B

E
P

 

 

QPSK Closed Form

DQPSK Closed Form

Simulation

L=2

L=4

L=1



Chapter 3: Performance Analysis of L-Hoyt/gamma Composite Fading Channel  

38 

 

Figure 3.6 ASEP of DEQPSK for several values of m, q and L 

 

Figure 3.7 ASEP of M-QAM for several values of m and L 
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Table 3.2 Number of terms (N) required for accuracy at 7th place of the decimal digit in 

the numerical evaluation of (3.14), (3.18) and (3.21) 

 

 

 

 

 

 

The Comparison of QPSK and DQPSK schemes for different values of L is shown in 

Figure 3.5. As observed, an excellent match between the analytical results produced by 

putting closed-form expression of equation 3.14 for QPSK and equation 3.21 for DQPSK 

with the simulations results is achieved. It is noted that the performance of the system 

improves with an increase in L as shown by downshifting of the plots. Secondly, QPSK 

outperforms DQPSK significantly. In Figure 3.6, ASEP of DEQPSK has been plotted 

over the composite fading channel for several values of m, q and L. The theoretical 

curves have been constructed based on expression equation 3.14. It is observed that the 

plots shift downwards with the increase in the fading and shape parameters indicating an 

improvement in the system performance. Figure 3.7 demonstrates the plots for M-QAM 

using the analytical expression as given in equation 3.14 over L-Hoyt/gamma composite 

fading channel under the various constellation sizes M=2, 4 and 8. It is noted from the 

results that the plot shifts upwards for the higher constellation. ABEP/ASEP expressions 

presented here are presented in terms of infinite series. We have truncated the series by 

Modulation 
L=1 L=4 

q=0.4 q=0.8 q=0.4 q=0.8 

BPSK (3.14) 14 2 26 4 

QPSK (3.14) 16 3 29 5 

8-PSK (3.14) 20 4 35 6 

2-PAM (3.14) 11 2 21 3 

8-PAM (3.14) 22 4 39 6 

2-QAM (3.14) 14 2 27 4 

8-QAM (3.14) 21 4 37 6 

DEQPSK(3.14) 17 3 31 5 

BFSK (3.18) 15 3 29 5 

DQPSK (3.21) 13 2 27 4 
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including the finite number of terms N ensuring to achieve accuracy at the seventh place 

of the decimal digit. In Table 3.2, we have calculated the number of terms required to 

achieve this accuracy in equations 3.14, 3.18 and 3.21 as a function of q and L with m=1. 

The number of terms needed to achieve the desired accuracy depends on q, L and the 

modulation technique being used. The value of N decreases with increase in q, indicates 

that more number of terms are required for more severe fading conditions. It can be noted 

that more number of terms are required for higher diversity order system.  

 

3.4   Significant Findings 

Taking note of the fact that Hoyt is known to capture the severe multipath fading and 

gamma distribution is most widely used to model shadowing, we have analyzed the 

performance of L-Hoyt/gamma composite channel. The closed-form expressions for PDF 

of instantaneous SNR, AF, outage probability, channel capacity and ASEP/ABEP of the 

composite channel were obtained in terms of generalized hypergeometric functions. 

Moreover, the effect of fading parameters and diversity order on the system performance 

is discussed. All the results produced here are accompanied by Monte Carlo simulations.  

This chapter is based on the following work: 

Sandeep Kumar, Sanjay Kumar Soni, Priyanka Jain, “Micro-Diversity Analysis of Error 

Probability and Channel Capacity over Hoyt/gamma Fading”, Radioengineering, 2017, 

26(4), 1096-1103. DOI: 10.13164/re.2017.1096. (SCI journal with Impact factor – 

1.048) [110]  

 

 



CHAPTER 4  

PERFORMANCE ANALYSIS OF L-HOYT/LOGNORMAL 

COMPOSITE FADING CHANNEL 

 

This chapter evaluates the performance of communication systems with MRC diversity 

combining schemes over Hoyt/lognormal composite fading channels. A mixture gamma 

distribution is employed to approximate the PDF of the composite fading channel. The 

equivalent parameters of mixture gamma distribution are calculated. Thereafter, analytic 

expressions of the outage probability, ABEP and the average channel capacity for MRC 

schemes are provided. 

4.1   System and Channel Model 

PDF of   for conditional Hoyt fading channel at the output of L branch MRC receiver is 

defined in equation 3.1. Here, shadowing is modeled using lognormal distribution with 

PDF given by equation 1.6. The composite PDF of L-Hoyt/lognormal can be evaluated 

by substituting equation 1.6 and 3.1 into equation 3.2 as 

           

 

 

 
   

 

2

2 42
1

1 1

0

2

2

2

1
exp

2 11
; ;

2
 

log1
             exp

2

2

2

2

e

L

L

q

q w qq L
p

w µ
dw

F L
qw

w

L q w
















  
  
           

 


 
  
 
 

  


       

(4.1) 
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By replacing  1 1 .;.;.F  using equation (9.210.1) of [24] and taking the assumption for s 

and t as in equation 3.4, the above equation can be solved as 

                         

 

 

 

   

1

0

2

2

0

log1
             exp exp

2

2

!

2

L nL n

n

e

n

L n w µ

w

L
s t

p
L n n

s
w dw

qw













 






 

 

  


 


      













        

(4.2) 

Using the change of variable,  log 2ez w µ    and putting

        ( ) exp 2 exp 2h z n L z s q z           
  

, equation 4.2 can be 

written as  
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(4.3) 

The term    2exp z h z dz





 

in equation 4.3 can be approximated as  
1

K

k k

k

w h z


 using 

Gaussian-Hermite integration, where kz  and kw   are abscissas and weight factors. The 

values of  kz  and kw  can be calculated by a simple MATLAB program. Therefore, the 

above equation can be simplified as 
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where 
1

K

k

k

C w


   is the normalized factor to ensure  
0

1p d  


 . Doing some 

mathematical manipulations, equation 4.4 can be further simplified to 

                                  

 

 

 

1

0 1

2
exp( )

!

L nn

L K
n

k k k

n k

L
t

s
p w a b

W L n n




 

 



 

 
 
 

 
 

 
             

(4.5) 

The above distribution is a mixture of gamma distribution where

   2exp 2k ka n L z     ,     2exp 2k kb s q z     and
1

K

k

k

W w


 . 

4.1.1   Outage Probability 

Putting equation 4.5 in 1.13, the expression for outage probability is given as  
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(4.6) 

4.1.2   Amount of Fading 

The thi  moment of L-Hoyt/lognormal can be evaluated by putting equation 4.5 in the 

definition of  thi  moment and using equation (07.34.03.0228.01) of [107], we get     

                   
 

  1 1,0

0,1

0 1 0

2

0!

n

L K
n L ii n

k k k

n k

L
t

s
E w a G b d

W L n n
   


  

 

 
 

           
  

           

(4.7) 

Using equation (07.34.21.0009.01) of [107], equation 4.7 can be simplified as 
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The final expression of AF can be easily evaluated by putting equation 4.8 in the AF 

expression. 

4.1.3   Channel Capacity 

Different adaptive transmissions schemes such as ORA, CIFR and TIFR are discussed in 

this section. 

4.1.3.1  ORA 

Channel capacity with ORA can be calculated by putting equation 4.5 in 3.8 and using 

equations (07.34.03.0228.01) and (07.03.0456.01) of [107], it can be written as 
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(4.9) 

Applying equation (07.34.21.0011.01) of [107], and doing some mathematical 

manipulation ORA channel capacity is evaluated as 
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4.1.3.2  CIFR 

In this channel transmission policy, CSI is present at the transmitter. Using the result of 

equation 4.8 for  1E 
 
in equation 3.10, one can easily find out the final expression of

cifrC . 

4.1.3.3  TIFR 

An improvement over CIFR is the TIFR, where the transmission is barred when the SNR 

falls below a fixed cut-off, 0   and to continue transmission when SNR is greater than 0 . 

The outage capacity associated with a given outP  and corresponding cut-off is defined as 

[1] 
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outP  is defined in equation 4.6 and  
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  . Using equation 4.5 and equation 

(3.381.3) of [24], H can be simplified as  
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(4.12) 

TIFR capacity is obtained by maximizing the outage capacity for all possible 0 , i.e. 

0
maxtifr outC C . 
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4.1.4   ASEP/ABEP 

The general formula for ASEP/ABEP is given in equation 1.15. ASEP/ABEP for 

coherent and non-coherent modulation shall be examined separately in this section.  

4.1.4.1  Coherent Modulation Scheme 

In generic form, ( )eP  for coherent modulation scheme is given in equation 3.11. Putting 

equations 4.5 and 3.11 into equation 1.15, we get 
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d , 0c and D have their usual meaning as given in Table 3.1. The value of the parameters 

1 2,  a a  and 1b  are same as defined in equation 3.12. This integral can be solved by using 

the same approach as used in solving the equation 3.13. Using equations 

(07.34.03.0228.01) and (07.34.21.0009.01) of [107], the generalized solution of ASEP 

for all formats of coherent modulation techniques is given by 
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4.1.4.2  Non-Coherent Modulation Scheme 

In this section, we propose closed-form mathematical expression for non-coherent 

detection schemes over composite L-Hoyt/lognormal fading.  

a) MFSK: The instantaneous bit error probability of MFSK is given in equation 3.17. 

The ABEP is obtained by substituting equation 4.5 and 3.17 into equation 1.15 and 

using equation (07.34.03.0228.01) of [107] 
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           (4.15) 

After using equation (07.34.21.0009.01) of [107], one can obtain the final expression of 

ABEP of MFSK as 
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b) DQPSK: Instantaneous bit error probability for DQPSK is defined in equation 3.19. 

Substituting equations 4.5 and 3.19 into equation 1.15 and using the expansion of 

Marcum- Q  function and modified Bessel function [13], one can write the resulting 

expression using equation (07.34.03.0228.01) of [107] as 
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Using equation (07.34.21.0009.01) of [107], we can simplify equation 4.17 as shown 
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              (4.18) 

 

4.2   Asymptotic Analysis 

Asymptotic analysis is required where the channel is severely faded and large SNR is 

required for achieving a minimum target bit error rate. In this section, we have obtained 

asymptotic expressions for the ASEP/ABEP of the modulation technique produced in the 

earlier section. The asymptotic expressions can be derived based on the behavior of the 
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PDF of the instantaneous SNR around the origin [111]. By using Taylor,s series the PDF 

expression of equation 4.5 can be given as 
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(4.19) 

where   is higher order terms and we can ignore them in our analysis. 

4.2.1   Coherent Modulation Scheme 

Putting equations 4.19 and 3.11 into equation 1.15, restoring to Binomial expansion and 

using equation (3.381.4) of [24], we get the final expression of ASEP is simplified as 
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(4.20) 

4.2.2   Non-Coherent Modulation Scheme 

a) MFSK 

Putting equations 4.19 and 3.17 into equation 1.15, using equation (3.381.4) of [24] and 

after simplification, the asymptotic expression of ABEP of MFSK is given as 
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(4.21) 

b) DQPSK 

Putting equations 4.19 and 3.19 into equation 1.15 and using equation (3.381.4) of [24], 

we get the asymptotic expression of ABEP of DQPSK 
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(4.22) 

All the results produced for asymptotic analysis are in simplified form and can be directly 

used in the applications where higher SNR analysis is required.  
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4.3   Numerical Results and Discussions 

In this section, numerical results are presented to illustrate the performance of composite 

L-Hoyt/lognormal channel. For all the calculations the values of K is taken as 4. The 

simulation results are in close match with the derived results obtained by keeping enough 

number of terms (N) in the infinite series. Outage probability vs. normalized outage 

threshold  th   based on equation 4.6 is shown in Figure 4.1. It is clear from the graph 

that system performance improves for the increase in diversity order. Indeed, as fading 

becomes less severe, the probability that the channel is in deep fade decreases 

significantly. 

 

Figure 4.1 Outage probability vs.  th  for several values of q and L 
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In Figure 4.2, the outage probability vs.  th  . It is noted that the outage probability 

deteriorates as shadowing becomes heavier. AF as a function of the number of diversity 

branches using the closed-form expression as given in equation 4.8 is depicted in Figure 

4.3. AF increases for an increase in   and decrease in q. It is noted that a significant 

improvement in the system performance is achieved between L=1 and L=4. ASEP vs. 

average SNR for M-QAM is shown in Figure 4.4. System performance increases with 

increase in L and decreases in  . Figure 4.5 shows the ASEP against average SNR for 

DEQPSK. As expected, ASEP deteriorates as the fading severity parameter q decreases.  

 

Figure 4.2 Outage probability vs.  th  with several values of σ and L 
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Figure 4.3 AF vs. L for different values of σ and q 

 
Figure 4.4 ASEP for coherent M-QAM for different values of σ and L 
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The theoretical curves in Figure 4.4 and 4.5 have been constructed based on equation 

4.14.  It is observed that the same behavior has been shown for outP  (Figure 4.1). In 

Figure 4.6, ABEP vs. average SNR for DQPSK is provided. It is very clear that the effect 

of the shadowing parameter is more pronounced compared to fading effect.  

 

Figure 4.5 ASEP for coherent DEQPSK for different values of q and L 
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Figure 4.6 ASEP for non-coherent DQPSK for different values of σ, q and L 

 

Figure 4.7 ORA channel capacity vs. average SNR for different values of q and L 
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Figure 4.8 Average channel capacity as a function of the average SNR 
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Table 4.1 Number of terms (N) required for accuracy at 7th place of the decimal digit in 

the numerical evaluation of (4.14), (4.16) and (4.18) for various values of q and σ with 

L=2 and L=5 

 

It is noted that by increasing the number of branches or at the higher value of q, the small 

value of the probability of error can be achieved. In the numerical evaluation of 

ASEP/ABEP expressions involving infinite series, we have truncated the series by 

including the finite number of terms (N) ensuring to achieve accuracy at the seventh place 

of the decimal digit. In Table 4.1, we have calculated the number of terms required to 

achieve this accuracy in equation 4.14, 4.16 and 4.18. The value of N decreases with 

increase in   indicates that more number of terms is required for more severe fading 

conditions. It is noted that more number of terms are required for higher diversity order 

system. 

 

 

 

Modulation 

L=2 L=5 

q=0.4 q=0.8 q=0.4 q=0.8 

  
=5 

  
=7 

  
=10 

  
=5 

  
=7 

  
=10 

  
=5 

  
=7 

  
=10 

  
=5 

  
=7 

  
=10 

BPSK(4.14) 18 22 26 3 4 5 26 34 42 4 5 6 

QPSK(4.14) 21 25 30 4 5 6 32 39 45 5 6 7 

8-PSK(4.14) 27 30 34 5 6 7 39 43 48 6 7 8 

2-PAM(4.14) 15 19 25 3 4 5 22 31 39 4 5 6 

8-PAM(4.14) 29 32 35 5 6 7 44 47 49 6 7 8 

2-QAM(4.14) 11 18 24 2 3 4 19 28 38 3 4 6 

8-QAM(4.14) 28 31 35 5 6 7 40 44 49 6 7 8 

DEQPSK(4.14) 22 26 31 4 5 6 33 41 47 5 6 7 

BFSK(4.16) 19 23 26 4 5 6 27 36 44 5 6 7 

DQPSK(4.18) 17 21 25 3 4 5 25 32 40 4 5 6 
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4.4   Significant Findings 

In this chapter, we have derived the closed-form mathematical expression for L-

Hoyt/lognormal composite fading channel using mixture gamma distribution. 

Performance parameters, such as outP , AF, channel capacity and ASEP/ABEP for 

different modulation schemes, were expressed in closed form. All the results produced 

here are validated using Monte-Carlo/Exact simulations. The analytical results produced 

here can be useful in many wireless applications. 

This chapter is based on the following work: 

Sandeep Kumar, Sanjay Kumar Soni, Priyanka, “Performance of MRC receiver over 

Hoyt/lognormal Composite Fading Channel”, International Journal of Electronics, 2018, 

105(9),1433-1450 DOI: https://doi.org/10.1080/00207217.2018.1460870, (Taylor & 

Francis, Impact factor – 0.939) [112] 

https://doi.org/10.1080/00207217.2018.1460870


CHAPTER 5  

PERFORMANCE ANALYSIS OF ENERGY DETECTOR 

OVER L-HOYT/GAMMA AND L-HOYT/LOGNORMAL 

FADING CHANNEL  

 

 

This chapter studies the behavior of an energy detector over composite channels. The 

performance analysis of energy detector over L-Hoyt/gamma channel is studied in the 

first section followed by the performance evaluation over L-Hoyt/lognormal channel. The 

PDF approach is employed to derive the mathematical expressions of average probability 

of detection and the average area under the receiver operating characteristic over both the 

channels are derived. In addition, the optimized threshold has been evaluated to 

overcome the problem of SS at low SNR. Moreover, the performance of an energy 

detector is analyzed by deriving the average detection probability and the average AUC. 

 

5.1   Energy Detector Performance over L-Hoyt/gamma 

In this section, energy detection over L-Hoyt/gamma composite fading channel is 

performed. 

5.1.1   Average Probability of Detection 

In fading channel,  fP  in equation 1.21 will remain same, since it does not depends on 

the received SNR. But with the variation of channel gain, the probability of detection 

varies and hence it’s averaging over SNR distribution needs to be evaluated. 
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 Average probability of detection can be defined using equation 1.22 as 
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Substituting equations 3.5 and 1.24 into equation 5.1,  dP   becomes 
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(5.2) 

Using equations (07.34.03.0228.01) and (07.34.21.0009.01) of [107], equation 5.2 can be 

simplify as 
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(5.3) 

Average probability of missed detection,  mP 
 
can easily be calculated by putting 

equation 5.3 in    1m dP P     . 
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5.1.2   Average Area under the ROC curve 

AUC is another performance parameter that gives a better understanding of the 

performance of energy detector. It is difficult to compare the performance of two energy 

detectors based on visual perception of their ROC when their ROC curves cross each 

other. In that situation, AUC is the single figure of merit that provides a better 

understanding as to what factors it affects the performance of the energy detector. In [2], 

it was indicated that the average AUC shows the probability of adopting the appropriate 

decision. The value of AUC varies from 0.5 to 1 as the detection threshold varies from 0 

to   [91]. The average AUC ( A ) can be defined by [90] as 
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Substituting equations 5.3 and 5.5 into equation 5.4, we have 
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(5.6) 

Using equations (07.34.03.0228.01) of [107] and equation (6.455.1) of [24] the closed-

form mathematical expression of average AUC is given as 
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(5.7) 

5.1.3   Threshold Optimization 

The total probability of error can be expressed by [112] as 

       0 1e f mP P H P P H P                               (5.8) 

The optimum threshold can be obtained by differentiating equation 5.8 with respect to  

and to find a global minimum, as the second derivative of the total probability of error 

w.r.t threshold is the positive value. Hence, we can find the optimized value of  as  

 opt earg min P                   (5.9) 

Considering apriori probability of both the hypothesis to be same in equation 5.8, we 

have 
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The first term of equation 5.10 is obtained in equation 5.5 and the second term 
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Substituting equations 5.5 and 5.11 into equation 5.10, we have 
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From equation 5.12, we can calculate the optimum value of threshold numerically. 

 

5.2   Energy Detector Performance over L-Hoyt/Lognormal 

In this section, energy detection over L-Hoyt/lognormal composite fading channel is 

performed. 

5.2.1   Average Probability of Detection 

For L-Hoyt/lognormal fading channel, the average probability of detection,  dP   can 

be calculated by putting equations 4.5 and 1.24 into equation 5.1 and is given as 
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             (5.13) 

Using equations (07.34.03.0228.01) and (07.34.21.0009.01) of [107], we can simplify 

equation 5.13 as  
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Using the same approach as discussed above,  dP   in terms of lower incomplete 

gamma function can also be written as 
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5.2.2   Average Area under the ROC curve 

The average AUC as given in equation 5.4 can be redefined by [91] as 
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Putting equation 5.15 in the above equation, using equation (3.381.4) of [24] and 

equation (2.10.3.2) of [113], the analytical expression of  A  can be obtained as 
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It is necessary to know the error in such truncation of the infinite series. An expression 

for the upper bound on the truncation error in equation 5.17 by R number of terms is 

given as  
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(5.18) 

Proof: See Appendix B. 

5.2.3   Optimization of Detection Threshold 

Deciding detection threshold parameter is crucial for accurate estimation of the available 

spectrum. The probability of error is expressed in equation 5.8. The optimum threshold 

can be obtained by using equation 5.9 and considering both the hypothesis equally 
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probable. By using the identity of differentiation of gamma function as used in 5.11, the 

final expression of detection threshold optimization can be derived as 
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Solving equation 5.19 numerically, we get the optimum value of the threshold.  

 

5.3   Numerical Results and Discussions 

The energy detector performance over L-Hoyt/gamma and L-Hoyt/lognormal fading 

channel are demonstrated in this section.  

 

Figure 5.1 CROC curves with several values of fading parameters for L-Hoyt/gamma channel 
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The CROC curves for various values of fading parameter and diversity order with 8u   

have been plotted in Figure 5.1 based on equation 5.3. When no diversity is applied, the 

probability of detection is low for q=0.4, 0.8 and the gap between the plots is very less, 

but as the diversity order increases the gap between the plots increases. It can be observed 

that there exists an obvious diversity gain when MRC is employed compared to the single 

antenna case. Moreover, as q increases, a higher detection probability with a lower false 

alarm probability is observed because the channel fading conditions improve, that is, the 

fluctuation of the signal strength reduces.  

 

Figure 5.2 CROC curves with several values of gamma parameters for L-Hoyt/gamma channel 
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In Figure 5.2, CROC curves for different values of SNR and m are plotted. At SNR = -5 

dB, CROC curves for 1,2m   are very close and the gap between the curves increases for 

the increase in SNR values. It shows that the probability of missed detection is high at 

low SNR but as the SNR increases, the probability of missed detection decreases. 

Though, for the small value of SNR, the output of energy detector is providing 

satisfactory performance, but as the SNR increases, energy detector based detection 

improved even when the gamma fading parameter increases. 

 

Figure 5.3 CAUC against the average received SNR with several values of fading parameters and 

diversity branches for L-Hoyt/lognormal channel 
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Figure 5.4 CAUC as a function average SNR with several values of m, q and L for L-Hoyt/gamma 

channel 
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0.4,0.8q  , the average CAUC curves are very close to each other, but as the diversity 

order increases, the performance of energy detector improves very significantly even at 

both the fading parameters as shown in the plot. The variation of CAUC, (1 - A ) as a 

function of   is plotted in Figure 5.4. The effect of diversity can be observed from the 

plots. The theoretical curves have been constructed based on equation 5.7. It is clearly 

shown that the analytical results produced here match well with their Monte-Carlo 

simulation counterparts, verifying the accuracy of the mathematical expressions. 

 

Figure 5.5 Average AUC against diversity branches for various values of average received SNR and 

number of samples 
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Figure 5.6 Average AUC against diversity order for various values of fading parameters  

and average received SNR 

 

AUC against diversity branches for various values of the average received SNR and 

number of samples is shown in Figure 5.5. As SNR decreases, the average AUC curve 

shifts downwards but exactly opposite behavior is expressed for u. Hence, it is very much 

clear from the plot that as the number of diversity branches increases, the average AUC 

curve moves towards its optimum value, i.e., 1. At the low value of SNR i.e., -10 dB, 

average AUC curves are not converging towards unity for different values of u, but as the 

value of SNR increases towards higher values, 0 dB and 5 dB, the average AUC curves 

conversed towards unity. Hence, from the figure, it is very much clear that average AUC 

always lies between 0.5 and 1.  

2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of diversity branch, L

A
v
e
ra

g
e
 A

U
C

 

 

q=0.3; Closed form 

q=0.9; Closed form 

Simulation 

Average SNR= -10, -5, 0, 5 (dB)



Chapter 5: Performance Analysis of Energy Detector over L-Hoyt/Gamma  

and L-Hoyt/Lognormal Fading Channels  

 

72 

 

Figure 5.7 Probability of error as a function of threshold parameter with several values of fading 

parameters, gamma parameters and diversity branches for L-Hoyt/gamma channel 
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fading parameters ( 0.4,0.8q  ) and for different gamma parameter ( 2,4m ). It is 

observed that the total probability of error ( eP ) has global minima with respect to the 

threshold ( ). The total probability of error decreases as the number of diversity order 

increases but when no diversity case is considered, not enough improvement has been 

seen in the plot. When we consider, at L=1 the probability of error are very close to each 

other for different values of q and m=2, but for different values of m, the total probability 

of error decreases even at single diversity order. So, when the diversity order increases 

form L=1 to L=4, the performance of energy detector improves.  

 

Figure 5.8 Truncation error for AUC as a function of R with different combination of system parameters 

for L-Hoyt/lognormal channel 
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Figure 5.9 Probability of error curve as a function of threshold with several values of q and L for L-

Hoyt/gamma channel 
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Table 5.1 MSE for convergence of the equations (5.3), (5.7) and (5.8) for various values 

of N and diversity order for L-Hoyt/gamma channel 

Performance 

Parameters 

L = 1 L = 4 

N=3 N=5 N=10 N=3 N=5 N=10 

DP (5.3) 1.1945 10
-10

 4.5106 10
-12

 7.2042 10
-16

 8.3760 10
-8

 5.7983 10
-9

 2.6168 10
-12

 

A (5.7) 9.3275 10
-8

 1.3217 10
-9

 3.2167 10
-14

 1.7124 10
-6

 3.6219 10
-8

 4.2981 10
-11

 

eP (5.8) 3.6580 10
-6

 4.6064 10
-8

 1.0919 10
-12

 4.8765 10
-4

 9.5908 10
-6

 1.7603 10
-9

 

 

for higher values of q. In Table 5.1, MSE incurred in truncating the infinite series of 

equations (5.3), (5.7) and (5.8) for various values of N and diversity order has been 

numerically evaluated. From the Table, it can be noted that MSE decreases with the 

increase in N and increases with the increase in L. The convergence rate of the series has 

been observed to be fast and hence the computation time is not significant. 

 

5.4   Significance Findings 

The performance of energy detector over L-Hoyt/gamma and L-Hoyt/lognormal 

composite fading channel is investigated. The analytical expressions of average 

probability of detection and average area under the receiver operating characteristic are 

evaluated. Further, we have optimized the detection threshold parameter by minimizing 

the probability of error. All the results produced here are compared with the Monte-

Carlo/Exact simulations. The analytical results produced here can be useful in several 

wireless applications where multipath and shadowing are characterized by 

Hoyt/lognormal distribution. 
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CHAPTER 6  

CONCLUSION AND FUTURE SCOPE OF WORK 

 

In this dissertation, performance evaluation of composite fading channels has been 

performed. The closed-form expressions of the performance parameters are evaluated and 

analysed. Mathematical model analysis always seeks for closed-form expression. The 

closed-form expressions of the performance parameters are very useful in comparison to 

the original integral expressions. Closed-form expressions are usually evaluated instantly 

and provide insightful information about the context of a problem. More appropriately, 

we can predict the impact of parameters by looking at the equation. The closed-form 

solution are useful to predict the performance of the system before deploying it (saves 

time and money). They also help in knowing what the best modulation is scheme/order, 

required SNR, etc. to achieve the target performance. Closed form expressions may 

reduce the implementation complexity and computational cost of the system. They may 

be incorporated into planning software packages, etc. In this chapter, the major 

contributions, achievements, and future scope of work of the thesis are summarized.   

 

6.1   Conclusion 

Focusing on the analytical approach, mathematical expressions for various performance 

measures have been obtained. The PDF-based approach is used in all the analysis for 

these performance measures. The mathematically obtained expressions are numerically 
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evaluated and the effect of different system parameters on the receiver performance is 

studied. The numerical results have been validated with the Monte-Carlo simulations 

results. The main conclusions of this thesis are summarised as follows: 

 Taking note of the fact that Hoyt is known to capture the severe multipath fading 

and gamma distribution is most widely used to model shadowing, we have 

analyzed the performance of L-Hoyt/gamma composite fading model. Closed-

form expressions for PDF of instantaneous SNR, outage probability, AF, channel 

capacity and ASEP/ABEP of the composite L-Hoyt/gamma were obtained in 

terms of generalized hypergeometric functions and the corresponding results are 

demonstrated. The effect of diversity on the receiver performance is discussed. 

These expressions can be useful in the performance evaluation of L-Hoyt/gamma 

composite fading environment.  

 The performance of energy detector over L-Hoyt/gamma fading channel has been 

analyzed. The analytical expressions of average probability of detection and 

average AUC are evaluated. Further, we have optimized the detection threshold 

by minimizing the total probability of error. The performance of energy detector 

can be improved at low SNR by using optimized threshold. Moreover, the effect 

of diversity on the performance of energy detector is discussed. The derived 

results are useful for system design engineers and can be directly used in several 

wireless applications such as cooperative and non-cooperative CR networks.  

 The closed form PDF expression for L-Hoyt/lognormal composite fading 

channel using mixture gamma distribution has been derived. Performance 

metrics, such as    , AF, channel capacity and ASEP/ABEP for different 
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modulation schemes, were expressed in closed form. We have also presented 

accurate analytical expressions for the average probability of detection and 

average AUC. The impact of system parameters on the performance of energy 

detector is studied in terms of CROC and average AUC. Further, the detection 

threshold parameter is optimized by minimizing the probability of error for L-

Hoyt/lognormal channel. The analytical results produced here can be useful in 

several wireless applications where multipath and shadowing are characterized 

by Hoyt/lognormal distribution. 

The obtained expressions for performance measures are obtained in terms of gamma, 

incomplete gamma and hypergeometric functions. All the computations and simulations 

are carried out in MATLAB (version R2014a). 

 

6.2   Future Scope of Work 

This thesis has addressed different problems that are related to performance analysis of 

fading channels and energy detector based SS for CR. However, there are also other 

questions, which are being currently investigated and which have not been presented in 

this thesis. This research work gives rise to several possible improvements and future 

research directions.  

 The behavior of an energy detector over multipath/shadowing fading channels with 

diversity reception was extensively analyzed in this thesis. Further analysis for the 

performance of an energy detector over composite generalized multipath/shadowing 

fading with diversity reception and for co-channel interference can be considered. 



Chapter 6: Conclusion and Future Scope of Work 
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 In [115], α–η-κ–μ fading model is proposed that accounts for virtually all relevant 

short-term propagation phenomena described in the literature. The statistics of α–η-κ–

μ
 

distribution and its combination with shadowing models can be investigated. 

Moreover, these expressions can be utilized to evaluate the performance of energy 

detector over the said channels. 

 The micro-diversity analysis of composite fading channels has been investigated in 

this thesis for studying the performance of an energy detector. Nevertheless, this type 

of study has not yet been performed for other SS techniques such as CFD as well as 

for MFD. 
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APPENDIX A 

 

Proofs for Chapter 5 

Derivation of    in equation 5.18 

The error bound (ER) in truncating the infinite series in equation 5.17 by R number of 

terms is given as 
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By using the identity    1a a a    and  ! 1a a   , the above equation can be 

simplified as 
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It is noted that  2 1 ..;.;.F   is a monotonically decreasing function for all positive values of 

u, R and l. Therefore, equation B.2 can be upper bounded as  
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(A.3) 

 

Using equation (9.14.1) of [24] a bound for RE  can be obtained in closed form as in 

equation 5.18, and thus, the proof concludes. 


