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ABSTRACT 

 

The technology of cloud computing is growing very quickly, thus it is required to manage 

the process of resource allocation. In this paper, load balancing algorithm based on honey 

bee behavior  is proposed. Its main goal is distribute workload of multiple network links in 

the way that avoid underutilization and over utilization of the resources. This can be 

achieved by allocating the incoming task to a virtual machine (VM) which meets two 

conditions; number of tasks currently processing by this VM is less than number of tasks 

currently processing by other VMs and the deviation of this VM processing time from 

average processing time of all VMs is less than a threshold value. The proposed algorithm 

is compared with different scheduling algorithms; honey bee, ant colony, etc.. The results 

of experiments show the efficiency of the proposed algorithm in terms of cost, flow time 

and span time  

Keywords: Cloud computing; honey bee; load balancing; swarm intelligence; virtual 

machine 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

 

Cloud computing is Associate in Nursing rising technology entirely supported net, within 

which all the applications are hosted on a cloud, that consists of thousands of computers 

interlinked along during a advanced manner. The client needn't get the software package or 

computation platforms, as a result of it uses a pay as you utilize model. By mistreatment net 

facility, the client will use computation power or software package resources by paying 

cash just for the period he/she has used the resource. 

Clients, datacenter, and distributed servers are the three elements of a cloud system. To 

manage information’s associated with the cloud, finish users move with the purchasers. 

purchasers typically comprise 3 main classes like mobile, skinny and thick. Datacenter 

could be a assortment of servers hosting totally different applications. so as to subscribe for 

various applications, user has to connect with the datacenter. A datacenter is settled at a 

bigger distance from the purchasers. Distributed servers are the components of a cloud that 

are gift throughout the web hosting totally different applications. 

Load leveling is that the method of redistributing the full load of a distributed system into 

individual nodes to confirm that no node is overloaded and no nodes were beneath loaded 

or idle. thus during a cloud atmosphere load leveling ensures that no VMs are overloaded, 

wherever some VMs are beneath loaded or doing little work. Load leveling tries to hurry up 

the execution time of applications. It conjointly ensures the system stability. it's an honest 

backup set up within the case of failovers. 

In cloud computing atmosphere qualitative metrics like performance, resource utilization, 

measurability, time interval, fault tolerance and migration time may be improved by higher 

load leveling. the advance within the on top of factors can guarantee smart QoS to the 

shoppers. Load leveling algorithms are chiefly classified into two; Static and dynamic. 

Static load leveling algorithms doesn't take into account the previous state of the node, 

whereas distributing the load and it works well once nodes have a little variation within the 

hundreds. thus it's not appropriate for cloud atmosphere. The bee colony algorithmic 
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program primarily based load leveling technique could be a dynamic load leveling 

technique, that considers the previous state of a node whereas distributing the load. 

Cloud computing provides shared processing resources and data. This can occur through 

the presence of a host application service provider so that the user does not need to buy a 

server or pay for the electricity of power and cooling. It's also convenient for 

communications and travels where remote workers, who can simply log in and use their 

applications wherever they are [1]. As increasing the number of users in cloud computing 

environment, the demand of shared resources is rapidly increased. Therefore, load 

balancing between these resources for scheduling tasks becomes a key challenge.  

Load1 balancing1 is1 the1 process1 of1 distributing1 workloads1 and1 computing1 resources1 in1 

a1 cloud1 computing1 environment.1 It1 allows1 enterprises1 to1 manage1 application1 or1 

workload1 demands1 by1 allocating1 resources1 among1 multiple1 computers,1networks1 or1 

servers. Load balancing is often used to avoid the bottleneck, so that several characteristics 

of load balancing can be achieved such as: equal division of tasks across all hosts, 

facilitation in achieving service quality, improve overall performance of the system, reduce 

response time, and improve resource utilization [2]. 

Fig. 1 shows the load balancer of virtual machines (VMs). It assigns multiple tasks to VMs 

that execute them simultaneously by a way that guarantees a balance between these VMs. 

The1 primary1 goal 1of load1 balancing1 in a1 cloud1 environment1 is to1 balance1 the workload1 of1 

the1 hosts1 in1 proportion11 to their1 capacities, which1 is1 measured1 in terms1 of their1 processor 

speed,1 available memory space, 1and 1bandwidth. 

Load1 balancing1 algorithms1 are1 classified1 into1 two1 types;1static1 and1 dynamic.1 Static algorithms 

are much simpler as compared to dynamic algorithms. Static algorithms work properly only 

when hosts have low variations in the load, since they do not take into account the previous 

state or the behavior of a host while distributing the load. Dynamic load11balancing 

algorithms1 are1 more1 suitable 1for widely 1distributed systems1 such as cloud computing 

[3,4]. Round robin (RR) [5] is a well-known straightforward static scheduling algorithm. It 

allocates1 tasks1 to1 each1 node1 in1 turn, 1without1 considering1 the 1resource 1quantity 1of 1each 

VM and1 the1 execution1 time1 of1 tasks1. Modified throttled algorithm [6] is1 a1 dynamic11load 
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balancing1 algorithm1 that uniformly distributes the1 incoming tasks among available VMs. 

However it doesn't consider resource utilization during task allocation.  

 

 

Fig. 1.1 VM Load Balancer[41]. 

Conventional load balancing algorithms have many drawbacks in cloud environment due to 

the changing workload dynamics. To address these challenges, Swarm Intelligence 

algorithms (SI), such1 as1 ant1 colony1 optimization1 (ACO), and1 artificial1 bee1 colony1 

(ABC), are provided in recent decades [7]. They achieve a great progress in the dynamic 

situation of cloud computing. So many researches tended to study the algorithms based on 

SI to balance1 load1 among1 cloud1 environment1 such1 as1 foraging1 for1 food.1 
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However,1some1 of1 these1 algorithms1 have1 drawbacks1 such1 as1 causing1 many1 hosts1 

overloaded,1 and1 getting1 low1 throughput..  

The objective of this paper is to propose a load balancing algorithm aims to distribute the 

dynamic workload smoothly to all the hosts in the cloud to gain an improvement in both the 

utilization of resources and the speed of execution time. It allocates the incoming tasks to 

all available VMs. In order to achieve fairness and avoid congestion, the proposed 

algorithm allocates tasks to the least loaded VM and prevents the allocation of tasks to a 

VM when the variation of this VM processing time from average processing time of all 

VMs becomes more than or equal to a threshold value. This leads to a reduction of the 

overall response time and the processing time of hosts. In the proposed algorithm, variation 

of processing time of VM is the key limiting factor during the task allocation process 

because it avoids underutilization and over utilization of VMs. It also has a highly effect of 

the standard deviation that preserves the load balance of all system. 

In this paper, a Load Balancing Algorithm based on Honey Bee behavior (LBA_HB) is 

proposed. It is completely inspired by the natural foraging behavior of honey bees. The 

allocated task updates the remaining tasks about the VM status1 in1 a1 manner1 similar1 to1 the1 

bees1 finding1 an1 abundant1 food1 source,1updating1 the1 other1 bees1 in1 the1 bee1 hive1 through1 its1 waggle1 

dance[8]. The proposed LBA_HB algorithm has been simulated using CloudSim [9]. The 

proposed algorithm is compared with both conventional and SI based load balancing 

algorithms; round robin, modified throttled, ant colony, and honey bee algorithms. The 

results of experiments show the efficiency of LBA_HB in terms of span time, flow time 

and cost. 

1.2 Existing Work 

L-ACO1 employs1 ant1 colony1 optimization1 to1 carry1 out1 deadline-constrained1 cost1 optimization:1 

the1 ant1 constructs1 an1 ordered1 task1 list1 according1 to1 the1 pheromone1 trail1 and1 probabilistic1 upward1 

rank,1 and1 uses1 the1 same1 deadline1 distribution1 and1 service1 selection1 methods1 as1 ProLiS(1 ProLiS1 

distributes1 the1 deadline1 to1 each1 task,1 proportionally1 to1 a1 novel1 definition1 of1 probabilistic1 

upward1 rank,1 and1 follows1 a1 two-step1 list1 scheduling1 methodology:1 rank1 tasks1 and1 sequentially1 

allocates1 each1 task1 a1 service1 which1 meets1 the1 sub-deadline1 and1 minimizes1 the1 cost)1 to1 build1 
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solutions.1 Moreover,1 the1 deadline1 is1 relaxed1 to1 guide1 the1 search1 of1 L-ACO1 towards1 constrained1 

optimization 

 

1.2.1 Disadvantages 

 Absence Of Load Sharing. 

 Not Cost Efficient 

 Complex Mechanism 

 

1.3 Proposed Work: 

In1 bee1 hives,1 foraging1 honeybees1 give1 information1 to1 other1 bees1 about1 the1 position1 of1 the1 food1 

source1 they1 have1 visited.1 A1 potential1 forager1 bee1 starts1 her1 career1 as1 an1 unemployed1 naive1 

worker,1 that1 is,1 she1 has1 as1 no1 information1 of1 a1 food1 source1 in1 the1 field1 yet.1 She1 can1 start1 search1 for1 

a1 source1 and1 thus1 become1 a1 scout1 (explorer).1 The1 initiation1 to1 fly1 out1 and1 start1 foraging1 is1 not1 due1 

to1 following1 a1 waggle1 dance1 but1 due1 to1 some1 unknown1 internal,1 motivational1 factor1 or1 perhaps1 

to1 some1 unknown1 external1 cue.1 Alternatively,1 a1 bee1 can1 start1 searching1 for1 a1 source1 as1 a1 

response1 to1 attending1 a1 waggle1 dance1 and1 thus1 becomes1 a1 recruit.1 So1 the1 distinction1 between1 a1 

recruit1 and1 a1 scout1 is1 that1 the1 recruit1 has1 stored1 estimated1 positional1 information1 in1 her1 memory,1 

whereas1 the1 scout1 has1 not.1 As1 soon1 as1 a1 bee1 finds1 a1 source,1 it1 registers1 the1 essential1 s1 of1 this1 

source1 in1 its1 memory1 and1 starts1 exploiting1 it,1 the1 bee1 is1 then1 an1 employed1 forager1 (exploiter)1 .1 

The1 proposed1 LBA_HB1 is1 completely1 inspired1 by1 the1 natural1 foraging1 behavior1 of1 honey1 bees.1 

The1 allocated1 task1 updates1 the1 remaining1 tasks1 about1 the1 VM1 status1 in1 a1 manner1 similar1 to1 the1 

bees1 finding1 an1 abundant1 food1 source,1 updating1 the1 other1 bees1 in1 the1 bee1 hive1 through1 its1 waggle1 

dance1 .1 This1 task1 updates1 the1 status1 of1 the1 VM1 availability1 and1 the1 load1 of1 the1 VMs.1  

1.3.1 Advantages 

 Proper Load Sharing 

 Cost Efficient 

 Easy to Understand 
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1.4 LACO 

 

Nowadays1 it1 is1 becoming1 more1 and1 more1 attractive1 to1 execute1 workflow1 applications1 in1 the1 

cloud1 because1 it1 enables1 workflow1 applications1 to1 use1 computing1 resources1 on1 demand.1 

Meanwhile,1 it1 also1 challenges1 traditional1 workflow1 scheduling1 algorithms1 that1 only1 

concentrate1 on1 optimizing1 the1 execution1 time.1 This1 thesis1 investigates1 how1 to1 minimize1 

execution1 cost1 of1 a1 workflow1 in1 clouds1 under1 a1 deadline and cost1aconstraint1 and also1 

adiscussses about the existing1 metaheuristic1 algorithm1 L-ACO1 as1 well1 as1 a1 simple1 heuristic1 

ProLiS.1 ProLiS1 distributes1 the1 deadline1 to1 each1 task,1 proportionally1 to1 a1 novel1 definition1 of1 

probabilistic1 upward1 rank,1 and1 follows1 a1 two-step1 list1 scheduling1 methodology:1 rank1 tasks1 and1 

sequentially1 allocates1 each1 task1 a1 service1 which1 meets1 the1 sub-deadline1 and1 minimizes1 the1 cost.1 

L-ACO1 employs1 ant1 colony1 optimization1 to1 carry1 out1 deadline-constrained1 cost1 optimization:1 

the1 ant1 constructs1 an1 ordered1 task1 list1 according1 to1 the1 pheromone1 trail1 and1 probabilistic1 upward1 

rank,1 and1 uses1 the1 same1 deadline1 distribution1 and1 service1 selection1 methods1 as1 ProLiS1 to1 build1 

solutions.1 Moreover,1 the1 deadline1 is1 relaxed1 to1 guide1 the1 search1 of1 L-ACO1 towards1 constrained1 

optimization.1 Experimental1 results1 show1 that1 compared1 with1 traditional1 algorithms,1 the1 

performance1 of1 ProLiS1 is1 very1 competitive1 and1 L-ACO1 performs1 the1 best1 in1 terms1 of1 execution1 

costs1 and1 success1 ratios1 of1 meeting1 deadlines.1 Nowadays,1 scientific1 and1 business1 applications1 

can1 contain1 hundreds1 or1 thousands1 of1 computing1 tasks.1 The1 workflow 

model1 is1 extensively1 applied1 to1 represent1 these1 applications1 via1 direct1 acyclic1 graphs1 (DAGs),1 

where1 nodes1 represent1 tasks1 and1 edges1 represent1 dependencies1 among1 them1 [1].1 These1 large-

scale1 workflow1 applications1 are1 deployed1 in1 a1 distributed1 computing1 environment1 in1 order1 to1 

execute1 the1 workflows1 in1 a1 reasonable1 amount1 of1 time.1 However,1 traditional1 distributed1 

computing1 platforms,1 such1 as1 highperformance1 clusters1 and1 grid1 systems,1 are1 not1 only1 very1 

expensive1 to1 build1 and1 maintain,1 but1 also1 inefficient1 in1 adapting1 to1 the1 surge1 of1 resource1 

demands.1 With1 the1 emergence1 of1 cloud1 computing1 and1 the1 rapid1 deployment1 of1 cloud1 

infrastructure,1 more1 and1 more1 large-scale1 workflow1 applications1 have1 been1 moved1 or1 are1 in1 

active1 transition1 to1 the1 cloud,1 where1 users1 can1 dynamically1 acquire1 and1 release1 cloud1 resources1 

on1 demand,1 and1 pay1 based1 on1 the1 usage. 

Workflow1 scheduling1 aims1 to1 allocate1 each1 task1 in1 the1 workflow1 to1 a1 certain1 time1 slice1 of1 

computing1 resources1 for1 execution,1 in1 order1 to1 meet1 some1 performance1 criterion.1 As1 a1 well-
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known1 NP-hard1 problem,1 it1 has1 been1 a1 hot1 research1 topic1 in1 the1 distributed1 computing1 

community1 for1 many1 years1 [2].1 Although1 a1 great1 number1 of1 algorithms1 have1 been1 proposed1 to1 

minimize1 the1 total1 time1 of1 executing1 workflows,1 these1 algorithms1 cannot1 be1 directly1 applied1 to1 

the1 cloud1 environment1 [3,1 4]:1 in1 clouds,1 users1 should1 first1 select1 appropriate1 types1 and1 amount1 

of1 services1 from1 the1 ‘infinite’1 cloud1 resources1 to1 execute1 workflows;1 the1 cloud1 provider1 offers1 

heterogeneous1 resources1 with1 various1 processing1 capabilities1 and1 costs,1 and1 the1 total1 usage1 cost1 

of1 cloud1 ser-vices1 is1 also1 a1 critical1 user1 requirement1 besides1 execution1 time. 

Faster1 cloud1 services1 are1 usually1 more1 expensive1 than1 slower1 ones,1 and1 therefore1 users1 face1 a1 

time-cost1 tradeoff1 in1 selecting1 services.1 A1 general1 way1 to1 address1 this1 trade-off1 is1 to1 minimize1 

monetary1 cost1 under1 a1 deadline1 constraint.1 Up1 to1 present,1 only1 a1 few1 approaches1 have1 been1 

presented1 to1 address1 this1 problem1 in1 the1 literature1 [5-10]1 and1 they1 can1 be1 divided1 into1 two1 

categories:1 local1 heuristics1 [5,1 6]1 and1 metaheuristics1 [7-10].1 The1 former1 employs1 a1 simple1 

heuristic1 based1 on1 a1 deadline1 distribution1 and1 can1 fall1 into1 a1 locally1 optimal1 solution1 easily.1 By1 

contrast,1 existing1 metaheuristic1 methods1 do1 not1 exploit1 the1 characteristics1 of1 the1 scheduling1 

problem1 fully1 to1 conduct1 an1 effective1 search.1 Furthermore,1 existing1 methods1 pay1 little1 attention1 

to1 the1 situation1 where1 the1 sub-deadline1 of1 a1 task1 is1 not1 met1 during1 the1 scheduling1 procedure,1 

which1 is1 not1 equivalent1 to1 violation1 of1 the1 workflow deadline.11 ProLiS1 distributes1 the1 deadline1 

to1 each1 task1 based1 on1 a1 novel1 definition1 of1 probabilistic1 upward1 rank1 and1 then1 follows1 a1 two-step1 

list1 scheduling1 method:1 order1 tasks1 according1 to1 probabilistic1 upward1 rank1 and1 then1 

sequentially1 allocate1 each1 task1 to1 a1 service1 that1 meets1 the1 sub-deadline1 and1 minimizes1 the1 cost.1 

L-ACO1 carries1 out1 the1 deadline-constrained1 cost1 optimization1 based1 on1 ant1 colony1 

optimization1 :1 the1 ants1 construct1 an1 ordered1 task1 list1 according1 to1 a1 pheromone1 trail1 and1 the1 

probabilistic1 upward1 rank1 of1 a1 task,1 and1 then1 use1 the1 same1 deadline1 distribution1 and1 service1 

selection1 methods1 as1 Pro-LiS1 to1 build1 solutions.1 The1 MMAS1 (Min1 Max1 Ant1 System)1 

framework1 is1 utilized1 for1 the1 pheromone1 updating1 in1 LACO. 

Moreover,1 in1 order1 to1 guide1 the1 search1 towards1 a1 near-optimal1 solution1 meeting1 the1 deadline,1 

the1 deadline1 constraint1 is1 relaxed1 and1 this1 relaxation1 is1 gradually1 diminished1 until1 is1 removed1 

completely.1 Correspondingly,1 an1 ε1 comparison1 between1 solutions1 is1 introduced.1 In1 the1 

experiments,1 the1 proposed1 approaches1 are1 compared1 with1 the1 two1 most-cited1 ones1 from1 the1 

literature1 (i.e.,1 IC-PCP1 and1 PSO),1 and1 the1 experimental1 results1 reveal1 that1 the1 performance1 of1 
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ProLiS1 is1 very1 competitive1 and1 in1 each1 setting1 L-ACO1 attains1 the1 highest1 success1 ratio1 of1 

meeting1 deadlines,1 and1 the1 least1 execution1 cost. 
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CHAPTER 2 

LITERATURE REVIEW 

The study dignifies different types of algorithms used for scheduling workflows in cloud 
environment[42]. 

 

2.1 Particle Swarm Optimization(PSO): 

Proposed  by  Eberhart  and  Kennedy,  PSO[9]  is  an evolutionary algorithm . It is a 

computational method which tries to improve the efficiency of a solution iteratively. Here 

each particle represents a solution and is depicted in the form of vectors of position and 

velocity. Position represents the solution to the problem and velocity specifies movement in 

search space, both of which are computed using mathematical formulas. Each particle has a 

local best position called pbest and a best position of population called gbest. Apart from 

finding pbest the algorithm also guide the particle towards gbest solution . After each 

generation these positions(pbest and gbest )are updated. This is done to guide the algorithm 

towards best solution. Once solution is achieved the total execution cost and time of 

solution is calculated to satisfy the objectives. However PSO is not so efficient with tighter 

deadlines and also has weaker performance in terms of cost and time when compared with 

other algorithms. 

2.2 Dynamic Objective Genetic Algorithm(DOGA): 

 

DOGA[10]  make use of dynamic objective strategy and is similar to that of natural 

selection process. Proposed by Holland, it make use of selection, crossover and mutation 

process to achieve its optimization objective. With a number of similarities, thing that 

makes DOGA different from traditional GA is it’s dynamic objective strategy. It make use 

of the strategy to evaluate the chromosomes. Encoding in DOGA is similar to that of PSO 

except that here only integer part is considered and not float. In selection process, roulette 

wheel method is used which states that the chromosome which is fittest is more likely to 

get selected. Crossover process is based on probability. To take the decision of crossover, a 

random number is generated between 0 and 1 and if the numbers value is found to be less 
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than the already fixed crossover probability than crossover will be done. With every 

coordinate of chromosome, a mutation probability is associated. Mutation is also a random 

number based event. To avoid the modification in best solution with upcoming generations, 

best solution is stored and is only updated if the best solution in new generation is better 

than the existing one. Dynamic objective strategy is used in case if a chromosome violates 

the deadline constraint, it’s fitness value will be changed to something far from acceptance. 

If all chromosomes fails then DOGA changes the optimization objective to just execution 

time until some chromosome achieves a feasible solution. This helps DOGA to find 

feasible solution even in tighter deadlines. 

2.3 Multi-Cloud Partial Critical Paths(MCPCP): 

MCPCP[11] is based on the concept of Partial Critical Path(PCP). PCP is a path from the 

starting unscheduled task to it’s critical parent(an immediate predecessor which has latest 

arrival time to the task) and each task in the path should have latest arrival time to it’s 

successor. MCPCP works by assigning sub-deadlines to PCP’s instead of individual tasks. 

Then Best Fit Instance is found for a PCP so that each task of the PCP can finish it’s 

execution before it’s latest finish time and with least increment in cost. In Best Fit 

Instance, the algorithm make use of greedy approach , in which it will schedule the path on 

all applicable existing instance in order to find an instance that shows minimum cost 

growth. An instance is called applicable if: when a path is scheduled on that instance, then 

each task of that path is able to get completed before it’s latest finish time and the 

increment in cost by scheduling new path on the instance should be less than initiating a 

new instance of the same machine. If none of such applicative instance exist that meet the 

criteria then a new instance of the cheapest service will be initiated. 

2.4 Proportional Deadline Constrained (PDC): 

PDC[12] also works with the same objective of cost effective schedule within a deadline. It 

usually produce lower failure rates with tighter deadlines. It is divided in four parts: 

Workflow Leveling, Deadline distribution, Task selection and Instance selection. In 

workflow leveling all tasks are distributed in different levels so that parallel execution of 

numerous tasks can be maximized while maintaining the dependencies. Tasks on the same 
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level did not have any dependencies among them. It can be defined as an integer value that 

denotes the maximum number of edges from a task to end task. Deadline distribution phase 

distributes the user deadline as sub-deadline or level deadline among all the levels. 

Level deadline is assigned in such a way that each task of that level should be able to 

complete its execution under that deadline. Point to remember is that the level with longer 

tasks receives a larger deadline. Task selection is done for the ready tasks. Readiness of a 

task is based on its parents execution time and required data transfer time. For prioritizing 

the ready tasks downward ranking mechanism is used. During instance selection we need to 

maintain a balance between cost and time for which we make use of cost time tradeoff 

factor. Each task is executed on each type of instance for the cost and time measures, 

keeping in mind that if time value comes out to be negative means task on current instance 

will exceed the deadline. 

2.5 Ant Colony System(ACS): 

ACS[13] make use of pheromone and heuristic information to build a good solution. 

Encoding scheme for a solution is dimensional where each dimension represents a task and 

its value represents the resource. Its fitness objectives are same as of other algorithms that 

is to minimize execution cost under deadline constraint. In the cloud computing model 

unlike traditional times we use greedy approach to find a solution using the set of tasks 

which we get as input. Calculation of total execution cost of the solution is performed, 

which is used as a parameter for setting initial pheromone value of ants. Then comes the 

process of solution construction. In this at each step each ant will select a resource for some 

particular task, that is parallel mechanism will be used. Selection will be done in the way of 

exploration or exploitation. For this a random number is generated and if the criteria is met 

exploitation will be chosen means ant will choose higher pheromone and heuristic value 

otherwise roulette wheel method. Pheromone updation happens globally as well as locally. 

Global updation occurs after a generation whereas during a solution construction due to 

both new pheromone deposition by ants on path and pheromone evaporation local updation 

also occurs. 
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2.6 Deadline Constrained Critical Path(DCCP): 

DCCP[14]  is a list based scheduling divided in two parts: Task Prioritization and Task 

Assignment. Task Prioritization aims at dividing set of tasks into different levels so as to 

increase the measure of parallel execution of tasks since tasks in a level donot have any 

dependencies. Level of a task is the maximum number of edges in the paths from the 

current task to the exit task. For level distribution Deadline Bottom Level(DBL) and 

Deadline Top Level(DTL) are the algorithms used. Once leveling is done we distribute the 

user deadline to each level as a level deadline such that each task in a level should be able 

to complete its execution under the deadline. In this algorithm we find all the CCP in the 

workflow. CCP stands for Constrained Critical Path. Critical Path is the longest path from 

starting to end node of a graph. CCP consists of a set of tasks which are ready for 

execution, where readiness further depends on the parents execution completion time and 

required data transfer time. We find the CCP using modified upward and downward rank. 

All the tasks are then sorted on the basis of rank and the task with highest values are 

selected so as to from a CP. Similarly all other CPs are found. In task assignment phase we 

aims to find best suitable task for executing CCP such that all tasks in a CCP are executed 

on the same instance so as to minimize the data transfer and execution time and hence meet 

CCP sub-deadline. While selecting an instance algorithm prefers instances having idle 

billing interval as execution will be cost free. If no such instance exist then a new instance 

is launched. Even if deadline is tight to meet and no solution satisfy the constraint, we 

select the best instance as overall deadline can be met. 

2.7 PEFT based genetic algorithm(PGA): 

With the objective of minimizing the execution cost while keeping the execution time 

under deadline, PGA[15] is based on Genetic Algorithm(GA) which uses PEFT algorithm 

to generate an optimal solution. PEFT is divided in two stages: prioritizing and resource 

selection. It can do the forecasting of child tasks effect on current task due to which 

makespan can be improved. For this it uses OCT. Optimistic Cost Table(OCT) is a matrix 

with rows representing the tasks and column representing resources. Here cost is calculated 

using backward approach which make OCT a look ahead feature, providing the cost of 
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current task’s child execution until it reaches end node. In prioritizing phase tasks are 

prioritized on the basis of cumulative OCT in decreasing order. For resource selection 

objective Optimistic EFT(OEFT) is calculated. Its aim is to shorten the finish time of ahead 

tasks. PGA algorithm consist of three parts: Encoding, Fitness calculation and Genetic 

operators. In encoding ,a chromosome represents a solution whose length represents the 

number of tasks and value of gene represents VM task it is assigned to. Fitness function 

deals with the objective discussed earlier. Either the one satisfying the objective is selected 

or one with minimum objective violation. In genetic operators Binary tournament selection 

is used to find the fittest chromosome and copy good ones from a generation to another. 

2.8 Frequency Based Optimization(FBO): 

Algorithm[16] aims at choosing appropriate frequency so as to minimize the cost while 

meeting the deadline constraint. Cost of each resource is based on the frequency allocated 

to a task. In this algorithm three types of pricing model has been used to meet the goals: 

linear, sub-linear, super-linear and the total cost of executing the workflow is calculated by 

subtracting the pricing model cost value from the execution time value of running tasks on 

maximum frequency. Two variants of the algorithm are proposed. In first variant a 

makespan based scheduling[17] algorithm such as HEFT is used to generate the initial 

schedule. HEFT assigns tasks of workflow to maximum frequencies so as to ensure that 

deadline will be attained not considering the cost parameter. In second variant of algorithm 

the task, resource and frequency allocation keeps on changing iteratively so as to minimize 

the cost while ensuring about deadline too. For the second variant a weight table is 

prepared which contains values of all combinations of task, resource and cpu frequency 

allocations. This reallocation continues until execution cost is reduced without violating 

deadline. A point to remember is that algorithm can try for reassignment of task to a 

resource and frequency pair only once. So when no untried combination will be left, the 

algorithm will terminate. 

2.9 Probabilistic Listing(PROLIS): 

ProLis[18] also aims to provide a cost effective schedule under deadline constraint. It 

distributes the deadline of workflow to individual tasks. Then it performs tasks 
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prioritization followed by task selection. ProLis performs deadline distribution on the basis 

of Probabilistic Upward Rank. Upward Rank of a task is the longest path from it to the end 

task. Sub deadline is assigned to a task in proportion to the longest path from entry node to 

current task. Differentiation factor in Probabilistic upward rank and Upward rank is 

inclusion of a Boolean variable to ensure that tasks having larger transmission time are 

assigned on same resources. For task ordering algorithm uses the probabilistic upward rank 

methodology since data transmission in this may become zero. In the service selection step, 

initially such service is searched that can minimize the cost under deadline constraint. If 

none of such service exist than objective is narrowed down to minimization of execution 

time. 

2.10 LACO: 

LACO make use of Ant Colony Optimization (ACO) to redefine task ordering step of 

ProLis. LACO also largely depends on heuristic and pheromone trail. Pheromone can be 

understood as an aspire to select a task just after another task. Same as ProLis, LACO is 

divided in three parts. Deadline distribution, task ordering and task selection, but for it’s 

organized task list it depends on pheromone (unlike ProLis which depends on probabilistic 

upward rank) and heuristic information. In order to ensure that the proposed solution of 

algorithm doesn’t contain violation of dependencies between tasks, it adapts Kahn’s 

algorithm for topological sorted ordered schedule. In order to meet the problem of deadline 

violation algorithm make use of improved independent optimization method, where the 

deadline is relaxed in proportion to the iteration number of LACO and then comparison 

between solution meeting the relaxed deadline is done on the basis of some parameter. 

With the increase in the iteration number, the relaxation goes on deceasing until the number 

reaches to terminating iteration number. In each iteration after local best solution is figured, 

pheromone trail is updated. At last global best solution is returned. 

2.11 Iaas Cloud- Partial Critical Paths(ICPCP): 

Most  important  concepts  of  ICPCP[19]  are  critical path, assigned node and critical 

parents. Assigned node speaks for a node whose service has been selected. Critical parent 

of a task is an unassigned parent of the task whose data reaches to the current task most 
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lately. Partial Critical Path of workflow will be empty if task doesn’t have any unassigned 

parents. Otherwise the path contains the critical parent of the task as well as partial critical 

path of the parent if it exists. In algorithm initially some parameters are calculated and entry 

and exit tasks are assigned followed by calling another algorithm for assigning parents. 

This called algorithm takes an assigned node as input and allocate all the unassigned 

parents of input node to some service before the start time of input node. Through this 

scheduling[20] strategy , the algorithm finds all critical paths of the workflow. Once done 

another procedure is approached for path assignment to services. This new procedure 

schedules received critical paths on applicable instances that can complete each task’s 

execution before it’s latest finish time with minimum price. 

2.12 Iaas Cloud Partial Critical Path with Deadline 

Distribution(ICPCPD2): 

ICPCPD2 works in two phases and has three main concepts to depend on which are Partial 

Critical Path, critical parent and assigned node. While the definition of first two concepts 

remains same as in ICPCP, assigned node here stands for a node to which sub-deadline has 

already been assigned. As mentioned earlier the two phases are: Deadline distribution and 

Planning. In deadline distribution phase, complete workflow deadline is distributed over 

individual tasks followed by calling separate procedure for parents assignment. This 

procedure is completely same as the one discussed in ICPCP. Once assignment is done the 

execution shifts to another procedure for assigning path and this is where difference exists 

in ICPCP and ICPCPD2 algorithms. Unlike ICPCP, In ICPCPD2 , the path assigning 

procedure performs assignment of sub-deadlines to all the unallocated parents of input 

node. For this it distributes the deadline of path among tasks which are a part of path in 

proportion to their minimum execution time. In the planning phase exists another procedure 

which plans and assigns each task to cheapest applicable instance which can make task to 

finish it’s execution before the sub-deadline. 

. 
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CHAPTER 3 

THE PROPOSED WORK 

3.1 Problem Denotation 

 

Workflow scheduling mainly aims at assigning resources to tasks and sequencing their 

order of execution while satisfying the qos constraints. This dissertation presents analysis 

of workflow scheduling algorithms to mainly address two problems, cost minimization and 

deadline constraint during workflow execution. 

Workflow scheduling is broadly divided in two steps: as per requirement of tasks ,selecting 

a set of resources from the available pool and their distribution. Next step is generating a 

schedule using desired strategy and mapping of tasks on these resources keeping in mind 

the qos constraints.   

The problem which is discussed through these algorithms is to perform the complete 

execution of workflow application (scheduling) within user given deadline (time) and also 

in the minimized budget (cost). 

   

3.2 Overview  

 

In bee hives, foraging honeybees give information to other bee’s about1the position of the 

food1 source1 they1 have1 visited.1 A1 prospective1 searcher1 bee1 starts1 her1 career1 as1 an1 unemployed1 

naive1 worker,1 that1 is,1 she1 has1 as1 no1 information1 of1 a1 food1 source1 in1 the1 field1 yet.1 She1 can1 start1 

search1 for1 a1 source1 and1 thus1 become1 a1 scout1 (explorer).1 The1 initiation1 to1 fly1 out1 and1 start1 

foraging1 is1 not1 due1 to1 following1 a1 waggle1 dance1 but1 due1 to1 some1 unknown1 internal,1 motivational1 

factor1 or1 perhaps1 to1 some1 unknown1 external1 cue.1 Alternatively,1 a1 bee1 can1 start1 searching1 for1 a1 

source1 as1 a1 response1 to1 attending1 a1 waggle1 dance1 and1 thus1 becomes1 a1 recruit.1 So1 the1 distinction1 

between1 a1 recruit1 and1 a1 scout1 is1 that1 the1 recruit1 has1 stored1 estimated1 positional1 information1 in1 her1 

memory,1 whereas1 the1 scout1 has1 not.1 As1 soon1 as1 a1 bee1 finds1 a1 source,1 it1 registers1 the1 essentials1 of1 

this1 source1 in1 its1 memory1 and1 starts1 exploiting1 it,1 the1 bee1 is1 then1 an1 employed1 forager1 

(exploiter)[8].  
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The proposed LBA_HB is1 completely1 inspired1 by1 the1 natural1 foraging1 behavior1 of1 honey1 bees. 

The allocated task updates the remaining tasks about the VM status in1 a1 manner1 similar1 to1 

the1 bees1 finding1 an1 abundant1 food1 source,1updating1 the1 other1 bees1 in1 the1 bee1 hive1 through1 its1 

waggle1 dance. This task updates the status of the VM availability and the load of the VMs. 

3.3 Bee Colony Based Load Balancing Algorithm 

 

The1 proposed1 technique1 utilizes1 the1 foraging1 behavior1 of1 honey1 bees1 for1 load1 balancing1 across1 

VMs.1 Here1 the1 honey1 bee1 foraging1 behaviour1 is1 mapped1 to1 cloud1 environment1 to1 perform1 load1 

balancing.1 

 

 

 

Table 3.1: How1 To1 Map1 Bee1 Colony1 With1 Cloud1 Environment 

 

Honey Bee Hive Cloud Environment 

Honey bee Task(cloudlet) 

Food Source VM 

Honey bee foraging a food source Loading of a task to a VM 

Honey bee getting depleted at a food 

source 

VM is overloaded 

Foraging bee finding a new food source Removed task will be scheduling to an 

under loaded VM 

 

Cloudlets1 (Tasks)1 in1 the1 cloud1 environment1 can1 be1 treated1 as1 the1 honey1 bees.1 As1 the1 honey1 bees1 

forage1 for1 food1 source,1 cloudlets1 will1 be1 assigned1 in1 VMs1 for1 execution.1 The1 VM1 has1 a1 

particular1 capacity.1 Sometimes1 some1 VMs1 may1 be1 overloaded1 and1 others1 will1 be1 under1 loaded.1 
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In1 this1 case1 in1 order1 to1 accomplish1 better1 performance1 load1 balancing1 is1 needed.1 So1 when1 a1 VM1 

is1 overloaded1 with1 multiple1 tasks1 then1 some1 tasks1 are1 removed1 from1 that1 particular1 VM1 and1 it1 is1 

assigned1 to1 an1 underloaded1 VM.1 The1 removing1 task1 will1 be1 selected1 based1 on1 priority.1 The1 

lowest1 priority1 tasks1 will1 be1 selected1 for1 transferring.1 This1 is1 similar1 as1 honey1 bees1 depleted1 

from1 the1 food1 source. 

Figure1 3.11 represents1 the1 proposed1 load1 balancing1 architecture.1 CIS1 (Cloud1 Information1 

Service)1 is1 the1 repository1 which1 contains1 the1 resources1 available1 in1 the1 cloud.1 CIS1 is1 specifically1 

a1 registry1 of1 Datacenters.1 When1 a1 datacenter1 is1 created1 it1 will1 register1 to1 CIS.1 Datacenter1 has1 

some1 specific1 characteristics.1 Many1 hosts1 are1 present1 in1 a1 datacenter.1 Characteristics1 of1 

datacenter1 are1 actually1 the1 characteristics1 of1 hosts.1 Hosts1 have1 specific1 processing1 elements1 

(PEs),1 RAM1 and1 bandwidth1 characteristics.1 Cloud1 computing1 works1 based1 on1 the1 concept1 of1 

virtualization.1 The1 host1 is1 virtualized1 into1 number1 of1 VMs.1 VMs1 also1 has1 some1 specific1 

characteristics1 like1 hosts. 

 

Figure 3.1: Load balancing architecture[41] 
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At1 the1 initial1 stage1 datacenter1 broker1 interacts1 with1 the1 CIS1 to1 collect1 information1 about1 the1 

resources1 specifically1 about1 the1 datacenters.1 Tasks1 in1 cloud1 environments1 are1 represented1 as1 

cloudlets1 in1 CloudSim1 framework.1 When1 these1 cloudlets1 are1 arrived1 at1 the1 broker,1 broker1 will1 

submit1 it1 to1 the1 VMs1 in1 a1 datacenter1 for1 execution.1 During1 task1 execution1 when1 certain1 VMs1 are1 

overloaded1 and1 some1 are1 sitting1 idle1 or1 doing1 very1 little1 work,1 tasks1 i.e.1 cloudlets1 from1 

overloaded1 VMs1 are1 removed1 and1 assigned1 to1 under1 loaded1 VMs1 for1 efficient1 execution.1 Load1 

balancing1 approach1 based1 on1 bee1 colony1 can1 be1 divided1 into1 following1 modules: 

 Finding1 the1 load1 on1 a1 VM 

 Load1 Balancing1 Decision 

 VM1 Grouping 

 Task1 Transfer 

 

3.4 Pseudo Code Of LBA_HB Algorithm 

Input: List of available host(lh), List of available Vm(lv) 

Output: VM(j) 

// returns number of (i) hosts with minimum processing time (i is the total number of hosts) 

Let i =-1 && minimum processing time(mPT) = maximum value of integer 

For each host in lh 

  If host is available then 

    If processing time of host(PTh) < mPT then 

    minPT= PTh 

    i= number of current host 

    End if 

  End if 

End for 
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// returns number of (j) VM which has minimum number of tasks (j is the total number of  

specified VM) 

Let j=-1 && minimum count of tasks(mC) = maximum value of integer 

For each Vm in lv(i) // that is for each Vm present in selected host 

  If Vm is available then 

    If count required in Vm(cV) < mC then 

    mC = cV 

    End if 

  End if 

End for 

If j==-1 then 

Add coming task in waiting queue until one Vm become available. 

  Else 

  Allocate task to Vm. 

  End else 

Update allocated information // that is current processing time of host and Vm and their 

availability. 

After task execution get’s completed , deallocate the task from Vm. 

Update the information again to notify the changes. 

End if     
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3.5 Flow Chart 

 

Creation Of Datacenter, Vm Server, 

Broker  

  

 Calculate Overall Load, Cost, Deadline 

Time 

 

Task Allocation , Execution Time Using 

Bee’s Algorithm 

 

Calculate Flow Time, Span Time 

 

 

 

 

Fig 3.2 :FlowChart 

A1 flowchart1 is1 a1 type1 of1 diagram1 that1 represents1 an1 algorithm1 or1 process,1 showing1 the1 steps1 as1 

boxes1 of1 various1 kinds,1 and1 their1 order1 by1 connecting1 them1 with1 arrows.This1 diagrammatic1 

representation1 illustrates1 a1 solution1 to1 a1 given1 problem.1 Process1 operations1 are1 represented1 in1 

these1 boxes,1and1 arrows;1 rather,1 they1 are1 implied1 by1 the1 sequencing1 of operations. Flowcharts1 

are1 used1 in1 analyzing,1designing,1 documenting1 or1 managing1 a1 process1 or1 program1 in1 various1 

fields. 

3.6 Implementation Modules 

 Host and Vm Creation 

 Load Identification 

Evaluate The Result 

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Process_%28science%29
http://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
http://en.wikipedia.org/wiki/Problem_solving
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  Job allocation 

 Evaluation 

3.6.1 Host1 and1 VM1 Creation 

In1 this1 unit1 use1 to1 the1 well-known1 classification1 of1 planning1 in1 spread1 calculating1 structures1 by1 

CA1 savant1 and1 Kohl,1 from11 the11 point11 of11 view11 of11 the11 featureof1 the1 clarifications1 a1 scheduler1 is1 

able1 to1 form,1 any1 forecast1 system1 can1 be1 categorized1 into1 prime1 or1 sub-optimal.1 The1 previous1 

describes1 preparation1 procedures1 that,1 built1 on1 whole1 info1 about1 the1 state1 of1 the1 circulated1 

atmosphere1 (e.g.,1 hardware1 capabilities1 and1 load)1 as1 well1 as1 source1 wants1 (e.g.,11 time11 required11 

by11 each11 job11 on11 each11 computing11 resource),bring1 out1 optimum1 job-resource1 mappings.1 When1 

this1 evidence1 is1 not1 obtainable,1 or1 the1 interval1 to1 calculate1 a1 answer1 is1 impossible,1 sub-optimal1 

procedures1 are1 used1 as1 an1 alternative. 

3.6.2 Load Identification 

In1 this1 module1 is1 Clouds,1 as1 any1 other1 distributed1 computing1 environment,1 is1 not1 free1 from1 the1 

problem1 of1 accurately1 estimate1 aspects1 such1 as1 job1 duration.1 Another1 aspect1 that1 makes1 this1 

problem1 more1 difficult1 is1 multi-tenancy,1 a1 distinguishing1 feature1 of1 Clouds1 by1 which1 several1 

users1 and1 hence1 their1 (potentially1 heterogeneous)1 jobs1 are1 served1 at1 the1 same1 time1 via1 the1 

illusion1 of1 several1 logic1 infrastructures1 that1 run1 on1 the1 same1 physical1 hardware.1 This1 also1 poses1 

challenges1 when1 estimating1 resource1 load.1 Indeed,1 optimal1 and1 sub-optimal-approximate1 

algorithms1 such1 as1 those1 based1 on1 graph1 or1 queue1 theory1 need1 accurate1 information1 beforehand1 

to1 perform1 correctly,1 and1 therefore1 in1 general1 heuristic1 algorithms1 are1 preferred.1 In1 the1 context1 

of1 our1 work,1 we1 are1 dealing1 with1 highly1 multi-tenant1 Clouds1 where1 jobs1 come1 from1 different1 

Cloud1 users1 (people1 performing1 multi-domain1 PSE1 experiments)1 and1 their1 duration1 cannot1 be1 

predicted. 

3.6.3 Job allocation 

To decide which job should be allocated to which Vm, we need to collect information of 

last allocate and deallocate. Process is similar to which honey bee should go in search for 

which food source out of many available which depends on whether that food source 

contains honey or not. The information received contains two data. Threshold information 
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which specifies availability of a host. Same kind of availability check is done in Vm 

selection before allocating a job. Another information is priority information which 

contains current load value. At host level , load indicator stands for processing time  and at 

Vm level it indicates number of tasks. So during allocation first of all host selection is done 

which on priority information , that is host with minimum level. Then comes suitable Vm 

selection. In this, task should be allocated to which of the available Vm’s  of selected host 

depends on number of tasks already allocated to that Vm.   

3.6.4 Evaluation 

In1 order1 to1 assess1 the1 effectiveness1 of1 our1 proposal1 for1 executing1 PSEs1 on1 Clouds,1 we1 have1 

processed1 a1 real1 case1 study1 for1 solving1 a1 very1 well-known1 benchmark1 problem1 proposed1 in1 the1 

literature,1 see1 for1 instance.1 Broadly,1 the1 experimental1 methodology1 involved1 two1 steps.1 First,1 

we1 executed1 the1 problem1 in1 a1 single1 machine1 by1 varying1 an1 individual1 problem1 parameter1 by1 

using1 a1 finite1 element1 software,1 which1 allowed1 us1 to1 gather1 real1 job1 data,1 i.e.,1 processing1 times1 

and1 input/output1 file1 data1 sizes1 By1 means1 of1 the1 generated1 job1 data,1 we1 instantiated1 the1 Clouds1 

simulation1 toolkit,1 which1 is1 explained.1 Lastly,1 the1 obtained1 results1 regarding1 the1 performance1 

of1 our1 proposal1 compared1 with1 some1 Cloud1 scheduling1 alternatives1 are1 reported. 

3.7 Metrics Of Proposed Algorithm 

Cloud computing consist of a number of data centers. Let each data center consists of n 

hosts(say) and each host consist of m VM(say). Then: 

 The processing time of host(i): 

1

1
( )( )

( )
( )* ( ) ( )* ( )

x

lengthhost k
host

host host host host

REQ kTL i
PT i

NPR i SPR i NPR i SPR i

  
   (3.1) 

Where ( )
host

TL i  is total length of tasks submitted to host(i), ( )
host

NPR i is number of 

processors in host(i), ( )
host

SPR i is the processor speed of host(i), ( )lengthREQ k is the 

length of request number k. 

 Average processing time of all hosts: 

1

1
( )

n

Avghost hosti
PT PT i

n 
     (3.2) 
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 Processing time of VM(j): 

2

1
( )( )

( )
( )* ( ) ( )* ( )

x

lengthVM k
VM

VM VM VM VM

REQ kTL j
PT j

NPR j SPR j NPR j SPR j

  
   (3.3) 

Where ( )
VM

TL j is total length of tasks submitted to VM(j), ( )
VM

NPR j is number of 

processors in VM(j), ( )
VM

SPR j is the processor speed of VM(j), ( )
length

REQ k is the 

length of request number k. 

 Average processing time of all VM’s: 

1

1
( )

m

AvgVM VMj
PT PT j

m 
     (3.4) 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

In this section we present the result of our existing and proposed work. The performance of 

both the algorithms are shown using their flow time and span time parameters. In order to 

show comparison between the two already discussed work we have made use of a tabular 

graph showing performance bar in terms of cost. 

This section is organized as follows: Section 4.1 contains Honey Bee algorithm 

performance evaluation. Section 4.2 contains L-ACO algorithm performance evaluation 

and comparison graph between two algorithms.  

 

4.1 Deadline-constrained1 Cost1 Optimization1 Approaches1 for1 Workflow1 

Scheduling1 in1 Clouds(Honey1 Bee) 

The below diagram represents: 

 Task Allocation 

 VM Group Allocation 

tasks of Honey Bee Algorithm for cost optimization of workflow scheduling in clouds. 

 

Fig 4.1: Cloud Allocation1 for1 Workflow 1 Scheduling1 in1 Clouds (Honey1 Bee) 



26 

 

Here efficiency of Honey Bee algorithm is depicted in terms of : 

 Total No. of Jobs 

 Flow Time 

 Span Time 

 

Fig 4.2: Cost Optimization for Workflow Scheduling Using Honey Bee 
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4.2 Cost1 Optimization1 Approaches1 for1 Workflow1 Scheduling1 in1 

Clouds(L-ACO ALGORITHM) 

Here efficiency of L-ACO algorithm is depicted in terms of : 

 Total No. of Jobs 

 Flow Time 

 Span Time 

and also a comparison chart is shown containing Honey Bee and L-ACO algorithms cost 

oriented performance   

 

 

Fig 4.3: Cost Optimization for Workflow Scheduling Using LACO 

 



28 

 

 

 

Fig 4.4 LACO - Honeybee Cost Based Efficiency Comparison. 
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CHAPTER 5 

SOFTWARE REQUIREMENT AND TESTING PROCESS 

5.1 Software Description 

5.1.1 Java 

Java may be a artificial language1 originally1 developed1 by1 James1 goose1 at1 Sun 

Microsystems1 (now1 a 1subsidiary of 1Oracle 1Corporation) 1and free in 11995 as a1 core11part of1 

Sun1 Microsystems'1 Java1 platform.1 The1 language1 derives1 a lot of its1 syntax1 from1 C1 and 

C++1 however incorporates a less complicated object1 model11and 1fewer 1low-

level11facilities.Java1 applications1are usually compiled1 to1 computer memory unit code1 (class 

file)1 which will run1 on1 any1 Java1 Virtual1 Machine1 (JVM)1 notwithstanding pc design. Java 

may be a all-purpose,1 concurrent,1 class-based,1 object-oriented1 language1 that's1 specifically1 

designed1 to1 possess1 as1 few1 implementation1 dependencies1 as1 potential. it's supposed to let 

application developers "write once, run anyplace." Java is presently one in every of the 

foremost standard1 programming1 languages1 in1 use, notably for client-server internet 

applications. 

 

 5.1.2 Net Beans 

The1 Net1 Beans1 Platform1 may1 be1 a1 reusable1 framework1 for1 simplifying1 the1 event1 of1 Java1 Swing1 

desktop1 applications.1 world1 wide1 web1 Beans1 IDE1 bundle1 for1 Java1 SE1 contains1 what's1 required1 

to1 begin1 developing1 web1 Beans1 plug-in1 and1 web1 Beans1 Platform1 based1 mostly1 applications;1no1 

further1 SDK1 is1 needed. 

Applications1 will1 install1 modules1 dynamically.1 Any1 application1 will1 embrace1 the1 Update1 

Center1 module1 to1 permit1 users1 of1 the1 appliance1 to1 transfer1 digitally-signed1 upgrades1 and1 new1 

options1 directly1 into1 the1 running1 application. 

The1 platform1 offers1 reusable1 services1 common1 to1 desktop1 applications,1allowing1 developers1 to1 

focus1 on1 the1 logic1 specific1 to1 their1 application.1 Among1 the1 features1 of1 the1 platform1 are: 
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 User1 interface1 management1 (e.g.1 menus1 and1 toolbars) 

 User1 settings1 management 

 Storage1 management1 (saving1 and1 loading1 any1 kind1 of1 data) 

 Window1 management 

 Wizard1 framework1 (supports1 step-by-step1 dialogs) 

 Net1 Beans1 Visual1 Library 

 Integrated1 Development1 Tools 

 

5.2 Testing  

Project1 testing1 is1 the1 stage1 of1 implementation,1which1 aimed1 at1 ensuring1 that1 project1 works1 

accurately1 and1 efficiently.11. Testing1 is1 the1 process1 of1 executing1 a1 program1 with1 the1 intent1 of1 

finding1 an1 error.1 A1 good1 test1 case1 is1 one1 that1 has1 a1 high1 probability1 of1 finding1 an1 error.1 A1 

successful1 test1 is1 one1 that1 answers1 a1 yet1 undiscovered1 error. 

Testing1 is1 vital1 for1 the1 success1 of1 a project.1 Project1 testing1 makes1 a1 logical1 assumption1 that1 if1 all1 

parts1 of1 the1 project1 are1 correct,1 the1 goal1 will1 be1 successfully1 achieved.111 Any1 engineered1 product1 

can1 be1 tested1 in1 one1 of1 the1 following1 ways.1 Knowing1 the1 specified1 function1 that1 a1 product1 has1 

been1 designed1 to1 from,1 test1 can1 be1 conducted1 to1 demonstrate1 each1 function1 is1 fully1 operational.1 

Knowing1 the1 internal1 working1 of1 a1 product,1 tests1 can1 be1 conducted1 to1 ensure1 that1 the1 internal1 

operation1 of1 the1 product1 performs1 according1 to1 the1 specification1 and1 all1 internal1 components1 

have1 been1 adequately1 exercised. 

5.2.1 Unit Testing:  

Unit1 testing1 is1 the1 testing1 of1 each1 module1 and1 the1 integration1 of1 the1 overall1 project1 is1 done.1 Unit1 

testing1 becomes1 verification1 efforts1 on1 the1 smallest1 unit1 of1 1 design1 in1 the1 module.1 This1 is1 also1 

known1 as1 ‘module1 testing’.1 The1 modules1 of1 the1 project1 are1 tested1 separately.1 This1 testing1 is1 

carried1 out1 during1 the1 programming1 itself.1 In1 this1 testing1 step,1 each1 model1 is1 found1 to1 be1 

working1 satisfactorily1 as1 regard1 to1 the1 expected1 output1 from1 the1 module.1 There1 are1 some1 

validation1 checks1 for1 the1 fields.1 For1 example,1 the1 validation1 check1 is1 done1 for1 verifying1 the1 data1 
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given1 by1 the1 user1 where1 both1 format1 and1 validity1 of1 the1 data1 entered1 is1 included.1 It1 is1 very1 easy1 to1 

find1 error1 and1 debug1 the1 system. 

5.2.2 Integration Testing: 

Data1 can1 be1 lost1 across1 an1 interface,1one1 module1 can1 have1 an1 adverse1 effect1 on1 the1 other1 sub1 

function,1 when1 combined,1 may1 not1 produce1 the1 desired1 major1 function.1 Integrated1 testing1 is1 

systematic1 testing1 that1 can1 be1 done1 with1 sample1 data.1 The1 need1 for1 the1 integrated1 test1 is1 to1 find1 

the1 overall1 project1 performance.1 There1 are1 two1 types1 of 1 integration1 testing.1 They1 are: 

i) Top-down1 integration1 testing. 

ii) Bottom-up1 integration1 testing 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

This1 thesis1 proposed1 a1 load1 balancing1 algorithm1 for1 cloud1 environment1 based1 on1 foraging1 

behaviour1 of1 honey1 bees.1 This1 algorithm1 removes1 the1 tasks1 from1 overloaded1 VMs1 and1 

submitted1 it1 to1 the1 most1 suitable1 under1 loaded1 VM.1 It1 not1 only1 balances1 the1 load,1 but1 also1 

considers1 the1 priorities1 of1 tasks1 in1 the1 waiting1 queues1 of1 VMs.1 The1 task1 with1 least1 priority1 is1 

selected1 for1 migration.1 So1 no1 tasks1 are1 needed1 to1 wait1 longer1 time1 in1 order1 to1 get1 processed.1 The1 

experimental1 result1 shows1 that,1 the1 proposed1 algorithm1 reduces1 the1 makespan,1 degree1 of1 

imbalance1 and1 number1 of1 task1 migrations1 that1 results1 in1 better1 QoS1 for1 end1 users.1 This1 

dissertation1 considered1 priority1 as1 the1 QoS1 parameter.1  

 

6.2 Future Work 

This1 thesis1 has1 proposed1 a1 task1 deployment1 approach1 L-ACO1 for1 the1 long-term1 load1 balancing1 

effect1 and1 it1 has1 employed1 a1 heuristic1 idea1 based1 on1 Bayes1 theorem1 and1 the1 clustering1 process.1 

L-ACO1 first1 has1 narrowed1 down1 the1 search1 scope1 by1 comparing1 performance1 values.1 Then,1 L-

ACO1 has1 utilized1 Bayes1 theorem1 to1 obtain1 the1 posteriori1 probe-ability1 values1 of1 all1 candidate1 

physical1 hosts.1 Finally,1 LB-Chas1 combined1 probability1 theorem1 and1 the1 clustering1 ideate1 pick1 

out1 the1 optimal1 hosts1 set,1 where1 these1 physical1 hosts1 have1 the1 most1 remaining1 computing1 power1 

currently,1 for1 deploying1 and1 executing1 tasks1 by1 selecting1 the1 physical1 host1 with1 the1 maximum1 

posteriori1 probability1 value1 as1 the1 clustering center and thus to achieve the load balancing 

effect from the long-term perspective. Simulation experiments demonstrate that the 

proposed L-ACO approach can deploy the instant tasks quickly and effectively in cloud 

data centers. It makes cloud data centers achieve a long-term load balancing of the whole 

network. 

We continued the same process with the usage of HoneyBee algorithm. Experiment and 

analysis confirm the effectiveness of our schemes and design. 
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In future work, we are interested in how to make use of clustering and replication 

techniques to improve the proposed algorithms and we also plan to test them in public 

clouds. Besides, we intend to take into account the spot instance-based cloud services for 

workflow scheduling, which are an effective way to reduce costs when the deadline is 

loose. However, they introduce further challenges because of pricing dynamics and the 

interruption caused by bidding failures. 

We are also interested in improving the migration technique in Honey Bee. Currently it’s 

not as efficient in proposed LBA_HB since it checks VM value variation during task 

allocation in independent tasks. However in future migration technique can be implemented 

keeping in mind task allocation for a group of dependent tasks.  
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