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Chapter 1

GENERAL INTRODUCTION

There are several reasons for the acceleration of interest in graph the-

ory. It is worth to mention that there are applications of graph theory

in various areas of physics, chemistry, communication science, comput-

er technology, electrical and civil engineering, architecture, operational

research, genetics, psychology, sociology and economics. Graph theory

is also intimately related to many branches of mathematics, including

group theory, matrix theory, numerical analysis, probability, topology,

combinatorics etc. The fact is that graph theory serve as a mathemat-

ical model for any system involving a binary relation. Due to diagram-

matic representation, graphs have an intuitive and aesthetic appeal.

Although there are many results in this field of an elementary nature,

there is also an abundance of problems with enough combinatorial sub-

tlety to challenge the most sophisticated mathematician.

Signed graph theory forms one of the most vibrant areas of research

due to its link with behavioral and social sciences as evident from the

published literature; research-level journals like the Journal of Math-

ematical Sociology, Journal of Mathematical Psychology, Social Net-

works, Journal of Mathematical Chemistry etc., are only a few notable

ones that can be mentioned in this context. In our excursion of re-

search, we were mainly driven to carry out work in the area of signed

graphs derived under some operations, which mainly deals with the
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structural reconfigurations of the structure of dynamical systems un-

der prescribed rules and rules are designed to deal with a variety of

interconnections among the elements of the system. We were able to

obtain some theoretical results which led us to the area of research in

the theory of signed graphs with a hope to build necessary conceptual

resources for applications.

1.1 Brief History of Graph Theory

Graph theory may be said to have its beginning in 1736 when Leon-

hard Euler solved, or rather proved unsolvable, the Königsberg bridge

problem. Euler (1701-1782) became the father of graph theory as well

as topology when in 1736 he settled a famous unsolved problem, called

the Königsberg Bridge Problem. There were two islands linked to each

other and to the banks of the Pregel river by seven bridges. The prob-

lem was to begin at any of the four land areas, walk across each bridge

exactly once and return to the starting point.

One can easily try to solve this problem empirically but all attempts

must be unsuccessful, for the tremendous contribution of Euler in this

case was negative. In proving that the problem is unsolvable, Euler

replaced each land area by a point and each bridge by a line joining

the corresponding points, thereby producing a “graph” (as shown in

Figure 1.1).

The paper by Leonhard Euler [28] on seven bridges of Königsberg

(published in 1736) is regarded as the first paper in the history of

2
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Figure 1.1: The graph of the Königsberg Bridge Problem

graph theory. It took 200 years before the first book on graph theory

was written. This was Theorie der endlichen und unendlichen Graphen

(Teubner, Leipzig, 1936) by König in 1936. For the history of ear-

ly graph theory, see N.L. Biggs, R.J. Lloyd and R.J. Wilson, Graph

Theory 1736-1936, Clarendon Press, 1986. Euler’s formula relating the

number of edges, vertices and faces of a convex polyhedron was studied

and generalized by Cauchy [22] and L’Huillier [47]. It was the origin of

combinatorial topology.

Another important factor of common development of graph theory

and topology came from the use of the techniques of modern algebra.

The first example of such a use comes from the work of the physicist

Gustav Kirchhoff, who published in 1845 his Kirchhoff’s circuit laws for

calculating the voltage and current in electric circuits. More than one

century after Euler’s paper on the bridges of Königsberg, Kirchhoff [43]

developed the theory of trees in order to solve the system of simultane-

ous equations which give the current in each branch and around each

3



circuit of electric network.

Although a physicist, he thought like a mathematician when he ab-

stracted an electrical network with its resistances, condensers, induc-

tances etc. and replaced it by its corresponding combinatorial structure

consisting only of points and lines without any indication of the type

of electrical element represented by individual lines. Thus, in effect,

Kirchhoff replaced each electrical network by its underlying graph and

showed that it is not necessary to consider every cycle in the graph of

an electric network separately in order to solve the system of equation-

s. Instead, he pointed out by a simple but powerful construction that

the independent cycles of a graph determined by any of its “spanning

trees” will suffice.

In 1857, Cayley [23] discovered the important class of graphs called

trees by considering the changes of variables in the differential calculus.

Later, he was engaged in enumerating the isomers of the saturated

hydrocarbons CnH2n+2, with a given number n of carbon atoms. Of

course, Cayley restated the problem as to find the number of trees with

p points in which every point has degree 1 or 4. Enumerative graph

theory then rose from the results of Cayley and the fundamental results

were published by Pólya between 1935 and 1937 and the generalization

of these were given by De Bruijn [26]. In 1857, Sir William Hamilton

invented a game consisting of a solid regular dodecahedron, in which

20 vertices are labeled by the names of some cities and the objective of

game was to find a path visiting all cities exactly once. This concept is

used in solving very famous travelling salesman problem.

4



The most famous unsolved problem in graph theory and perhaps

in all of mathematics was the celebrated Four Color Conjecture (FC-

C). This problem remained unsolved for more than a century. In 1969

Heinrich Heesch [37] published a method for solving the problem us-

ing computers. A computer-aided proof produced in 1976 by Kenneth

Appel and Wolfgang Haken (see [13–15]) makes fundamental use of the

notion of “discharging” developed by Heesch. The proof involved check-

ing the properties of 1,936 configurations by computer and was not fully

accepted at the time due to its complexity. A simpler proof consider-

ing only 633 configurations was given twenty years later by Robertson,

Seymour, Sanders and Thomas. The FCC had an interesting history,

but its origin remains somewhat vague. There have been reports that

Möbius was familiar with this problem in 1840, but it is only definite

that the problem was communicated to De Morgan by Guthrie, an ap-

prentice to a geographer in Germany, in about 1850. The first of many

erroneous proofs of the conjecture was given by Kempe in 1879. In

particular, the term graph was introduced by Sylvester [68] in a paper

published in Nature.

The psychologist Lewin [46] proposed that the “life space” of an

individual can be represented by a planar map. It was pointed out

that Lewin was actually dealing with graphs. This viewpoint led the

psychologist at the Research Center for Group Dynamics, University of

Michigan, interpretation of a graph as a ‘sociogram’, in which people

are represented by vertices and their interpersonal relations by edges.

People related to theoretical physics discovered graph theory for its

5



own purpose. In the study of statistical mechanics by Uhlenbeck [70],

vertices represent the molecules and two adjacent vertices indicate n-

earest neighbor interaction of some physical kind, for example, mag-

netic attraction or repulsion. In a similar interpretation by Lee and

Yang [45], the vertices stand for small cubes in the Euclidean space,

where each cube may or may not be occupied by a molecule. Then,

two vertices are adjacent whenever both spaces are occupied.

In computer science, graphs are used to represent networks of com-

munication, data organization, computational devices, the flow of com-

putation etc. One practical example: The link structure of a website

could be represented by a directed graph. The vertices are the web

pages available at the website and a directed edge from page A to page

B exists if and only if A contains a link to B. A similar approach can be

taken to problems in travel, biology, computer chip design and many

other fields.

Graph theory is also widely used in sociology as a way, for exam-

ple, to measure actor’s prestige or to explore diffusion mechanisms,

notably through the use of social network analysis softwares. Under

the umbrella of Social Network graphs there are many different types

of graphs: Starting with the Acquaintanceship and Friendship Graphs,

these graphs are useful for representing whether n people know each

other. Next, there is the influence graph. This graph is used to model

whether certain people can influence the behavior of others. Finally

there’s a collaboration graph which models whether two people work

together in a particular way.

6



In mathematics, graphs are useful in geometry and certain parts of

topology, e.g., Knot Theory. Algebraic graph theory has close links

with group theory. A graph structure can be extended by assigning

a weight to each edge of the graph. Graphs with weights or weighted

graphs, are used to represent structures in which pairwise connections

have some numerical values. For example, if a graph represents a road

network, the weights could represent the length of each road. A network

can be defined as a graph in which nodes and/or edges have attributes

(e.g. names). Network theory is a part of graph theory. Network the-

ory has applications in many disciplines including statistical physics,

particle physics, computer science, electrical engineering, biology, eco-

nomics, operations research, climatology and sociology. Applications of

network theory include logistical networks, the World Wide Web, In-

ternet, gene regulatory networks, metabolic networks, social networks,

epistemological networks etc.

In nut shell, in real life, to study the dynamics of any system it is

necessary to know the interaction pattern among the submodules of the

system with the description of how precisely one is able to represent

the positive and negative aspects of various links interconnecting the

submodules. In most of the engineering and technological systems, a

proper understanding of such networks called generally the structural

(modular) configuration of the systems, is essential in their proper oper-

ation by means of taking care of various risk factors, optimal operating

conditions, maintenance etc.
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1.2 Preliminaries

Formally, a combinatorial graph or simply a graph is a discrete struc-

ture (some times called network, depending on the context) formed by

a set V whose elements are called vertices and a collection E, which is

essentially a set unless mentioned otherwise, of elements called edges,

each of which is a 2-subset of elements of V . Generally, a graph is

an ordered pair G = (V,E), where V = V (G) and E = E(G) are

the vertex set and the edge set of the graph G respectively. For stan-

dard terminology and notations in graph theory, we follow Harary [31]

and [73]. Further, G is called finite if V is a finite set and infinite

otherwise. A finite and an infinite graphs are shown in Figure 1.2.

Unless mentioned otherwise, all graphs to be treated in this thesis are

finite.

Figure 1.2: Finite and infinite graphs

A walk in a graph G is an alternating sequence of vertices and edges

v0, e1, v1, e2, ..., en, vn, beginning and ending with vertices, in which ev-

ery edge is preceded and followed by two adjacent vertices. It is closed

if v0 = vn. A closed walk in which all the vertices are distinct is called

cycle. It is written as Cn = (v1, v2, ..., vn, v1). A closed walk in which

all the edges are distinct is called a circuit.

All graphs to be treated in this thesis are simple, connected and
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finite. A cut-vertex of a graph is one whose removal leaves the graph

disconnected. For a graph G, C(G) denotes its cut-vertex set. A non-

separable graph is connected, nontrivial and has no cut vertices. A block

of a graph is a maximal nonseparable subgraph. A clique of a graph is

its maximal complete subgraph.

Signed Graphs

In most of the applications, one needs to assign weights to the edges

of a graph, whence one calls such a ‘weighted’ configuration an undi-

rected network; weights as such may be taken from any arbitrary set

of labels which might, in particular, be real numbers or subsets of a set

or elements of an algebraic structure such as a group or a semigroup,

etc., depending on real-life applications for which network models have

to be constructed. We are fascinated by the variety of applications of

networks in which each edge carries an element of the involutory group

underlying the Galois field GF (2) = {−1, 1} as label; in literature, such

a network has been referred to as a signed graph or simply a sigraph

(e.g., see [4, 5, 50,77]).

Formally, a signed graph is an ordered pair S = (Su, σ), where

Su := G = (V,E) is a graph called the underlying graph of S and

σ : E(Su) −→ {+,−} is a function, called the signature (or sign

in short) of S. Alternatively, the signed graph can be written as

S = (V,E, σ), where V,E and σ are in the above sense (see [24, 33]).

Signed graphs first were introduced by Harary [33]. Further, E
+

(S) =
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{e ∈ E(Su) : σ(e) = +} and E
–
(S) = {e ∈ E(Su) : σ(e) = −}. The

elements of E
+

(S) (E
–
(S)) are called positive (negative) edges of S and

the set E(S) = E
+

(S) ∪ E–
(S) is called the edge set of S.

In a pictorial representation of a signed graph S, its positive edges

are shown as solid line segments (‘Jorden curves’ drawn on the plane)

and negative edges as dashed line segments (see [50]). An example of a

signed graph is displayed in Figure 1.3, where solid line segments rep-

resent edges that are assigned the weight ‘+’ and broken line segments

represent those that are assigned the weight ‘−’.

1

4
3

2

v

v

v v

Figure 1.3: A signed graph S

A signed graph in which all the edges are positive, is called all-

positive signed graph (all-negative signed graph is defined similarly). A

signed graph is said to be homogeneous if it is either all-positive or

all-negative and heterogeneous otherwise. Thus, one can treat a graph

as a signed graph in which each edge is positive. A positive (negative)

section in a signed graph S means a maximal connected subgraph of S

consisting only positive (negative) edges of S; in particular, a positive

(negative) section in a heterogeneous cycle of S is essentially a maximal

all-positive (all-negative) path in the cycle [30].

This natural generalization of graphs arose while building a proto-
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type model of cognitive interpersonal relationship in a social group,

where the individuals in the group are taken as vertices and interper-

sonal relationship between any two individuals A and B is treated as

an edge, a negative edge AB is interpreted as a negative relationship

(such as enmity, dislike etc.) and a positive edge AB is interpreted

as a positive relationship (such as friendly, like etc.) between A and

B. Such a model was first presented by Harary [33], while voluminous

literature on this model is still accumulating.

The positive (negative) degree of a vertex is the number of positive

(negative) edges incident that vertex. By d(v), we denote the degree of

v ∈ V (S), d(v) = d+(v)+d−(v), where d+(v) (d−(v)) denote the positive

(negative) degree of v. A vertex v of even (odd) degree is called even

(odd) vertex. The edge degree of an edge uv, denoted by de(uv), is the

total number of edges adjacent to uv. Clearly, de(uv) = d(u)+d(v)−2.

The negation of a signed graph S, denoted η(S), is obtained by

negating the sign of every edge of S, i.e., by changing the sign of every

edge to its opposite [32]. An example of a signed graph and its negation

are shown in Figure 1.4.

e1

e8

e7

e6

e5

e4
e

2

e3

S: (S):e1

e8

e7

e6

e5

e4
e

2

e3

Figure 1.4: A signed graph S and its negation η(S)
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A cycle in a signed graph is said to be positive (negative) if the

product of the signs of its edges is positive (negative); that is, it contains

an even (odd) number of negative edges. A signed graph is said to be

balanced, if every cycle in it is positive [33]. An example of balanced

signed graph S is exhibited in Figure 1.5. A signed graph S is said to

be totally unbalanced if every chordless cycle in S is negative.

Figure 1.5: A balanced signed graph S

Signed graphs provide models for investigating balance in connection

with various kinds of social relations. Since empirical social network-

s always involve uncertainty because of errors due to measurement,

imperfect observation or sampling, it is desirable to incorporate uncer-

tainty into signed graph models. Frank and Harary [29] introduced a

stochastic signed graph and investigated the properties of some indices

of balance involving triads. In particular, they considered the balance

properties of a graph which is randomly signed and of one which has

been randomly sampled from a large population graph.

Harary [33] observed that signed graphs serve as apt prototype mod-

els for the study of the notion of structural balance in a social group

endowed with dyadic interactions, generalizing such considerations ear-

lier by Heider [38] in triads; Harary [33] generalized the Heider’s no-
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tion of cognitive balance in social systems as basically a structural

feature of the underlying network configured in such a way that every

cycle of the network contains an even number of negative edges (e.g.,

see [4, 33, 36, 50]). A chordless cycle of a graph G is a cycle in G that

has no cycle chord, i.e., the cycle is an induced subgraph.

Harary derived the following structural criterion called partition cri-

terion for balance in signed graphs:

Theorem 1.2.1. [33] A signed graph S is balanced if and only if its

vertex set V (S) can be partitioned into two subsets V1 and V2 (one of

them possibly empty) such that every positive edge joins two vertices in

the same subset and every negative edge joins two vertices from different

subsets.

The social groups corresponding to V1 and V2 in Theorem 1.2.1 may

be regarded as subgroups of similar ideologies in the social system.

Thus, a social system is called balanced if all relations between people

are positive or if we can divide the group into two subgroups so that

every positive relation occurs between individuals in the same subgroup

and every negative relation occurs between individuals in different sub-

groups. No additional restriction applies if neither a positive nor a

negative relation (i.e., indifference) exists between individuals in the

same or different subgroups. Thus, tendency towards balance in any

social system, implying that an unbalanced system contains excessive

stress or tension. The system tends to adjust so as to relieve the ten-

sion. For example, certain individuals within the group changing their
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points of view. Thus, there is a tendency for the group to split into two

factions such that within each faction the only relations are positive

and between factions the only relations are negative.

Theorem 1.2.2. [33] A signed graph S is balanced if and only if for

each pair of distinct vertices u and v in S, all paths joining u and v

have the same sign.

Cartwright and Harary [21] studied such considerations in the wider

aspect and it led to the formulation of independent theory of social

networks. In the recent literature, the study can be seen by Doreian

and Mrvar [27] and Zheng et. al. [79]. Harary and Kabell developed

a simple algorithm to get balanced signed graphs and also enumerated

them (see [34,35]).

The following important lemma on balanced signed graph is given

by Zaslavsky:

Lemma 1.2.1. [75] A signed graph in which every chordless cycle is

positive, is balanced.

A marking of S is a function µ : V (S) −→ {+,−}. The following

characterization of balanced signed graphs given by Sampathkumar

[54], is well known:

Theorem 1.2.3. A signed graph S is balanced if and only if there exits a

marking µ of S such that every edge uv of S satisfies σ(uv) = µ(u)µ(v).

Originally, the notion of ‘marking’ vertices of a graph G = (V,E)

was envisaged by Sampathkumar [54] as a vertex analogue of the notion
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of ‘signing’ the edges of G. In fact, Sampathkumar tried to produce

an analogue of the notion of balanceness in a signed graph by defining

a marked graph (G, µ) to be p-balanced if every connected component

of G contains an even number of negative vertices. The notion of bal-

anceness was independently discovered by Katai and Iwai [41]. They

gave an elegant algorithm to derive minimum and minimal ‘balancing

sets’ of an arbitrary signed graph S whose underlying graph is planar,

where by a balancing set of S they meant a set of edges of S which

when negated results into a balanced signed graph S ′.

The cardinality of a minimum balancing set of a signed graph S

in general is called the frustration index (see [77]), for its connection

with another famous long-standing unsolved problem called the ‘Ising

Problem’ in the study of stability of energy levels in ferromagnetic

materials (see [42, 69, 71, 72]). Subsequently, Acharya and Acharya [5]

proposed an extension of the Katai-Iwai procedure to produce minimum

and minimal balancing sets of an arbitrary sigraph S using certain linear

algebraic method, the success of which lies in the truth of a conjecture

posed in that paper and which still stands unresolved.

In the intervening period of all the above development, Beineke and

Harary [17, 18] came up with the right analogue of the notion of bal-

anceness in a signed graph S, called consistency in marked graphs.

Motivated from Harary’s characterizations of balance in a signed graph

(signed digraph; [36]), they called a marked digraph (D,µ) consistent

if for any two vertices u and v in D, all u− v walks have the same sign,

where the sign of a walk is defined as the product of the marks of its ver-
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tices. For a symmetric digraph or equivalently for a graph G this turns

out to be equivalent to saying that it is consistent if every cycle in G

contains an even number of negative vertices. Interestingly, while they

obtained a neat characterization of consistent marked digraphs, they

threw the open problem of characterizing consistent marked graphs.

Acharya [2] came up with a first characterization of consistent marked

graphs by transforming the problem to a problem on signed graphs

and then solving the same. Almost simultaneously, Rao [49] came up

with a constructive characterization of consistent marked graphs, be-

sides some tedious algorithms to deciding whether a graph is consistent.

Subsequently, a much simpler and elegant characterization of bipartite

consistent marked graphs was obtained by Acharya [3] and more handy

characterization of a consistent marked graph in general was obtained

by Hoede [39].

Sampathkumar introduced the idea of marking the vertices with

signs derived from the signs of the edges in [54], given as

µσ(v) :=
∏

vw∈E(S)

σ(vw).

This marking is called canonical marking. In this thesis, a vertex v ∈

V (S) of d−(v) even or µσ(v) = + is called positive vertex (negative

vertex is defined similarly).

Lemma 1.2.2. [54] In any canonically marked signed graph there are

an even number of vertices marked negative.

A cycle in a marked signed graph Sµ is said to be consistent if it
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contains an even number of negative vertices with respect to canonical

marking µ and a marked signed graph Sµ is said to be consistent if

every cycle in it is consistent [59]. An example of consistent signed

graph is shown in Figure 1.6.

S: 
+

+

+
+

-

-

Figure 1.6: A consistent signed graph S

Similarly, a cycle of a signed graph is called canonically consistent

(or C-consistent) if it contains an even number of negative vertices

with respect to canonical marking and a signed graph is said to be C-

consistent if every cycle in it is C-consistent. A canonically consistent

signed graph S is shown in Figure 1.7.

S: 

+
+

+
+

-

-

Figure 1.7: A canonically consistent signed graph S

The concept of consistency was motivated by communication net-

works [53]. If binary messages are sent through a network with vertices
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having negative marking, reversing messages and vertices having posi-

tive marking, leaving them unchanged, then a consistent marked graph

has the following consistency property: If a message is sent from the

vertex u to the vertex v through two different vertex disjoint paths and

u, v have same signs, then v will receive the same message no matter

which path is followed. In similar manner, consistent marked graph-

s have utility in social networks, networks whose vertices are people.

If some people always lie and some always tell the truth, a consistent

social network has the property that if a message is sent from u to

v and they have the same sign, then v will receive the same message

independent of the path followed.

The problem of characterizing consistent marked graphs was subse-

quently settled by Acharya [2, 3] and Rao [49]. Roberts [51] discussed

the problem of characterizing graphs that can be consistently marked

using at least one negative sign, reduced the problem to blocks and

solved it for blocks whose longest cycle has length at most five. Fur-

ther, Roberts [52] established a relation between balanced signed graphs

and consistent marked graphs. Roberts and Xu [53] investigated several

characterizations of a consistent marked graph. Very recently, Joglekar

et al. [40] gave an algorithmic characterization of consistency in marked

graphs.

Acharya and Sinha obtained consistency of signed graphs that sat-

isfy certain signed graph equations in [7, 59, 66]. Also, Sinha and Garg

have discussed consistency of several signed graphs in [60, 61, 63–65].

Recently there has been new interest in the canonical vertex signa-
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ture in connection with derived signed graphs from a signed graph, in

particular a line signed graph (see [6,7,57,78]). Sinha and Garg have es-

tablished structural characterizations of signed graph S so that its line

signed graphs L(S) and ×-line signed graphs L×(S) are C-consistent

in [60].

A marked signed graph Sµ is called cycle-compatible if for every cycle

Z in S, the product of signs of its vertices equals the product of signs

of its edges, i.e., ∏
e∈E(Z)

σ(e) =
∏

v∈V (Z)

µ(v). (1.1)

Signed graphs S1 and S2 are said to be isomorphic, written as S1
∼=

S2, if there is a graph isomorphism f : Su1 → Su2 that preserves edge

signs.

The idea of switching of a signed graph was introduced by Abel-

son and Rosenberg [1] in connection with structural analysis of social

networks and may be formally stated as follows: Switching of S with

respect to a marking µ is the operation of changing the sign of every

edge of S to its opposite whenever its end vertices are of opposite signs.

The signed graph obtained in this way is denoted by Sµ(S) and is called

µ-switched signed graph or just switched signed graph.

Further, a signed graph S1 = (Su1 , σ) switches to a signed graph

S2 = (Su2 , σ
′) (or that S1 and S2 are switching equivalent) written as

S1 ∼ S2 whenever there exists a marking µ of S1 such that Sµ(S1) ∼= S2

(see Figure 1.8).
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S : 
+

+

+
+1

(S ) : 
1

-

-

S : 
2

-
-

-

-

Figure 1.8: Two signed graphs S1 and S2 such that S1 ∼ S2

Since the definition of switching does not change the underlying

graphs of the respective signed graphs, S1 ∼ S2 implies that Su1
∼=

Su2 . Deeper mathematical aspects, significance and connections of this

notion to other fields may be found in the mathematical bibliography

by Zaslavsky [76].

Two signed graphs S1 and S2 are said to be weakly isomorphic (see

[67]) or cycle isomorphic (see [74]) if there is a graph isomorphism

f : Su1 → Su2 such that the sign of every cycle Z of S1 equals the sign

of f(Z) in S2 (i.e., f preserves both vertex adjacencies and the signs of

the cycles of S1 and S2).

The concept of cycle (weak) isomorphism is illustrated in the Fig-

ure Figure 1.9. For example, in this Figure, cycles (u1, u4, u5) and
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(v1, v4, v5) are negative and cycles (u3, u5, u6) and (v3, v5, v6) are posi-

tive.

1u u2 u3

6u5u4u

S :2S :2

S :1

1v v2 v3

6v5v4v

Figure 1.9: Two cycle isomorphic signed graphs

The following result is well known:

Theorem 1.2.4. [67,74]] Two signed graphs S1 and S2 with the same

underlying graph are switching equivalent if and only if they are cycle

isomorphic.

The concept of switching of signed graphs is closely related to the

concept of structural balance of signed graphs as evident from the fol-

lowing theorem:

Theorem 1.2.5. A signed graph S = (Su, σ) is balanced if it is switch-

ing equivalent to its underlying graph Su.

Suppose B is a set and F = {B1, B2, ..., Bk} is a nonempty family

of distinct nonempty subsets of B whose union is B; the ordered pair
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(B,F ) is called a hypergraph [19, 20]. The intersection graph of F is

denoted by Ω(F ) and is defined by V (Ω(F )) = F , with Bi and Bj

adjacent whenever i 6= j and Bi ∩Bj 6= φ.

The line graph of a graph G = (V,E), denoted L(G), is the intersec-

tion graph Ω(E(G)) [31]. Line-cut (or, in short, lict) graph of a graph

G, denoted by Lc(G), is a graph whose vertex set is E(G) ∪ C(G),

where C(G) is the set of cut vertices of G, in which its two vertices are

adjacent if they correspond to adjacent edges of G or one corresponds

to an edge ei of G and the other corresponds to a cut-vertex cj of G

such that ei is incident with cj and litact graph of a graph G = (V,E),

denoted here Lct(G), is the graph having vertex set E(G) ∪ C(G) in

which its two vertices are adjacent if the corresponding members of G

are adjacent or incident [44].

There are three notions of a line signed graph of a signed graph

S = (Su, σ) in the literature, viz., L(S), L×(S) and L•(S), all of which

have L(Su) as their underlying graph; only the rule to assign signs to

the edges of L(Su) differ. Every edge ee′ in L(S) is negative whenever

both the adjacent edges e and e′ in S are negative [16], an edge ee′ in

L×(S) has the product σ(e)σ(e′) as its sign [9] and an edge ee′ in L•(S)

has µσ(v) as its sign, where v ∈ V (S) is a common vertex of edges e

and e′ [8] and µσ(v) is the product of signs of the edges incident to v.

Mathad and Narayankar [48] extended the definition of lict graph to

lict signed graph as follows:

The lict signed graph (for convenient, we call this signed graph here

product-lict signed graph or ×-lict signed graph) of a signed graph

S = (Su, σ), is the signed graph L×c
(S) = (Lc(S

u), σ′), where for every
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edge uv of Lc(S
u)

σ′(uv) =

 σ(u)σ(v) if u, v ∈ E(S);

σ(u) if u ∈ E(S) and v ∈ C(S)

Acharya et al. in [11,12] introduced the lict signed graph Lc(S) and

the •-lict signed graph L•c(S) as follows:

The lict signed graph of a signed graph S = (Su, σ), is a signed graph

Lc(S) = (Lc(S
u), σ′), where for every edge uv of Lc(S

u)

σ′(uv) =

 −, if u ∈ E–
(S) and v ∈ E–

(S) or negative cut-vertex;

+, otherwise.

The dot-lict signed graph (or •-lict signed graph) of a signed graph

S = (Su, σ), is a signed graph L•c(S) = (Lc(S
u), σ′), where for every

edge uv of Lc(S
u)

σ′(uv) =

 µσ(p), if u, v ∈ E(S) and p is their common vertex;

µσ(v), if u ∈ E(S) and v ∈ C(S)

The jump graph of a graph G is a graph J(G) = (E(G), E ′), where

ee′ ∈ E ′ if and only if e and e′ are non-adjacent edges of G [25].

The jump signed graph (c.f.: [10]) of a signed graph S = (G, σ)

is a signed graph J(S) = (J(G), σ′) where for any edge ee′ in J(G),

σ′(ee′) = σ(e)σ(e′)

The semitotal line graph T1(G) of a graph G = (V,E) is the graph

whose vertex set is V ∪E and two vertices are adjacent in G if and only

if they are adjacent edges of G or one is a vertex of G and the other is

an edge incident with it [55].
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The semitotal signed graph [62] of a signed graph S = (G, σ) is a

signed graph T1(S) = (T1(G), σ′), where for any edge uv of T1(G),

σ′(uv) =

 σ(u)σ(v), if u, v ∈ E(S);

σ(v), if u ∈ V (S) and v ∈ E(S) .

1.3 Overview of the Thesis

The thesis comprises eight chapters including the last chapter on future

scope. The thesis has been organized as follows:

In Chapter 1, we not only introduce the basic terminology and no-

tations required to go through the thesis and that are not commonly

found in standard textbooks of Graph Theory but also mention fun-

damental or well known concepts and results which are required to

understand the work reported in succeeding Chapters.

In Chapter 2, we characterize lict graphs. We hope, this result will

have far-reaching applications in understanding the dynamics of ad-hoc

networks.

The main concern of Chapter 3 is to define two new types of lict

signed graphs of a signed graph S that are lict signed graph Lc(S)

and dot-lict signed graph L•c(S) and to establish structural character-

izations of line-cut signed graphs Lc(S), L×c
(S), L•c(S) and also line

signed graphs L×(S) and L•(S).

In Chapter 4, we characterize signed graphs on Kp, p ≥ 2, on cycle

Cn and on Km,n which are •-lict signed graphs or •-line signed graph-

s and we also characterize signed graphs S so that L•c(S) and L•(S)

are balanced. We establish the characterization of signed graphs S for
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which S ∼ L•c(S), S ∼ L•(S), η(S) ∼ L•c(S) and η(S) ∼ L•(S), here

η(S) is negation of S and ∼ stands for switching equivalence. Simi-

larly, we characterize signed graphs on Kp, p ≥ 2, on cycle Cn and on

Km,n which are lict signed graphs or line signed graphs and we also

characterize signed graphs S so that Lc(S) and L(S) are balanced. We

establish the characterization of signed graphs S for which S ∼ Lc(S),

S ∼ L(S), η(S) ∼ Lc(S) and η(S) ∼ L(S).

Motivated from the paper entitled canonical consistency of signed line

structures (see [60]), in Chapter 5, we establish structural character-

izations of signed graph S so that L•(S) is C-consistent and C-cycle

compatible. We extend the notion of cycle compatible signed graph to

C-cycle compatible signed graph (see Figure 1.10) as follows:

A signed graph S is C-cycle compatible if for every cycle Z in S,∏
e∈E(Z)

σ(e) =
∏

v∈V (Z)

µσ(v).

S: 

+

- -

+

+

+

-
+

-

+

Figure 1.10: A C-cycle compatible signed graph S
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Sampathkumar and Walikar [56] introduced the concept of splitting

graph of a graph. The splitting graph of a graph G, denoted here S(G),

is formed as follows:

Take a copy of G and for each vertex v of G, take a new vertex v′.

Join v′ to all adjacent vertices of v. Sinha et al. introduced splitting

signed graph Γ(S) of a signed graph S. In Chapter 6, we introduced

splitting signed graph S(S) of a signed graph S and we establish struc-

tural characterizations of signed graph S for which S(S) is balanced,

C-consistent, S(S) and Γ(S) are isomorphic and C-cycle compatible.

We also establish a characterization of S-splitting signed graphs.

A graph labeling is an assignment of integers to the vertices or edges,

or both, subject to certain conditions. Seenivasan and Lourdusamy [58]

introduced a new type of graph labeling known as vertex equitable la-

beling. They studied the properties of this labeling and investigated

vertex equitable behaviors of some standard graphs. In chapter 7,

we initiate vertex equitable labeling of signed graphs and study a ver-

tex equitable behavior of signed paths, signed stars, signed bistars and

signed complete bipartite graphs K2,n.

In Chapter 8, we present some of the problems which we encountered

during the entire course of investigation reported in the foregoing chap-

ters and some how or the other remained unsolved or fully investigated;

their inclusion here, we hope, will provide impetus for powering our fu-

ture research endeavors. However, any reader of this thesis is most

welcome to tackle them.
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Lastly, we must add here, the fact that all the major results contained

in this thesis are either published or communicated.

1.4 Key to Cross-References and Citations in the Thesis

Books, articles and other reading material referred in each of the eight

chapters of the thesis, are given at the end of each chapter under Ref-

erences section. Bibliography given at the end of the thesis, contains

almost all the relevant research or review material in addition to the

reference material. None of the references included in the bibliography

is referred directly in the text of the thesis.

For cross-referencing and citations to results of the thesis, we en-

counter a reference in the form ‘PX.Y.Z’, where ‘P ’ is the title of the

statement such as ‘Theorem’, ‘Corollary’, ‘Problem’, ‘Lemma’, etc., ‘X’

is a number varying between 1 to 8 representing chapters, ‘Y ’, ‘Z’ are

natural numbers.
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Chem., 72 (1847), 497-508.

[44] Kulli V.R. and M.H. Muddebihal, The lict graph and litact graph of a graph,

J. of Analysis and Comput., 2(1) (2006), 33-43.

[45] Lee T.D. and Yang C.N., Many-body problems in quantum statistical mechanics,

Physical Review, 113(5) (1959), 1165-1177.

[46] Lewin K., Principles of Topological Psychology, McGraw-Hill, New York, 1936.
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the two dimensional Ising frustration model, Journal of Physics C: Solid State

Physics, 12 (1979), 4523-4532.

34



[73] West D.B., Introduction to Graph Theory, Prentice-Hall of India Private Lim-

ited, 1996.

[74] Zaslavsky T., Signed graphs, Discrete Appl. Math., 4(1) (1982), 47-74.

[75] Zaslavsky T., Signed analogs of bipartite graphs, Discrete Appl. Math., 179

(1998), 205-216.

[76] Zaslavsky T., A mathematical bibliography of signed and gain graphs and allied

areas, VII Edition, Electronic Journal of Combinatorics, # DS8(1998a), 157pp.

[77] Zaslavsky T., Glossary of signed and gain graphs and allied areas, II Edition,

Electronic Journal of Combinatorics, # DS9(1998b).

[78] Zaslavsky T., Consistency in the Naturally Vertex-Signed Line graph of a Signed

Graph, Bulletin of Malaysian Mathematical Society, Published Online: 15 De-

cember 2015.

[79] Zheng X., Zeng D. and Wang F., Social balance in signed networks, Journal

Information Systems Frontiers, 17(5) (2015), 1077-1095.

35





Chapter 2

LICT GRAPHS

The line-cut (or, in short, lict) graph of a graph G = (V,E) is the

intersection graph Ω(E(G)∪C(G)), where C(G) is the set of cut-vertices

of G. In this chapter, we establish a structural characterization of lict

graphs.

2.1 Introduction

In communications and electronics, especially in telecommunications,

interference is anything which modifies, or disrupts a signal as it travels

along a channel between a source and a receiver. The term typically

refers to the addition of unwanted signals to a useful signal. The line

graph of a graph G = (V,E) is the intersection graph Ω(E(G)). A

wireless adhoc network can be modeled as a graph G = (V,E). Two

links e, f ∈ E(G) cannot be simultaneously active if they are incident to

the same node. This type of interference is called primary interference.

Primary interference occurs if two nodes use the same channel and one

is inside the transmission region of the other. The graph that models

this interference is the line graph of G. This interference model is well

studied in [4, 7] and more details about this application can be found

in [3]. In this chapter, we characterize lict graphs and hope that this
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concept will facilitate to analyze wireless networks.

2.2 Line graph and Lict graph

The line graph of a graph G, denoted L(G), is the graph in which edges

of G are represented as vertices, two of these vertices are adjacent if the

corresponding edges are adjacent in G, i.e., the line graph L(G) of a

graph G = (V,E) without isolates may be considered as the intersection

graph Ω(E(G)) [5].

A graph G is said to be a line graph if there exists a graph H whose

line graph L(H) is isomorphic to G. Following theorem is the well-

known characterization of line graphs originally due to Beineke [2].

Theorem 2.2.1. [5] The following statements are equivalent:

(1) G is a line graph.

(2) The lines of G can be partitioned into complete subgraphs in such

a way that no point lies in more than two of these subgraphs.

(3) G does not have K1,3 as an induced subgraph and if two odd tri-

angles have a common edge then the subgraph induced by their

vertices is K4.

(4) None of the nine subgraphs shown in Figure 2.1 is an induced

subgraph of G.

A triangle in a graph is said to be odd if there is a vertex in the

graph adjacent to an odd number of vertices of the triangle.
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Figure 2.1: The nine forbidden subgraphs for line graphs

Recall that few years back Kulli and Muddebihal [6] introduced the

idea of line-cut (or, in short, lict) graph of a graph:

The line-cut (or, in short, lict) graph of a graph G, denoted by Lc(G),

is a graph whose vertex set is E(G)∪C(G), where C(G) is the set of cut

vertices of G, in which its two vertices are adjacent if they correspond

to adjacent edges of G or one corresponds to an edge ei of G and the

other corresponds to a cut-vertex cj of G such that ei is incident with cj,

that is, Lc(G) is the intersection graph Ω(E(G) ∪ C(G)), where C(G)

is the set of cut-vertices of G.

A graph G is said to be a lict graph if there exists a graph H whose

lict graph Lc(H) is isomorphic to G, i.e., Lc(H) ∼= G. Clearly, L(G) ∼=
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Lc(G) if C(G) = φ.

Line graph and lict graph of a graph G are shown in Figure 2.2.

1

4
3

2

G: e

e
e

L  (G):c

c1

2c

e
1e

c
1

e
2

e
3 e

4

c
2

L(G):

1

4
3

2

e

e

ee

Figure 2.2: A graph G, its line graph L(G) and lict graph Lc(G)

2.3 Characterization of Lict graphs

Motivated from the result on characterization of line graphs, we have

given the characterization of lict graphs. Recall that a clique of a graph

is its maximal complete subgraph. The following theorem is the main

result of this chapter as reported in [1].

Theorem 2.3.1. The following statements are equivalent:

(1) G = (V,E) is a lict graph.

(2) The edges of G can be partitioned into cliques in such a way that

no vertex lies in more than two of these cliques and for each clique

G′,

(i) if each vertex of G′ lies in two cliques of the partition, then

G− E(G′) is connected; and
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(ii) if atleast one vertex v of G′ does not lie in another clique of

the partition then G− E(G′)− v is disconnected.

Proof. (1) ⇒ (2) Let G be a lict graph. Therefore, G ∼= Lc(H) for

some graph H. Without loss of generality we assume that G has no

isolated vertex. By the definition of lict graph, the edges incident on a

vertex v of H with d(v) = p, that is not a cut-vertex, induces a clique

of G of order p. The edges incident on a cut-vertex c of H with d(c) = p

induce a clique of G of order p+ 1 having c as one of its vertices. Since

every edge of G either results from two adjacent edges of H or from

a cut vertex of H and an edge of H that is incident with that cut

vertex, every edge of G is contained in precisely one such clique. This

is illustrated in Figure 2.3.

G: H:

e1e1e1e1

2e

3e

e2

e1

e3c1 c11

c2c2

e4 4e

e5

5e

Figure 2.3: A graph G and a graph H such that G ∼= Lc(H)

Note that V (G) = E(H) ∪ C(H), where C(H) is the set of cut ver-

tices of H. Clearly, if ei is a pendant edge of H then the corresponding

vertex in G is contained in only one clique. If ei is a non-pendant edge

of H then the corresponding vertex in G is contained in precisely t-
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wo cliques. No vertex of G can be contained in more than two of the

cliques. Thus, the edges of G can be partitioned among cliques of G in

such a way that no vertex of G lies in more than two cliques.

For any clique Gi under the edge partition of G, the following two

statements are true.

Statement 1: If each vertex ofGi lies in two cliques, thenGi is induced

by the edges incident with a non cut vertex of H.

Statement 2: If some vertices (say m) of Gi are also not contained

in another clique then one of these vertices corresponds to a cut-

vertex c of H and the remaining m − 1 vertices correspond to

pendant edges of H that are incident on c.

If each vertex of Gi is contained in two cliques, then by Statement

1, Gi is induced by the edges incident with a non cut-vertex v of H.

Suppose vertex vj of Gi is also contained in clique Gj. Then the clique

Gj must result from a vertex of H belonging to N(v), the neighborhood

of v in H. Because H − v is connected, then G − E(Gi) is connected,

which is Condition 2(i) of the theorem.

In Figure 2.4 we give a graph G that does not satisfy condition 2(i)

and is not a lict graph.

G: 

Figure 2.4: A graph G that is not a lict graph

If precisely one vertex v of Gi does not lie in two of the cliques, then

by Statement 2, Gi is induced by the edges incident with a cut-vertex v
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of H. Suppose any other vertex vj of Gi is also contained in the clique

Gj. Then Gj must result from a vertex v of H belonging to N(v).

Because H − v is disconnected, then G − E(Gi) − v is disconnected.

Hence, Gi cannot be a pendant edge and G cannot contain a pendant

vertex. This is Condition 2(ii) of the theorem.

In Figure 2.5 we give graphs that do not satisfy Condition 2(ii)

and are not lict graphs.

G : 1

G : 3

G : G : 2

Figure 2.5: Graphs that are not lict graphs

(2) ⇒ (1) Let P(G) = {G1, G2, ..., Gn} be a partition of E(G) that

satisfies the Condition (2). Note that the ordered pair (G,P(G)) is

a hypergraph. We provide the construction of a graph H whose lict

graph is G. The vertices of H correspond to the set P(G) together
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with the set U of vertices of G that belong to only one of the cliques Gi

except one such vertex for each Gi. Thus, V (H) = P(G)∪U and two of

these vertices are adjacent whenever they have a nonempty intersection.

That is, H is the intersection graph Ω(P(G) ∪ U). For this graph H,

G ∼= Lc(H). Hence, G is a lict graph.

Figure 2.6 illustrates the construction of a graph H such that G ∼=
Lc(H) for a graph G that satisfies condition (2) of the Theorem.

G: 

H:

G1

G2

3G

G1

G

2

3

G

Figure 2.6: A graph G and a graph H such that G ∼= Lc(H)
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2.4 Conclusion and Scope

In this chapter, we have established a characterization of lict graphs.

To the best of our knowledge, the characterization of lict graphs was

long awaited since the publication of [6]. In the same paper they have

defined the litact graph of a graph G as follows:

The litact graph of a graph G = (V,E) is the graph having vertex set

E(G) ∪ C(G), in which two vertices are adjacent if they correspond to

adjacent edges of G or one corresponds to an edge ei of G and the other

corresponds to a cut-vertex cj of G such that ei is incident with cj or

two adjacent cut-vertices of G. Clearly, litact graph of a graph G is

isomorphic to lict graph of G if G has no two adjacent cut-vertices.

Thus the problem of characterizing litact graph is still an open prob-

lem.

∗ ∗ ∗ ∗ ∗
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Chapter 3

LICT SIGNED GRAPHS AND THEIR
CHARACTERIZATIONS

In [10], Mathad and Narayankar extended the definition of lict graph

to product-lict signed graph. We define two types of lict signed graphs

of a signed graph S that are Lc(S) and L•c(S). In the previous chapter

we have established characterization for lict graphs. In this chapter

structural characterizations of lict signed graphs Lc(S), L×c
(S), L•c(S)

and also for line signed graphs L×(S) and L•(S) have been established.

3.1 Introduction

Recall that there are three notions of a line signed graph of a signed

graph S = (Su, σ) in the literature, viz., L(S), L×(S) and L•(S), all of

which have L(Su) as their underlying graph; only the rule to assign signs

to the edges of L(Su) differ. Every edge ee′ in L(S) is negative whenever

both the adjacent edges e and e′ in S are negative [7], an edge ee′ in

L×(S) has the product σ(e)σ(e′) as its sign [3] and an edge ee′ in L•(S)

has µσ(v) as its sign, where v ∈ V (S) is a common vertex of edges e and

e′ [1] and µσ(v) is the product of the signs of the edges incident to v.

Note that for a graph G, L(G) ∼= L×(G) ∼= L•(G) as G is an all-positive

signed graph. For an all-negative signed graph S without pendent edges

in which every vertex is positive, L×(S) ∼= L•(S) ∼= η(L(S)) and all are
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all-positive.

Proposition 3.1.1. [3] For any signed graph S, its ×-line signed graph

L×(S) is balanced.

Figure 3.1 illustrates a signed graph and its line, ×-line and •-line

signed graphs.

1
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Figure 3.1: A signed graph S and its L(S), L×(S) and L•(S)

A signed graph S is said to be a line (×-line or •-line) signed graph if

there exists a signed graph T whose line (×-line or •-line) signed graph

L(T ) (L×(T ) or L•(T )) is isomorphic to S and this signed graph T is

called the line (×-line or •-line) root of S.

In the previous chapter we have discussed lict graph of a graph.

Recall that Mathad and Narayankar [10] extended the definition of lict

graph to lict signed graph as follows:
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The lict signed graph (for convenient, we call this signed graph product-

lict signed graph or ×-lict signed graph) of a signed graph S = (Su, σ),

is the signed graph L×c
(S) = (Lc(S

u), σ′), where for every edge uv of

Lc(S
u)

σ′(uv) =

 σ(u)σ(v), if u, v ∈ E(S);

σ(u), if u ∈ E(S) and v ∈ C(S)

Proposition 3.1.2. [10] For a signed graph S, its ×-lict signed graph

L×c
(S) is balanced.

Acharya et al. in [4, 5] introduced the lict signed graph Lc(S) and

the •-lict signed graph L•c(S) for a signed graph S as follows:

The lict signed graph of a signed graph S = (Su, σ), is a signed graph

Lc(S) = (Lc(S
u), σ′), where for every edge uv of Lc(S

u)

σ′(uv) =

 −, if u ∈ E–
(S) and v ∈ E–

(S) or negative cut-vertex;

+, otherwise.

The dot-lict signed graph (or •-lict signed graph) of a signed graph

S = (Su, σ), is a signed graph L•c(S) = (Lc(S
u), σ′), where for every

edge uv of Lc(S
u)

σ′(uv) =

 µσ(p), if u, v ∈ E(S) and p is their common vertex;

µσ(v), if u ∈ E(S) and v ∈ C(S)

Figure 3.2 illustrates a signed graph and its lict, ×-lict and •-lict

signed graphs.
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Figure 3.2: A signed graph S and its Lc(S), L×c(S) and L•c(S)

Note that for a graph G, Lc(G) ∼= L×c
(G) ∼= L•c(G) as G is an

all-positive signed graph. For an all-negative signed graph S in which

every vertex is positive, η(Lc(S)) ∼= L×c
(S).

A signed graph S is said to be a lict (×-lict or •-lict) signed graph if

there exists a signed graph T whose lict (×-lict or •-lict) signed graph

Lc(T ) (L×c
(T ) or L•c(T )) is isomorphic to S and this signed graph T

is called the lict (×-lict or •-lict) root of S.
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3.2 Characterization of lict signed graphs and line signed

graphs

In this section, we establish structure characterization of lict signed

graphs. This result has been reported in [8].

Theorem 3.2.1. S is a lict signed graph if and only if the following

conditions hold:

(i) Su is a lict graph;

(ii) S does not contain a path P4 = (u, v, w, x) or a triangle (u, v, w)

in which exactly one edge vw is positive and;

(iii) for any clique Si, if atleast one vertex c of Si does not lie in another

clique then if d−(c) = 0 (d−(c) 6= 0) then an even (odd) number

of vertices adjacent to c have non-zero negative degree and these

negative vertices must be adjacent to each other (adjacent to each

other and to c also) by negative edges.

Proof. Necessity:

Let S be a lict signed graph. Therefore, S ∼= Lc(T ) for some signed

graph T . This implies that Su ∼= Lc(T
u), i.e., Su is a lict graph. Thus

(i) follows. Now, we prove the necessity of (ii) by contradiction:

Assume that S contains a path P4 = (u, v, w, x) in which exactly

one edge vw is positive, i.e., uv, wx ∈ E
–
(S). Since no two adjacent
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vertices of S correspond to two cut-vertices of T and S ∼= Lc(T ), we

have following possible cases:

Case I: u, v, w, x ∈ E(T ). Then uv, wx ∈ E
–
(S) ⇒ u, v, w, x ∈

E
–
(T )⇒ vw ∈ E–

(S).

Case II: u ∈ C(T ) and v, w, x ∈ E(T ). Then uv, wx ∈ E–
(S) ⇒ u is

negative cut-vertex of T and v, w, x ∈ E–
(T )⇒ vw ∈ E–

(S).

Case III: u,w ∈ C(T ) and v, x ∈ E(T ). Then uv, wx ∈ E–
(S)⇒ u,w

are negative cut-vertices of T and v, x ∈ E–
(T )⇒ vw ∈ E–

(S).

Case IV: u, x ∈ C(T ) and v, w ∈ E(T ). Then uv, wx ∈ E–
(S)⇒ u, x

are negative cut-vertices of T and v, w ∈ E–
(T )⇒ vw ∈ E–

(S).

Similarly, if S contains a triangle (u, v, w) in which exactly one edge vw

is positive, i.e., uv, wu ∈ E–
(S). Then we have following two possible

cases:

Case I: u, v, w ∈ E(T ). Then uv, wu ∈ E–
(S) ⇒ u, v, w ∈ E–

(T ) ⇒

vw ∈ E–
(S).

Case II: u ∈ C(T ) and v, w ∈ E(T ). Then uv, wu ∈ E
–
(S) ⇒ u is

negative cut-vertex of T and v, w ∈ E–
(T )⇒ vw ∈ E–

(S).

Since we get vw ∈ E–
(S) that contradicts our assumption. Thus (ii)

follows.
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Next, suppose for any clique Si of S, atleast one vertex c of Si does

not lie in another clique then obviously, c corresponds to a cut-vertex

or a pendant edge of T . Since lict root of S is not unique (as shown

in Figure 3.3), doesn’t matter if we assume c as a cut-vertex or a

pendant edge of T . Let c be a cut-vertex of T .
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Figure 3.3: Signed graphs S and its Lc(S)

Now, we have following two possible cases:

Case I: If d−(c) = 0 then by the definition of lict signed graphs, an

even number of edges incident to c must be negative in S, hence

an even number of vertices of N (c) in S, have non-zero negative

degree and adjacent to each other by negative edges, where N (c)

is the set of all adjacent vertices of c.

Case II: If d−(c) 6= 0 then an odd number of edges incident to c must

be negative in S, hence an odd number of vertices of N (c) in S
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have non-zero negative degree and adjacent to each other and with

c by negative edges.

Thus (iii) follows.

Hence, the necessity follows.

Sufficiency:

Suppose conditions hold. We give the construction of a signed graph T

whose lict signed graph is S. Since Su is a lict graph, by Theorem 2.3.1,

the edges of Su can be partitioned into cliques in such a way that no ver-

tex lies in more than two of these cliques. Let P(S) = {S1, S2, ..., Sn} be

such a partition of E(S). The vertices of T u correspond to the set P(S)

together with the set U of vertices of S belonging only to one of the

cliques Si leaving one such vertex for each Si. Thus V (T u) = P(S)∪U ,

two of these vertices are adjacent whenever they have a nonempty in-

tersection, that is, T u is the intersection graph Ω(P(S) ∪ U). Now,

we assign the labels to the edges and cut-vertices of T u and then give

labels to vertices of S. Further, we construct a signed graph T on T u

such that an edge ei of T is positive if negative degree of its correspond-

ing vertex in S is 0 and negative otherwise. For this signed graph T ,

S ∼= Lc(T ). This completes the proof.

Figure 3.4 illustrates the construction of a signed graph T from a

signed graph S such that S ∼= Lc(T ) and S satisfies sufficiency condi-

tions of Theorem 3.2.1:
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Figure 3.4: The construction of signed graph T from S such that S ∼= Lc(T )

Proposition 3.2.1. S is a line signed graph if and only if the following

conditions hold:

(i) Su is a line graph and;

(ii) S does not contain a path P4 = (u, v, w, x) or a triangle (u, v, w)

in which exactly one edge vw is positive.

57



Proposition 3.2.1 has been proved by Acharya and Sinha in [6].

3.3 Characterization of ×-lict signed graphs and ×-line signed

graphs

In the previous section we have characterized lict signed graphs. Now,

we move towards ×-lict and ×-line signed graphs. The following the-

orem is about the characterization of ×-lict signed graph as reported

in [9].

Theorem 3.3.1. S is a ×-lict signed graph if and only if Su is a lict

graph and S is balanced.

Proof. Necessity:

Let S be a ×-lict signed graph. Therefore, S ∼= L×c
(T ) for some signed

graph T . This implies that Su ∼= L×c
(T u), i.e., Su is a lict graph. Fur-

ther, by Proposition 3.1.2, S is balanced. Thus, the necessity follows.

Sufficiency:

Suppose Su is a lict graph and S is balanced. Therefore, Su ∼= Lc(T
u)

for some graph T u. We construct T u and assign labels to the edges of

S by the procedure as discussed in the sufficiency of Theorem 3.2.1.

Now, by Theorem 1.2.3, a signed graph S is balanced if and only if

there exits a marking µ of S such that every edge uv of S satisfies

σ(uv) = µ(u)µ(v). We assign marking µ to S such that vertices of S

which correspond to cut-vertices of T u are ‘+’ and σ(uv) = µ(u)µ(v).

Further, we construct a signed graph T on T u such that an edge ei
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of T is positive (negative) if its corresponding vertex in S is positive

(negative). For this signed graph T , S ∼= L×c
(T ). This completes the

proof.

Figure 3.5 illustrates the construction of a signed graph T from

a signed graph S such that S ∼= L×c
(T ) and S satisfies sufficiency

conditions of Theorem 3.3.1.
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Figure 3.5: The construction of signed graph T from S such that S ∼= L×c(T )

Observation 3.3.1. If a signed graph T is ×-lict root of a signed
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graph S then η(T ) is also ×-lict root of S.

Theorem 3.3.2. S is a ×-line signed graph if and only if Su is a line

graph and S is balanced.

Proof. Necessity:

Let S be a ×-line signed graph. Therefore, S ∼= L×(T ) for some signed

graph T . This implies that Su ∼= L×(T u), i.e., Su is a line graph. Fur-

ther, by Proposition 3.1.1, S is balanced. Thus, the necessity follows.

Sufficiency:

Suppose conditions hold. We give the construction of a signed graph

T whose ×-line signed graph is S. Since Su is a line graph, by Theo-

rem 2.2.1, the edges of Su can be partitioned into complete subgraphs

in such a way that no vertex lies in more than two of these complete

subgraphs. Let P(S) = {S1, S2, ..., Sn} be such a partition of E(S).

The vertices of T u correspond to the set P(S) together with the set

U of vertices of S belonging only to one of the complete subgraphs Si.

Thus V (T u) = P(S) ∪ U , two of these vertices are adjacent whenever

they have a nonempty intersection, that is, T u is the intersection graph

Ω(P(S) ∪ U). Now, we assign the labels to the edges of T u and then

give labels to vertices of S. Further, By Theorem 1.2.3, a signed graph

S is balanced if and only if there exits a marking µ of S such that every

edge uv of S satisfies σ(uv) = µ(u)µ(v). We assign marking µ to S

such that σ(uv) = µ(u)µ(v) and construct a signed graph T on T u such

that an edge ei of T is positive (negative) if its corresponding vertex
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in S is positive (negative). For this signed graph T , S ∼= L×(T ). This

completes the proof.

Figure 3.6 illustrates the construction of a signed graph T from a

signed graph S such that S ∼= L×(T ) and S satisfies sufficiency condi-

tions of Theorem 3.3.2.
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Figure 3.6: The construction of signed graph T from S such that S ∼= L×(T )

Observation 3.3.2. If a signed graph T is ×-line root of a signed

graph S then η(T ) is also ×-line root of S.
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3.4 Characterization of •-lict signed graphs and •-line signed

graphs

In the following theorem, we give the characterization of •-lict signed

graph as reported in [9].

Theorem 3.4.1. S is a •-lict signed graph if and only if the following

conditions hold in S:

(i) Su is a lict graph and the edges of S can be partitioned into homo-

geneous cliques in such a way that no vertex lies in more than two

of these cliques;

(ii) if for every such clique Si, each vertex of Si lies in two of these

cliques except at most one vertex of Si then the number of all-

negative cliques is even.

Proof. Necessity:

Let S be a •-lict signed graph. Therefore, S ∼= L•c(T ) for some signed

graph T = (T u, σ′). This implies that Su ∼= L•c(T
u), i.e., Su is a lic-

t graph. By Theorem 2.3.1, the edges of Su can be partitioned into

cliques in such a way that no vertex lies in more than two of these

cliques and by the definition of L•c(T ), the edges incident on a vertex

v of T of degree p, that is not a cut-vertex, induces a homogeneous

clique of order p in S and the edges incident on a cut-vertex c of T of

degree p induce a homogeneous clique of order p + 1 in S having c as

one of its vertices. This is illustrated in Figure 3.7. Thus, (i) follows.
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Figure 3.7: Signed graph S and signed graph T such that S ∼= L•c(T )

By Lemma 1.2.2, in any canonically marked signed graph there are

an even number of vertices marked negative. Clearly, if the number of

negative pendant vertices in T are even (odd) then the number of all-

negative cliques in S will be even (odd). This is illustrated in Figure

3.6. Hence, if T does not contain any pendant edge, that is, it has zero

pendant edges then the number of all-negative cliques in S will be even

and by the definition of L•c(T ), for this T , in S, each vertex of a clique

Si lies in two of these cliques except at most one vertex of Si for each

clique of S. Thus, the necessity follows.

Sufficiency:

Suppose conditions hold. We give the construction of a signed graph T

whose •-lict signed graph is S. Let P(S) = {S1, S2, ..., Sn} be the par-

tition of E(S) into homogeneous cliques. The vertices of T u correspond

to the set P(S) together with the set U of vertices of S belonging only

to one of the homogeneous cliques Si leaving one such vertex for each

Si. Thus V (T u) = P(S)∪U , two of these vertices are adjacent whenev-

er they have a nonempty intersection. We construct T u and assign ‘+’

63



(‘−’) sign to each non-pendant vertex Si ∈ V (T u) if it corresponds to

an all-positive (all-negative) Si in S and take signature of T in such a

way that signs assigned to vertices of T u are preserved under canonical

marking of T . For this signed graph T , S ∼= L•c(T ), that is, S is a •-lict

signed graph. This completes the proof.

Figure 3.8 illustrates the construction of a signed graph T from

a signed graph S such that S ∼= L•c(T ) and S satisfies sufficiency

conditions of Theorem 3.4.1.
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Figure 3.8: The construction of signed graph T from S such that S ∼= L•c(T )
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Proposition 3.4.1. S is a •-line signed graph if and only if the fol-

lowing conditions hold in S:

(i) Su is a line graph and the edges of S can be partitioned into ho-

mogeneous cliques in such a way that no vertex lies in more than

two of these cliques;

(ii) if each vertex of S belongs to exactly two of these cliques then the

number of all-negative cliques is even.

Proposition 3.4.1 has been proved by Sinha and Dhama in [11].

For more study on dot-line signed graph, the reader is referred to [2].

3.5 Conclusion and Scope

In this chapter, we have initiated the study on lict signed graphs Lc(S)

and L•c(S), and we established characterizations of Lc(S), L×c
(S),

L•c(S) and also of line signed graphs L×(S) and L•(S). Litact signed

graphs are yet to be defined and study on this concept is still open.

∗ ∗ ∗ ∗ ∗
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Chapter 4

FURTHER RESULTS ON DOT-LICT AND LICT SIGNED
GRAPHS

In the previous chapter we have established characterization for lict,

×-lict and •-lict signed graphs. In this chapter, we characterize signed

graphs on Kp, p ≥ 2, on cycle Cn and on Km,n which are •-lict signed

graphs or •-line signed graphs and we also characterize signed graphs

S so that L•c(S) and L•(S) are balanced. We also establish the char-

acterization of signed graphs S for which S ∼ L•c(S), S ∼ L•(S),

η(S) ∼ L•c(S) and η(S) ∼ L•(S), here η(S) is the negation of S and

∼ stands for switching equivalence. Similarly, we characterize signed

graphs on Kp, p ≥ 2, on cycle Cn and on Km,n which are lict signed

graphs or line signed graphs and we also characterize signed graphs S

so that Lc(S) and L(S) are balanced. Further, we also establish the

characterization of signed graphs S for which S ∼ Lc(S), S ∼ L(S),

η(S) ∼ Lc(S) and η(S) ∼ L(S).

4.1 Introduction

Though we have defined •-line, •-lict, line and lict signed graphs in the

previous chapter but here we again give definitions in order to make

the chapter easily readable.

There are three notions of a line signed graph of a signed graph
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S = (Su, σ) in the literature, viz., L(S), L×(S) and L•(S), all of which

have L(Su) as their underlying graph; only the rule to assign signs to

the edges of L(Su) differ. Every edge ee′ in L(S) is negative whenever

both the adjacent edges e and e′ in S are negative, an edge ee′ in L×(S)

has the product σ(e)σ(e′) as its sign and an edge ee′ in L•(S) has µσ(v)

as its sign, where v ∈ V (S) is a common vertex of edges e and e′ and

µσ(v) is the product of the signs of the edges incident to v.

The dot-lict signed graph (or •-lict signed graph) of a signed graph

S = (Su, σ), is a signed graph L•c(S) = (Lc(S
u), σ′), where for every

edge uv of Lc(S
u)

σ′(uv) =

 µσ(p), if u, v ∈ E(S) and p is their common vertex;

µσ(v), if u ∈ E(S) and v ∈ C(S)

The lict signed graph of a signed graph S = (Su, σ), is a signed graph

Lc(S) = (Lc(S
u), σ′), where for every edge uv in Lc(S

u)

σ′(uv) =

 − if u, v ∈ E–
(S) or u ∈ E–

(S) and v is negative cut-vertex;

+ otherwise.

Some important concepts and theorems which are useful to prove the

results of this chapter are given below.

Theorem 4.1.1. [5] For a connected graph G, G ∼= L(G) if and only

if G is a cycle.

Theorem 4.1.2. [6] For a connected graph G, G ∼= Lc(G) if and only
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if G is a cycle.

In following sections, we give results on •-lict and •-line signed

graphs. These results have been reported in [1].

4.2 •-lict and •-line signed graphs on Kp and Cn

Theorem 4.2.1. A signed graph S = (Su, σ), on a complete graph

Su := Kp, p ≥ 3, is a •-lict signed graph if and only if S is homogeneous

or a triangle having two negative edges.

Proof. Necessity: Let S = (Su, σ), on a complete graph Kp, p ≥ 3, be

a •-lict signed graph. Therefore, S ∼= L•c(T ) for some signed graph

T = (T u, σ′). This implies that Su ∼= L•c(T
u), i.e., Kp

∼= Lc(T
u). By

the definition of lict graph it is clear that

T u =

 K3 or K1,2 if p=3;

K1,p−1 if p ≥ 4.

• If T u := K3, then for homogeneous T on T u, S is all-positive tri-

angle and for heterogeneous T , S is a triangle having two negative

edges, as shown in Figure 4.1.

• If T u := K1,p−1, p ≥ 3, then whether non-pendant vertex is posi-

tive or negative, S is homogeneous. Thus, the necessity follows.
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Figure 4.1: Signed graphs S and T such that S ∼= L•c(T )

Sufficiency:

Suppose conditions hold. We give the construction of a signed graph

T whose •-lict signed graph is S. Let P(S) = {S1, S2, ..., Sn} be the

partition of E(S) into homogeneous cliques. Note that the ordered

pair (S,P(S)) is a hypergraph. The vertices of T u correspond to the

set P(S) together with the set U of vertices of S belonging only to

one of the homogeneous cliques Si leaving one such vertex for each Si.

Thus V (T u) = P(S) ∪ U , two of these vertices are adjacent whenever

they have a nonempty intersection in S. Now, assign ‘+’ (‘−’) sign to

each non-pendant vertex Si ∈ V (T u) if it corresponds to an all-positive
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(all-negative) Si in S and take signature of T in such a way that signs

assigned to vertices of T u are preserved under canonical marking of T .

For this signed graph T , S ∼= L•c(T ); that is, S is a •-lict signed graph.

This completes the proof.

Figure 4.2 illustrates construction of a signed graph T such that

S ∼= L•c(T ) for a signed graph S that satisfies sufficiency condition of

Theorem 4.2.1. Note that T need not be unique.

S: 

T  : u s1 s3

s2

+

T:

s1

--

-

T  : u

s 1

T:

S: s1 s3

s2

Figure 4.2: The construction of signed graph T from S such that S ∼= L•c(T )

Theorem 4.2.2. A signed graph S = (Su, σ), on a complete graph
Su := Kp, p ≥ 2, is a •-line signed graph if and only if S is homogeneous
or a triangle having two negative edges.
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Proof. Necessity:
Let S = (Su, σ), on a complete graph Kp, p ≥ 2, be a •-line signed
graph. Therefore, S ∼= L•(T ) for some signed graph T = (T u, σ′). This
implies that Su ∼= L•(T

u), i.e., Kp
∼= L(T u). Clearly,

T u =

{
K3 or K1,3 if p=3;
K1,p if p = 2 or p ≥ 4.

• If T u := K3, then for homogeneous T on T u, S is all-positive tri-
angle and for heterogeneous T , S is a triangle having two negative
edges, as shown in Figure 4.3.
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Figure 4.3: Signed graph T such that S ∼= L•(T )
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• If T u := K1,p, p ≥ 2, then whether non-pendant vertex is positive

or negative, S is always homogeneous. This is illustrated in Figure

4.3. Thus, the necessity follows.

Sufficiency:

Suppose conditions hold. We give the construction of a signed graph

T whose •-line signed graph is S. Let P(S) = {S1, S2, ..., Sn} be the

partition of E(S) into homogeneous complete subgraphs. The vertices

of T u correspond to the set P(S) together with the set U of vertices

of S belonging only to one of the homogeneous complete subgraphs Si.

Thus V (T u) = P(S) ∪ U , two of these vertices are adjacent whenever

they have a nonempty intersection. Now, assign ‘+’ (‘−’) sign to each

non-pendant vertex Si ∈ V (T u) if it corresponds to an all-positive (all-

negative) Si in S and take signature of T in such a way that signs

assigned to vertices of T u are preserved under canonical marking of T .

For this signed graph T , S ∼= L•(T ); that is, S is a •-line signed graph.

This completes the proof.

Figure 4.4 illustrates construction of a signed graph T such that

S ∼= L•(T ) for a signed graph S that satisfies sufficiency condition of

Theorem 4.2.2.
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S: 

T  : u s1 s3

s2

+

T:

s1

- -

S: s1 s3

s2

-
T  : u s1

T:

S: 
s1

-

T  : u

s1

T:

Figure 4.4: The construction of signed graph T from S such that S ∼= L•(T )

Theorem 4.2.3. A signed graph S = (Su, σ), on a cycle Su := Cn,
is •-lict signed graph if and only if S is an all-negative triangle or a
positive cycle.
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Proof. Necessity:

Let S = (Su, σ), on cycle Cn, be a •-lict signed graph. Therefore,

S ∼= L•c(T ) for some signed graph T = (T u, σ′). This implies that

Su ∼= L•c(T
u), i.e., Cn ∼= Lc(T

u). By the definition of lict graph it is

clear that

T u =

 C3 or K1,2 if n=3;

Cn if n ≥ 4.

• If T u := K1,2, then for T on T u containing one negative edge, S

is an all-negative triangle, as shown in Figure 4.1 and for other

T ′s, S is an all-positive triangle.

• If T u := Cn, then by the definition of L•c(T ), |E−(L•c(T ))| = the

number of negative vertices in T . By Lemma 1.2.2, in any canon-

ically marked signed graph there are an even number of vertices

marked negative. Hence |E−(L•c(T ))| = even, i.e., S is a positive

cycle.

Thus the necessity follows.

Sufficiency:

Suppose conditions hold. We give the construction of a signed graph T

by the procedure as discussed in the sufficiency of Theorem 4.2.1. For

this signed graph T , S ∼= L•c(T ); that is, S is a •-lict signed graph.

This completes the proof.

Figure 4.5 illustrates construction of a signed graph T such that

S ∼= L•c(T ) for a signed graph S that satisfies sufficiency condition of
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Theorem 4.2.3.
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++

Figure 4.5: The construction of signed graph T from S such that S ∼= L•c(T )

Corollary 4.2.1. A signed graph S = (Su, σ), on a cycle Su := Cn,

is •-line signed graph if and only if S is a homogeneous triangle or a

positive cycle.
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Proposition 4.2.1. For a signed graph S on cycle Cn, L•c(S) ∼= L•(S)

and it is a positive cycle.

Proof. For a signed graph S on cycle Cn, L•c(S) ∼= L•(S), since C(S) =

φ. By the definition of L•c(S), |E−(L•c(S))| = the number of nega-

tive vertices in S. By Lemma 1.2.2, in any canonically marked signed

graph there are an even number of vertices marked negative. Hence

|E−(L•c(S))| = even, i.e., L•c(S) is a positive cycle.

Corollary 4.2.2. For a signed graph S = (Su, σ), on a cycle Su := Cn,

L•c(S) ∼ S and L•(S) ∼ S if and only if S is a positive cycle.

4.3 •-lict and •-line signed graphs on Km,n

Theorem 4.3.1. A signed graph S = (Su, σ) on a complete bipartite

graph Su := Km,n, is a •-lict signed graph if and only if S is a positive

cycle of order 4.

Proof. Necessity:

Let S = (Su, σ) on a complete bipartite graph Km,n, be a •-lict signed

graph. Therefore, S ∼= L•c(T ) for some signed graph T . This implies

that Su ∼= L•c(T
u) or Km,n

∼= Lc(T
u), i.e., Km,n is a lict graph.

Let v be a cut-vertex of T u then clearly d(v) ≥ 2 and by the defi-

nition of lict graph, the edges incident with cut-vertex v in T u induce

a complete subgraph Kd(v)+1, i.e., Kp, p ≥ 3 in Su := Km,n. Since a

complete bipartite graph does not contain any odd cycle, Kp, p ≥ 3
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can not be a subgraph of Km,n. Hence, C(T u) = φ. Therefore Km,n

is also a line graph. Since K1,3 is a forbidden induced subgraph of a

line graph, m ≤ 2 and n ≤ 2. Furthermore by Theorem 2.3.1, a lict

graph does not contain a pendant vertex, Km,n � K1,1 and K1,2. Thus

Km,n
∼= C4 and by Theorem 4.2.3, S is a positive cycle of order 4.

Sufficiency:

Suppose S is a positive cycle of order 4 then by Theorem 4.2.3, S is a

•-lict signed graph. This completes the proof.

Corollary 4.3.1. A signed graph S = (Su, σ) on a complete bipartite

graph Su := Km,n, is a •-line signed graph if and only if S is any one

of the following:

(i) any signed graph on K1,1 or K1,2

(ii) a positive cycle of order 4.

4.4 Balanced •-lict and •-line signed graphs

Theorem 4.4.1. For a signed graph S, L•c(S) is balanced if and only

if the following conditions hold in S:

(i) S is C-consistent and;

(ii) each vertex v of d(v) ≥ 3 and cut-vertex of degree 2 are positive

vertices.

Proof. Necessity:

Suppose for a signed graph S, L•c(S) is balanced, i.e., every cycle in
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L•c(S) is a positive cycle. By the definition of L•c(S), a cycle Z in S

induces a cycle Z ′ in L•c(S) and |E−(Z ′)| = the number of negative

vertices in Z. Since Z ′ is a positive cycle, every cycle Z in S contains

an even number of negative vertices; that is, S is C-consistent. Thus,

(i) follows.

Next, we prove the necessity of condition (ii) by contrapositive:

Assume that a vertex v ∈ V (S) which is of degree≥ 3 or a cut-vertex

of degree 2, is a negative vertex, i.e., d−(v) is odd or µσ(v) = −. Then

by the definition of L•c(S), the edges incident with v will induce an all-

negative complete subsignedgraph of order ≥ 3 in L•c(S) that makes

L•c(S) unbalanced. Thus, (ii) follows.

Sufficiency:

A cycle in L•c(S) is induced due to a cycle or a vertex of degree≥ 2

or their combinations in S. Suppose conditions (i) and (ii) hold in S

then every chordless cycle in L•c(S) will be positive. By Lemma 1.2.1,

a signed graph in which every chordless cycle is positive, is balanced.

Hence L•c(S) is balanced. This completes the proof.

Corollary 4.4.1. L•(S) is balanced if and only if the following condi-

tions hold in signed graph S:

(i) S is C-consistent and;

(ii) each vertex v of d(v) ≥ 3 is a positive vertex.
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4.5 Switching equivalence of L•c(S) and L•(S) to S

Theorem 4.5.1. For a signed graph S, S ∼ L•c(S) if and only if S is

a positive cycle.

Proof. Suppose for a signed graph S, S ∼ L•c(S). This implies that

Su ∼= L•c(S
u), i.e., Su ∼= Lc(S

u). By Theorem 4.1.2, Su is a cycle and

by Proposition 4.2.1, L•c(S) is a positive cycle. By Theorem 1.2.4, two

signed graphs S1 and S2 with the same underlying graph are switching

equivalent if and only if they are cycle isomorphic. Hence S is a positive

cycle.

Conversely, Suppose S is a positive cycle then by Proposition 4.2.1,

L•c(S) is also a positive cycle. Hence by Theorem 1.2.4, S ∼ L•c(S).

This is illustrated in Figure 4.6. Thus the result follows.
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Figure 4.6: A signed graph S such that S ∼ L•c(S)

Proposition 4.5.1. For a signed graph S, S ∼ L•(S) if and only if S

is a positive cycle.
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4.6 Switching equivalence of L•c(S) and L•(S) to η(S)

Theorem 4.6.1. For a signed graph S, η(S) ∼ L•c(S) if and only if S

is a positive even cycle or a negative odd cycle.

Proof. Necessity:

Suppose for a signed graph S, η(S) ∼ L•c(S). This implies that

Su ∼= L•c(S
u), i.e., Su ∼= Lc(S

u). By Theorem 4.1.2, Su is a cycle and

by Proposition 4.2.1, L•c(S) is a positive cycle. By Theorem 1.2.4, two

signed graphs S1 and S2 with the same underlying graph are switching

equivalent if and only if they are cycle isomorphic. Hence η(S) is also

a positive cycle; that is, S is a positive even cycle or a negative odd

cycle.

Sufficiency:

Suppose S is a positive even cycle or a negative odd cycle. Then clear-

ly η(S) is a positive cycle. This is illustrated in Figure 4.7 and by

Proposition 4.2.1, L•c(S) is a also positive cycle. Hence, by Theorem

1.2.4, η(S) ∼ L•c(S). This completes the proof.

Proposition 4.6.1. For a signed graph S, η(S) ∼ L•(S) if and only if

S is a positive even cycle or a negative odd cycle.
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Figure 4.7: A signed graph S such that η(S) ∼ L•c(S)

In following sections, we give results on lict and line signed graphs

and these results have been reported in [2].

84



4.7 Lict and line signed graphs on Kp and Cn

Theorem 4.7.1. A signed graph S = (Su, σ), on a complete graph

Su := Kp, p ≥ 3, is a lict signed graph if and only if S is any one of

the following:

1. all-positive

2. all-negative for p = 3 or even

3. heterogeneous, in which all-negative maximal subsignedgraph is an

even order complete signed graph.

Proof. Necessity:

Let S = (Su, σ), on a complete graph Kp, p ≥ 3, be a lict signed graph.

Therefore, S ∼= Lc(T ) for some signed graph T = (T u, σ′). This implies

that Su ∼= Lc(T
u), i.e., Kp

∼= Lc(T
u). By the definition of lict graph it

is clear that

T u =

 K3 or K1,2 if p = 3;

K1,p−1 if p ≥ 4.

Since S ∼= Lc(T ), we have following cases:

(1) If T u := K3, then

• for T containing at most one negative edge, S is an all-positive

triangle.

• for T containing two negative edges, S is a triangle containing

one negative edge.
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• for all-negative T , S is an all-negative triangle, as shown in

Figure 4.8.
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Figure 4.8: Signed graph T such that S ∼= Lc(T )

(2) If T u := K1,p−1, p ≥ 3, then

• for all-positive T , S is all-positive Kp .

• for all-negative T of odd order or heterogeneous T , S is het-

erogeneous, in which all-negative maximal subsignedgraph is
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of an even order complete signed graph.

• for all-negative T of even order, S is an even order all-negative

complete signed graph. This is illustrated in Figure 4.8.

Thus, the necessity follows.

Sufficiency:

Suppose conditions hold. We give the construction of a signed graph

T whose lict signed graph is S. Let P(Su) = {Su1 , Su2 , ..., Sun} be the

partition of E(Su) into complete subgraphs in such a way that no vertex

lies in more than two of these complete subgraphs. The vertices of T u

correspond to the set P(Su) together with the set U of vertices of Su

belonging to only one of the complete subgraphs Sui leaving one such

vertex for each Sui . Thus V (T u) = P(Su) ∪ U , two of these vertices

are adjacent whenever they have a nonempty intersection; that is, T u

is the intersection graph Ω(P(Su) ∪ U). Now, we construct a signed

graph T on T u such that an edge ei in T is negative whenever its

corresponding vertex in S has negative degree 6= 0. For this signed

graph T , S ∼= Lc(T ). This completes the proof.

In Figure 4.9, we construct signed graph T such that S ∼= Lc(T ).

Note that in this construction, the lict root T is unique.
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Figure 4.9: The construction of signed graph T from S such that S ∼= Lc(T )

Theorem 4.7.2. A signed graph S = (Su, σ), on a complete graph
Su := Kp, p ≥ 2, is a line signed graph if and only if S is any one of
the following:

1. homogeneous

2. heterogeneous, in which all-negative maximal subsignedgraph is com-
plete.
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Proof. Necessity:

Let S = (Su, σ), on a complete graph Kp, p ≥ 2, be a line signed graph.

Therefore, S ∼= L(T ) for some signed graph T = (T u, σ′). This implies

that Su ∼= L(T u), i.e., Kp
∼= L(T u). Clearly,

T u =

 K3 or K1,3 if p = 3;

K1,p if p = 2 or p ≥ 4.

Since S ∼= L(T ), we have following cases:

(1) If T u := K3, then

• for T containing at most one negative edge, S is an all-positive

triangle.

• for T containing two negative edges, S is a triangle containing

one negative edge.

• for all-negative T , S is an all-negative triangle, as shown in

Figure 4.10.

(2) If T u := K1,p, p ≥ 2, then

• for T containing at most one negative edge, S is all-positive

Kp.

• for heterogeneous T containing at least two negative edges, S is

heterogeneous, in which all-negative maximal subsignedgraph

is complete.

• for all-negative T , S is an all-negative complete signed graph,

as shown in Figure 4.10.

Thus, the necessity follows.
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Figure 4.10: Signed graph T such that S ∼= L(T )

Sufficiency:

Suppose conditions hold. We give the construction of a signed graph

T whose line signed graph is S. By Theorem 2.2.1, Su is a line graph.

Let P(Su) = {Su1 , Su2 , ..., Sun} be the partition of E(Su) into complete

subgraphs in such a way that no vertex lies in more than two of these

complete subgraphs. The vertices of T u correspond to the set P(Su)

together with the set U of vertices of Su belonging to only one of the
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complete subgraphs Sui . Thus V (T u) = P(Su)∪U , two of these vertices

are adjacent whenever they have a nonempty intersection; that is, T u is

the intersection graph Ω(P(Su)∪U). Now, we construct a signed graph

T on T u such that an edge ei in T is negative whenever its corresponding

vertex in S has negative degree 6= 0, as shown in Figure 4.11. For

this signed graph T , S ∼= L(T ); that is, S is a line signed graph. This

completes the proof.
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Figure 4.11: The construction of signed graph T from S such that S ∼= L(T )
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Note that by this construction, the line-root T of S is unique.

Theorem 4.7.3. A signed graph S = (Su, σ), on a cycle Su := Cn, is

lict signed graph if and only if S does not contain a path P4 = (u, v, w, x)

and a triangle (u, v, w) in which exactly one edge vw is positive.

Proof. Necessity:

Let S = (Su, σ), on cycle Cn, be a lict signed graph. Therefore

S ∼= Lc(T ) for some signed graph T . We prove the necessity by contra-

diction:

Assume that S contains a path P4 = (u, v, w, x) in which exactly one

edge vw is positive, i.e., uv, wx ∈ E–
(S). By the definition of Lc(T ),

two adjacent vertices of S can not correspond to two cut-vertices of T .

Since S ∼= Lc(T ), we have following possible cases:

Case I: u, v, w, x ∈ E(T ). Then uv, wx ∈ E
–
(S) ⇒ u, v, w, x ∈

E
–
(T )⇒ vw ∈ E–

(S).

Case II: u ∈ C(T ) and v, w, x ∈ E(T ). Then uv, wx ∈ E–
(S) ⇒ u is

negative cut-vertex of T and v, w, x ∈ E–
(T )⇒ vw ∈ E–

(S).

Case III: u,w ∈ C(T ) and v, x ∈ E(T ). Then uv, wx ∈ E–
(S)⇒ u,w

are negative cut-vertices of T and v, x ∈ E–
(T )⇒ vw ∈ E–

(S).

Similarly, if S contains a triangle (u, v, w) in which exactly one edge vw

is positive, i.e., uv, wu ∈ E–
(S). Then we have following two possible

cases:

Case I: u, v, w ∈ E(T ). Then uv, wu ∈ E–
(S) ⇒ u, v, w ∈ E–

(T ) ⇒
vw ∈ E–

(S).

Case II: u ∈ C(T ) and v, w ∈ E(T ). Then uv, wu ∈ E
–
(S) ⇒ u is

negative cut-vertex of T and v, w ∈ E–
(T )⇒ vw ∈ E–

(S).

Thus, in all possible cases, we get vw ∈ E
–
(S) that contradicts our

assumption. Hence, the necessity follows.
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Sufficiency:

Suppose conditions hold. We can construct a signed graph T whose

lict signed graph is S by the procedure as discussed in the sufficiency

of Theorem 4.7.1, as shown in Figure 4.12. For this signed graph T ,

S ∼= Lc(T ); that is, S is a lict signed graph. This completes the proof.
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Figure 4.12: The construction of signed graph T from S such that S ∼= Lc(T )
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Corollary 4.7.1. A signed graph S = (Su, σ), on a cycle Su := Cn,

is line signed graph if and only if S does not contain a path P4 =

(u, v, w, x) and a triangle (u, v, w) in which exactly one edge vw is pos-

itive.

Corollary 4.7.1 has been proved in [3].

4.8 Lict and line signed graphs on Km,n

Theorem 4.8.1. A signed graph S = (Su, σ) on a complete bipartite

graph Su := Km,n, is a lict signed graph if and only if S is any one of

the following:

1. homogeneous cycle C4.

2. heterogeneous cycle C4 containing exactly one negative section of

length one or two.

Proof. Necessity:

Let S = (Su, σ), on a complete bipartite graph Km,n be a lict signed

graph. Therefore, S ∼= Lc(T ) for some signed graph T . This implies

that Su ∼= Lc(T
u) or Km,n

∼= Lc(T
u), i.e., Km,n is a lict graph.

Let v be a cut-vertex of T u then clearly d(v) ≥ 2 and by the definition

of lict graph, the edges incident with cut-vertex v in T u induce a homo-

geneous complete subgraph Kd(v)+1, i.e., Kp, p ≥ 3 in Su := Km,n. Since

a complete bipartite graph does not contain any odd cycle and thus Kp,

p ≥ 3, can not be a subgraph of Km,n. Hence, C(T u) = φ. Therefore,

Km,n is also a line graph. Since K1,3 is a forbidden induced subgraph of

a line graph, therefore, m ≤ 2 and n ≤ 2. Also, Km,n � K1,1 and K1,2,

since they are not lict graph of any graph. Thus, Km,n
∼= C4. Since

Km,n
∼= Lc(T

u), by the definition of lict graph, T u ∼= C4.

Since S ∼= Lc(T ), we have following cases:

• for T containing at most two negative sections each of length one,

S is an all-positive cycle C4.
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• for T containing a negative sections of length 2 or 3, S is a het-

erogeneous cycle C4 containing a negative sections of length 1 or

2 respectively.

• for all-negative T , S is an all-negative cycle C4, as shown in Figure

4.13.
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Figure 4.13: Signed graph T such that S ∼= Lc(T )

Thus, the necessity follows.

Sufficiency:

Suppose conditions hold. Then by Theorem 4.7.3, S is a lict signed

graph. Hence the result follows.
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Corollary 4.8.1. A signed graph S = (Su, σ) on a complete bipartite

graph Su := Km,n, is a line signed graph if and only if S is any one of

the following:

1. homogeneous cycle C4.

2. heterogeneous cycle C4 containing exactly one negative section of

length one or two.

4.9 Balanced lict and line signed graphs

One important theorem which is useful to prove a result of this section

is given below.

Theorem 4.9.1. [4] For a signed graph S, L(S) is balanced if and

only if the following conditions hold:

(i) For any cycle Z in S,

(a) if Z is all-negative, then Z has even length;

(b) if Z is heterogeneous, then Z has an even number of negative

sections with even length;

(ii) for v ∈ V (S), if d(v) ≥ 3, then there is at most one negative edge

incident at v in S.

Theorem 4.9.2. For a signed graph S, Lc(S) is balanced if and only

if the following conditions hold in S:

(i) For any cycle Z in S,

(a) if Z is all-negative, then Z has even length;

(b) if Z is heterogeneous, then Z has an even number of negative

sections with even length;

(ii) for v ∈ V (S),

(a) if v /∈ C(S) and d(v) ≥ 3, then d−(v) ≤ 1;

(b) if v ∈ C(S), then d−(v) = 0.
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Proof. Necessity:

The necessity of (i) and (ii)(a) follow from Theorem 4.9.1. We prove

the necessity of (ii)(b) by contrapositive:

Assume that for a cut-vertex c of S, d−(c) 6= 0. By the definition

of Lc(S), if d−(c) = 1, 2 or d−(c) ≥ 3, then the edges incident with c

will induce a triangle containing one negative edge or an all-negative

triangle respectively in Lc(S) that makes Lc(S) unbalanced. Thus, the

necessity of (ii)(b) follows.

Sufficiency:

A cycle in Lc(S) is induced due to a cycle or a cut-vertex of degree 2 or

a vertex of degree ≥ 3 or their combinations in S. Suppose conditions

(i)and (ii) hold in S then every chordless cycle in Lc(S) will be pos-

itive. By Lemma 1.2.1, a signed graph in which every chordless cycle

is positive, is balanced. Hence Lc(S) is balanced. This completes the

proof.

4.10 Switching equivalence of Lc(S) and L(S) to S

Theorem 4.10.1. For a signed graph S, S ∼ Lc(S) if and only if S is

any one of the following:

1. homogeneous cycle.

2. heterogeneous cycle having an even number of negative sections.

Proof. Suppose for a signed graph S, S ∼ Lc(S). This implies that

Su ∼= Lc(S
u). By Theorem 4.1.2, Su is a cycle. By Theorem 1.2.4, two

signed graphs S1 and S2 with the same underlying graph are switch-

ing equivalent if and only if they are cycle isomorphic. Hence, if S

is homogeneous cycle then there is nothing to prove as S ∼= Lc(S)

and if S is heterogeneous cycle having k negative sections of even

lengths (say ne1, ne2, ..., nek) and m negative sections of odd lengths

(say no1, no2, ..., nom) then,

S ∼ Lc(S) ⇔ S and Lc(S) are cycle isomorphic

⇔ |E–
(S)|+ |E–

(Lc(S))| ≡ 0 (mod 2)

⇔ [
k∑
i=1

nei +
m∑
i=1

noi] + [
k∑
i=1

(nei − 1) +
m∑
i=1

(noi − 1)] ≡ 0 (mod 2)
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⇔ −(m+ k) ≡ 0 (mod 2) or m+ k ≡ 0 (mod 2)

Thus, the result follows.

Proposition 4.10.1. For a signed graph S, S ∼ L(S) if and only if S

is any one of the following:

1. homogeneous cycle.

2. heterogeneous cycle having an even number of negative sections.

4.11 Switching equivalence Lc(S) and L(S) to η(S)

Let a and b are two integers and n is a positive integer then notation

a ≡ b (mod n) means that n divides a−b and we say that a is congruent

to b modulo n. Clearly, if a ≡ b (mod n) then a (mod n) = b (mod n).

Theorem 4.11.1. For a signed graph S of order n, η(S) ∼ Lc(S) if

and only if S is any one of the following:

1. homogeneous even cycle.

2. heterogeneous cycle having number of negative sections ≡ n (mod 2).

Proof. Suppose for a signed graph S of order n, η(S) ∼ Lc(S). This

implies that Su ∼= Lc(S
u). By Theorem 4.1.2, Su is a cycle. By Theorem

1.2.4, two signed graphs S1 and S2 with the same underlying graph are

switching equivalent if and only if they are cycle isomorphic. Hence,

η(S) ∼ Lc(S) ⇔ |E–
(η(S))|+ |E–

(Lc(S))| ≡ 0 (mod 2)

Therefore, we have following three possible cases:

Case I: If S is an all-positive cycle then

η(S) ∼ Lc(S) ⇔ n+ 0 ≡ 0 (mod 2)

⇔ n ≡ 0 (mod 2)

Case II: If S is an all-negative cycle (as shown in Figure 4.14) then

η(S) ∼ Lc(S) ⇔ 0 + n ≡ 0 (mod 2)

⇔ n ≡ 0 (mod 2)

Thus, in I and II cases, S must be homogeneous even cycle.
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Figure 4.14: A Signed graph S such that η(S) ∼ Lc(S)

Case III: If S is heterogeneous cycle having k negative sections of

even lengths (say ne1, ne2, ..., nek) and m negative sections of odd

lengths (say no1, no2, ..., nom) then

η(S) ∼ Lc(S) ⇔ [n − (
∑k

i=1 nei +
∑m

i=1 noi)] + [
∑k

i=1(nei − 1) +∑m
i=1(noi − 1)] ≡ 0 (mod 2)
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⇔ n− (m+ k) ≡ 0 (mod 2) or m+ k ≡ n (mod 2)

Therefore, S must be heterogeneous cycle having number of neg-

ative sections ≡ n (mod 2).

Thus, the result follows.

Proposition 4.11.1. For a signed graph S of order n, η(S) ∼ L(S) if

and only if S is any one of the following:

1. homogeneous even cycle.

2. heterogeneous cycle having number of negative sections ≡ n mod 2.

4.12 Conclusion and Scope

In this chapter, we have established many results on •-lict signed graph-

s, lict signed graphs and also for •-line signed graphs and line signed

graphs. Study on litact signed graphs is yet to be taken up. After defin-

ing litact signed graphs, we propose that study done in this chapter for

lict signed graphs can be taken up for litact signed graphs. Mathad

and Narayanker in [7], characterized signed graphs S and S ′ for which

L×(S) ∼ L×c(S
′), J(S) ∼ L×c(S

′) and T1(S) ∼ L×c(S
′), where J(S)

and T1(S) are jump signed graph and semitotal signed graph of S re-

spectively. This study related to dot-lict signed graphs and lict signed

graphs as well as for litact signed graphs is yet open.

∗ ∗ ∗ ∗ ∗
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Chapter 5

C-CONSISTENT AND C-CYCLE COMPATIBLE •-LINE
SIGNED GRAPHS

Sinha and Garg [1] have established structural characterizations of signed

graph S so that its line signed graphs L(S) and ×-line signed graphs

L×(S) are C-consistent. In this chapter, we establish structural charac-

terizations of signed graph S so that L•(S) is C-consistent and C-cycle

compatible.

5.1 Introduction

Recall that a cycle in a signed graph is called canonically consistent

(or C-consistent) with respect to canonical marking if it contains an

even number of negative vertices and a signed graph is said to be C-

consistent if every cycle in it is C-consistent. •-line signed graph of a

signed graph has been defined in previous chapter.

A vertex v of even (odd) degree is called even (odd) vertex. The

edge degree of an edge uv, denoted by de(uv), is the total number of

edges adjacent to uv. Clearly, de(uv) = d(u) + d(v)− 2.

5.2 C-consistent •-line signed graphs

In this section, we give results on •-line signed graphs and estab-

lish structural characterization of signed graphs S so that L•(S) is
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C-consistent. These results have been reported in [2].

For a signed graph S, we define a set

E(S) = {uv ∈ E(S):u is a negative even vertex and v is positive or u, v

are negative and de(uv) is odd}

Observation 5.2.1. For a signed graph S, e ∈ E(S) if and only if e is

a negative vertex of L•(S).

Proof. Necessity:

Let e = uv be any edge of a signed graph S. By the definition of L•(S),

e = uv is a vertex of L•(S) whose negative degree depends on d−(u),

d−(v) and de(uv) in S. If e ∈ E(S) then we have following two possible

cases:

Case I: u is a negative even vertex and v is a positive vertex then

dS(u) − 1 (that is odd) negative edges will be incident to vertex

e = uv in L•(S), here dS(u) denotes the degree of a vertex u in S.

Hence e is a negative vertex of L•(S).

Case II: If both u and v are negative vertices and de(uv) is odd then

de(uv) (that is odd) negative edges will be incident to vertex e = uv

in L•(S). Hence e is a negative vertex of L•(S).

Thus, the necessity follows.

Sufficiency:

We prove the sufficiency by contrapositive, i.e., we prove that if e /∈

E(S) then e is a positive vertex of L•(S).
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If e /∈ E(S) then there are following possibilities for edge e = uv of S:

Case I: u and v are positive vertices. Then all the edges incident to

vertex e = uv in L•(S) will be positive. Hence e is a positive vertex

of L•(S).

Case II: u is a negative odd vertex and v is a positive vertex. Then,

dS(u) − 1 (that is even) negative edges will be incident to vertex

e = uv in L•(S). Hence e is a positive vertex of L•(S).

Case III: u and v both are negative vertices and de(uv) is even. Then,

de(uv) (that is even) negative edges will be incident to vertex e =

uv in L•(S). Hence e is a positive vertex of L•(S).

This completes the proof.

Observation 5.2.2. In a signed graph S, an even number of edges of

any cycle belong to E(S).

Proof. We prove this Observation by mathematical induction:

It is easy to observe that an even number of edges of a cycle C3 belong

to E(S).

Let an even number of edges of cycle Ck, k > 3, belong to E(S). To

obtain cycle Ck+1, we divide an edge uv of the cycle by the vertex w,

thus we have two edges uw and wv. In order to show that Ck+1 has

an even number of edges belonging to E(S), we have the following two

cases:
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Case I: uv ∈ E(S) then it can be easily observed that uw or wv ∈

E(S), as w is a positive vertex as shown in Figure 5.1. In case

uv ∈ E(S) due to the fact that u and v both are negative and

de(uv) is odd then it can also be seen that uw or wv ∈ E(S).

S: 

v

C4

v

u
C5

u

w

- -

+

+

+

+

+

+

++

Figure 5.1: A signed graph S

Case II: uv /∈ E(S) then uw,wv ∈ E(S) or uw,wv /∈ E(S). As shown

in Figure 5.2, uw,wv ∈ E(S).

S: 

v

C4

v

u
C5

u

w

- -+

+

++

- -

- -

Figure 5.2: A signed graph S
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Thus, an even number of edges of cycle Ck+1 belong to E(S). This

completes the proof.

Lemma 5.2.1. Every cycle of a signed graph S induces a C-consistent

cycle in L•(S).

Proof. By the definition of L•(S), a cycle Z = v1e1v2e2...vnenv1 of a

signed graph S induces a cycle Z ′ = e1e2...ene1 in L•(S). By Observa-

tion 5.2.2, an even number of edges of cycle Z of S belong to E(S) and

by Observation 5.2.1, if e ∈ E(S) then e is a negative vertex of L•(S).

Hence an even number of vertices of cycle Z ′ are negative. Thus, Z ′ is

C-consistent. This completes the proof.

Theorem 5.2.1. For a signed graph S, L•(S) is C-consistent if and

only if the following conditions hold for every vertex v of S:

(1) If d(v) = 3 then an even number of edges incident to v belong to

E(S) and also if two edges ei, ej incident to v lye on a cycle then

both of the edges ei and ej are of the same parity (i.e., ei, ej ∈ E(S)

or ei, ej /∈ E(S)) and

(2) if d(v) ≥ 4 then no edge incident to v belongs to E(S).

Proof. Necessity:

Suppose for a signed graph S, L•(S) is C-consistent, i.e., an even num-

ber of vertices of every cycle of L•(S) are negative, as shown in Figure

5.3.
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Figure 5.3: A signed graph S and its L•(S)

If v is a vertex of S of degree 3 then the edges incident to vertex v

(say ei, ej and ek) induce a triangle (say T ) (ei, ej, ek) in L•(S). Since

L•(S) is C-consistent, an even number of vertices of triangle T are

negative. By Observation 5.2.1, e ∈ E(S) if and only if e is a negative

vertex of L•(S). Hence, an even number of edges incident to v must

belong to E(S).

Further, if two edges ei, ej incident to v lye on a cycle Z then in

L•(S) there will a cycle Z ′ and a triangle T having one common edge

eiej. Since L•(S) is C-consistent, an even number of vertices of cycle

Z ′, triangle T and a cycle due to the symmetric sum of cycles of Z ′ and

T are negative.

Now, since by Lemma 5.2.1, Z ′ is C-consistent and by above discus-

sion T is also C-consistent, if only one edge ei or ej belongs to E(S) then

only one vertex ei or ej in L•(S) will be negative and then combined

cycle of Z ′ and T will contain an odd number of negative vertices that
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makes L•(S) C-inconsistent, as shown in Figure 5.4.
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Figure 5.4: A signed graph S and its C-inconsistent L•(S)

Therefore, both of the edges ei and ej must be of the same parity (i.e.,

ei, ej ∈ E(S) or ei, ej /∈ E(S)).

Next, we prove the necessity of condition (2) by contrapositive, i.e.,

we prove that if for a vertex v ∈ V (S) of d(v) ≥ 4, at least one edge

incident to v belongs to E(S) then L•(S) is C-inconsistent. Suppose

that for a vertex v ∈ V (S) of d(v) ≥ 4, at least one edge incident

to v belongs to E(S). By the definition of L•(S), the edges incident

to v induce a complete subsignedgraph Kp, p ≥ 4 in L•(S). Since by

Observation 5.2.1, e ∈ E(S) if and only if e is a negative vertex of L•(S),

at least one vertex of Kp will be negative, that is, Kp will always contain

a C-inconsistent triangle that makes L•(S) C-inconsistent, as shown in

Figure 5.4. Thus, the necessity of (2) follows.
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Sufficiency:

A cycle in L•(S) is induced due to a cycle or a vertex of degree≥ 3

or their combinations in S. By Lemma 5.2.1, every cycle in L•(S)

which is induced due to a cycle of S, is C-consistent. Further, suppose

conditions (1) and (2) hold in S then obviously every cycle in L•(S)

will be C-consistent. Hence L•(S) is C-consistent. This completes the

proof.

5.3 C-cycle compatible •-line signed graphs

Theorem 5.3.1. For a signed graph S, L•(S) is C-cycle compatible if

and only if the following conditions hold in S:

(i) S is C-consistent.

(ii) for a positive (negative) vertex v of d(v) = 3, an even (odd) number

of edges incident to v must belong to E(S) and also if two edges

ei, ej incident to v lye on a cycle then both of the edges ei and

ej must (must not) be of the same parity (i.e., ei, ej ∈ E(S) or

ei, ej /∈ E(S)).

(iii) for a positive (negative) vertex v of d(v) ≥ 4, no edge (atleast one

edge) incident to v belongs to E(S).

Proof. Necessity:

Let for a signed graph S, L•(S) be C-cycle compatible, i.e., every

cycle in L•(S) is either positive and C-consistent or negative and C-

inconsistent. By Lemma 5.2.1, every cycle Z ′ in L•(S) which is induced
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due to a cycle Z of signed graph S, is C-consistent. Hence, Z ′ must

also be positive. By the definition of L•(S), |E−(Z ′)| = the number

of negative vertices in Z. Therefore, every cycle in S contains an even

number of negative vertices, i.e., S is C-consistent. Thus, (i) follows.

We prove the necessity of condition (ii) by contra positive, i.e., we

prove that if condition (ii) does not hold then L•(S) is not C-cycle

compatible.

Suppose for a positive vertex v ∈ V (S) of d(v) = 3, an odd number of

edges incident to v belong to E(S) (as shown in Figure 5.5, for vertices

v1 and v2).
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1

2T
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+v3
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Figure 5.5: S and its C-cycle incompatible L•(S)

By the definition of •-line signed graph, the edges incident to vertex

v induce a positive triangle (say T ) in L•(S). Since by Observation

5.2.1, e ∈ E(S) if and only if e is a negative vertex of L•(S), an odd

number of vertices of T will be negative, i.e., T is C-inconsistent and
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positive. Thus, L•(S) is not C-cycle compatible. Further, suppose an

even number of edges incident to positive vertex v belong to E(S) with

two edges ei, ej incident to v lye on a cycle Z and ei ∈ E(S), ej /∈ E(S)

(as shown in Figure 5.5, for vertex v3). Then in L•(S), there will a

cycle Z ′ and a triangle T having one common edge eiej and a cycle due

to the symmetric sum of cycles of Z ′ and T .

Now, By Lemma 5.2.1, Z ′ is C-consistent and by Observation 5.2.1,

T is also C-consistent. If only one edge ei or ej belongs to E(S) then

only one vertex ei or ej in L•(S) will be negative and then combined

cycle of Z ′ and T will contain an odd number of negative vertices that

makes L•(S) C-inconsistent. By condition (i), Z ′ is positive and due to

the fact that v is a positive vertex, T is also positive. Hence combined

cycle of Z ′ and T will also positive but this is C-inconsistent. Therefore,

L•(S) is not C-cycle compatible.

Similarly, we can show that for a vertex v of d(v) = 3, if v is a

negative vertex and an even number of edges incident to v belong to

E(S) (as shown in Figure 5.6, for vertices v1 and v2) then triangle T in

L•(S) is C-consistent and negative. Further, suppose an odd number of

edges incident to negative vertex v belong to E(S) with two edges ei, ej

incident to v lye on a cycle Z and both of the edges ei and ej are of the

same parity (i.e., ei, ej ∈ E(S) or ei, ej /∈ E(S)) (as shown in Figure

5.6, for vertex v3) then combined cycle of Z ′ and T will be positive and

C-inconsistent. Therefore L•(S) will not be C-cycle compatible.

Thus, the necessity of (ii) follows.

Moreover, we also prove the necessity of condition (iii) by contra

positive, i.e., we prove that if condition (iii) does not hold then L•(S)
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Figure 5.6: A signed graph S and its C-cycle incompatible L•(S)

is not C-cycle compatible. Suppose that for a positive vertex v ∈ V (S)

of d(v) ≥ 4, at least one edge incident to v belongs to E(S) (as shown
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in Figure 5.7, for vertex v1) then by the definition of L•(S), the edges

incident to v induce an all-positive complete subsignedgraph Kp, p ≥ 4,

in L•(S) and by Observation 5.2.1, at least one vertex of Kp will be

negative, that is, Kp will always contain a positive and C-inconsistent

triangle.
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+
+

+

+

+

-

-

T1

T2

Figure 5.7: A signed graph S and its C-cycle incompatible L•(S)

Hence L•(S) is not C-cycle compatible. Similarly, we can show that for

a negative vertex v of d(v) ≥ 4, if no edge incident to v belongs to E(S)

(as shown in Figure 5.7, for vertex v2) then by the definition of L•(S),

the edges incident to v induce an all-negative complete subsignedgraph

Kp, p ≥ 4 in L•(S) and all vertices of Kp will be positive, that is, Kp

will always contain a negative and C-consistent triangle. Hence L•(S)

is not C-cycle compatible. Thus, the necessity of (iii) follows.

114



Sufficiency:

Suppose conditions hold in S then it can be easily seen that every cycle

in L•(S) is positive and C-consistent or negative and C-inconsistent, i.e,

L•(S) is C-cycle compatible. This completes the proof.

5.4 Conclusion and Scope

In this chapter, we have studied •-line signed graphs and character-

ized signed graphs S for which •-line signed graphs are C-consistent

and C-cycle compatible. As reported earlier that the study on litact

signed graphs yet to be taken up. Therefore, the characterization of

signed graphs S whose litact signed graphs are C-consistent and C-cycle

compatible is an open area.

∗ ∗ ∗ ∗ ∗
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Chapter 6

SPLITTING SIGNED GRAPHS

Sampathkumar and Walikar [3] introduced the concept of splitting graph

of a graph. The splitting graph of a graph G, denoted here as S(G), is

formed as follows:

Take a copy of G and for each vertex v of G, take a new vertex v′.

Join v′ to all adjacent vertices of v. Sinha et al. [5] introduce splitting

signed graph Γ(S) of a signed graph S. In this chapter, we introduce

splitting signed graph S(S) of a signed graph S and establish struc-

tural characterizations of signed graph S for which S(S) is balanced,

C-consistent, S(S) and Γ(S) are isomorphic and C-cycle compatible.

We also establish a characterization of S-splitting signed graphs.

6.1 Introduction

Sampathkumar and Walikar introduced the concept of splitting graph

of a graph in [3]. The splitting graph of a graph G, denoted here S(G),

is formed as follows:

Take a copy of G and for each vertex v of G, take a new vertex v′. Join

v′ to all adjacent vertices of v.

There are two notions of splitting signed graphs of a signed graph

S = (Su, σ) in the literature, viz., S(S) and Γ(S), both of which have

S(Su) as their underlying graph; only the rule to assign signs to the

edges of S(Su) differ. An edge uv′ in S(S) is negative if u and v are

negative vertices of S under canonical marking of S and an edge uv′

in Γ(S) is negative whenever uv is a negative edge of S and positive
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otherwise as reported in [1] and [5] respectively.

A signed graph S is called a S-splitting (Γ-splitting) signed graph if

there exists a signed graph T such that S is isomorphic to S(T ) (Γ(T )).

Figure 6.1 illustrates a signed graph S and its splitting signed

graphs S(S) and Γ(S).

 S:

 (S):

1

2

3 4

1

2

3 4

1'

2'

3'
4'

 (S):

1

2

3 4

1'

3'
4'

2'

Figure 6.1: A signed graph S and its splitting signed graphs S(S) and Γ(S)

A signed graph S = (Su, σ) is said to be sign-compatible [4] if it has

a vertex marking µ such that every edge e = uv has σ(e) = − if and
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only if µ(u) = µ(v) = −. If the canonical marking µσ has this property,

then S is said to be canonically sign-compatible (or C-sign-compatible).

In the following sections, we give structural characterization of signed

graph S for which S(S) is balanced and C-consistent. We also establish

a characterization of splitting signed graphs S(S). These results have

been reported in [1].

6.2 Some results on S(S)

Observation 6.2.1. For a signed graph S, S(S) is homogeneous if and

only if S is an all-positive signed graph or S is an all-negative signed

graph in which degree of each vertex is odd.

Theorem 6.2.1. In S(S) of a signed graph S, the following conditions

hold:

(i) if v ∈ V (S) is positive then v, v′ ∈ V (S(S)) are positive.

(ii) if v ∈ V (S) is negative having even (odd) negative vertices in N(v)

then v ∈ V (S(S)) is negative (positive) and v′ is of opposite sign

to v.

Here v′ is the vertex as defined above.

Proof. Let v be a positive vertex of signed graph S then by the definition

of S(S), |N(v)| new positive edges will be incident with v and v′ in

S(S). Hence, v and v′ are positive vertices in S(S).

Further, let v ∈ V (S) be negative having even (odd) negative ver-

tices in N(v) then by the definition of S(S), new even (odd) negative
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edges will be incident with v and v′ in S(S). Hence, v ∈ V (S(S)) is

negative (positive) and v′ is of opposite sign to v. This completes the

proof.

Corollary 6.2.1. In S(S) of a signed graph S,

(a) if v ∈ V (S) is positive then

(i) d−S(S)(v) = d−S (v) and d+S(S)(v) = d+S (v) + dS(v),

(ii) d−S(S)(v
′) = 0 and d+S(S)(v

′) = dS(v).

(b) if v ∈ V (S) is negative having m negative vertices in N(v) then

(i) d−S(S)(v) = d−S (v) +m and d+S(S)(v) = d+S (v) + dS(v)−m,

(ii) d−S(S)(v
′) = m and d+S(S)(v

′) = dS(v)−m,

Proposition 6.2.1. In a signed graph S, if a cycle contains a negative

vertex v then in S(S), cycle containing v but not v′ and cycle containing

v′ but not v such that remaining vertices of cycles are common, are of

opposite parity; that is, if one cycle is C-consistent then other cycle is

C-inconsistent.

Proof. In a signed graph S, if a cycle contains a negative vertex v

then by Theorem 6.2.1, v, v′ ∈ V (S(S)) are of opposite signs. Hence,

in S(S), if a cycle containing v but not v′ is C-consistent then the

cycle containing v′ but not v and remaining vertices common will be

C-inconsistent and vice-versa. Thus, the result follows.

In a signed graph S shown in Figure 6.2, vertex 4 is negative.

122



In S(S), cycle (2, 3, 4, 2) is C-inconsistent but cycle (2, 3, 4′, 2) is C-

consistent.

 S:  (S):

1

2

3 4

1

2

3 4

1'

2'

3'
4'

Figure 6.2: A signed graph S and its C-inconsistent S(S)

6.3 Balanceness of S(S)

Theorem 6.3.1. S(S) is balanced if and only if the following condi-

tions hold in S:

(i) S is balanced and;

(ii) S does not contain a homogeneous path P3 of marking +,−,− and

the marking of a heterogeneous path P3 is +,−,− only.

Proof. Necessity:

Let S(S) be balanced. Since S is subsignedgraph of S(S), S is bal-
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anced. The marking of path P3 = (u, v, w) may be one of the following:

1. +, +, + 2. −,−,− 3. +,−,+

4. −,+,− 5. −,+,+ 6. +,−,−

By the definition of S(S), a path P3 = (u, v, w) of S induces a cycle

C4 = (u, v, w, v′) in S(S). This cycle C4 is positive (negative) if P3

is homogeneous (heterogeneous) path having the marking given in 1-5

and C4 is positive (negative) if P3 is heterogeneous (homogeneous) path

having the marking given in 6. Since S(S) is balanced; that is, C4 is

positive, S does not contain a homogeneous path P3 of marking +,−,−

and the marking of a heterogeneous path P3 is +,−,− only.

Sufficiency:

Suppose conditions hold then it can be easily seen that all cycles in

S(S) are positive. Therefore, by Lemma 1.2.1, S(S) is balanced. Hence

the result follows.

Signed graph S shown in Figure 6.3 does not satisfy conditions (i)

and (ii) of Theorem 6.3.1 and thus S(S) is unbalanced.

Signed graph S shown in Figure 6.4 satisfies conditions (i) and (ii)
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Figure 6.3: A signed graph S and its unbalanced S(S)

of Theorem 6.3.1 and thus S(S) is balanced.
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Figure 6.4: A signed graph S and its balanced S(S)

6.4 C-consistency of S(S)

Theorem 6.4.1. S(S) is C-consistent if and only if the following con-

ditions hold in S:

(i) All vertices of a cycle are positive and;
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(ii) for a path P3 = (u, v, w) of S,

• its marking is not +,−,+;

• for marking −,−,−, N(u) and N(w) simultaneously do not

contain even (odd) negative vertices;

• for marking −,+,−, N(u) and N(w) simultaneously contain

even (odd) negative vertices;

• for marking −,−,+, N(u) contains even negative vertices;

• for marking −,+,+, N(u) contains odd negative vertices.

Proof. The necessity of (i) follows from Proposition 6.2.1. Now, we

prove the necessity of (ii). The marking of path P3 = (u, v, w) may be

one of the following:

1. +,−,+ 2. −,−,− 3. −,+,−

4. −,−,+ 5. −,+,+ 6. +, +, +

By Theorem 6.2.1, a negative vertex v of S having even (odd) nega-

tive vertices in N(v) is negative (positive) in S(S) and v′ is of opposite

sign to v and by the definition of S(S), a path P3 = (u, v, w) of S

induces a cycle C4 = (u, v, w, v′) in S(S). Hence, the following cases

arise:

• For marking +, −, +, cycle C4 will be C-inconsistent. Hence,

marking of P3 can not be +, −, +.

• For marking −,−,−, one of the vertices v and v′ will be negative

in S(S). Hence, for C-consistency of C4, u and w simultaneously
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can not be positive (negative) in S(S); that is, N(u) and N(w)

simultaneously do not contain even (odd) negative vertices.

• For marking −,+,−, both the vertices v and v′ will be positive

in S(S). Hence, for C-consistency of C4, u and w simultaneous-

ly must be positive (negative) in S(S); that is, N(u) and N(w)

simultaneously contain even (odd) negative vertices.

• For marking −,−,+, one of the vertices v and v′ will be negative

in S(S). Hence, for C-consistency of C4, u must be negative in

S(S); that is, N(u) contains even negative vertices.

• For marking −,+,+, both the vertices v and v′ will be positive in

S(S). Hence, for C-consistency of C4, u must be positive in S(S);

that is, N(u) contains odd negative vertices.

Thus the necessity follows.

Sufficiency:

Suppose conditions hold in S then it can be easily seen that all the

cycles in S(S) are C-consistent. Therefore, S(S) is C-consistent. Hence

the result follows.

Signed graphs S1 and S2 shown in Figure 6.5 do not satisfy con-

ditions (i) and (ii) of Theorem 6.4.1, therefore, S(S1) and S(S2) are

C-inconsistent.
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Figure 6.5: Signed graphs S1, S2 and their C-inconsistent S(S1) and S(S2)
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6.5 Characterization of S-splitting signed graph

Theorem 6.5.1. A signed graph S is a S-splitting signed graph if and

only if the following conditions hold:

(i) V (S) can be partitioned into two sets V1 and V2 such that there

exists a bijection v → v′ from V1 to V2 and N(v′) = N(v) ∩ V1.

(ii) σ(uv′) = − whenever u, v are negative in induced subgraph < V1 >

of S.

Proof. Necessity:

Let a signed graph S be a S-splitting signed graph. Therefore, S ∼=

S(T ) for some signed graph T . For the construction of S from T , we

insert a new vertex v′ corresponding to each vertex v of T and join

it to all vertices u ∈ N(v). Clearly, the newly introduced vertex v′

is different for all vertices of T . Let V1 = V (T ) and V2 be the set

containing such type of vertices v′. Thus, (i) follows.

Further, by the definition of S(T ),

σ(uv′) =

 − if u, v ∈ V (T ) are negative;

+ otherwise.

Since T is induced subgraph < V1 > of S, (ii) follows.

Sufficiency:

Suppose conditions hold for a signed graph S. Let T be the subsigned-

graph of S induced by the vertices of V1. It can be easily verified that

S ∼= S(T ). Hence the result follows.
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In following sections, we establish structural characterizations of

signed graph S for which S(S) and Γ(S) are isomorphic and C-cycle

compatible. These results have been reported in [2].

6.6 Isomorphism of S(S) and Γ(S)

Theorem 6.6.1. For a signed graph S, S(S) ∼= Γ(S) if and only if S

is any one of the following:

(i) All-positive or;

(ii) All-negative in which degree of each vertex is odd or;

(iii) heterogeneous in which end vertices of every negative (positive)

edge are (are not) negative.

Proof. Necessity:

Let for a signed graph S, S(S) ∼= Γ(S). Since S is a subsignedgraph

of S(S) and Γ(S), we concentrate our attention only on the sign of

edge uv′ in S(S) and Γ(S). By the definition of S(S), uv′ ∈ E−(S(S))

if and only if u, v ∈ V (S) are negative and by the definition of Γ(S),

uv′ ∈ E−(Γ(S)) if and only if uv ∈ E−(S). Therefore, we have following

three possible cases:

Case I: If S(S) ∼= Γ(S) and both S(S) and Γ(S) are all-positive then

no edge of S will be negative. Hence, (i) follows.

Case II: If S(S) ∼= Γ(S) and both are all-negative then every edge

and every vertex of S will be negative. Hence, (ii) follows.
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Case III: If S(S) ∼= Γ(S) and both are heterogeneous then S will be

heterogeneous and edge uv′ in both S(S) and Γ(S) must be of

the same sign. This implies that end vertices of every negative

(positive) edge of S are (are not) negative. Hence, (iii) follows.

Thus, the necessity follows.

Sufficiency:

Suppose S is any one of the following:

(i) All-positive or;

(ii) All-negative in which degree of each vertex is odd or;

(iii) heterogeneous in which end vertices of every negative (positive)

edge are (are not) negative.

then by the definitions S - and Γ- splitting signed graphs, we have the

following cases:

Case I: If S is all-positive then S(S) and Γ(S) will be all-positive and

S(S) ∼= Γ(S).

Case II: If S is all-negative in which degree of each vertex is odd then

S(S) and Γ(S) will be all-negative and S(S) ∼= Γ(S).

Case III: If S is heterogeneous in which end vertices of every negative

(positive) edge are (are not) negative then S(S) and Γ(S) will

be heterogeneous as S is a subsignedgraph of S(S) and Γ(S) and

edge uv′ in both S(S) and Γ(S) will be of the same sign. Hence,

S(S) ∼= Γ(S).
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This completes the proof.

Corollary 6.6.1. For a signed graph S, S(S) ∼= Γ(S) if and only if S

is C-sign compatible.

6.7 C-cycle compatibility of S(S)

Theorem 6.7.1. S(S) is C-cycle compatible if and only if the following

conditions hold in S:

(i) if Z is a positive (negative) cycle then an even (odd) number of neg-

ative vertices of cycle Z contain even numbers of negative vertices

in their neighbourhoods and;

(ii) for a path P3 = (u, v, w), any one condition holds:

• it is homogeneous of marking +, +, +;

• it is heterogeneous of marking +,−,+;

• it is homogeneous (heterogeneous) of marking −,+,+ or −,−,+

and N(u) contains an odd (even) number of negative vertices;

• it is homogeneous (heterogeneous) of marking −,+,− and ver-

tices u,w are (are not) of same parity (i.e., N(u) and N(w)

contain even number of negative vertices or odd number of

negative vertices);

• it is homogeneous (heterogeneous) of marking −,−,− and ver-

tices u,w are not (are) of same parity.

133



Proof. Necessity:

Let S(S) be C-cycle compatible. Therefore, every cycle in S(S) is

either positive and C-consistent or negative and C-inconsistent. By

Theorem 6.2.1, every positive vertex of S is positive in S(S) and every

negative vertex of S having an even (odd) number of negative vertices

in its neighbourhood is negative (positive) in S(S). Since S is sub-

signedgraph of S(S), if Z is a positive (negative) cycle of S then Z

must be C-consistent (C-inconsistent) in S(S), i.e., an even (odd) num-

ber of negative vertices of cycle Z must contain an even number of

negative vertices in their neighbourhoods. Thus, (i) follows.

By the definition of S(S), a path P3 = (u, v, w) of S induces a cycle

C4 = (u, v, w, v′) in S(S). The marking of path P3 = (u, v, w) may be

one of the following:

1. +, +, + 2. +,−,+ 3. −,+,+

4. −,−,+ 5. −,+,− 6. −,−,−

Hence, the following cases arise:

• if marking of path P3 = (u, v, w) is +, +, + then by Theorem

6.2.1, vertices u, v, w, v′ have signs +, +, +, + respectively in

S(S). Thus, path P3 induces a C-consistent cycle C4 in S(S).

By Theorem 6.3.1, this cycle C4 is positive (negative) if and on-

ly if P3 is homogeneous (heterogeneous). Since S(S) is C-cycle

compatible, P3 will be homogeneous.

• if marking of path P3 = (u, v, w) is +,−,+ then by Theorem 6.2.1,

vertices u, v, w, v′ have signs +,−,+,+ or +,+,+,− respectively
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in S(S). Thus, path P3 induces a C-inconsistent cycle C4 in S(S).

By Theorem 6.3.1, this cycle C4 is positive (negative) if and on-

ly if P3 is homogeneous (heterogeneous). Since S(S) is C-cycle

compatible, P3 will be heterogeneous.

• if marking of path P3 = (u, v, w) is −,+,+ and N(u) contains

an odd (even) number of negative vertices then by Theorem 6.2.1,

vertices u, v, w, v′ have signs +,+,+,+(−,+,+,+) respectively in

S(S). Thus, path P3 induces a C-consistent (C-inconsistent) cycle

C4 in S(S). By Theorem 6.3.1, this cycle C4 is positive (negative)

if and only if P3 is homogeneous (heterogeneous). Since S(S) is C-

cycle compatible, for homogeneous (heterogeneous) P3, N(u) must

contain an odd (even) number of negative vertices.

Similarly, if marking of path P3 = (u, v, w) is −,−,+ and N(u)

contains an even (odd) number of negative vertices then by The-

orem 6.2.1, vertices u, v, w, v′ have signs −,−,+,+ or −,+,+,−

(+, −, +, + or +, +, +, −) respectively in S(S). Thus, path P3

induces a C-consistent (C-inconsistent) cycle C4 in S(S). By The-

orem 6.3.1, this cycle C4 is positive (negative) if and only if P3 is

heterogeneous (homogeneous). Since S(S) is C-cycle compatible,

for heterogeneous (homogeneous) P3, N(u) will contain an even

(odd) number of negative vertices.

• if marking of path P3 = (u, v, w) is −,+,− and vertices u and w

are (are not) of the same parity, i.e., N(u) and N(w) contain even

number of negative vertices or odd number of negative vertices,
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then by Theorem 6.2.1, vertices u, v, w, v′ have signs −,+,−,+

or +, +, +, + (−,+,+,+ or +,+,−,+) respectively in S(S).

Thus, path P3 induces a C-consistent (C-inconsistent) cycle C4 in

S(S). By Theorem 6.3.1, this cycle C4 is positive (negative) if and

only if P3 is homogeneous (heterogeneous). Since S(S) is C-cycle

compatible, for homogeneous (heterogeneous) P3, vertices u and

w will (will not) be of the same parity;

• if marking of path P3 = (u, v, w) is −,−,− and vertices u and

w are (are not) of same parity, i.e., N(u) and N(w) contain even

number of negative vertices or odd number of negative vertices,

then by Theorem 6.2.1, vertices u, v, w, v′ have signs −,−,−, +;

−,+,−,− or +, −, +, +; +, +, +, − (−,−, +, +; −, +, +,

− or +, −,−, +; +, +, −,−) respectively in S(S). Thus, path

P3 induces a C-inconsistent (C-consistent) cycle C4 in S(S). By

Theorem 6.3.1, this cycle C4 is positive (negative) if and only if P3

is homogeneous (heterogeneous). Since S(S) is C-cycle compati-

ble, for homogeneous (heterogeneous) P3, vertices u and w will not

(will) be of the same parity.

Thus, the necessity follows.

Sufficiency:

A cycle in S(S) is induced due to a cycle or a path P3 or their combina-

tions in S. If conditions hold then it can be easily seen that every cycle

in S(S) is positive and C-consistent or negative and C-inconsistent, i.e,

S(S) is C-cycle compatible. This completes the proof.
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Signed graph S shown in Figure 6.6 does not satisfy conditions (i)

and (ii) of Theorem 6.7.1. Therefore, S(S) is C-cycle incompatible.
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Figure 6.6: A signed graph S and its C-cycle incompatible S(S)

Signed graph S shown in Figure 6.7 satisfies conditions (i) and (ii)

of Theorem 6.7.1, therefore, S(S) is C-cycle compatible.
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Figure 6.7: A signed graph S and its C-cycle compatible S(S)

6.8 C-cycle compatibility of Γ(S)

In order to carry out our investigations we need the following result:

Lemma 6.8.1. [5] The following statements hold in Γ(S):

(i) If v ∈ V (S) is any vertex then v ∈ V (Γ(S)) is positive.

(ii) If v ∈ V (S) is a negative vertex then v′ ∈ V (Γ(S)) is negative.
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Theorem 6.8.1. For a signed graph S, Γ(S) is C-cycle compatible if

and only if the following conditions hold in S:

(i) S is balanced;

(ii) each non-pendant vertex of S is positive.

Proof. Necessity:

Let Γ(S) be C-cycle-compatible, i.e., every cycle in Γ(S) is either posi-

tive and C-consistent or negative and C-inconsistent. By Lemma 6.8.1,

every vertex of S is a positive vertex of Γ(S). Hence, every cycle Z

of Γ(S) that is due to a cycle Z of S is C-consistent. Since Γ(S) is

C-cycle-compatible, this cycle Z of S must be positive. Therefore, S

will be balanced. Thus, (i) follows.

By the definition of Γ(S), a path P3 = (u, v, w) of S induces a

positive cycle C4 = (u, v, w, v′) in Γ(S) and by Lemma 6.8.1, vertices

u, v, w, v′ have signs +, +, +, + (+, +, +, −) in Γ(S) if v is a positive

(negative) vertex of S. Thus, this cycle C4 is C-consistent if v ∈ V (S)

is a positive vertex. Since Γ(S) is C-cycle compatible and cycle C4 is

positive, C4 must be C-consistent. Hence, every non-pendant vertex of

S will be positive. Thus, the necessity follows.

Sufficiency:

A cycle in Γ(S) is induced due to a cycle or a path P3 or their combina-

tions in S. If conditions hold then it can be easily seen that every cycle

in Γ(S) is positive and C-consistent, i.e, Γ(S) is C-cycle-compatible.

This completes the proof.
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Signed graph S shown in Figure 6.8 satisfies conditions (i) and (ii)

of Theorem 6.8.1. Therefore, Γ(S) is C-cycle compatible.
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1

4

7'
7

2

3

1

4

7

6

5

6'

2

3 S:
1

4 5

7

6

Figure 6.8: A signed graph S and its C-cycle compatible Γ(S)

6.9 Conclusion and Scope

In this chapter, we have established structural characterizations of

signed graph S for which S(S) is balanced, C-consistent, S(S) and Γ(S)

are isomorphic and C-cycle compatible. We also established a charac-

terization of S-splitting signed graphs. Problems of characterizations
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of signed graph S for which S(S) and Γ(S) are C-sign-compatible are

still open.

∗ ∗ ∗ ∗ ∗
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Chapter 7

VERTEX EQUITABLE LABELING IN SIGNED GRAPHS

A graph labeling is an assignment of integers to the vertices or edges,

or both, subject to certain conditions. Graph labelings were first intro-

duced in the mid 1960s. In the intervening 55 years nearly 220 graph

labelings techniques have been studied in over 2200 papers. Seenivasan

and Lourdusamy [16] introduced a new type of graph labeling known as

vertex equitable labeling. They studied the properties of this labeling and

investigated vertex equitable behaviors of some standard graphs. They

also proved that arbitrary supersubdivision of paths is vertex equitable

and that every cycle Cn with n ≡ 0 or 3 (mod 4) has a vertex equi-

table superdivision. In this chapter, we initiate vertex equitable labeling

of signed graphs and study a vertex equitable behavior of signed paths,

signed stars, signed bistars and signed complete bipartite graphs K2,n.

7.1 Introduction

Graph labelings, where the vertices are assigned values subject to cer-

tain conditions, have often been motivated by practical problems but

also of interest in their own right. The labels of the vertices induce la-

bels of edges under certain conditions and there is an enormous amount

of literature build up on several kind of numerical labeling of graphs

and an interested reader is referred to [3].
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In literature many types of graph labelings exist, e.g., graceful la-

beling, multiplicative labeling, vertex equitable labeling, harmonious

labeling, cordial labeling, set labeling and so on. Here we introduce

vertex equitable labeling in the realm of signed graphs.

In this chapter, we are taking |E+
(S)| = m and |E–

(S)| = n. By a

(p, q)- signed graph, we mean a signed graph S with |V (S)| = p and

|E(S)| = q.

7.2 Vertex equitable labeling

In [16], Seenivasan and Lourdusamy introduced the idea of vertex eq-

uitable labeling of graphs as follows:

Suppose G is a (p, q)-graph and A = {0, 1, 2, ..., dq2e}. A vertex

labeling f : V (G) −→ A which is onto, is said to be a vertex equitable

labeling of G if it induces a bijective edge labeling f ∗ : E(G) −→

{1, 2, ..., q} given by f ∗(uv) = f(u) + f(v) such that |vf(a)− vf(b)| ≤ 1

∀a, b ∈ A, where vf(a) is the number of vertices with f(v) = a. Here

dne denotes the smallest integer greater than or equal to n. A graph G

is said to be vertex equitable if it admits a vertex equitable labeling.

They have shown that the graphs like paths, bistars B(n, n), combs

Pn � K1, complete bipartite graphs K2,n, friendship graphs C
(t)
3 for

t ≥ 2, quadrilateral snakes, K2 + mK1, K1,n ∪ K1,n+k if and only if

1 ≤ k ≤ 3, ladder graphs Ln = Pn × K2, arbitrary super divisions of

paths and cycles Cn with n ≡ 0 or 3 (mod 4) are vertex equitable.

Also they proved that the graphs K1,n if n ≥ 4, Eulerian graphs with n
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edges where n ≡ 1 or 2 (mod 4), the wheels Wn, the complete graphs

Kn if n > 3 and triangular cactuses with q edges where q ≡ 0 or 6 or 9

(mod 12) are not vertex equitable. Moreover they proved that if G is a

(p, q)-graph, q is even and p < dq2e+ 2 then G is not vertex equitable.

The super subdivision graph S∗(G) of a graphG is the graph obtained

from G by replacing every edge uv of G by K2,m (m may vary for each

edge) and identifying u and v with the two vertices in K2,m that form

the partite set with exactly two members. Jeyanthi et. al [14] proved

that super subdivision graphs of Pn�K1, bistars B(n, n), Pn×P2 and

quadrilateral snakes are vertex equitable.

For a graph H with vertices v1, v2, ...,vn and n copies of a graph G,

HôG is a graph obtained by identifying a vertex ui of the ith copy of

G with a vertex vi of H for 1 ≤ i ≤ n. The graph HõG is a graph

obtained by joining a vertex ui of the ith copy of G with a vertex vi of

H by an edge for 1 ≤ i ≤ n.

Jeyanthi and Maheswari [10] proved that the following graphs have

vertex equitable labeling: the square of the bistar Bn,n, the splitting

graph of the bistar Bn,n, C4-snakes, connected graphs in which each

block is a cycle of order divisible by 4 (they need not be of the same or-

der) and whose block-cut point graph is a path, Cm�Pn, tadpoles, the

one-point union of two cycles and the graph obtained by starting friend-

ship graphs C
(2)
n1 , C

(2)
n2 ,...,C

(2)
nk , where each ni ≡ 0 (mod 4) and joining

the center of C
(2)
ni to the center C

(2)
i+1 with an edge for i = 1, 2, ..., k− 1.

In [5], Jeyanthi and Maheswari proved that Tp trees, bistars B(n, n+1),
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Cn�Km, P 2
n , tadpoles, certain classes of caterpillars and T�Kn, where

T is a Tp tree with an even number of vertices are vertex equitable.

Jeyanthi and Maheswari [6] gave vertex equitable labelings for graphs

constructed from Tp trees by appending paths or cycles. Jeyanthi and

Maheswari [4] proved that graphs obtained by duplicating an arbitrary

vertex and an arbitrary edge of a cycle, total graphs of a paths, split-

ting graphs of paths and the graphs obtained identifying an edge of one

cycle with an edge of another cycle are vertex equitable. Jeyanthi et. al

proved that the graphs LmÔnC4, LmÕnC4, CmÕnC4 and PmÕnC4 are

vertex equitable graphs in [11] and they proved the graphs S ∗ (Pn.K1),

S ∗ (B(n, n)), S ∗ (Pn×P2) and S ∗ (Qn) of the quadrilateral snake are

vertex equitable in [15].

In [9], Jeyanthi and Maheswari proved the double alternate triangu-

lar snake DA(Tn) obtained from a path u1, u2, ..., un by joining ui and

ui+1 (alternatively) to two new vertices vi and wi is vertex equitable,

the double alternate quadrilateral snake DA(Qn) obtained from a path

u1, u2, ..., un by joining ui and ui+1 (alternatively) to two new vertices

vi, xi and wi, yi respectively and then joining vi, wi and xi, yi is vertex

equitable and NQ(m), the nth quadrilateral snake obtained from the

path u1, u2, ..., um by joining ui and ui+1 with 2n new vertices vij and

wi
j, 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n is vertex equitable. Jeyanthi and Mah-

eswari [12] proved DA(Tn)�K1, DA(Tn)�2K1, DA(Tn), DA(Qn)�K1,

DA(Qn)� 2K1 and DA(Qn) are vertex equitable.

In [4,7,8] Jeyanthi and Maheswari have shown a number of families
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of graphs that have vertex equitable labelings. Their results include

armed crowns Cm ⊕ Pn, shadow graphs D2(K1, n), the graph Cm ∗ Cn

obtained by identifying a single vertex of a cycle graph Cm with a single

vertex of a cycle graph Cn if and only if m + n ≡ 0, 3 (mod 4), the

graphs [Pm, C
(2)
n ] when n ≡ 0 (mod 4), the graph obtained from m

copies of Cn ∗ Cn and Pm by joining each vertex of Pm with the cut

vertex in one copy of Cn ∗ Cn and graphs obtained by duplicating an

arbitrary vertex and an arbitrary edge of a cycle, the total graph of Pn,

the splitting graph of Pn and the fusion of two edges of Cn.

Jeyanthi et. al [13] proved the following graphs are vertex equitable:

jewel graphs Jn with vertex set {u, v, x, y, ui : 1 ≤ i ≤ n} and edge

set {ux, uy, xy, xv, yv, uui, vui : 1 ≤ i ≤ n}, jelly fish graphs (JF )n

with vertex set {u, v, ui, vj : 1 ≤ i ≤ n, 1 ≤ j ≤ n − 2} and edge set

{uui : 1 ≤ i ≤ n} ∪ {vvj : 1 ≤ i ≤ n − 2} ∪ {un−1un, vun, vun−1},

lobsters constructed from the path a1, a2, ..., an with vertices ai1 and ai2

adjacent to ai for 1 ≤ i ≤ n and pendant vertices a1ij, a
2
ij, ...,akij joining

aij for 1 ≤ i ≤ n and j = 1, 2; Ln �Km and the graph obtained from

ladder a Ln and 2n copies of K1,m by identifying a non-central vertex

of ith copy of K1,m with ith vertex of Ln.

We extend the definition of a vertex equitable graph to the realm of

signed graphs as follows:

Let S be a (p, q)-signed graph with q = m + n, where m(n) is the

number of positive(negative) edges in S and A = {0, 1, 2, ..., dq2e}. A

vertex labeling f : V (S) −→ A which is onto, is said to be a vertex eq-
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uitable labeling of S if it induces a bijective edge labeling f ∗ : E(S) −→

{1, 2, ...,m,−1,−2, ...,−n} defined by f ∗(uv) = σ(uv)(f(u)+f(v)) such

that |vf(a) − vf(b)| ≤ 1, ∀a, b ∈ A, where vf(a) is the number of ver-

tices with f(v) = a. A signed graph S is said to be vertex equitable if

it admits a vertex equitable labeling. In Figure 7.1, we show a vertex

equitable signed graph.

1

0

2
1

2 3

1 2 3

1 2

3

- - -

Figure 7.1: A vertex equitable signed graph

A bistar B(m,n) is obtained from K2 = {u, v} by adding m pendent

edges to u and n pendent edges to v. In this chapter, we define the

signed bistar B+(m, n), which is obtained by taking uv as positive edge,

m positive edges incident to u and n negative edges incident to v. Sim-

ilarly, the signed bistar B−(m, n) is obtained by taking uv as negative

edge, m positive edges incident to u and n negative edges incident to v.

150



7.3 Results on vertex equitable signed graphs

In this section, we give results on vertex equitable labeling of signed

graphs and study vertex equitable behavior of signed paths, signed

stars and signed complete bipartite graphs K2,n. These results have

been reported in [1].

For our investigations we need the following results:

Theorem 7.3.1 ( [16]). The path Pn is vertex equitable.

Theorem 7.3.2 ( [16]). Complete bipartite graph K2,n is vertex equi-

table.

Theorem 7.3.3. If a signed graph S is vertex equitable then η(S) is

also vertex equitable.

Proof. Let S be a vertex equitable signed graph. Therefore, there exists

a vertex labeling f : V (S) −→ A, where A = {0, 1, 2, ..., dq2e} such that

f induces an edge labeling f ∗ given by f ∗(uv) = σ(uv)(f(u)+f(v)) and

|vf(a)−vf(b)| ≤ 1, ∀a, b ∈ A, where vf(a) is the number of vertices of la-

beling a. f ∗(E) = {1, 2, ...,m,−1,−2, ...,−n}. Since in η(S), only signs

of edges are opposite, i.e., in η(S), f ∗(E) = {−1,−2, ...,−m, 1, 2, ..., n},

this vertex labeling f is also a vertex equitable labeling for η(S). Hence

the result follows.

Theorem 7.3.4. Homogenous path Pn is vertex equitable.

Proof. The result follows from Theorem 7.3.1 and Theorem 7.3.3.

Remark 7.3.1. Results reported in [4–16] for graphs hold for homoge-

neous signed graphs also.
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Now, a natural question is to determine heterogeneous vertex equi-

table paths. The following is a partial answer to this question:

Theorem 7.3.5. A signed path Pn having a negative pendant edge and

all other edges positive, is vertex equitable.

Proof. Let Pn = v1v2v3...vn be a signed path with n vertices and a

negative pendant edge v1v2. We define f : V (Pn) −→ {0, 1, 2, ..., dn−12 e}

as

f(v1) = 0, f(v2) = 1, f(v3) = 0 and

f(vi) = f(vi−2) + 1, for 4 ≤ i ≤ n.

It is easy to see that f is a vertex equitable labeling. Thus the result

follows.

A vertex equitable labeling for signed path P9 having a negative

pendant edge and all other edges positive is shown in Figure 7.2.

10 0 2 3 41 2 3

-1 1 2 3 4 5 6 7

Figure 7.2: A vertex equitable signed path

Corollary 7.3.1. A signed path Pn having a positive pendant edge and

all other edges negative is vertex equitable.

Now, in Figure 7.3, we give some vertex equitable heterogeneous

signed paths.

In Figure 7.3, we have shown a signed path P5 having one negative and
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10 0 2

10 0 22

20 0 11

10 1 02

1 2-1

1

1

1

-1

-1

-1 -2

-2

-22

2

2

Figure 7.3: Some vertex equitable signed paths

one positive section each of length two which is vertex equitable. Note

that the signed paths shown in Figure 7.4 are not vertex equitable.

10 0 22

10 0 22

1 3 2

1 3 2 4

1 -1 -22

1 -1 -22

-3 -4 -5

-3 -4 -5 -6

Figure 7.4: Signed paths which are not vertex equitable

Now, we pose the following conjecture:

Conjecture 7.3.1. A signed path Pn having one positive section of

length two having a pendant edge and one negative section of length

greater than 2 and the negation of such type of path are not vertex

equitable.

Now naturally, we have the following problem:
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Problem 7.3.1. Find all non-isomorphic signed paths Pn which are

vertex equitable.

Theorem 7.3.6. Star K1,n is vertex equitable if and only if n ≤ 3.

Proof. Let (V1, V2) be the bipartition of K1,n with V1 = {u} and V2 =

{v1, v2, v3, ..., vn}. Since K1,n has n edges, A = {0, 1, 2, ..., dn2e}. To

get edge label 1, we must assign 0 and 1 labels to adjacent vertices.

Therefore, f(u) = 0 or 1.

Assume that K1,n is vertex equitable.

Let f(u) = 0 then f(vi) = i, 1 ≤ i ≤ n.

If n ≥ 2 then we can not assign this labelling as f(vn) = n and n /∈ A.

Hence f(u) 6= 0.

For f(u) = 1, we have f(vi) = i − 1 for 1 ≤ i ≤ n. This is illustrated

in Figure 7.5.

2

u

0 1

1 2 3

1

Figure 7.5: Vertex equitable star K1,3

Since K1,n is vertex equitable, we must have

n− 1 ≤ dn2e.

Clearly, this holds for n = 1, 2, 3. Further we can easily see that when

n = 1 or 2 or 3, K1,n admits a vertex equitable labeling. Thus, the
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star K1,n is vertex equitable if and only if n ≤ 3. This completes the

proof.

Figure 7.6 illustrates K1,4 which is not vertex equitable.

2

u

0 1 3

1

2

4
3

1

Figure 7.6: K1,4 is not vertex equitable

But we have signed stars K1,n, for n ≥ 4, which are vertex equitable

as follows from the following result:

Theorem 7.3.7. A signed star K1,n where n = m+n, is vertex equitable
if and only if

(i) |m− n| ≤ 1
or

(ii) If m = 1 then n ≤ 4 and if n = 1 then m ≤ 4.

Proof. Let (V1, V2) be the bipartition of K1,n with V1 = {u} and V2 =

{u1, u2, u3, ..., um, v1, v2, v3, ..., vn}, where ui and vj are the vertices ad-

jacent to u through positive and negative edges respectively. As K1,n

has m + n edges, A = {0, 1, 2, ..., dm+n
2 e}.

Necessity:

To get the edge labels 1 and -1, we must assign 0 and 1 labels to ad-

jacent vertices. Therefore, f(u) = 0 or 1. Now, we have the following

two cases:
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Case I: If f(u) = 0 then to find edge labels of pendant edges, we assign

f(ui) = i for 1 ≤ i ≤ m and

f(vj) = j for 1 ≤ j ≤ n,

This is illustrated in Figure 7.7.

1

0

2

3

4

1

2

1

2

-1

-2

-1

-2

-1-1

-3

-4

u

Figure 7.7: Signed star K1,6 which is not vertex equitable

As A = {0, 1, 2, ..., dm+n
2 e}, we must have

m ≤ dm+n
2 e and n ≤ dm+n

2 e

• If m and n both are even or odd then we must have

m ≤ m+n
2 and n ≤ m+n

2

Clearly, this holds for n = m

• If m is even and n is odd or n is even and m is odd then

m ≤ m+n+1
2 and n ≤ m+n+1

2 . That is

2m ≤ m + n + 1 and 2n ≤ m + n + 1

m ≤ n + 1 and n ≤ m + 1

m− n ≤ 1 and n−m ≤ 1

This holds only when |m− n| ≤ 1. Thus, (i) follows.

Case II: Suppose f(u) = 1 then we must assign f(u1) = f(v1) = 0.

This is illustrated in Figure 7.8.
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We can not assign f(u2) = f(v2) = 1 as f will not be a vertex

1

0

0

2

3

4

1

1

-1 -2-1 -2-1-1

-4

-5

-3u

Figure 7.8: Signed star K1,6 which is not vertex equitable

equitable labeling. Hence m = 1 or n = 1.

• If m = 1 then vertex labeling is

f(u1) = 0, f(vi) = i− 1, 1 ≤ i ≤ n.

Thus, n− 1 ≤ dn+1
2 e. This holds only for n ≤ 4.

On the other hand

• If n = 1 then similarly we have m − 1 ≤ dm+1
2 e and this too

holds only for m ≤ 4. Thus, (ii) follows.

Hence, the necessity follows.

Sufficiency:
Suppose conditions hold. We define the vertex labeling f : V (K1,n) −→
A as

• If |m− n| ≤ 1 then

f(u) = 0, f(ui) = i, 1 ≤ i ≤ m and
f(vj) = j, 1 ≤ j ≤ n.

This is illustrated in Figure 7.9.
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2
0

3

1

1

0

1
2

3

2

4

1

2

3
3

1

2

-1

-2

-1

-2

-1-1

-3

-4

2

3

1

3

22

-1

-2

-1

-2

-1-1

-3

u u

Figure 7.9: Vertex equitable signed stars

• If m = 1 and n = 3 or 4 then

f(u) = 1, f(u1) = 0 and f(vj) = j − 1, 1 ≤ j ≤ n.

This is illustrated in Figure 7.10.

1

0

0

2

3

1

1

-1
-2

-1
-2

-1-1

-3

-4

u

Figure 7.10: Vertex equitable signed star K1,5

• If n = 1 and m = 3 or 4 then

f(u) = 1, f(v1) = 0 and f(ui) = i− 1, 1 ≤ i ≤ m.

Note that this signed star is the negation of the previous signed star.
It is easy to see that f is a vertex equitable labeling. This completes
the proof.
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7.4 Results on vertex equitable signed bistars

In this section, we give results on vertex equitable labeling of signed

bistars. These results have been reported in [2].

Theorem 7.4.1. Bistar B(n, n + k) is vertex equitable if and only if

k ≤ 2.

Proof. Let for each i = 1, 2, ..., n and j = 1, 2, ..., n + k; ui and vj be

the vertices adjacent to u and v respectively. Since B(n, n + k) has

2n + k + 1 edges, A = {0, 1, 2, ..., n + dk+1
2 e}. To find edge labels, we

must assign

f(u) = 0, f(ui) = i, f(v) = n+ 1 and f(vj) = j.

This is illustrated in Figure 7.11.

1

0

2

2 3

5

1

3
4

4

1

22

3

4

55
6

7

8

9

u v

Figure 7.11: Vertex equitable bistar B(3, 5)

Clearly, f is a vertex equitable labeling if and only if

n + k ≤ n + dk+1
2 e that is
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k ≤ dk+1
2 e.

This holds only if k = 1 or 2.

For k ≤ 2, we have edge labeling

f ∗(uui) = i, 1 ≤ i ≤ n

f ∗(uv) = n+ 1

f ∗(vvj) = n+ 1 + j, 1 ≤ j ≤ n+ k.

Thus, bistar B(n, n+ k) is vertex equitable if and only if k ≤ 2.

Theorem 7.4.2. Signed bistar B+(m, n) is vertex equitable if and only
if

(a) m = n or n− 1 or n− 3 or n− 4
or

(b) n = 1 and m ≤ 3

Proof. Let u1, u2, u3, ..., um and v1, v2, v3, ..., vn be the vertices adjacent

to u and v respectively. Since B+(m, n) has m + n + 1 edges, A =

{0, 1, 2, ..., dm+n+1
2 e}.

Necessity:

To get the edge labels 1 and -1, we must assign 0 and 1 labels to adjacent

vertices. Therefore, f(u) = 0 or 1 and f(v) = 0 or 1. Thus, 0,1; 1,0

and 1,1 are three possible labels for vertices u and v respectively. Now,

we have the following three cases:

Case I: If f(u) = 0 and f(v) = 1 then to find edge labels of pendant

edges, we must assign
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f(ui) = i+ 1 for 1 ≤ i ≤ m and

f(vj) = j − 1 for 1 ≤ j ≤ n.

This is illustrated in Figure 7.12.

2

0
3

0

1
4

1

2

3

4

2

3

4

1

-1

-2

-3

-4

-5

u v

Figure 7.12: Bistar B+(3, 5) is not vertex equitable

Since A = {0, 1, 2, ..., dm+n+1
2 e}, we must have

m + 1 = dm+n+1
2 e and n− 1 = dm+n+1

2 e.

• If m and n both are even or odd then

m + 1 = m+n+2
2 and n− 1 = m+n+2

2

2m + 2 = m + n + 2 and 2n− 2 = m + n + 2. Thus

m = n and m = n− 4

• If m is even and n is odd or n is even and m is odd then

m + 1 = m+n+1
2 and n− 1 = m+n+1

2 , that is

2m + 2 = m + n + 1 and 2n− 2 = m + n + 1. Thus

m = n− 1 and m = n− 3

Therefore, signed bistar B+(m, n) is vertex equitable if m = n or

n− 1 or n− 3 or n− 4, i.e., (a) follows.
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Case II: Suppose f(u) = 1 and f(v) = 0 then to find edge labels 2 and

-1, we must assign f(u1) = f(v1) = 1. Then we have vf(1) = 3

and vf(0) = 1, i.e., condition |vf(a) − vf(b)| ≤ 1, ∀a, b ∈ A, fails.

This is illustrated in Figure 7.13.

2
1

3

0

1

1

-1-1-1-1

22

4

13 u v

Figure 7.13: Signed bistar B+(3, 1) is not vertex equitable

Hence f(u) = 1 and f(v) = 0 is not possible.

Case III: Suppose f(u) = f(v) = 1 then we must assign f(u1) =

f(v1) = 0 to get edge labels 1 and -1. This is illustrated in Figure

7.14.

0

2
1

3 0

1

4

1

4

3 2

-1-1-1-1

5

u v

Figure 7.14: Signed bistar B+(4, 1) which is not vertex equitable

We can not assign f(v2) = 1 as f will not be a vertex equitable
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labeling.

Hence n = 1. For n = 1, m = dm+1+1
2 e

m = dm2 e + 1. Further

m = m
2 + 1, if m is even and we get

m = 2. Further

m = m+1
2 + 1, if m is odd and we get

m = 3.

Note that for m = 1 and n = 1, we get a vertex equitable signed

path P4 having a pendant negative edge. Therefore, (b) follows.

Thus, the necessity follows.

Sufficiency:

Suppose conditions hold. We define the vertex labeling f : V (B+(m, n)) −→

A as

• If m = n or n− 1 or n− 3 or n− 4 then

f(u) = 0, f(v) = 1, f(ui) = i + 1 and f(vj) = j − 1. This is

illustrated in Figure 7.15.

2

0
3

0

1

1

2

3

4

2

0

3

0

1

1

2

3

4

22

4

3 1

-1-1-1-1

-2

-3

-4

22

1

3

-1-1-1-1
-2-2

-3

-3-3

-4

-5

u v vu

Figure 7.15: Vertex equitable signed bistars B+(3, 4) and B+(2, 5)
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• If n = 1 and m = 2 or 3 then

f(u) = f(v) = 1, f(u1) = f(v1) = 0 and

f(ui) = i for 2 ≤ i ≤ m.

This is illustrated in Figure 7.16.
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Figure 7.16: Vertex equitable bistar B+(3, 1)

It is easy to observe that f is a vertex equitable labeling. This completes

the proof.

Theorem 7.4.3. Signed bistar B−(m, n) is vertex equitable if and only

if

(a) n = m or m− 1 or m− 3 or m− 4

or

(b) m = 1 and n ≤ 3

Proof. Since B−(m, n) is negation of B+(n,m), result follows from The-

orem 7.3.3 and 7.4.2.

Now, we consider a signed bistar B(m,n) which is not B+(m, n) and

B−(m, n).

Theorem 7.4.4. If signed bistar B(m,n) which is not B+(m, n) and

B−(m, n), is vertex equitable then | m− n |≤ 3.
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Proof. Suppose a signed bistar which is not B+(m, n) and B−(m, n), is

vertex equitable. To get the edge labels 1 and -1, we must assign 0 and

1 labels to adjacent vertices. Therefore, f(u) = 0 or 1 and f(v) = 0 or

1. Now, A = {0, 1, 2, ..., dm+n+1
2 e}, hence the number of positive edges

can not exceed (dm+n
2 e + 1), i.e., m ≤ dm+n

2 e + 1.

m ≤ dm+n
2 e + 1, i.e., m ≤ m+n

2 + 1, if m and n both are even or odd.

Further,

2m ≤ m + n + 2 implies that

m ≤ n + 2.

m ≤ dm+n
2 e + 1, i.e., m ≤ m+n+1

2 + 1, if m or n is even. We get

2m ≤ m + n + 3, i.e.,

m ≤ n + 3.

Thus,

m− n ≤ 3. (7.1)

Similarly, the number of negative edges can not exceed (dm+n
2 e + 1),

i.e., n ≤ dm+n
2 e + 1. Therefore, as discussed above,

n ≤ dm+n
2 e + 1 gives

n−m ≤ 3. (7.2)

Therefore, from equations (7.1) and (7.2),
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| m− n |≤ 3.

This completes the proof.

There is not any general vertex equitable labeling for signed bistars

B(m,n) for which | m− n |≤ 3, but in Figure 7.17, we give some

vertex equitable signed bistars for which | m− n |≤ 3.
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Figure 7.17: Some vertex equitable signed bistars

Theorem 7.4.5. Signed complete bipartite graphs K2,n are vertex eq-

uitable if and only if it is any one of the following:

1. homogeneous

or
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2. heterogeneous, in which for each vertex vi of degree 2, d+(vi) =

d−(vi) = 1.

Proof. Let (V1, V2) be the bipartition of signed K2,n with V1 = {u, v}

and V2 = {v1, v2, v3, ..., vn}.

Necessity:

We prove the necessity by contrapositive, i.e., we prove that heteroge-

neous signed complete bipartite graphs K2,n, in which for at least one

vertex vi, d
+(vi) 6= d−(vi), is not vertex equitable.

To get the edge labels 1 and -1, we must assign 0 and 1 labels to

adjacent vertices. Therefore, f(u) = 0 or 1 and f(v) = 0 or 1. Now, in

all the cases some edge labels are repeated. Hence, signed K2,n are not

vertex equitable. This is illustrated in Figure 7.18.
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Figure 7.18: Signed K2,4 is not vertex equitable

Thus, the necessity follows.

Sufficiency:

Suppose conditions hold. Now, we have the following two cases:

Case I: If K2,n are homogeneous then by Theorem 7.3.2 and Theorem

7.3.3, these are vertex equitable signed graphs.

Case II: If K2,n are heterogeneous, in which for each vertex vi of degree
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2, d+(vi) = d−(vi) = 1, we define f : V (K2,n) −→ {0, 1, 2, ..., n} as

f(u) = f(v) = 0 and f(vi) = i for 1 ≤ i ≤ n.
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-43
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Figure 7.19: Vertex equitable signed K2,4

It can be easily seen that f is a vertex equitable labeling, as shown

in Figure 7.19. This completes the proof.

7.5 Conclusion and Scope

In this chapter, we have initiated a vertex equitable labeling of signed

graphs and established some results on vertex equitable behavior of

signed paths, signed stars, signed bistars and signed complete bipartite

graph K2,n. All work reported on vertex equitable graphs by Seenivasan

and Lourdusamy, and P. Jeyanthi et. al discussed in this chapter is

still open in the realm of signed graphs. All their results hold for

homogeneous signed graphs. Open problems are to determine vertex

equitable heterogeneous signed graphs.

∗ ∗ ∗ ∗ ∗
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Chapter 8

SCOPE FOR FURTHER RESEARCH

In this chapter, we have put together some problems that looked stray

in the main course of our research work reported so far, for, on second

thought we felt they might be of independent interest to investigate and

perhaps may get linked up eventually to some of the directions of re-

search reported in this thesis. We have preferred presenting them with

some illustrative examples, just to attract attention of an inquisitive

researcher.

8.1 Litact graph

Recall that the litact graph [15] of a graph G = (V,E), denoted here

by Lct(G), is the graph having vertex set E(G)∪C(G) in which its two

vertices are adjacent if the corresponding members of G are adjacent

or incident. A graph G and its Lct(G) are shown in Figure 8.1.

L   (G):ct

1e

2
e

3e

c1

4e c2

5e

6e
7e

1e

2
e

3e

c1

4e c2

5e

6e

7e

G:

Figure 8.1: A graph G and its litact graph Lct(G)
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In Chapter 2, we have established a characterization of lict graphs. The

problem of characterizing litact graph is still an open problem.

Problem 8.1.1. Characterize litact graphs.

8.2 Litact signed graphs

In Chapter 3, we have established characterizations of lict signed graphs

Lc(S), L×c
(S), L•c(S) and also for line signed graphs L×(S) and L•(S).

Litact signed graphs yet to be defined. Extension of litact graph in the

realm of signed graph had not been taken up. Anyone can define and

characterize various types of litact signed graphs.

Problem 8.2.1. Define and characterize litact signed graphs.

8.3 Directed graph and signed directed graph

A directed graph (in short, digraph) is D = (V,A), where V is the set

whose elements are called vertices, nodes or points and A is the set of

ordered pairs of vertices called arrows, directed edges (or lines or arcs).

An ordered pair S = (D, σ) is called a signed digraph with underlying

digraph D = (V,A), if S is obtained from D by designating each of its

arc as positive or negative.

8.4 Line directed graph and lict directed graph

Aigner [5] defined the ‘line digraph’ of a given digraph as follows. The

line-digraph L(D) of a given digraph D = (V,A) has A for its vertex

set and (e, f) is an arc in L(D) whenever the arcs e and f have a vertex

in common which is the head of e and tail of f , as shown in Figure

8.2.
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Figure 8.2: A digraph D, its line digraph L(D) and lict digraph Lc(D)

A given digraph H is called a line digraph if there exists a digraph

D such that L(D) is isomorphic to H, written as L(D) ∼= H. Harary

and Norman [6] gave a characterization of line digraphs.

Nagesh and Chandrasekhar introduced the concept of lict digraph

in [16] as follows:

The lict digraph denote here by Lc(D) of a given digraph D = (V,A)

has A(D)∪C(D) as its vertex set and (e, f) is an arc in Lc(D) whenever

the arcs e and f have a vertex in common which is the head of e and

tail of f or e ∈ C(D) and f is the out going arc from e and (f, e) is an

arc in Lc(D) if e ∈ C(D) and f is the in-coming arc to e.

A given digraph H is called a lict digraph if there exists a digraph D

such that Lc(D) is isomorphic to H, written Lc(D) ∼= H. Line digraph

and lict digraph of a digraph D are shown in Figure 8.2.
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Observe that the in-degree and out-degree of a cut-vertex of D re-

mains the same in Lc(D).

8.5 Signed line and lict digraphs

The definition of line digraph was extended to the realm of signed

line digraphs by Acharya and Sinha [4] as given below and they also

characterized signed line digraphs.

Given any signed digraph S = (D, σ), signed line digraph L(S) is

a signed digraph with L(D) as its underlying digraph in which an arc

(e, f) is defined negative if and only if e and f are negative arcs in S.

One can think about defining signed line digraphs as well as lict

signed digraphs as par line signed graphs and lict signed graphs as

treated in this thesis. Such a study is still open.

8.6 C-consistency and S-consistency

We have following problems concerning C-consistency:

Problem 8.6.1. Characterize signed graph S such that L×(S) is C-

consistent.

Problem 8.6.2. Characterize signed graph S such that its lict signed

graphs Lc(S), L×c
(S) and L•c(S) are C-consistent.

Acharya et. al in [3] have defined S-consistency of line signed graph

L(S) as follows:

If to each vertex e of L(S), which is an edge of S = (Su, σ), if one

assigns the sign σ(e) and the resulting marked signed graph L(S) is

consistent, then L(S) is said to be S-consistent.

Problem 8.6.3. Characterize signed graph S such that L×(S) and

L•(S) are S-consistent.
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We have defined lict signed graphs. In order to study S-consistency

for lict signed graphs, we can give appropriate sign to the vertices of

Lc(S), L×c
(S) and L•c(S). This study has not been taken so far. Hence,

we have the following problem:

Problem 8.6.4. Characterize signed graph S such that its lict signed

graphs Lc(S), L×c
(S) and L•c(S) are S-consistent.

8.7 Cycle-compatibility, C-cycle-compatibility and S-cycle-

compatibility

A signed graph S is called cycle-compatible [2] if there exists a marking

µ such that for any cycle Z in Sµ,∏
e∈E(Z)

σ(e) =
∏

u∈V (Z)

µ(u).

In Chapter 5, we have defined C-cycle-compatibility. So, we have fol-

lowing problems:

Problem 8.7.1. Characterize signed graph S such that L(S) and L×(S)

are C-cycle-compatible.

Problem 8.7.2. Characterize signed graph S such that its lict signed

graphs Lc(S), L×c
(S) and L•c(S) are C-cycle-compatible.

If to each vertex e of L(S), which is an edge of S = (Su, σ), if one

assigns the sign σ(e) and the resulting marked signed graph L(S) is

cycle-compatible, then L(S) is said to be S-cycle-compatible [8].

Acharya et. al in [2] have characterized S-cycle-compatible signed

line graphs L(S).

Problem 8.7.3. Characterize signed graph S such that L×(S) and

L•(S) are S-cycle-compatible.
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Problem 8.7.4. Characterize signed graph S such that its lict signed

graphs Lc(S), L×c
(S) and L•c(S) are S-cycle-compatible.

8.8 Sign-compatibility and C-sign-compatibility

While looking into the structure of the line signed graphs, Acharya

and Sinha [1] observed that there are forbidden subsigned graphs for a

signed graph to be a line signed graph. In providing a characterization

of line sigraphs, they suggested that the vertices of a line signed graph

can be marked by positive and negative signs so that both the ends of

every negative edge receive negative signs and no positive edge receives

negative signs at both of its ends.

A signed graph S is called sign-compatible [8] if there exists a mark-

ing µ of its vertices such that the end vertices of every negative edge

receive ‘−’ signs in µ and no positive edge in S has both of its ends

assigned ‘−’ signs in µ. A sign-compatible signed graph is shown in

Figure 8.3.

S: 

+

+
+

- -

-

Figure 8.3: A sign-compatible signed graph S

A canonically marked signed graph S, is said to be canonically sign-

compatible (or C-sign-compatible in short), if the end vertices of every

negative edge receive ‘−’ signs and no positive edge has both of its ends

assigned ‘−’ under µσ. An example of C-sign-compatible signed graph

176



is exhibited in Figure 8.4.

S: 

-

-+

-
-

+

Figure 8.4: A C-sign-compatible signed graph S

In [8], characterization of sign-compatible signed graphs has been

given and it has been proved that every line signed graph is sign-

compatible. In [9], Sinha and Dhama have characterized signed graphs

whose derived signed graphs such as common-edge signed graphs, 2-

path signed graphs, ×-line and dot line signed graphs, semi-total line

signed graphs, semi-total point signed graphs and total signed graph-

s are sign-compatible. In [10], Sinha and Dhama have characterized

signed graphs whose derived signed graphs such as line, ×-line and

dot line signed graphs, splitting signed graphs, semi-total line signed

graphs, semi-total point signed graphs and total signed graphs are C-
sign-compatible.

We have following problems:

Problem 8.8.1. Characterize signed graph S such that its lict signed

graphs Lc(S), L×c
(S) and L•c(S) are sign-compatible and C-sign-compatible.

Problem 8.8.2. Characterize signed graph S such that its S-splitting

signed graph S(S) is sign-compatible and C-sign-compatible.
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Note that in sign-compatibility, we do not bother about number of

negative vertices in cycles, we can define terms like sign-compatible con-

sistency and C-sign-compatible consistency, in which we check sign com-

patibility as well as consistency. So, all problems of sign-compatibility

and C-sign-compatibility are open for sign-compatible consistency and

C-sign-compatible consistency.

8.9 Graph equations

Graph equations are equations in which the unknowns are graphs.

Many problems and results in graph theory can be formulated in terms

of graph equations.

Following problems are open:

Problem 8.9.1. Characterize a signed graph S such that L(S) ∼ L×(S).

Problem 8.9.2. Characterize a signed graph S such that L(S) ∼ L•(S).

Problem 8.9.3. Characterize a signed graph S such that L•(S) ∼
L×(S).

Problem 8.9.4. Characterize a signed graph S such that L(S) ∼ L(η(S)).

Problem 8.9.5. Characterize a signed graph S such that L×(S) ∼
L(η(S)).

Problem 8.9.6. Characterize a signed graph S such that L•(S) ∼
L(η(S)).

These problems also can be extended for lict signed graphs.

In Chapter 4, we have established many results on •-lict signed

graphs, lict signed graphs and also for •-line signed graphs and line

signed graphs. Mathad and Narayanker in [7], characterize signed

graphs S and S ′ for which L×(S) ∼ L×c(S
′), J(S) ∼ L×c(S

′) and
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T1(S) ∼ L×c(S
′), where J(S) and T1(S) are jump signed graph and

semitotal line signed graph of S respectively. This study related to

dot-lict signed graphs, lict signed graphs and litact signed graphs is yet

open.

In Chapter 7, we have initiated a vertex equitable labeling of signed

graphs and established some results on vertex equitable behavior of

signed paths, signed stars, signed bistars and signed complete bipartite

graphs K2,n. All work reported on vertex equitable graphs by Seeni-

vasan and Lourdusamy, and P. Jeyanthi et. al discussed in this chapter

is still open in the realm of signed graphs.

Algorithmic approach to detect balancing, C-sign-compatibility of a

given graph, C-consistency and S-consistency for ×-line signed graph

and dot line signed graphs and also for lict signed graphs are open

problems. For such a study we refer to [11–14].
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