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Abstract 

Most digital camera use only a single photo sensor overlaid with a color filter array (CFA) to 

capture image data. This allows only one of the required color samples to be available at each 

pixel location and other two color components need to be interpolated. This process of 

reconstructing the full color image from the incomplete color components at each pixel 

output from the image sensor is known as demosaicking or color filter array interpolation. 

Over the past years, many demosaicking algorithms have been introduced in order to 

optimize the subjective and objective interpolation quality, it becomes difficult to implement 

them in digital cameras due to their limited computing capacity, available processing time, 

and hardware size. An edge strength based fuzzification of demosaicking algorithms is 

proposed in this thesis in which edge strength information from the raw image data is 

fuzzified and effectively utilized to improve the interpolation quality of current demosaicking 

algorithms. We have used five image datasets including the kodak lossless true color image 

suit to test our approach over three performance measures, MSE, PSNR and computation 

complexity. Experimental results confirm the effectiveness of our approach when compared 

to other algorithms. 

Keywords: Color Filter Array(CFA) Interpolation, Demosaicking, Color Correlation, Digital 

Cameras, Fuzzy Membership, Edge Strength Filter. 
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Chapter 1 

Introduction 

 

1.1 Defining Demosaicking and its Need 
 

A digital image is composed of red (R), green (G) and blue (B) color samples at each pixel 

position. In order to construct a true color image a digital camera would require three separate 

photo sensors, each responsible for capturing color information lying in the wavelength range 

of red, blue and green color respectively. In a three chip digital camera, light entering the 

camera is split and projected onto each color sensor. These sensors have to be registered 

precisely because outputs from these three sensors are concatenated to construct a true color 

image. These additional requirements and the cost of three different color sensors make the 

system costly. Thus, most digital camera use only a single sensor covered with a color filter 

array (CFA) which allows only one color to be measured at each pixel. This means the other 

two color values must be estimated at each pixel. This process of estimation is known as 

demosaicking or color filter array interpolation. 

 

1.2 Bayer CFA 

Although many different CFA pattern have been proposed. The most common CFA pattern is 

Bayer CFA [1] which is 50% Green, 25% Red and 25% Blue as shown in figure 1.1. The 

Green color is sampled at a rate twice that of Blue and Green color because the human visual 

system is more sensitive in the medium wavelengths, corresponding to the green color. Other 

patterns are also used, e.g., the Nikon Coolpix 990 uses a cyan, magenta, yellow and green 

(CMYG) grid where each of the colors is sampled at the same rate. 
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Figure 1.1: Bayer CFA 

 

1.3 Motivation 
 

The output from color filter array is the incomplete color samples (raw image data) which 

need to be processed using a demosaicking algorithm to construct the complete color image. 

Demosaicking method makes exploits the color correlation between pixels within an image to 

estimate the missing color component. Spatial correlation is defined as the tandency of pixels 

to assume similar color values within a small homogenous region of an image and spectral 

correlation is the dependency between the pixel values of different color planes in a small 

image region. The basic assumption is that color ratio or color difference is constant within a 

small homogenous region. This assumption tends to fail across edges, hence many 

demosaicking algorithms utilize the edge information adaptively. A good demosaicking 

algorithm should have the following traits. 

• Avoidance of introduction of false color artifacts, such as chromatic aliases, zippering 

(abrupt unnatural changes of intensity over a number of neighbouring pixels). 

• Maximum preservation of image resolution. 

• Low computational complexity for fast processing. 

• Amenability to analysis for accurate noise reduction. 
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1.4 Demosaicking: A literature survey 

Demosaicking is a major step in image processing of digital cameras and has been an area of 

research in both academics and industry. A large number of demosaicking approaches have 

been proposed in past years. Some methods employ simple numerical formulas [2] such as 

nearest neighbour, median filtering [64], bilinear and bicubic interpolation. Bicubic 

interpolation requires high order computation [3] than bilinear but can product high-

frequency components of images. A large circuit size is required for high-order computation 

which is not feasible for a small size digital imaging device. Therefore a small circuit is 

employed in DSC [4]-[6] so that low-order computation can be performed with a technique to 

improve the interpolation accuracy by using an exponential calculation [4]-[7]. These 

spatially invariant interpolation methods treat color channels separately and interpolate 

missing pixels in each channel. This approach works well in uniform areas but it produces 

color artifacts in areas with textures and edges. 

In order to obtain better demosaicking performance, correlation between color channels is 

exploited. Constant color difference rule or constant color ratio rule [7], [8], [9], [10], [66], 

[71] exploits the spectral correlation which assumes that color ratio or color difference is 

constant in a homogenous region. This assumption fails across edges, therefore many 

demosaicking algorithms use the edge information adaptively during color interpolation. 

Apart from this some methods perform statistical analysis of images, for example 

multivariate analysis, Bayesian estimation, learning by training sample etc. [11]-[14]. 

Applications of the pattern matching [15] have also been employed. Green channel suffers 

less from aliasing because in Bayer CFA pattern green channel samples are twice that of red 

and blue ones. Therefore green channel is the starting point of the CFA interpolation process. 

Glotzbach et al. in [16], focuses on improving red and blue channel by adding into them the 

high frequency components obtained from green channel. Gunturk et al. in [17] used on 
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alternating projections scheme based on inter-channel color correlation in high frequency 

subbands to improve the red and blue channels successively. Many observations regarding 

color channel frequencies made in a method [18] and suggest that instead of filtering the CFA 

image as individual color channels, it should be filtered as a whole preserve high frequency 

information. The method uses a fixed 5×5 filter for green channel interpolation and an 

adaptive filter for blue and red channel interpolation. The fully interpolated green channel is 

then used to interpolate the chrominance information. 

Various edge direction based decision rules for the green channel interpolation [9], [10], [19], 

[20], [62], [65], [69] has been proposed early. The method in [9] uses derivatives of red and 

blue samples in initial green channel interpolation. An approach using variance of color 

differences as a decision rule is been proposed by authors of [21]. Zhang et al. [22], tried to 

improve the interpolation performance of the original method [9] by making a soft decision. 

In this method, color differences along horizontal and vertical directions are treated as noise 

and they are combined in optimal manner using the linear minimum mean square estimation 

(LMMSE) framework. This approach is further improved by Paliy et al. [23] by introducing 

scale adaptive filtering based on linear polynomial interpolation (LPA). Hirakawa et al. [24] 

proposed performing interpolation in both horizontal and vertical directions by comparing 

local homogeneity of horizontal and vertical interpolation resuls and Menon et al. [25] used 

color gradients over a local window to make the direction decision. 

A subset of methods involves image restoration techniques [66]. Techniques such as pseudo-

inverse filter [26], a super resolution technique [27]-[29], a technique based on the 

interpolation of projection onto convex sets (POCS) [17], [30], and use of Discrete Cosine 

Transform (DCT) and Wavelet conversion [33]-[34]. Since these techniques requires a 

significant increase in hardware size, they are not suitable for single chip digital cameras. 
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Chapter 2 

Classification of Demosaicking Methods 

 

Many demosaicking methods have been proposed over the past years. This field of research 

and development is getting more and more attention because of the emerging market of 

electronic consumer devices. These demosaicking methods exploit the spatial and spectral 

color correlation within an image to interpolate the missing color values at each pixel 

position. The reconstructed image is generally accurate in constant color difference areas, but 

has a loss of resolution (detail and sharpness) and has edge artifacts. Demosaicking methods 

can be broadly categorized into non-adaptive algorithms and adaptive algorithms, as 

described below. 

2.1 Non-adaptive algorithms: In non-adaptive demosaicking algorithms, a fixed pattern of 

computation is performed on every pixel location in the raw image data (mosaic pattern) in 

order to estimate the two missing color components. These types of algorithms are easy to 

implement with low cost in terms of computational requirements.    

2.2 Adaptive algorithms: In adaptive demosaicking algorithms, intelligent processing is 

performed on every pixel location based on the characteristics of the image in order to 

estimate the missing color components. These types of algorithms yield better results in terms 

of quality as compared with the non-adaptive algorithms. However, effective algorithms in 

this category are computationally more complex.   

2.3 Algorithms exploiting the correlation between color planes in an image: In this set of 

algorithms, we have explained two algorithms which utilizes the correlations between 

different color planes in an image to estimate the missing color components. Both algorithms 

are adaptive in nature and makes use of the edge information. 
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We review some algorithms from all three categories in order to introduce some flavour and 

characteristics of the demosaicking methods proposed in the literature. In this report, we have 

only reviewed some basic methods that we have compared with our proposed algorithm. 

2.1 Non-adaptive algorithms   

2.1.1 Nearest Neighbour Replication: In this simple color interpolation method [35], [36], 

each missing color component in a pixel replicates the value of the nearest pixel of the same 

color component in the input image. The nearest neighbour can be any one of the upper, 

lower, left and right pixel. An example is illustrated below in figure 2.1 for a 3x3 block in 

green plane. Here we assume the left neighbouring pixel value is used to fill the missing ones. 

 

Figure 1.1: Illustration of Nearest Neighbour Replication 

 

As discussed by James E. Adams [35], the only advantage of this approach is that 

computational requirement is very less and well suited for applications where speed is very 

crucial. However, the significant color errors make it unsuitable for still imaging system, such 

as high-resolution digital cameras. 
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2.1.2 Bilinear Interpolation: Instead of replicating the nearest neighbours, bilinear 

interpolation [35] estimate the missing color component by taking the linear average of the 

adjacent pixels with same color component. For example, the pixel B8 at location (2, 3) in 

figure 2.2 contains blue component only. Hence the missing green component at red/blue 

pixels is estimated by taking average of the left, right, top and bottom green pixel values. 

Interpolation of a red/blue pixel at a green position is performed by taking the average of two 

adjacent pixel values in corresponding color. The missing red/blue component at 

corresponding blue/red pixels can be estimated as linear average of the four diagonally 

adjacent corner neighbours containing red/blue pixels. This is illustrated by an example 

below using figure 2.2 for a 5 x 5 block. 

Interpolation of green pixel at red or blue pixel position: Here we are estimating green value 

at blue pixel B8. Similarly green value can be estimated at red pixels. 

�8 = �3 + �7 + �9 + �13
4 																																																																																																												(2.1) 

Interpolation of red/blue pixel at green position: Here we are estimating blue and red value at 

green pixel G7. Similarly red and blue value can be estimated at pixel location G13. 

�7 = �6 + �8
2 ; 		�7 = �2 + �12

2 																																																																																																		(2.2) 

Interpolation of red/blue pixel at blue/red position: Here we are estimating red and blue value 

at blue pixel B8 and red pixel R12 respectively. 

�8 = �2 + �4 + �12 + �14
4 ; 		�12 = �6 + �8 + �16 + �18

4 																																													(2.3) 
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Figure 2.2: 5×5 Bayer CFA pattern (GRBG) 

 

This method is very simple and can be easily implemented. However, experimental results 

show that zipper effect is introduced in the neighbourhood of the interpolated pixels in the 

interpolated full color image. This artifact may be acceptable in a video stream because the 

artifact may not be visible by the human eye due to effect of motion blur between video 

frames, but these artifacts are not acceptable for still images.     

2.1.3 Smooth Hue Transition Interpolation: The key problem of the color artifacts in 

bilinear is that the hue values of adjacent pixels change abruptly across edges. The Bayer 

CFA pattern can be considered as combination of a luminance channel (green pixels) and two 

chrominance channels (red and blue pixels). The smooth hue transition interpolation method 

[37]-[42], [63] interpolates these channels independently. The luminance or green component 

can first be interpolated at red and blue pixel locations using bilinear interpolation as 

discussed before. Then the chrominance channel is interpolated by imposing a smooth 

transition in hue value from pixel to pixel. In order to do so, it defines "hue value" for blue as 

B/G, and "hue value" for red as R/G. For interpolation of the missing blue pixel values  ��,� , 

in pixel location (m, n) in the Bayer pattern, the following three different cases may arise. 
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Case 1: the pixel at location (m, n) contains green color component only and the adjacent left 

and right pixel locations contain blue color component only. For example, the pixel G7 at 

location (2, 2) in figure 2.2 contains green component only and its adjacent pixels in left and 

right contain only blue component. The blue component at pixel location (m, n) can be 

estimated as follows:  

��,� = ��,� ∗ ���,�����,��� +
��,�����,���� 2� 																																																																																											(2.4) 

Case 2: the pixel at location (m, n) contains green color component only and the adjacent top 

and bottom pixel locations contain blue color component only. The pixel G13 at location (3, 

3) in figure 2.2 is such an example. The blue component at location (m, n) can be estimated 

as follows:  

��,� = ��,� ∗ �����,�����,� +
����,�����,�� 2� 																																																																																											(2.5) 

Case 3: the pixel at location (m, n) contains red color component only and the four diagonally 

neighbouring corner pixels contain blue color component only. For example, the pixel R12 at 

location (3, 2) in figure 2.2 contains red color component only. The blue component at 

location (m, n) can be estimated as follows:   

��,� = ��,� ∗ �����,�������,��� +
����,�������,��� +

����,�������,��� +
����,�������,���� 4� 																																					(2.6) 

The interpolation of missing red pixel values can be computed similarly at blue and green 

pixels.   

The “hue value” changes depending on where the interpolation step happens in the image 

processing chain. For example, if the pixel value is transformed into logarithmic space from 

linear space before interpolation, then the “hue value” can be defined as B-G or R-G instead 
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of B/G or R/G. This is coming from the fact that log(X/Y) = log(X) – log(Y) = X' – Y'. Here 

X’ and Y’ are the logarithmic values of X and Y respectively. This helps reduce 

computational complexity for implementation because all the division for calculating the hue 

value is replaced by subtraction. 

 

2.2 Adaptive algorithms   

2.2.1 Pattern Matching based Demosaicking Algorithm: In the Bayer pattern, a blue or red 

pixel has four neighbouring green pixels. Wu, et al [43] proposed simple pattern matching 

algorithm for interpolating the missing color components based on the pixel contexts. The 

algorithm defines a green pattern for the pixel at location (m, n) containing a non-green color 

component as a four-dimensional integer-valued vector: 

�(!, ") = #	����,�, ����,�, ��,���, ��,���$																																																																														(2.7) 

The similarity (or difference) between two green patterns g1 and g2 is defined as the vector 

1-norm: 

‖�1 − �2‖ = ' |�1) − �2)|
*+),-

																																																																																																						(2.8) 

It is likely that the two pixel locations where the two green patterns are defined will have 

similar red and blue color components when the difference between two green patterns is 

small. 

Missing color component is estimated by performing a weighted average proportional to the 

degree of similarity of the green patterns. For example, the missing blue color ��,� , in pixel 

location (m, n) contains only red color component is estimated by comparing the green 

pattern �(!, ") with the four neighbouring green patterns �(! − 1, " − 1), �(! − 1, " +
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1), �(! + 1, " − 1)	."/	�(! + 1, " + 1) . If all the differences between �(!, ") and other 

four green patterns are uniformly small, then a simple average is used to estimate the missing 

blue color component, 

��,� = ����,��� + ����,��� + ����,��� + ����,���4 																																																												(2.9) 

Otherwise, when the largest difference is above certain threshold, only the top two best- 

matched green patterns information are used. If ‖�(!, ") − �(! − 1, " − 1)‖ and 

‖�(!, ") − �(! + 1, " − 1)‖ are the two smallest differences, then the missing blue color is 

estimated as follows.  

��,�

= ‖�(!, ") − �(! − 1, " − 1)‖ ∗ ����,��� + ‖�(!, ") − �(! + 1, " − 1)‖ ∗ ����,���‖�(!, ") − �(! − 1, " − 1)‖ + ‖�(!, ") − �(! + 1, " − 1)‖  

																																																																																																																																																													(2.10) 
Similarly the missing red color values can be computed.     

This algorithm is simple and efficient. However, as pointed out by Wu, et al [43], the quality 

of reconstructed images is still undesirable.    

2.2.2 Edge Sensing Interpolation: Different predictors are used for estimating the missing 

green values in the edge directed interpolation method depending on the luminance gradients 

[19]. First, two gradients, one in horizontal direction, the other in vertical direction are 

computed for each red or blue pixel location. For instance, consider the pixel B8 as shown in 

figure 2.2. The two gradients are defined as,    

∆H = |�7 − �9|	;	∆V = |�3 − �13|																																																																																				(2.11) 
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Based on these gradient values and a certain threshold (T), the interpolation algorithm then 

can be described as follows.  

45  ∆H 6 T	and	∆V ; T	then 

						�8 � ��7 � �9�/2; 
@AB@	45	∆H ; T	and	∆V 6 T	then  

 						�8 � ��3 � �13�/2; 
@AB@ 

 					�8 � ��3 � �7 � �9 � �13�/4; 
@"/45 

@"/45																																																																																																																																																			�2.12� 
 

A slightly different edge sensing interpolation algorithm is described in [10]. Instead of 

luminance gradients, chrominance gradients are used. The two gradients, refer to figure 2.3 

below, are defined as:  

∆H � C�5 & DE�DF
G C	; 		∆V � C�5 & D��DH

G C                                                                        (2.13) 

 

Figure 2.3: 5×5 Bayer CFA pattern (BGGR) 
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2.2.3 Linear Interpolation with Laplacian second-order Correction terms: This 

algorithm [9] focuses on improving the visual quality of the interpolated image when applied 

on images with sharp edge. Missing color components are interpolated using following steps.    

The first step in this algorithm is to interpolate the missing green color components at the red 

and blue pixels. Consider the interpolation of green value at a blue pixel location (using 

figure 2.3) as an example. Interpolation of green value at red pixel location can be done in the 

similar fashion. Now interpolate the missing green component g5 at pixel location B5. We 

define horizontal and vertical gradients in this pixel location as follows:   

∆H = |�4 − �6| + |�5 − �3 + �5 − �7|	; 	∆V = |�2 − �8| + �5 − �1 + �5|												(2.14) 
Intuitively, we can consider ∆H and ∆V above as combination of the luminance gradient and 

the chrominance gradient as described in edge sensing interpolation algorithm in the previous 

section. Using these two gradient values, the missing green component g5 at pixel location 

B5 is estimated as follows.   

45  ∆H <	∆V	then 

 						�5 = (�4 + �6)/2 + (�5 − �3 + �5 − �7)/4; 
@AB@	45	∆H > ∆V	then  

 						�5 = (�2 + �8)/2 + (�5 − �1 + �5 − �9)/4; 
@AB@ 

   													�5 = (�2 + �4 + �6 + �8)/4 + (�5 − �1 + �5 − �3 + �5 − �7 + �5 − �9)/8; 
@"/45 

@"/45																																																																																																																																																				(2.14) 
 The interpolation step for g5 has two parts. The first part is the linear average of the 

neighbouring green values, and the second part can be considered as a second-order 

correction term based on the neighbouring blue (red) values.    
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The missing red (or blue) color components are estimated in every pixel location after 

estimation of the missing green components in every pixel location. Depending on the 

position, refer to figure 2.4, we have three cases:   

 

Figure 2.4: 5×5 Bayer CFA pattern (BGGR) 

      

1. Estimate red (blue) color component at a green pixel where nearest neighbours of red 

(blue) pixels are in the same column, e.g. pixel location G4 as shown in figure 2.4 above. We 

estimate the red component r4 at pixel location G4 as follows.  

�4 � ��1 � �7�/2	 � ��4 & �1 � �4 & �7�/4	                                                              (2.15) 

2. Estimate red (blue) color component at a green pixel where nearest neighbours of red 

(blue) pixels are in the same row, e.g. pixel location G2 as shown in fig 2.4. We estimate the 

red component r2 at pixel location G2 as follows. 

�2 � ��1 � �3�/2 � ��2 & �1 � �2 & �3�/4                                                                (2.16) 

3. Estimate red (blue) color component at a blue (red) pixel. For instance, estimate red 

component r5 at pixel location B5 as shown in figure 2.4. Here we first define two diagonal 

gradients as follows:   
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∆N = |�1. �9| + |�5 − �1 + �5 − �9| ;                                                      

	∆P = |�3. �7| + |�5 − �3 + �5 − �7|                                                                            (2.17) 

Using these diagonal gradients, the algorithm for estimating the missing color components is 

described as:   

45  ∆N < 	∆P	then 

 						�5 = (�1 + �9)/2 + (�5 − �1 + �5 − �9)/2; 
@AB@	45	∆N > ∆P	then  

 						�5 = (�3 + �7)/2 + (�5 − �3 + �5 − �7)/2; 
@AB@ 

      										�5 = (�1 + �3 + �7 + �9)/4 + (�5 − �1 + �5 − �3 + 	�5 − �7 + �5 − �9)/4;            
@"/45 

@"/45                                                                                                                                  (2.18) 

This method provides much better visual quality of the reconstructed image containing a lot 

of sharp edges. However, the second-order derivative for calculating the gradients makes the 

algorithm quite sensitive to noise. Since only the color information in the same direction 

(vertical, horizontal, or one of the diagonal directions based on the gradient information) is 

used for interpolation, we believe that it is still possible to further improve the visual quality 

of the reconstructed image. 

2.2.4 Interpolation using a Threshold-based variable number of gradients: This 

algorithm is described in [44]. A set of gradients is determined from the color values in the 

5x5 neighbourhood centred at the pixel under consideration. Each gradient corresponds to a 

different direction. For each set of gradients, a threshold value is determined and the 

threshold is used to select a subset of gradients. Low-valued gradients indicate pixels having 

similar color values whereas high-valued gradients would be expected in regions of the image 
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where there are many fine details or sharp edges. The subset of gradients is used to locate 

regions of pixels that are most like the pixel under consideration. The pixels in these regions 

are then weighted and summed to determine the average difference between the color of the 

actual measured center pixel value and the missing color. A similar approach using weighted 

gradients is given in [67]. The algorithm is illustrated by an example using a 5 x 5 block as 

shown in figure 2.5.  

1. Interpolation of the green, red/blue value at the blue/red pixel: consider figure 2.5 below, 

we want to estimate g13 and b13 at R13. 

 
 

Figure 2.5: 5×5 Bayer CFA pattern (RGGB) 

 

Form eight gradients as follows : 

��./4@"K	L = |�8 & �18| � |�3 & �13| � |�7 & �17|/2 � |�9 & �19|/2 � |�2
& �12|/2 � |�4 & �14|/2; 

��./4@"K	M � |�14 & �12| � |�15 & �13| � |�9 & �7|/2 � |�19 & �17|/2 � |�10
& �8|/2 � |�20 & �18|/2; 
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��./4@"K	N = |�18 − �8| + |�23 − �13| + |�19 − �9|/2 + |�17 − �7|/2 + |�24

− �14|/2 + |�22 − �12|/2; 

��./4@"K	O = |�12 − �14| + |�11 − �13| + |�17 − �19|/2 + |�7 − �9|/2 + |�16

− �18|/2 + |�6 − �8|/2; 

��./4@"K	LM = |�9 − �17| + |�5 − �13| + |�8 − �12|/2 + |�14 − �18|/2 + |�4

− �8|/2 + |�10 − �14|/2; 

��./4@"K	NM = |�19 − �7| + |�25 − �13| + |�14 − �8|/2 + |�18 − �12|/2 + |�20

− �14|/2 + |�24 − �18|/2; 

��./4@"K	LO = |�7 − �19| + |�1 − �13| + |�12 − �18|/2 + |�8 − �14|/2 + |�6

− �12|/2 + |�2 − �8|/2; 

��./4@"K	NO = |�17 − �9| + |�21 − �13| + |�18 − �14|/2 + |�12 − �8|/2 + |�22 −

�18|/2 + |�16 − �12|/2;                       (2.19) 

Determine a threshold and select a subset of gradients: the threshold is determined by 

P = Q1 ∗ R4" + Q2 ∗ (R.S −R4"), where R4" is the minimum gradient value and R.S is 

the maximum gradient value. Q1 and  Q2 are determined experimentally as 1.5 and 0.5, 

respectively. Here Q1 ∗ R4" accounts for the case in which the gradients are all very similar, 

so that we wish to include all of them by setting a threshold that exceeds them. Q2 ∗ (R.S −

R4") accounts for the case in which there is a significant difference between the maximum 

and minimum  gradient values.  

Now, locate the pixels in the regions corresponding to the subset of gradients and to use those 

pixels to determine a color difference between the center pixel color and the color to be 

recovered. Determine the average green, blue and red values in the gradient subset regions: 

Form the average color values in the gradient subset regions to get �TU�, �TU� and �TU�  
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Find the normalized color difference by dividing the difference of two sums by the number of 

gradients in the threshold subset, and add this normalized color difference to the pixel value 

under consideration to form the other two missing color components. 

2. Interpolation of the blue/red value at the green pixel: consider figure 2.2, we want to 

estimate r13 and b13 at G13. 

Form eight gradients  as follows   

��./4@"K	L = |�3 − �13| + |�8 − �18| + |�7 − �17|/2 + |�9 − �19|/2 + |�2

− �12|/2 + |�4 − �14|/2; 

��./4@"K	M = |�14 − �12| + |�15 − �13| + |�9 − �7|/2 + |�19 − �17|/2 + |�10

− �8|/2 + |�20 − �18|/2; 

��./4@"K	N = |�18 − �8| + |�23 − �13| + |�19 − �9|/2 + |�17 − �7|/2 + |�24

− �14|/2 + |�22 − �12|/2;	

��./4@"K	O = |�12 − �14| + |�11 − �13| + |�17 − �19|/2 + |�7 − �9|/2 + |�16

− �18|/2 + |�6 − �8|/2; 

��./4@"K	LM = |�9 − �17| + |�5 − �13| + |�4 − �12| + |�10 − �18|; 

��./4@"K	NM = |�19 − �7| + |�25 − �13| + |�20 − �8| + |�24 − �12|; 

��./4@"K	LO = |�7 − �19| + |�1 − �13| + |�6 − �18|/2 + |�2 − �14|; 

��./4@"K	NO = |�17 − �9| + |�21 − �13| + |�22 − �14| + |�16 − �8|; 

                                  (2.20) 

As described earlier, determine a threshold and select a subset of gradients. Again, P = Q1 ∗

R4" + Q2 ∗ (R.S −R4"), where k1 = 1.5 and k2 = 0.5. Again, Locate pixels in the selected 

regions and use those pixels to determine a color difference between the center pixel color 
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and the color to be recovered, finally add this color difference to produce an estimate for the 

missing color value. 

2.3 Algorithms exploiting the correlation between color planes in an image 

This section explains two demosaicking algorithms, 

2.3.1 Edge Strength Based Color Filter Array Interpolation [45]. 

2.3.2 Practical Color Filter Array Interpolation with Non-Linear Filter [46]. 

Algorithm 2.3.1 [45] proposes an edge strength filter that provides local, orientation-free 

intensity transition information. This algorithm utilizes this edge strength information 

combined with constant color difference assumption to interpolate the initial green channel 

while avoiding averaging across edge structures. The algorithm further uses this information 

to update the initially interpolated green channel. Algorithm 2.3.2 [46] proposes a filter that 

has a simple structure and is effective eliminating artifacts on the edge of color boundaries. 

This algorithm is the simpler and improved version of its previous algorithm [47] which uses 

a linear low pass filter and was more constrained. The algorithm makes use of the constant 

color difference correlation assumption combined with an edge detection technique which 

detects the direction in which the correlation is high and uses the signal of higher correlation 

to execute interpolation. Both algorithms works in three steps, the green channel is 

interpolated first followed by the interpolation of red and blue channel as shown in figure 2.6. 

These algorithms are explained in step by step as follows: 

 

 

 



 

20 

 

CFA Samples 

 

 

 

Figure 2.6: Three Step CFA Interpolation 

 

 

 

 

 

 

2.6: Three Step CFA Interpolation 

2.3.1 Edge Strength Filter Based Color Filter Array Interpolation: The algorithm 

proposes an edge strength filter that provides local, orientation- free luminance transition 

information. The filter has a 3 by 3 block size as shown in figure 2.7. Given a grey scale input 

image, it could be formulated as 

NVW = |X� − XH|

2
+
|XE − XF|

2
+ |XG − XY| + |X- − XZ|																																																														(2.21) 

 

 

 

Figure 2.7: 3x3 Edge Strength Filter Pattern 
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Where SP5 is the edge strength at pixel P5. 

By applying the above filter to all available pixels, we obtain the edge strength map of the 

input image. Although the filter result for a single pixel does not provide any edge direction 

information, the relationship between neighbouring pixel is exploited that yields the edge 

orientation in that neighbourhood. The edge strength for green and blue pixels will be 

calculated in the same way. The edge strength map obtained from the raw image data will 

help us both in initial green channel interpolation stage and in subsequent green channel 

update. 

 

Step 1: Green Channel Interpolation and Updation 

Labelling each pixel as horizontal or vertical by comparing edge strength differences along 

each direction on a local window. For a window of 5 by 5, horizontal and vertical difference 

costs can be formulated as follows: 

H i,j= ∑ (∑ (��\�G 	G�\�G Si+m, j+n – Si+m, j+n-1 ) ); 

V i,j= ∑ (∑ (G�\�G 	��\�G Si+m, j+n – Si+m+1, j+n ) )                                                                      (2.22)            

Where Si,j  is the edge strength filter output at pixel location (i, j) and H i,j and V i,j represent 

the total horizontal and vertical costs. Now the target pixel will be labelled as horizontal if 

horizontal cost is less than vertical cost and vice versa. Based on the edge direction labels, 

green channel is interpolated as: 

�′),^ 		�
_̀a
b̀�),^ � �̅),d̂ & �),^

2 + �),^�� & �e),^��d
4 + �),^�� & �),^��d

4 , 45	ℎg�4hg"K.A
�),^ � �̅),î & �),^

2 + �)��,^ & �e)��,^i
4 + �)��,^ & �e)��,^i

4 , 45	j@�K4k.A
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Where directional estimations are calculated by 

�̅),d̂ � �),^�� � �),^��2 + 2 ∗ �),^ & �),^�G & �),^�G4  

�̅),î � �)��,^ � �)��,^2 + 2 ∗ �),^ & �)�G,^ & �)�G,^4  

�e),d̂ � �),^�� � �),^��2 + 2 ∗ �),^ & �),^�G & �),^�G4  

�e),î � �)��,^ � �)��,^2 + 2 ∗ �),^ & �)�G,^ & �)�G,^4 																																																																			(2.23) 

Green channel estimation for red pixel locations is performed simply by replacing B’s with 

R’s in the equation above. 

 

Now we will this initially interpolated green channel. For every green pixel to be updated, we 

consider the four neighbours with available color difference estimates. We have assigned a 

weight to each neighbour pixel which is inversely correlated with the total absolute edge 

strength difference in its direction. 

l� = mN),^ & N)��,^m � mN)��,^ & N)�G,^m � mN)�G,^ & N)�E,^m � n� 
lG � mN),^ & N),^��m � mN),^�� & N),^�Gm � mN),^�G & N),^�Em � n� 

lE � mN),^ & N),^��m � mN),^�� & N),^�Gm � mN),^�G & N),^�Em � n� 

l- � mN),^ & N)��,^m � mN)��,^ & N)�G,^m � mN)�G,^ & N)�E,^m � n� 

R� � lG ∗ lE ∗ l- 

RG � l� ∗ lE ∗ l- 

RE � lG ∗ l� ∗ l- 

R- � lG ∗ lE ∗ l� 
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Ropoqr = R� +RG +RE +R- 

�̅),^ � �),^ �O ∗ #�̅),^ & �),^$ � �1 −O)
∗ s R�Ropoqr #�̅)�G,^ & �)�G,^$ � RGRopoqr #�̅),^�G & �),^�G$
� RERopoqr #�̅),^�G & �),^�G$ � R-Ropoqr #�̅)�G,^ & �)�G,^$t																																�2.24) 

Similarly for red pixel, replace B i,j by R i,j. Here C1 is a non- zero constant to avoid zero 

denominator. 

 

Step 2: Red and Blue channel interpolation at Green pixels 

For red and blue channel estimation at green pixels, we employ bilinear interpolation over 

color differences. Here, only the nearest two neighbours for which the original pixel value 

available are used. 

�eG),G^ � �G),G^ & #�̅G)��,G^ & �G)��,G^$ � #�̅G)��,G^ & �G)��,G^$2  

�eG)��,G^�� � �G)��,G^�� & #�̅G)��,G^�� & �G)��,G^$ � #�̅G)��,G^�G & �G)��,G^�G$2 														(2.25) 

Similarly Red channel can be estimated at green pixels. 

 

Step 3: Red and Blue channel interpolation at Blue and Red pixel respectively 

For red channel interpolation at blue pixels and blue channel interpolation at red pixels, 

diagonal neithbours are used adaptively based on green channel gradients in both directions. 
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R� = m�̅)�G,^�G & �̅),^m � m�̅)��,^�� & �̅)��,^��m � m�̅),^ & �̅)�G,^�Gm 
RG � m�̅)�G,^�G & �̅),^m � m�̅)��,^�� & �̅)��,^��m � m�̅),^ & �̅)�G,^�Gm 
 

�e),^ � �̅),^ &RG ∗ #�̅)��,^�� & �)��,^�� � �̅)��,^�� & �)��,^��$2 ∗ (R� +RG)

+ R� ∗ #�̅)��,^�� & �)��,^�� � �̅)��,^�� & �)��,^��$2 ∗ (R� +RG) 																																				(2.26) 

 

2.3.2 Color Filter Array Interpolation with Non Lin ear Filter:  The pixel interpolation 

procedure is described below. First we compute the signal gradient in horizontal and vertical 

direction at red and blue pixels. Now because the number of G pixels is larger than any other, 

we first interpolate the G pixels on the R and B planes (Step 1). It is important to perform G 

pixel interpolation as the first step so that interpolation errors will not be propagated in the R 

and B pixel interpolation. Next, we perform interpolation of R and B signals on the G plane 

(Step 2), and finally we perform interpolation of the R signal in the B plane and the B signal 

in the R plane, which have the lowest inter-channel correlation (Step 3). In the computing 

expression given below, the coordinates of each signal are the same as the pixel array shown 

in figure 2.8. 

Step 0: Compute signal gradient at R32  pixel location. 

Vertical Signal Gradient: 

u = �j + �j + �j
4 																																 

�j = (|−��G + 2�EG − �WG|)2  
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�j = (|�GG − �-G| + |−��� + 2 ∗ �E� − �W�|4 + | − ��E + 2�EE − �WE|4 ) 

�j = (|�G� − �-�| + |�GE − �-E|)2 																																																																																													(2.27) 

 

Horizontal Signal Gradient: 

v = �ℎ + �ℎ + �ℎ
4 																							 

�ℎ = (|−�E* + 2�EG − �E-|)2  

�ℎ = (|�E� − �EE| + |−�G* + 2�GG − �G-|4 + | − �-* + 2�-G − �--|4 ) 

�ℎ = (|�G� − �GE| + |�-� − �-E|)2 																																																																																														(2.28) 

 

�** �*� �*G �*E �*- �*W �*Z 

��* ��� ��G ��E ��- ��W ��Z 

�G* �G� �GG �GE �G- �GW �GZ 

�E* �E� �EG �EE �E- �EW �EZ 

�-* �-� �-G �-E �-- �-W �-Z 

�W* �W� �WG �WE �W- �WW �WW 

�Z* �Z� �ZG �ZE �Z- �ZW �ZZ 
 

Figure 2.8: 7×7 Bayer CFA Pattern (GBRG) showing Pixel Coordinates 

At the B pixel location, V and H is similarly computed as the red plane changed R to B. 
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Step 1: G plane interpolation on R and B plane. 

IfIfIfIf V<= 4 and H <= 4 or H == V 

�EG = �EG + (�EG{ − �EG{)       

Where, 

�EG{ = ' ' �),^
4 , 4| ∈ 22,31,33,42

^)
 

�EG{ = ~∑ ∑ �)^ +^ 4�EG�)
8 , 4| ∈ 12,30,34,52                                                                           (2.29) 

Else if V > H 

�EG = �EG + (�EG�{ − �EG�{)      

Where, 

�EG�{ = ' ' �)^
2^)

,    4| ∈ 31, 33 

�EG�{ = ~∑ ∑ �)^^ +2�EG�)
4 , 4| ∈ 30,34                                                                                      (2.30) 

Else if V < H 

�EG = �EG + (�EG�{ − �EG�{)     

Where, 

�EG�{ = ' ' �)^
2^)

,    4| ∈ 22, 42 

�EG�{ = ~∑ ∑ ���� �G�����
- , 4| ∈ 12,52                                                                                               (2.31) 

Then the blue plane is similarly computed as the red plane. 
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Step 2: R and B plane interpolation on G plane 

Interpolating R values at G pixels: 

�GG = �GG + (�GG�{ − �GG�{) 

�EE = �EE + (�EE�{ − �EE�{)					 
Where, 

�GG�{ = ∑ ∑ �),^^) 2 , 4| ∈ 12,32 

�EE�{ = ∑ ∑ �),^^) 2 , 4| ∈ 32,34 

�GG�{ = ∑ ∑ �),^^) 2 , 4| ∈ 12,32 

�EE�{ = ∑ ∑ �),^^) 2 , 4| ∈ 32,34																																																																																																							(2.32) 
Interpolating B values at G pixels: 

�GG = �GG + (�GG�{ − �GG�{) 

�EE = �EE + (�EE�{ − �EE�{)	 
Where, 

�GG�{ = ∑ ∑ �),^^) 2 , 4| ∈ 21,23 

�EE�{ = ∑ ∑ �),^^) 2 , 4| ∈ 23,43 

�EE�{ = ∑ ∑ �),^^) 2 , 4| ∈ 23,43 

�GG�{ = ∑ ∑ �),^^) 2 , 4| ∈ 21,23																																																																																																							(2.33) 
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Step 3: R and B plane interpolation on B and R plane respectively. 

If  V<= 4 and  H <= 4 or  H == V 

�GE = �GE + (�GE{ − �EE{)																																																																																																												(2.34) 
Else if V>H 

�GE = �GE + (�GE�{ − �EE�{)																																																																																																										(2.35) 
Else if V<H 

		�GE = �GE + (�GE�{ − �GE�{)																																																																																																								(2.36) 
Then the blue plane is similarly computed as the red plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 

 

Chapter 3 

Proposed Demosaicking Methods based on Edge Strength Fuzzification 

 

We have proposed two demosaicking algorithms, one is the modified version of the standard 

bilinear interpolation and other is the modified version of the Algorithm 2.3.2 [46] explained 

in previous section. These algorithms are modified in three respects: 

• Edge information is been used effectively to remove artifacts. 

• Fuzzification of edges based on their strengths to reduce computational complexity 

involved in decision making. 

• Execution time of the algorithm is reduced. 

The modified algorithms are better than the conventional demosaicking algorithms in terms 

of both objective and subjective quality. Both algorithms make use of an edge strength filter 

as explained in [45]. 

 

3.1 Terminology 

Universe of Discourse: The Universe of Discourse is the range of all possible values for an 

input to a fuzzy system. 

Fuzzy Set: A fuzzy set is a pair (�, !� where � is the universe of discourse and	!: � →
�g, 1�. For each S�� the value !(S) is called the membership of S in (�, !�. For a finite 

set � � �S�, … , S�	� the fuzzy set ��,!� is often denoted by �!�S��/S�, . . . , !�S��/S�	�. 
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Fuzzy Weighted Average: Let A be the fuzzy set such that � = �!(S�)/S�, . . . , !�S��/S�	� 
for each S��, where � is the universe of discourse. The fuzzy weighted average �� for the 

fuzzy set A is defined as: 

�� = S�μ� + SGμG +⋯+ S�μ�μG + μG +⋯+ μ� = ∑ S)μ)�)\*∑ μ)�)\*
 

 

3.2 Fuzzy Membership Assignment Strategy for Proposed Algorithm 

The basis of the proposed algorithm is the constant color ratio/difference over a local distance 

in a homogenous region. This assumption is likely to fail across edges. The edge information 

can be used adaptively during interpolation to avoid considering non-correlated color 

differences, interpolation quality can be improved. The question at this point is how the edge 

information can be expressed meaningfully at the pixel level so that it is useful enough to 

improve interpolation quality. The answer to this is fuzzification of the edge information in 

an image.  

A fuzzy set EDGE_STRENGTH is defined over each pixel of the image as the universe of 

discourse. The edge strength at each pixel is computed and treated as the membership value 

of each pixel. The higher is the intensity variation across edge, the higher will be its strength. 

The membership value at each pixel is inversely proportional to its edge strength.  The higher 

is the edge strength value at each pixel, the lower will be its membership in fuzzy set. The 

reason here is strong edges will contribute less to the interpolation process because missing 

color values are computed by taking the fuzzy weighted average of the similar neighbouring 

pixels. 

 

 



 

31 

 

3.3 Edge Strength based Fuzzification of Bilinear Interpolation 

An edge strength filter that provides local, orientation-free luminance transition information 

is proposed in [45]. The edge strength is computed and fuzzified for each pixel such that 

membership value for each pixel in fuzzy set is inversely proportional to the edge strength. 

The green channel is interpolated first by computing the fuzzy weighted average of green 

pixel values from neighbourhood. Next we interpolate Red and Blue channel on the Green 

pixels, and finally we perform interpolation of the Red channel on Blue pixels and Blue 

channel on Red pixels, which have the lowest inter-channel correlation. Bayer CFA pattern 

which is being used for the proposed demosaicking algorithm is shown in figure 3.1. 

 

�** �*� �*G �*E �*- �*W �*Z 

��* ��� ��G ��E ��- ��W ��Z 

�G* �G� �GG �GE �G- �GW �GZ 

�E* �E� �EG �EE �E- �EW �EZ 

�-* �-� �-G �-E �-- �-W �-Z 

�W* �W� �WG �WE �W- �WW �WW 

�Z* �Z� �ZG �ZE �Z- �ZW �ZZ 

 

Figure 3.1: 7×7 Bayer CFA Pattern (GBRG) showing Pixel Coordinates 

Step 0: Edge strength at each pixel is computed using an edge strength filter [45] as explained 

in in previous section. The filter has 3 by 3 support size as shown in figure 2.7 and formula is 
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same as explained in equation 2.21. After computing the edge strength S at each pixel, we 

will now fuzzify this edge strength at each pixel using the min-max normalization. 

μ = C1 − �
���	(�)C                                                                                                               (3.1) 

 

Step 1: Green channel Interpolation at red/blue pixel position, for example consider a red 

pixel �EG and a blue pixel �GE3, green value can be interpolated by taking fuzzy weighted 

average of four neighbour green pixel values as shown in equation 3.2 and 3.3. Please refer 

figure 3.1 for the pixel pattern and their positions. 

�EG = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	22,31,33,42																																																																																							(3.2) 

�GE = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	13,33,22,24																																																																																							(3.3) 

 

Step 2: Red and Blue channel Interpolation on Green pixel. There can be two cases 

depending upon the position of red or blue pixels in four neighbourhood of green pixel. In 

first case, the red pixels are located at the above and below of the green pixel and blue pixels 

are located at the left and right of the green pixel. For example, consider a green pixel �GG on 

which we are interpolating the red and blue pixel value by taking fuzzy weighted average of 

the two same color pixels as shown in equations 3.4 and 3.7. In second case, the red pixels 

are located at the left and right of the green pixel and blue pixels are located at the above and 

below of the green pixel. For example, consider a green pixel �EE on which we are 

interpolating the red and blue pixel value by taking the fuzzy weighted average of the same 

color pixels as shown in equations 3.5 and 3.6. Please refer figure 3.1 for the pixel pattern 

and their positions. 
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�GG = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	12,32																																																																																																									(3.4) 

�EE = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	32,34																																																																																																									(3.5) 

�EE = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	23,43																																																																																																									(3.6) 

�GG = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	21,23																																																																																																									(3.7) 

 

Step 3: Red/Blue channel interpolation on Blue/Red pixels. Consider a blue pixel �G� and a 

red pixel	��G. The red value at �G� and blue value at ��G are interpolated by taking the fuzzy 

weighted average of the four diagonal pixels of the same color as shown in equations 3.8 and 

3.9. Please refer figure 3.1 for the pixel pattern and their positions. 

�G� = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	10,12,30,32																																																																																												(3.8) 

��G = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	01,03,21,23																																																																																											(3.9) 

 

3.4 Edge Strength based Fuzzification of Non-Linear CFA Interpolation 

An edge strength filter that provides local, orientation-free luminance transition information 

is proposed in [45]. The edge strength is computed and fuzzified for each pixel such that 

membership value for each pixel in fuzzy set is inversely proportional to the edge strength. 

The green channel is interpolated first by adding the color difference of red/blue and green 
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colors at current pixel value. The difference is computed between fuzzified low frequency 

components of each color. Fuzzified low frequency component is the fuzzy weighted average 

of similar color pixel values from neighbourhood. Next we interpolate Red and Blue channel 

on the Green pixels, and finally we perform interpolation of the Red channel on Blue pixels 

and Blue channel on Red pixels, which have the lowest inter-channel correlation. Bayer CFA 

pattern which is being used for the proposed demosaicking algorithm is shown in figure 3.1. 

 

Step 0: Edge strength at each pixel is computed using an edge strength filter [45] as explained 

in in previous section. The filter has 3 by 3 support size as shown in figure 2.7 and formula is 

same as explained in equation 2.21. After computing the edge strength S at each pixel, we 

will now fuzzify this edge strength at each pixel using the min-max normalization as shown 

in equation 3.1. 

 

Step 1: Green channel interpolation on Red and Blue pixels. Consider a red pixel �EG and 

blue pixel	�GE. The green value at �EG and �GE is interpolated by adding a color difference 

value at current pixel value as shown in equation 3.10 and 3.11. This color difference is 

computed by taking a fuzzy low frequency component for red/blue and green pixels at current 

position. At	�EG, fuzzy low frequency component for red and green value is computed as 

shown in equations 3.12 and 3.13. At	�GE, fuzzy low frequency component of the blue and 

green value is computed as shown in equations 3.14 and 3.15. Please refer figure 3.1 for the 

pixel pattern and their positions. 

 

�EG = �EG + (�EG{ − �EG{)																																																																																																											(3.10) 
�GE = �EG + (�EG{ − �EG{)																																																																																																											(3.11) 
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Where, 

�EG{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	22,31,33,42																																																																																						(3.10) 

�EG{ = ∑ ∑ μ)^�)^^ + 4�EG	)
∑ ∑ μ)^^) + 4μEG +	, 4|�	12,30,34,52																																																																			(3.11) 

�GE{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	13,33,22,24																																																																																						(3.10) 

�GE{ = ∑ ∑ μ)^�)^^ + 4�GE	)
∑ ∑ μ)^^) + 4μEG +	, 4|�	03,43,21,25																																																																			(3.11) 

 

Step 2: Red and Blue channel interpolation on Green pixels. There can be two cases 

depending upon the position of red or blue pixels in four neighbourhood of green pixel. In 

first case, the red pixels are located at the above and below of the green pixel and blue pixels 

are located at the left and right of the green pixel. For example, consider a green pixel at �GG 

on which we are interpolating the red and blue pixel value by adding color difference to the 

current pixel value as shown in equations 3.12 and 3.14. In second case, the red pixels are 

located at the left and right of the green pixel and blue pixels are located at the above and 

below of the green pixel. For example, consider a green pixel �EE on which we are 

interpolating the red and blue pixel value by adding color difference to current pixel value as 

shown in equations 3.13 and 3.15. Please refer figure 3.1 for the pixel pattern and their 

positions. Please refer figure 2.8 for the pixel pattern and their positions. 

 

�GG = �GG + (�GG�{ − �GG�{)																																																																																																								(3.12) 

�EE = �EE + (�EE�{ − �EE�{)																																																																																																								(3.13) 
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�GG = �GG + (�GG�{ − �GG�{)																																																																																																								(3.14) 

�EE = �EE + (�EE�{ − �EE�{)																																																																																																								(3.15) 
 

Where, 

�GG�{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	12,32																																																																																																		(3.16) 

�EE�{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	32,34																																																																																																		(3.17) 

�EE�{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	33,35																																																																																																			(3.18) 

�GG�{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	12, 32																																																																																																		(3.19) 

�GG�{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	21,23																																																																																																		(3.20) 

�EE�{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	23, 43																																																																																																		(3.21) 

�EE�{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	23,43																																																																																																			(3.22) 

�GG�{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	21, 23																																																																																																		(3.23) 

 

Step 3: Red/Blue channel interpolation on Blue/Red pixel respectively. Consider a blue pixel 

�GE and a red pixel	�EG. The red value at �GE and blue value at �EG are interpolated by adding 

the color difference of red/blue and green color to the current pixel value as shown in 

equations 3.24 and 3.25. The fuzzy low frequency component for the red/blue color at current 
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pixel is computed using four diagonal pixels of the same color as shown in equations 3.26, 

3.27, 3.28 and 3.29. Please refer figure 3.1 for the pixel pattern and their positions. 

 

�GE = �GE + (�GE{ − �GE{)																																																																																																												(3.24) 
�EG = �EG + (�EG{ − �EG{)																																																																																																												(3.25) 
 

Where, 

�GE{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	12,14,32,34																																																																																								(3.26) 

�GE{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	13, 22,24,33																																																																																							(3.27) 

�EG{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	21,23,41,34																																																																																						(3.28) 

�EG{ = ∑ ∑ μ)^�)^^ 	)
∑ ∑ μ)^^) , 4|�	22, 31,33,42																																																																																							(3.29) 

 

3.5 Graphical Analysis of the Proposed Algorithms 

We have analysed the improvement of our proposed algorithm over the algorithms explained 

in section 2.3. We have cropped two 9x9 block size regions from an image out of which one 

block belongs to the region of homogeneous intensity and second block belongs to a region 

where intensity is changing abruptly as we move across the region. The cropped regions are 

shown in figure 3.2. We have illustrated the errors that occurred during interpolation for both 

versions of the algorithm and compared those using graphs. These graphs illustrate the signal 

correlation existent between the original signal and the interpolated signal. The X-axis in the 
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graph indicates the pixel position and Y-axis in the graph indicates the intensity. There can be 

three types of correlation between two signals: 

• Positive Correlation 

• Non-Correlation 

• Negative Correlation 

Positive Correlation: The interpolated signal intensity increases or decreases with increase 

or decrease in the original signal intensity respectively.  

Non-Correlation: The interpolated signal has no correlation with the original signal. This 

means the interpolated signal intensity remains constant with the increase or decrease in 

original signal intensity.  

Negative Correlation: The interpolated signal intensity decreases with increase in original 

9signal intensity and increases with decrease in original signal intensity.  

 

Each graph shows values of 9 pixels for two algorithms and there are a total of 8 graphs, 4 

each for an algorithm in four directions i.e., horizontal, vertical, left diagonal and the right 

diagonal. Same graphs are plotted for the homogenous region of the image. The pixel located 

at position 5 is the centre pixel. The gap between the points on same pixel position in a graph 

shows the interpolation error. The larger will be the gap, the more will be the interpolation 

error. From the graphs it can be clearly seen that the proposed versions of the algorithms 

shows less interpolation errors that the conventional algorithms. Graphs shown in figure 3.3 

and figure 3.4 compare the bilinear interpolation with proposed edge strength based fuzzy 

bilinear interpolation algorithm explained in section 3.2.1. Figure 3.3 shows graphs for the 

homogenous region and figure 3.4 shows graphs for the edge region. Graphs shown in figure 
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3.5 and figure 3.6 compare the method explained in section 2.3.2 with proposed algorithm 

explained in section 3.2.1. Figure 3.5 shows graphs for the homogenous region and figure 3.6 

shows graphs for the edge region. 

 

 

Figure 3.2: Cropped regions from the original image. 

Uniform Region 

Edge Region 
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3.3: Bilinear Interpolation v/s Edge Strength based Fuzzified Bilinear Filter (Edge Region) 

with directions as labelled 
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3.4: Bilinear Interpolation v/s Edge Strength based Fuzzified Bilinear Filter (Homogenous 

9Intensity Region) with directions as labelled. 
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3.5: Non-Linear Filter based CFA Interpolation v/s Edge Strength based Fuzzified Non-

Linear CFA Interpolation (Edge Region) with directions as labelled. 
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3.6: Non-Linear Filter based CFA Interpolation v/s Edge Strength based Fuzzified Non-

Linear CFA Interpolation (Edge Region) with directions as labelled. 
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Chapter 4 

Experimental Results and Comparisons 

 

4.1 Environmental Setup 
 

The following system configuration has been used while conducting the experiments: 

Hardware configuration 

Processor:            AMD A10-4600M APU 

Clock Speed:                     2.3 GHz 

Main Memory:                   4 GB 

Hard Disk Capacity:                   1 TB 

Software Configuration 

Operating System:          Windows 8 

Software Used:          MATLAB 7.9.0 (2009b) 

 

We evaluate the performance of our proposed algorithm on five image datasets obtained from 

different domains namely, Nikon Microscopy Digital Images [49], Satellite Color Images 

[56], High Definition Color Images, Kodak Loss-Less True Color Images [57], Berkeley 

Segmentation Image Database [59]. The images are first synthetically sub-sampled in Bayer 

CFA pattern and then interpolated back to three channels using proposed algorithm. The 

details about each database with their experimental results are explained in further sections 

 

4.2 Comparison with other methods 

We have compared our algorithm with some of the algorithms in terms of objective measures 

and subjective quality measures. Objective measures are computed for each of the output 

images to determine the difference between the original image and the reconstructed image. 
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The following demosaicking methods are used for comparison, (a) Nearest Neighbour 

Replication, (b) Bilinear Interpolation, (c) Smooth Hue Transition Interpolation, (d) Pattern 

Matching Algorithm, (e) Edge Directed Interpolation, (f) Color Interpolation using Laplacian 

Second order color correction I, (g) Threshold based Variable Number of Gradients, (h) 

Gradient Corrected Linear Interpolation, (i) Edge Strength based CFA Interpolation, (j) Non-

Linear Filter based CFA interpolation. All these algorithms are implemented in MATLAB. 

The MATLAB code for algorithms (a), (c), (d), (f) and (g) are obtained from [48]. Our 

proposed algorithm (k) Edge Strength based Fuzzified Bilinear Interpolation and (l) Edge 

Strength based Non-Linear Filter based CFA interpolation shows much better results than 

many of the other algorithms in terms of subjective quality and objective measures. 

 

4.3 Evaluation Metrics 

These objective measures and the detailed results for each database is explained in following 

sections. 

 

4.3.1 Mean Squared Error (MSE) 

The mean squared error (MSE) of an estimator is one of the ways to quantify the difference between 

values implied by an estimator and the true values of the quantity being estimated. MSE is a risk 

function, corresponding to the expected value of the squared error loss or quadratic loss. MSE 

measures the mean of the squares of the "errors." The error is the amount by which the value 

implied by the estimator differs from the true value of the quantity to be estimated. The difference 

occurs because of randomness or because the estimator doesn't account for information that could 

produce a more accurate estimate.  
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If ��) is a dataset of n estimations, and �) is the dataset of the true values, then the (estimated) 

MSE of the estimator is:  

RNM = 1
"'#��) − �)$G																																																																																																																						(4.1)

�

)\�
 

4.3.2 Peak Signal-to-Noise Ratio (PSNR) 

Peak signal-to-noise ratio is an engineering term for the ratio between the maximum possible 

power of a signal and the power of corrupting noise that affects the fidelity of its 

representation. PSNR is usually expressed in terms of the logarithmic decibel scale because 

many signals have a very wide dynamic range. PSNR is most commonly used to measure the 

quality of reconstruction from sub-sample image data (e.g., for .image demosaicking). A 

higher PSNR generally indicates that the reconstruction is of higher quality.  

PSNR can be easily defined via the mean squared error (MSE). Given a loss-

less m×n monochrome image I with 255 as its maximum grey level, PSNR  is defined as: 

XNL� = 10. Ag� �255GRNM�																																																																																																																			(4.2) 

Where RNM is the mean squared error as explained in the above section. 

4.3.3 CPU Time 

CPU time (or CPU usage, process time) is the amount of time for which a central processing 

unit (CPU) was utilized for processing instructions of a computer program.The CPU time is 

often measured in clock ticks or seconds. We have computed the CPU time in seconds for the 

running program by using the standard MATLAB commands. 
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4.4 Experimental Results and Discussion 

 

4.4.1 Nikon Microscopy Digital Color Image suite 

The test set consists of 24 images with 700×504 pixel resolution as shown in figure 4.1. This 

image set is being used for the first time for testing the quality of color interpolation. This 

image set is obtained from [49]. There are many other sources [50]-[55] that provide these 

digital microscopy images. The interpolated images are compared to the original images and 

results are reported for all three performance measures. The MSE results are summarized in 

table 4.1, PSNR results are summarized in table 4.2 and the CPU time results are summarized 

in table 4.3. The best result for each image is highlighted with bold text. An image region 

which is cropped from the original image is presented in figure 4.2 for the visual quality 

comparison. This image region is compared with other algorithm in figure 4.3. 
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Figure 4.1: Nikon Digital Microscopy Test images: each image (700x504) is numbered in 

order of left-to- right and top-to-bottom, from 1 to 24.. 

 

The table 4.1 shows that average MSE over the set of images. The table shows that proposed 

fuzzy method (k) performs best on average in terms of MSE for all images. 
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Table 4.1: MSE Comparison (Nikon Digital Microscopy Images) 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

1. 7.32 5.05 7.83 10.43 4.63 9.34 11.90 5.33 6.49 6.40 4.63 6.02 

2. 8.56 5.27 8.47 14.81 4.78 14.38 20.05 6.39 8.06 7.36 4.81 7.49 

3. 3.27 1.76 4.60 4.16 1.62 5.97 7.72 2.19 2.75 2.35 1.61 2.43 

4. 2.35 1.24 2.41 6.28 1.15 6.30 7.59 1.36 1.79 1.77 1.17 1.70 

5. 5.55 4.42 5.44 8.57 4.05 8.78 9.65 4.79 5.28 5.04 4.04 4.97 

6. 8.30 5.32 7.65 12.31 4.97 11.02 13.51 6.00 7.42 7.22 4.89 6.70 

7. 6.35 4.01 7.81 3.88 3.81 5.02 8.58 3.76 4.70 4.09 3.65 3.73 

8. 5.44 3.70 7.26 5.22 3.49 6.78 11.35 4.31 4.88 4.37 3.43 4.51 

9. 6.77 4.41 8.99 5.71 4.05 7.35 11.90 4.92 5.90 5.26 3.98 5.07 

10. 5.66 3.75 7.16 11.38 3.42 10.72 13.14 3.62 4.69 4.46 3.40 4.28 

11. 3.54 2.20 4.05 6.55 1.97 5.88 7.50 2.08 2.74 2.57 1.94 2.48 

12. 7.06 4.62 9.46 5.64 4.19 6.75 10.27 5.15 5.96 5.49 4.19 5.32 

13. 7.06 4.62 9.46 5.64 4.19 6.75 10.27 5.15 5.96 5.49 4.19 5.32 

14. 5.94 3.74 7.28 18.17 3.39 17.34 17.98 3.67 4.91 4.89 3.44 4.81 

15. 6.22 4.14 7.62 15.02 3.77 13.71 15.79 4.02 5.02 4.87 3.80 4.88 

16. 7.55 4.70 11.52 6.68 4.33 8.74 12.67 5.34 6.39 5.78 4.30 5.60 

17. 7.77 5.27 5.47 14.01 4.85 12.29 14.98 7.21 8.08 7.56 4.88 7.86 

18. 5.14 3.36 5.27 9.83 3.05 8.17 11.31 3.50 4.58 4.88 3.10 4.45 

19. 7.74 5.18 11.40 11.15 4.69 8.35 12.78 5.87 6.84 6.27 4.68 6.67 

20. 4.29 3.17 5.92 8.76 2.87 8.32 10.04 3.66 4.29 4.13 2.92 3.99 

21. 5.47 3.98 6.26 10.03 3.63 9.58 10.70 4.82 5.39 5.27 3.69 5.11 

22. 5.33 2.53 12.94 7.73 2.36 11.33 14.20 3.66 5.12 4.44 2.31 4.02 

23. 2.19 1.07 2.26 2.54 1.00 5.15 7.22 1.18 1.53 1.32 1.00 1.21 

24. 3.18 1.59 3.21 3.33 1.49 5.62 7.66 1.66 2.16 1.88 1.46 1.67 

 

Table 4.2 reports the PSNR. The errors are reported for the same set of algorithms. These 

measures agree with the MSE comparison. The proposed fuzzy method (k) shows superior 

results to the other algorithms. 
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Table 4.2: PSNR Comparison (Nikon Digital Microscopy Images). 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

1. 40.18 40.00 40.32 39.87 42.04 39.70 38.97 41.63 41.01 41.29 42.06 41.37 

2. 39.92 40.64 40.32 39.85 42.79 38.17 36.78 41.22 40.41 40.92 42.81 40.77 

3. 43.16 44.17 42.61 42.90 46.39 40.47 39.59 44.91 44.00 44.78 46.47 44.60 

4. 45.11 47.08 46.92 44.05 49.32 41.02 40.02 47.86 46.89 47.20 49.42 47.44 

5. 41.09 40.50 41.21 40.39 42.58 39.52 39.25 41.87 41.46 41.75 42.59 41.76 

6. 39.55 39.72 40.10 39.21 41.68 39.01 38.53 41.11 40.37 40.69 41.79 40.91 

7. 40.49 40.56 39.36 42.33 42.55 42.24 41.29 42.51 41.63 42.13 42.63 42.47 

8. 41.03 41.35 40.58 41.97 43.27 40.30 38.80 42.19 41.72 42.27 43.44 42.04 

9. 39.89 40.09 39.12 40.80 42.15 39.67 38.28 41.23 40.45 40.98 42.24 41.14 

10. 41.95 41.96 42.26 42.18 44.15 41.13 41.25 43.92 43.11 43.53 44.21 43.57 

11. 44.08 44.00 44.26 44.34 46.38 43.21 43.19 46.31 45.30 45.91 46.48 45.95 

12. 39.89 40.05 39.26 41.19 42.19 40.36 39.17 41.38 40.79 41.24 42.20 41.29 

13. 39.89 40.05 39.26 41.19 42.19 40.36 39.17 41.38 40.79 41.24 42.20 41.29 

14. 43.98 44.59 43.94 42.25 46.86 39.65 40.49 45.89 45.42 45.64 46.77 45.36 

15. 42.67 43.21 42.82 41.46 45.47 39.47 39.21 44.99 44.62 45.00 45.40 44.66 

16. 39.65 40.04 38.85 40.67 42.06 39.25 38.40 41.32 40.61 41.08 42.11 41.22 

17. 40.45 40.92 42.69 40.11 42.79 39.54 38.22 39.80 39.41 39.86 42.97 39.54 

18. 43.14 43.58 44.02 42.78 45.81 42.14 40.87 44.63 43.84 43.99 45.82 44.15 

19. 41.78 41.94 41.56 41.45 44.13 40.70 39.26 42.60 42.20 42.64 44.12 42.32 

20. 43.79 44.20 44.33 43.21 46.53 40.25 39.58 44.24 43.78 44.06 46.48 44.13 

21. 42.61 43.08 43.62 42.27 45.22 39.26 38.85 42.85 42.48 42.73 45.23 42.79 

22. 40.98 42.31 39.24 40.35 44.42 37.82 36.97 42.69 41.26 41.91 44.52 42.42 

23. 44.94 45.85 45.02 44.87 48.15 41.95 40.88 47.47 46.37 46.95 48.17 47.34 

24. 43.43 44.26 43.34 43.31 46.47 41.19 40.33 45.98 44.92 45.45 46.52 45.94 

 

Table 4.3 shows the CPU time. The table shows that the (h) method is the fastest than all 

other algorithms. Since this method is implemented in MATLAB libraries, the method is 

supposed to be coded in optimal manner and is more close to the system platform. Since our 

proposed method is implemented at user level in a high level language and we have not 

performed any code optimizations, so the actual running time of the algorithm will be very 
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less. Our proposed fuzzy method is still faster than many of the other demosaicking 

algorithms as shown in table 4.3 and is also better than the method (h) in terms of MSE and 

PSNR as shown in table 4.2 and table 4.3. 

 

Table 4.3: CPU Time Comparison in seconds (Nikon Digital Microscopy Images) 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

1. 0.02 0.12 3.79 10.64 1.00 2.32 26.99 0.01 295.30 4.41 2.09 5.65 

2. 0.02 0.07 3.96 9.71 0.96 2.42 28.58 0.01 285.35 4.26 2.05 5.23 

3. 0.02 0.06 3.79 9.11 1.02 1.98 24.39 0.01 290.98 4.26 1.98 5.07 

4. 0.02 0.06 3.53 9.75 0.95 1.50 20.83 0.01 301.02 4.47 1.97 5.07 

5. 0.02 0.07 3.54 10.22 0.90 1.54 20.60 0.01 337.59 4.53 1.96 5.07 

6. 0.02 0.07 3.78 10.72 0.89 2.41 26.29 0.01 291.45 4.30 1.96 5.08 

7. 0.02 0.07 3.67 9.98 0.91 2.12 26.13 0.01 277.54 4.34 1.97 5.07 

8. 0.02 0.07 3.67 9.67 0.90 2.18 26.45 0.01 263.14 4.28 1.96 5.08 

9. 0.02 0.07 3.72 9.56 0.92 2.16 25.87 0.01 269.06 4.30 1.96 5.05 

10. 0.02 0.06 3.69 9.59 0.92 2.31 25.32 0.01 265.31 4.36 1.97 5.08 

11. 0.02 0.07 3.54 9.16 0.89 1.67 21.37 0.01 265.16 4.39 1.97 5.07 

12. 0.03 0.06 3.66 9.30 0.88 2.24 27.21 0.01 265.42 4.26 1.96 5.08 

13. 0.02 0.06 3.69 9.63 0.89 2.19 26.90 0.01 266.48 4.29 1.96 5.08 

14. 0.02 0.07 3.73 10.23 0.94 2.62 27.02 0.01 265.81 4.26 1.97 5.19 

15. 0.02 0.07 3.74 9.98 0.90 2.54 27.06 0.01 266.83 4.26 1.96 5.08 

16. 0.02 0.06 3.71 10.34 0.91 2.33 26.74 0.01 261.72 4.26 1.96 5.06 

17. 0.02 0.07 3.75 10.19 0.88 2.23 27.18 0.01 268.00 4.29 1.98 5.18 

18. 0.02 0.07 3.64 10.37 0.90 2.04 23.92 0.01 265.51 4.22 2.00 5.09 

19. 0.02 0.07 3.80 10.68 0.89 2.20 25.38 0.01 266.98 4.31 1.98 5.10 

20. 0.02 0.07 3.63 9.93 0.92 1.86 22.79 0.01 265.96 4.29 1.98 5.10 

21. 0.02 0.07 3.62 9.32 0.95 1.83 23.57 0.01 265.09 4.27 1.95 5.06 

22. 0.02 0.09 3.68 9.46 0.92 2.34 26.01 0.01 266.90 4.29 1.96 5.07 

23. 0.02 0.07 3.59 9.70 0.89 1.65 21.55 0.01 266.34 4.30 1.98 5.07 

24. 0.02 0.07 3.59 9.82 1.01 1.70 21.77 0.01 268.28 4.48 1.96 5.17 
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The numbers can only provide subset of the overall scenario. An important evaluation is the 

visual appearance of the output images. For this, an example image is presented. Figure 4.2 

shows an image for which a small region is cropped and zoomed. This example includes a 

perspective that increases spatial frequency along the region. Aliasing is a prominent artifact 

in this image. The proposed interpolation algorithm (k) reconstructs this image very best. 

Very little aliasing is present in the output image. This is good example to show how the 

algorithm responds to features at various orientations. The algorithm (k) and the interpolation 

algorithm (l) show very few of the aliasing artifacts present in the other output images. This 

shows that these algorithms are fairly robust to the orientation of various features.  

 

 

Figure 4.2: Cropped Region of the Original Image (Nikon Digital Microscopy Images). 
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Figure 4.3: Visual Comparison (Nikon Digital Microscopy Images). 
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4.4.2 Satellite Color Images 

The test set consists of 23 images with different pixel resolution (shown for each image in 

comparison table) as shown in figure 4.4. This image set has has been acquired from Landsat 

earth imaging [56]. The interpolated images are compared to the original images and results 

are reported for all three performance measures. The MSE results are summarized in table 

4.4, PSNR results are summarized in table 4.5 and the CPU time results are summarized in 

table 4.6. The best result for each image is highlighted with bold text. 

An image region which is cropped from the original image is presented in figure 4.5 for the 

original image visual quality comparison. This image region is compared with other 

algorithm in figure 4.6. 
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Figure 4.4: Satellite Color Images: each image is of different size and is numbered in order of 

left-to- right and top-to-bottom, from 1 to 23. 
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The table 4.4 shows that average MSE over the set of images. The table shows the method (j) 

performs best for 13 images and the proposed method (l) performs best on rest 10 images. 

However, the results of proposed algorithm are better than all other algorithms. 

 

Table 4.4: MSE Comparison (Satellite Color Images) 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l) 

1. 4.86 2.55 4.78 15.48 2.40 14.50 14.74 1.00 0.69 2.43 0.86 

2. 11.82 8.67 13.23 10.28 8.19 8.39 15.79 4.24 3.16 8.58 3.86 

3. 5.60 2.82 9.85 11.95 2.71 10.81 14.03 1.41 1.10 2.73 1.35 

4. 15.88 12.23 9.62 18.84 11.84 12.03 19.27 6.44 5.63 12.07 5.60 

5. 9.99 6.51 5.83 11.62 6.18 8.53 11.21 2.84 2.43 6.25 2.70 

6. 11.16 7.87 21.58 9.85 7.67 7.84 13.89 4.39 4.18 7.83 4.05 

7. 8.11 6.22 6.35 16.49 6.00 12.81 18.18 3.35 2.77 6.08 2.86 

8. 15.78 13.46 20.68 30.82 13.12 28.60 28.15 9.06 8.22 13.08 7.69 

9. 2.74 1.77 5.87 4.37 1.81 2.94 4.06 1.47 1.20 1.84 1.13 

10. 3.86 1.17 7.58 24.62 1.09 27.08 20.05 0.57 0.48 1.06 0.53 

11. 16.44 12.79 17.25 25.39 12.62 17.77 28.06 7.45 7.11 12.77 6.51 

12. 6.52 4.12 11.82 16.01 4.04 12.57 14.65 2.65 2.28 4.09 2.27 

13. 9.16 5.09 10.88 15.87 4.87 10.43 15.25 2.41 2.21 4.99 2.37 

14. 10.48 8.01 11.29 24.87 7.81 24.34 19.49 5.55 4.95 7.88 4.64 

15. 1.90 0.70 17.19 19.87 0.64 15.25 22.82 0.39 0.34 0.57 0.33 

16. 8.62 5.34 10.83 22.57 5.27 19.21 20.33 3.69 3.92 5.35 3.51 

17. 4.14 1.54 32.41 23.30 1.39 31.45 26.75 0.55 0.58 1.40 0.46 

18. 7.41 5.94 10.30 12.88 5.76 10.53 16.75 4.06 3.43 5.87 3.45 

19. 15.15 12.36 8.30 24.65 11.94 21.48 22.31 7.28 5.81 12.30 6.23 

20. 11.44 7.26 7.69 25.29 7.00 24.59 21.41 4.19 3.82 7.19 4.13 

21. 15.16 11.62 13.76 18.34 11.32 16.12 18.51 6.50 6.00 11.37 6.09 

22. 7.95 5.54 8.19 21.12 5.40 23.15 20.88 3.58 3.34 5.49 2.99 

23. 13.82 9.57 12.69 20.18 9.22 20.96 18.80 4.86 4.66 9.20 4.67 
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Table 4.5 reports the PSNR. The errors are reported for the same set of algorithms. These 

measures agree with the MSE comparison. The method (j) and proposed algorithm (l) shows 

superior results to the other algorithms. Although the proposed method does not have the 

higher PSNR average for all images, its results are comparable to the latest demosaicking 

methods for the most part and it outperforms all other methods on a number of images. 

 

Table 4.5: PSNR Comparison (Satellite Color Images). 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l) 

1. 41.33 44.29 42.51 38.66 44.82 36.54 36.45 48.35 49.75 44.53 49.18 

2. 37.61 38.89 37.53 38.42 39.32 38.89 37.57 42.06 43.18 38.95 42.57 

3. 40.79 43.87 41.56 39.32 44.25 37.84 36.72 46.89 47.88 44.06 47.24 

4. 36.22 37.39 38.33 35.90 37.62 37.37 35.44 40.27 40.67 37.46 40.93 

5. 38.25 40.16 40.67 38.31 40.59 38.86 37.72 43.81 44.35 40.37 44.26 

6. 37.72 39.32 36.09 38.55 39.51 39.20 37.67 41.91 41.98 39.36 42.39 

7. 39.14 40.34 41.96 37.24 40.58 37.09 36.01 43.11 43.75 40.45 43.82 

8. 36.24 36.95 35.83 34.18 37.12 33.64 33.69 38.73 39.04 37.09 39.40 

9. 43.87 45.88 41.98 42.56 45.75 43.54 42.07 46.75 47.55 45.72 47.97 

10. 42.38 47.81 42.46 38.46 48.47 33.91 35.65 50.85 51.60 48.32 51.61 

11. 36.07 37.20 36.98 34.82 37.29 35.70 33.82 39.62 39.68 37.22 40.25 

12. 40.08 42.22 38.78 38.28 42.41 37.40 36.99 44.17 44.69 42.28 44.92 

13. 38.61 41.27 38.73 37.62 41.62 38.01 36.34 44.63 44.97 41.39 44.81 

14. 38.04 39.23 38.23 35.51 39.39 34.33 35.49 40.85 41.24 39.30 41.62 

15. 45.61 49.94 40.99 40.28 50.91 36.63 34.72 52.51 53.37 51.02 53.49 

16. 38.87 41.03 38.62 36.72 41.14 36.86 36.61 42.71 42.46 41.03 42.99 

17. 41.99 46.59 37.28 40.37 47.90 34.93 36.83 51.04 50.65 47.16 52.39 

18. 39.55 40.55 38.77 38.12 40.74 38.01 36.21 42.24 42.83 40.61 42.99 

19. 36.47 37.34 39.01 35.03 37.59 34.83 34.75 39.73 40.52 37.37 40.41 

20. 37.67 39.70 40.47 36.00 40.00 35.10 36.10 42.24 42.63 39.77 42.38 

21. 36.42 37.61 37.27 36.04 37.79 36.06 35.78 40.16 40.40 37.72 40.50 

22. 39.20 40.84 39.51 36.48 41.01 34.52 35.22 42.75 42.94 40.89 43.55 

23. 36.81 38.48 37.66 36.02 38.74 34.96 35.92 41.46 41.55 38.67 41.80 
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Table 4.6 shows the CPU time. The table shows that the method (h) is the fastest than all 

other algorithms, the reason being the same as explained for Nikon Digital Microscopy 

Images. However, our proposed algorithms is still faster than many of the other demosaicking 

algorithms as shown in table 4.6. 

 

Table 4.6: CPU Time Comparison in seconds (Satellite Color Images). 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l) 

1. 0.22 0.98 40.34 120.04 8.94 26.74 275.69 0.12 36.69 30.78 49.94 

2. 0.09 0.56 19.79 71.63 5.28 13.42 157.63 0.07 24.99 17.84 29.96 

3. 0.07 0.40 13.97 50.04 3.77 10.34 110.69 0.05 17.50 12.65 21.34 

4. 0.04 0.20 7.42 25.94 1.91 5.26 58.04 0.03 8.86 6.52 11.05 

5. 0.02 0.14 4.95 17.79 1.30 3.23 36.77 0.02 5.67 4.21 7.21 

6. 0.06 0.38 13.12 47.28 3.38 8.42 99.95 0.05 15.52 11.40 19.75 

7. 0.08 0.43 14.97 52.04 3.99 11.52 116.86 0.05 17.66 13.49 21.95 

8. 0.03 0.21 7.34 24.64 1.88 7.53 61.09 0.03 8.06 6.26 10.57 

9. 0.10 0.58 20.85 72.83 8.19 11.12 144.13 0.07 23.78 18.08 30.39 

10. 0.09 0.53 19.36 68.29 7.85 18.96 157.84 0.07 22.75 17.29 29.41 

11. 0.05 0.36 11.18 40.87 4.41 9.47 93.96 0.04 12.83 9.87 16.32 

12. 0.12 0.67 23.31 89.79 9.39 17.66 186.39 0.08 27.66 21.48 33.95 

13. 0.06 0.34 12.37 44.92 4.84 9.11 97.87 0.04 14.73 10.89 17.61 

14. 0.07 0.45 15.59 56.82 6.10 14.54 139.45 0.06 18.64 13.59 22.23 

15. 0.04 0.25 8.43 30.00 3.32 6.81 70.96 0.03 10.23 7.32 12.04 

16. 0.11 0.55 19.09 67.09 7.58 15.63 164.46 0.07 23.11 17.19 27.56 

17. 0.06 0.32 11.26 40.52 4.31 12.31 96.60 0.04 13.34 10.24 15.70 

18. 0.06 0.35 11.96 44.59 4.60 7.79 90.95 0.07 15.28 12.06 17.86 

19. 0.19 0.88 32.86 125.17 12.99 29.20 296.63 0.12 43.15 31.89 49.88 

20. 0.11 0.60 22.04 77.61 8.47 19.11 198.44 0.08 28.38 21.01 32.14 

21. 0.03 0.17 5.86 19.61 2.28 4.65 51.22 0.02 6.53 5.36 8.12 

22. 0.10 0.60 23.17 77.17 8.94 20.27 199.77 0.09 25.35 21.06 32.35 

23. 0.04 0.23 8.48 27.77 3.18 7.34 75.30 0.03 9.65 7.74 11.96 
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Now we will evaluate the visual appearance of the output images. For this, an image 7 is 

presented for which a small region is cropped and zoomed as shown in figure 4.5. This image 

includes a “island” from a perspective that increases spatial frequency along the region. 

Aliasing is a prominent artifect in this image. The proposed interpolation algorithm (l) 

reconstructs this image very best. Very little aliasing is present in the output image. This is 

good example to show how the algorithm respond to features at various orientations. The (l) 

algorithm and the (j) interpolation algorithm show very few of the aliasing artifacts present in 

the other output images. This shows that these algorithms are fairly robust to the orientation 

of various features. 

 

 

Figure 4.5: Cropped Region of the Original Image (Satellite Images). 
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Figure 4.6: Zoomed Images for Visual Comparison (Satellite Color Images) 
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4.4.3 High Definition Color Images 

The test set consists of 5 images with different pixel resolution (shown for each image in 

comparison table) as shown in figure 4.7. This image set contains random images that have 

been taken from internet. These images are captured using a high quality digital camera 

because resolution of these images is higher than a standard size image. The interpolated 

images are compared to the original images and results are reported for all three performance 

measures. The MSE results are summarized in table 4.7, PSNR results are summarized in 

table 4.8 and the CPU time results are summarized in table 4.9. The best result for each image 

is highlighted with bold text. 

An image region which is cropped from the original image is presented in figure 4.8 for the 

visual quality comparison. This image region is compared with other algorithm in figure 4.9. 

 

Figure 4.7: High Definition Color images: each image is of different size and is numbered in 
order of left-to- right and top-to-bottom, from 1 to 5. 

 

The table 4.7 shows that average MSE over the set of images. The table shows the proposed 

method (l) performs best on average in terms of MSE except of one image i.e. 1 in which 

method (j) performs best. 
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Table 4.7: MSE Comparison (HD Color Images) 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l) 

1. 1.47 0.63 11.61 10.37 0.57 11.93 15.71 0.40 0.28 0.57 0.32 

2. 1.15 0.58 3.17 6.58 0.57 3.43 6.58 0.78 0.96 0.52 0.77 

3. 9.10 6.17 9.53 22.43 5.97 22.00 19.00 3.98 3.95 5.89 3.65 

4. 16.97 13.62 9.93 24.39 13.35 21.81 18.75 8.07 7.43 13.26 6.59 

5. 1.09 0.64 9.19 3.74 0.61 7.05 9.37 0.53 0.49 0.61 0.44 

 

Table 4.8 reports the PSNR. The errors are reported for the same set of algorithms. These 

measures agree with the MSE comparison. The proposed method (l) and method (j) shows 

superior results to the other algorithms.  

 

Table 4.8: PSNR Comparison (HD Color Images). 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l) 

1. 46.69 50.35 41.45 43.20 51.13 39.06 40.10 52.31 54.02 50.92 53.56 

2. 48.02 51.60 46.48 47.31 51.96 49.56 45.17 49.60 49.36 51.93 50.00 

3. 38.66 40.38 38.87 36.28 40.62 35.04 35.75 42.38 42.34 40.61 42.79 

4. 35.92 36.91 38.27 34.90 37.04 34.81 35.41 39.23 39.46 37.04 40.09 

5. 47.81 50.28 42.38 46.68 50.59 42.23 42.11 51.17 51.50 50.54 52.05 

 

Table 4.9 shows the CPU time. The table shows that the (h) method is the fastest than all 

other algorithms, the reason being same as explained in previous sections. Our proposed 

algorithms is still faster than many of the other demosaicking algorithms as shown in table 

4.9. 
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Table 4.9: CPU Time Comparison in seconds (HD Color Images). 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l) 

1. 0.23 0.77 43.18 124.77 12.48 34.29 351.95 0.22 58.12 26.82 65.73 

2. 0.07 0.17 8.25 24.53 2.29 4.67 64.24 0.03 10.32 5.36 12.59 

3. 0.03 0.04 1.97 5.46 0.52 1.78 17.53 0.01 2.41 1.12 2.91 

4. 0.02 0.03 1.69 4.60 0.43 1.47 14.67 0.00 1.93 0.94 2.46 

5. 0.09 0.40 18.38 52.61 5.13 13.36 145.94 0.05 23.25 11.21 29.70 

 

Now we will evaluate the visual appearance of the output images. For this, an example image 

is presented. Figure 4.8 shows that “fruits” image out of which a region is cropped and 

zoomed to evaluate visual quality of interpolation algorithm. This cropped region includes a 

frequency transition from a perspective that increases spatial frequency along the region. 

Aliasing is a prominent artifect in this image. The proposed interpolation algorithm (l) 

reconstructs this image very best. Very little aliasing is present in the output image. The 

algorithm (l) and the (j) interpolation algorithm show very few of the aliasing artifacts present 

in the other output images. This shows that these algorithms are fairly robust to the 

orientation of various features.  

 

 

Figure 4.8: Cropped Region of the Original Image (HD Color Images). 
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Figure 4.9: Zoomed Images for Visual Comparison (HD Color Images) 
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4.4.4 Kodak Loss-Less Color Image suite 

The test set consists of 24 images with 512x712 pixel resolution as shown in figure 4.10. This 

image set is released by Kodak [57] used for comparing the quality of color interpolation in 

recent survey paper [58]. The interpolated images are compared to the original images and 

results are reported for all three performance measures. The MSE results are summarized in 

table 4.10, PSNR results are summarized in table 4.11 and the CPU time results are 

summarized in table 4.12. The best result for each image is highlighted with bold text. 

An image region which is cropped from the original image is presented in figure 4.11 for the 

original image visual quality comparison. This image region is compared with other 

algorithm in figure 4.12. 
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Figure 4.10: Test images: each image (768x512) is numbered in order of left-to- right and 

top-to-bottom, from 1 to 24. 

 

The table 4.10 shows that average MSE over the set of images. The table shows the  method 

(j) performs best on average in terms of MSE except of three images in which proposed 

method (l) performs best. However our proposed algorithm (l) is superior than all other 

algorithms except (j). 
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Table 4.10: MSE Comparison (Kodak Loss-Less True Color Images) 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

1. 12.09 10.86 6.41 20.86 8.99 15.84 21.69 5.49 4.52 3.33 9.37 4.25 

2. 4.89 3.73 10.34 19.26 3.03 17.28 16.82 1.74 1.68 1.42 3.11 1.48 

3. 3.80 2.96 10.40 15.18 2.26 11.80 18.19 1.21 1.03 0.95 2.27 0.95 

4. 5.49 3.53 14.23 19.04 3.12 13.95 19.35 1.66 1.51 1.33 3.18 1.40 

5. 10.61 8.79 10.39 14.14 7.06 9.55 12.72 3.85 2.94 2.52 7.28 3.10 

6. 9.38 7.85 3.98 22.67 6.28 22.39 21.10 4.03 3.20 2.46 6.73 3.31 

7. 5.18 3.36 6.27 16.73 2.38 12.69 21.32 1.29 1.01 0.79 2.35 1.00 

8. 11.72 11.67 13.08 23.54 8.96 20.96 20.52 7.21 5.87 3.51 9.74 5.99 

9. 4.73 3.42 3.15 25.26 2.90 22.58 27.83 1.86 1.42 0.91 3.00 1.43 

10. 4.64 3.24 2.16 21.36 2.82 16.54 25.05 1.67 1.31 0.90 2.89 1.29 

11. 7.34 5.92 4.98 13.85 4.76 7.87 18.04 2.87 2.49 1.98 5.00 2.34 

12. 4.50 3.52 2.07 31.92 2.65 37.16 24.42 1.60 1.21 0.98 2.71 1.19 

13. 14.44 12.04 9.48 20.33 10.89 15.78 18.69 6.96 5.84 5.80 11.12 5.53 

14. 9.06 6.82 8.80 15.22 5.47 12.06 15.56 2.94 2.58 2.21 5.67 2.48 

15. 4.56 3.75 6.91 18.61 2.96 20.23 13.98 1.92 1.82 1.29 2.99 1.59 

16. 6.55 5.08 3.23 16.28 3.97 12.13 19.53 2.31 1.96 1.14 4.23 1.92 

17. 5.14 3.43 4.72 11.85 3.04 8.31 12.60 1.75 1.30 1.08 3.03 1.30 

18. 9.36 6.38 9.46 10.14 5.99 6.29 8.84 3.56 2.88 2.88 6.15 2.87 

19. 7.37 6.27 10.81 19.72 5.25 15.41 22.42 3.61 2.85 1.84 5.61 2.85 

20. 4.36 3.71 4.89 28.95 2.92 34.99 24.82 1.87 2.77 1.23 2.96 1.44 

21. 7.33 6.21 11.01 23.46 5.13 19.44 23.73 3.16 2.64 2.25 5.29 2.50 

22. 6.74 5.18 7.69 19.34 4.19 16.03 20.98 2.43 2.12 1.85 4.32 2.01 

23. 2.77 2.15 8.87 14.88 1.54 14.96 16.91 0.92 0.76 0.61 1.49 0.80 

24. 7.88 6.95 6.56 17.12 5.81 12.84 18.33 3.54 3.32 2.73 5.93 2.94 

 

Table 4.11 reports the PSNR. The errors are reported for the same set of algorithms. These 

measures agree with the MSE comparison. The method (j) and proposed algorithm (l) shows 

superior results to the other algorithms. Although the proposed method does not have the 
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higher PSNR average, its results are comparable to the latest demosaicking methods for the 

most part and it outperforms all other methods on a number of images. 

 

Table 4.11: PSNR Comparison (Kodak Loss-Less True Color Images). 

Image 

Number 
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 

1. 37.38 37.95 41.82 36.15 38.95 36.25 35.19 41.03 41.58 42.95 38.57 42.11 

2. 41.43 42.66 39.58 39.70 43.84 40.23 41.77 46.05 45.88 47.08 43.47 46.75 

3. 42.42 43.63 39.69 39.01 45.08 37.76 35.90 47.60 48.02 48.48 44.77 48.48 

4. 40.89 42.92 38.83 37.85 43.57 37.12 35.86 46.08 46.33 46.98 43.30 46.89 

5. 37.98 38.86 38.63 37.53 40.00 38.39 37.38 42.53 43.44 44.19 39.65 43.47 

6. 38.44 39.37 44.04 36.30 40.62 34.67 35.38 42.38 43.08 44.28 40.00 43.29 

7. 41.04 43.13 41.06 38.76 45.02 37.51 35.38 47.29 48.09 49.24 44.65 48.39 

8. 37.58 37.62 37.35 35.86 39.14 34.96 35.06 39.79 40.44 42.76 38.37 40.60 

9. 41.47 43.03 43.38 37.17 44.10 34.61 33.72 45.71 46.60 48.62 43.54 46.94 

10. 41.56 43.28 44.99 37.64 44.17 35.96 34.27 46.17 46.95 48.66 43.74 47.38 

11. 39.55 40.62 42.00 38.23 41.86 39.19 35.74 43.85 44.17 45.28 41.35 44.77 

12. 41.65 42.95 45.71 36.85 44.65 32.52 34.70 46.42 47.30 48.32 44.07 47.76 

13. 36.62 37.46 38.58 35.72 37.95 36.18 35.74 39.91 40.46 40.53 37.80 40.88 

14. 38.64 40.01 39.21 37.71 41.17 37.56 36.72 43.72 44.01 44.83 40.79 44.47 

15. 41.74 42.59 41.17 37.86 43.81 35.20 36.84 45.53 45.53 47.22 43.56 46.37 

16. 40.00 41.30 43.08 38.03 42.74 37.33 35.35 44.84 45.21 47.62 42.07 45.70 

17. 41.13 42.99 43.43 39.08 43.70 38.95 37.24 45.91 47.00 47.85 43.48 47.31 

18. 38.52 40.27 38.91 38.80 40.60 40.30 39.40 42.82 43.54 43.59 40.39 43.77 

19. 39.59 40.34 38.78 36.97 41.39 36.33 34.76 42.78 43.58 45.55 40.76 43.78 

20. 41.89 42.64 42.67 36.60 43.89 32.76 34.35 45.68 43.70 47.33 43.60 46.86 

21. 39.56 40.37 38.48 36.39 41.35 35.35 34.45 43.39 43.91 44.67 41.05 44.42 

22. 39.98 41.19 40.13 37.25 42.25 36.12 35.18 44.53 44.87 45.56 41.96 45.40 

23. 43.92 45.03 40.56 39.70 46.79 36.60 36.30 48.75 49.32 50.51 46.62 49.36 

24. 39.31 39.90 41.94 37.25 40.80 37.07 35.71 42.89 42.91 43.84 40.56 43.72 
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Table 4.12 shows the CPU time. The table shows that the method (h) is the fastest than all 

other algorithms, the reason being same as explained in previous sections. Our proposed 

algorithms is still faster than many of the other demosaicking algorithms as shown in table 

4.12. 

 

Table 4.12: CPU Time Comparison in seconds (Kodak Loss-Less True Color Images). 

S.No. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

1. 0.04 0.12 4.59 11.15 1.58 4.61 47.77 0.17 319.18 6.95 3.50 8.94 

2. 0.04 0.13 4.54 11.27 1.65 3.83 45.94 0.02 316.10 6.95 3.36 8.77 

3. 0.04 0.12 4.98 11.21 1.62 4.26 43.87 0.01 348.52 7.01 3.34 8.76 

4. 0.04 0.12 5.20 10.97 1.66 4.15 45.67 0.01 340.19 7.20 3.34 8.72 

5. 0.04 0.12 4.56 10.64 1.55 3.61 44.93 0.01 388.67 7.28 3.34 8.74 

6. 0.04 0.17 4.72 10.42 1.56 5.16 47.97 0.01 4720.38 6.97 3.34 8.73 

7. 0.04 0.14 4.55 11.30 1.75 4.71 46.13 0.01 342.99 7.28 3.35 8.75 

8. 0.04 0.13 4.76 10.79 1.64 4.57 52.63 0.02 339.32 6.80 3.37 8.73 

9. 0.04 0.13 4.79 10.67 1.54 5.81 50.04 0.01 368.97 6.98 3.82 8.73 

10. 0.04 0.13 5.06 10.63 1.56 4.94 48.24 0.01 3731.79 7.23 3.34 8.75 

11. 0.04 0.11 4.77 10.43 1.65 3.73 44.90 0.01 390.18 7.08 3.37 8.73 

12. 0.04 0.12 4.84 10.49 1.62 6.62 50.38 0.02 3106.09 6.91 3.35 8.72 

13. 0.05 0.13 4.40 10.46 1.55 4.10 46.91 0.01 390.23 6.84 3.37 8.73 

14. 0.04 0.12 4.35 10.34 1.56 4.04 46.70 0.02 517.56 6.78 3.38 8.73 

15. 0.04 0.14 4.33 10.64 1.61 4.49 44.35 0.01 476.25 6.94 3.42 8.74 

16. 0.05 0.12 4.37 10.66 1.59 4.09 48.11 0.01 488.63 6.79 3.42 8.74 

17. 0.04 0.12 4.53 10.10 1.56 3.74 44.21 0.01 494.59 6.78 3.43 8.73 

18. 0.03 0.15 4.53 10.24 1.54 3.30 48.35 0.01 517.31 6.77 3.37 8.73 

19. 0.03 0.12 4.54 10.13 1.55 4.34 50.47 0.02 437.75 6.86 3.36 8.92 

20. 0.03 0.12 4.44 9.92 1.59 4.64 42.73 0.02 451.81 6.92 3.41 8.73 

21. 0.04 0.12 4.37 10.33 1.60 4.49 53.77 0.02 418.04 6.80 3.41 8.95 

22. 0.03 0.13 4.45 10.30 1.61 4.32 57.12 0.02 399.83 6.86 3.45 8.76 

23. 0.03 0.15 4.41 10.37 1.83 4.25 54.34 0.02 413.73 6.93 3.40 8.85 

24. 0.04 0.12 4.34 10.37 1.84 4.02 55.98 0.01 389.89 7.06 3.41 8.79 
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An important evaluation is the visual appearance of the output images. For this, an example 

image is presented. Figure 4.11 shows the “hills” image. This example includes a “zebra kind 

of pattern” from a perspective that increases spatial frequency along the region. Aliasing is a 

prominent artifect in this image. The (j) interpolation algorithm reconstructs this image very 

best. Very little aliasing is present in the output image. The image contains various lines at 

vaious angles across the image. This is good example to show how the algorithm respond to 

features at various orientations. The proposed algorithm (k) and (l) show very few of the 

aliasing artifacts present in the other output images. This shows that these algorithms are 

fairly robust to the orientation of various features.  

 

 

Figure 4.11: Cropped Region of the Original Image (Kodak Loss-Less True Color Images). 



 

71 

 

 

Figure 4.12: Zoomed Images for Visual Comparison (Kodak Loss-Less True Color Images) 
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4.4.5 Berkeley Image database 

The test set consists of 100 images with 481x321 pixel resolution as shown in figure 4.13. 

This image set has been used for segmentation purposes [60]-[62]. This image database has 

been acquired from [59]. The interpolated images are compared to the original images and 

results are reported for all three performance measures. The MSE results are compared with 

other algorithms using a histogram. The X-axis of the histogram indicates the image number 

and Y-axis of the histogram shows the MSE value for the corresponding image. This is 

shown in figure 4.14. Similarly, PSNR results are shown in figure 4.15 and the CPU time 

results are shown in figure 4.16. The results for the proposed algorithms are highlighted with 

bold lines. 

An image region which is cropped from the original image is presented in figure 4.17 for the 

original image visual quality comparison. This image region is compared with other 

algorithm in figure 4.18. 
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Figure 4.13: Berkeley Test images: each image (481x321) is numbered in order of left-to- 

right and top-to-bottom, from 1 to 100. 
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The histogram in figure 4.14 shows that average MSE over the set of images. The results of 

the proposed method are highlighted using bold lines. This histogram shows the proposed (l) 

method performs best on average in terms of MSE except of some of the images in which 

method (j) performs best. 

 

Figure 4.14: MSE Comparison (Berkeley Color Test Images) 

 

Figure 4.15 shows the histogram for the PSNR comparison. The errors are reported for the 

same set of algorithms. These measures agree with the MSE comparison. The proposed 

method (l) and method (j) shows superior results to the other algorithms.  
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Figure 4.15: PSNR Comparison (Berkeley Color Test Images) 

 

Figure 4.16: CPU Time Comparison (Berkeley Color Test Images) 
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Figure 4.16 shows the CPU time. The histogram shows that the method (h) is the fastest than 

all other algorithms, the reason being as explained in previous sections. Our proposed 

algorithms is still faster than many of the other demosaicking algorithms as shown in figure 

4.16. 

 

The numbers can only provide subset of the overall scenario. An important evaluation is the 

visual appearance of the output images. For this, an example image is presented. Figure 4.17 

shows the image 29. This example includes a “building” from a perspective that increases 

spatial frequency along the region. Aliasing is a prominent artifect in this image. The 

proposed interpolation algorithm (l) reconstructs this image very best. Very little aliasing is 

present in the output image. This is good example to show how the algorithm respond to 

features at various orientations. 

 

Figure 4.18: Cropped Region of the Original Image (Berkeley Color Test Images). 
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Figure 4.19: Zoomed Images for Visual Comparison (Berkeley Color Test Images) 
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Chapter 5 

Conclusion and Future Directions 

In this paper, we have presented a new color interpolation approach for Bayer pattern mosaic 

images. The proposed algorithm utilizes edge strength for the fuzzy membership assignment 

as a weighting factor for estimating the missing colors in each pixel. This algorithm 

significantly improves the overall visual quality of the interpolated color images. The 

experimental results prove that the algorithm preserves colors on the edges with minimal or 

no visual artifacts. We have also presented the objective quality metrics in terms of MSE and 

PSNR to show the performance of the algorithm with five images sets for color interpolation 

and we observe that PSNR is one of the highest among all comparison methods especially for 

the proposed fuzzy non-linear method. The CPU time of the proposed algorithm is also faster 

than those of many methods especially in the case of fuzzy bilinear interpolation, as only 

simple fuzzy weighted averaging is carried out for color interpolation. 

Digital imaging devices such as digital cameras will continue to employ only a single 

electronic sensor for color interpolation due to the cost and packaging consideration. 

However demosaicking is still an important problem into research and has explored the 

imaging process and the correlation among three color planes. Artifact reduction is another 

research problem in color image interpolation. Temporal correlation in addition to spectral 

correlation should be exploited. For real time imaging system such as digital cameras, 

processing time is an important measure for algorithm implementation because a 

photographer may need to take pictures at a fast rate. Single-lens-reflex (SLR) cameras 

provide access to the raw image data which can later be processed on a digital computer. 

Here the processing time is not an issue. Therefore high performance algorithms that are 

computationally complex can still be implemented for off-line processing applications. 
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