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Abstract

Most digital camera use only a single photo senserlaid with a color filter array (CFA) to
capture image data. This allows only one of thelireq color samples to be available at each
pixel location and other two color components néedoe interpolated. This process of
reconstructing the full color image from the incdetp color components at each pixel
output from the image sensor is known as demosajc&r color filter array interpolation.
Over the past years, many demosaicking algorithinge hbeen introduced in order to
optimize the subjective and objective interpolatiprality, it becomes difficult to implement
them in digital cameras due to their limited conmpgitcapacity, available processing time,
and hardware size. An edge strength based fuzzdficaof demosaicking algorithms is
proposed in this thesis in which edge strengthrimédion from the raw image data is
fuzzified and effectively utilized to improve thetérpolation quality of current demosaicking
algorithms. We have used five image datasets inujuthe kodak lossless true color image
suit to test our approach over three performancasores, MSE, PSNR and computation
complexity. Experimental results confirm the effeebhess of our approach when compared

to other algorithms.

Keywords:Color Filter Array(CFA) Interpolation, DemosaickinGolor Correlation, Digital

Cameras, Fuzzy Membership, Edge Strength Filter.
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Chapter 1

Introduction

1.1 Defining Demosaicking and its Need

A digital image is composed of red (R), green (&) &lue (B) color samples at each pixel
position. In order to construct a true color imaggigital camera would require three separate
photo sensors, each responsible for capturing eslormation lying in the wavelength range
of red, blue and green color respectively. In @ehchip digital camera, light entering the
camera is split and projected onto each color sefdtese sensors have to be registered
precisely because outputs from these three seasersoncatenated to construct a true color
image. These additional requirements and the dogtree different color sensors make the
system costly. Thus, most digital camera use ordingle sensor covered with a color filter
array (CFA) which allows only one color to be meaasuat each pixel. This means the other
two color values must be estimated at each pixkeis process of estimation is known as

demosaicking or color filter array interpolation.

1.2Bayer CFA

Although many different CFA pattern have been psgab The most common CFA pattern is
Bayer CFA [1] which is 50% Green, 25% Red and 25MeBas shown in figure 1.1. The
Green color is sampled at a rate twice that of Bla@ Green color because the human visual
system is more sensitive in the medium wavelengitisesponding to the green color. Other
patterns are also used, e.g., the Nikon Coolpix @85 a cyan, magenta, yellow and green
(CMYG) grid where each of the colors is samplethatsame rate.

1



Figure 1.1: Bayer CFA

1.3 Motivation

The output from color filter array is the incom@etolor samples (raw image data) which
need to be processed using a demosaicking algotdhoconstruct the complete color image.
Demosaicking method makes exploits the color catia@h between pixels within an image to
estimate the missing color component. Spatial tattom is defined as the tandency of pixels
to assume similar color values within a small hoerays region of an image and spectral
correlation is thedependency between the pixel values of differefdrcplanes in a small
image region. The basic assumption is that colitw @& color difference is constant within a
small homogenous region. This assumption tends aib dcross edges, hence many
demosaicking algorithms utilize the edge informatiadaptively. A good demosaicking

algorithm should have the following traits.

Avoidance of introduction of false color artifactsich as chromatic aliases, zippering
(abrupt unnatural changes of intensity over a nurabaeighbouring pixels).

* Maximum preservation of image resolution.

* Low computational complexity for fast processing.

* Amenability to analysis for accurate noise reductio



1.4 Demosaicking: A literature survey

Demosaicking is a major step in image processingjgifal cameras and has been an area of
research in both academics and industry. A largeban of demosaicking approaches have
been proposed in past years. Some methods empipjesnumerical formulas [2] such as
nearest neighbour, median filtering [64], bilineand bicubic interpolation. Bicubic
interpolation requires high order computation [Blart bilinear but can product high-
frequency components of images. A large circuié s&zrequired for high-order computation
which is not feasible for a small size digital inrag device. Therefore a small circuit is
employed in DSC [4]-[6] so that low-order computatican be performed with a technique to
improve the interpolation accuracy by using an ewptial calculation [4]-[7]. These
spatially invariant interpolation methods treat arochannels separately and interpolate
missing pixels in each channel. This approach werk&l in uniform areas but it produces

color artifacts in areas with textures and edges.

In order to obtain better demosaicking performarocerelation between color channels is
exploited. Constant color difference rule or consi@olor ratio rule [7], [8], [9], [10], [66],
[71] exploits the spectral correlation which assarntigat color ratio or color difference is
constant in a homogenous region. This assumptida #&&ross edges, therefore many
demosaicking algorithms use the edge informatioaptadely during color interpolation.
Apart from this some methods perform statisticaklgsis of images, for example
multivariate analysis, Bayesian estimation, leagnioy training sample etc. [11]-[14].
Applications of the pattern matching [15] have at®®n employed. Green channel suffers
less from aliasing because in Bayer CFA patteremhannel samples are twice that of red
and blue ones. Therefore green channel is therggrbint of the CFA interpolation process.
Glotzbach et al. in [16], focuses on improving egdl blue channel by adding into them the

high frequency components obtained from green adlar@®@unturk et al. in [17] used on

3



alternating projections scheme based on inter-aacolor correlation in high frequency
subbands to improve the red and blue channels ssigedy. Many observations regarding
color channel frequencies made in a method [18]saiggjest that instead of filtering the CFA
image as individual color channels, it should terfed as a whole preserve high frequency
information. The method uses a fixed 5x5 filter finreen channel interpolation and an
adaptive filter for blue and red channel interpolat The fully interpolated green channel is

then used to interpolate the chrominance informatio

Various edge direction based decision rules fogtieen channel interpolation [9], [10], [19],
[20], [62], [65], [69] has been proposed early. Thethod in [9] uses derivatives of red and
blue samples in initial green channel interpolatiém approach using variance of color
differences as a decision rule is been proposeauliyors of [21]. Zhang et al. [22], tried to
improve the interpolation performance of the orajimethod [9] by making a soft decision.
In this method, color differences along horizoraatl vertical directions are treated as noise
and they are combined in optimal manner using itteat minimum mean square estimation
(LMMSE) framework. This approach is further impradviey Paliy et al. [23] by introducing
scale adaptive filtering based on linear polynormé&rpolation (LPA). Hirakawa et al. [24]
proposed performing interpolation in both horizéraad vertical directions by comparing
local homogeneity of horizontal and vertical int@giion resuls and Menon et al. [25] used

color gradients over a local window to make thection decision.

A subset of methods involves image restorationrtiegles [66]. Techniques such as pseudo-
inverse filter [26], a super resolution techniqug/]f[29], a technique based on the
interpolation of projection onto convex sets (POCL), [30], and use of Discrete Cosine
Transform (DCT) and Wavelet conversion [33]-[34jn& these techniques requires a

significant increase in hardware size, they aresndtble for single chip digital cameras.



Chapter 2

Classification of Demosaicking Methods

Many demosaicking methods have been proposed beepast years. This field of research
and development is getting more and more atterttierause of the emerging market of
electronic consumer devices. These demosaickindpadstexploit the spatial and spectral
color correlation within an image to interpolatee tmissing color values at each pixel
position. The reconstructed image is generally mteun constant color difference areas, but
has a loss of resolution (detail and sharpnesshasdedge artifacts. Demosaicking methods
can be broadly categorized into non-adaptive dlgms and adaptive algorithms, as

described below.

2.1 Non-adaptive algorithms:In non-adaptive demosaicking algorithms, a fixattgrn of
computation is performed on every pixel locatiorthe raw image data (mosaic pattern) in
order to estimate the two missing color componehitgse types of algorithms are easy to

implement with low cost in terms of computationadjuirements.

2.2 Adaptive algorithms: In adaptive demosaicking algorithms, intelligembgessing is

performed on every pixel location based on the attaristics of the image in order to
estimate the missing color components. These typakgorithms yield better results in terms
of quality as compared with the non-adaptive athons. However, effective algorithms in

this category are computationally more complex.

2.3 Algorithms exploiting the correlation between olor planes in an image:n this set of
algorithms, we have explained two algorithms whidgfilizes the correlations between
different color planes in an image to estimaternth&sing color components. Both algorithms

are adaptive in nature and makes use of the edlgenation.



We review some algorithms from all three categoinesrder to introduce some flavour and
characteristics of the demosaicking methods praposthe literature. In this report, we have

only reviewed some basic methods that we have cadpeith our proposed algorithm.

2.1 Non-adaptive algorithms

2.1.1 Nearest Neighbour Replicationin this simple color interpolation method [35]6]3
each missing color component in a pixel replicaéibesvalue of the nearest pixel of the same
color component in the input image. The nearesghtiur can be any one of the upper,
lower, left and right pixel. An example is illusted below in figure 2.1 for a 3x3 block in

green plane. Here we assume the left neighbourke yalue is used to fill the missing ones.

After Interpolati on

Before Interpolation

Figure 1.1: lllustration of Nearest Neighbour Regtion

As discussed by James E. Adams [35], the only adgenof this approach is that
computational requirement is very less and wellesufor applications where speed is very
crucial. However, the significant color errors méakensuitable for still imaging system, such

as high-resolution digital cameras.



2.1.2 Bilinear Interpolation: Instead of replicating the nearest neighboursindar
interpolation [35] estimate the missing color comgat by taking the linear average of the
adjacent pixels with same color component. For etanthe pixel B8 at location (2, 3) in
figure 2.2 contains blue component only. Hence rthgsing green component at red/blue
pixels is estimated by taking average of the lefht, top and bottom green pixel values.
Interpolation of a red/blue pixel at a green positis performed by taking the average of two
adjacent pixel values in corresponding color. Théssing red/blue component at
corresponding blue/red pixels can be estimatedireesr average of the four diagonally
adjacent corner neighbours containing red/blue Ipix€his is illustrated by an example

below using figure 2.2 for a 5 x 5 block.

Interpolation of greepixel at red or blue pixel position: Here we aréreating green value

at blue pixel B8. Similarly green value can beraated at red pixels.

G3 + G7 +G9 + G13
98 = 2

2.1)

Interpolation of red/blue pixel at green positiblere we are estimating blue and red value at

green pixel G7. Similarly red and blue value cares@mated at pixel location G13.

B6 + B8 R2 4+ R12
[ r7——

b7 ; =
2 2

(2.2)

Interpolation of red/blue pixel at blue/red positidiere we are estimating red and blue value

at blue pixel B8 and red pixel R12 respectively.

R2 4+ R4+ R12 + R14 B6 + B8 + B16 + B18
= ; b12 = (2.3)

8 ;
r 4 4



Figure 2.2: 5x5 Bayer CFA pattern (GRBG)

This method is very simple and can be easily impleted. However, experimental results
show that zipper effect is introduced in the nemirhood of the interpolated pixels in the
interpolated full color image. This artifact may &eceptable in a video stream because the
artifact may not be visible by the human eye dueffect of motion blur between video

frames, but these artifacts are not acceptablstibrmages.

2.1.3 Smooth Hue Transition Interpolation: The key problem of the color artifacts in
bilinear is that the hue values of adjacent pix@lange abruptly across edges. The Bayer
CFA pattern can be considered as combination ofrenlance channel (green pixels) and two
chrominance channels (red and blue pixels). Theoffimioue transition interpolation method
[37]-[42], [63] interpolates these channels indafsily. The luminance or green component
can first be interpolated at red and blue pixelatmns using bilinear interpolation as
discussed before. Then the chrominance channehté&pbplated by imposing a smooth
transition in hue value from pixel to pixel. In erdo do so, it defines "hue value” for blue as
B/G, and "hue value" for red as R/G. For intergolabf the missing blue pixel valuds,, ,, ,

in pixel location (m, n) in the Bayer pattern, todowing three different cases may arise.



Case 1: the pixel at location (m, n) contains gre@or component only and the adjacent left
and right pixel locations contain blue color comg@ohonly. For example, the pixel G7 at
location (2, 2) in figure 2.2 contains green comgadronly and its adjacent pixels in left and
right contain only blue component. The blue comporeg pixel location (m, n) can be

estimated as follows:

Bunn-1 B
bin = G * ( T ’"'““) /2 (2.4)

gm,n— 1 gm,n+ 1

Case 2: the pixel at location (m, n) contains gre@or component only and the adjacent top
and bottom pixel locations contain blue color comgrat only. The pixel G13 at location (3,
3) in figure 2.2 is such an example. The blue camepo at location (m, n) can be estimated

as follows:

B, _ B
m—1,n m+1,n>/2 (2.5)

bm,n = Gm,n * ( +

Im- 1n Im+ 1n

Case 3: the pixel at location (m, n) contains r@drccomponent only and the four diagonally
neighbouring corner pixels contain blue color comgra only. For example, the pixel R12 at
location (3, 2) in figure 2.2 contains red colomymnent only. The blue component at

location (m, n) can be estimated as follows:

Bp-in-1 Bm- Bm+in-1 B
m-1n 1+ m—-1n+1 + m+1,n 1+ m+1,n+1>/4 (2.6)

bm,n = Gm,n * (

Im-1n-1 Im-1n+1  Im+in-1 Im+1n+1

The interpolation of missing red pixel values candomputed similarly at blue and green

pixels.

The “hue value” changes depending on where thepolk&tion step happens in the image
processing chain. For example, if the pixel vali&ransformed into logarithmic space from
linear space before interpolation, then the “huee/acan be defined as B-G or R-G instead

9



of B/G or R/G. This is coming from the fact thagy(®/Y) = log(X) — log(Y) = X' — Y'. Here
X and Y’ are the logarithmic values of X and Y pestively. This helps reduce
computational complexity for implementation becaabehe division for calculating the hue

value is replaced by subtraction.

2.2 Adaptive algorithms

2.2.1 Pattern Matching based Demosaicking Algorithmin the Bayer pattern, a blue or red
pixel has four neighbouring green pixels. Wu, ef4d] proposed simple pattern matching
algorithm for interpolating the missing color comgats based on the pixel contexts. The
algorithm defines a green pattern for the pixdbeation (m, n) containing a non-green color

component as a four-dimensional integer-valuedorect

g(m, Tl) = ( Gm—l,ni Gm+1,nl Gm,n—li Gm,n+1) (27)
The similarity (or difference) between two greertt@as gl and g2 is defined as the vector
1-norm:

lg1-g2ll = > gt~ g2 28)

0<i<4

It is likely that the two pixel locations where th&o green patterns are defined will have
similar red and blue color components when theetifice between two green patterns is

small.

Missing color component is estimated by performangeighted average proportional to the
degree of similarity of the green patterns. Fomepie, the missing blue cold, ,, , in pixel
location (m, n) contains only red color componentestimated by comparing the green

pattern g(m,n) with the four neighbouring green pattergén — 1,n —1),g(m — 1,n +

10



1),gm+1,n—1)and g(m+ 1,n+ 1) . If all the differences between(m,n) and other
four green patterns are uniformly small, then apdenaverage is used to estimate the missing

blue color component,

Bm—l,n—l + Bm—l,n—l + Bm—l,n+1 + Bm+1,n+1

bpn = 2 (2.9)

Otherwise, when the largest difference is aboveéaneithreshold, only the top two best-
matched green patterns information are used.||df(m,n)—g(m—1,n—-1)|| and
lg(m,n) — g(m + 1,n — 1)|| are the two smallest differences, then the misking color is

estimated as follows.

bm,n

_ lgtm,n) —gm—1,n— DI *Byp_1n-1 + lgim,n) —gm + 1,n — D|| * Byi1n-1
lg(m,n) —gm -1, n—=D| +llgim,n) —gim+1,n— 1)

(2.10)

Similarly the missing red color values can be cotagu

This algorithm is simple and efficient. However,msnted out by Wu, et al [43], the quality

of reconstructed images is still undesirable.

2.2.2 Edge Sensing InterpolationDifferent predictors are used for estimating thissing
green values in the edge directed interpolatiorhotetiepending on the luminance gradients
[19]. First, two gradients, one in horizontal diten, the other in vertical direction are
computed for each red or blue pixel location. Fstance, consider the pixel B8 as shown in

figure 2.2. The two gradients are defined as,

AH = [G7 — G9|; AV = |G3 — G13] (2.11)

11



Based on these gradient values and a certain ticeéh), the interpolation algorithm then

can be described as follows.

if AH < TandAV > T then
g8 = (G7+G9)/2;
elseif AH > T and AV < T then
g8 = (G3 + G13)/2;
else
g8 = (G3+ G7 + G9 + G13)/4;
endif
endif (2.12)

A slightly different edge sensing interpolation @ithm is described in [10]. Instead of
luminance gradients, chrominance gradients are. udesl two gradients, refer to figure 2.3

below, are defined as:

AH = |B5 — B3ZB7| AV = |35 - Bl;B"| (2.13)

Figure 2.3: 5x5 Bayer CFA pattern (BGGR)
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2.2.3 Linear Interpolation with Laplacian second-oder Correction terms: This
algorithm [9] focuses on improving the visual quabf the interpolated image when applied

on images with sharp edge. Missing color componargsnterpolated using following steps.

The first step in this algorithm is to interpolalbe missing green color components at the red
and blue pixels. Consider the interpolation of grealue at a blue pixel location (using
figure 2.3) as an example. Interpolation of greelue at red pixel location can be done in the
similar fashion. Now interpolate the missing gre@mmponent g5 at pixel location B5. We

define horizontal and vertical gradients in thisgbilocation as follows:

AH = |G4 — G6| + |B5 — B3 + B5 — B7|; AV = |G2 — G8| + B5 — B1 + B5| (2.14)

Intuitively, we can considexH andAV above as combination of the luminance gradiendt an
the chrominance gradient as described in edgersgimgerpolation algorithm in the previous
section. Using these two gradient values, the mgsgreen component g5 at pixel location

B5 is estimated as follows.

if AH < AV then
g5 = (G4 + G6)/2+ (B5—B3+ B5—B7)/4;
else if AH > AV then
g5 =(G2+G8)/2+ (B5—B1+ B5—B9)/4;
else
95 =(G2+G4+G6+G8)/4+ (B5—B1+B5—B3+B5—B7+ B5—B9)/8;
endif
endif (2.14)

The interpolation step for g5 has two parts. Thst fpart is the linear average of the
neighbouring green values, and the second part bearconsidered as a second-order

correction term based on the neighbouring blue) (vatlies.
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The missing red (or blue) color components aremeggd in every pixel location after
estimation of the missing green components in eyergl location. Depending on the

position, refer to figure 2.4, we have three cases:

Figure 2.4: 5x5 Bayer CFA pattern (BGGR)

1. Estimate red (blue) color component at a gregel pvhere nearest neighbours of red
(blue) pixels are in the same column, e.g. pixeatmn G4 as shown in figure 2.4 above. We

estimate the red component r4 at pixel locatiora&4bllows.

r4 = (R1+ R7)/2 + (G4 — g1 + G4 — g7)/4 (2.15)

2. Estimate red (blue) color component at a grezel pvhere nearest neighbours of red
(blue) pixels are in the same row, e.g. pixel lma2 as shown in fig 2.4. We estimate the

red component r2 at pixel location G2 as follows.

r2 = (R1+R3)/2+ (G2 — g1+ G2 — g3)/4 (2.16)

3. Estimate red (blue) color component at a blesl)(ipixel. For instance, estimate red
component r5 at pixel location B5 as shown in fegdr4. Here we first define two diagonal

gradients as follows:
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AN = |R1.R9| + |g5 — g1 + g5 — g9| ;

AP = |R3.R7| + |g5 — g3+ g5 — 97| (2.17)

Using these diagonal gradients, the algorithm stingating the missing color components is

described as:

if AN < AP then
r5=(R1+R9)/2+ (g5—g1+g5—9g9)/2;
else if AN > AP then
r5=(R3+R7)/2+ (g5—93+g5—9g7)/2;
else
r5=(R1+R3+R7+R9)/4+(9g5—9g1l+g5—9g3+ g5—97+95—99)/4;
endif
endif (2.18)

This method provides much better visual qualityha reconstructed image containing a lot
of sharp edges. However, the second-order derevdtivcalculating the gradients makes the
algorithm quite sensitive to noise. Since only tlwdor information in the same direction

(vertical, horizontal, or one of the diagonal direas based on the gradient information) is
used for interpolation, we believe that it is gbitissible to further improve the visual quality

of the reconstructed image.

2.2.4 Interpolation using a Threshold-based variald number of gradients This

algorithm is described in [44]. A set of gradiergsdetermined from the color values in the
5x5 neighbourhood centred at the pixel under camnattbn. Each gradient corresponds to a
different direction. For each set of gradients,haeshold value is determined and the
threshold is used to select a subset of gradiénts-valued gradients indicate pixels having

similar color values whereas high-valued gradiardsld be expected in regions of the image
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where there are many fine details or sharp edgles.stlibset of gradients is used to locate
regions of pixels that are most like the pixel uncensideration. The pixels in these regions
are then weighted and summed to determine the gevelifference between the color of the
actual measured center pixel value and the missaiay. A similar approach using weighted
gradients is given in [67]. The algorithm is illceged by an example using a 5 x 5 block as

shown in figure 2.5.

1. Interpolation of the green, red/blue value &t litue/red pixel: consider figure 2.5 below,

we want to estimate g13 and b13 at R13.

Figure 2.5: 5x5 Bayer CFA pattern (RGGB)

Form eight gradients as follows :

Gradient N = |G8 — G18| + |R3 — R13| + |B7 — B17|/2 + |B9 — B19|/2 + | G2
— G12|/2 + |G4 — G14|/2;
Gradient E = |G14 — G12| + |R15 — R13| + |B9 — B7|/2 + |B19 — B17|/2 + |G10

— G8|/2 + |G20 — G18|/2;
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Gradient S = |G18 — G8| + |R23 — R13| + |B19 — B9|/2 + |B17 — B7|/2 + |G24
— G14|/2 + |G22 — G12|/2;

Gradient W = |G12 — G14| + |R11 — R13| + |B17 — B19|/2 + |B7 — B9|/2 + |G16
— G18|/2 + |G6 — G8|/2;

Gradient NE = |B9 — B17| + |R5 — R13| + |G8 — G12|/2 + |G14 — G18|/2 + |G4
— G8|/2 + |G10 — G14|/2;

Gradient SE = |B19 — B7| + |R25 — R13| + |G14 — G8|/2 + |G18 — G12|/2 + | G20
— G14|/2 + |G24 — G18|/2;

Gradient NW = |B7 — B19| + |R1 — R13| + |G12 — G18|/2 + |G8 — G14|/2 + |G6
— G12|/2 + |G2 — G8|/2;

Gradient SW = |B17 — B9| + |R21 — R13| + |G18 — G14|/2 + |G12 — G8|/2 + |G22 —

G18|/2 + |G16 — G12|/2; (2.19)

Determine a threshold and select a subset of grdiehe threshold is determined by
T =kl *Min+ k2 x (Max — Min), whereMin is the minimum gradient value aMx is

the maximum gradient valué1 and k2 are determined experimentally as 1.5 and 0.5,
respectively. Heré&1 * Min accounts for the case in which the gradients lreegy similar,

so that we wish to include all of them by settintheeshold that exceeds thek2 * (Max —
Min) accounts for the case in which there is a sigmificdifference between the maximum

and minimum gradient values.

Now, locate the pixels in the regions correspondintihe subset of gradients and to use those
pixels to determine a color difference between dhater pixel color and the color to be
recovered. Determine the average green, blue ahdalees in the gradient subset regions:

Form the average color values in the gradient subgens to get,.,,, Rsym andBs,m,
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Find the normalized color difference by dividing ttlifference of two sums by the number of
gradients in the threshold subset, and add this)alazed color difference to the pixel value

under consideration to form the other two missialgiccomponents.

2. Interpolation of the blue/red value at the grpiexel: consider figure 2.2, we want to

estimate r13 and b13 at G13.

Form eight gradients as follows

Gradient N = |G3 — G13| + |B8 — B18| + |G7 — G17|/2 + |G9 — G19|/2 + |R2
— R12|/2 + |R4 — R14|/2;

Gradient E = |R14 — R12| + |G15 — G13| + |G9 — G7|/2 + |G19 — G17|/2 + |B10
— B8|/2 + |B20 — B18|/2;

Gradient S = |B18 — B8| + |G23 — G13| + |G19 — G9|/2 + |G17 — G7|/2 + |R24
— R14|/2 + |R22 — R12|/2;

Gradient W = |R12 — R14| + |G11 — G13| + |G17 — G19]/2 + |G7 — G9|/2 + |B16
— B18|/2 + |B6 — B8|/2;

Gradient NE = |G9 — G17| + |G5 — G13| + |R4 — R12| + |B10 — G18|;

Gradient SE = |G19 — G7| + |G25 — G13| + |B20 — B8| + |R24 — R12|;

Gradient NW = |G7 — G19| + |G1 — G13| + |B6 — B18|/2 + |R2 — R14|;

Gradient SW = |G17 — G9| + |G21 — G13| + |R22 — R14| + |B16 — BS|;

(2.20)

As described earlier, determine a threshold arecsal subset of gradients. Agaih= k1 *
Min + k2 x (Max — Min), where k= 1.5 and k= 0.5. Again, Locate pixels in the selected

regions and use those pixels to determine a calfarehce between the center pixel color
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and the color to be recovered, finally add thiocdlifference to produce an estimate for the

missing color value.

2.3 Algorithms exploiting the correlation between olor planes in an image

This section explains two demosaicking algorithms,

2.3.1 Edge Strength Based Color Filter Array Interpolatid5].

2.3.2 Practical Color Filter Array Interpolation with Ndnnear Filter [46].

Algorithm 2.3.1 [45] proposes an edge strengtleffilthat provides local, orientation-free
intensity transition information. This algorithmili#es this edge strength information
combined with constant color difference assumptmmterpolate the initial green channel
while avoiding averaging across edge structures. dlgorithm further uses this information
to update the initially interpolated green chanidgjorithm 2.3.2 [46] proposes a filter that
has a simple structure and is effective eliminaantifacts on the edge of color boundaries.
This algorithm is the simpler and improved versadnts previous algorithm [47] which uses
a linear low pass filter and was more constraiféte algorithm makes use of the constant
color difference correlation assumption combinethvan edge detection technique which
detects the direction in which the correlationighhand uses the signal of higher correlation
to execute interpolation. Both algorithms works timree steps, the green channel is
interpolated first followed by the interpolation réd and blue channel as shown in figure 2.6.

These algorithms are explained in step by steplasifs:
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CFA Samples

Interpolation Step

Green Plane
Interpolation

Fully-Populated green plane, CFA
sampled red and blue plan

|

Full-Color

Demosaicked Imaa
2.6: Three Step CFA Interpolation

2.3.1 Edge Strength Filter Based Color Filter Array Interpolation: The algorithm

proposes an edge strength filter that provides |am&ntation- free luminance transition

information. The filter has a 3 by 3 block size lasven in figure 2.7. Given a grey scale input

image, it could be formulated as

P, — P, P, —P
&w-llz d |32 7|+|P2—1%|+|R4—f%
P1 P2 P3
P4 P5 P6

P7 P8 P9

Figure 2.7: 3x3 Edge Strength Filter Pattern
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Where $sis the edge strength at pixel P5.

By applying the above filter to all available pixelge obtain the edge strength map of the
input image. Although the filter result for a singleel does not provide any edge direction
information, the relationship between neighbourpigel is exploited that yields the edge
orientation in that neighbourhood. The edge stiterfgt green and blue pixels will be
calculated in the same way. The edge strength rbtgined from the raw image data will
help us both in initial green channel interpolatstage and in subsequent green channel

update.

Step 1: Green Channel Interpolation and Updation

Labelling each pixel as horizontal or vertical lymparing edge strength differences along
each direction on a local window. For a window d#\b5, horizontal and vertical difference

costs can be formulated as follows:
H = anz—z(Zrlzz—z( S+m,j+n - $+m,j+n-1) );
Vij= Zm=—2(Cn=—2( Sem jrn — Semea, jon ) ) (2.22)

WhereS; is the edge strength filter output at pixel looat(i, j) andH ;; andV ;; represent
the total horizontal and vertical costs. Now thegéd pixel will be labelled as horizontal if
horizontal cost is less than vertical cost and vieesa. Based on the edge direction labels,

green channel is interpolated as:

Gl — By
G.. = 2 4 4
ij = AV 1% 14
GV.—B,. Gi_..—BY.. G.,.—BV..

k B;j+ = > Moy L 2 ), + L 2 l+1'],if vertical

G;i_4 — BE. G;i+1 — BE.
,J—1 i,j—1 1,j+1 i,j+1
B;; + I+ /

,if horizontal
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Where directional estimations are calculated by

Gij—1+ Gij1 N 2%Bij—Bij_2—Bjjiz

~H __
Lj 2 4
~y  Gic1jt Giy N 2%B;j—Bi_5;— Biyy;
L~ 2 4
—n _ Bij-1tBiji1 N 250Gy —Gijp — Gy
2 2 4
_ Bi_1j+Biy1; 2%Gij—Giyj— Gigpj
V= ) 4 - (2.23)

Green channel estimation for red pixel locationpasformed simply by replacing B’s with

R’s in the equation above.

Now we will this initially interpolated green chaginFor every green pixel to be updated, we
consider the four neighbours with available coldfedence estimates. We have assigned a
weight to each neighbour pixel which is inversetyrelated with the total absolute edge

strength difference in its direction.

Dy = [Si; = Si—1,i] + [Sic1 = Siczj| + [Sicaj = Siza i + G
Dy =[Sy = Sijoa| + [Sijo1 = Sij-a| + [Sij-2 = Sijms| + G
Dy = |S;j = Sijua| + [Sije1 = Sijuaz| + [Sijoz = Sijas| + €1
Dy = [Sij = Sivas| + [Sivrj = Sivaj| + [Sivaj = Sivasl + G
M, = D, * Dy % D,

M, = D, * Dy % D,

M; =D, + D, * D,

M4:D2*D3*D1
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Miotar = My + My + M3 + M,

G_i,j = Bi,j + W * (G_i,j - Bi,j) + (1 - W)

M, ,_ M, . _
G =B o)+ —2(G: o —B:
* Mtoml( i-2,j i 2,1) Mtotal( i,j—2 i 2)
My . M, . _
+———(Gijs2 — Bijsz) + —(Giypj — Bi+2,j)] (2.24)
Mtotal Mtotal

Similarly for red pixel, replacB ; by Ri;. Here G is a non- zero constant to avoid zero

denominator.

Step 2: Red and Blue channel interpolation at Gpeesls

For red and blue channel estimation at green pixetsemploy bilinear interpolation over
color differences. Here, only the nearest two neagins for which the original pixel value

available are used.

- _ (Gzi—l,zj - Bzi—1,2j) + (Gzi+1,2j - Bzi+1,2j)
Byizj = Gaij — >

_ B (Gaiv12j41 — Baiv1aj) + (Grivi2j+2 — Baiv12j+2)
Biiv12j+1 = Gait12j+41 — > (2.25)

Similarly Red channel can be estimated at greeelgix

Step 3: Red and Blue channel interpolation at Blu@ Red pixel respectively

For red channel interpolation at blue pixels andebthannel interpolation at red pixels,

diagonal neithbours are used adaptively basedesngrhannel gradients in both directions.
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My = |Gigjy — Gij| + |Gicyjoq — Giy jer| +|Gij — Givzjoal

My = |Gi—pjez — Gij| + |Gizy je1 — Givrjoa| + |Gij — Giszj2]

M, * (Gi—l,j—l —Bi_1j1+ Gy 41 — Bi+1,j+1)
2 * (Ml + Mz)

=s]]

i = Gij—

M, * (Gi—1,j—1 —Bi_1j-1+Gipq,j-1 — Bi+1,j—1)

+
2+ (M; + M,)

(2.26)

2.3.2 Color Filter Array Interpolation with Non Lin ear Filter: The pixel interpolation
procedure is described below. First we computesitpeal gradient in horizontal and vertical
direction at red and blue pixels. Now because thaber of G pixels is larger than any other,
we first interpolate the G pixels on the R and Bngls (Step 1). It is important to perform G
pixel interpolation as the first step so that iptéation errors will not be propagated in the R
and B pixel interpolation. Next, we perform intelggmn of R and B signals on the G plane
(Step 2), and finally we perform interpolation betR signal in the B plane and the B signal
in the R plane, which have the lowest inter-charmmetelation (Step 3). In the computing
expression given below, the coordinates of eadmasigre the same as the pixel array shown

in figure 2.8.
Step 0: Computsignal gradient at 2 pixel location.
Vertical Signal Gradient:

_Rv+Gv+Bv
B 4

_ (I=Rq2 + 2R3 — Rs,)
2

Rv
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Gv = (|Gaz — Gaz| +

|=G11 + 2 % G31 — Gs4] + | — G153 + 2G33 — Gs3

4 4

_ (IB21 — Byl + |B23 — Basl)

B
v 2

Horizontal Signal Gradient:

_ Rh+Gh+ Bh
B 4

_ (I=R30 + 2R3, — R34l)

Rh >

—Gao + 26y — G — Gy + 2G4, — G
Gh = (|G31 _ G33| + | 20 22 24| + | 40 42 44|

4 4

By1 — By3| +|By; — B
Bh=(| 21 23| + [Bas 431)

2

Figure 2.8: 7x7 Bayer CFA Pattern (GBRG) showingePCoordinates

(2.27)

(2.28)

At the B pixel location, V and H is similarly comiend as the red plane changed R to B.
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Step 1: G plane interpolation on R and B plane.

IfV<=4andH<=4orH==

932 = R3z + (G320 — R3e)

Where,

G: -
Gaze = ZZ% ij € 22,31,33,42
T

Y. R.. +4R
Rize = 22, lé 32},1‘1‘ € 12,30,34,52

Else ifV > H

932 = R3z + (Gs2ne — R3zne)

Where,

G
632,16:22%, ij €31,33
T

.Y R;i +2R
Ragne :{2121 Z 32},ije30,34

ElseifV<H

932 = R3z + (G32pe — R3zpe)

Where,

G::
Gme:ZZ%, ij €22,42
i

Rsgue = BHM2) 4 ¢ 1757

Then the blue plane is similarly computed as tldeptane.

(2.29)

(2.30)

(2.31)



Step 2: R and B plane interpolation on G plane

Interpolating R values at G pixels:

T22 = Gz + (Razpe — G22ve)

T33 = G33 + (R33ne — 933he)

Where,

Ryzpe = %,i] € 12,32
Ryape = w,lj € 32,34
Gazve = Z"Zz" 9 ij € 12,32
Gasne = Zizzjgi],ij € 32,34

Interpolating B values at G pixels:

by; = Gy + (Bazhe — 922ne)

b33 = G33 + (B3zpe — 933ve)

Where,

Byone = m,zj € 21,23
Baspe = % ij € 23,43
Gasve = %u € 23,43
G22ne = %u € 21,23

27

(2.32)

(2.33)



Step 3: R and B plane interpolation on B and R@l@spectively.

If V<=4and H<=4or H==

23 = g23 + (R23e — g33e) (2.34)
Else if V>H
123 = 923 + (T23ne — G33he) (2.35)
Else if V<H

123 = 923 + (T23ve — G23ve) (2.36)

Then the blue plane is similarly computed as tleptane.
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Chapter 3

Proposed Demosaicking Methods based on Edge Strehdtuzzification

We have proposed two demosaicking algorithms, sriba modified version of the standard
bilinear interpolation and other is the modifiedsien of the Algorithm 2.3.2 [46] explained

in previous section. These algorithms are modifietthree respects:

* Edge information is been used effectively to remangacts.

» Fuzzification of edges based on their strengthredoice computational complexity

involved in decision making.

» Execution time of the algorithm is reduced.

The modified algorithms are better than the coneeat demosaicking algorithms in terms
of both objective and subjective quality. Both altfons make use of an edge strength filter

as explained in [45].

3.1 Terminology

Universe of DiscourseThe Universe of Discourse is the range of all gmesralues for an

input to a fuzzy system.

Fuzzy Set A fuzzy set is a paifU, m) whereU is the universe of discourse andU —
[o,1]. For eachxeU the valuen(x) is called the membership ofin (U, m). For a finite

setU = {x4, ..., X, } the fuzzy sefU, m) is often denoted bfm(x;)/x4,..., m(x,)/xn }.
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Fuzzy Weighted Average:lLet A be the fuzzy set such that= {m(x,)/x,,..., m(x,)/x, }
for eachxeU, whereU is the universe of discourse. The fuzzy weighteerageY, for the

fuzzy set A is defined as:

_ X1Ug + XUy + o+ XUy _ Dizo Xl
A My + g + -+ iy o M

3.2 Fuzzy Membership Assignment Strategy for Propesl Algorithm

The basis of the proposed algorithm is the constalor ratio/difference over a local distance
in a homogenous region. This assumption is likelfatl across edges. The edge information
can be used adaptively during interpolation to dvoonsidering non-correlated color
differences, interpolation quality can be imprové&te question at this point is how the edge
information can be expressed meaningfully at theslpievel so that it is useful enough to
improve interpolation quality. The answer to thssfuzzification of the edge information in
an image.

A fuzzy set EDGE_STRENGTH is defined over each Ipofehe image as the universe of
discourse. The edge strength at each pixel is cdpand treated as the membership value
of each pixel. The higher is the intensity variatacross edge, the higher will be its strength.
The membership value at each pixel is inverselp@rional to its edge strength. The higher
is the edge strength value at each pixel, the lowitrbe its membership in fuzzy set. The
reason here is strong edges will contribute leghaanterpolation process because missing
color values are computed by taking the fuzzy weidhaverage of the similar neighbouring

pixels.
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3.3 Edge Strength based Fuzzification of Bilinearriterpolation

An edge strength filter that provides local, oraéitn-free luminance transition information
is proposed in [45]. The edge strength is compuaied fuzzified for each pixel such that
membership value for each pixel in fuzzy set isengely proportional to the edge strength.
The green channel is interpolated first by commutime fuzzy weighted average of green
pixel values from neighbourhood. Next we interpel&ed and Blue channel on the Green
pixels, and finally we perform interpolation of tl&ed channel on Blue pixels and Blue
channel on Red pixels, which have the lowest inkemnel correlation. Bayer CFA pattern

which is being used for the proposed demosaicKiggrithm is shown in figure 3.1.

Figure 3.1: 7x7 Bayer CFA Pattern (GBRG) showingePCoordinates

Step 0: Edge strength at each pixel is computatyusi edge strength filter [45] as explained

in in previous section. The filter has 3 by 3 supge as shown in figure 2.7 and formula is
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same as explained in equation 2.21. After computiegedge strengt8 at each pixel, we

will now fuzzify this edge strength at each pixsing the min-max normalization.

ol

max(S) (3.1)

u=|1—

Step 1: Green channel Interpolation at red/blueslpposition, for example consider a red
pixel R;, and a blue pixeB,33, green value can be interpolated by taking fuzejghted
average of four neighbour green pixel values asveha equation 3.2 and 3.3. Please refer

figure 3.1 for the pixel pattern and their posigon

, JE ’ ’ ,4‘ .
’l‘ ) ) ) .

Step 2: Red and Blue channel Interpolation on Grpeml. There can be two cases
depending upon the position of red or blue pixal$our neighbourhood of green pixel. In
first case, the red pixels are located at the alameebelow of the green pixel and blue pixels
are located at the left and right of the greenlpixer example, consider a green pige} on
which we are interpolating the red and blue pixale by taking fuzzy weighted average of
the two same color pixels as shown in equationsaBd}3.7. In second case, the red pixels
are located at the left and right of the greenlpaxel blue pixels are located at the above and
below of the green pixel. For example, considerreeqy pixel G;; on which we are
interpolating the red and blue pixel value by tgkihe fuzzy weighted average of the same
color pixels as shown in equations 3.5 and 3.6adeleefer figure 3.1 for the pixel pattern

and their positions.
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Zi Z] l'll]Rl]

Tyy = D ije 12,32 (3.4)
T33 = %, ije 32,34 (3.5)
bas = Zg’z% ije 23,43 (3.6)
by, = Zg’z% ije 21,23 (3.7)

Step 3: Red/Blue channel interpolation on Blue/Rie@ls. Consider a blue pix#,, and a
red pixelR;,. The red value a&,; and blue value &, are interpolated by taking the fuzzy
weighted average of the four diagonal pixels ofghme color as shown in equations 3.8 and

3.9. Please refer figure 3.1 for the pixel pat@md their positions.

r _ 22 MRy ije 10,12,30,32 (3.8)
21 Zi Z] ul] ) ) ) ) .
b _ Zi2HyBy ije 01,03,21,23 (3.9)
12 — ’ ) )] ) .
ZiZ}' l'lij

3.4 Edge Strength based Fuzzification of Non-Linea€FA Interpolation

An edge strength filter that provides local, or&iun-free luminance transition information
is proposed in [45]. The edge strength is compuated fuzzified for each pixel such that
membership value for each pixel in fuzzy set iengely proportional to the edge strength.

The green channel is interpolated first by addimg ¢olor difference of red/blue and green
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colors at current pixel value. The difference isnpoted between fuzzified low frequency
components of each color. Fuzzified low frequenaymponent is the fuzzy weighted average
of similar color pixel values from neighbourhoodexXtl we interpolate Red and Blue channel
on the Green pixels, and finally we perform intégtion of the Red channel on Blue pixels
and Blue channel on Red pixels, which have the $bweer-channel correlation. Bayer CFA

pattern which is being used for the proposed deiokisg algorithm is shown in figure 3.1.

Step 0: Edge strength at each pixel is computetyuen edge strength filter [45] as explained
in in previous section. The filter has 3 by 3 supp@e as shown in figure 2.7 and formula is
same as explained in equation 2.21. After computiegedge strengt8 at each pixel, we

will now fuzzify this edge strength at each pixsing the min-max normalization as shown

in equation 3.1.

Step 1. Green channel interpolation on Red and Blxels. Consider a red pixé&s;, and
blue pixelB,;. The green value a5, andB,; is interpolated by adding a color difference
value at current pixel value as shown in equatidiD 3and 3.11. This color difference is
computed by taking a fuzzy low frequency comporiented/blue and green pixels at current
position. AtR;,, fuzzy low frequency component for red and grealue is computed as
shown in equations 3.12 and 3.13.m%, fuzzy low frequency component of the blue and
green value is computed as shown in equations&il43.15. Please refer figure 3.1 for the

pixel pattern and their positions.

932 = R33 + (G32¢ — R3ze) (3.10)

923 = B3z + (G320 — B3ze) (3.11)
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Where,

22y MGy

Giop = ,ije 22,31,33,42 3.10
32e Zi Z] IJ-U ] ( )

22 W Rij + 4Rs,

R = +, [j€e 12,30, 34,52 3.11
32e Z Z] l' | 1 Y ( )
G = —i J Y Y jje 13,33,22,24 (3 10)
ll ) ) ) -
23e ZiZj “U ]

B _Z Z]H Bl] +4‘BZ3
e ZLZ] l'lij

+,ije 03,43,21,25 (3.11)

Step 2: Red and Blue channel interpolation on Grpeels. There can be two cases
depending upon the position of red or blue pixal$our neighbourhood of green pixel. In
first case, the red pixels are located at the alamkebelow of the green pixel and blue pixels
are located at the left and right of the greenIpier example, consider a green pixeligf

on which we are interpolating the red and blue Ipedue by adding color difference to the
current pixel value as shown in equations 3.12 Z&4d. In second case, the red pixels are
located at the left and right of the green pixedl &tue pixels are located at the above and
below of the green pixel. For example, considerreeqy pixel G;; on which we are
interpolating the red and blue pixel value by addiolor difference to current pixel value as
shown in equations 3.13 and 3.15. Please referefi@ul for the pixel pattern and their

positions. Please refer figure 2.8 for the pixdtgra and their positions.

T22 = G2z + (Razpe — 922ve) (3.12)

T33 = G33 + (R33ne — 933he) (3.13)
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by; = Gy + (Bazhe — 922ne) (3.14)

b33 = G33 + (B33pe — I33ve) (3.15)
Where,
R 2Ry 12,32 (3.16)
206 T Tw v . Y€els :
ve ZiZ}' Uij
R 2Ry 32,34 (3.17)
33he = "o w .. UJEDI4 }
¢ ZiZ}' Uij
22 W8 g (3.18)
J33he = v w . YJE DS, .
¢ ZiZ}' Uij
22 Mgy 12,32 (3.19)
g = o Y€ ) .
22ve ZiZ}' Uij
B 2By 21,23 (3.20)
22he = "o v . Y€l :
¢ ZiZj p’ij
B 2218 23,43 (3.21)
= —=—,1je 23, )
33ve Zi Z] IJ-U
LT 23,43 (3.22)
g S , .
33ve Zi Z} ul]
S U7 e 21,23 (3.23)

gZZhe - Zi Z] ul]

Step 3: Red/Blue channel interpolation on Blue/Be@! respectively. Consider a blue pixel
B,5 and a red pixek;,. The red value &&,; and blue value &5, are interpolated by adding
the color difference of red/blue and green colortiie current pixel value as shown in

equations 3.24 and 3.25. The fuzzy low frequeneypmanent for the red/blue color at current
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pixel is computed using four diagonal pixels of #@me color as shown in equations 3.26,

3.27, 3.28 and 3.29. Please refer figure 3.1 ferpikkel pattern and their positions.

723 = 923 + (R23¢ — 923¢) (3.24)
b3z = 932 + (B32¢ — 932¢) (3.25)
Where,
R 2z MRy 12,14,32,34 (3.26)
= —llje ] ] ] .
23¢ ZiZj lll-j
Zizi Mgy 13,22, 24,33 (3.27)
J23e = ,ije 13,22, 24, .
23¢ ZiZj lll-j
B LT 21,23,41,34 (3.28)
32e = yYE 41,245,441, .
¢ ZiZj p’ij
Zi2j Mgy 22,31,33, 42 (3.29)
g = llJE ) ) ) .
3z¢ ZiZ}' l'lij

3.5 Graphical Analysis of the Proposed Algorithms

We have analysed the improvement of our proposgatithm over the algorithms explained
in section 2.3. We have cropped two 9x9 block s&xgons from an image out of which one
block belongs to the region of homogeneous intgrasid second block belongs to a region
where intensity is changing abruptly as we movesgthe region. The cropped regions are
shown in figure 3.2. We have illustrated the ertbet occurred during interpolation for both
versions of the algorithm and compared those ugiaghs. These graphs illustrate the signal

correlation existent between the original signal #re interpolated signal. The X-axis in the
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graph indicates the pixel position and Y-axis ia graph indicates the intensity. There can be

three types of correlation between two signals:

* Positive Correlation
* Non-Correlation

* Negative Correlation

Positive Correlation: The interpolated signal intensity increases arel@ses with increase

or decrease in the original signal intensity retipely.

Non-Correlation: The interpolated signal has no correlation witk briginal signal. This
means the interpolated signal intensity remainssizont with the increase or decrease in

original signal intensity.

Negative Correlation The interpolated signal intensity decreases witlease in original

9signal intensity and increases with decreaseiginal signal intensity.

Each graph shows values of 9 pixels for two alhong and there are a total of 8 graphs, 4
each for an algorithm in four directions i.e., lzontal, vertical, left diagonal and the right
diagonal. Same graphs are plotted for the homogeremion of the image. The pixel located
at position 5 is the centre pixel. The gap betwtberpoints on same pixel position in a graph
shows the interpolation error. The larger will e gap, the more will be the interpolation
error. From the graphs it can be clearly seen tiatproposed versions of the algorithms
shows less interpolation errors that the conveatiatgorithms. Graphs shown in figure 3.3
and figure 3.4 compare the bilinear interpolatioithwroposed edge strength based fuzzy
bilinear interpolation algorithm explained in secti3.2.1. Figure 3.3 shows graphs for the

homogenous region and figure 3.4 shows graphséoetige region. Graphs shown in figure
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3.5 and figure 3.6 compare the method explainesention 2.3.2 with proposed algorithm

explained in section 3.2.1. Figure 3.5 shows grdphthe homogenous region and figure 3.6

shows graphs for the edge region.

Uniform Region

Edge Region

Figure 3.2: Cropped regions from the original image
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Bilinear Filter: Left Diagonal Direction
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Edge Strength based Fuzzified Non-Linear Filter: Horizontal Direction
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3.5: Non-Linear Filter based CFA Interpolation Efge Strength based Fuzzified Non-

Linear CFA Interpolation (Edge Region) with directs as labelled.

42



Non Linear CFA Filter: Left Diagonal Direction Edge Strength based Fuzzified Non-Linear Filter: Left Diagonal Direction
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3.6: Non-Linear Filter based CFA Interpolation Efge Strength based Fuzzified Non-

Linear CFA Interpolation (Edge Region) with directs as labelled.
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Chapter 4

Experimental Results and Comparisons

4.1 Environmental Setup
The following system configuration has been usedendonducting the experiments:

Hardware configuration

Processor: AMD A10-4600M APU
Clock Speed: 2.3 GHz
Main Memory: 4 GB

Hard Disk Capacity: 1TB

Software Configuration
Operating System: Windows 8

Software Used: MATLAB 7.9.0 (2009b)

We evaluate the performance of our proposed alguaridn five image datasets obtained from
different domains namely, Nikon Microscopy Digitahages [49], Satellite Color Images
[56], High Definition Color Images, Kodak Loss-Le$sue Color Images [57], Berkeley
Segmentation Image Database [59]. The images @tesfinthetically sub-sampled in Bayer
CFA pattern and then interpolated back to threenigbis using proposed algorithm. The

details about each database with their experimeesalts are explained in further sections

4.2 Comparison with other methods

We have compared our algorithm with some of theraigms in terms of objective measures
and subjective quality measures. Objective measamrescomputed for each of the output

images to determine the difference between themaligmage and the reconstructed image.
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The following demosaicking methods are used for manmson, (a) Nearest Neighbour
Replication, (b) Bilinear Interpolation, (c) Smodttue Transition Interpolation, (d) Pattern
Matching Algorithm, (e) Edge Directed Interpolatidf) Color Interpolation using Laplacian
Second order color correction |, (g) Threshold HaSariable Number of Gradients, (h)
Gradient Corrected Linear Interpolation, (i) EdgeeSgth based CFA Interpolation, (j) Non-
Linear Filter based CFA interpolation. All thesga@ithms are implemented in MATLAB.
The MATLAB code for algorithms (a), (c), (d), (fnd (g) are obtained from [48]. Our
proposed algorithm (k) Edge Strength based Fuziziidinear Interpolation and (I) Edge
Strength based Non-Linear Filter based CFA intefpmh shows much better results than

many of the other algorithms in terms of subjectjuality and objective measures.

4.3 Evaluation Metrics
These objective measures and the detailed resulesath database is explained in following

sections.

4.3.1 Mean Squared Error (MSE)

The mean squared error (MSE) of an estimator is one of the ways to quantify the difference between
values implied by an estimator and the true values of the quantity being estimated. MSE is a risk
function, corresponding to the expected value of the squared error loss or quadratic loss. MSE
measures the mean of the squares of the "errors." The error is the amount by which the value
implied by the estimator differs from the true value of the quantity to be estimated. The difference
occurs because of randomness or because the estimator doesn't account for information that could

produce a more accurate estimate.
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If ¥; is a dataset of n estimations, afds the dataset of the true values, then the (estid)

MSE of the estimator is:
n
1 ~ 2
MSE == (%~ %) 4.1
i=1

4.3.2 Peak Signal-to-Noise Ratio (PSNR)

Peak signal-to-noise ratio is an engineering tenthe ratio between the maximum possible
power of asignal and the power of corrupting ntieg affects the fidelity of its
representation. PSNR is usually expressed in tefnke logarithmic decibel scale because
many signals have a very wide dynamic range. PSNRast commonly used to measure the
quality of reconstruction from sub-sample imagead@.g., for .image demosaicking). A

higher PSNR generally indicates that the reconstmucs of higher quality.

PSNR can be easily defined via the mean squaredr M6E. Given a loss-

lessmxn monochrome imagewith 255 as its maximum grey lev@ISNR is defined as:

(4.2)

2552
PSNR = 10.log

MSE

WhereMSE is the mean squared error as explained in theeabestion.
4.3.3 CPU Time

CPU time (or CPU usage, process time) is the amaolinne for which a central processing
unit (CPU) was utilized for processing instructimisa computer program.The CPU time is
often measured in clock ticks or seconds. We hawepaited the CPU time in seconds for the

running program by using the standard MATLAB coma&n
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4.4 Experimental Results and Discussion

4.4.1 Nikon Microscopy Digital Color Image suite

The test set consists of 24 images with 700x504| pesolution as shown in figure 4.1. This
image set is being used for the first time foribgsthe quality of color interpolation. This
image set is obtained from [49]. There are mangrogources [50]-[55] that provide these
digital microscopy images. The interpolated imagescompared to the original images and
results are reported for all three performance omeas The MSE results are summarized in
table 4.1, PSNR results are summarized in tabladd2he CPU time results are summarized
in table 4.3. The best result for each image islighted with bold text. An image region
which is cropped from the original image is presdnin figure 4.2 for the visual quality

comparison. This image region is compared with ro#hgorithm in figure 4.3.
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Figure 4.1: Nikon Digital Microscopy Test imageach image (700x504) is numbered in

order of left-to- right and top-to-bottom, fromd 24..

The table 4.1 shows that average MSE over thefsatames. The table shows that proposed
fuzzy method (k) performs best on average in teashMSE for all images.
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Table 4.1: MSE Comparison (Nikon Digital Microscoljpyages)

Image _ .

Number @ | b © | | €@ O @] M O O & O
1. 7.32| 505 7.83 1043 463 9.34 11/90 533 6.494064.63| 6.02
2. 856| 527/ 847 1481l 478 14388 20[05 639 8.0636| 4.81| 7.49
3. 3.27| 176/ 460 416 162 597 7.72 2]19 27552361 | 2.43
4. 235| 124 241 628 115 630 759 136 17971171.17| 1.70
5. 555| 4.42] 544 857 405 878 9.65 4{79 528 45.@.04| 4.97
6. 8.30| 5.321 7.65 1231 4.97 1102 13|51 6.00 T1.422)| 4.89| 6.70
7. 6.35| 401 781 383 381 502 858 3|76 4.7094.8.65| 3.73
8. 544| 3.700 7.26f 522 349 6.718 1135 431 4.8837 4.3.43| 451
9. 6.77| 441 899 571 405 7.35 1190 492 15.9026 5.3.98 | 5.07
10. 566| 3.75 7.16 11.38 342 102 13|14 3.62 4.8H4U6| 3.40| 4.28
11. 3.54] 220 4.05 65% 197 588 750 208 2.74572.1.94| 2.48
12. 7.06| 462 946/ 564 419 6.45 10)27 515 59649 H54.19| 5.32
13. 7.06| 462 946/ 564 419 6.45 10)27 515 59649 H54.19| 5.32
14. 594 3.74 7.28 18.1f 3.39 1734 17|98 3.67 4.9189| 3.44| 4.81
15. 6.22| 4.14 7.62 15.02 3.77 13./1 15(79 4.02 5%.@X87| 3.80| 4.88
16. 755| 470 1152 6.68 433 8.4 12|67 534 6.3978| 4.30| 5.60
17. 7.77| 5.27 547 14.01 4.85 129 14{98 7.21 8.0%H6| 4.88| 7.86
18. 5.14) 3.3 5.27, 983 3.05 8.17 11)31 350 4.588 43.10| 4.45
19. 7.74) 518 1140 11.15 449 835 12/78 587 6.8487| 4.68| 6.67
20. 429| 3.17 592 8.76 2.87 .32 10,04 366 4.291342.92| 3.99
21. 547 398 6.26f 10.03 3.3 9.88 10|70 482 5.3%27| 3.69| 5.11
22. 533| 253 1294 7.73 236 11.33 14{20 366 5.244| 2.31| 4.02
23. 2.19| 107 226 254 100 515 7.22 1{18 153321.1.00| 1.21
24. 3.18| 159 321 333 149 562 7.66 166 2.16881.1.46| 1.67

Table 4.2 reports the PSNR. The errors are repdaiethe same set of algorithms. These
measures agree with the MSE comparison. The prdpiogey method (k) shows superior

results to the other algorithms.
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Table 4.2: PSNR Comparison (Nikon Digital Microsgdmages).

Image ] )

Number @ | (b | © | @] (e (® @ O (i) 0) (k) (0
1. 40.18| 40.00 40.32 39.87 42.04 39/70 38.97 414B01| 41.29 42.06| 41.37
2. 39.92| 40.64 40.32 39.85 42.y9 38]17 36.78 41.2241| 40.92 42.81| 40.77
3. 43.16| 44.17 4261 4290 46.39 40j47 39.59 448400| 44.78 46.47| 44.60
4. 45.11| 47.08 46.92 44.05 49.32 41)02 40.02 4786.89| 47.20 49.42| 47.44
5. 41.09| 40.50 41.21 40.39 4258 39/52 3925 4187.46| 41.75 42.59| 41.76
6. 39.55| 39.72 40.10 39.21 41.68 39/01 3853 4140.37| 40.69 41.79| 40.91
7. 40.49| 40.56 39.36 42.33 4255 42124 4129 A4281.63| 42.13 42.63| 42.47
8. 41.03| 41.35 40.58 41.97 43.27 40/30 38.80 4249.72| 42.27| 43.44| 42.04
9. 39.89| 40.09 39.12 40.80 42.15 39/67 38.28 41.2345| 40.98 42.24| 41.14
10. 41.95| 41.96 42.26 4218 44.15 41{13 41.25 434211| 43.53 44.21| 43.57
11. 44.08| 44.00 4426 44.34 46.38 43|21 43.19 46£83.30| 45.91 46.48| 45.95
12. 39.89| 40.05 39.26 41.19 4219 4036 39.17 418879| 41.24 42.20| 41.29
13. 39.89| 40.05 39.26 41.19 4219 40(36 39.17 418879| 41.24 42.20| 41.29
14. 43.98| 4459 4394 42.25 46.86 39|65 40.49 458942| 45.64 46.77| 45.36
15. 42.67| 43.21 4282 41.46 4547 39|47 39.21 4448962| 45.00 45.40| 44.66
16. 39.65| 40.04 38.8p 40.67 42.06 3925 38.40 418261| 41.08 42.11| 41.22
17. 40.45| 4092 42.69 40.11 42.y9 39|54 38.22 393041| 39.86 42.97| 39.54
18. 43.14| 43.58 4402 4218 45.81 42{14 40.87 444384| 43.99 45.82| 44.15
19. 41.78| 4194 4156 41.45 4413 4070 39.26 4R4&P.20| 42.64 44.12| 42.32
20. 43.79| 4420 4433 43.21 46.53 40{25 39.58 4442378| 44.06 46.48| 44.13
21. 42.61| 43.08 43.62 42.27 45022 39(26 38.85 4P&B48| 42.73 45.23| 42.79
22. 40.98| 42.31 39.24 40.35 4442 37(82 36.97 4P4926| 41.91 44.52| 42.42
23. 4494| 4583 45.02 44.87 48.15 41|95 40.88 47 4G.37| 46.95 48.17| 47.34
24. 43.43| 44.26 43.34 43.31 46.47 41{19 40.33 458892| 45.45 46.52| 45.94

Table 4.3 shows the CPU time. The table showsttiai(h) method is the fastest than all
other algorithms. Since this method is implemeritedATLAB libraries, the method is

supposed to be coded in optimal manner and is close to the system platform. Since our
proposed method is implemented at user level ingh level language and we have not

performed any code optimizations, so the actuahinghtime of the algorithm will be very
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less. Our proposed fuzzy method is still fasterntimany of the other demosaicking
algorithms as shown in table 4.3 and is also bétien the method (h) in terms of MSE and

PSNR as shown in table 4.2 and table 4.3.

Table 4.3: CPU Time Comparison in seconds (NikogitBi Microscopy Images)

Image ] )

Nurmber @] B @] @] €@ O @] O (i) 0 ® O
1. 0.02| 0.12| 3.79 1064 100 232 26,99 0j01 29%.3011| 2.09| 5.65
2. 0.02| 0.07| 396 9.71] 0.96 242 2858 0/01 2853826 | 2.05| 5.23
3. 0.02| 0.06] 3.79 9.11] 1.0 1.98 2439 0/01 290.9&86 | 1.98| 5.07
4. 0.02| 0.06| 353 9.75/ 095 150 2083 0J01 301027 | 1.97| 5.07
5. 0.02| 0.07| 3.54 10.22 090 1.54 2060 0j01 337.8%3 | 1.96| 5.07
6. 0.02| 0.07| 3.7 10.72 0.89 241 26,29 0J01 291430 | 1.96| 5.08
7. 0.02| 0.07| 3.67) 9.98] 091 212 2613 0J01 2778484 | 1.97| 5.07
8. 0.02| 0.07| 3.67, 9.67| 0.90 2.18 2645 0/01 263448 | 1.96| 5.08
0. 0.02| 0.07| 3.72 956 0.9 216 2587 0/01 269.860 | 1.96| 5.05
10. 0.02| 0.06/ 3.69 959 0.9 231 2532 0j01 265.3B6 | 1.97| 5.08
11. 0.02| 0.07| 3.54 9.16f 0.89 1.67 2137 001 265469 | 1.97| 5.07
12. 0.03| 0.06| 3.6 9.30] 0.88 224 2721 0J01 265426 | 1.96| 5.08
13. 0.02| 0.06| 3.69 9.63] 0.89 219 2690 0/01 266429 | 1.96| 5.08
14. 0.02| 0.07f 3.73 10283 094 2.62 27J02 001 265826 | 1.97| 5.19
15. 0.02| 0.07| 3.74 998 090 2.54 27/06 0J01 266.826 | 1.96| 5.08
16. 0.02| 0.06/ 3.71 10.3% 091 2.33 26/74 001 261.7.26| 1.96| 5.06
17. 0.02| 0.07| 3.7 10.19 0.88 2.23 27/18 0j01 268.8.29 | 1.98| 5.18
18. 0.02| 0.07| 3.64 10.3f 090 2.04 23/]92 001 265.8.22 | 2.00| 5.09
19. 0.02| 0.07| 3.80 1068 0.89 2.20 25|38 0|01 36.8.31| 1.98| 5.10
20. 0.02| 0.07| 3.63 9.93] 092 186 2279 0/01 26599 | 1.98| 5.10
21. 0.02| 0.07| 3.62 932 0.95 183 2357 0/01 2650827 | 1.95| 5.06
22. 0.02| 0.09] 3.68 9.46| 092 234 26/01 0/01 266.929 | 1.96| 5.07
23. 0.02| 0.07] 359 9.70f 0.89 1.65 2155 0J01 266.8380 | 1.98| 5.07
24. 0.02| 0.07] 359 982 101 170 21[77 0J01 268288 | 1.96| 5.17
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The numbers can only provide subset of the overahario. An important evaluation is the
visual appearance of the output images. For tmisxample image is presented. Figure 4.2
shows an image for which a small region is cropged zoomed. This example includes a
perspective that increases spatial frequency aloagegion. Aliasing is a prominent artifact
in this image. The proposed interpolation algorittkh reconstructs this image very best.
Very little aliasing is present in the output imaddis is good example to show how the
algorithm responds to features at various oriemnati The algorithm (k) and the interpolation
algorithm (I) show very few of the aliasing artifagresent in the other output images. This

shows that these algorithms are fairly robust éodhentation of various features.

Figure 4.2: Cropped Region of the Original Image&@d Digital Microscopy Images).
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Figure 4.3: Visual Comparison (Nikon Digital Micompy Images).




4.4.2 Satellite Color Images

The test set consists of 23 images with differarélpresolution (shown for each image in
comparison table) as shown in figure 4.4. This ienagt has has been acquired from Landsat
earth imaging [56]. The interpolated images are amed to the original images and results
are reported for all three performance measures. MBE results are summarized in table
4.4, PSNR results are summarized in table 4.5 hadCPU time results are summarized in

table 4.6. The best result for each image is hyhitdid with bold text.

An image region which is cropped from the origimahge is presented in figure 4.5 for the
original image visual quality comparison. This imagegion is compared with other

algorithm in figure 4.6.
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Figure 4.4: Satellite Color Images: each imagd mifterent size and is numbered in order of

left-to- right and top-to-bottom, from 1 to 23.
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The table 4.4 shows that average MSE over thefsetages. The table shows the method (j)
performs best for 13 images and the proposed mgihgerforms best on rest 10 images.

However, the results of proposed algorithm arecbéftan all other algorithms.

Table 4.4: MSE Comparison (Satellite Color Images)

Image ]

Nurmber (a) (b) (c) d | (e () @ M O & O
1. 486 | 255| 4.78 1548 240 1450 14|74 1]00.69 | 2.43 | 0.86
2. 11.82| 8.67| 13.23 10.28 8.19 839 1579 42316 | 858 | 3.86
3. 560 | 2.82 9.85 1195 2.71 10.81 14|03 1}{41.10| 2.73 | 1.35
4. 15.88| 12.23 9.62 18.84 11.84 1203 1927 §.4463 5.12.07| 5.60
5. 9.99 | 6.51 5.83 1162 6.18 8.93 1121 2{8243 | 6.25 | 2.70
6. 11.16( 7.87| 21.58 9.8% 7.6/ 7.84 13|89 4{39 4.1883 | 4.05
7. 8.11 6.22 6.35 1649 6.00 1281 18/18 3|38.77 | 6.08 | 2.86
8. 15.78| 13.46 20.68 30.82 13.12 28/60 28.15 9.0622 8 13.08| 7.69
9. 2.74 1.77 5.87| 4.37 181 294 406 147 120 418.13
10. 3.86| 1.17| 7.58 2462 100 27.08 20|05 050.48 | 1.06 | 0.53
11. 16.44) 12.79 17.2b 25.39 12.62 17(77 28.06 71.4511 | 12.77| 6.51
12. 6.52 | 4.12| 11.82 16.01 4.04 1257 1465 2.65 8 2.24.09 | 2.27
13. 9.16 | 5.09| 10.88 15.87 4.87 1043 1525 243221 | 499 | 2.37
14. 10.48| 8.01] 11.29 2487 7.81 2434 1949 5.5595 4.7.88 | 4.64
15. 190| 0.70| 17.19 19.87 0.64 15p5 2282 (.39 40.3.57 | 0.33
16. 8.62| 534, 1083 2257 527 19p1 2033 369 23.%.35| 351
17. 4.14 154 3241 2330 139 3145 26(75 055 8 (0.51.40 | 0.46
18. 741 | 5.94| 1030 1288 5.76 10.p3 16,75 4.08.43 | 5.87 | 3.45
19. 15.15| 12.3§ 8.30 2465 1194 21148 2231 712881 | 12.30| 6.23
20. 1144, 7.26f 7.69 2529 7.00 2459 21141 41382 | 7.19 | 4.13
21. 15.16| 1162 13.76 18.34 11.32 1612 1851 6.%00 | 11.37| 6.09
22. 7.95| 554, 819 211 54p 23.15 20/88 358 3.349 | 2.99
23. 13.82| 9.57| 12.69 20.18 9.22 20096 1880 4.8666 | 9.20 | 4.67
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Table 4.5 reports the PSNR. The errors are repdaiethe same set of algorithms. These
measures agree with the MSE comparison. The mdfhadd proposed algorithm (I) shows

superior results to the other algorithms. Althougl proposed method does not have the
higher PSNR average for all images, its resultscaraparable to the latest demosaicking

methods for the most part and it outperforms deotmethods on a number of images.

Table 4.5: PSNR Comparison (Satellite Color Images)

Image )

Number (a) (b) € | (d) (e) () @ 0 () (k) 0]
1. 41.33| 4429 4251 38.66 44.82 3654 30.45 48.835.75| 4453 | 49.18
2. 37.61| 38.89 3758 38.42 39.82 38/89 3757 42.08.18| 38.95| 42.57
3. 40.79| 43.87] 4156 39.32 4425 3784 36.72 46.89.88| 44.06| 47.24
4. 36.22| 37.39 3838 3590 37.62 3737 395.44 40.20.67| 37.46| 40.93
5. 38.25| 40.1q 40.6Y 38.31 40.59 3886 37.72 43.84.35| 40.37| 44.26
6. 37.72| 39.32 36.09 38.55 39.51 39/20 37.67 41.81.98| 39.36| 42.39
7. 39.14| 40.34 4196 37.24 40.58 37/09 36.01 43.43.75| 40.45 43.82
8. 36.24| 36.95 35.88 34.18 37.12 33/64 3369 38.33.04| 37.09 39.40
9. 43.87| 45.88 41.98 42596 45.Y5 4354 42.07 46.4B55| 45.72| 47.97
10. 42.38| 47.81 4246 3846 4847 33|91 35.65 50p.B5.60| 48.32 51.61
11. 36.07| 37.20 36.98 34.82 37.29 35|70 33.82 39.82.68| 37.22 40.25
12. 40.08| 42.22 38.78 38.28 4241 37/40 36.99 444769 42.28 44.92
13. 38.61| 41.27 38.73 37.2 4162 38|01 36.34 446897 41.39| 44.81
14. 38.04| 39.23 38.23 35.31 39.89 34|33 3549 40.85.24| 39.30 41.62
15. 45.61| 49.94 4099 40.28 50.91 36|63 34.72 5253.37| 51.02] 53.49
16. 38.87| 41.03 38.62 36.72 41.14 3686 36.61 4232.46| 41.03 42.99
17. 41.99| 46.59 37.28 40.37 47.90 34|93 36.83 51.8@.65| 47.16/ 52.39
18. 39.55| 4055 38.7¢y 38.12 40.y4 38|01 36.21 42.22.83| 40.61 42.99
19. 36.47| 37.34 39.01 35.03 37.59 34|83 34.75 3943.52| 37.37| 4041
20. 37.67| 39.7Q0 40.4y 36.00 40.00 35]10 36.10 42.23263| 39.77| 42.38
21. 36.42| 37.61 37.2F 36.04 37.y9 36/06 35.78 40.46.40| 37.72 40.50
22. 39.20| 40.84 39.51 36.48 41.p01 34/52 3522 42F8.94| 40.89 43.55
23. 36.81| 38.48 37.66 36.02 38.y4 34/96 3592 414655 38.67 41.80
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Table 4.6 shows the CPU time. The table showsttieaimethod (h) is the fastest than all
other algorithms, the reason being the same asaieepl for Nikon Digital Microscopy
Images. However, our proposed algorithms is stdtdr than many of the other demosaicking

algorithms as shown in table 4.6.

Table 4.6: CPU Time Comparison in seconds (Sadllilor Images).

Image )

Number @ | (b) | (o) (d) (e) () (9) h| 0 (k) 0
1. 0.22| 0.98| 40.34 120.04 894 26[74 27569 (.12.693630.78| 49.94
2. 0.09| 0.56| 19.79 71.63 528 1342 157,63 (.07 991.17.84| 29.96
3. 0.07| 0.40| 13.97 50.04 3.77 10.34 11069 Q.05 501)7.12.65| 21.34
4. 0.04| 0.20| 7.42] 25.94 191 526 58.04 0[03 886.526 11.05
5. 0.02| 0.14| 4.95 17.79 130 323 36.¥y7 002 567214 7.21
6. 0.06| 0.38] 13.12 4728 338 842 99.85 005 155240| 19.75
7. 0.08| 0.43| 1497 52.04 399 1152 116,86 (.05 6617.13.49| 21.95
8. 0.03| 0.21] 7.34 2464 188 753 61.09 003 8.06.26 6 10.57
9. 0.10| 0.58] 20.85 72.83 8.1p 11.12 144{13 (.07 783.18.08| 30.39
10. 0.09| 053] 19.3¢ 68.29 7.85 1896 157.84 (Q.07.752217.29| 29.41
11. 0.05| 0.36] 11.18 40.8Y 441 947 93.6 004 32.8.87| 16.32
12. 0.12| 0.67| 23.31 89.79 939 17,66 186.39 (.08.662721.48| 33.95
13. 0.06| 0.34| 1237 4492 484 911 9787 004 34.70.89| 17.6]
14. 0.07| 0.45| 1559 56.82 6.10 1454 13945 Q.06.641813.59| 22.23
15. 0.04| 0.25 843 3000 332 681 7086 003 10.2332 | 12.04
16. 0.11| 0.55 19.09 67.09 7.58 15,63 16446 (.07.112317.19| 27.56
17. 0.06| 0.32] 11.2¢6 4052 431 1231 96,60 (.04 3418.10.24| 15.70
18. 0.06| 0.35| 11.96 4459 460 7.49 90.5 007 85.22.06| 17.86
19. 0.19| 0.88] 32.86 125.17 12.99 29j20 296.63 (.43.15| 31.89 49.88
20. 0.11| 0.60[ 22.04 77.61 8.47 191 19844 (.08.38821.01| 32.14
21. 0.03| 0.17, 5.86 1961 228 4465 512 002 65336 | 8.12
22. 0.10| 0.60 23.17 77.17 894 20pR7 19977 (Q.09.352521.06| 32.35
23. 0.04| 0.23] 848 2777 318 7.34 7580 003 96874 | 11.96
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Now we will evaluate the visual appearance of thguwot images. For this, an image 7 is
presented for which a small region is cropped arahred as shown in figure 4.5. This image
includes a “island” from a perspective that incemaspatial frequency along the region.
Aliasing is a prominent artifect in this image. Theoposed interpolation algorithm (1)

reconstructs this image very best. Very little gihg is present in the output image. This is
good example to show how the algorithm responaaduires at various orientations. The (1)
algorithm and the (j) interpolation algorithm sheery few of the aliasing artifacts present in

the other output images. This shows that theseitigts are fairly robust to the orientation

of various features.

Figure 4.5: Cropped Region of the Original Imagat¢8ite Images).
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Figure 4.6: Zoomed Images for Visual Comparisoriglee Color Images)




4.4.3 High Definition Color Images

The test set consists of 5 images with differemelpresolution (shown for each image in

comparison table) as shown in figure 4.7. This ienagt contains random images that have
been taken from internet. These images are captsed) a high quality digital camera

because resolution of these images is higher thstaredard size image. The interpolated
images are compared to the original images andtsesme reported for all three performance
measures. The MSE results are summarized in taBleP&NR results are summarized in
table 4.8 and the CPU time results are summarizéabie 4.9. The best result for each image

is highlighted with bold text.

An image region which is cropped from the origimahge is presented in figure 4.8 for the

visual quality comparison. This image region is paned with other algorithm in figure 4.9.

Figure 4.7: High Definition Color images: each iraag of different size and is numbered in
order of left-to- right and top-to-bottom, fromd. 5.

The table 4.7 shows that average MSE over thefsgtages. The table shows the proposed
method (I) performs best on average in terms of MREept of one image i.e. 1 in which

method (j) performs best.
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Table 4.7: MSE Comparison (HD Color Images)

Image i
(a) (b) (c) (d) (e) ® (9) (h) () (K 0]
Number
1. 1.47 0.63 11.61 10.3Y 0.57 11.93 1571 0.40.28 | 0.57 0.32
2. 1.15 0.58 3.17 6.58 0.57 3.43 6.58 0.78 0.6 20.50.77
3. 9.10 6.17 9.53 22.48 5.97 22.00 19,00 3.8 3/9589 | 3.65
4, 16.97| 13.62] 9.93 2439 13.35 21.81 18,75 88,0743 7, 13.26| 6.59
5. 1.09 0.64 9.19 3.74 0.61 7.0"4 9.3f 0.53 0.49 10.60.44

Table 4.8 reports the PSNR. The errors are repdaiethe same set of algorithms. These
measures agree with the MSE comparison. The prdposthod () and method (j) shows

superior results to the other algorithms.

Table 4.8: PSNR Comparison (HD Color Images).

Image )
(a) (b) () (d) (e) Q)] (9) (h) () (k) 0)
Number
1. 46.69| 50.35 4145 43.20 51.13 39.06 4010 52.384.02|50.92| 53.56
2. 48.02| 51.60, 46.48 47.31 51.96 4956 4517 49.69.36| 51.93| 50.00
3. 38.66| 40.38 38.87 36.28 40.62 3504 35,75 42.38.34| 40.61| 42.79
4, 35.92| 36.91] 38.27 3490 37.04 3481 3541 39.29.46| 37.04| 40.09
5. 47.81| 50.28 42.38 46.68 50.59 42p3 4211 51.8¥.50| 50.54| 52.05

Table 4.9 shows the CPU time. The table showsttiei(h) method is the fastest than all
other algorithms, the reason being same as expldmegrevious sections. Our proposed

algorithms is still faster than many of the othemibsaicking algorithms as shown in table

4.9.
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Table 4.9: CPU Time Comparison in seconds (HD Cinlages).

Image ]
@ | () | (9 (d) (e) (f) ) 0 (k) ()
Number
1. 0.23| 0.77| 43.18 12477 12.48 3429 35195 0.28.125 26.82| 65.73
2. 0.07| 0.17| 8.25] 24.53 229 447 6424 003 10.3236 | 12.59
3. 0.03| 0.04] 1.97 5.46 052 178 1753 0j01 2/41121. 2091
4. 0.02| 0.03] 1.69 4.60 048 147 1467 0j00 193940. 2.46
5. 0.09| 0.40f 18.38 52.61 5.18 13.86 14594 Q.05 2523.11.21| 29.7Q

Now we will evaluate the visual appearance of thgpot images. For this, an example image

is presented. Figure 4.8 shows that “fruits” imamge of which a region is cropped and

zoomed to evaluate visual quality of interpolatadgorithm. This cropped region includes a

frequency transition from a perspective that insesaspatial frequency along the region.

Aliasing is a prominent artifect in this image. Tpeoposed interpolation algorithm (1)

reconstructs this image very best. Very little sihg is present in the output image. The

algorithm (l) and the (j) interpolation algorithrhawv very few of the aliasing artifacts present

in the other output images. This shows that thdgerithms are fairly robust to the

orientation of various features.

Figure 4.8: Cropped Region of the Original Imag® (Eolor Images).
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Figure 4.9: Zoomed Images for Visual Comparison Eior Images)
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4.4.4 Kodak Loss-Less Color Image suite

The test set consists of 24 images with 512x712lpesolution as shown in figure 4.10. This
image set is released by Kodak [57] used for comgahe quality of color interpolation in

recent survey paper [58]. The interpolated imagescampared to the original images and
results are reported for all three performance omeas The MSE results are summarized in
table 4.10, PSNR results are summarized in tahld 4&nd the CPU time results are

summarized in table 4.12. The best result for éacge is highlighted with bold text.

An image region which is cropped from the origimahge is presented in figure 4.11 for the
original image visual quality comparison. This imagegion is compared with other

algorithm in figure 4.12.
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Figure 4.10: Test images: each image (768x512)ynshered in order of left-to- right and

top-to-bottom, from 1 to 24.

The table 4.10 shows that average MSE over thefgetages. The table shows the method
() performs best on average in terms of MSE exadpthree images in which proposed
method (I) performs best. However our proposedrdlgo (I) is superior than all other

algorithms except (j).
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Table 4.10: MSE Comparison (Kodak Loss-Less Trueidmages)

Image _ .

Number @ | ® ) ©| ) €] O @ ;M O O K] O
1. 12.09| 10.86| 6.41 | 20.86/ 8.99 | 15.84 21.69| 5.49 | 4.52| 3.33 | 9.37 | 4.25
2. 489 | 3.73| 10.3419.26|3.03 | 17.28 16.82| 1.74 | 1.68| 1.42 | 3.11 | 1.48
3. 3.80 | 296 | 10.4015.18|2.26 | 11.80/ 18.19| 1.21 | 1.03| 0.95 2.27|0.95
4. 549 | 353 | 14.2319.04|3.12 | 13.9519.35/1.66 | 1.51|1.33 | 3.18 | 1.40
5. 10.61| 8.79 | 10.39 14.14|7.06 | 955 | 12.723.85| 294|252 |7.28 | 3.10
6. 938 | 7.85| 3.98| 22.6//6.28 | 22.39 21.10| 4.03 | 3.20| 2.46 | 6.73 | 3.31
7. 518 | 3.36 | 6.27| 16.732.38 | 12.69/ 21.32| 1.29 | 1.01| 0.79 | 2.35 | 1.00
8. 11.72| 11.67| 13.08| 23.54| 8.96 | 20.96) 20.52| 7.21 | 5.87| 3.51 | 9.74 | 5.99
9. 473 | 342 | 3.15| 25.262.90 | 22.58 27.83|1.86 | 1.42| 0.91 | 3.00 | 1.43
10. 464 | 3.24| 216| 21.362.82 | 16.54 25.05| 1.67 | 1.31| 0.90 | 2.89 | 1.29
11. 734 | 592 | 498] 13.854.76 | 7.87 | 18.042.87 | 2.49|1.98 | 5.00 | 2.34
12. 450 | 3.52| 2.07| 31.92.65 | 37.16 24.42| 1.60 | 1.21|0.98 | 2.71 | 1.19
13. 14.44| 12.04| 9.48 | 20.33 10.89| 15.78| 18.69| 6.96 | 5.84| 5.80 11.1P5.53
14. 9.06 | 6.82| 8.80| 15.225.47 | 12.06| 15.56| 2.94 | 2.58| 2.21 | 5.67 | 2.48
15. 456 | 3.75| 6.91| 18.612.96 | 20.23 13.98| 1.92 | 1.82| 1.29 | 2.99 | 1.59
16. 6.55 | 5.08| 3.23| 16.283.97 | 12.13 19.53|2.31 | 1.96| 1.14 | 4.23 | 1.92
17. 514 | 3.43| 4.72| 11.853.04 | 831 | 12.601.75| 1.30| 1.08 | 3.03 | 1.30
18. 9.36 | 6.38| 9.46| 10.14599 | 6.29 | 8.84| 356 288 2.88 6.152.87
19. 7.37 | 6.27| 10.8119.72|5.25 | 15.41 22.42| 3.61 | 2.85|1.84 | 5.61 | 2.85
20. 436 | 3.71| 4.89| 28.952.92 | 34.99 24.82| 1.87 | 2.77|1.23 | 296 | 1.44
21. 733 | 6.21| 11.0123.46|5.13 | 19.44 23.73| 3.16 | 2.64| 2.25|5.29 | 2.50
22, 6.74 | 5.18| 7.69| 19.344.19 | 16.03 20.98| 2.43 | 2.12|1.85|4.32 | 2.01
23. 277 | 215| 8.87| 14.881.54 | 14.96 16.91| 0.92 | 0.76| 0.61 | 1.49 | 0.80
24, 788 | 6.95| 6.56| 17.125.81 | 12.84/ 18.33| 3.54 | 3.32| 2.73 | 5.93 | 2.94

Table 4.11 reports the PSNR. The errors are reppdotethe same set of algorithms. These
measures agree with the MSE comparison. The mdfhadd proposed algorithm (I) shows

superior results to the other algorithms. Althougl proposed method does not have the
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higher PSNR average, its results are comparahtleetdatest demosaicking methods for the

most part and it outperforms all other methods anmaber of images.

Table 4.11: PSNR Comparison (Kodak Loss-Less Trlerdmages).

Image ] )
Number @ | B | © | d| @ ® @] O (i) @) (k) o
1. 37.38| 37.95 41.82 36.15 38.95 36/25 35.19 414B58| 42.95 38.57 42.11
2. 41.43| 42.66 39.58 39.10 43.84 40{23 41.77 4p45B88| 47.08 43.47 46.75
3. 42.42| 43.63 39.69 39.01 45.p08 37|76 35.90 4y4R02| 48.48 44.7748.48
4. 40.89| 42.92 38.83 37.85 4357 37|12 35.86 4540833| 46.98| 43.30| 46.89
5. 37.98| 38.8§ 38.683 37.53 40.00 38|39 37.38 42&344| 44.19 39.65 43.47
6. 38.44| 39.371 44.04 36.30 40.62 34|67 35.38 428B08| 44.28 40.00 43.29
7. 41.04| 43.13 41.06 38.16 45.02 37|51 35.38 47&R09| 49.24 44.6% 48.39
8. 37.58| 37.62 37.35 35.86 39.14 34|96 35.06 3p4@44| 42.76( 38.37 40.60
9. 41.47| 43.03 43.38 37.17 44.10 34|61 33.72 4b44.60| 48.62 43.54 46.94
10. 41.56| 43.28 4499 37.64 44.17 35[96 34.27 4pAG95| 48.66 43.74 47.38
11. 39.55| 40.62 42.00 38.23 41.86 39(19 35.74 4B348517| 45.28 41.3% 44.77
12. 41.65| 4295 4571 36.85 44.65 32|52 34.70 4p4R30| 48.32 44.07 47.76
13. 36.62| 37.46 38.58 35.12 37.95 36|18 35.74 3P4146| 40.53 37.8040.88
14. 38.64| 40.01 39.20L 37.11 4117 3756 36.72 434201| 44.83 40.79 44.47
15. 41.74| 4259 41.1y 37.86 43.B1 35[20 36.84 4b8353| 47.220 43.56 46.37
16. 40.00| 41.30 43.08 38.03 42.[/4 37(33 35.35 444E821| 47.62 42.07 45.70
17. 41.13| 42.99 43.48 39.08 43./0 38|95 37.24 4pAL00| 47.85 43.48 47.31
18. 38.52| 40.27 38.91 38.80 40.60 40|30 39.40 4p&254| 43.59 40.3943.77
19. 39.59| 40.34 38.78 36.97 41.839 36|33 34.76 4RAB58| 4555 40.76 43.78
20. 41.89| 42.64 42.6f 36.60 43.89 32[76 34.35 4p&B70| 47.33 43.60 46.86
21. 39.56| 40.37 38.4B8 36.39 41.835 3535 34.45 438R91| 44.67 41.05 44.42
22. 39.98| 41.19 40.183 37.25 425 36{12 35.18 4AHB87| 45.56| 41.96| 45.40
23. 43.92| 45.03 40.56 39.70 46.7/9 36/60 36.30 4BA%®H32| 50.51 46.62 49.36
24, 39.31| 39.90 41.94 37.25 40.80 37|07 35.71 4p4&N91| 43.84| 40.56| 43.72
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Table 4.12 shows the CPU time. The table showsth®method (h) is the fastest than all
other algorithms, the reason being same as explamerevious sections. Our proposed
algorithms is still faster than many of the othemdbsaicking algorithms as shown in table

4.12.

Table 4.12: CPU Time Comparison in seconds (KodagstLess True Color Images).

SNo.| [1] |[2] |[3] |[4 |[B] (6] |[7 |[8 |[9] [10] | [11] | [12]
1. 0.04| 0.12| 459 111 158 4.61 4777 0J17 319.18.95| 3.50| 8.94
2. 0.04| 0.13| 454 112y 16p 3.83 4594 0j02 316.16.95| 3.36| 8.77
3. 0.04| 0.12| 498 1121 16 4.26 43.87 0J/01 348.p2.01 | 3.34| 8.76
4. 0.04| 0.12| 5.20 10.9f 16p 4.15 4567 0j01 340.19.20 | 3.34| 8.72
5. 0.04| 0.12| 456 10.64 1.5 3.61 4493 0/01 388.67.28 | 3.34| 8.74
6. 0.04| 0.17| 4.720 1042 156 516 4797 0/01 480.8.97| 3.34| 8.73
7. 0.04| 0.14| 455 1130 1.7p 4.741 46.03 0J01 342.p9.28 | 3.35| 8.75
8. 0.04| 0.13| 4.76 10.79 164 457 5263 0j02 339.38.80 | 3.37| 8.73
9. 0.04| 0.13| 4.79 10.6f 154 581 5004 0J01 368.p8.98 | 3.82| 8.73
10. | 0.04| 0.13| 5.0 10.68 156 4.94 4824 0j01 3IB31.7.23| 3.34| 8.75
11. | 0.04| 0.11| 4.77 1048 165 3.13 4490 0{01 I>017.08| 3.37| 8.73
12. | 0.04| 0.12| 484 1049 162 6.62 5038 0{02 I06.6.91| 3.35| 8.72
13. | 0.05| 0.13] 440 1046 155 4.10 46091 0{01 3I0pR6.84| 3.37| 8.73
14. | 0.04| 0.12| 435 10.34 156 4.04 4670 0{02 %B17.56.78 | 3.38| 8.73
15. | 0.04| 0.14| 433 1064 161 449 4435 0|01 4&7/626.94| 3.42| 8.74
16. | 0.05| 0.12| 437 1066 159 4.09 48/11 0/01 4888/66.79 | 3.42| 8.74
17. | 0.04| 0.12| 453 1010 156 3.74 4421 0{01 404.56.78 | 3.43| 8.73
18. | 0.03| 0.15| 4,53 10.24 154 3.30 4835 0{01 391786.77| 3.37| 8.73
19. | 0.03| 0.12| 454 10.18 155 4.34 5047 0{02 4&37[7/6.86| 3.36| 8.92
20. | 0.03| 0.12| 4.44 992 159 4.64 4273 0/02 451.86.92 | 3.41| 8.73
21. | 0.04| 0.12 437 1033 160 449 5377 0[02 41806.80| 3.41| 8.95
22. |1 0.03| 0.13| 445 103p 161 432 5712 0{02 3I>986.86| 3.45| 8.76
23. | 0.03| 0.15| 4.41 103¢ 183 4.25 5434 0{02 4&13[76.93| 3.40| 8.85
24. 1 0.04| 0.12) 434 103¢ 184 4.02 5598 0{01 3B987.06| 3.41| 8.79
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An important evaluation is the visual appearancéhefoutput images. For this, an example
image is presented. Figure 4.11 shows the “hitisige. This example includes a “zebra kind
of pattern” from a perspective that increases apagquency along the region. Aliasing is a
prominent artifect in this image. The (j) interpda algorithm reconstructs this image very
best. Very little aliasing is present in the outputge. The image contains various lines at
vaious angles across the image. This is good exatophow how the algorithm respond to
features at various orientations. The proposedrigthgo (k) and () show very few of the

aliasing artifacts present in the other output iesagrhis shows that these algorithms are

fairly robust to the orientation of various featsire

Figure 4.11: Cropped Region of the Original Imagedak Loss-Less True Color Images).
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Figure 4.12: Zoomed Images for Visual Comparisood#k Loss-Less True Color Images)
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4.4.5 Berkeley Image database

The test set consists of 100 images with 481x3R%&l pesolution as shown in figure 4.13.
This image set has been used for segmentation gesd60]-[62]. This image database has
been acquired from [59]. The interpolated images@mpared to the original images and
results are reported for all three performance oreas The MSE results are compared with
other algorithms using a histogram. The X-axishaf histogram indicates the image number
and Y-axis of the histogram shows the MSE valueth@ corresponding image. This is
shown in figure 4.14. Similarly, PSNR results an@wn in figure 4.15 and the CPU time
results are shown in figure 4.16. The results liergroposed algorithms are highlighted with

bold lines.

An image region which is cropped from the origimahge is presented in figure 4.17 for the
original image visual quality comparison. This imagegion is compared with other

algorithm in figure 4.18.
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Figure 4.13: Berkeley Test images: each image (8@81xis numbered in order of left-to-

right and top-to-bottom, from 1 to 100.
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MSE

The histogram in figure 4.14 shows that average M%é&f the set of images. The results of
the proposed method are highlighted using boldsliiéis histogram shows the proposed (1)
method performs best on average in terms of MSkEmxaf some of the images in which

method (j) performs best.
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Figure 4.14: MSE Comparison (Berkeley Color Teshdes)

Figure 4.15 shows the histogram for the PSNR corspar The errors are reported for the
same set of algorithms. These measures agree metiMISE comparison. The proposed

method (I) and method (j) shows superior resulthi¢oother algorithms.
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CPU Time
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Figure 4.15: PSNR Comparison (Berkeley Color Tesides)
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Figure 4.16: CPU Time Comparison (Berkeley ColostTmages)
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Figure 4.16 shows the CPU time. The histogram shbeatsthe method (h) is the fastest than
all other algorithms, the reason being as explaimegrevious sections. Our proposed
algorithms is still faster than many of the othemibsaicking algorithms as shown in figure

4.16.

The numbers can only provide subset of the overahario. An important evaluation is the
visual appearance of the output images. For thigxample image is presented. Figure 4.17
shows the image 29. This example includes a “bugftlfrom a perspective that increases
spatial frequency along the region. Aliasing is r@npinent artifect in this image. The
proposed interpolation algorithm (I) reconstrudtis image very best. Very little aliasing is

present in the output image. This is good examplshiow how the algorithm respond to

features at various orientations.

Figure 4.18: Cropped Region of the Original Imagerkeley Color Test Images).
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Chapter 5

Conclusion and Future Directions

In this paper, we have presented a new color iotatipn approach for Bayer pattern mosaic
images. The proposed algorithm utilizes edge sthefay the fuzzy membership assignment
as a weighting factor for estimating the missindor® in each pixel. This algorithm
significantly improves the overall visual qualityf the interpolated color images. The
experimental results prove that the algorithm pressecolors on the edges with minimal or
no visual artifacts. We have also presented theablbp quality metrics in terms of MSE and
PSNR to show the performance of the algorithm it images sets for color interpolation
and we observe that PSNR is one of the highest gralbeomparison methods especially for
the proposed fuzzy non-linear method. The CPU birthe proposed algorithm is also faster
than those of many methods especially in the cédazay bilinear interpolation, as only
simple fuzzy weighted averaging is carried outdolor interpolation.

Digital imaging devices such as digital camerad wintinue to employ only a single
electronic sensor for color interpolation due te tbost and packaging consideration.
However demosaicking is still an important problémo research and has explored the
imaging process and the correlation among threer goénes. Artifact reduction is another
research problem in color image interpolation. Terapcorrelation in addition to spectral
correlation should be exploited. For real time imggsystem such as digital cameras,
processing time is an important measure for algoritimplementation because a
photographer may need to take pictures at a fdst &ingle-lens-reflex (SLR) cameras
provide access to the raw image data which cam keeprocessed on a digital computer.
Here the processing time is not an issue. Therdiage performance algorithms that are

computationally complex can still be implementeddti-line processing applications.
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