

Edge Strength based Fuzzification of

Color Demosaicking Algorithms

Major Project submitted in partial fulfilment of th e requirements

for the award of degree of

Master of Technology

In

Information Systems

Submitted By:

Deepak Aneja

(2K11/ISY/04)

Under the Guidance of:

Ms. Seba Susan

(Assistant Professor)

(Department of Information Technology)

Department of Information Technology

Delhi Technological University

(2011-2013)

CERTIFICATE

This is to certify that Deepak Aneja (2K11/ISY/04) has carried out the major project titled

“Edge Strength based Fuzzification of Color Demosaicking Algorithms” as a partial

requirement for the award of Master of Technology degree in Information Systems by Delhi

Technological University.

The major project is a bonafide piece of work carried out and completed under my

supervision and guidance during the academic session 2011-2013. The matter contained in

this report has not been submitted elsewhere for the award of any other degree.

(Project Guide)

Ms. Seba Susan

Assistant Professor

Department of Information Technology

Delhi Technological University

Bawana Road, Delhi-110042

ii

Abstract

Most digital camera use only a single photo sensor overlaid with a color filter array (CFA) to

capture image data. This allows only one of the required color samples to be available at each

pixel location and other two color components need to be interpolated. This process of

reconstructing the full color image from the incomplete color components at each pixel

output from the image sensor is known as demosaicking or color filter array interpolation.

Over the past years, many demosaicking algorithms have been introduced in order to

optimize the subjective and objective interpolation quality, it becomes difficult to implement

them in digital cameras due to their limited computing capacity, available processing time,

and hardware size. An edge strength based fuzzification of demosaicking algorithms is

proposed in this thesis in which edge strength information from the raw image data is

fuzzified and effectively utilized to improve the interpolation quality of current demosaicking

algorithms. We have used five image datasets including the kodak lossless true color image

suit to test our approach over three performance measures, MSE, PSNR and computation

complexity. Experimental results confirm the effectiveness of our approach when compared

to other algorithms.

Keywords: Color Filter Array(CFA) Interpolation, Demosaicking, Color Correlation, Digital

Cameras, Fuzzy Membership, Edge Strength Filter.

iii

ACKNOWLEDGEMENT

I express my gratitude to my major project guide Ms. Seba Susan, Assistant Professor,

Department of Information Technology for the valuable support and guidance she

provided in making this major project. It is my pleasure to record my sincere thanks to my

respected guide for her constructive criticism and insight without which the project would not

have shaped as it has.

I humbly extend my words of gratitude to other faculty members and my friends for

providing their valuable help and time whenever it was required.

Deepak Aneja

Roll No. 2K11/ISY/04

M.Tech. (Information Systems)

E-mail: deepakaneja.cs@gmail.com

iv

Contents

Abstract ii

Acknowledgement iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Defining Demosaicking and its Need...……………...……………………………… 1

1.2 Bayer CFA …………...……………………………………………………………... 1

1.3 Motivation ……………………………………………………………...……...…… 2

1.4 Demosaicking: A Literature Survey …….….………………………………..…….… 3

2 Classification of Demosaicking Methods 5

2.1 Non-Adaptive Algorithms ……...…………………...…………………………….... 6

2.1.1 Nearest Neighbour Replication ……..……...………..…….…………...…… 6

2.1.2 Bilinear Interpolation ……......….………………………………….……….. 7

2.1.3 Smooth Hue Transition Interpolation …………….………………...……….. 8

2.2 Adaptive algorithms ………...……….……………………… ……………………. 10

2.2.1 Pattern Matching based Demosaicking Method …….……….……………. 10

2.2.2 Edge Sensing Interpolation …………………………..………….…………. 11

2.2.3 Linear Interpolation with Laplacian Second-Order Correction Terms ……. 13

2.2.4 Interpolation using a Threshold-based Variable Number of Gradients 15

2.3 Algorithms Exploiting the Correlation between Color Planes in an Image …….…. 19

2.3.1 Edge Strength Based Color Filter Array Interpolation ……………….……. 20

2.3.2 Practical Color Filter Array Interpolation with Non-Linear Filter ...…….… 24

v

3 Proposed Demosaicking Methods based on Edge Strength Fuzzification 29

3.1 Terminology ……………………………………….……………………………….. 29

3.2 Fuzzy Membership Assignment Strategy for Proposed Algorithm ……………..…. 30

3.3 Edge Strength based Fuzzification of Bilinear Interpolation ……….……………… 31

3.4 Edge Strength based Fuzzification of Non-Linear CFA Interpolation …………….. 33

3.5 Graphical Analysis of the Proposed Algorithms …………………………………… 37

4 Experimental Results and Discussion 44

4.1 Environmental Setup …………………………………………………..…………… 44

4.2 Comparison with other methods ……………………………………...……………. 44

4.3 Evaluation Metrics ………………………………………….……………………… 45

4.3.1 Mean Squared Error (MSE) ………………………………………………….. 45

4.3.2 Peak Signal-to-Noise Ratio (PSNR) ………………………………………..... 46

4.3.3 CPU Time …………………………………………………………………..... 46

4.4 Experimental Results and Discussion ………………………………………………. 47

 4.4.1 Nikon Microscopy Digital Color Image Suite ……………………………….. 47

 4.4.2 Satellite Color Images ………………………………………………………... 54

 4.4.3 High Definition Color Images ……………………………………………….. 61

 4.4.4 Kodak Loss-Less True Color Images ………………………………………... 65

 4.4.5 Berkeley Segmentation Image Suite ……………………………………….… 72

5 Conclusion and Future Directions 78

References 79

vi

List of Figures

a. Bayer CFA Pattern ……………………………………………………………….……... 2

2.1 Illustration of Nearest Neighbour Replication …………………………………….....…. 6

2.2 5×5 Bayer CFA pattern (GRBG) ………………………………..……………………….8

2.3 5×5 Bayer CFA pattern (BGGR) ………………………………………..……….……. 12

2.4 5×5 Bayer CFA pattern (BGGR) …………………………………………..…….……. 14

2.5 5×5 Bayer CFA pattern (RGGB) ………………………………………………...……. 16

2.6 Three Step CFA Interpolation ………………...………………………………….……. 20

2.7 3x3 Edge Strength Filter Pattern …………………………………………..…….……. 20

2.8 7×7 Bayer CFA Pattern (GBRG) showing Pixel Coordinates ………..………………. 25

3.1 7×7 Bayer CFA Pattern (GBRG) showing Pixel Coordinates ……………………..…. 31

3.2 Cropped regions from the original image …………………………………………..…. 39

3.3 Bilinear Interpolation v/s Edge Strength based Fuzzified Bilinear Filter (Edge Region)

with directions as labelled ……………………………………………………………….…. 40

3.4 Bilinear Interpolation v/s Edge Strength based Fuzzified Bilinear Filter (Homogenous

Intensity Region) with directions as labelled …………………………..………………..…. 41

3.5 Non-Linear Filter based CFA Interpolation v/s Edge Strength based Fuzzified Non-

Linear CFA Interpolation (Edge Region) with directions as labelled …………………..…. 42

3.6 Non-Linear Filter based CFA Interpolation v/s Edge Strength based Fuzzified Non-

Linear CFA Interpolation (Homogenous Intensity Region) with directions as labelled …... 43

4.1 Nikon Digital Microscopy Test images: each image (700x504) is numbered in order of

left-to- right and top-to-bottom, from 1 to 24 ……………………………….…………..…. 48

4.2 Cropped Region of the Original Image (Nikon Digital Microscopy Images) ……...…. 52

4.3 Zoomed Images for Visual Comparison (Nikon Digital Microscopy Images) ……..…. 53

vii

4.4 Satellite Color Images: each image is of different size and is numbered in order of left-to-

right and top-to-bottom, from 1 to 23 …………………………………………………...…. 55

4.5 Cropped Region of the Original Image (Satellite Images) ………………………….…. 59

4.6 Zoomed Images for Visual Comparison (Satellite Color Images) ……………….....…. 60

4.7 HD Color Images: each image is of different size and is numbered in order of left-to-

right and top-to-bottom, from 1 to 5 ………………………………………...…………..…. 61

4.8 Cropped Region of the Original Image (HD Color Images) ………………………..…. 63

4.9 Zoomed Images for Visual Comparison (HD Color Images) ……..………………..…. 64

4.10 Test images: each image (768x512) is numbered in order of left-to- right and top-to-

bottom, from 1 to 24 ……………………………………………………………………..…. 66

4.11 Cropped Region of the Original Image (Kodak Loss-Less True Color Images) ..…… 70

4.12 Zoomed Images for Visual Comparison (Kodak Loss-Less True Color Images) ……. 71

4.13 Berkeley Test images: each image (481x321) is numbered in order of left-to- right and

top-to-bottom, from 1 to 100 …………………………………………………………….…. 73

4.14 MSE Comparison (Berkeley Color Test Images) ……………………………….....…. 74

4.15 PSNR Comparison (Berkeley Color Test Images) …………………………….…..…. 75

4.16 CPU Time Comparison (Berkeley Color Test Images) ……………………….…...…. 75

4.17 Cropped Region of the Original Image (Berkeley Color Test Images) ……….…..…. 76

4.18 Zoomed Images for Visual Comparison (Berkeley Color Test Images) …………..…. 77

viii

List of Tables

Table 4.1: MSE Comparison (Nikon Digital Microscopy Images) ……………….……..…. 49

Table 4.2: PSNR Comparison (Nikon Digital Microscopy Images) ………..….………..…. 50

Table 4.3: CPU Time Comparison (Nikon Digital Microscopy Images) ………………..…. 51

Table 4.4: MSE Comparison (Satellite Color Images) …………………………………..…. 56

Table 4.5: PSNR Comparison (Satellite Color Images) ………………..………………..…. 57

Table 4.6: CPU Time Comparison (Satellite Color Images) …………..………………..…. 58

Table 4.7: MSE Comparison (HD Color Images) ……………………..………………..…. 62

Table 4.8: PSNR Comparison (HD Color Images) ……………………………………..…. 62

Table 4.9: CPU Time Comparison (HD Color Images) ………………….……………..…. 63

Table 4.10: MSE Comparison (Kodak Loss-Less True Color Images) …….…………..…. 67

Table 4.11: PSNR Comparison (Kodak Loss-Less True Color Images) ………………..…. 68

Table 4.12: CPU Time Comparison (Kodak Loss-Less True Color Images) …………..…. 69

1

Chapter 1

Introduction

1.1 Defining Demosaicking and its Need

A digital image is composed of red (R), green (G) and blue (B) color samples at each pixel

position. In order to construct a true color image a digital camera would require three separate

photo sensors, each responsible for capturing color information lying in the wavelength range

of red, blue and green color respectively. In a three chip digital camera, light entering the

camera is split and projected onto each color sensor. These sensors have to be registered

precisely because outputs from these three sensors are concatenated to construct a true color

image. These additional requirements and the cost of three different color sensors make the

system costly. Thus, most digital camera use only a single sensor covered with a color filter

array (CFA) which allows only one color to be measured at each pixel. This means the other

two color values must be estimated at each pixel. This process of estimation is known as

demosaicking or color filter array interpolation.

1.2 Bayer CFA

Although many different CFA pattern have been proposed. The most common CFA pattern is

Bayer CFA [1] which is 50% Green, 25% Red and 25% Blue as shown in figure 1.1. The

Green color is sampled at a rate twice that of Blue and Green color because the human visual

system is more sensitive in the medium wavelengths, corresponding to the green color. Other

patterns are also used, e.g., the Nikon Coolpix 990 uses a cyan, magenta, yellow and green

(CMYG) grid where each of the colors is sampled at the same rate.

2

Figure 1.1: Bayer CFA

1.3 Motivation

The output from color filter array is the incomplete color samples (raw image data) which

need to be processed using a demosaicking algorithm to construct the complete color image.

Demosaicking method makes exploits the color correlation between pixels within an image to

estimate the missing color component. Spatial correlation is defined as the tandency of pixels

to assume similar color values within a small homogenous region of an image and spectral

correlation is the dependency between the pixel values of different color planes in a small

image region. The basic assumption is that color ratio or color difference is constant within a

small homogenous region. This assumption tends to fail across edges, hence many

demosaicking algorithms utilize the edge information adaptively. A good demosaicking

algorithm should have the following traits.

• Avoidance of introduction of false color artifacts, such as chromatic aliases, zippering

(abrupt unnatural changes of intensity over a number of neighbouring pixels).

• Maximum preservation of image resolution.

• Low computational complexity for fast processing.

• Amenability to analysis for accurate noise reduction.

3

1.4 Demosaicking: A literature survey

Demosaicking is a major step in image processing of digital cameras and has been an area of

research in both academics and industry. A large number of demosaicking approaches have

been proposed in past years. Some methods employ simple numerical formulas [2] such as

nearest neighbour, median filtering [64], bilinear and bicubic interpolation. Bicubic

interpolation requires high order computation [3] than bilinear but can product high-

frequency components of images. A large circuit size is required for high-order computation

which is not feasible for a small size digital imaging device. Therefore a small circuit is

employed in DSC [4]-[6] so that low-order computation can be performed with a technique to

improve the interpolation accuracy by using an exponential calculation [4]-[7]. These

spatially invariant interpolation methods treat color channels separately and interpolate

missing pixels in each channel. This approach works well in uniform areas but it produces

color artifacts in areas with textures and edges.

In order to obtain better demosaicking performance, correlation between color channels is

exploited. Constant color difference rule or constant color ratio rule [7], [8], [9], [10], [66],

[71] exploits the spectral correlation which assumes that color ratio or color difference is

constant in a homogenous region. This assumption fails across edges, therefore many

demosaicking algorithms use the edge information adaptively during color interpolation.

Apart from this some methods perform statistical analysis of images, for example

multivariate analysis, Bayesian estimation, learning by training sample etc. [11]-[14].

Applications of the pattern matching [15] have also been employed. Green channel suffers

less from aliasing because in Bayer CFA pattern green channel samples are twice that of red

and blue ones. Therefore green channel is the starting point of the CFA interpolation process.

Glotzbach et al. in [16], focuses on improving red and blue channel by adding into them the

high frequency components obtained from green channel. Gunturk et al. in [17] used on

4

alternating projections scheme based on inter-channel color correlation in high frequency

subbands to improve the red and blue channels successively. Many observations regarding

color channel frequencies made in a method [18] and suggest that instead of filtering the CFA

image as individual color channels, it should be filtered as a whole preserve high frequency

information. The method uses a fixed 5×5 filter for green channel interpolation and an

adaptive filter for blue and red channel interpolation. The fully interpolated green channel is

then used to interpolate the chrominance information.

Various edge direction based decision rules for the green channel interpolation [9], [10], [19],

[20], [62], [65], [69] has been proposed early. The method in [9] uses derivatives of red and

blue samples in initial green channel interpolation. An approach using variance of color

differences as a decision rule is been proposed by authors of [21]. Zhang et al. [22], tried to

improve the interpolation performance of the original method [9] by making a soft decision.

In this method, color differences along horizontal and vertical directions are treated as noise

and they are combined in optimal manner using the linear minimum mean square estimation

(LMMSE) framework. This approach is further improved by Paliy et al. [23] by introducing

scale adaptive filtering based on linear polynomial interpolation (LPA). Hirakawa et al. [24]

proposed performing interpolation in both horizontal and vertical directions by comparing

local homogeneity of horizontal and vertical interpolation resuls and Menon et al. [25] used

color gradients over a local window to make the direction decision.

A subset of methods involves image restoration techniques [66]. Techniques such as pseudo-

inverse filter [26], a super resolution technique [27]-[29], a technique based on the

interpolation of projection onto convex sets (POCS) [17], [30], and use of Discrete Cosine

Transform (DCT) and Wavelet conversion [33]-[34]. Since these techniques requires a

significant increase in hardware size, they are not suitable for single chip digital cameras.

5

Chapter 2

Classification of Demosaicking Methods

Many demosaicking methods have been proposed over the past years. This field of research

and development is getting more and more attention because of the emerging market of

electronic consumer devices. These demosaicking methods exploit the spatial and spectral

color correlation within an image to interpolate the missing color values at each pixel

position. The reconstructed image is generally accurate in constant color difference areas, but

has a loss of resolution (detail and sharpness) and has edge artifacts. Demosaicking methods

can be broadly categorized into non-adaptive algorithms and adaptive algorithms, as

described below.

2.1 Non-adaptive algorithms: In non-adaptive demosaicking algorithms, a fixed pattern of

computation is performed on every pixel location in the raw image data (mosaic pattern) in

order to estimate the two missing color components. These types of algorithms are easy to

implement with low cost in terms of computational requirements.

2.2 Adaptive algorithms: In adaptive demosaicking algorithms, intelligent processing is

performed on every pixel location based on the characteristics of the image in order to

estimate the missing color components. These types of algorithms yield better results in terms

of quality as compared with the non-adaptive algorithms. However, effective algorithms in

this category are computationally more complex.

2.3 Algorithms exploiting the correlation between color planes in an image: In this set of

algorithms, we have explained two algorithms which utilizes the correlations between

different color planes in an image to estimate the missing color components. Both algorithms

are adaptive in nature and makes use of the edge information.

6

We review some algorithms from all three categories in order to introduce some flavour and

characteristics of the demosaicking methods proposed in the literature. In this report, we have

only reviewed some basic methods that we have compared with our proposed algorithm.

2.1 Non-adaptive algorithms

2.1.1 Nearest Neighbour Replication: In this simple color interpolation method [35], [36],

each missing color component in a pixel replicates the value of the nearest pixel of the same

color component in the input image. The nearest neighbour can be any one of the upper,

lower, left and right pixel. An example is illustrated below in figure 2.1 for a 3x3 block in

green plane. Here we assume the left neighbouring pixel value is used to fill the missing ones.

Figure 1.1: Illustration of Nearest Neighbour Replication

As discussed by James E. Adams [35], the only advantage of this approach is that

computational requirement is very less and well suited for applications where speed is very

crucial. However, the significant color errors make it unsuitable for still imaging system, such

as high-resolution digital cameras.

7

2.1.2 Bilinear Interpolation: Instead of replicating the nearest neighbours, bilinear

interpolation [35] estimate the missing color component by taking the linear average of the

adjacent pixels with same color component. For example, the pixel B8 at location (2, 3) in

figure 2.2 contains blue component only. Hence the missing green component at red/blue

pixels is estimated by taking average of the left, right, top and bottom green pixel values.

Interpolation of a red/blue pixel at a green position is performed by taking the average of two

adjacent pixel values in corresponding color. The missing red/blue component at

corresponding blue/red pixels can be estimated as linear average of the four diagonally

adjacent corner neighbours containing red/blue pixels. This is illustrated by an example

below using figure 2.2 for a 5 x 5 block.

Interpolation of green pixel at red or blue pixel position: Here we are estimating green value

at blue pixel B8. Similarly green value can be estimated at red pixels.

�8 = �3 + �7 + �9 + �13
4 																																																																																																												(2.1)

Interpolation of red/blue pixel at green position: Here we are estimating blue and red value at

green pixel G7. Similarly red and blue value can be estimated at pixel location G13.

�7 = �6 + �8
2 ; 		�7 = �2 + �12

2 																																																																																																		(2.2)

Interpolation of red/blue pixel at blue/red position: Here we are estimating red and blue value

at blue pixel B8 and red pixel R12 respectively.

�8 = �2 + �4 + �12 + �14
4 ; 		�12 = �6 + �8 + �16 + �18

4 																																													(2.3)

8

Figure 2.2: 5×5 Bayer CFA pattern (GRBG)

This method is very simple and can be easily implemented. However, experimental results

show that zipper effect is introduced in the neighbourhood of the interpolated pixels in the

interpolated full color image. This artifact may be acceptable in a video stream because the

artifact may not be visible by the human eye due to effect of motion blur between video

frames, but these artifacts are not acceptable for still images.

2.1.3 Smooth Hue Transition Interpolation: The key problem of the color artifacts in

bilinear is that the hue values of adjacent pixels change abruptly across edges. The Bayer

CFA pattern can be considered as combination of a luminance channel (green pixels) and two

chrominance channels (red and blue pixels). The smooth hue transition interpolation method

[37]-[42], [63] interpolates these channels independently. The luminance or green component

can first be interpolated at red and blue pixel locations using bilinear interpolation as

discussed before. Then the chrominance channel is interpolated by imposing a smooth

transition in hue value from pixel to pixel. In order to do so, it defines "hue value" for blue as

B/G, and "hue value" for red as R/G. For interpolation of the missing blue pixel values ��,� ,

in pixel location (m, n) in the Bayer pattern, the following three different cases may arise.

9

Case 1: the pixel at location (m, n) contains green color component only and the adjacent left

and right pixel locations contain blue color component only. For example, the pixel G7 at

location (2, 2) in figure 2.2 contains green component only and its adjacent pixels in left and

right contain only blue component. The blue component at pixel location (m, n) can be

estimated as follows:

��,� = ��,� ∗ ���,�����,��� +
��,�����,���� 2� 																																																																																											(2.4)

Case 2: the pixel at location (m, n) contains green color component only and the adjacent top

and bottom pixel locations contain blue color component only. The pixel G13 at location (3,

3) in figure 2.2 is such an example. The blue component at location (m, n) can be estimated

as follows:

��,� = ��,� ∗ �����,�����,� +
����,�����,�� 2� 																																																																																											(2.5)

Case 3: the pixel at location (m, n) contains red color component only and the four diagonally

neighbouring corner pixels contain blue color component only. For example, the pixel R12 at

location (3, 2) in figure 2.2 contains red color component only. The blue component at

location (m, n) can be estimated as follows:

��,� = ��,� ∗ �����,�������,��� +
����,�������,��� +

����,�������,��� +
����,�������,���� 4� 																																					(2.6)

The interpolation of missing red pixel values can be computed similarly at blue and green

pixels.

The “hue value” changes depending on where the interpolation step happens in the image

processing chain. For example, if the pixel value is transformed into logarithmic space from

linear space before interpolation, then the “hue value” can be defined as B-G or R-G instead

10

of B/G or R/G. This is coming from the fact that log(X/Y) = log(X) – log(Y) = X' – Y'. Here

X’ and Y’ are the logarithmic values of X and Y respectively. This helps reduce

computational complexity for implementation because all the division for calculating the hue

value is replaced by subtraction.

2.2 Adaptive algorithms

2.2.1 Pattern Matching based Demosaicking Algorithm: In the Bayer pattern, a blue or red

pixel has four neighbouring green pixels. Wu, et al [43] proposed simple pattern matching

algorithm for interpolating the missing color components based on the pixel contexts. The

algorithm defines a green pattern for the pixel at location (m, n) containing a non-green color

component as a four-dimensional integer-valued vector:

�(!, ") = #	����,�, ����,�, ��,���, ��,���$																																																																														(2.7)

The similarity (or difference) between two green patterns g1 and g2 is defined as the vector

1-norm:

‖�1 − �2‖ = ' |�1) − �2)|
*+),-

																																																																																																						(2.8)

It is likely that the two pixel locations where the two green patterns are defined will have

similar red and blue color components when the difference between two green patterns is

small.

Missing color component is estimated by performing a weighted average proportional to the

degree of similarity of the green patterns. For example, the missing blue color ��,� , in pixel

location (m, n) contains only red color component is estimated by comparing the green

pattern �(!, ") with the four neighbouring green patterns �(! − 1, " − 1), �(! − 1, " +

11

1), �(! + 1, " − 1)	."/	�(! + 1, " + 1) . If all the differences between �(!, ") and other

four green patterns are uniformly small, then a simple average is used to estimate the missing

blue color component,

��,� = ����,��� + ����,��� + ����,��� + ����,���4 																																																												(2.9)

Otherwise, when the largest difference is above certain threshold, only the top two best-

matched green patterns information are used. If ‖�(!, ") − �(! − 1, " − 1)‖ and

‖�(!, ") − �(! + 1, " − 1)‖ are the two smallest differences, then the missing blue color is

estimated as follows.

��,�

= ‖�(!, ") − �(! − 1, " − 1)‖ ∗ ����,��� + ‖�(!, ") − �(! + 1, " − 1)‖ ∗ ����,���‖�(!, ") − �(! − 1, " − 1)‖ + ‖�(!, ") − �(! + 1, " − 1)‖

																																																																																																																																																													(2.10)
Similarly the missing red color values can be computed.

This algorithm is simple and efficient. However, as pointed out by Wu, et al [43], the quality

of reconstructed images is still undesirable.

2.2.2 Edge Sensing Interpolation: Different predictors are used for estimating the missing

green values in the edge directed interpolation method depending on the luminance gradients

[19]. First, two gradients, one in horizontal direction, the other in vertical direction are

computed for each red or blue pixel location. For instance, consider the pixel B8 as shown in

figure 2.2. The two gradients are defined as,

∆H = |�7 − �9|	;	∆V = |�3 − �13|																																																																																				(2.11)

12

Based on these gradient values and a certain threshold (T), the interpolation algorithm then

can be described as follows.

45 ∆H 6 T	and	∆V ; T	then

						�8 � ��7 � �9�/2;
@AB@	45	∆H ; T	and	∆V 6 T	then

 						�8 � ��3 � �13�/2;
@AB@

 					�8 � ��3 � �7 � �9 � �13�/4;
@"/45

@"/45																																																																																																																																																			�2.12�

A slightly different edge sensing interpolation algorithm is described in [10]. Instead of

luminance gradients, chrominance gradients are used. The two gradients, refer to figure 2.3

below, are defined as:

∆H � C�5 & DE�DF
G C	; 		∆V � C�5 & D��DH

G C (2.13)

Figure 2.3: 5×5 Bayer CFA pattern (BGGR)

13

2.2.3 Linear Interpolation with Laplacian second-order Correction terms: This

algorithm [9] focuses on improving the visual quality of the interpolated image when applied

on images with sharp edge. Missing color components are interpolated using following steps.

The first step in this algorithm is to interpolate the missing green color components at the red

and blue pixels. Consider the interpolation of green value at a blue pixel location (using

figure 2.3) as an example. Interpolation of green value at red pixel location can be done in the

similar fashion. Now interpolate the missing green component g5 at pixel location B5. We

define horizontal and vertical gradients in this pixel location as follows:

∆H = |�4 − �6| + |�5 − �3 + �5 − �7|	; 	∆V = |�2 − �8| + �5 − �1 + �5|												(2.14)
Intuitively, we can consider ∆H and ∆V above as combination of the luminance gradient and

the chrominance gradient as described in edge sensing interpolation algorithm in the previous

section. Using these two gradient values, the missing green component g5 at pixel location

B5 is estimated as follows.

45 ∆H <	∆V	then

 						�5 = (�4 + �6)/2 + (�5 − �3 + �5 − �7)/4;
@AB@	45	∆H > ∆V	then

 						�5 = (�2 + �8)/2 + (�5 − �1 + �5 − �9)/4;
@AB@

 													�5 = (�2 + �4 + �6 + �8)/4 + (�5 − �1 + �5 − �3 + �5 − �7 + �5 − �9)/8;
@"/45

@"/45																																																																																																																																																				(2.14)
 The interpolation step for g5 has two parts. The first part is the linear average of the

neighbouring green values, and the second part can be considered as a second-order

correction term based on the neighbouring blue (red) values.

14

The missing red (or blue) color components are estimated in every pixel location after

estimation of the missing green components in every pixel location. Depending on the

position, refer to figure 2.4, we have three cases:

Figure 2.4: 5×5 Bayer CFA pattern (BGGR)

1. Estimate red (blue) color component at a green pixel where nearest neighbours of red

(blue) pixels are in the same column, e.g. pixel location G4 as shown in figure 2.4 above. We

estimate the red component r4 at pixel location G4 as follows.

�4 � ��1 � �7�/2	 � ��4 & �1 � �4 & �7�/4	 (2.15)

2. Estimate red (blue) color component at a green pixel where nearest neighbours of red

(blue) pixels are in the same row, e.g. pixel location G2 as shown in fig 2.4. We estimate the

red component r2 at pixel location G2 as follows.

�2 � ��1 � �3�/2 � ��2 & �1 � �2 & �3�/4 (2.16)

3. Estimate red (blue) color component at a blue (red) pixel. For instance, estimate red

component r5 at pixel location B5 as shown in figure 2.4. Here we first define two diagonal

gradients as follows:

15

∆N = |�1. �9| + |�5 − �1 + �5 − �9| ;

	∆P = |�3. �7| + |�5 − �3 + �5 − �7| (2.17)

Using these diagonal gradients, the algorithm for estimating the missing color components is

described as:

45 ∆N < 	∆P	then

 						�5 = (�1 + �9)/2 + (�5 − �1 + �5 − �9)/2;
@AB@	45	∆N > ∆P	then

 						�5 = (�3 + �7)/2 + (�5 − �3 + �5 − �7)/2;
@AB@

 										�5 = (�1 + �3 + �7 + �9)/4 + (�5 − �1 + �5 − �3 + 	�5 − �7 + �5 − �9)/4;
@"/45

@"/45 (2.18)

This method provides much better visual quality of the reconstructed image containing a lot

of sharp edges. However, the second-order derivative for calculating the gradients makes the

algorithm quite sensitive to noise. Since only the color information in the same direction

(vertical, horizontal, or one of the diagonal directions based on the gradient information) is

used for interpolation, we believe that it is still possible to further improve the visual quality

of the reconstructed image.

2.2.4 Interpolation using a Threshold-based variable number of gradients: This

algorithm is described in [44]. A set of gradients is determined from the color values in the

5x5 neighbourhood centred at the pixel under consideration. Each gradient corresponds to a

different direction. For each set of gradients, a threshold value is determined and the

threshold is used to select a subset of gradients. Low-valued gradients indicate pixels having

similar color values whereas high-valued gradients would be expected in regions of the image

16

where there are many fine details or sharp edges. The subset of gradients is used to locate

regions of pixels that are most like the pixel under consideration. The pixels in these regions

are then weighted and summed to determine the average difference between the color of the

actual measured center pixel value and the missing color. A similar approach using weighted

gradients is given in [67]. The algorithm is illustrated by an example using a 5 x 5 block as

shown in figure 2.5.

1. Interpolation of the green, red/blue value at the blue/red pixel: consider figure 2.5 below,

we want to estimate g13 and b13 at R13.

Figure 2.5: 5×5 Bayer CFA pattern (RGGB)

Form eight gradients as follows :

��./4@"K	L = |�8 & �18| � |�3 & �13| � |�7 & �17|/2 � |�9 & �19|/2 � |�2
& �12|/2 � |�4 & �14|/2;

��./4@"K	M � |�14 & �12| � |�15 & �13| � |�9 & �7|/2 � |�19 & �17|/2 � |�10
& �8|/2 � |�20 & �18|/2;

17

��./4@"K	N = |�18 − �8| + |�23 − �13| + |�19 − �9|/2 + |�17 − �7|/2 + |�24

− �14|/2 + |�22 − �12|/2;

��./4@"K	O = |�12 − �14| + |�11 − �13| + |�17 − �19|/2 + |�7 − �9|/2 + |�16

− �18|/2 + |�6 − �8|/2;

��./4@"K	LM = |�9 − �17| + |�5 − �13| + |�8 − �12|/2 + |�14 − �18|/2 + |�4

− �8|/2 + |�10 − �14|/2;

��./4@"K	NM = |�19 − �7| + |�25 − �13| + |�14 − �8|/2 + |�18 − �12|/2 + |�20

− �14|/2 + |�24 − �18|/2;

��./4@"K	LO = |�7 − �19| + |�1 − �13| + |�12 − �18|/2 + |�8 − �14|/2 + |�6

− �12|/2 + |�2 − �8|/2;

��./4@"K	NO = |�17 − �9| + |�21 − �13| + |�18 − �14|/2 + |�12 − �8|/2 + |�22 −

�18|/2 + |�16 − �12|/2; (2.19)

Determine a threshold and select a subset of gradients: the threshold is determined by

P = Q1 ∗ R4" + Q2 ∗ (R.S −R4"), where R4" is the minimum gradient value and R.S is

the maximum gradient value. Q1 and Q2 are determined experimentally as 1.5 and 0.5,

respectively. Here Q1 ∗ R4" accounts for the case in which the gradients are all very similar,

so that we wish to include all of them by setting a threshold that exceeds them. Q2 ∗ (R.S −

R4") accounts for the case in which there is a significant difference between the maximum

and minimum gradient values.

Now, locate the pixels in the regions corresponding to the subset of gradients and to use those

pixels to determine a color difference between the center pixel color and the color to be

recovered. Determine the average green, blue and red values in the gradient subset regions:

Form the average color values in the gradient subset regions to get �TU�, �TU� and �TU�

18

Find the normalized color difference by dividing the difference of two sums by the number of

gradients in the threshold subset, and add this normalized color difference to the pixel value

under consideration to form the other two missing color components.

2. Interpolation of the blue/red value at the green pixel: consider figure 2.2, we want to

estimate r13 and b13 at G13.

Form eight gradients as follows

��./4@"K	L = |�3 − �13| + |�8 − �18| + |�7 − �17|/2 + |�9 − �19|/2 + |�2

− �12|/2 + |�4 − �14|/2;

��./4@"K	M = |�14 − �12| + |�15 − �13| + |�9 − �7|/2 + |�19 − �17|/2 + |�10

− �8|/2 + |�20 − �18|/2;

��./4@"K	N = |�18 − �8| + |�23 − �13| + |�19 − �9|/2 + |�17 − �7|/2 + |�24

− �14|/2 + |�22 − �12|/2;	

��./4@"K	O = |�12 − �14| + |�11 − �13| + |�17 − �19|/2 + |�7 − �9|/2 + |�16

− �18|/2 + |�6 − �8|/2;

��./4@"K	LM = |�9 − �17| + |�5 − �13| + |�4 − �12| + |�10 − �18|;

��./4@"K	NM = |�19 − �7| + |�25 − �13| + |�20 − �8| + |�24 − �12|;

��./4@"K	LO = |�7 − �19| + |�1 − �13| + |�6 − �18|/2 + |�2 − �14|;

��./4@"K	NO = |�17 − �9| + |�21 − �13| + |�22 − �14| + |�16 − �8|;

 (2.20)

As described earlier, determine a threshold and select a subset of gradients. Again, P = Q1 ∗

R4" + Q2 ∗ (R.S −R4"), where k1 = 1.5 and k2 = 0.5. Again, Locate pixels in the selected

regions and use those pixels to determine a color difference between the center pixel color

19

and the color to be recovered, finally add this color difference to produce an estimate for the

missing color value.

2.3 Algorithms exploiting the correlation between color planes in an image

This section explains two demosaicking algorithms,

2.3.1 Edge Strength Based Color Filter Array Interpolation [45].

2.3.2 Practical Color Filter Array Interpolation with Non-Linear Filter [46].

Algorithm 2.3.1 [45] proposes an edge strength filter that provides local, orientation-free

intensity transition information. This algorithm utilizes this edge strength information

combined with constant color difference assumption to interpolate the initial green channel

while avoiding averaging across edge structures. The algorithm further uses this information

to update the initially interpolated green channel. Algorithm 2.3.2 [46] proposes a filter that

has a simple structure and is effective eliminating artifacts on the edge of color boundaries.

This algorithm is the simpler and improved version of its previous algorithm [47] which uses

a linear low pass filter and was more constrained. The algorithm makes use of the constant

color difference correlation assumption combined with an edge detection technique which

detects the direction in which the correlation is high and uses the signal of higher correlation

to execute interpolation. Both algorithms works in three steps, the green channel is

interpolated first followed by the interpolation of red and blue channel as shown in figure 2.6.

These algorithms are explained in step by step as follows:

20

CFA Samples

Figure 2.6: Three Step CFA Interpolation

2.6: Three Step CFA Interpolation

2.3.1 Edge Strength Filter Based Color Filter Array Interpolation: The algorithm

proposes an edge strength filter that provides local, orientation- free luminance transition

information. The filter has a 3 by 3 block size as shown in figure 2.7. Given a grey scale input

image, it could be formulated as

NVW = |X� − XH|

2
+
|XE − XF|

2
+ |XG − XY| + |X- − XZ|																																																														(2.21)

Figure 2.7: 3x3 Edge Strength Filter Pattern

P1 P2 P3

P4 P5 P6

P7 P8 P9

Interpolation Step

Green Plane
Interpolation

Fully-Populated green plane, CFA
sampled red and blue plane

Red Plane
Interpolation

Blue Plane
Interpolation

Full-Color
Demosaicked Image

21

Where SP5 is the edge strength at pixel P5.

By applying the above filter to all available pixels, we obtain the edge strength map of the

input image. Although the filter result for a single pixel does not provide any edge direction

information, the relationship between neighbouring pixel is exploited that yields the edge

orientation in that neighbourhood. The edge strength for green and blue pixels will be

calculated in the same way. The edge strength map obtained from the raw image data will

help us both in initial green channel interpolation stage and in subsequent green channel

update.

Step 1: Green Channel Interpolation and Updation

Labelling each pixel as horizontal or vertical by comparing edge strength differences along

each direction on a local window. For a window of 5 by 5, horizontal and vertical difference

costs can be formulated as follows:

H i,j= ∑ (∑ (��\�G 	G�\�G Si+m, j+n – Si+m, j+n-1));

V i,j= ∑ (∑ (G�\�G 	��\�G Si+m, j+n – Si+m+1, j+n)) (2.22)

Where Si,j is the edge strength filter output at pixel location (i, j) and H i,j and V i,j represent

the total horizontal and vertical costs. Now the target pixel will be labelled as horizontal if

horizontal cost is less than vertical cost and vice versa. Based on the edge direction labels,

green channel is interpolated as:

�′),^ 		�
_̀a
b̀�),^ � �̅),d̂ & �),^

2 + �),^�� & �e),^��d
4 + �),^�� & �),^��d

4 , 45	ℎg�4hg"K.A
�),^ � �̅),î & �),^

2 + �)��,^ & �e)��,^i
4 + �)��,^ & �e)��,^i

4 , 45	j@�K4k.A
		

22

Where directional estimations are calculated by

�̅),d̂ � �),^�� � �),^��2 + 2 ∗ �),^ & �),^�G & �),^�G4

�̅),î � �)��,^ � �)��,^2 + 2 ∗ �),^ & �)�G,^ & �)�G,^4

�e),d̂ � �),^�� � �),^��2 + 2 ∗ �),^ & �),^�G & �),^�G4

�e),î � �)��,^ � �)��,^2 + 2 ∗ �),^ & �)�G,^ & �)�G,^4 																																																																			(2.23)

Green channel estimation for red pixel locations is performed simply by replacing B’s with

R’s in the equation above.

Now we will this initially interpolated green channel. For every green pixel to be updated, we

consider the four neighbours with available color difference estimates. We have assigned a

weight to each neighbour pixel which is inversely correlated with the total absolute edge

strength difference in its direction.

l� = mN),^ & N)��,^m � mN)��,^ & N)�G,^m � mN)�G,^ & N)�E,^m � n�
lG � mN),^ & N),^��m � mN),^�� & N),^�Gm � mN),^�G & N),^�Em � n�

lE � mN),^ & N),^��m � mN),^�� & N),^�Gm � mN),^�G & N),^�Em � n�

l- � mN),^ & N)��,^m � mN)��,^ & N)�G,^m � mN)�G,^ & N)�E,^m � n�

R� � lG ∗ lE ∗ l-

RG � l� ∗ lE ∗ l-

RE � lG ∗ l� ∗ l-

R- � lG ∗ lE ∗ l�

23

Ropoqr = R� +RG +RE +R-

�̅),^ � �),^ �O ∗ #�̅),^ & �),^$ � �1 −O)
∗ s R�Ropoqr #�̅)�G,^ & �)�G,^$ � RGRopoqr #�̅),^�G & �),^�G$
� RERopoqr #�̅),^�G & �),^�G$ � R-Ropoqr #�̅)�G,^ & �)�G,^$t																																�2.24)

Similarly for red pixel, replace B i,j by R i,j. Here C1 is a non- zero constant to avoid zero

denominator.

Step 2: Red and Blue channel interpolation at Green pixels

For red and blue channel estimation at green pixels, we employ bilinear interpolation over

color differences. Here, only the nearest two neighbours for which the original pixel value

available are used.

�eG),G^ � �G),G^ & #�̅G)��,G^ & �G)��,G^$ � #�̅G)��,G^ & �G)��,G^$2

�eG)��,G^�� � �G)��,G^�� & #�̅G)��,G^�� & �G)��,G^$ � #�̅G)��,G^�G & �G)��,G^�G$2 														(2.25)

Similarly Red channel can be estimated at green pixels.

Step 3: Red and Blue channel interpolation at Blue and Red pixel respectively

For red channel interpolation at blue pixels and blue channel interpolation at red pixels,

diagonal neithbours are used adaptively based on green channel gradients in both directions.

24

R� = m�̅)�G,^�G & �̅),^m � m�̅)��,^�� & �̅)��,^��m � m�̅),^ & �̅)�G,^�Gm
RG � m�̅)�G,^�G & �̅),^m � m�̅)��,^�� & �̅)��,^��m � m�̅),^ & �̅)�G,^�Gm

�e),^ � �̅),^ &RG ∗ #�̅)��,^�� & �)��,^�� � �̅)��,^�� & �)��,^��$2 ∗ (R� +RG)

+ R� ∗ #�̅)��,^�� & �)��,^�� � �̅)��,^�� & �)��,^��$2 ∗ (R� +RG) 																																				(2.26)

2.3.2 Color Filter Array Interpolation with Non Lin ear Filter: The pixel interpolation

procedure is described below. First we compute the signal gradient in horizontal and vertical

direction at red and blue pixels. Now because the number of G pixels is larger than any other,

we first interpolate the G pixels on the R and B planes (Step 1). It is important to perform G

pixel interpolation as the first step so that interpolation errors will not be propagated in the R

and B pixel interpolation. Next, we perform interpolation of R and B signals on the G plane

(Step 2), and finally we perform interpolation of the R signal in the B plane and the B signal

in the R plane, which have the lowest inter-channel correlation (Step 3). In the computing

expression given below, the coordinates of each signal are the same as the pixel array shown

in figure 2.8.

Step 0: Compute signal gradient at R32 pixel location.

Vertical Signal Gradient:

u = �j + �j + �j
4 																																

�j = (|−��G + 2�EG − �WG|)2

25

�j = (|�GG − �-G| + |−��� + 2 ∗ �E� − �W�|4 + | − ��E + 2�EE − �WE|4)

�j = (|�G� − �-�| + |�GE − �-E|)2 																																																																																													(2.27)

Horizontal Signal Gradient:

v = �ℎ + �ℎ + �ℎ
4 																							

�ℎ = (|−�E* + 2�EG − �E-|)2

�ℎ = (|�E� − �EE| + |−�G* + 2�GG − �G-|4 + | − �-* + 2�-G − �--|4)

�ℎ = (|�G� − �GE| + |�-� − �-E|)2 																																																																																														(2.28)

�** �*� �*G �*E �*- �*W �*Z

��* ��� ��G ��E ��- ��W ��Z

�G* �G� �GG �GE �G- �GW �GZ

�E* �E� �EG �EE �E- �EW �EZ

�-* �-� �-G �-E �-- �-W �-Z

�W* �W� �WG �WE �W- �WW �WW

�Z* �Z� �ZG �ZE �Z- �ZW �ZZ

Figure 2.8: 7×7 Bayer CFA Pattern (GBRG) showing Pixel Coordinates

At the B pixel location, V and H is similarly computed as the red plane changed R to B.

26

Step 1: G plane interpolation on R and B plane.

IfIfIfIf V<= 4 and H <= 4 or H == V

�EG = �EG + (�EG{ − �EG{)

Where,

�EG{ = ' ' �),^
4 , 4| ∈ 22,31,33,42

^)

�EG{ = ~∑ ∑ �)^ +^ 4�EG�)
8 , 4| ∈ 12,30,34,52 (2.29)

Else if V > H

�EG = �EG + (�EG�{ − �EG�{)

Where,

�EG�{ = ' ' �)^
2^)

, 4| ∈ 31, 33

�EG�{ = ~∑ ∑ �)^^ +2�EG�)
4 , 4| ∈ 30,34 (2.30)

Else if V < H

�EG = �EG + (�EG�{ − �EG�{)

Where,

�EG�{ = ' ' �)^
2^)

, 4| ∈ 22, 42

�EG�{ = ~∑ ∑ ���� �G�����
- , 4| ∈ 12,52 (2.31)

Then the blue plane is similarly computed as the red plane.

27

Step 2: R and B plane interpolation on G plane

Interpolating R values at G pixels:

�GG = �GG + (�GG�{ − �GG�{)

�EE = �EE + (�EE�{ − �EE�{)					
Where,

�GG�{ = ∑ ∑ �),^^) 2 , 4| ∈ 12,32

�EE�{ = ∑ ∑ �),^^) 2 , 4| ∈ 32,34

�GG�{ = ∑ ∑ �),^^) 2 , 4| ∈ 12,32

�EE�{ = ∑ ∑ �),^^) 2 , 4| ∈ 32,34																																																																																																							(2.32)
Interpolating B values at G pixels:

�GG = �GG + (�GG�{ − �GG�{)

�EE = �EE + (�EE�{ − �EE�{)	
Where,

�GG�{ = ∑ ∑ �),^^) 2 , 4| ∈ 21,23

�EE�{ = ∑ ∑ �),^^) 2 , 4| ∈ 23,43

�EE�{ = ∑ ∑ �),^^) 2 , 4| ∈ 23,43

�GG�{ = ∑ ∑ �),^^) 2 , 4| ∈ 21,23																																																																																																							(2.33)

28

Step 3: R and B plane interpolation on B and R plane respectively.

If V<= 4 and H <= 4 or H == V

�GE = �GE + (�GE{ − �EE{)																																																																																																												(2.34)
Else if V>H

�GE = �GE + (�GE�{ − �EE�{)																																																																																																										(2.35)
Else if V<H

		�GE = �GE + (�GE�{ − �GE�{)																																																																																																								(2.36)
Then the blue plane is similarly computed as the red plane.

29

Chapter 3

Proposed Demosaicking Methods based on Edge Strength Fuzzification

We have proposed two demosaicking algorithms, one is the modified version of the standard

bilinear interpolation and other is the modified version of the Algorithm 2.3.2 [46] explained

in previous section. These algorithms are modified in three respects:

• Edge information is been used effectively to remove artifacts.

• Fuzzification of edges based on their strengths to reduce computational complexity

involved in decision making.

• Execution time of the algorithm is reduced.

The modified algorithms are better than the conventional demosaicking algorithms in terms

of both objective and subjective quality. Both algorithms make use of an edge strength filter

as explained in [45].

3.1 Terminology

Universe of Discourse: The Universe of Discourse is the range of all possible values for an

input to a fuzzy system.

Fuzzy Set: A fuzzy set is a pair (�, !� where � is the universe of discourse and	!: � →
�g, 1�. For each S�� the value !(S) is called the membership of S in (�, !�. For a finite

set � � �S�, … , S�	� the fuzzy set ��,!� is often denoted by �!�S��/S�, . . . , !�S��/S�	�.

30

Fuzzy Weighted Average: Let A be the fuzzy set such that � = �!(S�)/S�, . . . , !�S��/S�	�
for each S��, where � is the universe of discourse. The fuzzy weighted average �� for the

fuzzy set A is defined as:

�� = S�μ� + SGμG +⋯+ S�μ�μG + μG +⋯+ μ� = ∑ S)μ)�)*∑ μ)�)*

3.2 Fuzzy Membership Assignment Strategy for Proposed Algorithm

The basis of the proposed algorithm is the constant color ratio/difference over a local distance

in a homogenous region. This assumption is likely to fail across edges. The edge information

can be used adaptively during interpolation to avoid considering non-correlated color

differences, interpolation quality can be improved. The question at this point is how the edge

information can be expressed meaningfully at the pixel level so that it is useful enough to

improve interpolation quality. The answer to this is fuzzification of the edge information in

an image.

A fuzzy set EDGE_STRENGTH is defined over each pixel of the image as the universe of

discourse. The edge strength at each pixel is computed and treated as the membership value

of each pixel. The higher is the intensity variation across edge, the higher will be its strength.

The membership value at each pixel is inversely proportional to its edge strength. The higher

is the edge strength value at each pixel, the lower will be its membership in fuzzy set. The

reason here is strong edges will contribute less to the interpolation process because missing

color values are computed by taking the fuzzy weighted average of the similar neighbouring

pixels.

31

3.3 Edge Strength based Fuzzification of Bilinear Interpolation

An edge strength filter that provides local, orientation-free luminance transition information

is proposed in [45]. The edge strength is computed and fuzzified for each pixel such that

membership value for each pixel in fuzzy set is inversely proportional to the edge strength.

The green channel is interpolated first by computing the fuzzy weighted average of green

pixel values from neighbourhood. Next we interpolate Red and Blue channel on the Green

pixels, and finally we perform interpolation of the Red channel on Blue pixels and Blue

channel on Red pixels, which have the lowest inter-channel correlation. Bayer CFA pattern

which is being used for the proposed demosaicking algorithm is shown in figure 3.1.

�** �*� �*G �*E �*- �*W �*Z

��* ��� ��G ��E ��- ��W ��Z

�G* �G� �GG �GE �G- �GW �GZ

�E* �E� �EG �EE �E- �EW �EZ

�-* �-� �-G �-E �-- �-W �-Z

�W* �W� �WG �WE �W- �WW �WW

�Z* �Z� �ZG �ZE �Z- �ZW �ZZ

Figure 3.1: 7×7 Bayer CFA Pattern (GBRG) showing Pixel Coordinates

Step 0: Edge strength at each pixel is computed using an edge strength filter [45] as explained

in in previous section. The filter has 3 by 3 support size as shown in figure 2.7 and formula is

32

same as explained in equation 2.21. After computing the edge strength S at each pixel, we

will now fuzzify this edge strength at each pixel using the min-max normalization.

μ = C1 − �
���	(�)C (3.1)

Step 1: Green channel Interpolation at red/blue pixel position, for example consider a red

pixel �EG and a blue pixel �GE3, green value can be interpolated by taking fuzzy weighted

average of four neighbour green pixel values as shown in equation 3.2 and 3.3. Please refer

figure 3.1 for the pixel pattern and their positions.

�EG = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	22,31,33,42																																																																																							(3.2)

�GE = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	13,33,22,24																																																																																							(3.3)

Step 2: Red and Blue channel Interpolation on Green pixel. There can be two cases

depending upon the position of red or blue pixels in four neighbourhood of green pixel. In

first case, the red pixels are located at the above and below of the green pixel and blue pixels

are located at the left and right of the green pixel. For example, consider a green pixel �GG on

which we are interpolating the red and blue pixel value by taking fuzzy weighted average of

the two same color pixels as shown in equations 3.4 and 3.7. In second case, the red pixels

are located at the left and right of the green pixel and blue pixels are located at the above and

below of the green pixel. For example, consider a green pixel �EE on which we are

interpolating the red and blue pixel value by taking the fuzzy weighted average of the same

color pixels as shown in equations 3.5 and 3.6. Please refer figure 3.1 for the pixel pattern

and their positions.

33

�GG = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	12,32																																																																																																									(3.4)

�EE = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	32,34																																																																																																									(3.5)

�EE = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	23,43																																																																																																									(3.6)

�GG = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	21,23																																																																																																									(3.7)

Step 3: Red/Blue channel interpolation on Blue/Red pixels. Consider a blue pixel �G� and a

red pixel	��G. The red value at �G� and blue value at ��G are interpolated by taking the fuzzy

weighted average of the four diagonal pixels of the same color as shown in equations 3.8 and

3.9. Please refer figure 3.1 for the pixel pattern and their positions.

�G� = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	10,12,30,32																																																																																												(3.8)

��G = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	01,03,21,23																																																																																											(3.9)

3.4 Edge Strength based Fuzzification of Non-Linear CFA Interpolation

An edge strength filter that provides local, orientation-free luminance transition information

is proposed in [45]. The edge strength is computed and fuzzified for each pixel such that

membership value for each pixel in fuzzy set is inversely proportional to the edge strength.

The green channel is interpolated first by adding the color difference of red/blue and green

34

colors at current pixel value. The difference is computed between fuzzified low frequency

components of each color. Fuzzified low frequency component is the fuzzy weighted average

of similar color pixel values from neighbourhood. Next we interpolate Red and Blue channel

on the Green pixels, and finally we perform interpolation of the Red channel on Blue pixels

and Blue channel on Red pixels, which have the lowest inter-channel correlation. Bayer CFA

pattern which is being used for the proposed demosaicking algorithm is shown in figure 3.1.

Step 0: Edge strength at each pixel is computed using an edge strength filter [45] as explained

in in previous section. The filter has 3 by 3 support size as shown in figure 2.7 and formula is

same as explained in equation 2.21. After computing the edge strength S at each pixel, we

will now fuzzify this edge strength at each pixel using the min-max normalization as shown

in equation 3.1.

Step 1: Green channel interpolation on Red and Blue pixels. Consider a red pixel �EG and

blue pixel	�GE. The green value at �EG and �GE is interpolated by adding a color difference

value at current pixel value as shown in equation 3.10 and 3.11. This color difference is

computed by taking a fuzzy low frequency component for red/blue and green pixels at current

position. At	�EG, fuzzy low frequency component for red and green value is computed as

shown in equations 3.12 and 3.13. At	�GE, fuzzy low frequency component of the blue and

green value is computed as shown in equations 3.14 and 3.15. Please refer figure 3.1 for the

pixel pattern and their positions.

�EG = �EG + (�EG{ − �EG{)																																																																																																											(3.10)
�GE = �EG + (�EG{ − �EG{)																																																																																																											(3.11)

35

Where,

�EG{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	22,31,33,42																																																																																						(3.10)

�EG{ = ∑ ∑ μ)^�)^^ + 4�EG)
∑ ∑ μ)^^) + 4μEG +	, 4|�	12,30,34,52																																																																			(3.11)

�GE{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	13,33,22,24																																																																																						(3.10)

�GE{ = ∑ ∑ μ)^�)^^ + 4�GE)
∑ ∑ μ)^^) + 4μEG +	, 4|�	03,43,21,25																																																																			(3.11)

Step 2: Red and Blue channel interpolation on Green pixels. There can be two cases

depending upon the position of red or blue pixels in four neighbourhood of green pixel. In

first case, the red pixels are located at the above and below of the green pixel and blue pixels

are located at the left and right of the green pixel. For example, consider a green pixel at �GG

on which we are interpolating the red and blue pixel value by adding color difference to the

current pixel value as shown in equations 3.12 and 3.14. In second case, the red pixels are

located at the left and right of the green pixel and blue pixels are located at the above and

below of the green pixel. For example, consider a green pixel �EE on which we are

interpolating the red and blue pixel value by adding color difference to current pixel value as

shown in equations 3.13 and 3.15. Please refer figure 3.1 for the pixel pattern and their

positions. Please refer figure 2.8 for the pixel pattern and their positions.

�GG = �GG + (�GG�{ − �GG�{)																																																																																																								(3.12)

�EE = �EE + (�EE�{ − �EE�{)																																																																																																								(3.13)

36

�GG = �GG + (�GG�{ − �GG�{)																																																																																																								(3.14)

�EE = �EE + (�EE�{ − �EE�{)																																																																																																								(3.15)

Where,

�GG�{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	12,32																																																																																																		(3.16)

�EE�{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	32,34																																																																																																		(3.17)

�EE�{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	33,35																																																																																																			(3.18)

�GG�{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	12, 32																																																																																																		(3.19)

�GG�{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	21,23																																																																																																		(3.20)

�EE�{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	23, 43																																																																																																		(3.21)

�EE�{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	23,43																																																																																																			(3.22)

�GG�{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	21, 23																																																																																																		(3.23)

Step 3: Red/Blue channel interpolation on Blue/Red pixel respectively. Consider a blue pixel

�GE and a red pixel	�EG. The red value at �GE and blue value at �EG are interpolated by adding

the color difference of red/blue and green color to the current pixel value as shown in

equations 3.24 and 3.25. The fuzzy low frequency component for the red/blue color at current

37

pixel is computed using four diagonal pixels of the same color as shown in equations 3.26,

3.27, 3.28 and 3.29. Please refer figure 3.1 for the pixel pattern and their positions.

�GE = �GE + (�GE{ − �GE{)																																																																																																												(3.24)
�EG = �EG + (�EG{ − �EG{)																																																																																																												(3.25)

Where,

�GE{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	12,14,32,34																																																																																								(3.26)

�GE{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	13, 22,24,33																																																																																							(3.27)

�EG{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	21,23,41,34																																																																																						(3.28)

�EG{ = ∑ ∑ μ)^�)^^)
∑ ∑ μ)^^) , 4|�	22, 31,33,42																																																																																							(3.29)

3.5 Graphical Analysis of the Proposed Algorithms

We have analysed the improvement of our proposed algorithm over the algorithms explained

in section 2.3. We have cropped two 9x9 block size regions from an image out of which one

block belongs to the region of homogeneous intensity and second block belongs to a region

where intensity is changing abruptly as we move across the region. The cropped regions are

shown in figure 3.2. We have illustrated the errors that occurred during interpolation for both

versions of the algorithm and compared those using graphs. These graphs illustrate the signal

correlation existent between the original signal and the interpolated signal. The X-axis in the

38

graph indicates the pixel position and Y-axis in the graph indicates the intensity. There can be

three types of correlation between two signals:

• Positive Correlation

• Non-Correlation

• Negative Correlation

Positive Correlation: The interpolated signal intensity increases or decreases with increase

or decrease in the original signal intensity respectively.

Non-Correlation: The interpolated signal has no correlation with the original signal. This

means the interpolated signal intensity remains constant with the increase or decrease in

original signal intensity.

Negative Correlation: The interpolated signal intensity decreases with increase in original

9signal intensity and increases with decrease in original signal intensity.

Each graph shows values of 9 pixels for two algorithms and there are a total of 8 graphs, 4

each for an algorithm in four directions i.e., horizontal, vertical, left diagonal and the right

diagonal. Same graphs are plotted for the homogenous region of the image. The pixel located

at position 5 is the centre pixel. The gap between the points on same pixel position in a graph

shows the interpolation error. The larger will be the gap, the more will be the interpolation

error. From the graphs it can be clearly seen that the proposed versions of the algorithms

shows less interpolation errors that the conventional algorithms. Graphs shown in figure 3.3

and figure 3.4 compare the bilinear interpolation with proposed edge strength based fuzzy

bilinear interpolation algorithm explained in section 3.2.1. Figure 3.3 shows graphs for the

homogenous region and figure 3.4 shows graphs for the edge region. Graphs shown in figure

39

3.5 and figure 3.6 compare the method explained in section 2.3.2 with proposed algorithm

explained in section 3.2.1. Figure 3.5 shows graphs for the homogenous region and figure 3.6

shows graphs for the edge region.

Figure 3.2: Cropped regions from the original image.

Uniform Region

Edge Region

40

3.3: Bilinear Interpolation v/s Edge Strength based Fuzzified Bilinear Filter (Edge Region)

with directions as labelled

41

3.4: Bilinear Interpolation v/s Edge Strength based Fuzzified Bilinear Filter (Homogenous

9Intensity Region) with directions as labelled.

42

3.5: Non-Linear Filter based CFA Interpolation v/s Edge Strength based Fuzzified Non-

Linear CFA Interpolation (Edge Region) with directions as labelled.

43

3.6: Non-Linear Filter based CFA Interpolation v/s Edge Strength based Fuzzified Non-

Linear CFA Interpolation (Edge Region) with directions as labelled.

44

Chapter 4

Experimental Results and Comparisons

4.1 Environmental Setup

The following system configuration has been used while conducting the experiments:

Hardware configuration

Processor: AMD A10-4600M APU

Clock Speed: 2.3 GHz

Main Memory: 4 GB

Hard Disk Capacity: 1 TB

Software Configuration

Operating System: Windows 8

Software Used: MATLAB 7.9.0 (2009b)

We evaluate the performance of our proposed algorithm on five image datasets obtained from

different domains namely, Nikon Microscopy Digital Images [49], Satellite Color Images

[56], High Definition Color Images, Kodak Loss-Less True Color Images [57], Berkeley

Segmentation Image Database [59]. The images are first synthetically sub-sampled in Bayer

CFA pattern and then interpolated back to three channels using proposed algorithm. The

details about each database with their experimental results are explained in further sections

4.2 Comparison with other methods

We have compared our algorithm with some of the algorithms in terms of objective measures

and subjective quality measures. Objective measures are computed for each of the output

images to determine the difference between the original image and the reconstructed image.

45

The following demosaicking methods are used for comparison, (a) Nearest Neighbour

Replication, (b) Bilinear Interpolation, (c) Smooth Hue Transition Interpolation, (d) Pattern

Matching Algorithm, (e) Edge Directed Interpolation, (f) Color Interpolation using Laplacian

Second order color correction I, (g) Threshold based Variable Number of Gradients, (h)

Gradient Corrected Linear Interpolation, (i) Edge Strength based CFA Interpolation, (j) Non-

Linear Filter based CFA interpolation. All these algorithms are implemented in MATLAB.

The MATLAB code for algorithms (a), (c), (d), (f) and (g) are obtained from [48]. Our

proposed algorithm (k) Edge Strength based Fuzzified Bilinear Interpolation and (l) Edge

Strength based Non-Linear Filter based CFA interpolation shows much better results than

many of the other algorithms in terms of subjective quality and objective measures.

4.3 Evaluation Metrics

These objective measures and the detailed results for each database is explained in following

sections.

4.3.1 Mean Squared Error (MSE)

The mean squared error (MSE) of an estimator is one of the ways to quantify the difference between

values implied by an estimator and the true values of the quantity being estimated. MSE is a risk

function, corresponding to the expected value of the squared error loss or quadratic loss. MSE

measures the mean of the squares of the "errors." The error is the amount by which the value

implied by the estimator differs from the true value of the quantity to be estimated. The difference

occurs because of randomness or because the estimator doesn't account for information that could

produce a more accurate estimate.

46

If ��) is a dataset of n estimations, and �) is the dataset of the true values, then the (estimated)

MSE of the estimator is:

RNM = 1
"'#��) − �)$G																																																																																																																						(4.1)

�

)\�

4.3.2 Peak Signal-to-Noise Ratio (PSNR)

Peak signal-to-noise ratio is an engineering term for the ratio between the maximum possible

power of a signal and the power of corrupting noise that affects the fidelity of its

representation. PSNR is usually expressed in terms of the logarithmic decibel scale because

many signals have a very wide dynamic range. PSNR is most commonly used to measure the

quality of reconstruction from sub-sample image data (e.g., for .image demosaicking). A

higher PSNR generally indicates that the reconstruction is of higher quality.

PSNR can be easily defined via the mean squared error (MSE). Given a loss-

less m×n monochrome image I with 255 as its maximum grey level, PSNR is defined as:

XNL� = 10. Ag� �255GRNM�																																																																																																																			(4.2)

Where RNM is the mean squared error as explained in the above section.

4.3.3 CPU Time

CPU time (or CPU usage, process time) is the amount of time for which a central processing

unit (CPU) was utilized for processing instructions of a computer program.The CPU time is

often measured in clock ticks or seconds. We have computed the CPU time in seconds for the

running program by using the standard MATLAB commands.

47

4.4 Experimental Results and Discussion

4.4.1 Nikon Microscopy Digital Color Image suite

The test set consists of 24 images with 700×504 pixel resolution as shown in figure 4.1. This

image set is being used for the first time for testing the quality of color interpolation. This

image set is obtained from [49]. There are many other sources [50]-[55] that provide these

digital microscopy images. The interpolated images are compared to the original images and

results are reported for all three performance measures. The MSE results are summarized in

table 4.1, PSNR results are summarized in table 4.2 and the CPU time results are summarized

in table 4.3. The best result for each image is highlighted with bold text. An image region

which is cropped from the original image is presented in figure 4.2 for the visual quality

comparison. This image region is compared with other algorithm in figure 4.3.

48

Figure 4.1: Nikon Digital Microscopy Test images: each image (700x504) is numbered in

order of left-to- right and top-to-bottom, from 1 to 24..

The table 4.1 shows that average MSE over the set of images. The table shows that proposed

fuzzy method (k) performs best on average in terms of MSE for all images.

49

Table 4.1: MSE Comparison (Nikon Digital Microscopy Images)

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

1. 7.32 5.05 7.83 10.43 4.63 9.34 11.90 5.33 6.49 6.40 4.63 6.02

2. 8.56 5.27 8.47 14.81 4.78 14.38 20.05 6.39 8.06 7.36 4.81 7.49

3. 3.27 1.76 4.60 4.16 1.62 5.97 7.72 2.19 2.75 2.35 1.61 2.43

4. 2.35 1.24 2.41 6.28 1.15 6.30 7.59 1.36 1.79 1.77 1.17 1.70

5. 5.55 4.42 5.44 8.57 4.05 8.78 9.65 4.79 5.28 5.04 4.04 4.97

6. 8.30 5.32 7.65 12.31 4.97 11.02 13.51 6.00 7.42 7.22 4.89 6.70

7. 6.35 4.01 7.81 3.88 3.81 5.02 8.58 3.76 4.70 4.09 3.65 3.73

8. 5.44 3.70 7.26 5.22 3.49 6.78 11.35 4.31 4.88 4.37 3.43 4.51

9. 6.77 4.41 8.99 5.71 4.05 7.35 11.90 4.92 5.90 5.26 3.98 5.07

10. 5.66 3.75 7.16 11.38 3.42 10.72 13.14 3.62 4.69 4.46 3.40 4.28

11. 3.54 2.20 4.05 6.55 1.97 5.88 7.50 2.08 2.74 2.57 1.94 2.48

12. 7.06 4.62 9.46 5.64 4.19 6.75 10.27 5.15 5.96 5.49 4.19 5.32

13. 7.06 4.62 9.46 5.64 4.19 6.75 10.27 5.15 5.96 5.49 4.19 5.32

14. 5.94 3.74 7.28 18.17 3.39 17.34 17.98 3.67 4.91 4.89 3.44 4.81

15. 6.22 4.14 7.62 15.02 3.77 13.71 15.79 4.02 5.02 4.87 3.80 4.88

16. 7.55 4.70 11.52 6.68 4.33 8.74 12.67 5.34 6.39 5.78 4.30 5.60

17. 7.77 5.27 5.47 14.01 4.85 12.29 14.98 7.21 8.08 7.56 4.88 7.86

18. 5.14 3.36 5.27 9.83 3.05 8.17 11.31 3.50 4.58 4.88 3.10 4.45

19. 7.74 5.18 11.40 11.15 4.69 8.35 12.78 5.87 6.84 6.27 4.68 6.67

20. 4.29 3.17 5.92 8.76 2.87 8.32 10.04 3.66 4.29 4.13 2.92 3.99

21. 5.47 3.98 6.26 10.03 3.63 9.58 10.70 4.82 5.39 5.27 3.69 5.11

22. 5.33 2.53 12.94 7.73 2.36 11.33 14.20 3.66 5.12 4.44 2.31 4.02

23. 2.19 1.07 2.26 2.54 1.00 5.15 7.22 1.18 1.53 1.32 1.00 1.21

24. 3.18 1.59 3.21 3.33 1.49 5.62 7.66 1.66 2.16 1.88 1.46 1.67

Table 4.2 reports the PSNR. The errors are reported for the same set of algorithms. These

measures agree with the MSE comparison. The proposed fuzzy method (k) shows superior

results to the other algorithms.

50

Table 4.2: PSNR Comparison (Nikon Digital Microscopy Images).

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

1. 40.18 40.00 40.32 39.87 42.04 39.70 38.97 41.63 41.01 41.29 42.06 41.37

2. 39.92 40.64 40.32 39.85 42.79 38.17 36.78 41.22 40.41 40.92 42.81 40.77

3. 43.16 44.17 42.61 42.90 46.39 40.47 39.59 44.91 44.00 44.78 46.47 44.60

4. 45.11 47.08 46.92 44.05 49.32 41.02 40.02 47.86 46.89 47.20 49.42 47.44

5. 41.09 40.50 41.21 40.39 42.58 39.52 39.25 41.87 41.46 41.75 42.59 41.76

6. 39.55 39.72 40.10 39.21 41.68 39.01 38.53 41.11 40.37 40.69 41.79 40.91

7. 40.49 40.56 39.36 42.33 42.55 42.24 41.29 42.51 41.63 42.13 42.63 42.47

8. 41.03 41.35 40.58 41.97 43.27 40.30 38.80 42.19 41.72 42.27 43.44 42.04

9. 39.89 40.09 39.12 40.80 42.15 39.67 38.28 41.23 40.45 40.98 42.24 41.14

10. 41.95 41.96 42.26 42.18 44.15 41.13 41.25 43.92 43.11 43.53 44.21 43.57

11. 44.08 44.00 44.26 44.34 46.38 43.21 43.19 46.31 45.30 45.91 46.48 45.95

12. 39.89 40.05 39.26 41.19 42.19 40.36 39.17 41.38 40.79 41.24 42.20 41.29

13. 39.89 40.05 39.26 41.19 42.19 40.36 39.17 41.38 40.79 41.24 42.20 41.29

14. 43.98 44.59 43.94 42.25 46.86 39.65 40.49 45.89 45.42 45.64 46.77 45.36

15. 42.67 43.21 42.82 41.46 45.47 39.47 39.21 44.99 44.62 45.00 45.40 44.66

16. 39.65 40.04 38.85 40.67 42.06 39.25 38.40 41.32 40.61 41.08 42.11 41.22

17. 40.45 40.92 42.69 40.11 42.79 39.54 38.22 39.80 39.41 39.86 42.97 39.54

18. 43.14 43.58 44.02 42.78 45.81 42.14 40.87 44.63 43.84 43.99 45.82 44.15

19. 41.78 41.94 41.56 41.45 44.13 40.70 39.26 42.60 42.20 42.64 44.12 42.32

20. 43.79 44.20 44.33 43.21 46.53 40.25 39.58 44.24 43.78 44.06 46.48 44.13

21. 42.61 43.08 43.62 42.27 45.22 39.26 38.85 42.85 42.48 42.73 45.23 42.79

22. 40.98 42.31 39.24 40.35 44.42 37.82 36.97 42.69 41.26 41.91 44.52 42.42

23. 44.94 45.85 45.02 44.87 48.15 41.95 40.88 47.47 46.37 46.95 48.17 47.34

24. 43.43 44.26 43.34 43.31 46.47 41.19 40.33 45.98 44.92 45.45 46.52 45.94

Table 4.3 shows the CPU time. The table shows that the (h) method is the fastest than all

other algorithms. Since this method is implemented in MATLAB libraries, the method is

supposed to be coded in optimal manner and is more close to the system platform. Since our

proposed method is implemented at user level in a high level language and we have not

performed any code optimizations, so the actual running time of the algorithm will be very

51

less. Our proposed fuzzy method is still faster than many of the other demosaicking

algorithms as shown in table 4.3 and is also better than the method (h) in terms of MSE and

PSNR as shown in table 4.2 and table 4.3.

Table 4.3: CPU Time Comparison in seconds (Nikon Digital Microscopy Images)

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

1. 0.02 0.12 3.79 10.64 1.00 2.32 26.99 0.01 295.30 4.41 2.09 5.65

2. 0.02 0.07 3.96 9.71 0.96 2.42 28.58 0.01 285.35 4.26 2.05 5.23

3. 0.02 0.06 3.79 9.11 1.02 1.98 24.39 0.01 290.98 4.26 1.98 5.07

4. 0.02 0.06 3.53 9.75 0.95 1.50 20.83 0.01 301.02 4.47 1.97 5.07

5. 0.02 0.07 3.54 10.22 0.90 1.54 20.60 0.01 337.59 4.53 1.96 5.07

6. 0.02 0.07 3.78 10.72 0.89 2.41 26.29 0.01 291.45 4.30 1.96 5.08

7. 0.02 0.07 3.67 9.98 0.91 2.12 26.13 0.01 277.54 4.34 1.97 5.07

8. 0.02 0.07 3.67 9.67 0.90 2.18 26.45 0.01 263.14 4.28 1.96 5.08

9. 0.02 0.07 3.72 9.56 0.92 2.16 25.87 0.01 269.06 4.30 1.96 5.05

10. 0.02 0.06 3.69 9.59 0.92 2.31 25.32 0.01 265.31 4.36 1.97 5.08

11. 0.02 0.07 3.54 9.16 0.89 1.67 21.37 0.01 265.16 4.39 1.97 5.07

12. 0.03 0.06 3.66 9.30 0.88 2.24 27.21 0.01 265.42 4.26 1.96 5.08

13. 0.02 0.06 3.69 9.63 0.89 2.19 26.90 0.01 266.48 4.29 1.96 5.08

14. 0.02 0.07 3.73 10.23 0.94 2.62 27.02 0.01 265.81 4.26 1.97 5.19

15. 0.02 0.07 3.74 9.98 0.90 2.54 27.06 0.01 266.83 4.26 1.96 5.08

16. 0.02 0.06 3.71 10.34 0.91 2.33 26.74 0.01 261.72 4.26 1.96 5.06

17. 0.02 0.07 3.75 10.19 0.88 2.23 27.18 0.01 268.00 4.29 1.98 5.18

18. 0.02 0.07 3.64 10.37 0.90 2.04 23.92 0.01 265.51 4.22 2.00 5.09

19. 0.02 0.07 3.80 10.68 0.89 2.20 25.38 0.01 266.98 4.31 1.98 5.10

20. 0.02 0.07 3.63 9.93 0.92 1.86 22.79 0.01 265.96 4.29 1.98 5.10

21. 0.02 0.07 3.62 9.32 0.95 1.83 23.57 0.01 265.09 4.27 1.95 5.06

22. 0.02 0.09 3.68 9.46 0.92 2.34 26.01 0.01 266.90 4.29 1.96 5.07

23. 0.02 0.07 3.59 9.70 0.89 1.65 21.55 0.01 266.34 4.30 1.98 5.07

24. 0.02 0.07 3.59 9.82 1.01 1.70 21.77 0.01 268.28 4.48 1.96 5.17

52

The numbers can only provide subset of the overall scenario. An important evaluation is the

visual appearance of the output images. For this, an example image is presented. Figure 4.2

shows an image for which a small region is cropped and zoomed. This example includes a

perspective that increases spatial frequency along the region. Aliasing is a prominent artifact

in this image. The proposed interpolation algorithm (k) reconstructs this image very best.

Very little aliasing is present in the output image. This is good example to show how the

algorithm responds to features at various orientations. The algorithm (k) and the interpolation

algorithm (l) show very few of the aliasing artifacts present in the other output images. This

shows that these algorithms are fairly robust to the orientation of various features.

Figure 4.2: Cropped Region of the Original Image (Nikon Digital Microscopy Images).

53

Figure 4.3: Visual Comparison (Nikon Digital Microscopy Images).

54

4.4.2 Satellite Color Images

The test set consists of 23 images with different pixel resolution (shown for each image in

comparison table) as shown in figure 4.4. This image set has has been acquired from Landsat

earth imaging [56]. The interpolated images are compared to the original images and results

are reported for all three performance measures. The MSE results are summarized in table

4.4, PSNR results are summarized in table 4.5 and the CPU time results are summarized in

table 4.6. The best result for each image is highlighted with bold text.

An image region which is cropped from the original image is presented in figure 4.5 for the

original image visual quality comparison. This image region is compared with other

algorithm in figure 4.6.

55

Figure 4.4: Satellite Color Images: each image is of different size and is numbered in order of

left-to- right and top-to-bottom, from 1 to 23.

56

The table 4.4 shows that average MSE over the set of images. The table shows the method (j)

performs best for 13 images and the proposed method (l) performs best on rest 10 images.

However, the results of proposed algorithm are better than all other algorithms.

Table 4.4: MSE Comparison (Satellite Color Images)

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l)

1. 4.86 2.55 4.78 15.48 2.40 14.50 14.74 1.00 0.69 2.43 0.86

2. 11.82 8.67 13.23 10.28 8.19 8.39 15.79 4.24 3.16 8.58 3.86

3. 5.60 2.82 9.85 11.95 2.71 10.81 14.03 1.41 1.10 2.73 1.35

4. 15.88 12.23 9.62 18.84 11.84 12.03 19.27 6.44 5.63 12.07 5.60

5. 9.99 6.51 5.83 11.62 6.18 8.53 11.21 2.84 2.43 6.25 2.70

6. 11.16 7.87 21.58 9.85 7.67 7.84 13.89 4.39 4.18 7.83 4.05

7. 8.11 6.22 6.35 16.49 6.00 12.81 18.18 3.35 2.77 6.08 2.86

8. 15.78 13.46 20.68 30.82 13.12 28.60 28.15 9.06 8.22 13.08 7.69

9. 2.74 1.77 5.87 4.37 1.81 2.94 4.06 1.47 1.20 1.84 1.13

10. 3.86 1.17 7.58 24.62 1.09 27.08 20.05 0.57 0.48 1.06 0.53

11. 16.44 12.79 17.25 25.39 12.62 17.77 28.06 7.45 7.11 12.77 6.51

12. 6.52 4.12 11.82 16.01 4.04 12.57 14.65 2.65 2.28 4.09 2.27

13. 9.16 5.09 10.88 15.87 4.87 10.43 15.25 2.41 2.21 4.99 2.37

14. 10.48 8.01 11.29 24.87 7.81 24.34 19.49 5.55 4.95 7.88 4.64

15. 1.90 0.70 17.19 19.87 0.64 15.25 22.82 0.39 0.34 0.57 0.33

16. 8.62 5.34 10.83 22.57 5.27 19.21 20.33 3.69 3.92 5.35 3.51

17. 4.14 1.54 32.41 23.30 1.39 31.45 26.75 0.55 0.58 1.40 0.46

18. 7.41 5.94 10.30 12.88 5.76 10.53 16.75 4.06 3.43 5.87 3.45

19. 15.15 12.36 8.30 24.65 11.94 21.48 22.31 7.28 5.81 12.30 6.23

20. 11.44 7.26 7.69 25.29 7.00 24.59 21.41 4.19 3.82 7.19 4.13

21. 15.16 11.62 13.76 18.34 11.32 16.12 18.51 6.50 6.00 11.37 6.09

22. 7.95 5.54 8.19 21.12 5.40 23.15 20.88 3.58 3.34 5.49 2.99

23. 13.82 9.57 12.69 20.18 9.22 20.96 18.80 4.86 4.66 9.20 4.67

57

Table 4.5 reports the PSNR. The errors are reported for the same set of algorithms. These

measures agree with the MSE comparison. The method (j) and proposed algorithm (l) shows

superior results to the other algorithms. Although the proposed method does not have the

higher PSNR average for all images, its results are comparable to the latest demosaicking

methods for the most part and it outperforms all other methods on a number of images.

Table 4.5: PSNR Comparison (Satellite Color Images).

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l)

1. 41.33 44.29 42.51 38.66 44.82 36.54 36.45 48.35 49.75 44.53 49.18

2. 37.61 38.89 37.53 38.42 39.32 38.89 37.57 42.06 43.18 38.95 42.57

3. 40.79 43.87 41.56 39.32 44.25 37.84 36.72 46.89 47.88 44.06 47.24

4. 36.22 37.39 38.33 35.90 37.62 37.37 35.44 40.27 40.67 37.46 40.93

5. 38.25 40.16 40.67 38.31 40.59 38.86 37.72 43.81 44.35 40.37 44.26

6. 37.72 39.32 36.09 38.55 39.51 39.20 37.67 41.91 41.98 39.36 42.39

7. 39.14 40.34 41.96 37.24 40.58 37.09 36.01 43.11 43.75 40.45 43.82

8. 36.24 36.95 35.83 34.18 37.12 33.64 33.69 38.73 39.04 37.09 39.40

9. 43.87 45.88 41.98 42.56 45.75 43.54 42.07 46.75 47.55 45.72 47.97

10. 42.38 47.81 42.46 38.46 48.47 33.91 35.65 50.85 51.60 48.32 51.61

11. 36.07 37.20 36.98 34.82 37.29 35.70 33.82 39.62 39.68 37.22 40.25

12. 40.08 42.22 38.78 38.28 42.41 37.40 36.99 44.17 44.69 42.28 44.92

13. 38.61 41.27 38.73 37.62 41.62 38.01 36.34 44.63 44.97 41.39 44.81

14. 38.04 39.23 38.23 35.51 39.39 34.33 35.49 40.85 41.24 39.30 41.62

15. 45.61 49.94 40.99 40.28 50.91 36.63 34.72 52.51 53.37 51.02 53.49

16. 38.87 41.03 38.62 36.72 41.14 36.86 36.61 42.71 42.46 41.03 42.99

17. 41.99 46.59 37.28 40.37 47.90 34.93 36.83 51.04 50.65 47.16 52.39

18. 39.55 40.55 38.77 38.12 40.74 38.01 36.21 42.24 42.83 40.61 42.99

19. 36.47 37.34 39.01 35.03 37.59 34.83 34.75 39.73 40.52 37.37 40.41

20. 37.67 39.70 40.47 36.00 40.00 35.10 36.10 42.24 42.63 39.77 42.38

21. 36.42 37.61 37.27 36.04 37.79 36.06 35.78 40.16 40.40 37.72 40.50

22. 39.20 40.84 39.51 36.48 41.01 34.52 35.22 42.75 42.94 40.89 43.55

23. 36.81 38.48 37.66 36.02 38.74 34.96 35.92 41.46 41.55 38.67 41.80

58

Table 4.6 shows the CPU time. The table shows that the method (h) is the fastest than all

other algorithms, the reason being the same as explained for Nikon Digital Microscopy

Images. However, our proposed algorithms is still faster than many of the other demosaicking

algorithms as shown in table 4.6.

Table 4.6: CPU Time Comparison in seconds (Satellite Color Images).

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l)

1. 0.22 0.98 40.34 120.04 8.94 26.74 275.69 0.12 36.69 30.78 49.94

2. 0.09 0.56 19.79 71.63 5.28 13.42 157.63 0.07 24.99 17.84 29.96

3. 0.07 0.40 13.97 50.04 3.77 10.34 110.69 0.05 17.50 12.65 21.34

4. 0.04 0.20 7.42 25.94 1.91 5.26 58.04 0.03 8.86 6.52 11.05

5. 0.02 0.14 4.95 17.79 1.30 3.23 36.77 0.02 5.67 4.21 7.21

6. 0.06 0.38 13.12 47.28 3.38 8.42 99.95 0.05 15.52 11.40 19.75

7. 0.08 0.43 14.97 52.04 3.99 11.52 116.86 0.05 17.66 13.49 21.95

8. 0.03 0.21 7.34 24.64 1.88 7.53 61.09 0.03 8.06 6.26 10.57

9. 0.10 0.58 20.85 72.83 8.19 11.12 144.13 0.07 23.78 18.08 30.39

10. 0.09 0.53 19.36 68.29 7.85 18.96 157.84 0.07 22.75 17.29 29.41

11. 0.05 0.36 11.18 40.87 4.41 9.47 93.96 0.04 12.83 9.87 16.32

12. 0.12 0.67 23.31 89.79 9.39 17.66 186.39 0.08 27.66 21.48 33.95

13. 0.06 0.34 12.37 44.92 4.84 9.11 97.87 0.04 14.73 10.89 17.61

14. 0.07 0.45 15.59 56.82 6.10 14.54 139.45 0.06 18.64 13.59 22.23

15. 0.04 0.25 8.43 30.00 3.32 6.81 70.96 0.03 10.23 7.32 12.04

16. 0.11 0.55 19.09 67.09 7.58 15.63 164.46 0.07 23.11 17.19 27.56

17. 0.06 0.32 11.26 40.52 4.31 12.31 96.60 0.04 13.34 10.24 15.70

18. 0.06 0.35 11.96 44.59 4.60 7.79 90.95 0.07 15.28 12.06 17.86

19. 0.19 0.88 32.86 125.17 12.99 29.20 296.63 0.12 43.15 31.89 49.88

20. 0.11 0.60 22.04 77.61 8.47 19.11 198.44 0.08 28.38 21.01 32.14

21. 0.03 0.17 5.86 19.61 2.28 4.65 51.22 0.02 6.53 5.36 8.12

22. 0.10 0.60 23.17 77.17 8.94 20.27 199.77 0.09 25.35 21.06 32.35

23. 0.04 0.23 8.48 27.77 3.18 7.34 75.30 0.03 9.65 7.74 11.96

59

Now we will evaluate the visual appearance of the output images. For this, an image 7 is

presented for which a small region is cropped and zoomed as shown in figure 4.5. This image

includes a “island” from a perspective that increases spatial frequency along the region.

Aliasing is a prominent artifect in this image. The proposed interpolation algorithm (l)

reconstructs this image very best. Very little aliasing is present in the output image. This is

good example to show how the algorithm respond to features at various orientations. The (l)

algorithm and the (j) interpolation algorithm show very few of the aliasing artifacts present in

the other output images. This shows that these algorithms are fairly robust to the orientation

of various features.

Figure 4.5: Cropped Region of the Original Image (Satellite Images).

60

Figure 4.6: Zoomed Images for Visual Comparison (Satellite Color Images)

61

4.4.3 High Definition Color Images

The test set consists of 5 images with different pixel resolution (shown for each image in

comparison table) as shown in figure 4.7. This image set contains random images that have

been taken from internet. These images are captured using a high quality digital camera

because resolution of these images is higher than a standard size image. The interpolated

images are compared to the original images and results are reported for all three performance

measures. The MSE results are summarized in table 4.7, PSNR results are summarized in

table 4.8 and the CPU time results are summarized in table 4.9. The best result for each image

is highlighted with bold text.

An image region which is cropped from the original image is presented in figure 4.8 for the

visual quality comparison. This image region is compared with other algorithm in figure 4.9.

Figure 4.7: High Definition Color images: each image is of different size and is numbered in
order of left-to- right and top-to-bottom, from 1 to 5.

The table 4.7 shows that average MSE over the set of images. The table shows the proposed

method (l) performs best on average in terms of MSE except of one image i.e. 1 in which

method (j) performs best.

62

Table 4.7: MSE Comparison (HD Color Images)

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l)

1. 1.47 0.63 11.61 10.37 0.57 11.93 15.71 0.40 0.28 0.57 0.32

2. 1.15 0.58 3.17 6.58 0.57 3.43 6.58 0.78 0.96 0.52 0.77

3. 9.10 6.17 9.53 22.43 5.97 22.00 19.00 3.98 3.95 5.89 3.65

4. 16.97 13.62 9.93 24.39 13.35 21.81 18.75 8.07 7.43 13.26 6.59

5. 1.09 0.64 9.19 3.74 0.61 7.05 9.37 0.53 0.49 0.61 0.44

Table 4.8 reports the PSNR. The errors are reported for the same set of algorithms. These

measures agree with the MSE comparison. The proposed method (l) and method (j) shows

superior results to the other algorithms.

Table 4.8: PSNR Comparison (HD Color Images).

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l)

1. 46.69 50.35 41.45 43.20 51.13 39.06 40.10 52.31 54.02 50.92 53.56

2. 48.02 51.60 46.48 47.31 51.96 49.56 45.17 49.60 49.36 51.93 50.00

3. 38.66 40.38 38.87 36.28 40.62 35.04 35.75 42.38 42.34 40.61 42.79

4. 35.92 36.91 38.27 34.90 37.04 34.81 35.41 39.23 39.46 37.04 40.09

5. 47.81 50.28 42.38 46.68 50.59 42.23 42.11 51.17 51.50 50.54 52.05

Table 4.9 shows the CPU time. The table shows that the (h) method is the fastest than all

other algorithms, the reason being same as explained in previous sections. Our proposed

algorithms is still faster than many of the other demosaicking algorithms as shown in table

4.9.

63

Table 4.9: CPU Time Comparison in seconds (HD Color Images).

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (j) (k) (l)

1. 0.23 0.77 43.18 124.77 12.48 34.29 351.95 0.22 58.12 26.82 65.73

2. 0.07 0.17 8.25 24.53 2.29 4.67 64.24 0.03 10.32 5.36 12.59

3. 0.03 0.04 1.97 5.46 0.52 1.78 17.53 0.01 2.41 1.12 2.91

4. 0.02 0.03 1.69 4.60 0.43 1.47 14.67 0.00 1.93 0.94 2.46

5. 0.09 0.40 18.38 52.61 5.13 13.36 145.94 0.05 23.25 11.21 29.70

Now we will evaluate the visual appearance of the output images. For this, an example image

is presented. Figure 4.8 shows that “fruits” image out of which a region is cropped and

zoomed to evaluate visual quality of interpolation algorithm. This cropped region includes a

frequency transition from a perspective that increases spatial frequency along the region.

Aliasing is a prominent artifect in this image. The proposed interpolation algorithm (l)

reconstructs this image very best. Very little aliasing is present in the output image. The

algorithm (l) and the (j) interpolation algorithm show very few of the aliasing artifacts present

in the other output images. This shows that these algorithms are fairly robust to the

orientation of various features.

Figure 4.8: Cropped Region of the Original Image (HD Color Images).

64

Figure 4.9: Zoomed Images for Visual Comparison (HD Color Images)

65

4.4.4 Kodak Loss-Less Color Image suite

The test set consists of 24 images with 512x712 pixel resolution as shown in figure 4.10. This

image set is released by Kodak [57] used for comparing the quality of color interpolation in

recent survey paper [58]. The interpolated images are compared to the original images and

results are reported for all three performance measures. The MSE results are summarized in

table 4.10, PSNR results are summarized in table 4.11 and the CPU time results are

summarized in table 4.12. The best result for each image is highlighted with bold text.

An image region which is cropped from the original image is presented in figure 4.11 for the

original image visual quality comparison. This image region is compared with other

algorithm in figure 4.12.

66

Figure 4.10: Test images: each image (768x512) is numbered in order of left-to- right and

top-to-bottom, from 1 to 24.

The table 4.10 shows that average MSE over the set of images. The table shows the method

(j) performs best on average in terms of MSE except of three images in which proposed

method (l) performs best. However our proposed algorithm (l) is superior than all other

algorithms except (j).

67

Table 4.10: MSE Comparison (Kodak Loss-Less True Color Images)

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

1. 12.09 10.86 6.41 20.86 8.99 15.84 21.69 5.49 4.52 3.33 9.37 4.25

2. 4.89 3.73 10.34 19.26 3.03 17.28 16.82 1.74 1.68 1.42 3.11 1.48

3. 3.80 2.96 10.40 15.18 2.26 11.80 18.19 1.21 1.03 0.95 2.27 0.95

4. 5.49 3.53 14.23 19.04 3.12 13.95 19.35 1.66 1.51 1.33 3.18 1.40

5. 10.61 8.79 10.39 14.14 7.06 9.55 12.72 3.85 2.94 2.52 7.28 3.10

6. 9.38 7.85 3.98 22.67 6.28 22.39 21.10 4.03 3.20 2.46 6.73 3.31

7. 5.18 3.36 6.27 16.73 2.38 12.69 21.32 1.29 1.01 0.79 2.35 1.00

8. 11.72 11.67 13.08 23.54 8.96 20.96 20.52 7.21 5.87 3.51 9.74 5.99

9. 4.73 3.42 3.15 25.26 2.90 22.58 27.83 1.86 1.42 0.91 3.00 1.43

10. 4.64 3.24 2.16 21.36 2.82 16.54 25.05 1.67 1.31 0.90 2.89 1.29

11. 7.34 5.92 4.98 13.85 4.76 7.87 18.04 2.87 2.49 1.98 5.00 2.34

12. 4.50 3.52 2.07 31.92 2.65 37.16 24.42 1.60 1.21 0.98 2.71 1.19

13. 14.44 12.04 9.48 20.33 10.89 15.78 18.69 6.96 5.84 5.80 11.12 5.53

14. 9.06 6.82 8.80 15.22 5.47 12.06 15.56 2.94 2.58 2.21 5.67 2.48

15. 4.56 3.75 6.91 18.61 2.96 20.23 13.98 1.92 1.82 1.29 2.99 1.59

16. 6.55 5.08 3.23 16.28 3.97 12.13 19.53 2.31 1.96 1.14 4.23 1.92

17. 5.14 3.43 4.72 11.85 3.04 8.31 12.60 1.75 1.30 1.08 3.03 1.30

18. 9.36 6.38 9.46 10.14 5.99 6.29 8.84 3.56 2.88 2.88 6.15 2.87

19. 7.37 6.27 10.81 19.72 5.25 15.41 22.42 3.61 2.85 1.84 5.61 2.85

20. 4.36 3.71 4.89 28.95 2.92 34.99 24.82 1.87 2.77 1.23 2.96 1.44

21. 7.33 6.21 11.01 23.46 5.13 19.44 23.73 3.16 2.64 2.25 5.29 2.50

22. 6.74 5.18 7.69 19.34 4.19 16.03 20.98 2.43 2.12 1.85 4.32 2.01

23. 2.77 2.15 8.87 14.88 1.54 14.96 16.91 0.92 0.76 0.61 1.49 0.80

24. 7.88 6.95 6.56 17.12 5.81 12.84 18.33 3.54 3.32 2.73 5.93 2.94

Table 4.11 reports the PSNR. The errors are reported for the same set of algorithms. These

measures agree with the MSE comparison. The method (j) and proposed algorithm (l) shows

superior results to the other algorithms. Although the proposed method does not have the

68

higher PSNR average, its results are comparable to the latest demosaicking methods for the

most part and it outperforms all other methods on a number of images.

Table 4.11: PSNR Comparison (Kodak Loss-Less True Color Images).

Image

Number
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

1. 37.38 37.95 41.82 36.15 38.95 36.25 35.19 41.03 41.58 42.95 38.57 42.11

2. 41.43 42.66 39.58 39.70 43.84 40.23 41.77 46.05 45.88 47.08 43.47 46.75

3. 42.42 43.63 39.69 39.01 45.08 37.76 35.90 47.60 48.02 48.48 44.77 48.48

4. 40.89 42.92 38.83 37.85 43.57 37.12 35.86 46.08 46.33 46.98 43.30 46.89

5. 37.98 38.86 38.63 37.53 40.00 38.39 37.38 42.53 43.44 44.19 39.65 43.47

6. 38.44 39.37 44.04 36.30 40.62 34.67 35.38 42.38 43.08 44.28 40.00 43.29

7. 41.04 43.13 41.06 38.76 45.02 37.51 35.38 47.29 48.09 49.24 44.65 48.39

8. 37.58 37.62 37.35 35.86 39.14 34.96 35.06 39.79 40.44 42.76 38.37 40.60

9. 41.47 43.03 43.38 37.17 44.10 34.61 33.72 45.71 46.60 48.62 43.54 46.94

10. 41.56 43.28 44.99 37.64 44.17 35.96 34.27 46.17 46.95 48.66 43.74 47.38

11. 39.55 40.62 42.00 38.23 41.86 39.19 35.74 43.85 44.17 45.28 41.35 44.77

12. 41.65 42.95 45.71 36.85 44.65 32.52 34.70 46.42 47.30 48.32 44.07 47.76

13. 36.62 37.46 38.58 35.72 37.95 36.18 35.74 39.91 40.46 40.53 37.80 40.88

14. 38.64 40.01 39.21 37.71 41.17 37.56 36.72 43.72 44.01 44.83 40.79 44.47

15. 41.74 42.59 41.17 37.86 43.81 35.20 36.84 45.53 45.53 47.22 43.56 46.37

16. 40.00 41.30 43.08 38.03 42.74 37.33 35.35 44.84 45.21 47.62 42.07 45.70

17. 41.13 42.99 43.43 39.08 43.70 38.95 37.24 45.91 47.00 47.85 43.48 47.31

18. 38.52 40.27 38.91 38.80 40.60 40.30 39.40 42.82 43.54 43.59 40.39 43.77

19. 39.59 40.34 38.78 36.97 41.39 36.33 34.76 42.78 43.58 45.55 40.76 43.78

20. 41.89 42.64 42.67 36.60 43.89 32.76 34.35 45.68 43.70 47.33 43.60 46.86

21. 39.56 40.37 38.48 36.39 41.35 35.35 34.45 43.39 43.91 44.67 41.05 44.42

22. 39.98 41.19 40.13 37.25 42.25 36.12 35.18 44.53 44.87 45.56 41.96 45.40

23. 43.92 45.03 40.56 39.70 46.79 36.60 36.30 48.75 49.32 50.51 46.62 49.36

24. 39.31 39.90 41.94 37.25 40.80 37.07 35.71 42.89 42.91 43.84 40.56 43.72

69

Table 4.12 shows the CPU time. The table shows that the method (h) is the fastest than all

other algorithms, the reason being same as explained in previous sections. Our proposed

algorithms is still faster than many of the other demosaicking algorithms as shown in table

4.12.

Table 4.12: CPU Time Comparison in seconds (Kodak Loss-Less True Color Images).

S.No. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

1. 0.04 0.12 4.59 11.15 1.58 4.61 47.77 0.17 319.18 6.95 3.50 8.94

2. 0.04 0.13 4.54 11.27 1.65 3.83 45.94 0.02 316.10 6.95 3.36 8.77

3. 0.04 0.12 4.98 11.21 1.62 4.26 43.87 0.01 348.52 7.01 3.34 8.76

4. 0.04 0.12 5.20 10.97 1.66 4.15 45.67 0.01 340.19 7.20 3.34 8.72

5. 0.04 0.12 4.56 10.64 1.55 3.61 44.93 0.01 388.67 7.28 3.34 8.74

6. 0.04 0.17 4.72 10.42 1.56 5.16 47.97 0.01 4720.38 6.97 3.34 8.73

7. 0.04 0.14 4.55 11.30 1.75 4.71 46.13 0.01 342.99 7.28 3.35 8.75

8. 0.04 0.13 4.76 10.79 1.64 4.57 52.63 0.02 339.32 6.80 3.37 8.73

9. 0.04 0.13 4.79 10.67 1.54 5.81 50.04 0.01 368.97 6.98 3.82 8.73

10. 0.04 0.13 5.06 10.63 1.56 4.94 48.24 0.01 3731.79 7.23 3.34 8.75

11. 0.04 0.11 4.77 10.43 1.65 3.73 44.90 0.01 390.18 7.08 3.37 8.73

12. 0.04 0.12 4.84 10.49 1.62 6.62 50.38 0.02 3106.09 6.91 3.35 8.72

13. 0.05 0.13 4.40 10.46 1.55 4.10 46.91 0.01 390.23 6.84 3.37 8.73

14. 0.04 0.12 4.35 10.34 1.56 4.04 46.70 0.02 517.56 6.78 3.38 8.73

15. 0.04 0.14 4.33 10.64 1.61 4.49 44.35 0.01 476.25 6.94 3.42 8.74

16. 0.05 0.12 4.37 10.66 1.59 4.09 48.11 0.01 488.63 6.79 3.42 8.74

17. 0.04 0.12 4.53 10.10 1.56 3.74 44.21 0.01 494.59 6.78 3.43 8.73

18. 0.03 0.15 4.53 10.24 1.54 3.30 48.35 0.01 517.31 6.77 3.37 8.73

19. 0.03 0.12 4.54 10.13 1.55 4.34 50.47 0.02 437.75 6.86 3.36 8.92

20. 0.03 0.12 4.44 9.92 1.59 4.64 42.73 0.02 451.81 6.92 3.41 8.73

21. 0.04 0.12 4.37 10.33 1.60 4.49 53.77 0.02 418.04 6.80 3.41 8.95

22. 0.03 0.13 4.45 10.30 1.61 4.32 57.12 0.02 399.83 6.86 3.45 8.76

23. 0.03 0.15 4.41 10.37 1.83 4.25 54.34 0.02 413.73 6.93 3.40 8.85

24. 0.04 0.12 4.34 10.37 1.84 4.02 55.98 0.01 389.89 7.06 3.41 8.79

70

An important evaluation is the visual appearance of the output images. For this, an example

image is presented. Figure 4.11 shows the “hills” image. This example includes a “zebra kind

of pattern” from a perspective that increases spatial frequency along the region. Aliasing is a

prominent artifect in this image. The (j) interpolation algorithm reconstructs this image very

best. Very little aliasing is present in the output image. The image contains various lines at

vaious angles across the image. This is good example to show how the algorithm respond to

features at various orientations. The proposed algorithm (k) and (l) show very few of the

aliasing artifacts present in the other output images. This shows that these algorithms are

fairly robust to the orientation of various features.

Figure 4.11: Cropped Region of the Original Image (Kodak Loss-Less True Color Images).

71

Figure 4.12: Zoomed Images for Visual Comparison (Kodak Loss-Less True Color Images)

72

4.4.5 Berkeley Image database

The test set consists of 100 images with 481x321 pixel resolution as shown in figure 4.13.

This image set has been used for segmentation purposes [60]-[62]. This image database has

been acquired from [59]. The interpolated images are compared to the original images and

results are reported for all three performance measures. The MSE results are compared with

other algorithms using a histogram. The X-axis of the histogram indicates the image number

and Y-axis of the histogram shows the MSE value for the corresponding image. This is

shown in figure 4.14. Similarly, PSNR results are shown in figure 4.15 and the CPU time

results are shown in figure 4.16. The results for the proposed algorithms are highlighted with

bold lines.

An image region which is cropped from the original image is presented in figure 4.17 for the

original image visual quality comparison. This image region is compared with other

algorithm in figure 4.18.

73

Figure 4.13: Berkeley Test images: each image (481x321) is numbered in order of left-to-

right and top-to-bottom, from 1 to 100.

74

The histogram in figure 4.14 shows that average MSE over the set of images. The results of

the proposed method are highlighted using bold lines. This histogram shows the proposed (l)

method performs best on average in terms of MSE except of some of the images in which

method (j) performs best.

Figure 4.14: MSE Comparison (Berkeley Color Test Images)

Figure 4.15 shows the histogram for the PSNR comparison. The errors are reported for the

same set of algorithms. These measures agree with the MSE comparison. The proposed

method (l) and method (j) shows superior results to the other algorithms.

75

Figure 4.15: PSNR Comparison (Berkeley Color Test Images)

Figure 4.16: CPU Time Comparison (Berkeley Color Test Images)

76

Figure 4.16 shows the CPU time. The histogram shows that the method (h) is the fastest than

all other algorithms, the reason being as explained in previous sections. Our proposed

algorithms is still faster than many of the other demosaicking algorithms as shown in figure

4.16.

The numbers can only provide subset of the overall scenario. An important evaluation is the

visual appearance of the output images. For this, an example image is presented. Figure 4.17

shows the image 29. This example includes a “building” from a perspective that increases

spatial frequency along the region. Aliasing is a prominent artifect in this image. The

proposed interpolation algorithm (l) reconstructs this image very best. Very little aliasing is

present in the output image. This is good example to show how the algorithm respond to

features at various orientations.

Figure 4.18: Cropped Region of the Original Image (Berkeley Color Test Images).

77

Figure 4.19: Zoomed Images for Visual Comparison (Berkeley Color Test Images)

78

Chapter 5

Conclusion and Future Directions

In this paper, we have presented a new color interpolation approach for Bayer pattern mosaic

images. The proposed algorithm utilizes edge strength for the fuzzy membership assignment

as a weighting factor for estimating the missing colors in each pixel. This algorithm

significantly improves the overall visual quality of the interpolated color images. The

experimental results prove that the algorithm preserves colors on the edges with minimal or

no visual artifacts. We have also presented the objective quality metrics in terms of MSE and

PSNR to show the performance of the algorithm with five images sets for color interpolation

and we observe that PSNR is one of the highest among all comparison methods especially for

the proposed fuzzy non-linear method. The CPU time of the proposed algorithm is also faster

than those of many methods especially in the case of fuzzy bilinear interpolation, as only

simple fuzzy weighted averaging is carried out for color interpolation.

Digital imaging devices such as digital cameras will continue to employ only a single

electronic sensor for color interpolation due to the cost and packaging consideration.

However demosaicking is still an important problem into research and has explored the

imaging process and the correlation among three color planes. Artifact reduction is another

research problem in color image interpolation. Temporal correlation in addition to spectral

correlation should be exploited. For real time imaging system such as digital cameras,

processing time is an important measure for algorithm implementation because a

photographer may need to take pictures at a fast rate. Single-lens-reflex (SLR) cameras

provide access to the raw image data which can later be processed on a digital computer.

Here the processing time is not an issue. Therefore high performance algorithms that are

computationally complex can still be implemented for off-line processing applications.

79

References

[1] Bryce E. Bayer, "Color imaging array," U.S. Patent 3,971,065, Eastman Kodak Company, 1976.

[2] P. The’venaz, T. Blu and M. Unser, “Interpolation revisited,” IEEE Trans. MI, vol. 19, no. 7, pp. 739-
758, 2000.

[3] M. Unser, A Aldroubi, M Eden, "B-spline Signal Processing: Part1 Theory," IEEE Trans. Signal

Processing, vol. 41, pp. 821-833, 1993.

[4] M. Yoneyama, Y. Yamamoto, Y. Tanizoe, S. Sasaki, and H. Okayama, "Development of single chip
digital camera with high picture quality," Proc. ITE Annu. Conv., vol. 8, no. 5, pp. 119-120, 1994.

[5] T. Kuno and H. Sugiura, "New Interpolation Method using discriminated color correlation for digital

still cameras," IEEE Trans. Consumer Electronics, vol. 45, no. 1, pp. 259-267, Jan. 1999.

[6] S. Okada, Y Matsuda, T Yamada, A Kobayashi, "System on a chip for digital still camera," IEEE
Trans. Consumer Electronics, vol. 45, no. 3, pp. 584-590, Aug. 1999.

[7] R. Kimmel, "Demosaicing; Image Reconstruction from Color CCD Sample," IEEE. Trans. Image

Processing, vol. 8, pp. 1221-1228, Sept. 1999.

[8] R. Lukac and K. N. Plataniotis, “A normalized model for color-ratio based demosaicking schemes,”
International Conf on Image Processing, 2004, vol. 3, pp. 1657–1660.

[9] J. F. Hamilton and J. E. Adams, “Adaptive color plane interpolation in single sensor color electronic
camera,” U.S. Patent 5 629 734, Mar. 13, 1997.

[10] C. A. Laroche and M. A. Prescott, “Apparatus and method for adaptively Interpolating a full color
image utilizing chrominance gradients,” U.S. Patent 5 373 322, Dec. 13, 1994.

[11] Y. Hel-Or, "The Canonical Correlation of Color Image and their use for Demosaicing," Tech. Report

HPL-2003-164, HP Labs (internal), Feb. 2004.

[12] B. E. Marino and R. L. Stevenson, "Improving the performance of single chip image capture devices,"
IS&T Jour. Electronic Imaging, vol. 12, no. 2, pp. 209-218, April 2003.

[13] X. L. Michael and T. Orchard, "New Edge-Directed Interpolation," IEEE Trans. Image Processing,

vol. 10, no. 10, pp. 1521-1527, Oct. 2001.

[14] D. D. Muresan, and T. W. Parks, "Optimal Recovery Approach to Image Interpolation," IEEE Proc.
ICIP 2001, vol. 3, pp. 7-10, 2001.

[15] D. R. Cok, "Signal Processing Method and Apparatus for Sampled Image Signals," U.S. patent 4, 630,

307, 1986.

[16] J. W. Glotzbach, R. W. Schafer, and K. Illgner, “A method of color filter array interpolation with alias
cancellation properties,” in Proc. IEEE Int. Conf. Image Process., 2001, vol. 1, pp. 141–144.

80

[17] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating
projections,” IEEE Trans. Image Process., vol. 11, no. 9, pp. 997–1013, Sep. 2002.

[18] N.-X. Lian, L. Chang, Y.-P. Tan, and V. Zagorodnov, “Adaptive filtering for color filter array

demosaicking,” IEEE Trans. Image Process., vol. 16, no. 10, pp. 2515–2525, Oct. 2007.

[19] R. H. Hibbard, “Apparatus and method for adaptively interpolating a full color image utilizing
luminance gradients,” U.S. Patent 5 382 976, Jan. 17, 1995.

[20] J. E. Adams and J. F. Hamilton, Jr., “Adaptive color plane interpolation in single sensor color

electronic camera,” U.S. Patent 5 506 619, Apr. 9, 1996.

[21] K.-H. Chung and Y.-H. Chan, “Color demosaicing using variance of color differences,” IEEE Trans.
Image Process., vol. 15, no. 10, pp. 2944–2955, Oct. 2006.

[22] L. Zhang and X. Wu, “Color demosaicking via directional linear minimum mean square-error

estimation,” IEEE Trans. Image Process., vol. 14, no. 12, pp. 2167–2178, Dec. 2005.

[23] D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius, and K. Egiazarian, “Spatially adaptive color filter array
interpolation for noiseless and noisy data,” Int. J. Imag. Syst. Technol., vol. 17, no. 3, pp. 105–122,
2007.

[24] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed demosaicing algorithm,” IEEE Trans.

Image Process., vol. 14, no. 3, pp. 360 369, Mar. 2005.

[25] D. Menon, S. Andriani, and G. Calvagno, “Demosaicing with directional filtering and a posteriori
decision,” IEEE Trans. Image Process., vol. 16, no. 1, pp. 132–141, Jan. 2007.

[26] I. Tsubaki and K. Aizawa, "A restoration and demosaicing method for a pixel mixture image," Proc.

SPIE/IS&T Electronic Imaging, SPIE vol. 5301, pp. 346-355, 2004.

[27] T. Gotoh and M. Okutomi, "Color Super-Resolution from a Single CCD," CD-ROM Proc. IEEE
Workshop on color and photometric methods in computer vision, 2003.

[28] P. Vandewalle , S. Susstrunk, and M. Vetterli, "Double resolution from a set of aliased images,"

SPIE/IS&T Electronic Image Conf., 2004.

[29] S. Farsiu, M. Elad, and P. Milanfar, "Multi-Frame Demosaicing and Super-Resolution from Under-
Sampled Color Images," Proc. 2004 IS&T/SPIE 16th Annual Sympo. Electronic Imaging, pp. 222-233,
Jan. 2004.

[30] L. Chang and Y. Tan, "Effective use of Spatial and Spectral Correlations for Color Filter Array
Demosaicing," IEEE Trans. Consumer Electronics, vol. 50, no. 1, pp. 355-365, Feb. 2004.

[31] H. J. Trussell and R. E. Hartwig, "Mathematics for Demosaicing," IEEE Trans. Image Processing, vol.

11, no. 4, pp. 485-492, April 2002.

[32] Bo Tao, I. Tastl, T. Cooper, M. Blasgen, and E. Edwards, "Demosaicing using Human Visual
Properties and Wavelet Interpolation Filtering," US Sony Proc. IS&T/SID 7th Color Image Conference
(CIC'99), pp. 252- 256, 1999.

81

[33] Z. Baharav and R. Kakarala, "Compression aware demosaicing methods," Proc.SPIE, Image
Processing, vol. 4667, pp. 149-156, 2002.

[34] Y. Hel-Or and D. Keren, "Demosaicing of Color Image Using Steerable Wavelets," Tech. Report

HPL-97-104, HP Labs (internal), 1997.

[35] James E. Adams, Jr., “Interactions between color plane interpolation and other image processing
functions in electronic photography,” Proceedings of the SPIE Electronic Imaging Conference, Vol.
2416, pp:144-151, 1995.

[36] Tadashi Sakamoto, Chikako Nakanishi and Tomohiro Hase, "Software Pixel Interpolation for Digital
Still Cameras Suitable for A 32-bit MCU," IEEE Transactions on Consumer Electronics, Vol. 44, No.
4, pp 1342-1352, Nov. 1998.

[37] David R Cok, "Signal processing method and apparatus for producing interpolated chrominance values
in a sampled color image signal," U.S. Patent 4,642,678, Eastman Kodak Company, 1987.

[38] D.R. Cok, “Signal processing method and apparatus for producing interpolated chrominance values in
a sampled color image signal,” U.S. Patent 4 642 678, 1986.

[39] W.T. Freeman, “Method and apparatus for reconstructing missing color samples,” U.S. Patent 4 774

565, 1988.

[40] R. Kimmel, “Demosaicing: image reconstruction from CCD samples,” IEEE Trans. Image Processing,
vol. 8, no. 9, pp. 1221–1228, 1999.

[41] S.-C. Pei and I.-K. Tam, “Effective color interpolation in CCD color filter arrays using signal

correlation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 6, pp. 503–513, June 2003.

[42] J.A. Weldy, “Optimized design for a single-sensor color electronic camera system,” Proc. SPIE, vol.
1071, pp. 300–307, May 1988.

[43] X. Wu, W. K. Choi, and P. Bao, “Color Restoration from Digital Camera Data by Pattern Matching,”

Proceedings of the SPIE’s Electronic Imaging Conference Color Imaging: Device- Independent Color,
Color Hardcopy, and Graphic Arts II, Vol. 3018, pp. 12-17, 1997.

[44] Chang, Ed. et.al., "Color Filter Array Recovery Using a Threshold-based Variable Number of
Gradients" to be published in Proceedings of SPIE, January, 1999.

[45] Ibrahim Pekkucuksen, Student Member, IEEE, and Yucel Altunbasak, Senior Member, IEEE, “Edge
Strength Filter Based Color Filter Array Interpolation”, IEEE TRANSACTIONS ON IMAGE
PROCESSING, VOL. 21, NO. 1, JANUARY 2012.

[46] T. Kuno and H. Sugiura, “Practical Color Filter Array Interpolation Part 2 with Non-linear Filter ”

IEEE Transactions on Consumer Electronics, Vol. 52, No. 4, NOVEMBER 2006.

[47] Tetsuya Kuno and Hiroaki Sugiura, Member, IEEE, “Practical Color Filter Array Interpolation with
Constrained Color Correlation”, IEEE Transactions on Consumer Electronics, Vol. 52, No. 3,
AUGUST 2006.

[48] http://scien.stanford.edu/pages/labsite/1999/psych221/projects/99/tingchen/main.htm.

82

[49] http://www.microscopyu.com/articles/fluorescence/index.html.

[50] http://www.olympusmicro.com/galleries/index.html.

[51] http://www.mvainc.com/category/image-gallery/.

[52] http://www.microimaging.ca/forum.htm.

[53] http://www.microscopy-uk.net/.

[54] http://micro.magnet.fsu.edu/micro/gallery.html.

[55] http://zeiss-campus.magnet.fsu.edu/galleries/apotome/index.html.

[56] http://www.landsat.org/.

[57] Rich Franzen, "Kodak Lossless True Color Image Suite", URL: http://r0k.us/graphics/kodak/.

[58] X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: A systematic survey,” Proc. SPIE–Int. Soc.
Opt. Eng., vol. 6822, p. 68221J-1-15, Jan. 2008.

[59] http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/.

[60] Pablo Arbel´aez et al. “From Contours to Regions: An Empirical Evaluation”, ONR MURI N00014-

06-1-0734.

[61] Sungwoong Kim et al. “Higher-Order Correlation Clustering for Image Segmentation”, Machine
Learning and Perception, Microsoft Research Cambridge.

[62] Newlin, Dev R., and Elwin Chandra Monie. "EDGE SENSING DEMOSAICING USING ADAPTIVE
WEIGHTED INTERPOLATION." American Journal of Applied Sciences 10.4 (2013): 418.

[63] Fan, Yu-Cheng, Yi-Feng Chiang, and Yin-Te Hsieh. "Constant-hue Based Color Filter Array
Demosaicking Sensor for Digital Still Camera Implementation." (2013): 1-1.

[64] Wang, Xingbo, et al. "Median filtering in multispectral filter array demosaicking."IS&T/SPIE
Electronic Imaging. International Society for Optics and Photonics, 2013.

[65] Li, Hua. "SDRAM Based Hardware Design of Bayer-pattern Demosaicking."Dianshi Jishu(Video
Engineering) 37.5 (2013).

[66] Wang, Guo-gang, Xiu-chang Zhu, and Zong-liang Gan. "Image demosaicing by non-local similarity
and local correlation." Signal Processing (ICSP), 2012 IEEE 11th International Conference on. Vol. 2.
IEEE, 2012.

[67] Côté, Guy, and Jeffrey E. Frederiksen. "SYSTEM AND METHOD FOR DEMOSAICING IMAGE
DATA USING WEIGHTED GRADIENTS." European Patent No. EP 2491721. 29 Aug. 2012.

[68] Guarnera, M., G. Messina, and V. Tomaselli. "Demosaicing and Aliasing Correction." Red 33.R53:
R53.

83

[69] Hore, Alain, and Djemel Ziou. "An edge-sensing generic demosaicing algorithm with application to
image resampling." Image Processing, IEEE Transactions on 20.11 (2011): 3136-3150.

[70] Kakarala, Ramakrishna, and Izhak Baharav. "Method and system for adaptive demosaicing." European
Patent No. EP 1289310. 13 Jul. 2011.

[71] DiCarlo, Jeffrey, David D. Scott, and Wenyi Zhao. "METHODS AND APPARATUS FOR
DEMOSAICING IMAGES WITH HIGHLY CORRELATED COLOR CHANNELS." U.S. Patent
Application 13/027,071.

